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Abstract

Labeled unranked trees are used as a model of XML documents, and logical languages for them
have been studied actively over the past several years. Such logics have different purposes: some
are better suited for extracting data, some for expressing navigational properties, and some make
it easy to relate complex properties of trees to the existence of tree automata for those properties.
Furthermore, logics differ significantly in their model-checking properties, their automata models,
and their behavior on ordered and unordered trees. In this paper we present a survey of logics for
unranked trees.

1 Introduction

Trees arise everywhere in computer science, and there are numerous formalisms in the literature for
describing and manipulating trees. Some of these formalisms are declarative and based on logical
specifications: for example, first-order logic, or monadic second-order logic, or various temporal or
fixed-point logics over trees. Others are procedural formalisms such as various flavors of tree automata,
or tree transducers, or tree grammars. All these formalisms have found numerous applications in
verification, program analysis, logic programming, constraint programming, linguistics, and databases.

Until recently, most logical formalisms for trees dealt with ranked trees [23, 78]: in such trees, all
nodes have the same fixed number of children (or, a bit more generally, the number of children of a
node is determined by the label of that node). Over the past several years, however, the focus has
shifted towards unranked trees, in which there are no restrictions on the number of children a node
can have. For example, the left tree in Figure 1 is a binary tree in which every non-leaf node has two
children. In the second tree in Figure 1, however, different nodes have different number of children.
Although unranked trees have been considered in the 60s and 70s [63, 75, 76], and are related to
feature trees over an infinite set of features [72] which are a particular kind of feature structures that
have been investigated by computational linguists [7, 20, 67], their systematic study was initiated by
the development of XML (eXtensible Markup Language). XML is a data format which has become

∗An earlier version of this paper appeared in the Proceedings of the 32nd International Colloquium on Automata,
Languages, and Programming (ICALP 2005).
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Figure 1: A ranked (binary) and an unranked tree

the lingua franca for information exchange on the world wide web. XML data is typically modeled as
labeled unranked trees [56, 80].

This connection has led to a renewed interest in logical and procedural formalisms for unranked trees.
Since XML trees are used to exchange data, the usual database query language paradigms apply: one
uses logical formalisms for expressing declarative queries, and procedural formalisms for evaluating
those declarative queries. Logics over unranked trees defining a variety of query languages for them
appeared in large numbers over the past 7–8 years, and they come in many flavors in shapes. What
is common to them, however, is a close connection to automata models, and quite often to temporal
and modal logics, especially when one describes properties of paths through a document.

Let us now review some of the parameters according to which logics for unranked trees can be classified.

The yardstick logic Most formalisms are “inspired” by one of the two logics often used in the
context of trees: first-order logic (FO), and monadic second-order logic (MSO) that extends FO
by quantification over sets of nodes. Query languages and schema formalisms for XML tend
to use MSO as the yardstick: for example, XML Document Type Definition (DTDs, or, more
precisely, XSD – XML Schema Definition) are essentially equivalent to MSO sentences, and
various language for extraction of data from XML documents, although being syntactically very
different, have the power of MSO unary queries. On the other hand, navigational aspects of
XML, in particular, logics capturing various fragments of XPath, are usually closely related to
FO and its fragments.

Arity of queries Most commonly one considers Boolean or unary queries. Boolean queries are log-
ical sentences and thus evaluate to true or false. For example, checking if an XML document
conforms to a schema specification is represented by a Boolean query. Unary queries correspond
to formulae in one free variable, and thus produce a set of nodes. For example, extracting sets of
nodes, or evaluating XPath expressions relative to the root naturally give rise to unary queries.

Complexity of model-checking/query-evaluation The model-checking problem asks whether a
tree T satisfies a logical sentence ϕ, written T |= ϕ. If ϕ is an MSO sentence ϕ, it can be
evaluated in linear time in the size of T , by converting ϕ to a tree automaton. But there is a
price to pay: in terms of the size of ϕ, the complexity becomes non-elementary. This type of
trade-offs is one of the central issues in dealing with logics over trees. Similar issues arise with
evaluating formulae ϕ(x̄) in trees, that is, finding tuples s̄ of nodes such that T |= ϕ(s̄).

Ordered vs. unordered trees In the standard definition of unranked trees in the XML context,
children of the same node are ordered by a sibling ordering. If such an order is present, we
speak of ordered unranked trees. In many cases, however, this ordering is irrelevant, and some
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unranked tree models, such as feature trees, do not impose any ordering on siblings. There is
considerable difference between the expressiveness of logics and automata models depending on
the availability of sibling ordering. The presence of ordering also affects the yardstick logic, since
without order often counting is needed to match the power of automata models [24].

The paper is organized as follows. After we give basic definitions in Section 2, we move to logics
for ordered trees. In Section 3 we deal with MSO-related logics, including syntactic restrictions of
MSO, a datalog-based logic, and the µ-calculus. In Section 4 we turn to FO-related logics, present
analogs of LTL and CTL⋆ that have been studied for expressing navigational properties, and also look
at conjunctive queries over trees. In Section 5 we turn to trees that lack the sibling ordering, and
show that in many logics some form of counting needs to be added to compensate for the missing
ordering. We also review ambient and feature logics over edge-labeled trees. In Section 6 we look at
the model-theoretic approach. We consider an infinite first-order structure whose universe is the set
of all unranked trees and obtain some well-known classes of trees by studying first-order definability
(in the classic model-theoretic sense) over that structure.

2 Trees, logics, and automata

2.1 Tree domains, trees, and operations on trees

Nodes in unranked trees are elements of N∗ – that is, finite strings whose letters are natural numbers.
A string s = n0n1 . . . defines a path from the root to a give node: one goes to the n0th child of the
root, then to the n1th child of that element, etc. We shall write s1 · s2 for the concatenation of strings
s1 and s2.

We now define some basic binary relations on N∗. The child relation is

s ≺ch s
′ ⇔ s′ = s · i for some i ∈ N.

The next-sibling relation is given by:

s ≺ns s
′ ⇔ s = s0 · i and s′ = s0 · (i+ 1) for some s0 ∈ N∗ and i ∈ N.

That is, s and s′ are both children of the same s0 ∈ N∗, and s′ is next after s in the natural ordering
of siblings. We also use the first child relation: s ≺fc s · 0. These are shown in Figure 2.

We shall use ∗ to denote the reflexive-transitive closure of a relation. Thus, ≺∗
ch is the descendant

relation (including self): s ≺∗
ch s

′ iff s is a prefix of s′ or s = s′. The transitive closure of the next-
sibling relation, ≺∗

ns is a linear ordering on siblings: s · i ≺∗
ns s · j iff i ≤ j. We shall be referring to

younger/older siblings with respect to this ordering (the one of the form s · 0 is the oldest).

Definition 2.1 (Tree domain) A tree domain D is a finite prefix-closed subset of N∗ (that is, if
s ∈ D and s′ is a prefix of s, then s′ ∈ D) such that s · i ∈ D implies s · j ∈ D for all j < i.

Let Σ be a finite alphabet. We define trees as structures that consist of a universe and a number of
predicates on the universe.
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child ≺ch

next-sibling ≺ns

first child ≺fc

Figure 2: Basic relations for unranked trees

Definition 2.2 (Σ-trees) An ordered unranked tree T is a structure

T = 〈D,≺∗
ch,≺

∗
ns, (Pa)a∈Σ〉,

where D is a tree domain, ≺∗
ch and ≺∗

ns are the descendant relation and the sibling ordering, and Pa’s
are interpreted as disjoint sets whose union is the entire domain D.

An unordered unranked tree is defined as a structure 〈D,≺∗
ch, (Pa)a∈Σ〉, where D,≺∗

ch, and Pa’s are as
above.

Thus, a tree consists of a tree domain together with a labeling on its nodes, which is captured by the
Pa predicates: if s ∈ Pa, then the label of s is a. In this case we write λT (s) = a.

Notice that when dealing with unranked we assume that each node has one label. Later we shall
see connection with temporal logics, where such a restriction on labeling is normally not imposed.
However, one could always assume unique labeling in that case too simply by collecting the set of all
labels of a node (in this case the labeling alphabet becomes 2Σ).

2.2 First-order and monadic second-order logic

We shall only consider relational vocabularies, that is, finite lists (R1, . . . , Rm) of relation symbols, each
Ri with an associated arity ni. Over trees, relation symbols will be either binary (e.g., ≺ch,≺ns,≺

∗
ch)

or unary (Pa’s for a ∈ Σ).

Formulae of first-order logic (FO) are built from atomic formulae x = x′, and R(x̄), where x, x′ are
variables, and x̄ is a tuple of variables whose length equals the arity of R, using the Boolean connectives
∨,∧,¬ and quantifiers ∃ and ∀. If a formula ϕ has free variables x̄, we shall write ϕ(x̄). Formulae are
evaluated on a structure, which consists of a universe and interpretations for relations. Quantifiers ∃
and ∀ range over the universe of the structure. For example, an FO formula

ϕ(x) = Pa(x) ∧ ∃y∃z
(

x ≺∗
ch y ∧ y ≺∗

ns z ∧ Pb(y) ∧ Pc(z)
)

is true for nodes s in a tree T that are labeled a, have a descendant labeled b, which in turn has a
younger sibling labeled c.
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Formulae of monadic second-order logic (MSO) in addition allow quantification over sets. We shall
normally denote sets of nodes by upper case letters. Thus, MSO formulae have the usual first-order
quantifiers ∃xϕ and ∀xϕ as well as second-order quantifiers ∃Xϕ and ∀Xϕ, and new atomic formulae
X(x), where X is a second-order variable and x is a first-order variable. An MSO formula may have
both free first-order and second-order variables. If it only has free first-order variables, then it defines
a relation on the universe of the structure. As an example, an MSO formula ϕodd(x, y) given by the
conjunction of x ≺∗

ch y and

∃X∃Y









∀z
(

(

x ≺∗
ch z ∧ z ≺

∗
ch y

)

→
(

X(z) ↔ ¬Y (z)
)

)

∧
(

X(x) ∧ Y (y)
)

∧ ∀z∀v
(

x ≺∗
ch z ≺ch v ≺∗

ch y →
(

(X(z) → Y (v)) ∧ (Y (z) → X(v))
)

)









says that y is a descendant of x and the path between them is of odd length. It says that there exist
two sets, X and Y , that partition the path from x to y, such that x ∈ X, y ∈ Y , and the successor of
each element in X is in Y , and the successor of each element in Y is in X.

Note that the relations ≺ch and ≺ns are definable, even in FO, from ≺∗
ch and ≺∗

ns: for example,

¬(x = y) ∧ (x ≺∗
ch y) ∧ ∀z

(

(x ≺∗
ch z) ∧ (z ≺∗

ch y) → (x = z ∨ y = z)
)

defines the child relation from ≺∗
ch. In MSO one can define ≺∗

ch from ≺ch by stating the existence of
a path between two nodes (and likewise ≺∗

ns from ≺ns). However, it is well-known that in FO one
cannot define ≺∗

ch from ≺ch (cf. [47]) and this is why we chose ≺∗
ch and ≺∗

ns, rather than ≺ch and ≺ns,
as our basic relations. However, in all the results about MSO, we may assume that the basic relations
are ≺ch and ≺ns.

Definition 2.3 (Definability in logic) Given a logic L, we say that a set of trees T is definable in
L if there is a sentence ϕ of L such that T ∈ T iff T |= ϕ. We say that a unary query Q (that selects
nodes from trees) is definable in L if there is a formula ψ(x) of L such that s ∈ Q(T ) iff T |= ψ(s),
for every tree T and a node s in T .

2.3 Unranked tree automata

An nondeterministic unranked tree automaton, NUTA [76, 13], over Σ-labeled trees is a triple A =
(Q,F, δ) whereQ is a finite set of states, F ⊆ Q is the set of final states, and δ is a mappingQ×Σ → 2Q∗

such that δ(q, a) is a regular language over Q (normally represented by a regular expression over Q).
A run of A on a tree T with domain D is a function ρA : D → Q such that:

if s is a node with n children, and it is labeled a, then the string
ρA(s · 0) · · · ρA(s · (n− 1)) is in δ(ρA(s), a).

This is illustrated in Figure 3. In particular, if s is a leaf labeled a, then ρA(s) = q implies that
ε ∈ δ(q, a). A run is accepting if ρA(ε) ∈ F , that is, the root is in an accepting state. A tree T is
accepted by A if there exists an accepting run. We let L(A) denote the set of all trees accepted by A.
Such sets of trees will be called regular.
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s λT (s) = a

ρA(s) = q if q1 · · · qn ∈ δ(q, a)

Figure 3: Run of an unranked tree automaton
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Figure 4: A unranked tree T and its translation R(T )

2.4 Binary trees and translations

A binary tree domain is a prefix-closed subset D of {0, 1}∗ such that if s · i ∈ D, then s · (1 − i) ∈ D
(that is, a node is either a leaf, or both its children are in D). It is common to define (binary) tree
automata with both initial and final states, using the initial states to avoid conditions ε ∈ δ(q, a)
imposed in the runs of NUTAs. That is, a (binary) nondeterministic tree automaton, NTA, is a
quadruple Ab = (Q, q0, F, δ) where Q and F are as before, q0 is the initial state, and δ is a function
Q×Q × Σ → 2Q. In this case a run ρAb

on a binary tree T with domain D is a function from D to
Q such that if s is a leaf labeled a, then ρAb

(s) ∈ δ(q0, q0, a), and if s · 0, s · 1 belong to D, and s is
labeled a, then ρAb

(s) ∈ δ(ρAb
(s · 0), ρAb

(s · 1), a). As before, a run is accepting if ρAb
(ε) ∈ F , and

L(Ab) is the set of all binary trees for which there exists an accepting run of Ab. Sets of trees of this
form are regular sets (of binary trees).

There is a well-known regularity-preserving translation between unranked and ranked trees. It was
first used in [65] to show decidability of SωS (but here we shall apply it only to finite tree domains).
The idea of the translation is that the first successor in the binary tree corresponds to the first child,
and the second successor to the next sibling. More precisely, we define a mapping R : N∗ → {0, 1}∗

such that R(ε) = ε, and if R(s) = s′, where s = s0 · i, then R(s ·0) = s′ ·0 and R(s0 · (i+1)) = s′ ·1. If
D is an unranked tree domain, we let R(D) be {R(s) | s ∈ D} together with R(s) · 1 if s is a non-leaf
last child, and R(s) · 0 if s a leaf, other than the last sibling (these additions ensure that R(D) is a
binary tree domain). We define R(T ) to be a tree with domain R(D), where R(s) has the same label
as s, and the added nodes are labeled by a symbol ⊥ 6∈ Σ. An example is shown in Figure 4.

The following is a folklore result.
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Lemma 2.4 For every NUTA A, there is an NTA Ab such that L(Ab) = {R(T ) | T ∈ L(A)}, and
conversely, for every NTA Ab there is an NUTA A such that the above holds.

Moreover, Ab can be constructed from A very fast, in Dlogspace [37].

Other regularity-preserving translations from unranked trees to binary trees exist. For example, [19]
views unranked trees as built from labeled nodes by means of a binary operation T@T ′ that attaches
T ′ at the new youngest child of the root of T . This immediately yields a binary tree representation
and an automaton construction, and of course an analog of Lemma 2.4 holds.

3 Ordered trees: MSO and its relatives

In the next two sections we only deal with ordered unranked trees.

As we mentioned already, MSO is often used as a yardstick logic for trees, because of its close connection
to regular languages. The following result belonged to folklore, and was explicitly stated in [55].

Theorem 3.1 A set of unranked trees is regular iff it is definable in MSO.

When one considers only binary trees, this result says that regular sets of binary trees are precisely
those MSO-definable, and if we look at strings, which may be viewed as trees without branching,
we obtain that regular languages are precisely those MSO-definable. Of course these are well-known
results by Büchi [14], and Thatcher, Wright [77], and Doner [27].

There is also a close connection between automata, MSO, and the common formalism for describing
schemas for XML documents called DTDs, which are essentially extended context-free grammars. A
DTD d over an alphabet Σ is a collection of rules a→ ea, where a ∈ Σ and ea is a regular expression
over Σ. We shall assume there is at most one such rule for each a ∈ Σ. A Σ-labeled tree T satisfies d,
if for each node s of T with n children, and λT (s) = a, the string λT (s · 0) · · · λT (s · (n− 1)) is in the
language denoted by ea. We write Sat(d) for the set of trees that satisfy d.

Each DTD is easily definable by an unranked tree automaton: in fact its states just correspond to
labels of nodes. This, however, is too restrictive to capture full definability in MSO. In fact, DTDs
(that is, sets of the form Sat(d)) are closed under neither unions nor complement, which makes DTDs
unsuitable for capturing a logic with disjunction and negation.

However, a slight extension of DTDs does capture MSO. An extended DTD over Σ is a triple (Σ′, d′, g)
where Σ′ ⊇ Σ, with g being a mapping g : Σ′ 7→ Σ, and d′ is a DTD over Σ′. We say that a Σ-labeled
tree T satisfies (Σ′, d′, g) if there is a Σ′-labeled tree T ′ that satisfies d′ such that T = g(T ′) (more
formally, T is obtained by replacing each label a in T ′ by g(a)). We write Sat(Σ′, d′, g) for the set of
trees that satisfy (Σ′, d′, g).

The following was established in [76] and then restated using the DTD terminology in [80].

Proposition 3.2 A set of unranked trees is MSO definable iff it is of the form Sat(Σ′, d′, g) for some
extended DTD (Σ′, d′, g).
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Theorem 3.1 talks about MSO sentences, but it can be extended to unary MSO queries using the
concept of query automata [58]. A (nondeterministic) query automaton over unranked Σ-labeled trees
is a quadruple QA = (Q,F, δ, S) where A = (Q,F, δ) is an UNTA, and S is a subset of Q×Σ. Such a
query automaton defines two unary queries Q∃

QA and Q∀
QA on unranked trees:

Existential semantics query : s ∈ Q∃
QA(T ) iff (ρA(s), λT (s)) ∈ S for some accepting run ρA.

Universal semantics query : s ∈ Q∀
QA(T ) iff (ρA(s), λT (s)) ∈ S for every accepting run ρA.

Theorem 3.3 (see [58, 55, 32]) For a unary query Q on unranked trees, the following are equivalent:

1. Q is definable in MSO;

2. Q is of the form Q∃
QA for some query automaton QA;

3. Q is of the form Q∀
QA for some query automaton QA.

Query automata, just as usual tree automata, have a deterministic counterpart; however, in the
deterministic version, two passes over the tree are required. See [58] for details.

Theorems 3.1 and 3.3 are constructive. In particular, every MSO sentence ϕ can be effectively trans-
formed into an automaton Aϕ that accepts a tree T iff T |= ϕ. Since tree automata can be de-
terminized, this gives us a O(‖T‖) algorithm to check whether T |= ϕ, if ϕ is fixed1. However, it
is well-known that the size of Aϕ (even for string automata) cannot be bounded by an elementary
function in ‖ϕ‖ [73]. An even stronger result of [31] says that there could be no algorithm for check-
ing whether T |= ϕ that runs in time O(f(‖ϕ‖) · ‖T‖), where f is an elementary function, unless
Ptime=NP.

Nonetheless, these results do not rule out the existence of a logic L that has the same power as MSO
and yet permits faster model-checking algorithms. Even looking at a simpler case of FO on strings,
where results of [31] also rule out O(f(‖ϕ‖) · |s|) algorithms for checking if a string s satisfies ϕ, with f
being an elementary function, the logic LTL (linear-time temporal logic) has the same expressiveness
as FO [44] and admits model-checking algorithm with running time 2O(‖ϕ‖) · |s|.

3.1 Logic ETL

The first logic for unranked trees that has the power of MSO and model-checking complexity matching
that of LTL appeared in [57] and was called ETL (efficient tree logic). It was obtained by putting
syntactic restrictions on MSO formulae, and at the same time adding new constructors for formulae,
which are not present in MSO, but are MSO-definable.

The atomic formulae of ETL are the same as for MSO, except that we are allowed to use both ≺ch

and ≺∗
ch and are not allowed to use the next-sibling relation ≺∗

ns. The formulae of ETL are then
closed under Boolean combinations, guarded quantification, and path formulae. The rules for guarded
quantification are as follows:

1We use the notation ‖T‖, ‖ϕ‖ to denote the sizes of natural encodings of trees and formulae.
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ψ1 ψ2 ψ3 ψ4 ψn

x

y

x

e↓(x, y) : ϕ0 · · ·ϕn−1 ∈ e e→(x) : ψ1 · · ·ψn ∈ e

Figure 5: The semantics of path formulae of ETL

• if ϕ(x, y,X) is an ETL formula, then ∃y (x ≺ch y ∧ ϕ) and ∃y (x ≺∗
ch y ∧ ϕ) are ETL formulae;

• if ϕ(x,X) is an ETL formula, then ∃X (x ≺∗
ch X ∧ ϕ) is an ETL formula. Here x ≺∗

ch X means
that X only contains descendants of x. In this case ϕ cannot contain vertical path formulae
(defined below).

Path formulae are defined below, and illustrated in Figure 5.

• if e is a regular expression over ETL formulae ψ(u, v), then e↓(x, y) is a (vertical path) ETL
formula. The semantics is as follows: T |= e↓(s, s′) if there is a child-relation path s =
s0, s1, . . . , sn = s′ in T and a sequence of ETL formulae ψi(u, v), i ≤ n − 1, such that T |=
ψi(si, si+1) for each i ≤ n− 1, and the sequence ψ0 . . . ψn−1 matches e.

• if e is a regular expression over ETL formulae ψ(u, X̄), then e→(x, X̄) is a (horizontal path)
ETL formula. Then T |= e→(s, X̄) if children s · i, i ≤ k of s can be labeled with ETL formulae
ψi(u, X̄) such that T |= ψi(s · i, X̄) for all i, and the sequence ψ0 . . . ψk matches e.

We also define a slight syntactic modification ETL◦ of ETL, in which the closure under Boolean
connectives is replaced by a rule that formulae are closed under taking Boolean combinations which
are in DNF: that is, if ϕij ’s are ETL◦ formulae, then

∨

i

∧

j ϕ
′
ij is an ETL◦ formula, where each ϕ′

ij

is either ϕij or ¬ϕij. Clearly the expressiveness of ETL◦ is exactly the same as the expressiveness of
ETL.

Theorem 3.4 (see [57]) With respect to Boolean and unary queries, ETL and MSO are equally ex-
pressive. Furthermore, each ETL◦ formula ϕ can be evaluated on a tree T in time 2O(‖ϕ‖) · ‖T‖.
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ETL formulae can thus be evaluated in linear time in the size of the tree, and double exponential
time in ‖ϕ‖, by converting Boolean combinations into DNF. It is not known if ETL itself admits a
2O(‖ϕ‖) · ‖T‖ model-checking algorithm.

3.2 Monadic datalog

Another approach to obtaining the full power of MSO while keeping the complexity low is based on
database query language datalog (cf. [1]); it was proposed in [34, 35]. A datalog program can be
viewed as a prolog program without function symbols. Datalog is often used to extend expressiveness
of database queries beyond FO.

A datalog program consists of a sequence of rules

H:–P1, . . . , Pk,

where H and all Pi’s are atoms: that is, atomic formulae of the form E(x̄). The predicate H is called
the head of the rule, and P1, . . . , Pk are called its body. Every variable that appears in the head is
required to appear in the body. Given a datalog program P, predicates which appear as a head of some
rule are called intensional, and other predicates are called extensional. If all intensional predicates are
monadic (that is, of the form H(x)), then P is a monadic datalog program.

Given a datalog program P with extensional predicates P1, . . . , Pm and intensional predicatesH1, . . . ,Hℓ,
and a structure D = 〈D,PD

1 , . . . , P
D
m 〉 that interprets each p-ary predicate Pi as PD

i ⊆ Dp, we define
P(D) as the least fixed point of the immediate consequence operator. This operator takes a structure
H′ = 〈D,H ′

1, . . . ,H
′
ℓ〉 and produces another structure H′′ = 〈D,H ′′

1 , . . . ,H
′′
ℓ 〉 such that a tuple ā is

in H ′′
i if it is in H ′

i or there is a rule Hi(x̄):–R1(x̄, ȳ), . . . , Rs(x̄, ȳ) and a tuple b̄ such that for each
extensional predicate Ri, the fact Ri(ā, b̄) is true in D, and for each intensional predicate Ri, the fact
Ri(ā, b̄) is true in H′.

A monadic datalog query is a pair (P,H) where P is a monadic datalog program, and H is an
intensional predicate. The value of H in P(D) is the output of this program on D.

We consider three unary predicates on unranked tree domains: Leaf, LastChild, and Root. Given a
tree domain D, they are interpreted as

Leaf = {s ∈ D | ¬∃s′ ∈ D : s ≺ch s
′},

LastChild = {s · i ∈ D | s · (i+ 1) 6∈ D},
Root = {ε}.

Theorem 3.5 (see [34]) A unary query over unranked trees is definable in MSO iff it is definable in
monadic datalog over extensional predicates ≺fc, ≺ns, Leaf, LastChild, Root, and Pa, a ∈ Σ.

Furthermore, each monadic datalog query (P,H) can be evaluated on a tree T in time O(‖P‖ · ‖T‖).

There are two proofs of this result in [34]: one codes query automata in monadic datalog, and the
other one uses the standard reduction to ranked trees and the composition method (cf. [42]) for MSO
games.
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3.3 µ-calculus

Yet another way of getting a logic equivalent to MSO is suggested by a close connection between MSO
and the modal µ-calculus Lµ on ranked trees, which can easily be extended to the unranked case by
using the connection between ranked and unranked trees. It was shown in [28, 61] that every property
of infinite binary trees definable in MSO is also be definable in Lµ. To deal with unranked trees,
we shall define Lµ over Σ-labeled structures that have several binary relations E1, . . . , Em, cf. [2].
Formulae of Lµ are given by

ϕ := a (a ∈ Σ) | X | ϕ ∨ ϕ | ¬ϕ | 3(Ei)ϕ | µX ϕ(X),

where in µX ϕ(X), the variable X must occur positively in ϕ. Given a structure T with domain
D, s ∈ D, and a valuation v for free variables (such that each v(X) is a subset of D), we define the
semantics by

• (T, v, s) |= a iff s is labeled a.

• (T, v, s) |= ϕ ∨ ϕ′ iff (T, v, s) |= ϕ or (T, v, s) |= ϕ′.

• (T, v, s) |= ¬ϕ iff (T, v, s) |= ϕ is false.

• (T, v, s) |= X iff s ∈ v(X).

• (T, v, s) |= 3(Er)ϕ iff (T, v, s′) |= ϕ for some s′ with (s, s′) ∈ Er.

• (T, v, s) |= µX ϕ(X) iff s is in the least fixed point of the operator defined by ϕ; in other words,
if

s ∈
⋂

{P | {s′ | (T, v[P/X], s′) |= ϕ} ⊆ P},

where v[P/X] extends the valuation v by v(X) = P .

We shall list explicitly binary relations Ei’s, writing Lµ[E1, . . . , Em] to refer Lµ formulae that only
use those relations. An Lµ formula ϕ without free variables naturally defines a unary query on trees
({s | (T, s) |= ϕ}) and a Boolean query on trees (by checking if (T, ε) |= ϕ).

Using the translation into ranked trees (or direct coding of automata), it is easy to show the following
(see [3]):

Proposition 3.6 The class of Boolean MSO queries on unranked trees is precisely the class of Boolean
queries defined by Lµ[≺fc,≺ns].

If we consider unranked trees as structures with relations ≺fc and ≺ns, then they are acyclic, and hence
the complexity of model checking is O(‖ϕ‖2 · ‖T‖) [52]. Furthermore, results of [52] tell us that one
can strengthen Proposition 3.6: MSO equals alternation-free Lµ over ≺fc,≺ns. For alternation-free
Lµ formulae over unranked trees the complexity of model-checking further reduces to O(‖ϕ‖ · ‖T‖),
matching the complexity of monadic datalog.

It is also possible to characterize unary MSO queries over unranked trees in terms of the full µ-calculus
Lfull

µ (cf. [79]) which adds backward modalities 3(E−
i )ϕ with the semantics

• (T, s) |= 3(E−
i )ϕ iff (T, s′) |= ϕ for some s′ such that (s′, s) ∈ Ei.
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Proposition 3.7 (see [3]) The class of unary MSO queries on unranked trees is precisely the class of
queries defined by Lfull

µ [≺ch,≺ns].

There are other fixed-point constructions that have been shown to capture the power of automata and
MSO over unranked trees; see, e.g. [62].

4 Ordered trees: FO and its relatives

We continue dealing with ordered trees, but now we move to logics closely related to first-order, as
opposed to monadic second-order.

While a lot is known about FO on both finite and infinite strings, it has not been nearly as extensively
studied for trees until very recently. Recall that over strings – which we can view as trees with only
unary branching – FO defines precisely the star-free languages (cf. [78]), and over both finite and
infinite strings FO has exactly the power of LTL [44]. It can further be characterized by automata
whose syntactic monoid is aperiodic (cf. [74]).

In contrast, the natural analog of star-free expressions over binary trees captures not FO but MSO [64].
Algebraic characterizations of FO-definable classes of binary trees have been obtained very recently
[6, 11, 29], with [6] showing that FO-definability is decidable for regular tree languages. One well-
known equivalent logical description of FO on binary trees is Hafer-Thomas’s theorem [42] stating
that over finite binary trees, FO = CTL⋆ (CTL⋆ is a branching time temporal logic widely used in
verification, cf. [21], and it will be defined shortly). Actually, the result of [42] shows that CTL⋆ is
equivalent to MSO with second-order quantification over paths only, but over finite trees this fragment
of MSO is equivalent to FO.

The interest in logics over unranked trees whose power is equal to or subsumed by that of FO stems
from the fact that navigational features of XPath can be described in FO. XPath [22] is a W3C
standard for describing paths in XML documents. For example, an XPath expression

//a[//b]/c

produces the c-labeled children of a-labeled nodes having a b-labeled descendant. Here // denotes
descendant, / denotes child, and [ ] is a node test. The expression above looks for a-nodes (descendants
of the root) in which the test [//b] is true (the existence of a node labeled b) and from there it proceeds
to children of such nodes labeled c. While this is the syntax one typically finds in the literature on
XPath, here we shall use a different syntax, highlighting connections with temporal logics.

In this section we shall look for connections between XPath, FO on trees, and temporal logics, which
are designed to talk about properties of paths.

Logics introduced in the context of studying XPath, and more generally, navigational properties of
XML documents, can be roughly subdivided into two groups. Firstly, one may try to establish analogs
of Kamp’s theorem (stating that FO = LTL over strings) for trees. Secondly, one can try extended
Hafer-Thomas’s theorem (the equivalence FO = CTL⋆) from binary to unranked trees.

Both ways are possible, and in both cases we get FO completeness results, stating that some temporal
logics have precisely the power of unary FO queries.
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4.1 XPath and temporal logics

We start with LTL-like logics. First, recall the syntax of LTL over alphabet Σ:

ϕ,ϕ′ := a, a ∈ Σ | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | X−ϕ | ϕUϕ′ | ϕSϕ′.

Formulae of LTL are interpreted over finite or infinite strings over Σ: a formula is evaluated in a
position in a string. Given a string s = a0a1 . . ., we define the semantics as follows:

• (s, i) |= a iff ai = a;

• (s, i) |= Xϕ (“next” ϕ) iff (s, i+ 1) |= ϕ;

• (s, i) |= X−ϕ iff (s, i− 1) |= ϕ;

• (s, i) |= ϕUϕ′ (ϕ “until” ϕ′) if there exists j ≥ i such that (s, j) |= ϕ′ and (s, k) |= ϕ for all
i ≤ k < j;

• the semantics of the dual ϕSϕ (ϕ “since” ϕ′) is that there exists j ≤ i such that (s, j) |= ϕ′ and
(s, k) |= ϕ for all j < k ≤ i.

(Note: it is possible to avoid X and X− by defining a strict semantics for U and S, without requiring
ϕ to be true in (s, i)).

We now consider a logic TLtree (tree temporal logic) defined as follows:

ϕ,ϕ′ := a, a ∈ Σ | ϕ ∨ ϕ′ | ¬ϕ | X∗ϕ | X−
∗ ϕ | ϕU∗ϕ

′ | ϕS∗ϕ
′,

where ∗ is either ’ch’ (child) or ’ns’ (next sibling). We define the semantics with respect to a tree and
a node in a tree:

• (T, s) |= a iff λT (s) = a;

• (T, s) |= Xchϕ if (T, s · i) |= ϕ for some i;

• (T, s) |= X−
chϕ if (T, s′) |= ϕ for the node s′ such that s′ ≺ch s;

• (T, s) |= ϕUchϕ
′ if there is a node s′ such that s ≺∗

ch s
′, (T, s′) |= ϕ′, and for all s′′ 6= s′ satisfying

s ≺∗
ch s

′′ ≺∗
ch s

′ we have (T, s′′) |= ϕ.

The semantics of Sch is defined by reversing the order in the semantics of Uch, and the semantics of
Xns,X

−
ns,Uns, and Sns is the same by replacing the child relation with the next sibling relation.

TLtree naturally defines unary queries on trees, and it also defines Boolean queries: we say that T |= ϕ
if (T, ε) |= ϕ.

Theorem 4.1 (see [49]) A unary or Boolean query over unranked trees is definable in FO iff it is
definable in TLtree.

In CTL⋆-like logics, there are two kinds of formulae: those evaluated in nodes of trees, and those
evaluated on paths in trees. This is similar to the situation with XPath, which has filter expressions
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evaluated on nodes, and location path expressions, which are evaluated on paths in XML trees. We
shall now present two logics: CTL⋆ with the past, in the spirit on [46], and a CTL-like reformulation
of XPath, as presented in [49, 50].

We start with XPath-inspired logics, and present them using a slight modification of the syntax that
keeps all the main XPath constructions and yet makes the connection with temporal logics more
visible.

The language CXPath [49, 50] (Conditional XPath) is defined to have node formulae α and path
formulae β given by:

α,α′ := a, a ∈ Σ | ¬α | α ∨ α′ | Eβ
β, β′ := ?α | step | (step/?α)+ | β/β′ | β ∨ β′

where step is one of the following: ≺ch, ≺−
ch, ≺ns, or ≺−

ns. Intuitively Eβ states the existence of a
path starting in a given node and satisfying β, ?α tests if α is true in the initial node of a path, and
/ is the composition of paths.

Formally, given a tree T , we evaluate each node formula in a node (that is, we define (T, s) |= α), and
each path formula in two nodes (that is, (T, s, s′) |= β). The semantics is then as follows (we omit the
rules for Boolean connectives):

• (T, s) |= a iff λT (s) = a;

• (T, s) |= Eβ iff there is s′ such that (T, s, s′) |= β;

• (T, s, s′) |=?α iff s = s′ and (T, s) |= α;

• (T, s, s′) |= step iff (s, s′) ∈ step;

• (T, s, s′) |= β/β′ iff for some s′′ we have (T, s, s′′) |= β and (T, s′′, s′) |= β′;

• (T, s, s′) |= (step/?α)+ if there exists a sequence of nodes s = s0, s1, . . . , sk = s′, k > 0, such
that each (si, si+1) is in step, and (T, si+1) |= α for each i < k.

The language Core XPath [37, 36] is obtained by only allowing step+ as opposed to (step/?α)+ in
the definition of path formulae. Notice that since step+ = (step/?true), where true =

∨

a∈Σ a, we
have Core XPath ⊆ CXPath.

The earlier example of an XPath expression (//a[//b]/c) can be represented in this syntax by a node
formula c ∧ E(≺−

ch /?a/ ≺+
ch /?b) saying that a node is labeled c, and there is a path that starts by

going to its parent, finding a there, and then going to a descendant of that a and finding a b.

Core XPath corresponds to XPath as defined by W3C [22], while CXPath represents an addition
to XPath proposed by [49]. This addition is essentially the “until” operator of temporal logic: for
example, to represent the strict version of until (that is, to say that in the next element of a path aUb
holds), one could write ≺ch /?b ∨ (≺ch /?a)

+/ ≺ch /?b.

Node formulae of either CXPath or Core XPath naturally define unary queries on trees. These can
be characterized as follows.

Theorem 4.2 a) (see [49]) The node formulae of CXPath have precisely the power of FO unary
queries.
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b) (see [51]) The node formulae of Core XPath have precisely the power of unary FO2 queries (that
is, FO with two variables) in the vocabulary ≺ch,≺

∗
ch,≺ns,≺

∗
ns.

4.2 A CTL⋆-like logic

The logics CTL (computation tree logic) and CTL⋆ are branching time temporal logics used in verifi-
cation of reactive systems. They are normally defined without past connectives, but here we use the
syntax close to that of [46] to make it possible to reason about the past. In these logics, one also has
node (usually called state) formulae and path formulae, but path formulae are evaluated on paths,
not on arbitrary pairs of nodes.

We define CTL⋆
past node formulae α, and child and sibling path formulae βch and βns, as follows:

α,α′ := a (a ∈ Σ) | ¬α | α ∨ α′ | Eβch | Eβns

βch, β
′
ch := α | ¬βch | βch ∨ β′ch | Xchβch | X−

chβch | βchUchβ
′
ch | βchSchβ

′
ch

βns, β
′
ns := α | ¬βns | βns ∨ β

′
ns | Xnsβns | X−

nsβns | βnsUnsβ
′
ns | βnsSnsβ

′
ns

Given a tree, a child-path πch is a sequence of nodes on a path from the root to a leaf, and a sibling-
path is a sequence πns of nodes of the form s · 0, . . . , s · (n− 1) for a node s with n children. We define
the semantics of node formulae with respect to a node in a tree, and of path formulae with respect to
a path and a node on the path (i.e., we define the notion of (T, π∗, s) |= β∗, for ∗ being ’ch’ or ’ns’).

• (T, s) |= Eβ∗ if there exists a path π∗ such that s ∈ π∗ and (T, π∗, s) |= β∗;

• (T, πch, s) |= Xchβ if (T, πch, s
′) |= β, where s′ is the child of s on path πch;

• (T, πch, s) |= X−
chβ if (T, πch, s

′) |= β where s′ is the parent of s on πch;

• (T, πch, s) |= βUchβ
′ if for some s′ 6= s such that s′ ∈ πch and s ≺∗

ch s
′, we have (T, πch, s

′) |= β′,
and for all s ≺∗

ch s
′′ ≺∗

ch s
′, s′′ 6= s′, we have (T, πch, s

′′) |= β.

The definitions for Sch and for sibling-paths are analogous.

The following can be seen as an analog of the equivalence FO = CTL⋆ for finite binary trees [42].
While the proof the connection between ranked and unranked tree, the straightforward translation
from binary tree fails because paths over translations of unranked trees may change direction between
child and sibling-paths arbitrarily many times.

Theorem 4.3 (see [3]) A unary or Boolean query over unranked trees is definable in FO iff it is
definable in CTL⋆

past.

4.3 Extensions of FO and regular languages

Over strings, FO falls short of all regular languages, as it defines precisely the star-free ones. However,
using arbitrary regular expressions is often convenient in the context of navigating in XML documents.

Given a class C of regular expressions, define FO(C)∗ as an extension of FO with the rules: (i) if e is a
regular expression in C over FO(C)∗ formulae ψ(u, v), then e↓(x, y) is a formula, and (ii) e is a regular
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in C over FO(C)∗ formulae ψ(u), then e→(x) is a formula. The semantics is the same as for the case
of ETL. If formulae ψ are restricted to be Boolean combinations of atomic formulae Pa, a ∈ Σ, we
obtain the logic FO(C).

Let StarFree be the class of star-free expressions, and Reg the class of all regular expressions.

Theorem 4.4 (see [57]) a) FO(StarFree) = FO(StarFree)∗ = FO.

b) FO(Reg) ( FO(Reg)∗ ( MSO.

4.4 Conjunctive queries over unranked trees

Conjunctive queries are a very important class of database queries: they correspond to the ∃,∧-
fragment of FO. These are the same queries that can be expressed by selection, projection, and join
in relational algebra, and thus they form the core of database queries. Their complexity had been
studied extensively. In general, the complexity of evaluating a conjunctive query ϕ over a database D
is in NP, in terms of both the size of ϕ and the size of D. In fact, the problem is NP-hard, and there
has been a large body of work on classifying tractable cases (see, e.g., [39, 41]).

In the case of unranked trees, conjunctive queries are formulae of the form

ϕ(x̄) = ∃ȳ R1 ∧ . . . ∧Rk,

where each Ri is either Pa(z) or z ≺ z′, where z, z′ are variables among x̄, ȳ, and ≺ is one of ≺ch,≺
∗
ch,

≺ns, or ≺∗
ns. We write CQ(≺1, . . . ,≺m) to denote the class of conjunctive queries over unranked trees

in which only unary predicates Pa and binary predicates among ≺i can be used.

If we restrict ourselves to classes of conjunctive queries that use at most two binary predicates, then
there is a complete classification for the complexity of query evaluation on unranked trees.

Theorem 4.5 (see [38]) The maximal tractable classes of queries CQ(≺1, . . . ,≺m), where all ≺i’s are
among {≺ch,≺

∗
ch, ≺ns,≺

∗
ns}, are CQ(≺ch,≺ns,≺

∗
ns) and CQ(≺∗

ch); all others are NP-hard.

In fact, [38] provided a more general (but rather technical) criterion for checking when evaluation is
in Ptime, and that condition can be used for other relations present in a query.

Conjunctive queries can also be used to capture all FO over unranked tree, even if more than one
free variable is used, assuming path formulae of CXPath can be used as atomic predicates. More
precisely, every FO formula ϕ(x̄) over unranked trees is equivalent to a union of conjunctive queries
whose atomic predicates are β(x, x′), where β ranges over path formulae of CXPath [50].

5 Unordered trees

In unordered trees, nodes can still have arbitrarily many children, but the sibling ordering ≺ns is no
longer available. That is, we view trees as structures

T = 〈D,≺∗
ch, (Pa)a∈Σ〉,
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where D is a tree domain, ≺∗
ch is the descendant relation, and Pa’s define the labels on D. Logics

considered for unordered unranked trees typically introduce some form of counting, see [3, 24, 25, 26,
53, 60, 68, 70, 71].

A simple explanation for this comes from a modified notion of unranked tree automata and query
automata for unordered unranked trees. A counting nondeterministic unranked tree automaton is a
tuple Ac = (Q,F, δ), where, as before, Q is a set of states, and F ⊆ Q is a set of final states. Let VQ

be the set of variables {vk
q | q ∈ Q, k > 0}. Then the transition function δ maps each pair (q, a), for

q ∈ Q and a ∈ Σ, into a Boolean function over VQ. A run of A on an unordered tree T with domain
D is then a mapping ρAc

: D → Q such that if ρAc
(s) = q for a node s labeled a, then the value of

δ(q, a) is 1, where each variable vk
qi

is set to 1 if s has at least k children s′ with ρAc
(s′) = qi, and to

0 otherwise. A run is accepting if ρAc
(ε) ∈ F , and the set of unordered trees accepted by Ac (that is,

trees for which there is an accepting run) is denoted by Lu(Ac).

A counting query automaton QAc is defined as (Q,F, δ, S) where S ⊆ Q × Σ; it selects nodes s in a
run ρ where (ρAc

(s), λT (s)) ∈ S. As before, it can be given both existential and universal semantics.

The following appears not to have been stated explicitly, although it follows easily from results in
[55, 58, 70].

Theorem 5.1 a) A set of unordered unranked trees is MSO-definable iff it is of the form Lu(Ac) for
a counting nondeterministic unranked tree automaton Ac.

b) A unary query over unordered unranked trees is MSO-definable iff it is definable by a counting query
automaton QAc under either existential or universal semantics.

5.1 MSO and FO over unordered trees

Now we look at several alternative characterizations of MSO and FO over unordered unranked trees
that exploit the counting connection.

Define the counting µ-calculus Cµ (cf. [43]) as an extension of Lµ with formulae 3
≥k(E)ϕ. The

semantics of (T, s) |= 3
≥k(E)ϕ is as follows: there exist distinct elements s1, . . . , sk such that (s, si) ∈

E and (T, si) |= ϕ for every 1 ≤ i ≤ k. The next result follows from [82], as was noticed in [43]:

Theorem 5.2 Over unordered unranked trees, MSO and Cµ[≺ch] have precisely the same power with
respect to Boolean queries.

In fact, it is not hard to show that MSO can be translated into alternation-free Cµ, and thus evaluated
with complexity O(‖T‖ · ‖ϕ‖).

For first-order logic, counting extensions of both the temporal logic TLtree and CTL⋆ give us analogs
of Kamp’s and Hafer-Thomas’s theorems. We define TLtree

count as a version of TLtree in which only
modalities for the child relation are used, but in addition we have formulae Xk

chϕ, with the semantics
that (T, s) |= Xk

chϕ iff there are at least k children s′ of s such that (T, s′) |= ϕ.

We also extend CTL⋆ with counting. In this counting extension CTL⋆
count, we have new state formulae

EXk
chα, where α is a state formula, with the same semantics as above.
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Theorem 5.3 (see [53, 68]) Over unordered unranked trees, the classes of Boolean queries expressed
in FO, TLtree

count, and CTL⋆
count over binary relation ≺ch, are the same.

For unary queries, the equivalence FO = TLtree
count still holds [68], and FO can be shown to be equivalent

to an extension of CTL⋆ with both counting and the past [3, 66].

Adding counting does not increase the complexity of model-checking in temporal logics, which is
2O(‖ϕ‖) · ‖T‖, cf. [21].

Unordered fragments of XPath have also been looked at in the literature. For example, [4] showed
that the restriction of positive (no negation) Core XPath that only uses ≺ch and ≺∗

ch is equivalent to
existential positive FO formulae over the vocabulary that includes both ≺ch and ≺∗

ch.

5.2 Extensions and more powerful counting

Consider now a scenario in which we deal with unordered trees, but in our formulae we can refer to
some arbitrary ordering on siblings: after all, in any encoding of a tree, siblings will come in some
order. Of course we do not want any particular order to affect the truth value, so we want our formulae,
even if they use an ordering, to be independent of a particular ordering that was used.

This is the standard setting of order-invariance, a very important concept in finite model theory,
cf. [47]. We say that an MSO sentence ϕ over vocabulary including ≺∗

ch and ≺∗
ns is ≺ns-invariant if for

any unordered tree T and any two expansions T≺1
ns and T≺2

ns with sibling-orderings ≺1
ns and ≺2

ns we
have T≺1

ns |= ϕ⇔ T≺2
ns |= ϕ. Any ≺ns-invariant sentence defines a Boolean query on unordered trees.

We now define MSOmod [24] as an extension of MSO with modulo quantifiers: for each set variable X,
and k > 1, we have set new formulae Qk(X) which are true iff the cardinality of X is congruent to 0
modulo k.

Theorem 5.4 (see [25]) Over unordered unranked trees, ≺ns-invariant Boolean queries are precisely
the Boolean queries definable in MSOmod.

Further extensions in terms of arithmetic power have been considered [70, 71]. Recall that Presburger
arithmetic refers to the FO theory of the structure 〈N,+〉, and it is known that this structure admits
quantifier elimination in the vocabulary (+, <, 0, 1, (∼k)k∈N) where n ∼k m iff n − m = 0(mod k).
We next define Presburger MSO, called PMSO, as an extension of MSO over unordered trees with
the following rule: if ϕ(x̄, y, X̄) is a PMSO formula and α(v̄) a Presburger arithmetic formula with
|X̄ | = |v̄| = n, then [ϕ/α](x̄, y, X̄) is a PMSO formula. Given valuation s̄, s0, S̄ for free variables, with
S̄ = (S1, . . . , Sn), let mi be the number of children of s0 that belong to Si, that is, the cardinality of
the set {s′ | s0 ≺ch s

′ and s′ ∈ Si}. Then [ϕ/α](s̄, s0, S̄) is true iff α(m1, . . . ,mn) is true.

It is easy to see that MSO ( MSOmod ( PMSO over unordered trees. Still, PMSO is captured by a
decidable automaton model.

Define Presburger unordered tree automata just as counting automata except that δ maps pairs from
Q×Σ into Presburger formulae over vq, for q ∈ Q. We interpret vq as the number of children in state
q, and a transition is enabled if the corresponding Presburger formula is true in this interpretation.
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That is, in a run ρ of such an automaton, if ρ(s) = q, the label of s is a and δ(q, a) = χ(vq1
, . . . , vqm

),
then χ(n1, . . . , nm) is true, where ni is the number of children s′ of s such that ρ(s′) = qi.

Theorem 5.5 (see [70]) Presburger unordered tree automata and PMSO are equivalent. Furthermore,
both emptiness and universality are decidable for Presburger unordered tree automata.

Further extensions with counting have been considered for fixed-point logics [71] and the µ-calculus
with modulo-quantifiers [3].

5.3 Edge-labeled unordered trees

While in the early days of tree-based data models there was some debate as to whether labels should
be on edges or nodes, the arrival of XML seems to have settled that dispute. Nonetheless, there are
several areas where edge-labeled trees play a prominent and role, and traditionally logical formalisms
have been designed for such data. First, there are logics for feature trees, which are a special case of
feature structures used extensively in computational linguistics [20]. Second, in recent work on spatial
logics, used for describing networks and mobile agents [18], one looks at modal logics over unordered
edge-labeled trees.

In the setting of feature trees, one has an infinite set of features F , and in an unordered unranked
tree every edge is labeled by an element f ∈ F such that each node s has at most one outgoing edge
labeled f for each f ∈ F . Furthermore, nodes may be labeled by elements of some alphabet Σ, as
before. It is thus natural to model feature trees as structures 〈D, (Ef )f∈F , (Pa)a∈Σ〉 such that the
union of all Ef ’s forms the child relation of a tree, and no node has two outgoing Ef -edges.

In the context of computational linguistics, one commonly used logic for feature trees [7] is the propo-
sitional modal logic that, in the context of feature structures (not necessarily trees), is also often
supplemented with path-equivalence, stating that from a certain node, one can reach another node
following two different paths. This is the setting of the Kasper-Rounds logic [67]. Over trees, however,
path-equivalence is the same as equality of paths. An more powerful logic proposed in [45] combined
the Kasper-Rounds logic with the propositional dynamic logic. Its formulae are defined by

ϕ,ϕ′ := a, a ∈ Σ | ϕ ∨ ϕ′ | ¬ϕ | 3(e)ϕ | e ≈ e′,

where e, e′ are regular expressions over F . Formulae are evaluated in nodes of a feature tree T . We
have (T, s0) |= 3(e)ϕ if there is a path (s0, s1) ∈ Ef0

, (s1, s2) ∈ Ef1
, . . . , (sn−1, sn) ∈ Efn−1

such that
(T, sn) |= ϕ and f0f1 . . . fn−1 is a word in the language denoted by e. Furthermore, (T, s) |= e ≈ e′

if there is a node s′ that can be reached from s by a word in e as well as a word in e′. This
semantics is normally considered over graphs, but over trees this is equivalent to saying that there is
a node reachable by an expression in the language denoted by e ∩ e′. That is, e ≈ e′ is equivalent to
3(e ∩ e′)true, and thus the Kasper-Rounds logic is effectively a reachability logic over trees.

The reader is referred to [45] for computational linguistics applications of this logic. In terms of
expressiveness it is clearly contained in MSO, and if all expressions e, e′ are star-free, then in FO as
well, as long as we have the descendant relation.
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Automata for feature trees, based on the algebraic approach to recognizability [24], were considered
in [60] (which also showed that over flat feature trees the automaton model coincides with a simple
counting logic).

5.4 An ambient logic for trees

Ambient logics are modal logics for trees that have been proposed in the context of mobile computation
[18] and later adapted for tree-represented data [16, 17]. One views trees as edge-labeled and defines
them by the grammar

T, T ′ := Λ | T |T ′ | a[T ], a ∈ Σ,

with the equivalences that | is commutative and associative, and that T |Λ ≡ T . Here Λ is the empty
tree, | is the parallel composition, and a[T ] adds an a-labeled edge on top of T . If we extend ≡ to
a congruence in the natural way, then every tree is equivalent to one of the form a1[T1]| . . . |am[Tm],
which is viewed as a tree whose root has m outgoing edges labeled a1, . . . , am, with subtrees rooted
at its children being T1, . . . , Tm.

There were several similar logics proposed in [15, 16, 17, 18, 26]. Here we consider the logic from [15]
whose formulae are given by

ϕ,ϕ′ := ⊥ | Λ | ϕ ∧ ϕ′ | ¬ϕ | ϕ|ϕ′ | ϕ ⊲ ϕ′ | a[ϕ] | ϕ@a, a ∈ Σ.

The semantics is as follows:

• ⊥ is false;

• Λ is only true in a tree equivalent to Λ;

• T |= ϕ1|ϕ2 iff T ≡ T1|T2 with Ti |= ϕi, i = 1, 2;

• T |= ϕ ⊲ ϕ′ if for every T ′ with T ′ |= ϕ we have T |T ′ |= ϕ′;

• T |= a[ϕ] iff T ≡ a[T ′] with T ′ |= ϕ;

• T |= ϕ@a iff a[T ] |= ϕ.

Variations appear in the literature, e.g. with the Kleene star in [26] and recursion in [17].

The study of ambient logics for trees took a very different path compared to other logics seen in this
survey; in particular, the focus was on type systems for tree languages and thus on proof systems for
logics, rather than model-checking, its complexity, automata models, and comparison with other logics.
Several lines of work closely resemble those for node-labeled trees: e.g., [26] introduced Presburger
conditions on children, defined an automaton model, and proved decidability, similarly to [70, 71].

However, the ambient logic does not take us outside of the MSO expressiveness: this can be seen by
going from edge-labeled trees to node-labeled ones. The translation is simple: the label of each edge
(x, y) becomes the label of y. The root will have a special label Root that cannot occur as a label of
any other node. The only modification in the logic is that now we have formulae Λa for a ∈ Σ, which
are true in a singleton-tree labeled a. The resulting logic is easily translated into MSO. For example,
ϕ|ϕ′ states that the children of the root can be partitioned into two sets, X and X ′, such that the
subtree that contains all the X-children satisfies ϕ and the subtree that contains all the X ′-children
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satisfies ϕ′. For ϕ ⊲ ϕ′, one can consider ¬(ϕ ⊲ ϕ′) saying that there exists a tree T ′ such that T ′ |= ϕ
and T |T ′ |= ¬ϕ′, and use nondeterministic counting automata to guess this tree T ′.

Since moving labels from edges to nodes and back can be defined in MSO, we see that the ambient
logic is embedded into MSO. However, to the best of the author’s knowledge, this direction has never
been seriously pursued, and the exact relationship between ambient logics and other logics described
in this survey is still not well understood.

6 Automatic structures

In this section we look at a different kind of logics for unranked trees, using the standard approach
of model theory. So far we represented each tree as a structure and looked at definability over that
structure. Now we want to consider structures whose universe is the set of all trees. Definability over
such structures allows us to describe sets of trees and, more generally, relations over trees. Choosing
the right operations on trees, we shall find structures where definable sets are precisely the regular
languages. Such structures are very convenient for proving that certain properties of trees are regular,
as it is sometimes easier to define properties logically than construct automata for them.

Let Tree(Σ) be the set of all Σ-labeled unranked trees. We consider structures of the form M =
〈Tree(Σ),Ω〉 where Ω is a set of relation, constant, and function symbols, interpreted over Tree(Σ).

Let Defn(M) be the family of n-dimensional definable sets over M: that is, sets of the form

{T̄ ∈ Tree(Σ)n | M |= ϕ(T̄ )},

where ϕ(x1, . . . , xn) is a first-order formula in the vocabulary Ω. We shall be looking at structures M

so that definable sets would be relations definable in MSO or other logics. In particular, such relations
will be given by automata, and thus structures M of this kind are called automatic structures.

6.1 Automatic structures on strings

Before we move to trees, we first survey automatic structures over strings, cf. [8, 5]. In this case we
consider structures of the form 〈Σ∗,Ω〉. Our first example has the following relations in Ω:

• ≺ is a binary relation; s ≺ s′ is true iff s is a prefix of s′;

• La, a ∈ Σ, is a unary relation; La(s) is true iff the last symbol of s is a;

• el is a binary relation; el(s, s′) is true iff |s| = |s′|.

Let Suniv be the structure 〈Σ∗,≺, (La)a∈Σ, el〉. Then Suniv is the universal automatic structure: that
is, relations Defn(Suniv) are precisely the regular relations. (Following a standard definition – see, e.g.,
[33] – we say that a relation S ⊆ (Σ∗)n is regular iff there is an automaton A over alphabet (Σ∪{#})n

that accepts precisely the strings [s̄], for s̄ = (s1, . . . , sn) ∈ S. The length of [s̄] is maxi |si|, and the
jth symbol of [s̄] is a tuple (σ1, . . . , σn), where σi is the jth symbol of si if |si| ≤ j, and # otherwise.)
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Thus, Def1(Suniv) contains exactly the regular languages over Σ. Furthermore, the conversion of
formulae over Suniv to automata is effective [8] and the theory of Suniv is decidable. In fact the theory
of every structure that is interpretable in Suniv is thus decidable.

As an example, consider the structure 〈Q, <〉. Since it is isomorphic to 〈{0, 1}∗1, <lex〉, where <lex is
the lexicographic ordering (which is easily definable in Suniv), we obtain the well-known decidability
of 〈Q, <〉.

A restriction of Suniv that does not have the equal length predicate, that is, S = 〈Σ∗,≺, (La)a∈Σ〉 is
known to be strictly weaker that Suniv in every dimension: in particular, el is not in Def2(S), and
Def1(S) is precisely the class of star-free languages [5].

Notice that both the empty string ε and functions ga(s) = s · a are definable in S, and hence another
well-known theory interpretable in S and Suniv is that of unary term algebras. However, it is known
that for binary term algebras, adding relations like ≺ results in undecidable theories [54, 81]. In par-
ticular, if we want to keep an analog of the ≺-relation (which is MSO-definable), we cannot introduce
an operation like the | operation in the ambient logic, and still have a decidable theory.

6.2 Automatic structures on trees

To get structures over Tree(Σ) that define regular languages and relations2, we find natural analogs
of ≺, La, and el for trees. For two trees T1 and T2 with domains D1 and D2, we say that T2 is an
extension of T1, written T1 � T2, if D1 ⊆ D2, and the labeling function of T2 agrees with the labeling
function of T1 on D1. It will actually be more convenient to work with two extension relations:

Extension on the right �→ : For T1 �→ T2, we require that every s ∈ D2−D1 be of the form s′ · i
when s′ · j ∈ D1 for some j < i.

Extension down �↓ : For T1 �↓ T2, we require that every s ∈ D2 −D1 have a prefix s′ which is a
leaf of T1.

Clearly T1 � T2 iff there is T ′ such that T1 �→ T ′ and T ′ �↓ T2, so in terms of definability we do not
lose anything by using �→ and �↓ instead of �.

We define La to be true in a tree T if the rightmost node is labeled a. That is, the node s ∈ D
which is the largest with respect to <lex is labeled a. For the analog of el, recall that representation of
strings as first-order structures, the domain is an initial segment of N, corresponding to the length of
the string. Hence, el(s1, s2) means that if strings are represented as structures, their domains are the
same. We thus introduce a predicate ≈dom such that T1 ≈dom T2 iff D1 = D2 (there Di is the domain
of Ti).

Now we define analogs of Suniv and S:

Tuniv = 〈Tree(Σ), �→, �↓, (La)a∈Σ, ≈dom〉
T = 〈Tree(Σ), �→, �↓, (La)a∈Σ〉

2The notion of regular relations for trees is obtained in the same way as for strings
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Theorem 6.1 (see [48]) a) For every n ≥ 1, Defn(Tuniv) is precisely the class of regular n-ary relations
over Tree(Σ).

b) Def1(T) = Def1(Tuniv) is the class of regular unranked tree languages, but for every n > 1, Defn(T) (

Defn(Tuniv).

Notice the difference with the string case, where removing el (domain equality) resulting in a smaller
class of one-dimensional definable sets: star-free languages. On the other hand, even over binary trees,
the notions of star-free and regular coincide [64].

Working with Tuniv makes it easy to write rather complicated properties of tree languages, and then
Theorem 6.1 implies that those languages are regular. For example, if X ⊆ Tree(Σ) is regular, then
the set of trees T such that all their extensions can be extended on the right to a tree in X is regular.
Indeed, this is defined as ϕ(T ) = ∀T ′

(

T � T ′ → ∃T ′′(T ′ �→ T ′′ ∧ αX(T ′′))
)

, where αX defines X
(by Theorem 6.1, we know such αX exists). Then Theorem 6.1 again tells us that ϕ defines a regular
language. Furthermore, the conversions from formulae to automata are effective for both T and Tuniv,
which implies decidability of their theories.

Other logics over unranked trees can be naturally represented over these structures. Consider, for
example, a restriction of first-order logic over T or Tuniv in which all quantification is over branches.
A branch is a tree T such that the set {T ′ | T ′ � T} is linearly ordered by �. Let Def

η
1 be the class

of sets of trees (equivalently, Boolean queries over trees) definable in this restriction.

Proposition 6.2 (see [48]) Def
η
1(T) is precisely the class of FO-definable Boolean queries over un-

ranked trees, and Def
η
1(Tuniv) is the class of Boolean queries definable in a restriction of MSO in which

quantification is allowed only over sets linearly ordered by ≺∗
ch or by ≺∗

ns.

For more results of this type, see [48].

6.3 A different view of unranked trees

We conclude by presenting a different view of unranked trees and a different structure for them that
makes it easy to talk about about their extensions in which new children may be inserted between
existing ones. For example, if we have a tree T with domain D = {ε, 0, 1}, and we want to add more
children of the root, they would have to be added on the right, e.g, we may have an extension with
domain {ε, 0, 1, 2, 3}. But what if we want to add a child on the left of 0, and two children between 1
and 2? Intuitively, we need a new tree domain {ε,−1, 0, 1

3 ,
2
3 , 1} then. We now capture this situation

and present a different automatic structure that makes it easy to derive that certain relations on trees
are regular.

A rational unranked tree domain is a finite prefix-closed subset of Q∗. Relation ≺∗
ch is defined for

rational domains just as before, and relation ≺∗
ns is now given by s · r ≺∗

ns s · r
′ iff r ≤ r′. Then

an unranked tree T over a rational unranked tree domain is, as before, a structure T = 〈D,≺∗
ch,≺

∗
ns

, (Pa)a∈Σ〉.

Let TreeQ(Σ) be the set of all unranked trees with rational unranked tree domains. Note that different

23



trees in TreeQ(Σ) may be isomorphic; we denote this isomorphism relation by ∼=. There is a natural
one-to-one correspondence between TreeQ(Σ)/ ∼= and Tree(Σ).

We define the extension relation � over trees in TreeQ(Σ) as before. A branch, again, is a tree
T ∈ TreeQ(Σ) such that the set {T ′ | T ′ � T} is linearly ordered by �. It follows from the definition
of rational unranked tree domains that the domain of a branch consists of all the prefixes of some
string s ∈ Q∗; i.e., it is completely determined by s, which is its unique leaf. Let La(T ) be true iff T
is a branch whose leaf is labeled a, and let T1 <lex T2 be true iff T1 and T2 are branches with leaves
s1 and s2, and s1 <lex s2. We then define the structure

T
Q
univ = 〈TreeQ(Σ), �, <lex, ≈dom, (La)a∈Σ〉.

In this structure it is much easier to reason about tree extensions that allow one to insert nodes
between existing ones, and not only on the right or under the leaves. But what about definable sets
and relations over T

Q
univ? It turns out that they are all regular. More precisely, we can interpret

T
Q
univ in Tuniv: that is, find a set X ∈ Def1(Tuniv), binary relations R1, R2, R3 ∈ Def2(Tuniv) and sets

Ya ∈ Def1(Tuniv), a ∈ Σ, such that 〈X,R1, R2, R3, (Ya)a∈Σ〉 is isomorphic to T
Q
univ. That is, we have:

Proposition 6.3 The structure T
Q
univ is interpretable in Tuniv. Furthermore, there is a definable

subset of the image of TreeQ(Σ) that contains exactly one representative of each ∼=-equivalence class.

That is, under the mapping ι : TreeQ(Σ)/ ∼=→ Tree(Σ), definable sets and relations over T
Q
univ

become precisely the regular tree languages (and relations). Hence, expressing properties of unranked
trees in first-order logic over T

Q
univ allows us to conclude easily that certain tree languages are regular,

and thus MSO-definable.

7 Other directions and conclusions

We present here a somewhat random sample of other directions that work on logics for unranked
trees has taken or may take in the future. We concentrate on streaming applications, and then briefly
describe other directions.

Streaming XML documents A typical XML document is a sequence of matching opening and
closing tags, with some data between then. For example, the sequence of opening and closing tags
corresponding to a tree is shown in Figure 6. Thus, an XML tree naturally has a string representation.
For example, for the tree in Figure 6, such a representation is

abaācc̄bb̄b̄abb̄cc̄āā,

where we use a label, say a, for the opening tag <a>, and ā for the closing tag </a>. More generally,
for an ordered unranked tree T we define inductively its string representation str(T ):

• if T is a single node labeled a, then str(T ) = aā

24



a

b

c b

a

b ca

<a>

<b>

<a></a>

<c></c>

<b></b>

</b>

<a>

<b></b>

<c></c>

</a>

</a>

Figure 6: An XML document as a tree and as a sequence of tags

• if T has a root labeled a, with n children s0 ≺ns . . . ≺ns sn−1, such that Ti is the subtree rooted
at si, i < n, then str(T ) = a str(T0) . . . str(Tn−1) ā.

If an XML document T is transmitted as a stream, then the object we work with is precisely str(T ).
Furthermore, we may not have the whole string str(T ) available, or may need to compute some of its
properties without looking at the whole string (for instance, a device receiving the stream may have
memory limitations and cannot store the entire stream). One possible model for this scenario was
proposed in [69]: in this model, one processes the stream str(T ) by using a finite string automaton.
It is natural to ask then what kinds of properties of trees can be recognized by finite automata that
run on their streamed representations. More precisely, one is interested in tree languages of the form

Lstr
A = {T | str(T ) is accepted by A},

where A is a string automaton.

This question has been primarily addressed in the context of DTD validation. Namely, given a DTD
d, is it possible to find an automaton Ad such that

Lstr
Ad

= Sat(d)?

In general, the answer is negative, as was shown in [69]. We now sketch a very simple proof of this.
Consider the following DTD d1:

a→ ab | ca | ε, b→ ε, c→ ε.

Suppose Sat(d1) = Lstr
A for some A. The regular language given by A is definable in MSO, say by a

sentence of quantifier rank r. Choose numbers n and k so that an and an+k cannot be distinguished
by MSO sentences of quantifier rank r, and consider two strings:

s1 = an (acc̄)n aā ān (bb̄ā)n

s2 = an+k (acc̄)n aā ān+k (bb̄ā)n
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which in turn (by a standard composition argument) cannot be distinguished by A. One clearly has
s1 = str(T1) for some T1 ∈ Sat(d1), and s2 = str(T2) for a tree T2 ∈ Sat(d2) − Sat(d1), where d2 is

a→ a | ab | ca | ε, b→ ε, c→ ε,

which contradicts the assumption Sat(d1) = Lstr
A .

While [69] provides many results on streamed validation of DTDs, the problem of characterizing
DTDs that can be checked by finite automata over streamed representations remains open. Such a
characterization can be found for MSO-definable properties as follows. Given an MSO sentence ϕ over
ordered unranked trees, we say that ϕ is streamable if {T | T |= ϕ} is of the form Lstr

A for some finite
string automaton A.

Let s be a node in a tree T ; define rma(s) (the right-most ancestor) to be the smallest prefix of s
such that each node s′ with rma(s) ≺ s′ � s is the largest in the ≺∗

ns ordering. This naturally defines
a string of labels, by collecting all labels of nodes between rma(s) and s. We denote this string by
rms(s). Finally, for each regular language L over strings, we write U rms

L (s) iff rms(s) ∈ L.

The following is due to Segoufin and the author.

Proposition 7.1 An MSO sentence ϕ over ordered unranked trees is streamable iff it is expressible in
MSO over the vocabulary that includes ≺fc, (Pa)a∈Σ, and U rms

L , where L ranges over regular languages.

However, the decidability of checking whether an MSO sentence belongs to the fragment of Proposition
7.1 remains open.

We now move to other future directions/open questions.

1. While we have a number of logics that provide a declarative approach to expressing properties
of trees and yet match (or are close to) the complexity of the procedural automata formalism, it
is not really understood what causes certain logics to have such a nice behavior. There must be
some intrinsic properties of logics that lead to good model-checking algorithms (in a way similar
to, say, finite- or tree-model properties being an explanation for decidability).

2. Closely related to the first item is the issue of succinctness of logics, measured as the size of
formulae needed to express certain properties. Initial investigation on the issue of succinctness
for logics on ranked trees was done in [40] and some logics have been shown to be much more
succinct than others, but more needs to be done. In view of the standard translation between
ranked and unranked trees, it is likely that results for binary trees will be sufficient.

3. The connection between FO, MSO, temporal logics and logics used in the programming languages
and computational linguistics communities must be understood. The focus was quite different,
as we mentioned earlier: for example, many questions about the complexity and expressiveness
of ambient logics are unresolved. Some very recent results in this direction are reported in [9].

4. XML trees in addition to labels have data values associated with some nodes (typically attribute
values or PCDATA values). Adding values from a potentially infinite set and just equality over
them immediately leads to undecidable formalisms. This is observed, in particular, in the study
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of XML constraints. Some typically considered constraints include keys and foreign keys, that
arise naturally when relational data is converted into XML. Keys say that a certain sequence of
attributes identifies a node uniquely. A key is unary if it consists of one attribute (for example,
a unique id would be a unary key, while a pair (firstname,lastname) can be a key consisting of
two attributes). A foreign key states that a sequence of attributes of each node labeled by a1

should also occur as a sequence of attributes of some other node labeled a2.

XML specifications may consist of DTDs together with constraints. However, their interaction
could be quite complicated. In fact, [30] showed that it is undecidable whether a specification
that consists of a DTD and a set of keys and foreign keys is consistent. However, if all keys and
foreign keys are unary, then consistency checking is NP-complete.

It would be nice to find a purely logical explanation for this type of results. Decidability restric-
tions studied in [59, 12] are very weak for this purpose. However, a very recent line of results
shows much more promise. Consider finite strings in which positions can carry data values.
Assume that we can test them for equality, that is, we have a binary relation ∼ that is true if
two positions in a string have the same data values. Then FO2 over strings with the ∼ relation
is decidable [10]. Here FO2 refers to FO with two variables. Notice that for expressing unary
constraints two variables suffice. Perhaps extensions to trees will provide additional insight into
logical formalisms for unranked trees with data values.
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[63] C. Pair and A. Quere. Définition et etude des bilangages réguliers. Information and Control,
13(6):565–593, 1968.

30



[64] A. Potthoff, W. Thomas. Regular tree languages without unary symbols are star-free. In Funda-
mentals of Computation Theory 1993, pages 396–405.

[65] M. Rabin. Decidability of second-order theories and automata on infinite trees. Trans. Amer.
Math. Soc. 141 (1969), 1–35.

[66] A. Rabinovich. Expressive power of temporal logics. In Int. Conf. on Concurrency Theory 2002,
pages 57–75.

[67] W. C. Rounds, R. Kasper. A logical semantics for feature structures. In 24th Annual Meeting of
the Assoc. for Computational Linguistics, 1986, pages 257–266.

[68] B.-H. Schlingloff. Expressive completeness of temporal logic of trees. Journal of Applied Non-
Classical Logics 2 (1992), 157–180.

[69] L. Segoufin, V. Vianu. Validating streaming XML documents. In ACM Symp. on Principles of
Database Systems 2002, pages 53–64.

[70] H. Seidl, Th. Schwentick, A. Muscholl. Numerical document queries. In ACM Symp. on Principles
of Database Systems 2003, pages 155–166.

[71] H. Seidl, Th. Schwentick, A. Muscholl, P. Habermehl. Counting in trees for free. In Int. Colloq.
on Automata, Languages, and Programming 2004, pages 1136–1149.

[72] G. Smolka. Feature-constraint logics for unification grammars. J. Log. Progr. 12 (1992), 51–87.

[73] L. Stockmeyer and A. Meyer. Cosmological lower bound on the circuit complexity of a small
problem in logic. Journal of the ACM, 49 (2002), 753–784.

[74] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, 1994.
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