
Regular Languages of Nested Words: Fixed Points,
Automata, and Synchronization

Marcelo Arenas1 Pablo Barceló2 Leonid Libkin3

1 Pontificia Universidad Católica de Chile
2 Universidad de Chile

3 University of Edinburgh

Abstract. Nested words are a restriction of the class of visibly pushdown lan-
guages that provide a natural model of runs of programs with recursive procedure
calls. The usual connection between monadic second-order logic (MSO) and au-
tomata extends from words to nested words and gives us a natural notion of reg-
ular languages of nested words.
In this paper we look at some well-known aspects of regular languages – their
characterization via fixed points, deterministic and alternating automata for them,
and synchronization for defining regular relations – and extend them to nested
words. We show that mu-calculus is as expressive as MSO over finite and infinite
nested words, and the equivalence holds, more generally, for mu-calculus with
past modalities evaluated in arbitrary positions in a word, not only in the first
position. We introduce the notion of alternating automata for nested words, show
that they are as expressive as the usual automata, and also prove that Muller au-
tomata can be determinized (unlike in the case of visibly pushdown languages).
Finally we look at synchronization over nested words. We show that the usual
letter-to-letter synchronization is completely incompatible with nested words (in
the sense that even the weakest form of it leads to an undecidable formalism) and
present an alternative form of synchronization that gives us decidable notions of
regular relations.

1 Introduction

The class of visibly pushdown languages (VPL) has been been introduced by Alur and
Madhusudan [5] as a restriction of the class of context-free languages that subsumes all
regular properties and some non-regular properties relevant in program analysis (e.g.
stack-inspection properties and pre-post conditions). VPLs in many ways resemble reg-
ular languages: they have the same closure properties, and most natural problems re-
lated to them are decidable. The intuitive idea of VPLs is that the input alphabet Σ is
partitioned into three parts, Σc, Σr, Σi, of symbols viewed as procedure calls, returns,
and internal operations. A machine model for VPLs is a special pushdown automaton
that pushes a symbol onto the stack in a call, pops one symbol in a return, and does not
touch the stack when reading an internal symbol.

Nested words [6] replaced the implicit nesting structure of calls and returns by an
explicit relation that matches calls and returns. A nested word is thus a word extended
with a hierarchical structure on top of its linear structure. An example of such a nested
structure of matching calls ci and returns ri is given below.

r1c1 c2 c3 r3 c4 r4 r2 c5 c6 r6 r5 c7 r7

Such structures naturally appear, for instance, in XML documents that are string
representations of trees using opening and closing tags [23, 8], or in software verifi-
cation of programs with stack-based control flow [4, 2]. A nested word automaton [6]
runs from left to right, similarly to a finite state automaton, but each time it encounters
a “return” position, the next state depends not only on the current state but also on the
state of the matching “call”.

A nice property of nested words and their automata is that they share logical char-
acterizations with the usual (unnested) words: the automaton model has the same ex-
pressiveness as monadic second-order logic (MSO) [5, 6]. This gives us a natural and
robust notion of regular languages of nested words, with the expected closure proper-
ties, decision procedures, and logical characterizations.

For finite or infinite unnested words, an alternative way of describing regularity
logically is via the modal μ-calculus (cf. [7]). That is, μ-calculus formulae evaluated in
the first position of a word define precisely the regular languages. Moreover, μ-calculus
formulaewith past modalities evaluated in an arbitrary position of a word have precisely
the power of MSO formulae with one free variable. As our first result, we extend these
equivalences to the case of finite and infinite nested words.

We then look at automata characterizations of VPLs and nested words. Nondeter-
ministic and deterministic automata have previously been considered [5, 6, 18], and [5]
showed that automata can be determinized in the finite case, but in the infinite case this
is impossible even for automata with a Muller acceptance condition (unlike in the case
of the usual ω-words), if one considers VPLs. Then [18] introduced a different automa-
ton model and showed that it admits a determinization procedure over nested words.
We expand this in two ways. First we introduce alternation in the case of nested word
automata, and prove that alternating automata can still be translated into nondetermin-
istic ones. Second, we then refine the determinization procedure for automata from [18]
to show that over infinite nested words, every regular language is definable by a deter-
ministic Muller automaton. This also gives us some corollaries about the structure of
regular languages of nested ω-words.

We finally turn our attention to the notion of regular relations. Over words, one
moves from sets to relations by using letter-to-letter synchronization. That is, an au-
tomaton runs over a tuple of words viewing the tuple of ith letters of the words as a
single letter of an expanded alphabet [15]. The same approach works for trees, ranked
and unranked [11]. The notion of regular relations also leads to a notion of automatic
structures [12, 13, 10], i.e. decidable first-order structures over words in which all de-
finable relations are regular.

Here we show that, in contrast to the case of words and trees, the notion of letter-
to-letter synchronization is incompatible with nested words: the simplest extension of
nested word automata with such synchronization is undecidable. We present an alterna-
tive call-return notion of synchronization, and show that it gives us a natural concept of
regular relations over nested words.

RelatedworkVPLs were introduced in [5] and nested words in [6]. They can be viewed
as special classes of trees (and we shall use this often in the paper); such tree representa-
tions were introduced in [5, 6] as well. Applications in program analysis are discussed,
e.g., in [2, 4], and applications in processing tree-structured data in [23, 8].

There are several related results on μ-calculus and MSO, e.g. their equality over
infinite binary trees [20] or finite unranked trees [9] or expressive-completeness of μ-
calculus [16]. We explain in Section 3 why we cannot derive our result from those.
Another fixed-point logic VPμ is defined in [2] to specify properties of executions of
programs. It differs from the standard versions of μ-calculus we look at as its fixed
points are evaluated not over sets of nodes but over sets of subtrees of the program;
further, its expressiveness is known to be different from MSO [3].

Automata for VPLs and nested words were defined in [5, 6], and [5] observed that
Muller automata are not determinizable. Then [18] noticed that this is due to VPLs
having potentially arbitrarily many unmatched calls/returns, and introduced a different
automaton model (stair automata) that can be determinized. We use them to show how
to determinize Muller automata over nested ω-words. None of these papers addresses
alternating automata over nested words.

Letter-to-letter synchronization for defining regular relations is an old notion [15],
and the concept of universal automatic structures [13, 12] is based on it. Although such
automatic structures exist for both words and trees [10, 11], we show here that letter-to-
letter synchronization is incompatible with nesting structure.

OrganizationBasic definitions are given in Section 2. We describe MSO unary queries
via μ-calculus in Section 3. In Section 4 we study automata for nested words, define
alternating automata, and describe determinization for Muller automata. In Section 5
we look at synchronization and regular relations for nested words.

2 Preliminaries

Words, ω-words, and automata Let Σ be a finite alphabet. A finite word w =
a1 . . . an in Σ∗ is represented as a logical structure 〈 {1, . . . , n} , (Pa)a∈Σ , < 〉, where
< is the usual linear order on {1, . . . , n}, and Pa is the set of i’s such that ai = a. We
shall use w to refer to both the word and its logical representation. Infinite, or ω-words,
are sequences a1a2 · · · of symbols in Σ indexed by positive natural numbers, and are
represented as structures 〈N+, (Pa)a∈Σ , <〉. The length of w is denoted by |w|.

A (nondeterministic) automaton A over Σ is a tuple (Σ,Q,Q0, δ, F), where Q is
a finite set of states, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of final states
and δ : Q × Σ → 2Q is a transition function. For automata over ω-words we shall
use either a Büchi acceptance condition (given by F ⊆ Q) or a Muller acceptance
condition (given by F ⊆ 2Q). A run of A over a word w is a map ρ : {1, . . .} → Q
such that ρ(1) ∈ Q0 and ρ(i + 1) ∈ δ(ρ(i), ai), for all i. A finite run is accepting if
ρ(|w| + 1) ∈ F . We let Inf (ρ) be the set of states that occurs infinitely often in an
infinite run ρ. Then ρ is accepting for a Büchi condition F if Inf (ρ) ∩ F �= ∅, and it is
accepting for a Muller condition F if Inf (ρ) ∈ F . A word is accepted iff there exists
an accepting run. Sets of (ω-)words accepted by automata are called regular.

A is deterministic if |Q0| = 1, and |δ(q, a)| = 1 for for every a ∈ Σ and q ∈ Q.
Nondeterministic automata over ω-words with Büchi and Muller conditions are equiv-
alent, and automata with Muller acceptance condition can be determinized, cf. [25].

Nested words A finite nested word over Σ is a pair w̄ = (w, η), where w ∈ Σ∗

and η is a binary matching relation on {1, . . . , |w|} that satisfies: (1) η(i, j) implies
i < j; (2) η(i, j) and η(i, j′) imply j = j′ and η(i, j) and η(i′, j) imply i = i′; and
(3) if η(i, j), η(i′, j′), and i < i′ then either j < i′ or j′ < j. A nested ω-word is
a pair w̄ = (w, η), where w is an ω-word and η is a matching on N

+. We also refer
to them as infinite nested words. We represent nested words as logical structures over
the vocabulary {(Pa)a∈Σ , <, η}, i.e. words expanded with a matching relation. For a
nested word w̄ and two positions i < j, we let w̄[i, j] be the substructure of w̄ induced
by positions � such that i ≤ � ≤ j. A position i of a nested word w̄ is: (1) a call position
if there is j such that η(i, j) holds; (2) a return position if there is j such that η(j, i)
holds; and (3) an internal position if it is neither a call nor a return. Whenever η(i, j)
holds we say that i is the call of j, and j is the return of i.

Nested word automata A nested word automaton, or NWA [6], A over Σ is defined
as a usual automaton, except that δ is a triple (δc, δι, δr) of transition functions δc, δι :
Q × Σ → 2Q, and δr : Q × Q × Σ → 2Q. A run of A over w̄ = (a1 · · · , η) is a
mapping ρ : {1, . . .} → Q such that ρ(1) ∈ Q0 and for every i ∈ N

+ (or i ∈ [1, |w̄|]
for finite nested words),

– if i is a call position, then ρ(i+ 1) ∈ δc(ρ(i), ai);
– if i is an internal position, then ρ(i+ 1) ∈ δι(ρ(i), ai);
– if i is a return position whose call is j, then ρ(i+ 1) ∈ δr(ρ(i), ρ(j), ai).

Büchi and Muller acceptance conditions can then be defined in exactly the same way
as for the usual automata (and are easily shown to be equivalent over nested words,
for nondeterministic automata). We refer to such automata as ω-NWAs. An NWA is
deterministic if the values of all transition functions are singletons.

A class of nested (ω-)words accepted by an (ω-)NWA is called regular.

Monadic second-order logic and μ-calculus Monadic second-order logic(MSO) ex-
tends first-order logic with quantification over sets. Over nested words, its vocabulary
contains predicates Pa (a ∈ Σ),< and η. A class of nested (ω-)words is regular iff it is
definable by an MSO sentence [5, 6].

The μ-calculus over nested words, denoted by Lμ, is defined by the grammar:

ϕ,ϕ′ := a | X | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | ¬ϕ | �ϕ | �ηϕ | μX.ϕ(X)

with X occurring positively in ϕ(X), and a ∈ Σ ∪ {call, int, ret}. Given a nested
(ω-)word w̄, a position i in w̄, and a valuation v assigning each free variableX a set of
positions of w̄, the semantics is as follows (omitting the rules for Boolean connectives):

– (w̄, v, i) |= int iff i is an internal position; (w̄, v, i) |= call iff i is a call position;
and (w̄, v, i) |= ret iff i is a return position.

– (w̄, v, i) |= a, for a ∈ Σ, iff i is labeled a.
– (w̄, v, i) |= X iff i ∈ v(X).
– (w̄, v, i) |= �ϕ iff i+ 1 belongs to w̄ and (w̄, v, i+ 1) |= ϕ.

– (w̄, v, i) |= �ηϕ iff there is an � such that η(i, �) holds and (w̄, v, �) |= ϕ.
– (w̄, v, i) |= μX.ϕ(X) iff i is in the least fixed point of the operator defined by ϕ;
in other words, if i ∈ ⋂{P | {i′ | (w̄, v[P/X], i′) |= ϕ} ⊆ P}, where v[P/X]
extends the valuation v with v(X) = P .

The μ-calculus over words does not mention the modality�ηϕ.
We shall also work with the full μ-calculus [28] (denoted by Lfull

μ), which is an
extension of Lμ with the past modalities�−ϕ and�−

η ϕ:

– (w̄, v, i) |= �−ϕ iff i > 1 and (w̄, v, i− 1) |= ϕ.
– (w̄, v, i) |= �−

η ϕ iff there is an � such that η(�, i) holds and (w̄, v, �) |= ϕ.

Greatest fixed-points νXϕ(X) are definable in Lμ as ¬μX¬ϕ(¬X). Using greatest
fixed-points and �ϕ (defined as ¬�¬ϕ), one can push all negations to atoms in Lμ

formulae. For resulting formulae, an important parameter is the alternation-depth of
least and greatest fixed-points [7]. We refer to Lk

μ as the fragment of Lμ that consists of
formulae of alternation depth at most k (e.g., L0

μ is the alternation-free fragment).

Languages and unary queries Formulae of Lμ (without free variables) are satisfied in
positions of a nested word, and thus they give rise to classes of unary queries that return,
for w̄, the set {i | (w̄, i) |= ϕ}. Every Lμ formula ϕ without free variables defines a
language {w̄ | (w̄, 1) |= ϕ}. Likewise, every MSO formula ϕ(x) with one free first-
order variable defines a unary query, and every MSO sentence defines a language. In
the absence of nesting, it is known [7, 20] that a language (of words or ω-words) is
definable by a Lμ formula iff it is definable by an MSO sentence (not using relation η).

3 Mu-calculus over nested words

Since NWA generalize finite state automata, the translation from MSO to NWAs is
nonelementary. But just as for finite words or trees, one can find equally expressive
logical formalisms with better model-checking complexity. We show that the equiva-
lenceMSO = Lμ extends from words and trees to nested words. It applies not only in
sentences evaluated in the first position of a nested word, but more generally to unary
queries that select a set of positions. This is relevant for finite nested words viewed as
streaming XML documents: while theoretical investigations have mostly looked at the
case of sentences [23, 8], in practical application one typically needs to evaluate unary
queries (e.g. XPath) over such streams [21]. To deal with unary queries, we look at Lμ

with the past, i.e. Lfull
μ , and prove that it is equivalent to MSO unary queries. That is:

Theorem 1. For finite nested words and nested ω-words, MSO and Lfull
μ define the

same classes of unary queries.

As a corollary to the proof, we get

Corollary 1. The languages of nested words definable in MSO and Lμ are the same.

We can tighten this for finite nested words. Let (Lfull
μ)+ be the negation-free (and

thus alternation-free) fragment of Lfull
μ that has two additional constants “first” and

“last” with their intuitive meanings: “first” holds only at the first position of a nested
word, and “last” holds at the last position. Likewise we define (Lμ)+ from Lμ.

Corollary 2. For unary queries over finite nested words, MSO = Lfull
μ = (Lfull

μ)+.
Furthermore, MSO, Lμ, and (Lμ)+ define the same languages of finite nested words.

From [14], we conclude that for every (Lfull
μ)+ formula ϕ and every finite nested

word w̄, the set {i | (w̄, i) |= ϕ} can be computed in time O(|ϕ| · |w̄|).
We make a couple of remarks about the proof of Theorem 1. Nested words are natu-

rally translated into trees, and there is a closely related result in the literature, Niwinski’s
theorem, showing that over the full infinite binary tree, MSO and Lμ, evaluated in the
root of the tree, are equally expressive [20]. Despite this, there does not seem to be any
easy adaptation of proof techniques in [20] that yields a proof of Theorem 1. Not only
do we need a stronger result for unary queries and an extension with the past modalities,
but in addition translations of infinite nested words are not complete binary trees.

Another natural attempt at a proof is to use the expressive-completeness result of
Janin and Walukiewicz: every bisimulation-invariant MSO property is definable in Lμ

[16]. Then we could express runs of tree automata on tree encodings of nested words
by bisimulation-invariant MSO sentences, apply [16] to get an equivalent Lμ formula
for trees, and translation it into an Lμ formula over nested words. This sketch indeed
can be turned into a proof of MSO = Lμ for languages of nested words, but it breaks
already for unary queries over finite nested words, where one needs to encode a more
complicated run of a query automaton [19], and it is even harder to adapt this argument
to infinite nested words for which we do not have an automaton model capturing unary
queries. Thus, our proof is a direct argument based on the composition method.

4 Automata models for nested ω-words

Nested ω-word automata Visibly pushdown automata (VPA), with both Büchi and
Muller acceptance conditions, were introduced in [5], and shown to be equivalent to
MSO, but not necessarily determinizable. The example of a VPL that cannot be ac-
cepted by a deterministic automaton [5] can use arbitrarily many calls without matching
returns, something that cannot happen in nested words. Then [18] introduced a notion
of stair visibly pushdown automata (stair VPA) to control such unmatched calls and
showed that stair VPAs are determinizable. These models were defined for VPLs, so
we first specialize a particular class of stair VPAs [18] to nested words, thereby obtain-
ing a notion of combined nested word automata, that admit determinization. We then
use such automata to show that over nested words, for every ω-NWA (with a Büchi or a
Muller acceptance condition), there exists an equivalent deterministic Muller ω-NWA.

A combined nested word automaton (CNWA) puts together an ω-word automaton
A1 with a Muller acceptance condition and a finite NWA A2. It runs A1 over all posi-
tions that are not inside a call. Every time A1 finds a call position i, it invokes A2 to
process the finite nested word formed by the elements between i and its matching return
j, and then it uses its final state to determine what state to assign to j+1, and continues
its run from position j + 1. Formally, a CNWA A overΣ is a pair (A1,A2), where:

– A2 = (Σ,Q2, Q
0
2, δ2 = (δ2c , δ2ι , δ2r)) is an NWA without accepting states;

– A1 = (Σ∪Q2, Q1, Q
0
1, δ1,F1) is an ω-word automaton over alphabetΣ∪Q2 (we

assume, of course, that Σ andQ2 are disjoint).

Given a nested ω-word w̄ and i ≥ 1, we define the set of external positions E(w̄) as
positions i such that there are no j, k ≥ 1 such that j < i ≤ k and η(j, k) holds. Note
that 1 ∈ E(w̄) and E(w̄) is infinite. If i ∈ E(w̄) is not a call, then i + 1 ∈ E(w̄). If
i ∈ E(w̄) is a call with j being its matching return, then the next, after i, element of
E(w̄) is j+1. With this, we define a run ofA over a nested ω-word w̄ = (a1a2 · · · , η)
as a mapping ρ : E(w̄) → Q1 such that ρ(1) ∈ Q0

1 and for every i ∈ E(w̄):

– if i is not a call (and i+ 1 ∈ E(w̄)), then ρ(i+ 1) ∈ δ1(ρ(i), ai);
– if i is a call with return j (and the successor of i in E(w̄) is j + 1), then ρ(j + 1) ∈
δ1(ρ(i), q), where q is a state inQ2 such that there exists a run ρ2 ofA2 over w̄[i, j]
having q as the last state.

A CNWA A accepts w̄ if there is a run ρ of A over w̄ such that Inf (ρ) ∈ F1. We say
that CNWA A = (A1,A2) is deterministic if both A1 and A2 are deterministic. Then
results in [18] can be restated in this terminology as:

Proposition 1 ([18]). Over nested ω-words, CNWAs and deterministic CNWAs are
equivalent.

We show, by using standard techniques, that CNWA and MSO are equivalent, from
which the main result of this section follows:

Theorem 2. Over nested ω-words, MSO, ω-NWA and deterministic ω-NWA with
Muller acceptance condition, define precisely the regular languages. Moreover, trans-
lations between these formalisms are effective.

Determinization of ω-NWAs is done by translating them into CNWAs, determiniz-
ing those (which involves a 2O(n log n) Safra construction [22] and a 2O(n2) determiniza-
tion procedure from [5]) and then translating back into ω-NWAswith Muller acceptance
condition. Putting these three components together, we get (note that the bound is the
same as for determinization of stair VPAs for VPLs [18]):

Corollary 3. For every ω-NWA with n states, there exists an equivalent deterministic
ω-NWA with a Muller acceptance condition and with 2O(n2) states.

It is well-known that a language of ω-words is regular (accepted by a Büchi or a Muller
automaton) iff it is a finite union of languages of the form UV ω, where U, V are regular
languages. Automata characterizations imply a similar result for nested ω-words.

Corollary 4. A language of nested ω-words is regular iff it is a finite union of languages
of the form UV ω where U and V are regular languages of finite nested words.

A basic problem in automata theory is the nonemptiness problem: is the language ac-
cepted by an automaton nonempty? It was shown in [5], that nonemptiness, and more
generally reachability problem for visibly pushdown ω-automata, is polynomial. Com-
bining this with a NLOGSPACE algorithm for nonemptiness of ω-word automata, we
get polynomial nonemptiness algorithms for ω-NWA and CNWA. Further, a modifica-
tion of PTIME-hardness reduction for emptiness for context-free grammars gives us:

Corollary 5. The nonemptiness problem for ω-NWA and CNWA is PTIME-complete.

It is easy to code a deterministic automaton by an L1
μ formula. Thus,

Corollary 6. Over nested ω-words, Lμ collapses to L1
μ.

Alternating automata for nested ω-words In the context of formal verification, al-
ternating automata have proved to be the key to a comprehensive automata-theoretic
framework for temporal logics [27].With the development of temporal logics for nested
words [4, 2, 1], it is natural to develop alternating automata for nested words, with the
hope that they can simplify the process of translating temporal logics into automata.

We now define alternating automata for both finite and infinite nested words, and
show that they are equivalent to NWAs. We note that this is in sharp contrast with the
theory of alternating automata for nested trees, where alternating automata are known
to be more expressive than nondeterministic automata [3].

First recall the definition of alternating automata for finite and infinite words. Given
a set of states Q, let B+(Q) be the set of positive Boolean combinations of elements
fromQ. GivenX ⊆ Q andϕ ∈ B+(Q), we say thatX satisfiesϕ if the truth assignment
σX satisfies ϕ, where σX is defined as σX(q) = 1 iff q ∈ X . Then an alternating (ω-
)word automaton A is a tuple (Σ,Q,Q0, δ, F), where Q, Q0 and F are defined as for
the case of word automata, and δ : Q×Σ → B+(Q) is a transition function.

A run of such an automaton is a labeled tree. A Σ-labeled tree T is a pair (D,λ),
where λ : D → Σ and D is a prefix-closed subset of N

∗ such that (1) if x · i ∈ D and
0 ≤ j < i, then x · j ∈ D, and (2) for every x ∈ D, there exists a finite number of
strings of the form x · i inD (finite branching). For x ∈ N

∗, its length is denoted by |x|.
The depth of a tree ismaxx∈D |x|.

A run of an alternating word automaton A = (Σ,Q,Q0, δ, F) over w = a1 · · · an

is a finite Q-labeled tree T = (D,λ) of depth n such that λ(ε) ∈ Q0 and for every
x ∈ D that has children x · 0, . . ., x · � of length i, we have that {λ(x · 0), . . . , λ(x · �)}
satisfies δ(λ(x), ai). An alternating word automaton A accepts a word w if there is a
run T = (D,λ) ofA overw such that λ(x) ∈ F for every node x in T of length n. The
run of an alternating ω-word automaton A = (Σ,Q,Q0, δ, F) over an ω-word w =
a1a2 · · · is defined in exactly the same way as an infinite Q-labeled tree T = (D,λ).
Then A accepts ω-word w if there is an accepting run T = (D,λ) of A over w, i.e.
every infinite branch ρ of T includes infinitely many labels in F .

An alternating nested word automaton (or alternating NWA, or ANWA) is an NWA
that admits alternation in call, return, and internal transitions. Formally, an ANWAA is
a tuple (Σ,Q,Q0, δ, F), where Q, Q0 and F are defined as for the case of alternating
word automata, and δ is a triple (δc, δι, δr) of transition functions δc, δι : Q × Σ →
B+(Q), and δr : Q × Q × Σ → B+(Q). A run of A over w̄ = (a1 · · · an, η) is a
Q-labeled finite tree T = (D,λ) of depth n such that λ(ε) ∈ Q0 and for every x ∈ D
with children x · 0, . . ., x · �, of length i ≤ n:

– if |x| (i.e. i−1) is a call position, then {λ(x ·0), . . . , λ(x ·�)} satisfies δc(λ(x), ai);
– if |x| is an internal position, then {λ(x · 0), . . . , λ(x · �)} satisfies δι(λ(x), ai);
– if |x| is a return position with matching call j and y is the prefix of x with |y| =
j − 1, then {λ(x · 0), . . . , λ(x · �)} satisfies δr(λ(x), λ(y), ai).

Note that if i− 1 is an internal position and x does not have children, then δι(λ(x), ai)
has to be a tautology, and likewise for call and return positions. An alternating nested

word automaton A accepts a nested word w̄ if there is a run T = (D,λ) of A over w̄
such that λ(x) ∈ F for every node x in T of length n.

Proposition 2. For every alternating NWA, there exists an equivalent NWA.

This can be extended to nested ω-words. An alternating nested ω-word automaton (ω-
ANWA) A is a tuple (Σ,Q,Q0, δ, F), whereQ,Q0, δ and F are defined exactly as for
ANWA. A run is defined in the same way as above, and the acceptance condition again
states that along each infinite branch, states from F are seen infinitely often.

Theorem 3. For every ω-ANWA with n states, there exists (and can be effectively con-
structed) an equivalent ω-NWA with a Büchi acceptance condition and 2O(n4) states.

For the proof, we introduce a notion of alternating combined nested word automaton
(ACNWA) and provide a direct translation fromω-ANWA into ACNWA. Then by using
Proposition 2 and the fact that alternating ω-word automata can be translated into ω-
word automata [27], we give a translation from ACNWA into CNWA. Theorem 3 then
follows from Proposition 1. We note that Theorem 3 provides an exponential-time al-
gorithm for checking nonemptiness of ANWAs and ω-ANWAs. Since even in the finite
case the problem is as hard as universality for finite tree automata [24], we get:

Corollary 7. The nonemptiness problem for both ANWAs and ω-ANWAs is EXPTIME-
complete.

5 Synchronization of nested words

Synchronization of words leads to a concept of regular relations. It ties together (syn-
chronizes) positions in several words, and then runs an automaton over them [15]. To
be concrete, let w1, . . . , wk be words from Σ∗. Assume that # is a letter that is not in
Σ. Let n = maxi |wi|, and let [(w1, . . . , wk)] be a word of length n constructed as fol-
lows. It is over the alphabet (Σ∪{#})k, and its ith letter is a k-tupleai = (ai

1, . . . , a
i
k),

where each ai
j is the ith letter of wj if i ≤ |wj |, and # if i > |wj |. That is, we pad

words shorter than n with#’s to make them all of length n, and then take the ith letter
of [(w1, . . . , wk)] to be the tuple of the ith letters of these padded words.

Then regular k-ary relations overΣ are defined as setsR ⊆ (Σ∗)k such that the set
{[(w1, . . . , wk)] | (w1, . . . , wk) ∈ R} is accepted by an automaton over the alphabet
(Σ ∪ {#})k [13, 12]. Such automata are called letter-to-letter automata.Regular rela-
tions are closed under Boolean combinations, product, and projection. This makes it
possible to find infinite structures overΣ∗ with decidable first-order theories whose de-
finable sets are precisely the regular relations (these are universal automatic structures,
cf. [13, 12]). The most commonly used such structure is 〈Σ∗,≺, (Pa)a∈Σ, el〉, where
≺ is the prefix relation, Pa(w) is true iff the last letter of w is a, and el(w,w′) (the
equal-length predicate) holds iff |w| = |w′| [13, 12, 10].

We now study synchronization for nested words. We show that the usual letter-to-
letter synchronization for words is completely incompatible with the nesting structure
because even the simplest nested extension of letter-to-letter automata is undecidable.

We propose a different decidable synchronization scheme for nested words that gives
us regular relations with all the expected properties.

Letter-to-letter nested word automataAssume that we have k nested words w̄1, . . . , w̄k,
and we again pad the shorter words with a special symbol # so that all of them are of
the same length n. Let [(w̄1, . . . , w̄k)] be such a nested word over the alphabet (Σ ∪
{#})k, and let ai be its ith letter. The letter-to-letter automaton runs from left to right
on [(w̄1, . . . , w̄k)], as an NWA. The main difference with NWAs is that each position
i may now be a return position in several of the w̄j’s, and thus states in several call
positions determine the next state.

That is, in a k-letter-to-letter NWA over k-tuples of nested words, we have multiple
return transitions δX

r : Q × Q|X| × (Σ ∪ {#})k → 2Q, indexed by nonempty X ⊆
{1, . . . , k}. Suppose i is a return position in w̄l1 , . . . , w̄lm , where 1 ≤ l1 < . . . < lm ≤
k and m > 0. If j1, . . . , jm are the matching calls, i.e. ηl1(j1, i), . . . , ηlm(jm, i) hold,
then ρ(i+ 1) depends on ρ(i), ai, and the states in positions j1, . . . , jm:

ρ(i+ 1) ∈ δ{l1,...,lm}
r (ρ(i), ρ(j1), . . . , ρ(jm),ai).

For positions without returns, we have one transition δ : Q× (Σ ∪ {#})k → 2Q.
We show that even a much simpler automaton is undecidable. Define a simplified

k-letter-to-letter NWA as a k-letter-to-letter NWA with one return transition is δr :
Q×Q× (Σ ∪ {#})k → 2Q, just as in the usual NWA. The condition on the run is as
follows: if i is a return position in words w̄l1 , . . . , w̄lm , for 1 ≤ l1 < . . . < lm ≤ k,
then ρ(i+ 1) ∈ δr(ρ(i), ρ(j1),ai), where j1 is the call of i in w̄l1 . In other words, we
look at the state of only one call position, corresponding to the return with the smallest
index. For all other positions we have a single transition δ : Q× (Σ ∪ {#})k → 2Q.

If k = 1, these are the usual NWAs. But if k = 2, they are undecidable.

Theorem 4. The nonemptiness problem is undecidable for simplified 2-letter-to-letter
NWAs (and thus for k-letter-to-letter NWAs for k > 1).

Thus, there is no hope to use even the simplest possible form of letter-to-letter syn-
chronization in nested words. As another example of such incompatibility, we show that
there are no natural decidable extensions of universal automatic structures on words to
nested words. We look at structures M = 〈Σ∗

nw, Θ〉 (where Σ∗
nw is the set of all fi-

nite nested words over Σ) of a vocabulary Θ. We assume that Θ includes some basic
relations. One is a prefix relation w̄ �nw w̄′ iff w̄ = w̄′[1,m] for some m ≤ |w̄′|
(so we can refer to the linear structure of nested words). The other allows us to re-
fer to the nesting structure: we relate a prefix w̄ of w̄′ so that in w̄′, there is a call-
return edge from the last position of w̄ to the last position of w̄′. That is, w̄ �η w̄′

iff w̄ = w̄′[1,m], and η(m, |w̄′|) holds in w̄′. We say that M defines all regular lan-
guages of nested words if for each such language L, there is a formula ϕL(x) such
that L = {w̄ ∈ Σ∗

nw | M |= ϕ(w̄)}. We say that M defines all regular relations over
words if for each regular relation R ⊆ (Σ∗)k, there is a formula ψR(x1, . . . , xk) such
that M |= ψR(w̄1, . . . , w̄k)} iff (w1, . . . , wk) ∈ R (recall that wi is a word from Σ∗

obtained by removing the nesting structure from w̄i).

Proposition 3. There is no structure M = 〈Σ∗
nw,�nw,�η, . . .〉 that defines all regular

languages of nested words, all regular relations over words, and has a decidable theory.

Call-return synchronization As the usual letter-to-letter synchronization is incompati-
ble with nested words, we propose a different, call-return synchronization. Intuitively,
instead of synchronizing positions with the same index i in different words, we synchro-
nize positions for which the shortest paths to them (from the first position) are the same.
To formalize this, we use a notion of a summary path introduced recently in connection
with the study of LTL-like logics on nested ω-words [1]. A summary path to a position
i in a nested word w̄ is the shortest path from 1 to i that combines both successor and
matching edges. That is, it is a sequence 1 = i0 < i1 < . . . < ik = i such that, if il is
a call with η(il, j) and i ≥ j, then η(il, il+1) holds, and otherwise il+1 = il + 1. We
represent this summary path as a word a1 . . . ak over the alphabet Λ = {i, c,m}:
1. if il = il−1 + 1 and il−1 is not a call, then al = i (path goes via an internal edge);
2. if il = il−1 + 1 and il−1 is a call, then al = c (path goes via a call edge);
3. if η(il−1, il) holds, then al = m (path goes via a matching edge).

If both i1 = il−1 + 1 and η(il−1, il) hold, we let al bem. The unique summary path to
position i will be denoted by πη

w̄(i) ∈ Λ∗, and the set of all summary paths by Πη(w̄).
The label of πη

w̄(i) is the label of i in w̄. Note that Πη(w̄) is closed under prefix.
The idea of the call-return synchronization is that now with each position i,

we keep its summary paths πη
w̄(i), to remember how it was reached in different

nested words. That is, a call-return synchronization of nested words w̄1, . . . , w̄k

is a pair (Πη(w̄1, . . . , w̄k), λ) where Πη(w̄1, . . . , w̄k) =
⋃

lΠ
η(w̄l), and λ :

Πη(w̄1, . . . , w̄k) → (Σ ∪ {#})k is a labeling function that labels each summary path
with its label in w̄i if it occurs in w̄i, and with # otherwise, for each i ≤ k. This
synchronization can naturally be viewed as a tree.

As an example, consider two nested words below, w̄1 (on the left) and w̄2 (on the
right), with summary paths shown above positions.

61 2 3 4 5 6 1 2 3 4 5

ε i ic ici im imi ε i ic im imi imii

The synchronization occurs in the first and the second position, and we recursively
synchronize the calls (from i) and what follows their returns (from im). Intuitively, this
results in adding a dummy internal node ici inside the call for w̄2, and adding a dummy
last internal position imii for w̄2. Note that position 4 (i.e. ici) in w̄1 is in no way related
to position 4 (im) in w̄2, as it would have been in letter-to-letter synchronization.

We now say that R ⊆ (Σ∗
nw)k is a regular k-ary relation of nested words iff there

is a tree automaton on ternary trees that accepts precisely (Πη(w̄1, . . . , w̄k), λ), for
(w̄1, . . . , w̄k) ∈ R. The following is an immediate consequence of coding tree repre-
sentations in MSO, and of the work on automatic structures over trees [11]:

Proposition 4. – Regular relations of nested words are closed under union, intersec-
tion, complementation, product, and projection.

– Regular 1-ary relations of nested words are precisely the regular nested languages.
– There is a finite collection Θ of unary and binary predicates on Σ∗

nw such that
〈Σ∗

nw, Θ〉 is a universal automatic structure for nested words, i.e. its definable rela-
tions are precisely the regular relations of nested words, and its theory is decidable.

Acknowledgments We thank Rajeev Alur, Kousha Etessami, and Neil Immerman for
helpful discussions. Arenas was supported by FONDECYT grants 1050701, 7060172
and 1070732; Arenas and Barceló by grant P04-067-F from the Millennium Nucleus
Centre for Web Research; Libkin by the EC grant MEXC-CT-2005-024502, EPSRC
grant E005039, and by NSERC while on leave from U. Toronto.

References

1. R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, L. Libkin. First-order and
temporal logics for nested words. In LICS 2007.

2. R. Alur, S. Chaudhuri, P. Madhusudan. A fixpoint calculus for local and global program
flows. In POPL 2006, pages 153–165.

3. R. Alur, S. Chaudhuri, P. Madhusudan. Languages of nested trees. In CAV 2006, 329–342.
4. R. Alur, K. Etessami and P. Madhusudan. A temporal logic of nested calls and returns. In

TACAS’04, 467-481.
5. R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC’04, 202-211.
6. R. Alur and P. Madhusudan. Adding nesting structure to words. In DLT’06, pages 1–13.
7. A. Arnold and D. Niwinski. Rudiments of μ-calculus. North-Holland, 2001.
8. V. Bárány, C. Löding, O. Serre. Regularity problems for visibly pushdown languages.

STACS’06, 420–431.
9. P. Barceló and L. Libkin. Temporal logics over unranked trees. In LICS’05, 31-40.
10. M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin. Definable relations and first-order query

languages over strings. J. ACM 50(5): 694–751, 2003.
11. M. Benedikt, L. Libkin, F. Neven. Logical definability and query languages over ranked and

unranked trees. ACM TOCL, 8(2), 2007. Extended abstract in LICS’02 and LICS’03.
12. A. Blumensath and E. Grädel. Automatic structures. In LICS’00, pages 51–62.
13. V. Bruyère, G. Hansel, C. Michaux, R. Villemaire. Logic and p-recognizable sets of integers.

Bull. Belg. Math. Soc. 1 (1994), 191–238.
14. R. Cleaveland, B. Steffen. A linear-time model-checking algorithm for the alternation-free

modal mu-calculus. CAV’91, pages 48–58.
15. C. Elgot and J. Mezei. On relations defined by generalized finite automata. IBM J. Res. De-

velop. 9 (1965), 47–68.
16. D. Janin, I. Walukiewicz. On the expressive completeness of the propositional mu-calculus

with respect to monadic second order logic. CONCUR 1996, pages 263–277.
17. C. Lautemann, T. Schwentick, D. Thérien. Logics for context-free languages. CSL’94, 205–

216.
18. C. Löding, P. Madhusudan, O. Serre. Visibly pushdown games. In FSTTCS 2004, 408–420.
19. F. Neven, Th. Schwentick. Query automata over finite trees. TCS 275 (2002), 633–674.
20. D. Niwinski. Fixed points vs. infinite generation. In LICS 1988, pages 402–409.
21. F. Peng and S. Chawathe. Xpath queries on streaming data. In SIGMOD’03, pages 431–442.
22. S. Safra. On the complexity of omega-automata. In FOCS 1988, pages 319–327.
23. L. Segoufin, V. Vianu. Validating streaming XML documents. In PODS’02, pages 53–64.
24. H. Seidl. Deciding equivalence of finite tree automata. SICOMP 19(3): 424-437 (1990).
25. W. Thomas. Languages, automata, and logic. Handbook of Formal Languages, Vol. 3, 1997.
26. W. Thomas. Infinite trees and automaton-definable relations over ω-words. TCS 103 (1992),

143–159.
27. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. Banff Higher Order

Workshop 1995, pages 238-266.
28. M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP 1998, 628–641.

