Expressive Power of SQL

Leonid Libkin!

University of Toronto and Bell Laboratories
Email: 1ibkin@cs.toronto.edu

Abstract. It is a folk result in database theory that SQL cannot ex-
press recursive queries such as reachability; in fact, a new construct was
added to SQL3 to overcome this limitation. However, the evidence for
this claim is usually given in the form of a reference to a proof that re-
lational algebra cannot express such queries. SQL, on the other hand, in
all its implementations has three features that fundamentally distinguish
it from relational algebra: namely, grouping, arithmetic operations, and
aggregation.

In the past few years, most questions about the additional power pro-
vided by these features have been answered. This paper surveys those
results, and presents new simple and self-contained proofs of the main
results on the expressive power of SQL. Somewhat surprisingly, tiny dif-
ferences in the language definition affect the results in a dramatic way:
under some very natural assumptions, it can be proved that SQL cannot
define recursive queries, no matter what aggregate functions and arith-
metic operations are allowed. But relaxing these assumptions just a tiny
bit makes the problem of proving expressivity bounds for SQL as hard
as some long-standing open problems in complexity theory.

1 Introduction

What queries can one express in SQL? Perhaps more importantly, one would like
to know what queries cannot be expressed in SQL — after all, it is the inability to
express certain properties that motivates language designers to add new features
(at least one hopes that this is the case).

This seems to be a rather basic question that database theoreticians should
have produced an answer to by the beginning of the 3rd millennium. After all,
we’ve been studying the expressive power of query languages for some 20 years
now (and in fact more than that, if you count earlier papers by logicians on
the expressiveness of first-order logic), and SQL is the de-facto standard of the
commercial database world — so there surely must be an answer somewhere in
the literature.

When one thinks of the limitations of SQL, its inability to express reachability
queries comes to mind, as it is well documented in the literature (in fact, in
many database books written for very different audiences, e.g. [1,5,7,25]). Let
us consider a simple example: suppose that R(Src,Dest) is a relation with flight
information: Src stands for source, and Dest for destination. To find pairs of

cities (A4, B) such that it is possible to fly from A to B with one stop, one would
use a self-join:

SELECT R1.Src, R2.Dest
FROM R AS R1, R AS R2
WHERE R1.Dest=R2.Src

What if we want pairs of cities such that one makes two stops on the way? Then
we do a more complicated self-join:

SELECT R1.Src, R3.Dest
FROM R AS R1, R AS R2, R AS R3
WHERE R1.Dest=R2.Src AND R2.Dest=R3.Src

Taking the union of these two and the relation R itself we would get the pairs of
cities such that one can fly from A to B with at most two stops. But often one
needs a general reachability query in which no a priori bound on the number of
stops is known; that is, whether it possible to get to B from A.

Graph-theoretically, this means computing the transitive closure of R. It is
well known that the transitive closure of a graph is not expressible in relational
algebra or calculus; in particular, expressions similar to those above (which hap-
pen to be unions of conjunctive queries) cannot possibly express it. This appears
to be a folk result in the database community; while many papers do refer to [2]
or some other source on the expressive power of first-order logic, many texts just
state that relational algebra, calculus and SQL cannot express recursive queries
such as reachability.

With this limitation in mind, the SQL3 standard introduced recursion ex-
plicitly into the language [7,12]. One would write the reachability query as

WITH RECURSIVE TrCl(Src,Dest) AS
R
UNION
SELECT TrCl.Src, R.Dest
FROM TrCl, R
WHERE TrCl.Dest = R.Src
SELECT * FROM TrCl

This simply models the usual datalog rules for transitive closure:

trcl(z,y) - r(z,y)
trel(x, y) - trel(x, 2),r(z,y)

When a new construct is added to a language, a good reason must exist
for it, especially if the language is a declarative query language, with a small
number of constructs, and with programmers relying heavily on its optimizer.
The reason for introducing recursion in the next SQL standard is precisely this
folk result stating that it cannot be expressed in the language. But when one
looks at what evidence is provided to support this claim, one notices that all
the references point to papers in which it is proved that relational algebra and

calculus cannot express recursive queries. Why is this not sufficient? Consider
the following query

SELECT R1.A

FROM R1, R2

WHERE (SELECT COUNT(*) FROM R1) >
(SELECT COUNT(*) FROM R2)

This query tests if |R1|>|R2|: in that case, it returns the A attribute of R1,
otherwise it returns the empty set. However, logicians proved it long time ago
that first-order logic, and thus relational calculus, cannot compare cardinalities
of relations, and yet we have a very simple SQL query doing precisely that.

The conclusion, of course, is that SQL has more power than relational alge-
bra, and the main source of this additional power is its aggregation and grouping
constructs, together with arithmetic operations on numerical attributes. But
then one cannot say that the transitive closure query is not expressible in SQL
simply because it is inexpressible in relational algebra. Thus, it might appear
that the folk theorem about recursion and SQL is an unproven statement.

Fortunately, this is not the case: the statement was (partially) proved in the
past few years; in fact, a series of papers proved progressively stronger results,
finally establishing good bounds on the expressiveness of SQL.

My main goal here is twofold:

(a) I give an overview of these recent results on the expressiveness of SQL. We
shall see that some tiny differences in the language definition affect the results
in a dramatic way: under some assumptions, it can be shown that reachability
and many other recursive queries aren’t expressible in SQL. However, under
a slightly different set of assumptions, the problem of proving expressivity
bounds for SQL is as hard as separating some complexity classes.

(b) Due to a variety of reasons, even the simplest proofs of expressivity results
for SQL are not easy to follow; partly this is due to the fact that most papers
used the setting of their predecessors that had unnecessary complications in
the form of nested relations, somewhat unusual (for mainstream database
people) languages and infinitary logics. Here I try to get rid of those compli-
cations, and present a simple and self-contained proof of expressivity bounds

for SQL.

Organization In the next section, we discuss the main features that distin-
guish SQL from relational algebra, in particular, aggregate functions. We then
give a brief overview of the literature on the expressive power of SQL.

Starting with Section 3, we present those results in more detail. We intro-
duce relational algebra with grouping and aggregates, ALGaggr, that essentially
captures basic SQL statements. Section 4 states the main result on the expres-
sive power of SQL, namely that queries it can express are local. If one thinks
of queries on graphs, it means that the decision whether a tuple fbelongs to
the output is determined by a small neighborhood of #'in the input graph; the
reachability query does not have this property.

Section 5 defines an aggregate logic Lager and shows a simple translation
of the algebra with aggregates ALGagq, into this logic. Then, in Section 6, we
present a self-contained proof of locality of Lger (and thus of ALGaggr)-

In Section 7, we consider an extension ALGEfgg]r of ALGager in which non-
numerical order comparisons are allowed, and show that it is more powerful than
the unordered version. Furthermore, no nontrivial bounds on the expressiveness
of this language can be proved without answering some deep open problems in
complexity theory.

Section 8 gives a summary and concluding remarks.

2 SQL vs. Relational Algebra

What exactly is SQL? There is, of course, a very long standard, that lists nu-
merous features, most of which have very little to do with the expressiveness of
queries. As far as expressiveness is concerned, the main features that distinguish
SQL from relational algebra, are the following:

— Aggregate functions: one can compute, for example, the average value in a
column. The standard aggregates in SQL are COUNT, TOTAL, AVG, MIN, MAX.

— Grouping: not only can one compute aggregates, one can also group them
by values of different attributes. For example, it is possible to compute the
average salary for each department.

— Arithmetic: SQL allows one to apply arithmetic operations to numerical
values.

For example, for relations S1(Empl,Dept) and S2(Empl,Salary), the follow-
ing query (assuming that Empl is a key for both relations) computes the average
salary for each department which pays total salary at least 100,000:

SELECT S1.Dept, AVG(S2.Salary)
FROM S1, S2
(%) WHERE S1.Empl=S2.Empl
GROUPBY S1.Dept
HAVING TOTAL(S2.Salary) > 100000

Next, we address the following question: what is an aggregate function? The
first paper to look into this was probably [20]: it defined aggregate functions
as f : R — Num, where R is the set of all relations, and Num is a numerical
domain. A problem with this approach is that it requires a different aggregate
function for each relation and each numerical attribute in it; that is, we do not
have just one aggregate AVG, but infinitely many of those. This complication
arises from dealing with duplicates in a correct manner. However, duplicates can
be incorporated in a much more elegant way, as suggested in [14], which we shall
follow here. According to [14], an aggregate function F is a collection

F=A{fo, fr: for o f}

where f}. is a function that takes a k-element multiset (bag) of elements of Num
and produces an element of Num. For technical reasons, we also add a constant

fo € Num whose intended meaning is the value of F on infinite multisets. For
example, if Num is N, or Q, or R, we define the aggregate > = {sg,s1,...} by
se({z1,. .., zl}) = Zle x;; furthermore, so = s, = 0 (we use the { [} brackets
for multisets). This corresponds to SQL’s TOTAL. For COUNT, one defines C =
{co,c1,...} with ¢ returning k (we may again assume ¢, = 0). The aggregate

AVG is defined as A = {ag, a1, ...} with a(X) = i:g; agp = a, = 0.

Languages that model SQL and their expressive power

It is very hard to prove formal statements about a language like SQL: to put
it mildly, its syntax is not very easy to reason about. The research community
has come up with several proposals of languages that capture the expressiveness
of SQL. The earliest one is perhaps Klug’s extension of relational algebra by
grouping and aggregation [20]: if e is an expression producing a relation with m
attributes, Ais a set of attributes, and f is an aggregate function, then e(ff, H
is a new expression that produces a relation with m + 1 attributes. Assuming f
applies to attribute A’, and B is the list of all attributes of the output of e, the
semantics is best explained by SQL:

-

SELECT B, f(A')
FROM e

GROUPBY A

Klug’s paper did not analyze the expressive power of this algebra, nor did it show
how to incorporate arithmetic operations. The main contribution of [20] is an
equivalence result between the algebra and an extension of relational calculus.
However, the main focus of that extension is its safety, and the resulting logic is
extremely hard to deal with, due to many syntactic restrictions.

To the best of my knowledge, the first paper that directly addressed the prob-
lem of the expressive power of SQL, was the paper by Consens and Mendelzon in
ICDT’90 [6]. They have a datalog-like language, whose nonrecursive fragment is
exactly as expressive as Klug’s algebra. Then they show that this language can-
not express the transitive closure query under the assumption that DLOGSPACE
is properly included in NLOGSPACE. The reason is simple: Klug’s algebra (with
some simple aggregates) can be evaluated in DLOGSPACE, while transitive clo-
sure is complete for NLOGSPACE.

That result can be viewed as a strong evidence that SQL is indeed incapable
of expressing reachability queries. However, it is not completely satisfactory for
three reasons. First, nobody knows how to separate complexity classes. Second,
what if one adds more complex aggregates that increase the complexity of query
evaluation? And third, what if the input graph has a very simple structure (for
example, no node has outdegree more than 1)? In this case reachability is in
DLOGSPACE, and the argument of [6] does not work.

In early 90s, many people were looking into languages for collection types.
Functional statically typechecked query languages became quite fashionable, and
they were produced in all kinds of flavors, depending on particular collection

types they had to support. It turned out that a set language capturing essentially
the expressive power of a language for bags, could also model all the essential
features of SQL [23]. The problem was that the language dealt with nested re-
lations, or complex objects. But then [23] proved a conservativity result, stating
that nested relations aren’t really needed if the input and output don’t have
them. That made it possible to use a non-nested fragment of languages inspired
by structural recursion [4] and comprehensions [28] as a “theoretical reconstruc-
tion of SQL.”

Several papers dealt with this language, and proved a number of expressivity
bounds. The first one, appearing in PODS’94 [23], showed that the language
could not express reachability queries. The proof, however, was very far from
ideal. It only proved inexpressibility of transitive closure in a way that was very
unlikely to extend to other queries. It relied on a complicated syntactic rewriting
that wouldn’t work even for a slightly different language. And the proof wouldn’t
work if one added more aggregate functions.

The first limitation was addressed in [8] where a certain general property of
queries expressible in SQL was established. However, the other two problems not
only remained, but were exacerbated: the rewriting of queries became particu-
larly unpleasant. In an attempt to remedy this, [21] gave an indirect encoding of
a fragment of SQL into first-order logic with counting, FO(C) (it will be formally
defined later). The restriction was to natural numbers, thus excluding aggregates
such as AVG. The encoding is bound to be indirect, since SQL is capable of ex-
pressing queries that FO(C) cannot express. The encoding showed that for any
query @ in SQL, there exists a FO(C) query Q' that shares some nice properties
with @. Then [21] established some properties of FO(C) queries and transferred
them to that fragment of SQL. The proof was much cleaner than the proofs of
[23, 8], at the expense of a less expressive language.

After that, [24] showed that the coding technique can be extended to SQL
with rational numbers and the usual arithmetic operations. The price to pay was
the readability of the proof — the encoding part became very unpleasant.

That was a good time to pause and see what must be done differently. How do
we prove expressivity bounds for relational algebra? We do it by proving bounds
on the expressiveness of first-order logic (FO) over finite structures, since rela-
tional algebra has the same power as FO. So perhaps if we could put aggregates
and arithmetic directly into logic, we would be able to prove expressivity bounds
in a nice and simple way?

That program was carried out in [18], and T'll survey the results below. One
problem with [18] is that it inherited too much unnecessary machinery from its
predecessors [23, 8, 24, 21, 22]: one had to deal with languages for complex objects
and apply conservativity results to get down to SQL; logics were infinitary to
start with, although infinitary connectives were not necessary to translate SQL;

and expressivity proofs went via a special kind of games invented elsewhere [16].

Here we show that all these complications are completely unnecessary: there
is indeed a very simple proof that reachability is not expressible in SQL, and
this proof will be presented below. Our language is a slight extension of Klug’s

algebra (no nesting!). We translate it into an aggregate logic (with no infinitary
connectives!) and prove that it has nice locality properties (without using games!)

3 Relational algebra with aggregates

To deal with aggregation, we must distinguish numerical columns (to which
aggregates can be applied) from non-numerical ones. We do it by typing: a type
of a relation is simply a list of types of its attributes.

We assume that there are two base types: a non-numerical type b with domain
Dom, and a numerical type n, whose domain is denoted by Num (it could be
N, Z,Q R, for example).

A type of a relation is a string over the alphabet {b,n}. A relation R of
type aq . ..am, has m columns, the ith one containing entries of type a;. In other
words, such a relation is a finite subset of

H dom(a;)

where dom(b) = Dom and dom(n) = Num. For example, the type of
S2(Empl,Salary) is bn. For a type t, .2 denotes the ith position in the string.
The length of ¢ is denoted by |¢|.

A database schema SC is a collection of relation names R; and their types
t;; we write R; : t; if the type of R; is ;.

Next, we define expressions of relational algebra with aggregates, parameter-
ized by a collection {2 of functions and predicates on Num, and a collection @ of
aggregates, over a given schema SC. Expressions are divided into three groups:
the standard relational algebra, arithmetic, and aggregation/grouping. In what
follows, m stands for |t|, and {i1,...,i,} for a sequence 1 <4y < ... < i < m.

Relational Algebra

SCHEMA RELATION If R : tis in SC, then R is an expression of type t.

PERMUTATION If e is an expression of type ¢t and 6 is a permutation of
{1,...,m}, then py(e) is an expression of type 6(t).

BOOLEAN OPERATIONS If ey, e5 are expressions of type ¢, then so are e;Uey, e N
€2,€1 — €2.

CARTESIAN PRODUCT For e; : t1, €3 : t2, €1 X ey is an expression of type ¢y - ta.

PrOJECTION If e is of type ¢, then 7;, .. ;. (e) is an expression of type t' where
t' is the string composed of t.ijs, in their order.

SELECTION If e is an expression of type t, i,j < m, and t.i = t.j, then o;=;(e)
is an expression of type t.

Arithmetic

NUMERICAL SELECTION If P C Num® is a k-ary numerical predicate from 2,
and iq,...,% are such that t.i; = n, then o[P];, .. ;. (e) is an expression of

3

type t for any expression e of type ¢.

FUNCTION APPLICATION If f : Num”

are such that ¢.i; = n, and e is an expression of type ¢, then Apply[f]:,,...;
is an expression of type ¢t-n. If k =0 (i.e. f is a constant), then Apply[f].
is an expression of type ¢ - n.

— Num is a function from (2, iy,...,0
. (€)
(e)

Aggregation and Grouping

AGGREGATION Let F be an aggregate from @. For any expression e of type ¢
and ¢ such that ¢t.4 = n, Aggr[i : F](e) is an expression of type ¢ - n.

GROUPING Assume e : u is an expression over SC U {S : s}. Let ¢’ be an
expression of type ¢ - s over SC, where |t|= l. Then Group;[AS.€](e’) is an
expression of type t - u.

Semantics For the relational algebra operations, this is standard. The opera-

tion py is permutation: each tuple (ai, ..., a,) is replaced by (ag(1), ., as(m))-
The condition i = j in the selection predicate means equality of the ith and
the jth attribute: (a1, ..., am) is selected if a; = a;. Note that using Boolean

operations we can model arbitrary combinations of equalities and disequalities
among attributes.

For numerical selection, o[Piy,... i selects (aty. . am) iff
P(a;,,...,a;) holds. Function application replaces each (ai,...,a,,) with
(@1, .. am, flai, ... a;)).

The aggregate operation is SQL SELECT A, F(A;) FROM e, where A =
(A1,..., Ay) is the list of attributes. More precisely, if e evaluates to di,...,dp
where @; = (aj,...,a7"), then Aggr[i : F](e) replaces each @; with (aj, ..., a7", f)

where f = F({lai,...,all}).
Finally, Group,[\S.e](e’) groups the tuples by the values of their first I at-
tributes and applies e to the sets formed by this grouping. For example:

b
ay|by ap ald;
a1 |bs 5 AS.e |1 S
d21c1 . as|g1
as|cs a2 az| |91

assuming that e returns {d;,ds} when S = {b1,b2}, and e returns {g;} for
S = {01,02}.

Formally, let ¢’ evaluate to {d1, ..., d,}. We split each tuple @; = (a}, Y
into @; = (aj,...,a) that contains the first [attributes, and @ = (aé“, Cee agn
that contalns the remaining ones. This defines, for each @;, a set S; = {@/ | @,

a;}. Let Tj = {bj, ce b;n’} be the result of applying e with S interpreted as S;.

Then Group,[AS.e](e') returns the set of tuples of the form (a}, g;), 1<j<p,

m

~— ~—

Klug’s algebra It combines grouping and aggregation in the same operation
as follows:

GROUPING & AGGREGATION Let t be of length m. Let [< iy < ... < iy with
t.i; =n, and let F1, ..., Fy be aggregates from @. Then, for e an expression
of type ¢, Aggr;[i1 : Fi,...,ik : Fr] is an expression of type t-n...n (¢ with
k ns added at the end).

The semantics is best explained by SQL:
SELECT #1,...,#m, Fi(#i1), ..., Fr(#ix)
FROM E
GROUPBY #1, ..., #l

where E is the result of the expression e. (As presented in [20], the algebra does
not have arithmetic operations, and the aggregates are limited to the standard

five.)
Note that there are no higher-order operators in Klug’s algebra, and that it
is expressible in our algebra with aggregates, as Aggr;[i1 : F1, ...,k : Fil(€e') is

equivalent to Group;[AS.e](e’), where e is
Aggrlix — 1 : Fi)(Agerlin—1 — 1 Fea](--- (Aggrlin — 1= F1](S)) --+))

Example The query (*) from Section 2 is defined by the following expression
(which uses the operator combining grouping with aggregation):

7T1’4(O'[> 100000]5((Agg1‘1 [3 : A,3 : E](W2’3’4(01:3(Sl X SQ))))))

where A is the aggregate AVG, Y is TOTAL, and > 100000 is a unary predicate
on N which holds of numbers n > 100000.

Example The only aggregate that can be applied to non-numerical attributes in
SQL is COUNT that returns the cardinality of a column. It can be easily expressed
in ALGaggr as long as the summation aggregate) and constant 1 are present.
We show how to define Count,, (e):

SELECT #1,...,#m — 1,COUNT(#m)
FROM E
GROUPBY #1,...,#m

First, we add a new column, whose elements are all 1s: e; = Apply[1].(e).
Then define an expression e/ = Aggr[2 : X](S), and use it to produce

ea = Group,,_;[AS.€'](e1).

This is almost the answer: there are extra 2 attributes, the mth attribute of e,
and those extra 1s. So finally we have

County,(€) = m1,.. m—1,m+2(Group,,_1[AS.Aggr[2 : X|(S)](Apply[1].(e)))

Remark In previous papers on the expressive power of SQL [23,24,21, 18], we
used languages of a rather different flavor, based on structural recursion [4] and
comprehensions [28]. One can show, however, that those language and ALGagg:
have the same expressiveness, provided they are supplied with the same set of
aggregates and arithmetic functions. The proof of this will be given in the full
version.

4 Locality of SQL queries

What kind of general statement can one provide that would give us strong evi-
dence that SQL cannot express recursive queries? For that purpose, we shall use
the locality of queries. Locality was the basis of a number of tools for proving
expressivity bounds of first-order logic [15,13,11], and it was recently studied
on its own and applied to more expressive logics [17,22].

r r

-— > —

—_— [_,a_,] [_,b_,] e

Fig. 1. A local formula cannot distinguish (a,b) from (b, a).

The general idea of this notion is that a query can only look at a small
portion of its input. If the input is a graph, “small” means a neighborhood of a
fixed radius. For example, Fig. 1 shows that reachability is not local: just take a
graph like the one shown in the picture so that there would be two points whose
distance from the endpoints and each other is more than 2r, where r is the fixed
radius. Then locality of query says that (a,b) and (b, a) are indistinguishable, as
the query can only look at the r-neighborhoods of a and b. Transitive closure,
on the other hand, does distinguish between (a,b) and (b, a), since b is reachable
from a but not vice versa.

We now define locality formally. We say that a schema SC' is purely relational
if there are no occurrences of the numerical type n in it. Let us first restrict
our attention to graph queries. Suppose we have a purely relational schema
R : bb; that is, the relation R contains edges of a directed graph. Suppose e is an
expression of the same type bb; that is, it returns a directed graph. Given a pair
of nodes a,b in R, and a number r > 0, the r-neighborhood of a,b in R, N (a,b),
is the subgraph on the set of nodes in R whose distance from either a or b is at
most r. The distance is measured in the undirected graph corresponding to R,
that is, RUR™'.

We write (a,b) = (¢, d) when the two neighborhoods, N£(a, b) and N (c, d),
are isomorphic; that is, when there exists a (graph) isomorphism h between them
such that h(a) = ¢, h(b) = d. Finally, we say that e is local if there is a number
r, depending on e only, such that

(a,0) =B (c,d) = (a,b) € e(R) iff (c,d) € e(R).

We have seen that reachability is not local. Another example of a non-local
query is a typical example of recursive query called same-generation:

sg(x,x) -
sg(z,y) - R(z',x), R(y',y),sg9(z",y")

This query is not local either: consider, for example, a graph consisting of two
chains: (a,b1), (b1,b2),. .., (bm,,bm) and (a,c1),(c1,¢2), ..., (CmysCm). Assume
that same-generation is local, and r > 0 witnesses that. Take m > 2r + 3, and
note that the r-neighborhoods of (b,1,¢,+1) and (by41, ¢,42) are isomorphic. By
locality, this would imply that these pairs agree on the same-generation query,
but in fact we have (by41,c¢ry1) € sg(R) and (by41, cri2) & sg(R).

We now state our main result on locality of queries, that applies to the
language in which no limit is placed on the available arithmetic and aggregate
functions — all are available. We denote this language by ALGaggr (All, All).

Theorem 1 (Locality of SQL). Let e be a pure relational graph query in
ALGaggr (All, All), that is, an expression of type bb over the scheme of one symbol
R : bb. Then e is local. O

That is, neither reachability, nor same-generation, is expressible in SQL over
the base type b, no matter what aggregate functions and arithmetic operations
are available. Inexpressibility of many other queries can be derived from this, for
example, tests for graph connectivity and acyclicity.

Our next goal is to give an elementary, self-contained proof of this result. The
restriction to graph queries used in the theorem is not necessary; the result can
be stated in greater generality, but the restriction to graphs makes the definition
of locality very easy to understand. The proof will consist of three steps:

1. Tt is easier to prove expressivity bounds for a logic than for an algebra. We
introduce an aggregate logic Lagg:, as an extension of first-order logic, and
show how ALG.ger queries are translated into it.

2. The logic Lagg: is still a bit hard to deal with it, because of the aggregate
terms. We show that we can replace aggregate terms by counting quantifiers,
thereby translating Lage: into a simpler logic L. The price to pay is that
L has infinitary connectives.

3. We note that any use of an infinitary connective resulting from translation
of Laggr into Lc applies to a rather uniform family of formulae, and use this
fact to give a simple inductive proof of locality of Lc formulae.

5 Aggregate logic and relational algebra

Our goal here is to introduce a logic Lage into which we translate ALGaggr ex-
pressions. The structures for this logic are precisely relational databases over two
base types with domains Dom and Num; that is, vocabularies are just schemas.
This makes the logic two-sorted; we shall also refer to Dom as first-sort and to
Num as second-sort.

We now define formulae and terms of Lager(£2,0); as before, (2 is a set of
predicates and functions on Num, and @ is a set of aggregates. The logic is just
a slight extension of the two-sorted first-order logic.

A SC-structure D is a tuple (4, RP,...,RP), where A is a finite subset of
Dom, and RP is a finite subset of

il
[T dom;(D)
j=1

where dom;(D) = A for t;.j = b, and dom;(D) = Num for ¢;.j = n.

— A variable of sort i is a term of sort i, i = 1, 2.

— If R:tisin SC, and @ is a tuple of terms of type ¢, then R(@) is a formula.

— Formulae are closed under the Boolean connectives V, A, = and quantification
(respecting sorts). If = is a first-sort variable, 3z is interpreted as 3z € A; if
k is a second-sort variable, then 3k is interpreted as Ik € Num.

— If P is an m-ary predicate in (2 and 7y,...,7, are second-sort terms, then
P(ry,...,7,) is a formula.

— If f is an m-ary function in 2 and 7y,...,7, are second-sort terms, then
f(r1,...,m) is a second-sort term.

— If F is an aggregate in O, ¢(Z,¥) is a formula and 7(Z,7) a second-sort
term, then 7/(Z) = Aggr 7. (¢(Z,9), 7(Z, 7)) is a second-sort term with free
variables Z.

The interpretation of all the constructs except the last one is completely
standard. The interpretation of the aggregate term-former is as follows: fix an
interpretation @ for ¥, and let B ={b| D = ¢(@,b)}. If B is infinite, then 7'(a)

—

is f,. If B is finite, say {51, cey gl}, then 7/(@) is the result of applying f; to the

multiset whose elements are 7(@,b;), i =1,...,1.
It is now possible to translate ALGaggr into Laggr:

Theorem 2. Let e : t be an expression of ALGaggr(£2,0). Then there is a for-
mula @, (Z) of Laggr(12,0), with T of type t, such that for any SC-database D,

e(D) = {@|D (@)}

Proof. For the usual relational algebra operators, this is the same as the standard
textbook translation of algebra expressions into calculus expression. So we only
show how to translate arithmetic operations, aggregation, and grouping.

— Numerical selection: Let e’ = o[P);, ... i, (€), where P is a k-ary predicate in
2. Then ¢ (Z) is defined as ¢, (%) A P(zi,, ..., Ti,)-

— Function application: Let e/ = Apply[fli,....i, (€), where f : Num” — Num is
in §2. Then (pe’(fa Q) = (pe(f) A (q = f('rl&:' 7'le))

— Aggregation: Let e’ = Aggr[i : F](e). Then ¢ (Z,q) = (%) A (g =
Aggrrd. (pe(¥). yi))-

— Grouping: Let ¢ = Group,,[\S.e1](e2), where e; : u is an expression over
SC U {S}, and ey over SC is of type t - s. Let Z,7,Z be of types t,s,u,

respectively. Then

e (7,2) = 37 0er(T,5) A ey (2)[pe, (T,0) /S (V)]

where the second conjunct is @e, (Z) in which every occurrence of S(7) is
replaced by ¢, (Z, 7).

The converse does not hold: formulae of L.ge need not define safe queries,
while all ALGager queries are safe. It is possible, however, to prove a partial
converse result; see [18] for more details.

6 SQL is local: the proof

We start by stating our main result in greater generality, without restriction to
graph queries.

Let SC be pure relational (no occurrences of type n), and D an instance of
SC. The active domain of D, adom(D), is the set of all elements of Dom that
occur in relations of D. The Gaifman graph of D is the undirected graph G(D) on
adom (D) with (a,b) € G(D) iff a, b belong to the same tuple of some relation in
D. The r-sphere of a € adom(D), SP(a), is the set of all b such that d(a,b) < r,
where the distance d(-,-) is taken in G(D). The r-sphere of @ = (ai,...,ax)
is SP(@) = U;<x SP(a;). The r-neighborhood of @, NP (@), is a new database,
whose active domain is SP (@), and whose SC-relations are simply restrictions of
those relations in D. We write @ ~% b when there is an isomorphism of relational
structures h : NP2(@) — NP(b) such that in addition h(@) = b. Finally, we say
that a query e of type b...b is local if there exists a number r > 0 such that,
for any database D, @ ~2 b implies that @ € e(D) iff b € (D). The minimum
such r is called the locality rank of e and denoted by Ir(e).

Theorem 3. Let e be a pure relational query in ALGagg: (All, All), that is, an
expression of type b...b over a pure relational schema. Then e is local. 0

Since ALGaggr (All, All) can be translated into Lagger (All, All), we must prove
that the latter is local. The proof of this is in two steps: we first introduce a
simpler counting logic, Lc, and show how to translate Lager into it. We then
give a simple proof of locality of L¢.

The logic L¢ is simpler than Lag,, in that it does not have aggregate terms.
There is a price to pay for this — L¢ has infinitary conjunctions and disjunctions.
However, the translation ensures that for each infinite conjunction or disjunction,
there is a uniform bound on the rank of formulae in it (to be defined a bit later),
and this property suffices to establish locality.

Logic L¢ The structures for L¢ are the same as the structures for Lager. The
only terms are variables (of either sort); in addition, every constant ¢ € Num is
a term of the second sort.

Atomic formulae are R(Z), where R € SC, and % is a tuple of terms (that is,
variables and perhaps constants from Num) of the appropriate sort, and x = y,
where z,y are terms of the same sort.

Formulae are closed under the Boolean connectives, and infinitary connec-
tives: if p;, i € I, is a collection of formulae, then \/,.; ¢; and A,.; @i are Lc

formulae. Furthermore, they are closed under both first and second-sort quan-
tification.

Finally, for every i € N, there is a quantifier Ji that binds one first-sort
variable: that is, if p(z,¥) is a formula, then Jiz ¢(z,7) is a formula whose
free variables are §. The semantics is as follows: D |= Jizgp(x,d) if there are i
distinct elements by, ...,b; € A such that D |= ¢(b;,a@), 1 < j <. That is, the
existential quantifier is witnessed by at least ¢ elements. Note that the first-sort
quantification is superfluous as Iz is equivalent 1z .

We now introduce the notion of a rank of a formula, rk(y), for both L¢ and
Laggr. For L, this is the quantifier rank, but the second-sort quantification does
not count:

— For each atomic ¢, rk(¢) = 0.

— For ¢ =/, ¢, rk(p) = sup; rk(y), and likewise for A.

— rk(=¢) = rk(ep).

— rk(Fiz) = rk(p) + 1 for z first-sort; rk(Iky) = rk(p) for k second-sort.

For Lage:r, the definition differs slightly.

— For a variable or a constant term, the rank is 0.

— The rank of an atomic formula is the maximum rank of a term in it.

— rk(p1 * @2) = max(rk(p1), rk(¢2)), for x € {V, A}; rk(—¢) = rk(p).

— rk(f(71,..., 7)) = maxi<i<n rk(7;).

— rk(zp) = rk(p) + 1 if z is first-sort; rk(Fkyp) = rk(yp) if k is second-sort.

— rk(Aggr 7. (¢, 7)) = max(rk(g), rk(7)) + m, where m is the number of first-
sort variables in /.

Translating L,ger into L This is the longest step in the proof, but although
it is somewhat tedious, conceptually it is quite straightforward.

Proposition 1. For every formula ¢(&) of Lagg: (All, All), there exists an equiv-
alent formula °(Z) of Lo such that rk(p®) < rk(y).

Proof. We start by showing that one can define a formula JiZy in Lo, whose
meaning is that there exist at least i tuples # such that ¢ holds. Moreover, its
rank equals rk(y) plus the number of first-sort variables in #. The proof is by
induction on the length of Z. If # is a single first-sort variable, then the counting
quantifier is already in L¢. If k is a second-sort variable, then Jikp(k,-) is
equivalent to \/ o A cc @(c,), where C ranges over i-element subsets of Num —
this does not increase the rank. Suppose we can define it for ¥ being of length
n. We now show how to define 3i(y, Z)p for y of the first sort, and Ji(k, ¥)¢ for
k of the second sort.

1. Let ¢(2) = Ji(y, ¥)p(y, &, 2) It is the case that there are i tuples (b;,d;)
satisfying ¢(y, Z,) iff one can find an [-tuple of pairs ((n1,m1), ..., (n;, m;))
with all m;s distinct, such that

— there are at least n; tuples @ for which the number of elements b satisfying
(b, d,-) is precisely m;, and

1 .
= Do nymy >
Thus, 1(2) is equivalent to

l
j=1

where the disjunction is taken over all the tuples satisfying n;,m; > 0, m;s
distinct, and Zé:l n;-mj; > i (it is easy to see that a finite disjunction
would suffice), and J'nup abbreviates Inup A =3(n + 1)uep.

The rank of this formula equals rk(3!m;yp) = rk(y) + 1, plus the number
of first-sort variables in # (by the induction hypothesis) — that is, rk(y) plus
the number of first-sort variables in (y, Z).

2. Let ¥(2) = Ji(k, &)p(k, &, Z). The proof is identical to the proof above up to
the point of writing down the quantifier 3'm;keo(k,-) — it is replaced by the
formula Vo (A.co v(e,)) A Aoge —¢(e,) where C ranges over mj-element
subsets of Num. As the rank of this equals rk(y), we conclude that the rank
of the formula equivalent to (%) equals rk(p) plus the number of first-sort
variables in Z.

This concludes the proof that counting over tuples is definable in L¢. With
this, we prove the proposition by induction on the formulae and terms. We also
produce, for each second-sort term 7(&) of Laggr, a formula ¢, (%, 2) of L, with
z of the second sort, such that D =, (@, q) iff the value of 7(@) on D is q.

We may assume, without loss of generality, that parameters of atomic Lagg:
formulae R(-) and P(-) are tuples of variables: indeed, if a second-sort term
occurs in R(-7;-), it can be replaced by 3k (k = 7;) A R(-k-) without increasing
the rank. We now define the translation as follows:

— For a second-sort term ¢ which is a variable ¢, ¥;(q,2) = (z = ¢q). lf t is a
constant ¢, then ¢;(z) = (2 = ¢).

— For an atomic ¢ of the form x = y, where x,y are first-sort, ¢° = .
— For an atomic ¢ of the form P(r(Z),...,7(Z)), ¢°(&) Iis
Vier.oemyepr Nizi Y7 (@ ¢i). Note that rk(¢®) = max;rk(sr,) <

max; rk(;) = rk(e).

— (1 Vp2)® =07 V@3, (1 Ap2)® = 0F A5, (m)° = ~°, (Fop)°® = Twy®
for z of either sort. Clearly, this does not increase the rank.
— For a term 7(%) = f(11(Z),..., (%)), we have

n
bE= (=) A N ¥ (Ecy)
(e,e1,.0yCn)ie=Ff(C) j=1

Again it is easy to see that rk(v;) < rk(7).
— For a term 7/(Z) = Aggrzy. (p(Z,9), 7(Z,9)), ¥ (Z, 2) is defined as

(3 () A (2 = foo)] V [95 (&) A (E, 2)]

where ¢°_(Z) tests if the number of § satisfying ¢(Z,¢) is infinite, and ¢’
produces the value of the term in the case the number of such ¢ is finite.

—

The formula 2 (Z) can be defined as

V V N\ ¢i (&)
i:y; of 2nd sort CCNum,[C]=00 ceC
where 50(;(1_':, yz) = El(yla e Yi1, Yids e :ym)SOO(fa g)
The formula ¢'(Z, z) is defined as the disjunction of —37p°(Z,§) Az = fo
and

zZ=cC

A 3§ (0% (2,) A - (.7, ¢1))

\/ A

c,(c1,m1),...,(cr,ng) =l (‘PO (fa ?j) A @Z’T(fa v, Cl)) .
AYY Naenem (@ (Z,9) A Y- (2, 7,a) = iz (@ = ¢;))

where the disjunction is taken over all tuples (¢1,n1),..., (¢, n), 1 > 0,n; >
0 and values ¢ € Num such that

F{cr,. . ¢ty c,..,all) = ¢
———— —_——
ny times n; times

Indeed, this formula asserts that either ¢(Z, -) does not hold and then z = fo,
or that ¢y, ..., ¢ are exactly the values of the term 7(Z, §) when ¢(Z, §) holds,
and that n;s are the multiplicities of the ¢;s.

A straightforward analysis of the produced formulae shows that rk(y,/) <
max(rk(¢®),rk(¢;)) plus the number of first-sort variables in ; that is,

rk(t,) < rk(7"). This completes the proof of the proposition.

Lc is local Formulae of L,gg have finite rank; hence they are translated into
L¢ formulae of finite rank. We now show by a simple induction argument that
those formulae are local. More precisely, we show that for every finite-rank L
formula ¢(#,7) (& of first-sort, 7 of second-sort) over pure relational SC, there
exists a number r > 0 such that @ ~P b implies D |= (@,) < ¢(b,7) for any
70- The smallest such r will be denoted by Ir(¢). The proof is based on:

Lemma 1 (Permutation Lemma). Let D be first-sort, with A = adom(D),
andr > 0. If @ mgﬂ b, then there exists a permutation p : A — A such that

dc ~P Bp(c) for every c € A.

Proof. Fix an isomorphism h : N&_ (@) — Ny 11 (B) with h(@) = b. For any ¢ €
SP. (@), h(c) € SP.,,(b) has the same isomorphism type of its r-neighborhood.
Thus, for any isomorphism type 7' of an r-neighborhood of a single element, there
are equally many elements in A — S, (@) and in A — SJ)_,(b) that realize T
Thus, we have a bijection g: A — S5, (@) - A— Sgﬂ(l_;) such that ¢ =P g(c).
Then p can be defined as h on S5}, (d@), and as g on A — S2) (). 0

Based on the lemma, we show that every Lc formula ¢ of finite rank is
local, with Ir(p) < (3™(#) —1)/2. Note that for the sequence ro =0, ..., 741 =
3r; +1,..., we have rp = (3% — 1)/2; we show Ir(¢) < ryy)-

The proof of this is by induction on the formulae, and it is absolutely
straightforward for all cases except counting quantifiers. For example, if p(#,7) =
V,; ¢;(Z.7), and m = rk(y), then by the hypothesis, Ir(¢;) < rm, as rk(p;) <
rk(y). So fix 7, and let @ ~L b. Then D E i(d,n) < @j(g, 70) for all j by the
induction hypothesis, and thus D = (@, 7) « (b, 7).

Now consider the case of the counting quantifier ¢ (Z,7) = Jizp(F, 2,7). Let

rk(¢) = m, then rk()) = m + 1 and ryq1 = 3y, + 1. Fix 75, and let @ me“ b.
D

bp(c). By the hypothesis, Ir(¢) < rp, and thus D |= (@, ¢, %) < @b, p(c), o).
Hence, the number of elements of A satisfying ¢(d, -, %) is exactly the same as the

By the Permutation Lemma, we get a permutation p : A — A such that dec ~

number of elements satisfying go(l_;, -,70), which implies D | (@, 1) < w(g, 70).
This concludes the proof of locality of L.

Putting everything together, let e be a pure relational expression of
ALGaggr (All, All). By Theorem 2, it is expressible in Lagg, (All, All), and by Propo-
sition 1, by a L¢ formula of finite rank. Hence, it is local.

7 SQL over ordered domains

So far the only nonnumerical selection was of the form o;=;, testing equality of
two attributes. We now extend the language to ALGa<ggr by allowing selections
of the form o;<;(e), where both i and j are of the type b, and < is some fixed
linear ordering on the domain Dom.

This small addition changes the situation dramatically, and furthermore in
this case we can’t make blanket statements like “queries are local” — a lot will

depend on the numerical domain Dom and available arithmetic operations.

7.1 Natural numbers

Let Num = N. We consider a version of ALGager that has the most usual set of
arithmetic and aggregate operators: namely, +, -, < and constants for arithmetic,
and the aggregate Y. This suffices to express aggregates MIN, MAX, COUNT, TOTAL,
but certainly not AVG, which produces rational numbers.

We shall use the notations:

— SQLy for ALGager({+,,<,0,1},{X}), and

o SQL§ for ALszggr({'i': 5 <, 0,11 {Z}).

It is sufficient to have constants just for 0 and 1, as all other numbers are definable
with +.

We show how a well-known counting logic FO(C) [3] can be embedded into
SQLy . The importance of this lies in the fact that FO(C) over ordered structures
captures a complexity class, called TC? [3,26], for which no nontrivial general

lower bounds are known. In fact, although TC? is contained in DLOGSPACE,
the containment is not known to be proper, and to this day we don’t even know
if TC® # NP. Moreover, there are indications that proving such a separation
result, at least by traditional methods, is either impossible, or would have some
very unexpected cryptographic consequences [27].

Definition of FO(C) (see [3,10,19]) It is a two-sorted logic, with second sort
being the sort of natural numbers. That is, a structure D is of the form

({as,...,an},{1,...,n}, <, +,,1,n, R1,..., Ry),

where the relations R; are defined on the domain {ay,...,a,}, while on the nu-
merical domain {1,...,n} one has 1,n, < and +, - interpreted as ternary pred-
icates (e.g., +(x,y,2) holds iff x + y = 2). This logic extends first-order by
counting quantifiers iz p(z), meaning that at least i elements satisfy ¢; here
i refers to the numerical domain {1,...,n} and z to the domain {ay,...,a,}.

These quantifiers bind z but not 1.
Theorem 4. OQver ordered structures, FO(C) C SQL§. In particular,
uniform TC® C sqrLg.

Proof sketch. With order and aggregate TOTAL, one can define the set {1,...,m}
where m =| adom (D) | (by counting the number of elements not greater than
each element in the active domain). On this set, one defines +, -, <, and then uses
the standard translation of calculus into algebra, except for using the aggregate
> to translate counting quantifiers. 0

Corollary 1. Assume that reachability is not expressible in SQL§. Then uniform
TCP is properly contained in NLOGSPACE.

As separation of complexity classes is currently beyond reach, so is proving
expressivity bounds for sQLy.

One can also show a closely-related upper bound on the class of decision
problems expressible in SQLY:

Proposition 2. Every Boolean query in SQLY is contained in P-uniform TCY.

Notice that the reachability query, even over ordered domains of nodes, is
order-independent; that is, the result does not depend on a particular ordering
on the nodes, just on the graph structure. Could it be that order-independent
queries in sQLy and sQLyS are the same? Of course, such a result would imply
that TC" is properly contained in DLOGSPACE, and several papers suggested
this approach towards separating complexity classes. Unfortunately, it does not
work, as shown in [17]:

Proposition 3. There exist order-independent non-local queries expressible in
SQLy . Thus, there are order-independent SQLY queries not expressible in SQLy.
Proof sketch. On the graph of an n-element successor relation with an extra pred-
icate P interpreted as the first |log, n] elements, one can define the reachability
query restricted to the elements of P. 0

Counting abilities of SQLy are essential for this result, as its analog for rela-
tional calculus does not hold [9].

7.2 Rational Numbers

The language sqQLy falls short of the class of queries real SQL can define, as it
only uses natural numbers. To deal with rational arithmetic (and thus to permit
aggregates such as AVG), we extend the numerical domain Num to that of rational
numbers Q, and introduce the language

SQLY a8 ALGre ({+, = +,<,0,1}, {Z}).

This is a stronger language than sQLS (and thus than FO(C)) - to see this,
note that it can define rational numbers, and if one represents those by pairs of
natural numbers, in some queries these numbers may grow exponentially with
the size of the database: something that cannot happen in the context of SQLY.

The most interesting feature of SQL(<P is perhaps that it is capable of coding
inputs with numbers:

Theorem 5. Let SC be a pure relational schema. Then there is an SQL& ex-
pression esc of type n such that for every SC-database D, esc(D) is a single
rational number, and

Dy #Dy = esc(D1)# esc(Da)

Proof sketch. The proof is based on the following: if P; and P, are two distinct

nonempty sets of prime numbers, then ZpePl % # ZPEPQ %. We then code
tuples with prime numbers (at most polynomial in the size of the input) and
add up inverses of those codes. 0

Thus, with the addition of some arithmetic operations, SQLa can express
many queries; in particular, SQL& extended with all computable numerical func-
tions expresses all computable queries over pure relational schemas! In fact, to
express all computable Boolean queries over such schemas, it suffices to add all
computable functions from Q to {0,1}. In contrast, one can show that adding
all computable functions from N to {0,1} to sQLS does not give us the same
power, as the resulting queries can be coded by non-uniform TCP circuits. Still,
the coding is just of theoretical interest; even for graphs with 20 nodes it can

produces codes of the form % with p, ¢ relatively prime, and ¢ > 10'990; for

g > 101999 one needs only 60 nodes.

8 Conclusion

Did SQL3 designers really have to introduce recursion, or is it expressible with
what’s already there? Our results show that they clearly had a good reason for
adding a new construct, because:

1. Over unordered types, reachability queries cannot be expressed by the basic
SQL SELECT-FROM-WHERE-GROUPBY-HAVING statements; in fact, all queries
expressible by such statements are local.

2. Over ordered domains, with limited arithmetic, reachability queries are most
likely inexpressible, but proving this is hard as separating some complexity
classes (and perhaps as hard as refuting some cryptographic assumptions).
Adding more arithmetic operations might help, but only at the expense of
encodings which are several thousand digits long — so the new construct is
clearly justified.

Being a theoretician, I like to see proofs of theorems (even folk theorems!),
hence writing all those papers [23, 21,24, 18] on the expressiveness of SQL. Hav-
ing finished [18] just over a year ago, I felt that the whole story can be presented
in a nice and clean fashion, without asking the reader to spend days studying the
prerequisites. I've attempted to give such a presentation here. I hope I convinced
you that next-generation database theory texts shouldn’t just state that certain
queries are inexpressible in SQL, they should also include simple proofs of these
results.

A cknowledgements Although the presentation here is new, it is based entirely on
previous results obtained jointly with other people. Special thanks to Limsoon Wong,
with whom many of those papers were coauthored, and who in fact suggested back in
’93 that we look at the expressiveness of aggregation. The aggregate logic was developed
jointly with Limsoon, Lauri Hella, and Juha Nurmonen, who also collaborated with me
on various aspects of locality of logics. Simple proofs of locality of logics were discovered
in an attempt to answer some questions posed by Moshe Vardi. For their comments
on the paper I thank Limsoon, Lauri, Juha, Martin Grohe, Thomas Schwentick, and
Luc Segoufin. Part of this work was done while I was visiting the Verso group at
INRIA-Rocquencourt.

References

1. S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases, Addison Wesley,
1995.

2. A V. Aho and J. D. Ullman. Universality of data retrieval languages. In POPL 79,
pages 110-120.

3. D.M. Barrington, N. Immerman, H. Straubing. On uniformity within NC'. JCSS,
41:274-306, 1990.

4. P. Buneman, S. Naqvi, V. Tannen, L. Wong. Principles of programming with
complex objects and collection types. TCS, 149 (1995), 3—48.

5. J. Celko. SQL for Smarties: Advanced SQL Programming. Morgan Kaufmann,
2000.

6. M. Consens and A. Mendelzon. Low complexity aggregation in GraphLog and
Datalog, TCS 116 (1993), 95-116. Extended abstract in ICDT’90.

7. C. J. Date and H. Darwen. A Guide to the SQL Standard. Addison Wesley, 1997.

8. G. Dong, L. Libkin and L. Wong. Local properties of query languages. TCS 239
(2000), 277-308. Extended abstract in ICDT’97.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.
22.

23.

24.

25.

26.

27.
28.

M. Grohe and T. Schwentick. Locality of order-invariant first-order formulas. ACM
TOCL, 1 (2000), 112-130.

K. Etessami. Counting quantifiers, successor relations, and logarithmic space,
JCSS, 54 (1997), 400-411.

R. Fagin, L. Stockmeyer and M. Vardi, On monadic NP vs monadic co-NP, In-
formation and Computation, 120 (1995), 78-92.

S. Finkelstein, N. Mattos, I.S. Mumick, and H. Pirahesh. Expressing recursive
queries in SQL. ANSI Document X3H2-96-075r1, 1996.

H. Gaifman. On local and non-local properties, Proceedings of the Herbrand Sym-
posium, Logic Colloguium ’81, North Holland, 1982.

E. Gréadel and Y. Gurevich. Metafinite model theory. Information and Computa-
tion 140 (1998), 26-81.

W. Hanf. Model-theoretic methods in the study of elementary logic. In J.W. Ad-
dison et al, eds, The Theory of Models, North Holland, 1965, pages 132-145.

L. Hella. Logical hierarchies in PTIME. Information and Computation, 129 (1996),
1-19.

L. Hella, L. Libkin and J. Nurmonen. Notions of locality and their logical charac-
terizations over finite models. J. Symb. Logic, 64 (1999), 1751-1773.

L. Hella, L. Libkin, J. Nurmonen and L. Wong. Logics with aggregate operators.
In LICS’99, pages 35—44.

N. Immerman. Descriptive Complezity. Springer Verlag, 1998.

A. Klug. Equivalence of relational algebra and relational calculus query languages
having aggregate functions. J. ACM 29 (1982), 699-717.

L. Libkin. On the forms of locality over finite models. In LICS’97, pages 204-215.
L. Libkin. Logics with counting and local properties. ACM TOCL, 1 (2000), 33-59.
Extended abstract in LICS’98.

L. Libkin, L. Wong. Query languages for bags and aggregate functions. JCSS 55
(1997), 241-272. Extended abstract in PODS’94.

L. Libkin and L. Wong. On the power of aggregation in relational query languages.
In DBPL’97, pages 260-280.

P. O'Neil. Database: Principles, Programming, Performance. Morgan Kaufmann,
1994.

I. Parberry and G. Schnitger. Parallel computation and threshold functions. JCSS
36 (1988), 278-302.

A. Razborov and S. Rudich. Natural proofs. JCSS 55 (1997), 24-35.

P. Wadler. Comprehending monads. Mathematical Structures in Computer Science
2 (1992), 461-493.

