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Abstract. Labeled unranked trees are used as a model of XML documents, and
logical languages for them have been studied actively over the past several years.
Such logics have different purposes: some are better suitedfor extracting data,
some for expressing navigational properties, and some makeit easy to relate
complex properties of trees to the existence of tree automata for those proper-
ties. Furthermore, logics differ significantly in their model-checking properties,
their automata models, and their behavior on ordered and unordered trees. In this
paper we present a survey of logics for unranked trees.

1 Introduction

Trees arise everywhere in computer science, and there are numerous formalisms in the
literature for describing and manipulating trees. Some of these formalisms are declar-
ative and based on logical specifications: for example, first-order logic, or monadic
second-order logic, or various temporal or fixed-point logics over trees. Others are pro-
cedural formalisms such as various flavors of tree automata,or tree transducers, or tree
grammars. All these formalisms have found numerous applications in verification, pro-
gram analysis, logic programming, constraint programming, linguistics, and databases.

Until recently, most logical formalisms for trees dealt with rankedtrees [18, 58]: in
such trees, all nodes have the same fixed number of children (or, a bit more generally,
the number of children of a node is determined by the label of that node). Over the past
several years, however, the focus has shifted towardsunrankedtrees, in which there are
no restrictions on the number of children a node can have. Although unranked trees
have been considered in the 60s and 70s, and are related to feature trees over an infinite
set of features that have been investigated by computational linguists, their systematic
study was initiated by the development of XML (eXtensible Markup Language). XML
is a data format which has become the lingua franca for information exchange on the
world wide web. XML data is typically modeled as labeled unranked trees [42].

This connection has led to a renewed interest in logical and procedural formalisms
for unranked trees: one uses logical formalisms for expressing declarative queries, and
procedural formalisms for evaluating them. Logics over unranked trees appeared in
large numbers over the past 7–8 years, and they come in many flavors in shapes. Com-
mon to them is a close connection to automata models, and quite often to temporal and
modal logics, especially when one describes properties of paths through a document.

Let us now review some of the parameters according to which logics for unranked
trees can be classified.
⋆ Complete version of this survey can be found at www.cs.toronto.edu/̃ libkin/publ.html.



The yardstick logicMost formalisms are “inspired” by eitherfirst-order logic(FO),
or monadic second-order logic(MSO) that extends FO by quantification over sets.
Query languages and schema formalisms for XML tend to use MSOas the yardstick: for
example, XML DTDs are (almost) equivalent to MSO sentences,and various language
for extraction of data from XML documents have the power of MSO unary queries.
On the other hand, navigational aspects of XML, in particular, logics capturing various
fragments of XPath, are usually related to FO and its fragments.

Arity of queriesMost commonly one considers Boolean or unary queries. Boolean
queries evaluate totrue or false. Checking if an XML document conforms to a schema
specification is represented by a Boolean query. Unary queries correspond to formulae
in one free variable, and thus produce a set of nodes. E.g., extracting sets of nodes, or
evaluating XPath expressions relative to the root naturally give rise to unary queries.

Complexity of model-checkingThe model-checking problem asks whether a treeT
satisfies a logical sentenceϕ. If ϕ is an MSO sentenceϕ, it can be evaluated in linear
time in the size ofT , by converting to a tree automaton. But there is a price to pay: in
terms of the size ofϕ, the complexity becomes non-elementary. This type of trade-offs
is one of the central issues in dealing with logics over trees.

Ordered vs. unordered treesIn unranked XML trees, children of the same node are
ordered by asibling ordering. If such an order is present, we speak of ordered unranked
trees. In many cases, however, this ordering is irrelevant,and some models, such as
feature trees, do not impose any ordering on siblings. Thereis considerable difference
between the expressiveness of logics and automata models depending on the availability
of sibling ordering. The presence of ordering also affects the yardstick logic, since
without order often counting is needed to match the power of automata models [19].

The paper is organized as follows. After we give basic definitions in Section 2, we
review logics for ordered trees in Section 3. We start with MSO-related logics, including
syntactic restrictions of MSO, a datalog-based logic, and theµ-calculus. We then turn
to FO-related logics, present analogs of LTL andCTL⋆ that have been studied for
expressing navigational properties, and also look at conjunctive queries over trees. In
Section 4 we turn to trees that lack the sibling ordering, andshow that in many logics
some form of counting needs to be added to compensate for the missing ordering. In
Section 5 we look at the model-theoretic approach in the spirit of automatic structures.

2 Trees, logics, and automata

Tree domains, trees, and operations on treesNodes in unranked trees are elements of
N∗ – that is, finite strings whose letters are natural numbers. Astring s = n0n1 . . .
defines a path from the root to a give node: one goes to then0th child of the root, then
to then1th child, etc. We writes1 · s2 for the concatenation of stringss1 ands2.

We need some basic binary relations onN∗ – thechild andnext-siblingrelations:

s ≺ch s
′ ⇔ s′ = s · i for somei ∈ N;

s ≺ns s
′ ⇔ s = s0 · i and s′ = s0 · (i+ 1) for somes0 ∈ N∗ andi ∈ N.

We also use thefirst child relation: s ≺fc s · 0. We shall use∗ to denote the reflexive-
transitive closure of a relation. Thus,≺∗

ch is thedescendantrelation (including self),
and≺∗

ns is a linear ordering on siblings.



Definition 1 (Tree domain).A tree domainD is a finite prefix-closed subset ofN∗ (i.e.,
if s ∈ D ands′ is a prefix ofs, thens′ ∈ D) such thats · i ∈ D impliess · j ∈ D for
all j < i.

LetΣ be a finite alphabet.

Definition 2 (Σ-trees).Anordered unrankedΣ-labeled treeT is a structure

T = 〈D,≺∗
ch,≺

∗
ns, (Pa)a∈Σ〉,

whereD is a tree domain,≺∗
ch and≺∗

ns are the descendant relation and the sibling
ordering, andPa’s are interpreted as disjoint sets whose union is the entiredomainD.

Anunorderedunranked tree is defined as a structure〈D,≺∗
ch, (Pa)a∈Σ〉.

Thus, a tree consists of a tree domain together with a labeling on its nodes: ifs ∈ Pa,
then the label ofs is a. In this case we writeλT (s) = a.

First-order and monadic second-order logicWe only consider relational vocabularies:
finite lists(R1, . . . , Rm) of relation symbols, eachRi with an associated arityni. Over
trees, relation symbols are binary (e.g.,≺ch,≺ns,≺

∗
ch) or unary (Pa’s for a ∈ Σ).

Formulae offirst-orderlogic (FO) are built from atomic formulaex = x′, andR(x̄),
wherex, x′ are variables, and̄x is a tuple of variables, using the Boolean connectives
∨,∧,¬ and quantifiers∃ and∀. If a formulaϕ has free variables̄x, we shall writeϕ(x̄).

Formulae ofmonadic second-orderlogic (MSO) in addition allow quantification
over sets. We shall normally denote sets of nodes by upper case letters. Thus, MSO
formulae have the usual first-order quantifiers∃xϕ and∀xϕ as well as second-order
quantifiers∃Xϕ and∀Xϕ, and new atomic formulaeX(x), whereX is a second-order
variable andx is a first-order variable. An MSO formula may have both free first-order
and second-order variables. If it only has free first-order variables, then it defines a
relation on the universe of the structure.

Note that relations≺ch and≺ns are definable, in FO, from≺∗
ch and≺∗

ns. In MSO
one can define≺∗

ch from≺ch; however, it is well-known that in FO this isnotpossible.
This is why we chose≺∗

ch and≺∗
ns, rather than≺ch and≺ns, as our basic relations.

Definition 3 (Definability in logic). Given a logicL, we say that a set of treesT is
definable inL if there is a sentenceϕ of L such thatT ∈ T iff T |= ϕ. We say that
a unary queryQ (that selects nodes from trees) is definable inL if there is a formula
ψ(x) ofL such thats ∈ Q(T ) iff T |= ψ(s), for every treeT and a nodes in T .

Unranked tree automataAn nondeterministic unranked tree automaton, NUTA[56, 9],
overΣ-labeled trees is a tripleA = (Q,F, δ) whereQ is a finite set of states,F ⊆ Q
is the set of final states, andδ is a mappingQ×Σ → 2Q∗

such thatδ(q, a) is a regular
language overQ (normally represented by a regular expression overQ). A run of A
on a treeT with domainD is a functionρA : D → Q such that, ifs is a node withn
children, and it is labeleda, then the stringρA(s ·0) · · · ρA(s ·(n−1)) is in δ(ρA(s), a).

In particular, ifs is a leaf labeleda, thenρA(s) = q implies thatε ∈ δ(q, a). A run
is acceptingif ρA(ε) ∈ F , that is, the root is in an accepting state. A treeT is accepted
by A if there exists an accepting run. We letL(A) denote the set of all trees accepted
byA. Such sets of trees will be calledregular.



Binary trees and translationsA binary tree domainis a prefix-closed subsetD of
{0, 1}∗ such that ifs · i ∈ D, thens · (1 − i) ∈ D (that is, a node is either a leaf,
or both its children are inD). A (binary) nondeterministic tree automaton, NTA, is a
quadrupleAb = (Q, q0, F, δ) whereQ andF are as before,q0 is the initial state, and
δ is a functionQ × Q × Σ → 2Q. A run ρAb

on a binary treeT with domainD is a
function fromD toQ such that ifs is a leaf labeleda, thenρAb

(s) ∈ δ(q0, q0, a), and
if s ·0, s ·1 belong toD, ands is labeleda, thenρAb

(s) ∈ δ(ρAb
(s ·0), ρAb

(s ·1), a). A
run is accepting ifρAb

(ε) ∈ F , andL(Ab) is the set of all binary trees for which there
exists an accepting run. Such sets are called regular.

There is a well-known regularity-preserving translation between ranked and un-
ranked trees. It was used in [49] to show decidability of SωS (but here we shall apply it
only to finite tree domains). The idea of the translation is that the first successor in the
binary tree corresponds to the first child, and the second successor to the next sibling.
More precisely, we define a mappingR : N∗ → {0, 1}∗ such thatR(ε) = ε, and if
R(s) = s′, wheres = s0 · i, thenR(s · 0) = s′ · 0 andR(s0 · (i + 1)) = s′ · 1. If D
is an unranked tree domain, we letR(D) be{R(s) | s ∈ D} together withR(s) · 1
if s is a non-leaf last child, andR(s) · 0 if s a leaf, other than the last sibling (these
additions ensure thatR(D) is a binary tree domain). We defineR(T ) to be a tree with
domainR(D), whereR(s) has the same label ass, and the added nodes are labeled by
a symbol⊥ 6∈ Σ. The following is a folklore result.

Lemma 1. For every NUTAA, there is an NTAAb such thatL(Ab) = {R(T ) | T ∈
L(A)}, and for every NTAAb there is an NUTAA such that the above holds.

3 Ordered trees

In this section we only deal with ordered unranked trees. We first survey MSO-based
logics, and then move to FO-based ones.

3.1 MSO and its relatives

As we mentioned already, MSO is often used as a yardstick logic for trees, because of
its close connection to regular languages. The following result belonged to folklore, and
was explicitly stated in [41].

Theorem 1. A set of unranked trees is regular iff it is definable inMSO.

When one considers binary trees, this result says that regular sets of binary trees are
precisely those MSO-definable, and if we look at strings, which may be viewed as trees
without branching, we obtain that regular languages are precisely those MSO-definable.
Of course these are well-known results by Büchi [10], and Thatcher, Wright [57].

There is also a close connection between automata, MSO, and aformalism for
describing XML schemas, called DTDs (which are essentiallyextended context-free
grammars). A DTDd over an alphabetΣ is a collection of rulesa→ ea, wherea ∈ Σ
andea is a regular expression overΣ. We shall assume there is at most one such rule
for eacha ∈ Σ. A Σ-labeled treeT satisfiesd, if for each nodes of T with n children,
andλT (s) = a, the stringλT (s ·0) · · ·λT (s · (n−1)) is in the language denoted byea.



Each DTD is easily definable by an unranked tree automaton: infact its states just
correspond to labels of nodes. This, however, is too restrictive to capture full definability
in MSO, but a slight extension of DTDs does precisely that. Anextended DTDoverΣ
is a triple(Σ′, d′, g) whereΣ′ ⊇ Σ, with g being a mappingg : Σ′ 7→ Σ, andd′ is
a DTD overΣ′. A Σ-labeled treeT satisfies(Σ′, d′, g) if there is aΣ′-labeled treeT ′

that satisfiesd′ such thatT = g(T ′). The following was established in [56].

Proposition 1. A set of unranked trees isMSO definable iff it is the set of all trees
satisfying some extended DTD(Σ′, d′, g).

Theorem 1 talks about MSO sentences, but it can be extended tounary MSO queries
using the concept ofquery automata[44]. A (nondeterministic)query automatonover
unrankedΣ-labeled trees is a quadrupleQA = (Q,F, δ, S) whereA = (Q,F, δ) is an
UNTA, andS is a subset ofQ×Σ. Such a query automaton defines a unary queryQQA

that selects nodess in T such that(ρA(s), λT (s)) ∈ S for some accepting runρA.

Theorem 2. (see [44, 41, 24])A unary queryQ on unranked trees isMSO-definable iff
it is of the formQQA for some query automaton.

One can also define the semantics universally ((ρA(s), λT (s)) ∈ S for all accept-
ing runs) and the result still holds. Query automata have a deterministic counterpart;
however, in the deterministic version, two passes over the tree are required; see [44].

Theorems 1 and 2 are constructive. In particular, every MSO sentenceϕ can be
effectively transformed into an automatonAϕ that accepts a treeT iff T |= ϕ. Since
tree automata can be determinized, this gives us aO(‖T ‖) algorithm to check whether
T |= ϕ, if ϕ is fixed1. However, it is well-known that the size ofAϕ (even for string
automata) cannot be bounded by an elementary function in‖ϕ‖ [55]. An even stronger
result of [23] says that there could be no algorithm for checking whetherT |= ϕ that
runs in timeO(f(‖ϕ‖) · ‖T ‖), wheref is an elementary function, unless PTIME=NP.

Nonetheless, these results do not rule out the existence of alogic L that has the
same power as MSO and yet permits faster model-checking algorithms. Even looking
at a simpler case of FO on strings, where results of [23] also rule outO(f(‖ϕ‖) · |s|)
algorithms for checking if a strings satisfiesϕ, with f being an elementary function,
the logic LTL (linear-time temporal logic) has the same expressiveness as FO [33] and
admits model-checking algorithm with running time2O(‖ϕ‖) · |s|.

Logic ETL The first logic for unranked trees that has the power of MSO andmodel-
checking complexity matching that of LTL appeared in [43] and was called ETL (ef-
ficient tree logic). It was obtained by putting syntactic restrictions on MSO formulae,
and at the same time adding new constructors for formulae, which are not present in
MSO, but are MSO-definable.

The atomic formulae of ETL are the same as for MSO, except thatwe are allowed
to use both≺ch and≺∗

ch and arenot allowed to use the next-sibling relation≺∗
ns. ETL

is closed under Boolean combinations (which are required tobe in DNF),guarded
quantification, andpath formulae. The rules for guarded quantification are:

1 We use the notation‖T‖, ‖ϕ‖ to denote the sizes of natural encodings of trees and formulae.



– if ϕ(x, y,X) is an ETL formula, then∃y (x ≺ch y ∧ ϕ) and∃y (x ≺∗
ch y ∧ ϕ) are

ETL formulae;
– if ϕ(x,X) is an ETL formula, then∃X (x ≺∗

ch X ∧ ϕ) is an ETL formula. Here
x ≺∗

ch X means thatX only contains descendants ofx. In this caseϕ cannot
contain vertical path formulae (defined below).

Path formulae are defined as follows:

– if e is a regular expression over ETL formulaeψ(u, v), thene↓(x, y) is a (verti-
cal path) ETL formula. The semantics is as follows:T |= e↓(s, s′) if there is a
child-relation paths = s0, s1, . . . , sn = s′ in T and a sequence of ETL formulae
ψi(u, v), i ≤ n − 1, such thatT |= ψi(si, si+1) for eachi ≤ n − 1, and the
sequenceψ0 . . . ψn−1 matchese.

– if e is a regular expression over ETL formulaeψ(u, X̄), thene→(x, X̄) is a (hori-
zontal path) ETL formula. ThenT |= e→(s, X̄) if children s · i, i ≤ k of s can be
labeled with ETL formulaeψi(u, X̄) such thatT |= ψi(s · i, X̄) for all i, and the
sequenceψ0 . . . ψk matchese.

Theorem 3. (see [43])With respect to Boolean and unary queries,ETL andMSOare
equally expressive. Furthermore, eachETL formulaϕ can be evaluated on a treeT in
time2O(‖ϕ‖) · ‖T ‖.

Monadic datalogAnother approach to obtaining the full power of MSO while keeping
the complexity low is based on database query languagedatalog(cf. [1]). A datalog
program is a sequence of rulesH :–P1, . . . , Pk whereH and allPi’s are atomic formu-
lae. The predicateH is called the head of the rule, and every variable that appears inH
is required to appear in one of thePi’s. Given a datalog programP , predicates which
appear as a head of some rule are called intensional, and other predicates are called
extensional. If all intensional predicates are monadic (ofthe formH(x)), thenP is a
monadicdatalog program. The semantics is a standard fixed-point semantics, see, e.g.,
[1]. An intensional unary predicate of a programP defines a unary query.

For extensional predicates, we shall needLeaf, LastChild, andRoot. Given a tree
domainD, they are interpreted asLeaf = {s ∈ D | ¬∃s′ ∈ D : s ≺ch s

′}, LastChild=
{s · i ∈ D | s · (i+ 1) 6∈ D} andRoot= {ε}.

Theorem 4. (see [25])A unary query over unranked trees is definable inMSO iff it
is definable in monadic datalog over extensional predicates≺fc, ≺ns, Leaf, LastChild,
Root, andPa, a ∈ Σ. Furthermore, each monadic datalog query(P , H) can be evalu-
ated on a treeT in timeO(‖P‖ · ‖T ‖).

µ-calculus Yet another way of getting a logic equivalent to MSO is suggested by a
close connection between MSO and the modalµ-calculusLµ on ranked trees, which
can easily be extended to the unranked case by using the connection between ranked
and unranked trees. It was shown in [22, 47] that every property of infinite binary trees
definable in MSO is also be definable inLµ. To deal with unranked trees, we shall define
Lµ overΣ-labeled structures that have several binary relationsE1, . . . , Em, cf. [2].
Formulae ofLµ[E1, . . . , Em] are given by

ϕ := a (a ∈ Σ) | X | ϕ ∨ ϕ | ¬ϕ | 3(Ei)ϕ | µX ϕ(X),



where inµX ϕ(X), the variableX must occur positively inϕ. Given a treeT with
domainD, s ∈ D, and a valuationv for free variables (eachv(X) is a subset ofD), we
define the semantics (omitting the rules for lettersa ∈ Σ and Boolean connectives) by

– (T, v, s) |= X iff s ∈ v(X).
– (T, v, s) |= 3(Er)ϕ iff (T, v, s′) |= ϕ for somes′ with (s, s′) ∈ Er.
– (T, v, s) |= µX ϕ(X) iff s is in the least fixed point of the operator defined byϕ.

An Lµ formulaϕ without free variables naturally defines a unary query on trees ({s |
(T, s) |= ϕ}) and a Boolean query on trees (by checking if(T, ε) |= ϕ).

Using the translation into ranked trees, it is easy to show (see [3]):

Proposition 2. The class of BooleanMSO queries on unranked trees is precisely the
class of Boolean queries defined byLµ[≺fc,≺ns].

It is also possible to characterize unary MSO queries over unranked trees in terms
of thefull µ-calculusLfull

µ (cf. [59]) which adds backward modalities3(E−
i )ϕ with the

semantics(T, s) |= 3(E−
i )ϕ iff (T, s′) |= ϕ for somes′ such that(s′, s) ∈ Ei.

Proposition 3. (see [3])The class of unaryMSOqueries on unranked trees is precisely
the class of queries defined byLfull

µ [≺ch,≺ns].

3.2 FO and its relatives

While much is known about FO on both finite and infinite strings, it has not been as
extensively studied for trees until recently. Recall that over strings – which we can
view as trees with only unary branching – FO defines preciselythe star-free languages
(cf. [58]), and over both finite and infinite strings FO has exactly the power of LTL [33].

In contrast, the natural analog of star-free expressions over binary trees captures
not FO but MSO [48]. One well-known equivalent logical description of FO on binary
trees is Hafer-Thomas’s theorem [31] stating that over finite binary trees,FO = CTL⋆

(CTL⋆ is a branching time temporal logic widely used in verification, cf. [16], and it
will be defined shortly). Actually, the result of [31] shows thatCTL⋆ is equivalent to
MSO with second-order quantification over paths only, but over finite trees this frag-
ment of MSO is equivalent to FO.

The interest in logics over unranked trees whose power is equal to or subsumed by
that of FO stems from the fact that navigational features of XPath can be described in
FO. XPath [17] is a W3C standard for describing paths in XML documents. Thus, it is
very natural to look for connections between XPath, FO on trees, and temporal logics,
which are designed to talk about properties of paths.

Logics introduced in the context of studying XPath, and moregenerally, navi-
gational properties of XML documents, can be roughly subdivided into two groups.
Firstly, one may try to establish analogs of Kamp’s theorem (stating thatFO = LTL
over strings) for trees. Secondly, one can try extended Hafer-Thomas’s theorem (the
equivalenceFO = CTL⋆) from binary to unranked trees.

XPath and temporal logicsFirst, recall the syntax of LTL over alphabetΣ:

ϕ,ϕ′ := a, a ∈ Σ | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | X
−ϕ | ϕUϕ′ | ϕSϕ′.



Formulae of LTL are interpreted over finite or infinite strings overΣ. Given a string
s = a0a1 . . ., the semantics is as follows:(s, i) |= a iff ai = a, (s, i) |= Xϕ (“next”
ϕ) iff (s, i+ 1) |= ϕ; (s, i) |= X

−ϕ iff (s, i − 1) |= ϕ; (s, i) |= ϕUϕ′ (ϕ “until” ϕ′)
if there existsj ≥ i such that(s, j) |= ϕ′ and(s, k) |= ϕ for all i ≤ k < j, and the
semantics of the dualϕSϕ (ϕ “since”ϕ′) is that there existsj ≤ i such that(s, j) |= ϕ′

and(s, k) |= ϕ for all j < k ≤ i. (Note: it is possible to avoidX andX
− by defining a

strict semantics forU andS, without requiringϕ to be true in(s, i)).
A logic TLtree (tree temporal logic) is a minor extension of LTL:

ϕ,ϕ′ := a, a ∈ Σ | ϕ ∨ ϕ′ | ¬ϕ | X∗ϕ | X
−
∗ ϕ | ϕU∗ϕ

′ | ϕS∗ϕ
′,

where∗ is either ’ch’ (child) or ’ns’ (next sibling). We define the semantics with respect
to a tree and a node in a tree:(T, s) |= a iff λT (s) = a; (T, s) |= Xchϕ if (T, s · i) |= ϕ
for somei; (T, s) |= X

−
chϕ if (T, s′) |= ϕ for the nodes′ such thats′ ≺ch s; (T, s) |=

ϕUchϕ
′ if there is a nodes′ such thats ≺∗

ch s′, (T, s′) |= ϕ′, and for alls′′ 6= s′

satisfyings ≺∗
ch s

′′ ≺∗
ch s

′ we have(T, s′′) |= ϕ. The semantics ofSch is defined by
reversing the order in the semantics ofUch, and the semantics ofXns,X

−
ns,Uns, andSns

is the same by replacing the child relation with the next sibling relation.
AsLµ, the logic TLtree naturally defines unary and Boolean queries on trees.

Theorem 5. (see [38])A unary or Boolean query over unranked trees is definable in
FO iff it is definable inTLtree.

In bothCTL⋆ and XPath formalisms there are two kinds of formulae: those eval-
uated in nodes of trees, and those evaluated on paths in trees(these are state and path
formulae ofCTL⋆ and filter and location path expressions of XPath).

We now look at XPath-inspired logics, and present them usinga slight modification
of the syntax that keeps all the main XPath constructions andyet makes the connection
with temporal logics more visible. The language CXPath [38](Conditional XPath) is
defined to havenode formulaeα andpath formulaeβ given by:

α, α′ := a, a ∈ Σ | ¬α | α ∨ α′ | Eβ
β, β′ := ?α | step | (step/?α)+ | β/β′ | β ∨ β′

wherestep is one of the following:≺ch, ≺−
ch, ≺ns, or ≺−

ns. Intuitively Eβ states the
existence of a path starting in a given node and satisfyingβ, ?α tests ifα is true in the
initial node of a path, and/ is the composition of paths.

Formally, given a treeT , we evaluate each node formula in a nodes, and each path
formula in a pair of nodes(s, s′). The main semantic rules are:

– (T, s) |= Eβ iff there iss′ such that(T, s, s′) |= β;
– (T, s, s′) |=?α iff s = s′ and(T, s) |= α;
– (T, s, s′) |= step iff (s, s′) ∈ step;
– (T, s, s′) |= β/β′ iff for somes′′ we have(T, s, s′′) |= β and(T, s′′, s′) |= β′;
– (T, s, s′) |= (step/?α)+ if there exists a sequence of nodess = s0, s1, . . . , sk =
s′, k > 0, such that each(si, si+1) is in step, and(T, si+1) |= α for eachi < k.



The language CoreXPath [26] is obtained by only allowingstep+ as opposed to
(step/?α)+ in the definition of path formulae. Notice that sincestep+ = (step/?true),
wheretrue =

∨
a∈Σ a, we have CoreXPath⊆ CXPath.

CoreXPath corresponds to XPath as defined by W3C [17], while CXPath represents
an addition to XPath proposed by [38]. Node formulae of either CXPath or CoreXPath
naturally define unary queries on trees. These can be characterized as follows.

Theorem 6. a) (see [38])The node formulae ofCXPathhave precisely the power of
FO unary queries.

b) (see [39])The node formulae ofCoreXPathhave precisely the power of unary
FO2 queries (that is,FO with two variables) in the vocabulary≺ch,≺

∗
ch,≺ns,≺

∗
ns.

A CTL⋆-like logic CTL⋆ is a branching time temporal logic used in verification of
reactive systems. Here we define it with past connectives, using the syntax close to that
of [35]. In CTL⋆, one also has node (normally called state) formulae and pathformulae,
but path formulae are evaluated on paths, not on arbitrary pairs of nodes.

We defineCTL⋆
past node formulaeα, and child and sibling path formulaeβ∗, for ∗

being ’ch’ or ’ns’, as follows:

α, α′ := a (a ∈ Σ) | ¬α | α ∨ α′ | Eβch | Eβns

β∗, β
′
∗ := α | ¬β∗ | β∗ ∨ β

′
∗ | X∗β∗ | X

−
∗ β∗ | β∗U∗β

′
∗ | β∗S∗β

′
∗

The semantics is standard and omitted here. The following can be seen as an analog of
the equivalenceFO = CTL⋆ for finite binary trees [31].

Theorem 7. (see [3])A unary or Boolean query over unranked trees is definable inFO
iff it is definable inCTL⋆

past.

Conjunctive queries over unranked treesConjunctive queries are a very important class
of database queries: they correspond to the∃,∧-fragment of FO. These are the same
queries that can be expressed by selection, projection, andjoin in relational algebra,
and thus they form the core of database queries. The complexity of evaluating a con-
junctive queryϕ over a databaseD is in NP, in terms of both the size ofϕ and the
size ofD. In fact, the problem is NP-hard, and there has been a large body of work on
classifying tractable cases (see, e.g., [28, 30]).

In the case of unranked trees, conjunctive queries are formulae of the formϕ(x̄) =
∃ȳ R1 ∧ . . . ∧ Rk, where eachRi is eitherPa(z) or z ≺ z′, wherez, z′ are variables
amongx̄, ȳ, and≺ is one of≺ch,≺

∗
ch, ≺ns, or≺∗

ns. We write CQ(≺1, . . . ,≺m) to de-
note the class of conjunctive queries over unranked trees inwhich only unary predicates
Pa and binary predicates among≺i can be used.

Theorem 8. (see [27])The maximal tractable classes of queriesCQ(≺1, . . . ,≺m),
where all≺i’s are among{≺ch,≺

∗
ch,≺ns,≺

∗
ns}, areCQ(≺ch,≺ns,≺

∗
ns) andCQ(≺∗

ch);
all others areNP-hard.



4 Unordered trees

In unordered trees, nodes can still have arbitrarily many children, but the sibling order-
ing≺ns is no longer available. Logics considered for unordered unranked trees typically
introduce some form ofcounting, see [3, 19–21,40, 46, 51, 53, 54].

An explanation for this comes from a modified notion of automata for unordered
unranked trees. Acounting nondeterministic unranked tree automatonis a tupleAc =
(Q,F, δ), whereQ is a set of states, andF ⊆ Q is a set of final states. LetVQ be the
set of variables{vk

q | q ∈ Q, k > 0}. Then the transition functionδ maps each pair
(q, a) ∈ Q × Σ into a Boolean function overVQ. A run of A on an unordered treeT
with domainD is a mappingρAc

: D → Q such that ifρAc
(s) = q for a nodes labeled

a, then the value ofδ(q, a) is 1, where each variablevk
qi

is set to1 if s has at leastk
childrens′ with ρAc

(s′) = qi, and to0 otherwise. A run is accepting ifρAc
(ε) ∈ F ,

and the set of unordered trees accepted byAc is denoted byLu(Ac).
A counting query automatonQAc is defined as(Q,F, δ, S) whereS ⊆ Q × Σ; it

selects nodess in a runρ where(ρAc
(s), λT (s)) ∈ S. The following appears not to

have been stated explicitly, although it follows easily from results in [41, 44, 53].

Theorem 9. a) A set of unordered unranked trees isMSO-definable iff it is of the form
Lu(Ac) for a counting nondeterministic unranked tree automatonAc.

b) A unary query over unordered unranked trees isMSO-definable iff it is definable
by a counting query automatonQAc.

MSOandFO over unordered treesDefine thecountingµ-calculusCµ (cf. [32]) as an
extension ofLµ with formulae3

≥k(E)ϕ. The semantics of(T, s) |= 3
≥k(E)ϕ is as

follows: there exist distinct elementss1, . . . , sk such that(s, si) ∈ E and(T, si) |= ϕ
for every1 ≤ i ≤ k. The next result follows from [60], as was noticed in [32]:

Theorem 10. Over unordered unranked trees,MSO andCµ[≺ch] have precisely the
same power with respect to Boolean queries.

For first-order logic, counting extensions of both the temporal logic TLtree and
CTL⋆ give us analogs of Kamp’s and Hafer-Thomas’s theorems. Define TLtree

count as a
version of TLtree in which only modalities for the child relation are used, butin addition
we have formulaeXk

chϕ, with the semantics that(T, s) |= X
k
chϕ iff there are at leastk

childrens′ of s such that(T, s′) |= ϕ.
We also extendCTL⋆ to a logicCTL⋆

count in which we have new state formulae
EX

k
chα, whereα is a state formula, with the same semantics as above.

Theorem 11. (see [40, 51]) Over unordered unranked trees, the classes of Boolean
queries expressed inFO, TLtree

count, andCTL⋆
count over binary relation≺ch, are the same.

For unary queries, the equivalenceFO = TLtree
count still holds [51], andFO can be

shown to be equivalent to an extension ofCTL⋆ with both counting and the past [3].



Extensions and more powerful countingConsider now a scenario in which we deal
with unordered trees, but in our formulae we can refer to somearbitrary ordering on
siblings: after all, in any encoding of a tree, siblings willcome in some order. Of course
we do not want any particular order to affect the truth value,so we want our formulae,
even if they use an ordering, to be independent of a particular ordering that was used.

This is the standard setting oforder-invariance, an important concept in finite model
theory, cf. [36]. We say that an MSO sentenceϕ over vocabulary including≺∗

ch and≺∗
ns

is≺ns-invariant if for every unordered treeT and every two expansionsT≺1

ns andT≺2

ns

with sibling-orderings≺1
ns and≺2

ns we haveT≺1

ns |= ϕ⇔ T≺2

ns |= ϕ. A ≺ns-invariant
sentence defines a Boolean query on unordered trees.

We now defineMSOmod [19] as an extension ofMSO with modulo quantifiers: for
each set variableX , andk > 1, we have set new formulaeQk(X) which are true iff the
cardinality ofX is congruent to0 modulok.

Theorem 12. (see [20])Over unordered unranked trees,≺ns-invariant Boolean queries
are precisely the Boolean queries definable inMSOmod.

Further extensions in terms of arithmetic power have been considered [53, 54]. Re-
call that Presburger arithmetic refers to the FO theory of the structure〈N,+〉. Define
PresburgerMSO, or PMSO, as an extension of MSO over unordered trees withthe
following rule: if ϕ(x̄, y, X̄) is a PMSO formula andα(v̄) a Presburger arithmetic
formula with |X̄| = |v̄| = n, then [ϕ/α](x̄, y, X̄) is a PMSO formula. Given valu-
ation s̄, s0, S̄ for free variables, withS̄ = (S1, . . . , Sn), let mi be the cardinality of
{s′ | s0 ≺ch s

′ ands′ ∈ Si}. Then[ϕ/α](s̄, s0, S̄) is true iff α(m1, . . . ,mn) is true.
It is easy to see thatMSO ( MSOmod ( PMSO over unordered trees. Still, PMSO

is captured by a decidable automaton model.
Define Presburger unordered tree automata just as counting automata except thatδ

maps pairs fromQ × Σ into Presburger formulae overvq, for q ∈ Q. We interpretvq

as the number of children in stateq, and a transition is enabled if the corresponding
Presburger formula is true in this interpretation.

Theorem 13. (see [53])Presburger unordered tree automata andPMSOare equiva-
lent. Furthermore, both emptiness and universality are decidable for Presburger un-
ordered tree automata.

Further extensions with counting have been considered for fixed-point logics [54]
and theµ-calculus with modulo-quantifiers [3].

Edge-labeled unordered treesThere are several areas where edge-labeled trees play a
prominent and role, and traditionally logical formalisms have been designed for such
data. For example, there are feature logics, used extensively in computational linguistics
[15], or spatial logics used for describing networks and mobile agents [14]: in both cases
one deals with unordered edge-labeled trees.

In the setting of feature trees, one has an infinite set of featuresF , and in an un-
ordered unranked tree every edge is labeled by an elementf ∈ F such that each node
s has at most one outgoing edge labeledf for eachf ∈ F . Furthermore, nodes may be
labeled by elements of some alphabetΣ, as before. It is thus natural to model feature
trees as structures〈D, (Ef )f∈F , (Pa)a∈Σ〉 such that the union of allEf ’s forms the



child relation of a tree, and no node has two outgoingEf -edges. In the context of com-
putational linguistics, one commonly used [5] logic for feature trees is the propositional
modal logic that, in the context of feature structures (not necessarily trees), is also often
supplemented with path-equivalence [50], as well as regular expressions [34].

Ambient logics are modal logics for trees that have been proposed in the context of
mobile computation [14] and later adapted for tree-represented data [12, 13]. One views
trees as edge-labeled and defines them by the grammar

T, T ′ := Λ | T |T ′ | a[T ], a ∈ Σ,

with the equivalences that| is commutative and associative, and thatT |Λ ≡ T . HereΛ
is the empty tree,| is the parallel composition, anda[T ] adds ana-labeled edge on top of
T . If we extend≡ to a congruence in the natural way, then every tree is equivalent to one
of the forma1[T1]| . . . |am[Tm], which is viewed as a tree whose root hasm outgoing
edges labeleda1, . . . , am, with subtrees rooted at its children beingT1, . . . , Tm.

There were several similar logics proposed in [11–14,21]. Here we consider the
logic from [11] whose formulae are given by

ϕ,ϕ′ := ⊥ | Λ | ϕ ∧ ϕ′ | ¬ϕ | ϕ|ϕ′ | ϕ ⊲ ϕ′ | a[ϕ] | ϕ@a, a ∈ Σ.

The semantics is as follows:⊥ is false; Λ is only true in a tree equivalent toΛ, T |=
ϕ1|ϕ2 iff T ≡ T1|T2 with Ti |= ϕi, i = 1, 2; T |= ϕ ⊲ ϕ′ if for everyT ′ |= ϕ we have
T |T ′ |= ϕ′; T |= a[ϕ] iff T ≡ a[T ′] with T ′ |= ϕ, andT |= ϕ@a iff a[T ] |= ϕ.

The study of ambient logics for trees took a different path compared to other logics
seen in this survey; in particular, the focus was on type systems for tree languages and
thus on proof systems for logics, rather than model-checking, its complexity, automata
models, and comparison with other logics.

However, the ambient logic above does not take us outside of the MSO expres-
siveness: this can be seen by going from edge-labeled trees to node-labeled ones. The
translation is simple: the label of each edge(x, y) becomes the label ofy. The root will
have a special labelRootthat cannot occur as a label of any other node. The only mod-
ification in the logic is that now we have formulaeΛa for a ∈ Σ, which are true in a
singleton-tree labeleda. The resulting logic is easily translated into MSO. For example,
ϕ|ϕ′ states that the children of the root can be partitioned into two sets,X andX ′, such
that the subtree that contains all theX-children satisfiesϕ and the subtree that contains
all theX ′-children satisfiesϕ′. Forϕ ⊲ϕ′, one can consider¬(ϕ ⊲ϕ′) saying that there
exists a treeT ′ such thatT ′ |= ϕ andT |T ′ |= ¬ϕ′, and use nondeterministic counting
automata to guess this treeT ′.

5 Automatic structures

In this section we look at a different kind of logics for unranked trees, using the standard
approach of model theory. Let TREE(Σ) be the set of allΣ-labeled unranked trees.
We consider structures of the formM = 〈TREE(Σ), Ω〉 whereΩ is a set of relation,
constant, and function symbols.

Let Defn(M) be the family ofn-dimensional definable setsoverM: that is, sets of
the form{T̄ ∈ TREE(Σ)n | M |= ϕ(T̄ )}, whereϕ(x1, . . . , xn) is an FO formula in



the vocabularyΩ. We shall be looking at structuresM so that definable sets would be
relations definable in MSO or other logics. In particular, such relations will be given by
automata, and thus structuresM of this kind are calledautomatic structures.

Following known automatic structures for strings [4, 6], weintroduce several predi-
cates on trees: the extension predicate, node tests, and domain equality. For two treesT1

andT2 with domainsD1 andD2, we say thatT2 is anextensionof T1, writtenT1 � T2,
if D1 ⊆ D2, and the labeling function ofT2 agrees with the labeling function ofT1

onD1. It will actually be more convenient to work with two extension relations: ex-
tension on the right�→ and extension down�↓. ForT1 �→ T2, we require that every
s ∈ D2 −D1 be of the forms′ · i whens′ · j ∈ D1 for somej < i. ForT1 �↓ T2, we
require that everys ∈ D2 −D1 have a prefixs′ which is a leaf ofT1. DefineLa to be
true in a treeT if the rightmost node is labeleda. Finally,T1 ≈dom T2 iff D1 = D2.

Now we have the following structures:

Tuniv = 〈TREE(Σ), �→, �↓, (La)a∈Σ , ≈dom〉
T = 〈TREE(Σ), �→, �↓, (La)a∈Σ〉

Theorem 14. (see [37])a) For everyn ≥ 1, Defn(Tuniv) is precisely the class of regu-
lar n-ary relations overTREE(Σ).

b) Def1(T) = Def1(Tuniv) is the class of regular unranked tree languages, but for
everyn > 1, Defn(T) ( Defn(Tuniv).

Working with Tuniv makes it easy to write rather complicated properties of tree
languages, and then Theorem 14 implies that those languagesare regular. For example,
if X ⊆ TREE(Σ) is regular, then the set of treesT such that all their extensions can
be extended on the right to a tree inX is regular. Indeed, this is easy to write in FO
over Tuniv, if we have a membership test forX , which is definable by Theorem 14.
Also, conversions from formulae to automata are effective for bothT andTuniv, which
implies decidability of their theories.

Other logics over unranked trees can be naturally represented over these structures:
for example, Boolean FO queries are precisely sets of trees definable overT if quantifi-
cation is restricted to single branches [37].

A different view of unranked treesWe conclude by presenting a different view of un-
ranked trees and a different structure for them that makes iteasy to talk about about their
extensions in which new children may be inserted between existing ones. For example,
if we have a treeT with domainD = {ε, 0, 1}, and we want to add more children of
the root, they would have to be added on the right, e.g, we may have an extension with
domain{ε, 0, 1, 2, 3}. But what if we want to add a child on the left of0, and two chil-
dren between1 and2? Intuitively, we need a new tree domain{ε,−1, 0, 1

3 ,
2
3 , 1} then.

We now capture this situation and present a different automatic structure that makes it
easy to derive that certain relations on trees are regular.

A rational unranked tree domainis a finite prefix-closed subset ofQ∗. Relation
≺∗

ch is defined for rational domains just as before, and relation≺∗
ns is now given by

s · r ≺∗
ns s · r

′ iff r ≤ r′. Then an unranked treeT over a rational unranked tree domain
is, as before, a structureT = 〈D,≺∗

ch,≺
∗
ns, (Pa)a∈Σ〉.



Let TREEQ(Σ) be the set of all unranked trees with rational unranked tree domains.
Note that different elements of TREEQ(Σ) may be isomorphic as trees; we denote this
isomorphism relation by∼=.

Define the extension relation� over trees in TREEQ(Σ) as before. Abranch is
a treeT ∈ TREEQ(Σ) such that the set{T ′ | T ′ � T } is linearly ordered by�.
It follows from the definition of rational unranked tree domains that the domain of a
branch consists of all the prefixes of some strings ∈ Q∗. LetLa(T ) be true iffT is a
branch whose leaf is labeleda, and letT1 <lex T2 be true iffT1 andT2 are branches
with leavess1 ands2, ands1 <lex s2. We then define the structure

T
Q
univ = 〈TREEQ(Σ), �, <lex, ≈dom, (La)a∈Σ〉.

Proposition 4. The structureTQ
univ is interpretable inTuniv. Furthermore, there is a

definable subset of the image ofTREEQ(Σ) that contains exactly one representative of
each∼=-equivalence class.

That is, under the mappingι : TREEQ(Σ)/ ∼=→ TREE(Σ), definable sets over
T

Q
univ become precisely the regular tree languages. Hence, expressing properties of un-

ranked trees in first-order logic overT
Q
univ allows us to conclude easily that certain tree

languages are regular, and thus MSO-definable.

6 Other directions and conclusions

We present very briefly some directions for future work (for more detailed discussion,
see the full version).

Among problems that need to be addressed are the following: (a) How does one
compare different logics over unranked trees? One way is in terms of their succinctness
[29]. (b) Connection between ambient logics and other logics presented there is not yet
adequately understood. (c) We do not know much about logics over string representa-
tions of trees (which occur naturally, for example, in streaming XML applications [52]).
(d) Nor do we know much about handling data values which are present in XML trees.
Some early results were reported in [45, 8], complemented recently by a nice decidabil-
ity result that works on strings with data values [7].
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