Logics for Unranked Trees: An Overview

Leonid Libkin 1*

University of Toronto
Email:l i bki n@s. t oront o. edu

Abstract. Labeled unranked trees are used as a model of XML documents, a
logical languages for them have been studied actively dwepast several years.
Such logics have different purposes: some are better sfoteeitracting data,
some for expressing navigational properties, and some ritakasy to relate
complex properties of trees to the existence of tree au@rfwatthose proper-
ties. Furthermore, logics differ significantly in their medechecking properties,
their automata models, and their behavior on ordered andiered trees. In this
paper we present a survey of logics for unranked trees.

1 Introduction

Trees arise everywhere in computer science, and there arenous formalisms in the
literature for describing and manipulating trees. Someheté formalisms are declar-
ative and based on logical specifications: for example -dirder logic, or monadic
second-order logic, or various temporal or fixed-point tagdver trees. Others are pro-
cedural formalisms such as various flavors of tree autoroatage transducers, or tree
grammars. All these formalisms have found numerous apiesin verification, pro-
gram analysis, logic programming, constraint programniinguistics, and databases.

Until recently, most logical formalisms for trees dealthvitnkedtrees [18, 58]: in
such trees, all nodes have the same fixed number of childrea ot more generally,
the number of children of a node is determined by the labehatfmode). Over the past
several years, however, the focus has shifted towandsnkedrees, in which there are
no restrictions on the number of children a node can havénoilgh unranked trees
have been considered in the 60s and 70s, and are relateducefeaes over an infinite
set of features that have been investigated by computatiogaists, their systematic
study was initiated by the development of XML (eXtensibleriMg Language). XML
is a data format which has become the lingua franca for inédion exchange on the
world wide web. XML data is typically modeled as labeled uked trees [42].

This connection has led to a renewed interest in logical andqulural formalisms
for unranked trees: one uses logical formalisms for exjimgsteclarative queries, and
procedural formalisms for evaluating them. Logics overamked trees appeared in
large numbers over the past 7—-8 years, and they come in may<l@m shapes. Com-
mon to them is a close connection to automata models, ane gfitén to temporal and
modal logics, especially when one describes propertiestifythrough a document.

Let us now review some of the parameters according to whigte$ofor unranked
trees can be classified.

* Complete version of this survey can be found at www.cs.tmreadu/ libkin/publ.html.

The yardstick logidviost formalisms are “inspired” by eithdirst-order logic(FO),
or monadic second-order logifMSO) that extends FO by quantification over sets.
Query languages and schema formalisms for XML tend to use sSt®e yardstick: for
example, XML DTDs are (almost) equivalent to MSO sentenaed,various language
for extraction of data from XML documents have the power of M8nary queries.
On the other hand, navigational aspects of XML, in particudgics capturing various
fragments of XPath, are usually related to FO and its fragsen

Arity of queriesMost commonly one considers Boolean or unary queries. Boole
queries evaluate twue or false Checking if an XML document conforms to a schema
specification is represented by a Boolean query. Unary gseorrespond to formulae
in one free variable, and thus produce a set of nodes. E.gaotixg sets of nodes, or
evaluating XPath expressions relative to the root natugille rise to unary queries.

Complexity of model-checkin@he model-checking problem asks whether a ffee
satisfies a logical sentenge If ¢ is an MSO sentencg, it can be evaluated in linear
time in the size ofl", by converting to a tree automaton. But there is a price to jpay
terms of the size op, the complexity becomes non-elementary. This type of teafte
is one of the central issues in dealing with logics over trees

Ordered vs. unordered tresunranked XML trees, children of the same node are
ordered by aibling ordering If such an order is present, we speak of ordered unranked
trees. In many cases, however, this ordering is irrelevamd, some models, such as
feature trees, do not impose any ordering on siblings. Tisetensiderable difference
between the expressiveness of logics and automata mogedadieg on the availability
of sibling ordering. The presence of ordering also affebts yardstick logic, since
without order often counting is needed to match the powentdraata models [19].

The paper is organized as follows. After we give basic déding in Section 2, we
review logics for ordered trees in Section 3. We start with®A&lated logics, including
syntactic restrictions of MSO, a datalog-based logic, ddj.tcalculus. We then turn
to FO-related logics, present analogs of LTL a@dL* that have been studied for
expressing navigational properties, and also look at ¢artjue queries over trees. In
Section 4 we turn to trees that lack the sibling ordering, simalv that in many logics
some form of counting needs to be added to compensate forigsenign ordering. In
Section 5 we look at the model-theoretic approach in thétsdiautomatic structures.

2 Trees, logics, and automata

Tree domains, trees, and operations on tréésdes in unranked trees are elements of
N* — that is, finite strings whose letters are natural numberstrilig s = ngn; ...
defines a path from the root to a give node: one goes tagtechild of the root, then
to then;th child, etc. We writes; - s, for the concatenation of strings andss.

We need some basic binary relationsi¥h— thechild andnext-siblingrelations:

s < s & s =s-1 forsomei € N;
s=<ns 8 & s=sp-i ands =sp-(:+1) forsomesy, € N* andi € N.
We also use thérst child relation s <¢. s - 0. We shall us€ to denote the reflexive-

transitive closure of a relation. Thus,’; is thedescendantelation (including self),
and=<?, is a linear ordering on siblings.

Definition 1 (Tree domain).Atree domairD is a finite prefix-closed subsetif (i.e.,
if s € D ands’ is a prefix ofs, thens’ € D) such thats - i € D impliess - 5 € D for
all j <.

Let X be a finite alphabet.

Definition 2 (X-trees).Anordered unranked’-labeled tredl” is a structure
T= <Da <zhv <:sv (Pa>a62>;

where D is a tree domain<?, and <}, are the descendant relation and the sibling

ordering, andP,’s are interpreted as disjoint sets whose union is the ewulinmainD.
Anunorderedinranked tree is defined as a structyi®, <%, (Pa)ecx)-

Thus, atree consists of a tree domain together with a ladpelirits nodes: it € P,,
then the label of is . In this case we write(s) = a.

First-order and monadic second-order logi&e only consider relational vocabularies:
finite lists (R4, . .., R.,) of relation symbols, eacR; with an associated arity;. Over
trees, relation symbols are binary (€ gan, <us, <53,) Or unary ¢,’s for a € X).

Formulae ofirst-orderlogic (FO) are built from atomic formulae = 2/, andR(z),
wherez, 2’ are variables, and is a tuple of variables, using the Boolean connectives
V, A, - and quantifiers andv. If a formulay has free variables, we shall writep(z).

Formulae ofmonadic second-orddogic (MSO) in addition allow quantification
over sets. We shall normally denote sets of nodes by upperletters. Thus, MSO
formulae have the usual first-order quantifietsy andvzp as well as second-order
quantifiersiX ¢ andvX ¢, and new atomic formula® (x), whereX is a second-order
variable and is a first-order variable. An MSO formula may have both frestforder
and second-order variables. If it only has free first-ord@riables, then it defines a
relation on the universe of the structure.

Note that relations<., and =<, are definable, in FO, frorx?, and<;,. In MSO
one can define<};, from <.y,; however, it is well-known that in FO this isot possible.
This is why we chose*, and<*_, rather than<., and<,, as our basic relations.

ch ns?

Definition 3 (Definability in logic). Given a logicL, we say that a set of tre€s is
definable inL if there is a sentence of £ such thatl’ € 7 iff T = ¢. We say that
a unary queryQ (that selects nodes from trees) is definabl&iif there is a formula
() of L such thats € Q(T) iff T |=) (s), for every treel”’ and a nodes in T'.

Unranked tree automat&n nondeterministic unranked tree automaton, NU%8, 9],
over X-labeled trees is a triplel = (Q, F,) whereQ is a finite set of statedi C @
is the set of final states, aids a mapping? x ¥ — 29" such that(q, a) is a regular
language ovet) (normally represented by a regular expression @ygrA run of A
on a tre€l” with domainD is a functionp 4 : D — @ such that, ifs is a node withn
children, and itis labeled, then the string 4(s-0) - - - pa(s-(n—1))isind(p.a(s), a).

In particular, if s is a leaf labeled., thenp 4(s) = ¢q implies thate € §(g,a). A run
is acceptingdf p4(e) € F, thatis, the root is in an accepting state. A tfées accepted
by A if there exists an accepting run. We [ef.A) denote the set of all trees accepted
by A. Such sets of trees will be calleegular.

Binary trees and translationsA binary tree domains a prefix-closed subseb of
{0,1}* such thatifs -« € D, thens - (1 — i) € D (thatis, a node is either a leaf,
or both its children are irD). A (binary) nondeterministic tree automaton, NTi& a
quadrupled, = (Q, g0, F, §) where@ and F' are as beforey is the initial state, and
§is a function@ x Q x X — 29. Arun py4, on a binary tre” with domainD is a
function from D to @ such that ifs is a leaf labeled, thenp 4, (s) € 6(go, 90, a), and

if s-0,s-1 belongtoD, ands is labeledy, thenp 4, (s) € 6(pa,(s-0),pa,(s-1),a). A
run is accepting ip 4, (¢) € F, andL(A;) is the set of all binary trees for which there
exists an accepting run. Such sets are called regular.

There is a well-known regularity-preserving translatiogtveeen ranked and un-
ranked trees. It was used in [49] to show decidability o53but here we shall apply it
only to finite tree domains). The idea of the translation &t the first successor in the
binary tree corresponds to the first child, and the secondesisor to the next sibling.
More precisely, we define a mappifig : N* — {0,1}* such thatR(e) = ¢, and if
R(s) = s', wheres = s¢ -4, thenR(s-0) = s -0andR(so- (i + 1)) = -1.If D
is an unranked tree domain, we B{(D) be{R(s) | s € D} together withR(s) - 1
if s is a non-leaf last child, an®(s) - 0 if s a leaf, other than the last sibling (these
additions ensure th& (D) is a binary tree domain). We defifi(T") to be a tree with
domainR (D), whereR(s) has the same label asand the added nodes are labeled by
a symboll ¢ . The following is a folklore result.

Lemma 1. For every NUTAA, there is an NTAA,, such thatL(A) = {R(T) | T €
L(A)}, and for every NTA4, there is an NUTAA such that the above holds.

3 Ordered trees

In this section we only deal with ordered unranked trees. V¢t $urvey MSO-based
logics, and then move to FO-based ones.

3.1 MSO and its relatives

As we mentioned already, MSO is often used as a yardstick fogitrees, because of
its close connection to regular languages. The followisgltebelonged to folklore, and
was explicitly stated in [41].

Theorem 1. A set of unranked trees is regular iff it is definableviO.

When one considers binary trees, this result says thataegets of binary trees are
precisely those MSO-definable, and if we look at strings climay be viewed as trees
without branching, we obtain that regular languages areiget/ those MSO-definable.
Of course these are well-known results by Buichi [10], andtTher, Wright [57].

There is also a close connection between automata, MSO, dodnalism for
describing XML schemas, called DTDs (which are essentiatended context-free
grammars). A DTIY over an alphabeY is a collection of rules — ¢, wherea € X
ande, is a regular expression over. We shall assume there is at most one such rule
foreacha € X. A Y-labeled tred satisfiesi, if for each nodes of T" with n children,
andAr(s) = a, the string\r(s-0) - - - Ar(s- (n—1)) isin the language denoted by.

Each DTD is easily definable by an unranked tree automatdacirits states just
correspond to labels of nodes. This, however, is too resteito capture full definability
in MSO, but a slight extension of DTDs does precisely thateitended DTver X
is atriple(2’,d’, g) whereX’ O X, with g being a mapping : X’ — X, andd’ is
a DTD overY’. A Y-labeled tredl” satisfies(X', d', g) if there is aX’-labeled treel”
that satisfieg!’ such thatl’ = ¢g(7"). The following was established in [56].

Proposition 1. A set of unranked trees SO definable iff it is the set of all trees
satisfying some extended DT, d’, g).

Theorem 1 talks about MSO sentences, but it can be extendedtyp MSO queries
using the concept ajuery automatg44]. A (nondeterministicjjuery automatover
unrankedX-labeled trees is a quadrupl4 = (Q, F, 4, S) whered = (Q, F,¢) is an
UNTA, andS is a subset of) x 2. Such a query automaton defines a unary qu&gy
that selects nodesin 7' such thaip_4(s), Ar(s)) € S for some accepting rup.

Theorem 2. (see [44,41, 24]A unary queryQ on unranked trees iIBISO-definable iff
it is of the formQ o4 for some query automaton.

One can also define the semantics universapy (s), Ar(s)) € S for all accept-
ing runs) and the result still holds. Query automata havetardenistic counterpart;
however, in the deterministic version, two passes overrdedre required; see [44].

Theorems 1 and 2 are constructive. In particular, every M8@iencep can be
effectively transformed into an automatefy, that accepts a tre€ iff 7' = ¢. Since
tree automata can be determinized, this gives G$|&’||) algorithm to check whether
T | ¢, if ¢ is fixed:. However, it is well-known that the size of,, (even for string
automata) cannot be bounded by an elementary functi¢pfif55]. An even stronger
result of [23] says that there could be no algorithm for cliegkvhetherl’ = ¢ that
runs intimeO(f(||¢|) - |IT]]), wheref is an elementary function, unlessIMmE=NP.

Nonetheless, these results do not rule out the existencdagfi@a L that has the
same power as MSO and yet permits faster model-checkingithigts. Even looking
at a simpler case of FO on strings, where results of [23] al®outO(f(||¢||) - |s])
algorithms for checking if a string satisfiesp, with f being an elementary function,
the logic LTL (linear-time temporal logic) has the same egsiveness as FO [33] and
admits model-checking algorithm with running ti@(#ID . |5|,

Logic ETL The first logic for unranked trees that has the power of MSO randel-
checking complexity matching that of LTL appeared in [43Hamas called ETL é&f-
ficient tree logig. It was obtained by putting syntactic restrictions on MS@fulae,
and at the same time adding new constructors for formulaghndre not present in
MSO, but are MSO-definable.

The atomic formulae of ETL are the same as for MSO, exceptieatre allowed
to use both<, and <7, and arenotallowed to use the next-sibling relatio«y,,. ETL

is closed under Boolean combinations (which are requirebeton DNF), guarded
guantification andpath formulae The rules for guarded quantification are:

! We use the notatioffT’||, ||| to denote the sizes of natural encodings of trees and foemula

— if p(x,y, X) isan ETL formula, the@y (z <cn y A) and3y (z <%, y A p) are
ETL formulae;

— if ¢(z, X) is an ETL formula, the@dX (z <}, X A ¢) is an ETL formula. Here
x <%, X means thatX only contains descendants of In this casep cannot
contain vertical path formulae (defined below).

Path formulae are defined as follows:

— if e is a regular expression over ETL formulagu, v), thene!(z,y) is a (verti-
cal path) ETL formula. The semantics is as follows:|= e!(s,s’) if there is a
child-relation paths = sq, s1,...,s, = s in T and a sequence of ETL formulae
Yi(u,v), i < n —1, such thatl' = v;(s;,si+1) for eachi < n — 1, and the
sequencey . .. 1,1 matches:.

— if e is a regular expression over ETL formulgéu, X), thene™ (z, X) is a (hori-
zontal path) ETL formula. Thefi = e~ (s, X) if childrens - i,i < k of s can be
labeled with ETL formulae); (u, X) such thatl’ = +;(s - i, X) for all i, and the
sequence)y . . . ¥, matches.

Theorem 3. (see [43])With respect to Boolean and unary querieg,L andMSO are
equally expressive. Furthermore, edeéfi’l. formulay can be evaluated on a trééin
time 20l . 7.

Monadic datalogAnother approach to obtaining the full power of MSO while i
the complexity low is based on database query languaadgalog (cf. [1]). A datalog
program is a sequence of rulés—pP;, ..., P, whereH and all P;’s are atomic formu-
lae. The predicaté/ is called the head of the rule, and every variable that aggedi
is required to appear in one of thg’s. Given a datalog prograrR, predicates which
appear as a head of some rule are called intensional, and potbdicates are called
extensional. If all intensional predicates are monadidiefform H(z)), thenP is a
monadicdatalog program. The semantics is a standard fixed-poirastes, see, e.g.,
[1]. An intensional unary predicate of a progréirdefines a unary query.

For extensional predicates, we shall ndeghf LastChild andRoot Given a tree
domainD, they are interpreted deaf= {s € D | -3s’ € D : s <o, §'}, LastChild=
{s-i€D|s-(i+1) ¢ D} andRoot= {¢}.

Theorem 4. (see [25])A unary query over unranked trees is definableviBO iff it
is definable in monadic datalog over extensional predicatgs <., Leaf LastChild
Root andP,, a € X'. Furthermore, each monadic datalog quéf, H) can be evalu-
ated on a treg in timeO(||P|| - |T|)-

pu-calculus Yet another way of getting a logic equivalent to MSO is suggdy a
close connection between MSO and the mqaahlculusL,, on ranked trees, which
can easily be extended to the unranked case by using the ct@mbetween ranked
and unranked trees. It was shown in [22, 47] that every pigpdinfinite binary trees
definable in MSO is also be definablelip. To deal with unranked trees, we shall define
L, over Y-labeled structures that have several binary relatibps. . . , E,,,, cf. [2].
Formulae ofL,[E,, ..., E,,] are given by

p=a(ace D) [X |oVe|-e|OE)e | puX o(X),

where inuX ¢(X), the variableX must occur positively inp. Given a treel’ with
domainD, s € D, and a valuatiow for free variables (each(X) is a subset oD), we
define the semantics (omitting the rules for letters X' and Boolean connectives) by

- (T,v,8) = X iff s € v(X).

— (T,v,s) EO(E)piff (T,v,s") = ¢ for somes’ with (s, s) € E,.

— (T,v,s) E uX o(X) iff sisinthe least fixed point of the operator definedy
An L, formulay without free variables naturally defines a unary query oadrgs |
(T, s) = ¢}) and a Boolean query on trees (by checkin({ife) = ¢).

Using the translation into ranked trees, it is easy to shee (8]):

Proposition 2. The class of BooleaRSO queries on unranked trees is precisely the
class of Boolean queries defined by[<c, <ns)-

It is also possible to characterize unary MSO queries oveainked trees in terms
of thefull u-calculust}‘“ (cf. [59]) which adds backward modaliti€s(£,)¢ with the

semantic§7, s) = O(E; g iff (T,s') = ¢ for somes’ such tha(s’, s) € E;.

Proposition 3. (see [3])The class of unarilSO queries on unranked trees is precisely
the class of queries defined BY"' [<ch, <us)-

3.2 FO andits relatives

While much is known about FO on both finite and infinite string$ias not been as
extensively studied for trees until recently. Recall thagrostrings — which we can
view as trees with only unary branching — FO defines precigedystar-free languages
(cf. [58]), and over both finite and infinite strings FO hasakethe power of LTL [33].

In contrast, the natural analog of star-free expressioms binary trees captures
not FO but MSO [48]. One well-known equivalent logical déstion of FO on binary
trees is Hafer-Thomas’s theorem [31] stating that overdihibary treesFO = CTL*
(CTL* is a branching time temporal logic widely used in verificatiof. [16], and it
will be defined shortly). Actually, the result of [31] showsat CTL* is equivalent to
MSO with second-order quantification over paths only, bugrdinite trees this frag-
ment of MSO is equivalent to FO.

The interest in logics over unranked trees whose power igaléquor subsumed by
that of FO stems from the fact that navigational features B&tk can be described in
FO. XPath [17] is a W3C standard for describing paths in XMlcaiments. Thus, it is
very natural to look for connections between XPath, FO oesrand temporal logics,
which are designed to talk about properties of paths.

Logics introduced in the context of studying XPath, and mgeaerally, navi-
gational properties of XML documents, can be roughly suiddigt into two groups.
Firstly, one may try to establish analogs of Kamp’s theorstating that'O = LTL
over strings) for trees. Secondly, one can try extended HEfemas's theorem (the
equivalenc&O = CTL*) from binary to unranked trees.

XPath and temporal logicgirst, recall the syntax of LTL over alphabBt

0,0 =a,aeX | oV | mp | Xp | XTp | Uy | ¢Sy

Formulae of LTL are interpreted over finite or infinite stringverY’. Given a string
s = apas - . ., the semantics is as follow§s, i) = a iff a; = a, (s,i) = X¢ (“next”
@) iff (s,i+1) | @i (s,9) = XTpiff (s,i—1) |= ¢ (s,1) | @U¢' (¢ “until” ¢)
if there existsj > ¢ such that(s,j) = ¢’ and(s, k) = ¢ foralli < k < j, and the
semantics of the dualSy (p “since” ¢’) is that there existg < i such thats, j) = ¢’
and(s, k) | ¢ forall j < k <. (Note: it is possible to avoiX andX ~ by defining a
strict semantics folJ andS, without requiringy to be true in(s, ¢)).

A logic TL"®® (tree temporal logikis a minor extension of LTL:

/

o, =a,aeX | oV | np | Xup | X7 | oULe’ | ¢S.¢,

wheresx is either 'ch’ (child) or 'ns’ (next sibling). We define thersantics with respect
toatreeandanodeinatrdd, s) = aiff A\r(s) = a; (T, s) E Xenp if (T,s-9) E ¢
for somei; (7', s) |= X if (T, 5") = ¢ for the nodes’ such thats’ <., s; (T, s) =
©Ucny’ if there is a nodes’ such thats <%, ', (T,s') = ¢, and for alls” # ¢
satisfyings <}, s” <%, s’ we have(T,s”) |= . The semantics oy, is defined by
reversing the order in the semanticlddy, and the semantics ®ns, X5, Uns, andSps
is the same by replacing the child relation with the nextisthtelation.

As L,, the logic TL"® naturally defines unary and Boolean queries on trees.

Theorem 5. (see [38])A unary or Boolean query over unranked trees is definable in
FOIff it is definable inTL"®,

In both CTL* and XPath formalisms there are two kinds of formulae: thosg-e
uated in nodes of trees, and those evaluated on paths in(these are state and path
formulae of CTL* and filter and location path expressions of XPath).

We now look at XPath-inspired logics, and present them uaisigght modification
of the syntax that keeps all the main XPath constructionsyahdhakes the connection
with temporal logics more visible. The language CXPath [@)nditional XPath is
defined to havaode formulaex andpath formulaes given by:

a, ma,a€X | na | ava | Ef
B,0"="a | step | (step/?a)™ [B/B" | BV 5
wherestep is one of the following:<cn, <, <ns, OF <. Intuitively Ej3 states the
existence of a path starting in a given node and satisfgirityx tests if« is true in the
initial node of a path, and is the composition of paths.
Formally, given a tre€", we evaluate each node formula in a nadand each path
formula in a pair of nodess, s’). The main semantic rules are:

— (T,s) = Egiffthereiss’ such tha(T, s, s') | 3;

- (T,s,8) Eraiff s =5 and(T,s) E «;

- (T,s,s') = stepiff (s,s’) € step;

- (T,s,s') = p/g iff forsomes” we have(T, s, s") = gand(T,s",s') = 5;

— (T,s,s") = (step/?a)™ if there exists a sequence of nodes: sq, s1,...,5: =
s', k > 0, such that eacls;, s;11) isin step, and(7, s;+1) = « for eachi < k.

The language CorXPath [26] is obtained by only allowingtep™ as opposed to
(step/?a)* in the definition of path formulae. Notice that siretep™ = (step/?true),
wheretrue = \/ . 5, a, we have CoreXPathC CXPath.

Core XPath corresponds to XPath as defined by W3C [17], while CXRgiresents
an addition to XPath proposed by [38]. Node formulae of gi@éPath or CoreXPath
naturally define unary queries on trees. These can be chawt as follows.

Theorem 6. a) (see [38])The node formulae dEXPathhave precisely the power of
FOunary queries.

b) (see [39])The node formulae dfore XPathhave precisely the power of unary
FO? queries (that isFO with two variables) in the vocabulary.,, = =ns, <ns-

A CTL*-like logic CTL* is a branching time temporal logic used in verification of
reactive systems. Here we define it with past connectivésguise syntax close to that
of [35]. In CTL*, one also has node (normally called state) formulae andfpatiulae,
but path formulae are evaluated on paths, not on arbitrarg panodes.

We defineCTL,snode formulaey, and child and sibling path formulag, for «
being 'ch’ or'ns’, as follows:

a,o ==a(ael) | ma | avad | Efen | Ebns

The semantics is standard and omitted here. The followingesseen as an analog of
the equivalenc&0 = CTL* for finite binary trees [31].

Theorem 7. (see [3])A unary or Boolean query over unranked trees is definabkOn
iff it is definable iNCTL g

Conjunctive queries over unranked tre€snjunctive queries are a very important class
of database queries: they correspond toihe-fragment of FO. These are the same
queries that can be expressed by selection, projectionjomdn relational algebra,
and thus they form the core of database queries. The compleievaluating a con-
junctive queryp over a databas® is in NP, in terms of both the size ¢f and the
size of D. In fact, the problem is NP-hard, and there has been a lardg diowork on
classifying tractable cases (see, e.g., [28, 30]).

In the case of unranked trees, conjunctive queries are flaerof the formp(z) =
3y R1 A ... A Rg, where eaclR; is eitherP,(z) or z < 2/, wherez, 2’ are variables
amongz, g, and< is one of<cn, <%, <ns, OF <. We write CQ <1, ..., <.,) to de-
note the class of conjunctive queries over unranked tre@bich only unary predicates
P, and binary predicates amonrg can be used.

Theorem 8. (see [27])The maximal tractable classes of quer@Q(<1,. .., <m),
where all<;’s are among{ <cn, <2, <ns, < }» AI€CQ(=<ch, <ns, <1s) aNdCQ(<%,);
all others areNP-hard.

4 Unordered trees

In unordered trees, nodes can still have arbitrarily marijedm, but the sibling order-
ing <y is no longer available. Logics considered for unorderednked trees typically
introduce some form ofounting see [3,19-21, 40, 46,51, 53, 54].

An explanation for this comes from a modified notion of autterfar unordered
unranked trees. Aounting nondeterministic unranked tree automaa tupleA. =
(Q, F,), whereQ is a set of states, anfl C () is a set of final states. Lé&{; be the
set of variablegv} | ¢ € @,k > 0}. Then the transition functioh maps each pair
(g,a) € @Q x X into a Boolean function ovéerg. A run of A on an unordered tre€
with domainD is a mapping.4. : D — @ such thatifp.4_(s) = ¢ for a nodes labeled
a, then the value 0f(q, a) is 1, where each variable’;ﬁ is set tol if s has at leask
childrens’ with p 4, (s’) = ¢;, and to0 otherwise. A run is accepting ff4.(¢) € F,
and the set of unordered trees acceptedibys denoted by, (A.).

A counting query automato@A.. is defined a3@, F, 0, 5) whereS C @ x X; it
selects nodes in a runp where(pa_(s), Ar(s)) € S. The following appears not to
have been stated explicitly, although it follows easilynfreesults in [41, 44, 53].

Theorem 9. a) A set of unordered unranked treeMSO-definable iff it is of the form
L,(A.) for a counting nondeterministic unranked tree automaton

b) A unary query over unordered unranked treeBISO-definable iff it is definable
by a counting query automatapA...

MSO andFO over unordered tree®efine thecountingu-calculusC,, (cf. [32]) as an
extension ofL,, with formulae<&=*(E)¢. The semantics ofT’, s) | O=*(E)p is as
follows: there exist distinct elements, . .., s;, such that(s, s;) € E and(T,s;) = ¢

for everyl < i < k. The next result follows from [60], as was noticed in [32]:

Theorem 10. Over unordered unranked treels[SO and C),[<.n] have precisely the
same power with respect to Boolean queries.

For first-order logic, counting extensions of both the temapdogic TL"™® and
CTL* give us analogs of Kamp’s and Hafer-Thomas'’s theorems. B&fitl;, as a
version of TL"®in which only modalities for the child relation are used, uaddition
we have formula&X o, with the semantics thdfl’, s) = X% iff there are at least
childrens’ of s such tha{(T, ') = .

We also extend’TL* to a logicCTL}, . in which we have new state formulae

EXZ% «, wherea is a state formula, with the same semantics as above.

Theorem 11. (see [40,51]) Over unordered unranked trees, the classes of Boolean

queries expressed FO, TLIS® andCTL}, . over binary relation<,, are the same.
For unary queries, the equivalenE® = TLI® still holds [51], andFO can be

shown to be equivalent to an extensioFL* with both counting and the past [3].

Extensions and more powerful countingonsider now a scenario in which we deal
with unordered trees, but in our formulae we can refer to sanbérary ordering on
siblings: after all, in any encoding of a tree, siblings witime in some order. Of course
we do not want any particular order to affect the truth vakeewe want our formulae,
even if they use an ordering, to be independent of a particutiering that was used.

This is the standard setting ofder-invariancean important conceptin finite model
theory, cf. [36]. We say that an MSO sentegcever vocabulary including;, and<
is <ns-invariantif for every unordered tre& and every two expansioﬂ?ﬁxlm and7 <
with sibling-orderings<’, and<2, we havel <n Eeos T~ E o. A <ps-invariant
sentence defines a Boolean query on unordered trees.

We now defin@MSOneq [19] as an extension @fISO with modulo quantifiersfor
each set variabl&’, andk > 1, we have set new formulagy, (X') which are true iff the
cardinality of X is congruent t@ modulok.

Theorem 12. (see [20])Over unordered unranked trees, s-invariant Boolean queries
are precisely the Boolean queries definabl&i80moq.

Further extensions in terms of arithmetic power have be@sidered [53, 54]. Re-
call that Presburger arithmetic refers to the FO theory efdtructure(N, +). Define
PresburgerMSO, or PMSO, as an extension of MSO over unordered trees thvith
following rule: if o(z,y, X) is a PMSO formula and(v) a Presburger arithmetic
formula with | X| = |9| = n, then[¢/a](z,y, X) is a PMSO formula. Given valu-
ation s, so, S for free variables, withS = (Sy,...,S,), let m; be the cardinality of
{s" | s0 =en s’ @ands’ € S;}. Then[p/a](5, so, S) is true iff a(my, ..., m,) is true.

Itis easy to see th&atlSO C MSOnmeq & PMSO over unordered trees. Still, PMSO
is captured by a decidable automaton model.

Define Presburger unordered tree automata just as counttograta except thait
maps pairs fron) x X' into Presburger formulae ovey, for ¢ € (). We interprety,
as the number of children in state and a transition is enabled if the corresponding

Presburger formula is true in this interpretation.

Theorem 13. (see [53])Presburger unordered tree automata aRMSOare equiva-
lent. Furthermore, both emptiness and universality areidbdnle for Presburger un-
ordered tree automata.

Further extensions with counting have been consideredXed{point logics [54]
and theu-calculus with modulo-quantifiers [3].

Edge-labeled unordered treeBhere are several areas where edge-labeled trees play a
prominent and role, and traditionally logical formalismave been designed for such
data. For example, there are feature logics, used extépgieomputational linguistics
[15], or spatial logics used for describing networks and itecdgents [14]: in both cases
one deals with unordered edge-labeled trees.

In the setting of feature trees, one has an infinite set ofifeat”, and in an un-
ordered unranked tree every edge is labeled by an elefnenf such that each node
s has at most one outgoing edge labefeidr eachf € F. Furthermore, nodes may be
labeled by elements of some alphabgtas before. It is thus natural to model feature
trees as structure, (E) rer, (Pa)acx) such that the union of alE,’s forms the

child relation of a tree, and no node has two outgdifygedges. In the context of com-
putational linguistics, one commonly used [5] logic fortig= trees is the propositional
modal logic that, in the context of feature structures (rextessarily trees), is also often
supplemented with path-equivalence [50], as well as regixpressions [34].

Ambient logics are modal logics for trees that have beengsed in the context of
mobile computation [14] and later adapted for tree-represbdata [12, 13]. One views
trees as edge-labeled and defines them by the grammar

T, = A | TIT' | a[T), a€ X,

with the equivalences thats commutative and associative, and thatl = T'. HereA
is the empty tred,is the parallel composition, andT’] adds aru-labeled edge on top of
T'. If we extend= to a congruence in the natural way, then every tree is eqarivéd one
of the formay [T1]| . .. |am[Tm], Which is viewed as a tree whose root hautgoing
edges labeled,, . . ., a,,, with subtrees rooted at its children beifig . . ., T},.

There were several similar logics proposed in [11-14, 2HreHve consider the
logic from [11] whose formulae are given by

o0 =LAl ong | mp | ol | or¢' | alg] | pQa, ae€X.

The semantics is as follows: is false A is only true in a tree equivalent td, 7' =
o1l iff T=T | TewithT; E i, i =1,2,T = o> ¢ ifforeveryT’ = ¢ we have
TIT' E ¢ T Ealp]iff T =alT]withT’ = ¢, andT = pQaq iff o[T] | ¢.

The study of ambient logics for trees took a different patinpared to other logics
seen in this survey; in particular, the focus was on typeesgstfor tree languages and
thus on proof systems for logics, rather than model-chegkta complexity, automata
models, and comparison with other logics.

However, the ambient logic above does not take us outsidbeoMSO expres-
siveness: this can be seen by going from edge-labeled traesdie-labeled ones. The
translation is simple: the label of each edgey) becomes the label of. The root will
have a special labétootthat cannot occur as a label of any other node. The only mod-
ification in the logic is that now we have formulag for a € X', which are true in a
singleton-tree labeled. The resulting logic is easily translated into MSO. For epéan
v|y’ states that the children of the root can be partitioned iwtndets, X andX’, such
that the subtree that contains all techildren satisfies> and the subtree that contains
all the X'-children satisfies’. Forp> ¢, one can consides(¢ > ') saying that there
exists a tred” such thafl” = ¢ andT'|T" E —¢’, and use nondeterministic counting
automata to guess this tré@.

5 Automatic structures

In this section we look at a different kind of logics for unkaal trees, using the standard
approach of model theory. LetREE(Y) be the set of all”-labeled unranked trees.
We consider structures of the fofit = (TREE(Y), 2) where(2 is a set of relation,
constant, and function symbols.

Let Def,, (1) be the family ofn-dimensional definable setseri: that is, sets of
the form{T € TREE(X)" | M = p(T)}, wherep(x1, ..., z,) is an FO formula in

the vocabulary?. We shall be looking at structur®® so that definable sets would be
relations definable in MSO or other logics. In particulacisuelations will be given by
automata, and thus structu®s of this kind are calledutomatic structures

Following known automatic structures for strings [4, 6], wgoduce several predi-
cates on trees: the extension predicate, nhode tests, aralmlequality. For two trees;
andT» with domainsD; andD,, we say thaf; is anextensiorof 77, writtenT; < T5,
if Dy C D-, and the labeling function df;, agrees with the labeling function @f;
on D;. It will actually be more convenient to work with two exteosirelations: ex-
tension on the righ_, and extension dowr|. For7; <_, T5, we require that every
s € Dy — D be of the forms’ - i whens’ - j € D, for somej < i. ForTy < T, we
require that everg € D, — D; have a prefix’ which is a leaf off’;. Define L, to be
true in a tre€l if the rightmost node is labeled Finally, T, ~4om T» iff D1 = Ds.

Now we have the following structures:

Tuniv = (TREE(XY)

) j—»;) (La)a627 %dom>
T = (TREE(Y), =_, L

) (a)aEZ‘>

Theorem 14. (see [37])a) For everyn > 1, Def,,(Zunv) is precisely the class of regu-
lar n-ary relations ovelTREE(Y).

b) Def, (T) = Def; (Zunv) is the class of regular unranked tree languages, but for
everyn > 1, Def,,(T) C Def,,(Tunv)-

A TA

l
l

Working with T,y makes it easy to write rather complicated properties of tree
languages, and then Theorem 14 implies that those langaagesgular. For example,
if X C TReEg(X) is regular, then the set of tre@Ssuch that all their extensions can
be extended on the right to a tree ¥ is regular. Indeed, this is easy to write in FO
over Tyniv, if we have a membership test fof, which is definable by Theorem 14.
Also, conversions from formulae to automata are effectbrdoboth® and¥ iy, which
implies decidability of their theories.

Other logics over unranked trees can be naturally repredanter these structures:
for example, Boolean FO queries are precisely sets of trefsable ovef if quantifi-
cation is restricted to single branches [37].

A different view of unranked tree®/e conclude by presenting a different view of un-
ranked trees and a different structure for them that malezssiy to talk about about their
extensions in which new children may be inserted betweestiagiones. For example,
if we have a tred” with domainD = {e, 0,1}, and we want to add more children of
the root, they would have to be added on the right, e.g, we raag hn extension with
domain{e, 0,1, 2, 3}. But what if we want to add a child on the left @fand two chil-
dren between and2? Intuitively, we need a new tree domdin, —1, 0, %, %, 1} then.
We now capture this situation and present a different autierstructure that makes it
easy to derive that certain relations on trees are regular.

A rational unranked tree domaiis a finite prefix-closed subset @f*. Relation
<%, is defined for rational domains just as before, and relatigp is now given by
s-r <k s-r'iff r <¢’. Then an unranked trég over a rational unranked tree domain
is, as before, a structu® = (D, <%, <%, (Pa)acs)-

Let TREEg(X) be the set of all unranked trees with rational unranked toepains.
Note that different elements ofREEy(X) may be isomorphic as trees; we denote this
isomorphism relation bgz.

Define the extension relatiod over trees in REey(X) as before. Abranchis
a treeT € TREEy(X) such that the sef7” | T < T} is linearly ordered by-.

It follows from the definition of rational unranked tree domathat the domain of a
branch consists of all the prefixes of some string Q*. Let L,(T) be true iffT' is a
branch whose leaf is labeled and letT; <ex 7> be true iff 77 andT, are branches
with leavess; andss, ands; <jex s2. We then define the structure

T(L?niv = <TREE@(Z)a jv <lex; ~dom; (La>a€E>~

Proposition 4. The structureZ2. is interpretable inny. Furthermore, there is a
definable subset of the imageTREEy(X) that contains exactly one representative of

each=-equivalence class.

That is, under the mapping: TREEy(Y)/ =— TREE(Y), definable sets over
TE@”N become precisely the regular tree languages. Hence, eskpggsroperties of un-
ranked trees in first-order logic ov@ﬁ@mv allows us to conclude easily that certain tree

languages are regular, and thus MSO-definable.

6 Other directions and conclusions

We present very briefly some directions for future work (foona detailed discussion,
see the full version).

Among problems that need to be addressed are the follow&)g46w does one
compare different logics over unranked trees? One way &ring of their succinctness
[29]. (b) Connection between ambient logics and other bgiesented there is not yet
adequately understood. (c) We do not know much about logies giring representa-
tions of trees (which occur naturally, for example, in sinéi@g XML applications [52]).
(d) Nor do we know much about handling data values which agegut in XML trees.
Some early results were reported in [45, 8], complementeehtty by a nice decidabil-
ity result that works on strings with data values [7].

Acknowledgments | am grateful to Cristiana Chitic, Christoph Koch, Maartelarx, Frank
Neven, Joachim Niehren, Gerald Penn, Thomas SchwentickLaa Segoufin for their com-
ments.

References

1. S. Abiteboul, R. Hull, V. VianuFoundations of Database8ddison Wesley, 1995.

2. A. Arnold, D. Niwinski. Rudiments of:-calculus Elsevier, 2001.

3. P.Barcel6, L. Libkin. Temporal logics over unrankedeseInLICS’05.

4. M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin. Definalelations and first-order query languages over strings.
J. ACM 50 (2003), 694—751.

5. P. Blackburn. Structures, languages and translatibassttuctural approach to feature logic.G@onstraints, Language
and ComputationAP, 1994, pages 1-27.

6. A.Blumensath and E. Gradel. Automatic structured.I®S’00, pages 51-62.

7. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, L. $egin. Two-variable logic on words with data. 2005.

20.

21.
22.
23.
24.
25.

26.

27.
28.
29.

30.

41.
. F. Neven. Automata, logic, and XML. BSL 2002pages 2—26.
43.

44,
45.
46.
47.
48.
49.
50.

. P. Bouyer, A. Petit, D. Thérien. An algebraic charaetgion of data and timed languages.G®NCUR 2001pages

248-261.

. A. Bruggemann-Klein, M. Murata, and D. Wood. Regulaetesd regular hedge languages over unranked alphabets:

Version 1, 2001. HKUST Tech. Report.

. J.R. Buchi. Weak second-order arithmetic and finitemata.Zeit. Math. Logik Grundl. Math6 (1960), 66—92.

. C. Calcagno, L. Cardelli, A. Gordon. Deciding validitya spatial logic for treesl. Funct. Progr, to appear.

. L. Cardelli. Describing semistructured daBiGMOD Recor0 (2001), 80-85.

. L. Cardelli, G. Ghelli. A query language based on the amidogic. INnESOP 2001pages 1-22.

. L. Cardelli, A. Gordon. Anytime, anywhere: Modal logics mobile ambients. 1iPOPL 2000 pages 365-377.

. B. CarpenterThe Logic of Typed Feature StructuréSambridge, 1992.

. E. Clarke, O. Grumberg, and D. Pelédodel CheckingThe MIT Press, 1999.

. J.Clark and S. DeRose. XML Path Language (XPath). W3®@Rewndation, Nov. 1999. www.w3.0rg/TR/xpath.

. H. Comon et al.Tree Automata: Techniques and ApplicatioAsailable at www.grappa.univ-lille3.fr/itata. October

2002.

. B. Courcelle. The monadic second-order logic of grapR&tognizable sets of finite graphsf.&Comput.85 (1990),

12-75.

B. Courcelle. The monadic second-order logic of graph3nvclosing the gap between definability and recognizabilit
TCS80 (1991), 153-202.

S. Dal-Zilio, D. Lugiez, C. Meyssonnier. A logic you casunit on. INPOPL 2004 pages 135-146.

E. A. Emerson, C. Jutla. Tree automata, mu-calculus atetrdinacy. IFFOCS 1991pages 368-377.

M. Frick, M. Grohe. The complexity of first-order and mdiwsecond-order logic revisited. liCS 2002 215-224.
M. Frick, M. Grohe, C. Koch. Query evaluation on compeessees. IrLICS 2003 pages 188-197.

G. Gottlob, C. Koch. Monadic datalog and the expressiveep of languages for web information extractich ACM
51 (2004), 74-113.

G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The caxipy of XPath query evaluation and XML typind. ACM
2005, to appear.

G. Gottlob, C. Koch, K. Schulz. Conjunctive queries dvees. InPODS 2004pages 189-200.

G. Gottlob, N. Leone, and F. Scarcello. The complexitgayfclic conjunctive queriesl. ACM 48 (2001), 431-498.
M. Grohe, N. Schweikardt. Comparing the succinctnegaafadic query languages over finite trees.CIBL 2003
pages 226-240.

M. Grohe, T. Schwentick, and L. Segoufin. When is the atidn of conjunctive queries tractable? $TOC 2001
pages 657-666.

. T. Hafer, W. Thomas. Computation tree logic CTL* and patiantifiers in the monadic theory of the binary tree.

ICALP 1987 pages 269-279.

. D. Janin, G. Lenzi. Relating levels of the mu-calculwrdiichy and levels of the monadic hierarchy.LICS 2001

pages 347-356.

. H.W. Kamp.Tense Logic and the Theory of Linear Ord&hD Thesis, UCLA, 1968.

. B. Keller.Feature Logics, Infinitary Descriptions and Gramm&sSLI Press, 1993.

. O. Kupferman, A. Pnueli. Once and for all. LIICS’95, pages 25-35.

. L. Libkin. Elements of Finite Model Theargpringer, 2004.

. L. Libkin, F. Neven. Logical definability and query larames over unranked trees. LiICS 2003 pages 178-187.

. M. Marx. Conditional XPath, the first order complete XPdialect. INnPODS 2004pages 13-22.

. M. Marx and M. de Rijke. Semantic characterizations c&PInTDM Workshop on XML Databases and Information

Retrieval 2004.

. F. Moller, A. Rabinovich. Counting on CTL*: on the expsa® power of monadic path logiclnformation and

Computation 184 (2003), 147-159.
F. NevenDesign and Analysis of Query Languages for Structured DecusnPhD Thesis, U. Limburg, 1999.

F. Neven, Th. Schwentick. Expressive and efficient patenguages for tree-structured data.A®DS 2000pages
145-156. Corrigendum at http://www.mathematik.uni-noagbdertick/

F. Neven, Th. Schwentick. Query automata over finitestr@aeor. Comput. Sc75 (2002), 633-674.

F. Neven, Th. Schwentick, V. Vianu. Towards regular laages over infinite alphabets. M~CS 2001 pages 560-572.
J. Niehren, A. Podelski. Feature automata and recolgieizgts of feature treeSAPSOFT 1993pages 356—-375.

D. Niwinski. Fixed points vs. infinite generation. WCS 1988 pages 402—-409.

A. Potthoff, W. Thomas. Regular tree languages withoairyisymbols are star-free. FCT 1993 pages 396—405.

M. Rabin. Decidability of second-order theories andegta on infinite treeslrans. AMSL41 (1969), 1-35.

W. C. Rounds, R. Kasper. A logical semantics for feattinectires. In24th Annual Meeting of the Assoc. for
Computational Linguisticsl986, pages 257—266.

. B.-H. Schlingloff. Expressive completeness of temphwgic of trees. Journal of Applied Non-Classical Logi&

(1992), 157-180.

. L. Segoufin, V. Vianu. Validating streaming XML documenin PODS 2002pages 53-64.

. H. Seidl, Th. Schwentick, A. Muscholl. Numerical docurhgueries. IrPODS 2003155-166.

. H. Seidl, Th. Schwentick, A. Muscholl, P. Habermehl. Gting in trees for free. IKCALP 2004 pages 1136-1149.
. L. Stockmeyer and A. Meyer. Cosmological lower boundandircuit complexity of a small problem in logidournal

of the ACM 49 (2002), 753-784.

. J.W. Thatcher. Characterizing derivation trees of exirfree grammars through a generalization of finite autama

theory. JCSSL (1967), 317-322.

. J.W. Thatcher and J.B. Wright. Generalized finite autartfeeory with an application to a decision problem of seeond

order logic. Mathematical Systems Thep8(1):57-81, 1968.

. W. Thomas. Languages, automata, and logitidndbook of Formal Languages, Vol.Springer-Verlag, 1997.
. M. Y. Vardi. Reasoning about the past with two-way aut@mén ICALP 1998 pages 628—-641.
. |. Walukiewicz. Monadic second-order logic on treeelétructuresTCS275 (2002), 311-346.

