
Expressive Power of SQLLeonid Libkin1University of Toronto and Bell LaboratoriesEmail: libkin@cs.toronto.eduAbstract. It is a folk result in database theory that SQL cannot ex-press recursive queries such as reachability; in fact, a new construct wasadded to SQL3 to overcome this limitation. However, the evidence forthis claim is usually given in the form of a reference to a proof that re-lational algebra cannot express such queries. SQL, on the other hand, inall its implementations has three features that fundamentally distinguishit from relational algebra: namely, grouping, arithmetic operations, andaggregation.In the past few years, most questions about the additional power pro-vided by these features have been answered. This paper surveys thoseresults, and presents new simple and self-contained proofs of the mainresults on the expressive power of SQL. Somewhat surprisingly, tiny dif-ferences in the language de�nition a�ect the results in a dramatic way:under some very natural assumptions, it can be proved that SQL cannotde�ne recursive queries, no matter what aggregate functions and arith-metic operations are allowed. But relaxing these assumptions just a tinybit makes the problem of proving expressivity bounds for SQL as hardas some long-standing open problems in complexity theory.1 IntroductionWhat queries can one express in SQL? Perhaps more importantly, one would liketo know what queries cannot be expressed in SQL { after all, it is the inability toexpress certain properties that motivates language designers to add new features(at least one hopes that this is the case).This seems to be a rather basic question that database theoreticians shouldhave produced an answer to by the beginning of the 3rd millennium. After all,we've been studying the expressive power of query languages for some 20 yearsnow (and in fact more than that, if you count earlier papers by logicians onthe expressiveness of �rst-order logic), and SQL is the de-facto standard of thecommercial database world { so there surely must be an answer somewhere inthe literature.When one thinks of the limitations of SQL, its inability to express reachabilityqueries comes to mind, as it is well documented in the literature (in fact, inmany database books written for very di�erent audiences, e.g. [1, 5, 7, 25]). Letus consider a simple example: suppose that R(Src,Dest) is a relation with ightinformation: Src stands for source, and Dest for destination. To �nd pairs of

cities (A;B) such that it is possible to y from A to B with one stop, one woulduse a self-join:SELECT R1.Src, R2.DestFROM R AS R1, R AS R2WHERE R1.Dest=R2.SrcWhat if we want pairs of cities such that one makes two stops on the way? Thenwe do a more complicated self-join:SELECT R1.Src, R3.DestFROM R AS R1, R AS R2, R AS R3WHERE R1.Dest=R2.Src AND R2.Dest=R3.SrcTaking the union of these two and the relation R itself we would get the pairs ofcities such that one can y from A to B with at most two stops. But often oneneeds a general reachability query in which no a priori bound on the number ofstops is known; that is, whether it possible to get to B from A.Graph-theoretically, this means computing the transitive closure of R. It iswell known that the transitive closure of a graph is not expressible in relationalalgebra or calculus; in particular, expressions similar to those above (which hap-pen to be unions of conjunctive queries) cannot possibly express it. This appearsto be a folk result in the database community; while many papers do refer to [2]or some other source on the expressive power of �rst-order logic, many texts juststate that relational algebra, calculus and SQL cannot express recursive queriessuch as reachability.With this limitation in mind, the SQL3 standard introduced recursion ex-plicitly into the language [7, 12]. One would write the reachability query asWITH RECURSIVE TrCl(Src,Dest) ASRUNIONSELECT TrCl.Src, R.DestFROM TrCl, RWHERE TrCl.Dest = R.SrcSELECT * FROM TrClThis simply models the usual datalog rules for transitive closure:trcl(x; y) :- r(x; y)trcl(x; y) :- trcl(x; z); r(z; y)When a new construct is added to a language, a good reason must existfor it, especially if the language is a declarative query language, with a smallnumber of constructs, and with programmers relying heavily on its optimizer.The reason for introducing recursion in the next SQL standard is precisely thisfolk result stating that it cannot be expressed in the language. But when onelooks at what evidence is provided to support this claim, one notices that allthe references point to papers in which it is proved that relational algebra and

calculus cannot express recursive queries. Why is this not su�cient? Considerthe following querySELECT R1.AFROM R1, R2WHERE (SELECT COUNT(*) FROM R1) >(SELECT COUNT(*) FROM R2)This query tests if jR1 j>jR2 j: in that case, it returns the A attribute of R1,otherwise it returns the empty set. However, logicians proved it long time agothat �rst-order logic, and thus relational calculus, cannot compare cardinalitiesof relations, and yet we have a very simple SQL query doing precisely that.The conclusion, of course, is that SQL has more power than relational alge-bra, and the main source of this additional power is its aggregation and groupingconstructs, together with arithmetic operations on numerical attributes. Butthen one cannot say that the transitive closure query is not expressible in SQLsimply because it is inexpressible in relational algebra. Thus, it might appearthat the folk theorem about recursion and SQL is an unproven statement.Fortunately, this is not the case: the statement was (partially) proved in thepast few years; in fact, a series of papers proved progressively stronger results,�nally establishing good bounds on the expressiveness of SQL.My main goal here is twofold:(a) I give an overview of these recent results on the expressiveness of SQL. Weshall see that some tiny di�erences in the language de�nition a�ect the resultsin a dramatic way: under some assumptions, it can be shown that reachabilityand many other recursive queries aren't expressible in SQL. However, undera slightly di�erent set of assumptions, the problem of proving expressivitybounds for SQL is as hard as separating some complexity classes.(b) Due to a variety of reasons, even the simplest proofs of expressivity resultsfor SQL are not easy to follow; partly this is due to the fact that most papersused the setting of their predecessors that had unnecessary complications inthe form of nested relations, somewhat unusual (for mainstream databasepeople) languages and in�nitary logics. Here I try to get rid of those compli-cations, and present a simple and self-contained proof of expressivity boundsfor SQL.Organization In the next section, we discuss the main features that distin-guish SQL from relational algebra, in particular, aggregate functions. We thengive a brief overview of the literature on the expressive power of SQL.Starting with Section 3, we present those results in more detail. We intro-duce relational algebra with grouping and aggregates, Algaggr, that essentiallycaptures basic SQL statements. Section 4 states the main result on the expres-sive power of SQL, namely that queries it can express are local. If one thinksof queries on graphs, it means that the decision whether a tuple ~t belongs tothe output is determined by a small neighborhood of ~t in the input graph; thereachability query does not have this property.

Section 5 de�nes an aggregate logic Laggr and shows a simple translationof the algebra with aggregates Algaggr into this logic. Then, in Section 6, wepresent a self-contained proof of locality of Laggr (and thus of Algaggr).In Section 7, we consider an extension Alg<aggr of Algaggr in which non-numerical order comparisons are allowed, and show that it is more powerful thanthe unordered version. Furthermore, no nontrivial bounds on the expressivenessof this language can be proved without answering some deep open problems incomplexity theory.Section 8 gives a summary and concluding remarks.2 SQL vs. Relational AlgebraWhat exactly is SQL? There is, of course, a very long standard, that lists nu-merous features, most of which have very little to do with the expressiveness ofqueries. As far as expressiveness is concerned, the main features that distinguishSQL from relational algebra, are the following:{ Aggregate functions: one can compute, for example, the average value in acolumn. The standard aggregates in SQL are COUNT, TOTAL, AVG, MIN, MAX.{ Grouping: not only can one compute aggregates, one can also group themby values of di�erent attributes. For example, it is possible to compute theaverage salary for each department.{ Arithmetic: SQL allows one to apply arithmetic operations to numericalvalues.For example, for relations S1(Empl,Dept) and S2(Empl,Salary), the follow-ing query (assuming that Empl is a key for both relations) computes the averagesalary for each department which pays total salary at least 100,000:(�) SELECT S1.Dept, AVG(S2.Salary)FROM S1, S2WHERE S1.Empl=S2.EmplGROUPBY S1.DeptHAVING TOTAL(S2.Salary) > 100000Next, we address the following question: what is an aggregate function? The�rst paper to look into this was probably [20]: it de�ned aggregate functionsas f : R ! Num, where R is the set of all relations, and Num is a numericaldomain. A problem with this approach is that it requires a di�erent aggregatefunction for each relation and each numerical attribute in it; that is, we do nothave just one aggregate AVG, but in�nitely many of those. This complicationarises from dealing with duplicates in a correct manner. However, duplicates canbe incorporated in a much more elegant way, as suggested in [14], which we shallfollow here. According to [14], an aggregate function F is a collectionF = ff0; f1; f2; : : : ; f!gwhere fk is a function that takes a k-element multiset (bag) of elements of Numand produces an element of Num. For technical reasons, we also add a constant

f! 2 Num whose intended meaning is the value of F on in�nite multisets. Forexample, if Num is N, or Q, or R, we de�ne the aggregate P = fs0; s1; : : :g bysk(fjx1; : : : ; xkjg) =Pki=1 xi; furthermore, s0 = s! = 0 (we use the fj jg bracketsfor multisets). This corresponds to SQL's TOTAL. For COUNT, one de�nes C =fc0; c1; : : :g with ck returning k (we may again assume c! = 0). The aggregateAVG is de�ned as A = fa0; a1; : : :g with ak(X) = sk(X)ck(X) , a0 = a! = 0.Languages that model SQL and their expressive powerIt is very hard to prove formal statements about a language like SQL: to putit mildly, its syntax is not very easy to reason about. The research communityhas come up with several proposals of languages that capture the expressivenessof SQL. The earliest one is perhaps Klug's extension of relational algebra bygrouping and aggregation [20]: if e is an expression producing a relation with mattributes, ~A is a set of attributes, and f is an aggregate function, then eh ~A; fiis a new expression that produces a relation with m+1 attributes. Assuming fapplies to attribute A0, and ~B is the list of all attributes of the output of e, thesemantics is best explained by SQL:SELECT ~B, f(A0)FROM eGROUPBY ~AKlug's paper did not analyze the expressive power of this algebra, nor did it showhow to incorporate arithmetic operations. The main contribution of [20] is anequivalence result between the algebra and an extension of relational calculus.However, the main focus of that extension is its safety, and the resulting logic isextremely hard to deal with, due to many syntactic restrictions.To the best of my knowledge, the �rst paper that directly addressed the prob-lem of the expressive power of SQL, was the paper by Consens and Mendelzon inICDT'90 [6]. They have a datalog-like language, whose nonrecursive fragment isexactly as expressive as Klug's algebra. Then they show that this language can-not express the transitive closure query under the assumption that DLOGSPACEis properly included in NLOGSPACE. The reason is simple: Klug's algebra (withsome simple aggregates) can be evaluated in DLOGSPACE, while transitive clo-sure is complete for NLOGSPACE.That result can be viewed as a strong evidence that SQL is indeed incapableof expressing reachability queries. However, it is not completely satisfactory forthree reasons. First, nobody knows how to separate complexity classes. Second,what if one adds more complex aggregates that increase the complexity of queryevaluation? And third, what if the input graph has a very simple structure (forexample, no node has outdegree more than 1)? In this case reachability is inDLOGSPACE, and the argument of [6] does not work.In early 90s, many people were looking into languages for collection types.Functional statically typechecked query languages became quite fashionable, andthey were produced in all kinds of avors, depending on particular collection

types they had to support. It turned out that a set language capturing essentiallythe expressive power of a language for bags, could also model all the essentialfeatures of SQL [23]. The problem was that the language dealt with nested re-lations, or complex objects. But then [23] proved a conservativity result, statingthat nested relations aren't really needed if the input and output don't havethem. That made it possible to use a non-nested fragment of languages inspiredby structural recursion [4] and comprehensions [28] as a \theoretical reconstruc-tion of SQL."Several papers dealt with this language, and proved a number of expressivitybounds. The �rst one, appearing in PODS'94 [23], showed that the languagecould not express reachability queries. The proof, however, was very far fromideal. It only proved inexpressibility of transitive closure in a way that was veryunlikely to extend to other queries. It relied on a complicated syntactic rewritingthat wouldn't work even for a slightly di�erent language. And the proof wouldn'twork if one added more aggregate functions.The �rst limitation was addressed in [8] where a certain general property ofqueries expressible in SQL was established. However, the other two problems notonly remained, but were exacerbated: the rewriting of queries became particu-larly unpleasant. In an attempt to remedy this, [21] gave an indirect encoding ofa fragment of SQL into �rst-order logic with counting, FO(C) (it will be formallyde�ned later). The restriction was to natural numbers, thus excluding aggregatessuch as AVG. The encoding is bound to be indirect, since SQL is capable of ex-pressing queries that FO(C) cannot express. The encoding showed that for anyquery Q in SQL, there exists a FO(C) query Q0 that shares some nice propertieswith Q. Then [21] established some properties of FO(C) queries and transferredthem to that fragment of SQL. The proof was much cleaner than the proofs of[23, 8], at the expense of a less expressive language.After that, [24] showed that the coding technique can be extended to SQLwith rational numbers and the usual arithmetic operations. The price to pay wasthe readability of the proof { the encoding part became very unpleasant.That was a good time to pause and see what must be done di�erently. How dowe prove expressivity bounds for relational algebra? We do it by proving boundson the expressiveness of �rst-order logic (FO) over �nite structures, since rela-tional algebra has the same power as FO. So perhaps if we could put aggregatesand arithmetic directly into logic, we would be able to prove expressivity boundsin a nice and simple way?That program was carried out in [18], and I'll survey the results below. Oneproblem with [18] is that it inherited too much unnecessary machinery from itspredecessors [23, 8, 24, 21, 22]: one had to deal with languages for complex objectsand apply conservativity results to get down to SQL; logics were in�nitary tostart with, although in�nitary connectives were not necessary to translate SQL;and expressivity proofs went via a special kind of games invented elsewhere [16].Here we show that all these complications are completely unnecessary: thereis indeed a very simple proof that reachability is not expressible in SQL, andthis proof will be presented below. Our language is a slight extension of Klug's

algebra (no nesting!). We translate it into an aggregate logic (with no in�nitaryconnectives!) and prove that it has nice locality properties (without using games!)3 Relational algebra with aggregatesTo deal with aggregation, we must distinguish numerical columns (to whichaggregates can be applied) from non-numerical ones. We do it by typing: a typeof a relation is simply a list of types of its attributes.We assume that there are two base types: a non-numerical type b with domainDom, and a numerical type n, whose domain is denoted by Num (it could beN;Z;Q;R, for example).A type of a relation is a string over the alphabet fb; ng. A relation R oftype a1 : : : am has m columns, the ith one containing entries of type ai. In otherwords, such a relation is a �nite subset ofmYi=1 dom(ai)where dom(b) = Dom and dom(n) = Num. For example, the type ofS2(Empl,Salary) is bn. For a type t, t:i denotes the ith position in the string.The length of t is denoted by jt j.A database schema SC is a collection of relation names Ri and their typesti; we write Ri : ti if the type of Ri is ti.Next we de�ne expressions of relational algebra with aggregates, parameter-ized by a collection
 of functions and predicates on Num, and a collection � ofaggregates, over a given schema SC . Expressions are divided into three groups:the standard relational algebra, arithmetic, and aggregation/grouping. In whatfollows, m stands for jt j, and fi1; : : : ; ikg for a sequence 1 � i1 < : : : < ik � m.Relational AlgebraSchema Relation If R : t is in SC , then R is an expression of type t.Permutation If e is an expression of type t and � is a permutation off1; : : : ;mg, then ��(e) is an expression of type �(t).Boolean Operations If e1; e2 are expressions of type t, then so are e1[e2; e1\e2; e1 � e2.Cartesian Product For e1 : t1, e2 : t2, e1� e2 is an expression of type t1 � t2.Projection If e is of type t, then �i1;:::;ik (e) is an expression of type t0 wheret0 is the string composed of t:ijs, in their order.Selection If e is an expression of type t, i; j � m, and t:i = t:j, then �i=j(e)is an expression of type t. ArithmeticNumerical Selection If P � Numk is a k-ary numerical predicate from
,and i1; : : : ; ik are such that t:ij = n, then �[P]i1;:::;ik(e) is an expression oftype t for any expression e of type t.

Function Application If f : Numk ! Num is a function from
, i1; : : : ; ikare such that t:ij = n, and e is an expression of type t, then Apply[f]i1;:::;ik (e)is an expression of type t �n. If k = 0 (i.e. f is a constant), then Apply[f]�(e)is an expression of type t � n.Aggregation and GroupingAggregation Let F be an aggregate from �. For any expression e of type tand i such that t:i = n, Aggr[i : F](e) is an expression of type t � n.Grouping Assume e : u is an expression over SC [fS : sg. Let e0 be anexpression of type t � s over SC , where j t j= l. Then Groupl[�S:e](e0) is anexpression of type t � u.Semantics For the relational algebra operations, this is standard. The opera-tion �� is permutation: each tuple (a1; : : : ; am) is replaced by (a�(1); : : : ; a�(m)).The condition i = j in the selection predicate means equality of the ith andthe jth attribute: (a1; : : : ; am) is selected if ai = aj . Note that using Booleanoperations we can model arbitrary combinations of equalities and disequalitiesamong attributes.For numerical selection, �[P]i1;:::;ik selects (a1; : : : ; am) i�P (ai1 ; : : : ; aik) holds. Function application replaces each (a1; : : : ; am) with(a1; : : : ; am; f(ai1 ; : : : ; aik)).The aggregate operation is SQL SELECT ~A;F(Ai) FROM e, where ~A =(A1; : : : ; Am) is the list of attributes. More precisely, if e evaluates to ~a1; : : : ;~apwhere ~aj = (a1j ; : : : ; amj), then Aggr[i : F](e) replaces each ~aj with (a1j ; : : : ; amj ; f)where f = F(fjai1; : : : ; aipjg).Finally, Groupl[�S:e](e0) groups the tuples by the values of their �rst l at-tributes and applies e to the sets formed by this grouping. For example:a1 b1a1 b2a2 c1a2 c2 ! a1 b1b2a2 c1c2 �S:e�! a1 d1d2a2 g1 ! a1 d1a1 d2a2 g1assuming that e returns fd1; d2g when S = fb1; b2g, and e returns fg1g forS = fc1; c2g.Formally, let e0 evaluate to f~a1; : : : ;~apg. We split each tuple ~aj = (a1j ; : : : ; amj)into ~a0j = (a1j ; : : : ; alj) that contains the �rst l attributes, and ~a00j = (al+1j ; : : : ; amj)that contains the remaining ones. This de�nes, for each ~aj , a set Sj = f~a00r j ~a0r =~a0jg. Let Tj = f~b1j ; : : : ;~bmjj g be the result of applying e with S interpreted as Sj .Then Groupl[�S:e](e0) returns the set of tuples of the form (~a0j ;~bij), 1 � j � p,1 � i � mj .Klug's algebra It combines grouping and aggregation in the same operationas follows:

Grouping & Aggregation Let t be of length m. Let l < i1 < : : : < ik witht:ij = n, and let F1; : : : ;Fk be aggregates from �. Then, for e an expressionof type t, Aggrl[i1 : F1; : : : ; ik : Fk] is an expression of type t � n : : : n (t withk ns added at the end).The semantics is best explained by SQL:SELECT #1; : : : ;#m;F1(#i1); : : : ;Fk(#ik)FROM EGROUPBY #1; : : : ;#lwhere E is the result of the expression e. (As presented in [20], the algebra doesnot have arithmetic operations, and the aggregates are limited to the standard�ve.)Note that there are no higher-order operators in Klug's algebra, and that itis expressible in our algebra with aggregates, as Aggrl[i1 : F1; : : : ; ik : Fk](e0) isequivalent to Groupl[�S:e](e0), where e isAggr[ik � l : Fk](Aggr[ik�1 � l : Fk�1](� � � (Aggr[i1 � l : F1](S)) � � �))Example The query (�) from Section 2 is de�ned by the following expression(which uses the operator combining grouping with aggregation):�1;4(�[> 100000]5((Aggr1[3 : A; 3 : �](�2;3;4(�1=3(S1 � S2))))))where A is the aggregate AVG, P is TOTAL, and > 100000 is a unary predicateon N which holds of numbers n > 100000.Example The only aggregate that can be applied to non-numerical attributes inSQL is COUNT that returns the cardinality of a column. It can be easily expressedin Algaggr as long as the summation aggregate P and constant 1 are present.We show how to de�ne Countm(e):SELECT #1; : : : ;#m� 1,COUNT(#m)FROM EGROUPBY #1; : : : ;#mFirst, we add a new column, whose elements are all 1s: e1 = Apply[1]�(e).Then de�ne an expression e0 = Aggr[2 : �](S), and use it to producee2 = Groupm�1[�S:e0](e1):This is almost the answer: there are extra 2 attributes, the mth attribute of e,and those extra 1s. So �nally we haveCountm(e) = �1;:::;m�1;m+2(Groupm�1[�S:Aggr[2 : �](S)](Apply[1]�(e)))Remark In previous papers on the expressive power of SQL [23, 24, 21, 18], weused languages of a rather di�erent avor, based on structural recursion [4] andcomprehensions [28]. One can show, however, that those language and Algaggrhave the same expressiveness, provided they are supplied with the same set ofaggregates and arithmetic functions. The proof of this will be given in the fullversion.

4 Locality of SQL queriesWhat kind of general statement can one provide that would give us strong evi-dence that SQL cannot express recursive queries? For that purpose, we shall usethe locality of queries. Locality was the basis of a number of tools for provingexpressivity bounds of �rst-order logic [15, 13, 11], and it was recently studiedon its own and applied to more expressive logics [17, 22].: : : b : : : : : :-�: : : rr : : :: : :: : : a �-- �� �� �� �� --- - - - -Fig. 1. A local formula cannot distinguish (a; b) from (b; a).The general idea of this notion is that a query can only look at a smallportion of its input. If the input is a graph, \small" means a neighborhood of a�xed radius. For example, Fig. 1 shows that reachability is not local: just take agraph like the one shown in the picture so that there would be two points whosedistance from the endpoints and each other is more than 2r, where r is the �xedradius. Then locality of query says that (a; b) and (b; a) are indistinguishable, asthe query can only look at the r-neighborhoods of a and b. Transitive closure,on the other hand, does distinguish between (a; b) and (b; a), since b is reachablefrom a but not vice versa.We now de�ne locality formally. We say that a schema SC is purely relationalif there are no occurrences of the numerical type n in it. Let us �rst restrictour attention to graph queries. Suppose we have a purely relational schemaR : bb; that is, the relation R contains edges of a directed graph. Suppose e is anexpression of the same type bb; that is, it returns a directed graph. Given a pairof nodes a; b in R, and a number r > 0, the r-neighborhood of a; b in R, NRr (a; b),is the subgraph on the set of nodes in R whose distance from either a or b is atmost r. The distance is measured in the undirected graph corresponding to R,that is, R [R�1.We write (a; b) �Rr (c; d) when the two neighborhoods,NRr (a; b) andNRr (c; d),are isomorphic; that is, when there exists a (graph) isomorphism h between themsuch that h(a) = c; h(b) = d. Finally, we say that e is local if there is a numberr, depending on e only, such that(a; b) �Rr (c; d)) (a; b) 2 e(R) i� (c; d) 2 e(R):We have seen that reachability is not local. Another example of a non-localquery is a typical example of recursive query called same-generation:sg(x; x) :-sg(x; y) :- R(x0; x); R(y0; y); sg(x0; y0)

This query is not local either: consider, for example, a graph consisting of twochains: (a; b1); (b1; b2); : : : ; (bm1 ; bm) and (a; c1); (c1; c2); : : : ; (cm1 ; cm). Assumethat same-generation is local, and r > 0 witnesses that. Take m > 2r + 3, andnote that the r-neighborhoods of (br+1; cr+1) and (br+1; cr+2) are isomorphic. Bylocality, this would imply that these pairs agree on the same-generation query,but in fact we have (br+1; cr+1) 2 sg(R) and (br+1; cr+2) 62 sg(R).We now state our main result on locality of queries, that applies to thelanguage in which no limit is placed on the available arithmetic and aggregatefunctions { all are available. We denote this language by Algaggr(All;All).Theorem 1 (Locality of SQL). Let e be a pure relational graph query inAlgaggr(All;All), that is, an expression of type bb over the scheme of one symbolR : bb. Then e is local.That is, neither reachability, nor same-generation, is expressible in SQL overthe base type b, no matter what aggregate functions and arithmetic operationsare available. Inexpressibility of many other queries can be derived from this, forexample, tests for graph connectivity and acyclicity.Our next goal is to give an elementary, self-contained proof of this result. Therestriction to graph queries used in the theorem is not necessary; the result canbe stated in greater generality, but the restriction to graphs makes the de�nitionof locality very easy to understand. The proof will consist of three steps:1. It is easier to prove expressivity bounds for a logic than for an algebra. Weintroduce an aggregate logic Laggr, as an extension of �rst-order logic, andshow how Algaggr queries are translated into it.2. The logic Laggr is still a bit hard to deal with it, because of the aggregateterms. We show that we can replace aggregate terms by counting quanti�ers,thereby translating Laggr into a simpler logic LC. The price to pay is thatLC has in�nitary connectives.3. We note that any use of an in�nitary connective resulting from translationof Laggr into LC applies to a rather uniform family of formulae, and use thisfact to give a simple inductive proof of locality of LC formulae.5 Aggregate logic and relational algebraOur goal here is to introduce a logic Laggr into which we translate Algaggr ex-pressions. The structures for this logic are precisely relational databases over twobase types with domains Dom and Num; that is, vocabularies are just schemas.This makes the logic two-sorted; we shall also refer to Dom as �rst-sort and toNum as second-sort.We now de�ne formulae and terms of Laggr(
;�); as before,
 is a set ofpredicates and functions on Num, and � is a set of aggregates. The logic is justa slight extension of the two-sorted �rst-order logic.

A SC -structure D is a tuple hA;RD1 ; : : : ; RDk i, where A is a �nite subset ofDom, and RDi is a �nite subset of jtijYj=1 domj(D)where domj(D) = A for ti:j = b, and domj(D) = Num for ti:j = n.{ A variable of sort i is a term of sort i, i = 1; 2.{ If R : t is in SC , and ~u is a tuple of terms of type t, then R(~u) is a formula.{ Formulae are closed under the Boolean connectives _;^;: and quanti�cation(respecting sorts). If x is a �rst-sort variable, 9x is interpreted as 9x 2 A; ifk is a second-sort variable, then 9k is interpreted as 9k 2 Num.{ If P is an n-ary predicate in
 and �1; : : : ; �n are second-sort terms, thenP (�1; : : : ; �n) is a formula.{ If f is an n-ary function in
 and �1; : : : ; �n are second-sort terms, thenf(�1; : : : ; �n) is a second-sort term.{ If F is an aggregate in �, '(~x; ~y) is a formula and �(~x; ~y) a second-sortterm, then � 0(~x) = AggrF~y: ('(~x; ~y); �(~x; ~y)) is a second-sort term with freevariables ~x.The interpretation of all the constructs except the last one is completelystandard. The interpretation of the aggregate term-former is as follows: �x aninterpretation ~a for ~x, and let B = f~b j D j= '(~a;~b)g. If B is in�nite, then � 0(~a)is f!. If B is �nite, say f~b1; : : : ;~blg, then � 0(~a) is the result of applying fl to themultiset whose elements are �(~a;~bi), i = 1; : : : ; l.It is now possible to translate Algaggr into Laggr:Theorem 2. Let e : t be an expression of Algaggr(
;�). Then there is a for-mula 'e(~x) of Laggr(
;�), with ~x of type t, such that for any SC-database D,e(D) = f~a j D j= 'e(~a)gProof. For the usual relational algebra operators, this is the same as the standardtextbook translation of algebra expressions into calculus expression. So we onlyshow how to translate arithmetic operations, aggregation, and grouping.{ Numerical selection: Let e0 = �[P]i1;:::;ik (e), where P is a k-ary predicate in
. Then 'e0(~x) is de�ned as 'e(~x) ^ P (xi1 ; : : : ; xik).{ Function application: Let e0 = Apply[f]i1;:::;ik(e), where f : Numk ! Num isin
. Then 'e0(~x; q) � 'e(~x) ^ (q = f(xi1 ; : : : ; xik)).{ Aggregation: Let e0 = Aggr[i : F](e). Then 'e0 (~x; q) � 'e(~x) ^ (q =AggrF~y: ('e(~y); yi)).{ Grouping: Let e0 = Groupm[�S:e1](e2), where e1 : u is an expression overSC [fSg, and e2 over SC is of type t � s. Let ~x; ~y; ~z be of types t; s; u,respectively. Then'e0 (~x; ~z) � 9~y 'e2 (~x; ~y) ^ 'e1(~z)['e2 (~x;~v)=S(~v)]

where the second conjunct is 'e1 (~z) in which every occurrence of S(~v) isreplaced by 'e1 (~x;~v).The converse does not hold: formulae of Laggr need not de�ne safe queries,while all Algaggr queries are safe. It is possible, however, to prove a partialconverse result; see [18] for more details.6 SQL is local: the proofWe start by stating our main result in greater generality, without restriction tograph queries.Let SC be pure relational (no occurrences of type n), and D an instance ofSC . The active domain of D, adom(D), is the set of all elements of Dom thatoccur in relations ofD. The Gaifman graph ofD is the undirected graphG(D) onadom(D) with (a; b) 2 G(D) i� a; b belong to the same tuple of some relation inD. The r-sphere of a 2 adom(D), SDr (a), is the set of all b such that d(a; b) � r,where the distance d(�; �) is taken in G(D). The r-sphere of ~a = (a1; : : : ; ak)is SDr (~a) = Si�k SDr (ai). The r-neighborhood of ~a, NDr (~a), is a new database,whose active domain is SDr (~a), and whose SC -relations are simply restrictions ofthose relations in D. We write ~a �Dr ~b when there is an isomorphism of relationalstructures h : NDr (~a) ! NDr (~b) such that in addition h(~a) = ~b. Finally, we saythat a query e of type b : : : b is local if there exists a number r > 0 such that,for any database D, ~a �Dr ~b implies that ~a 2 e(D) i� ~b 2 e(D). The minimumsuch r is called the locality rank of e and denoted by lr(e).Theorem 3. Let e be a pure relational query in Algaggr(All;All), that is, anexpression of type b : : : b over a pure relational schema. Then e is local.Since Algaggr(All;All) can be translated into Laggr(All;All), we must provethat the latter is local. The proof of this is in two steps: we �rst introduce asimpler counting logic, LC, and show how to translate Laggr into it. We thengive a simple proof of locality of LC.The logic LC is simpler than Laggr in that it does not have aggregate terms.There is a price to pay for this { LC has in�nitary conjunctions and disjunctions.However, the translation ensures that for each in�nite conjunction or disjunction,there is a uniform bound on the rank of formulae in it (to be de�ned a bit later),and this property su�ces to establish locality.Logic LC The structures for LC are the same as the structures for Laggr. Theonly terms are variables (of either sort); in addition, every constant c 2 Num isa term of the second sort.Atomic formulae are R(~x), where R 2 SC , and ~x is a tuple of terms (that is,variables and perhaps constants from Num) of the appropriate sort, and x = y,where x; y are terms of the same sort.Formulae are closed under the Boolean connectives, and in�nitary connec-tives: if 'i, i 2 I , is a collection of formulae, then Wi2I 'i and Vi2I 'i are LC

formulae. Furthermore, they are closed under both �rst and second-sort quan-ti�cation.Finally, for every i 2 N, there is a quanti�er 9i that binds one �rst-sortvariable: that is, if '(x; ~y) is a formula, then 9ix '(x; ~y) is a formula whosefree variables are ~y. The semantics is as follows: D j= 9ix'(x;~a) if there are idistinct elements b1; : : : ; bi 2 A such that D j= '(bj ;~a), 1 � j � i. That is, theexistential quanti�er is witnessed by at least i elements. Note that the �rst-sortquanti�cation is superuous as 9x' is equivalent 91x '.We now introduce the notion of a rank of a formula, rk('), for both LC andLaggr. For LC, this is the quanti�er rank, but the second-sort quanti�cation doesnot count:{ For each atomic ', rk(') = 0.{ For ' = Wi ', rk(') = supi rk('), and likewise for V.{ rk(:') = rk(').{ rk(9ix ') = rk(') + 1 for x �rst-sort; rk(9k') = rk(') for k second-sort.For Laggr, the de�nition di�ers slightly.{ For a variable or a constant term, the rank is 0.{ The rank of an atomic formula is the maximum rank of a term in it.{ rk('1 � '2) = max(rk('1); rk('2)), for � 2 f_;^g; rk(:') = rk(').{ rk(f(�1; : : : ; �n)) = max1�i�n rk(�i).{ rk(9x') = rk(') + 1 if x is �rst-sort; rk(9k') = rk(') if k is second-sort.{ rk(AggrF~y: ('; �)) = max(rk('); rk(�)) +m, where m is the number of �rst-sort variables in ~y.Translating Laggr into LC This is the longest step in the proof, but althoughit is somewhat tedious, conceptually it is quite straightforward.Proposition 1. For every formula '(~x) of Laggr(All;All), there exists an equiv-alent formula '�(~x) of LC such that rk('�) � rk(').Proof. We start by showing that one can de�ne a formula 9i~x' in LC, whosemeaning is that there exist at least i tuples ~x such that ' holds. Moreover, itsrank equals rk(') plus the number of �rst-sort variables in ~x. The proof is byinduction on the length of ~x. If ~x is a single �rst-sort variable, then the countingquanti�er is already in LC. If k is a second-sort variable, then 9ik'(k; �) isequivalent to WC Vc2C '(c; �), where C ranges over i-element subsets of Num {this does not increase the rank. Suppose we can de�ne it for ~x being of lengthn. We now show how to de�ne 9i(y; ~x)' for y of the �rst sort, and 9i(k; ~x)' fork of the second sort.1. Let (~z) � 9i(y; ~x)'(y; ~x; ~z) It is the case that there are i tuples (bj ;~aj)satisfying '(y; ~x; �) i� one can �nd an l-tuple of pairs ((n1;m1); : : : ; (nl;ml))with all mjs distinct, such that{ there are at least nj tuples ~a for which the number of elements b satisfying'(b;~a; �) is precisely mj , and

{ Plj=1 nj �mj � i.Thus, (~z) is equivalent to_ l̂j=1 9nj~x (9!mjy '(y; ~x; ~z))where the disjunction is taken over all the tuples satisfying nj ;mj > 0, mjsdistinct, and Plj=1 nj � mj � i (it is easy to see that a �nite disjunctionwould su�ce), and 9!nu' abbreviates 9nu' ^ :9(n+ 1)u'.The rank of this formula equals rk(9!mjy') = rk(') + 1, plus the numberof �rst-sort variables in ~x (by the induction hypothesis) { that is, rk(') plusthe number of �rst-sort variables in (y; ~x).2. Let (~z) � 9i(k; ~x)'(k; ~x; ~z). The proof is identical to the proof above up tothe point of writing down the quanti�er 9!mjk'(k; �) { it is replaced by theformula WC(Vc2C '(c; �) ^ Vc62C :'(c; �)) where C ranges over mj-elementsubsets of Num. As the rank of this equals rk('), we conclude that the rankof the formula equivalent to (~z) equals rk(') plus the number of �rst-sortvariables in ~x.This concludes the proof that counting over tuples is de�nable in LC. Withthis, we prove the proposition by induction on the formulae and terms. We alsoproduce, for each second-sort term �(~x) of Laggr, a formula � (~x; z) of LC, withz of the second sort, such that D j= � (~a; q) i� the value of �(~a) on D is q.We may assume, without loss of generality, that parameters of atomic Laggrformulae R(�) and P (�) are tuples of variables: indeed, if a second-sort termoccurs in R(��i�), it can be replaced by 9k (k = �i) ^ R(�k�) without increasingthe rank. We now de�ne the translation as follows:{ For a second-sort term t which is a variable q, t(q; z) � (z = q). If t is aconstant c, then t(z) � (z = c).{ For an atomic ' of the form x = y, where x; y are �rst-sort, '� = '.{ For an atomic ' of the form P (�1(~x); : : : ; �n(~x)), '�(~x) isW(c1;:::;cn)2P Vni=1 �i(~x; ci). Note that rk('�) = maxi rk(�i) �maxi rk(�i) = rk(').{ ('1 _ '2)� = '�1 _ '�2, ('1 ^ '2)� = '�1 ^ '�2, (:')� = :'�, (9x')� = 9x'�for x of either sort. Clearly, this does not increase the rank.{ For a term �(~x) = f(�1(~x); : : : ; �n(~x)), we have � (~x; z) = _(c;c1;:::;cn):c=f(~c) (z = c) ^ n̂j=1 �j (~x; cj)Again it is easy to see that rk(�) � rk(�).{ For a term � 0(~x) = AggrF~y: ('(~x; ~y); �(~x; ~y)), � 0(~x; z) is de�ned as['�1(~x) ^ (z = f1)] _ [:'�1(~x) ^ 0(~x; z)]

where '�1(~x) tests if the number of ~y satisfying '(~x; ~y) is in�nite, and 0produces the value of the term in the case the number of such ~y is �nite.The formula '�1(~x) can be de�ned as_i:yi of 2nd sort _C�Num;jCj=1 ĉ2C '�i (~x; c)where '�i (~x; yi) � 9(y1; : : : ; yi�1; yi+1; : : : ; ym)'�(~x; ~y).The formula 0(~x; z) is de�ned as the disjunction of :9~y'�(~x; ~y) ^ z = f0and _c;(c1;n1);:::;(cl;nl) 0BBBB@ z = c^ 9!n1~y ('�(~x; ~y) ^ � (~x; ~y; c1))^ � � �^ 9!nl~y ('�(~x; ~y) ^ � (~x; ~y; cl))^ 8~yVa2Num('�(~x; ~y) ^ � (~x; ~y; a)! Wli=1(a = ci))1CCCCAwhere the disjunction is taken over all tuples (c1; n1); : : : ; (cl; nl), l > 0; ni >0 and values c 2 Num such thatF(fjc1; : : : ; c1| {z }n1 times ; : : : ; cl; : : : ; cl| {z }nl times jg) = cIndeed, this formula asserts that either '(~x; �) does not hold and then z = f0,or that c1; : : : ; cl are exactly the values of the term �(~x; ~y) when '(~x; ~y) holds,and that nis are the multiplicities of the cis.A straightforward analysis of the produced formulae shows that rk(� 0) �max(rk('�); rk(�)) plus the number of �rst-sort variables in ~y; that is,rk(� 0) � rk(� 0). This completes the proof of the proposition.LC is local Formulae of Laggr have �nite rank; hence they are translated intoLC formulae of �nite rank. We now show by a simple induction argument thatthose formulae are local. More precisely, we show that for every �nite-rank LCformula '(~x;~{) (~x of �rst-sort, ~{ of second-sort) over pure relational SC , thereexists a number r � 0 such that ~a �Dr ~b implies D j= '(~a;~{0)$ '(~b;~{0) for any~{0. The smallest such r will be denoted by lr('). The proof is based on:Lemma 1 (Permutation Lemma). Let D be �rst-sort, with A = adom(D),and r > 0. If ~a �D3r+1 b, then there exists a permutation � : A ! A such that~ac �Dr ~b�(c) for every c 2 A.Proof. Fix an isomorphism h : ND3r+1(~a)! N3r+1(~b) with h(~a) = ~b. For any c 2SD2r+1(~a), h(c) 2 SD2r+1(~b) has the same isomorphism type of its r-neighborhood.Thus, for any isomorphism type T of an r-neighborhood of a single element, thereare equally many elements in A� SD2r+1(~a) and in A� SD2r+1(~b) that realize T .Thus, we have a bijection g : A�SD2r+1(~a)! A�SD2r+1(~b) such that c �Dr g(c).Then � can be de�ned as h on SD2r+1(~a), and as g on A� SD2r+1(~a).

Based on the lemma, we show that every LC formula ' of �nite rank islocal, with lr(') � (3rk(') � 1)=2. Note that for the sequence r0 = 0; : : : ; ri+1 =3ri + 1; : : :, we have rk = (3k � 1)=2; we show lr(') � rrk(').The proof of this is by induction on the formulae, and it is absolutelystraightforward for all cases except counting quanti�ers. For example, if '(~x;~{) =Wj 'j(~x;~{), and m = rk('), then by the hypothesis, lr('j) � rm, as rk('j) �rk('). So �x ~{0, and let ~a �Drm ~b. Then D j= 'j(~a;~{0)$ 'j(~b;~{0) for all j by theinduction hypothesis, and thus D j= '(~a;~{0)$ '(~b;~{0).Now consider the case of the counting quanti�er (~x;~{) � 9iz'(~x; z;~{). Letrk(') = m, then rk() = m+ 1 and rm+1 = 3rm + 1. Fix ~{0, and let ~a �Drm+1 ~b.By the Permutation Lemma, we get a permutation � : A! A such that ~ac �Drm~b�(c). By the hypothesis, lr(') � rm, and thus D j= '(~a; c;~{0) $ '(~b; �(c);~{0).Hence, the number of elements of A satisfying '(~a; �;~{0) is exactly the same as thenumber of elements satisfying '(~b; �;~{0), which implies D j= (~a;~{0) $ (~b;~{0).This concludes the proof of locality of LC.Putting everything together, let e be a pure relational expression ofAlgaggr(All;All). By Theorem 2, it is expressible in Laggr(All;All), and by Propo-sition 1, by a LC formula of �nite rank. Hence, it is local.7 SQL over ordered domainsSo far the only nonnumerical selection was of the form �i=j , testing equality oftwo attributes. We now extend the language to Alg<aggr by allowing selectionsof the form �i<j(e), where both i and j are of the type b, and < is some �xedlinear ordering on the domain Dom.This small addition changes the situation dramatically, and furthermore inthis case we can't make blanket statements like \queries are local" { a lot willdepend on the numerical domain Dom and available arithmetic operations.7.1 Natural numbersLet Num = N. We consider a version of Algaggr that has the most usual set ofarithmetic and aggregate operators: namely, +; �; < and constants for arithmetic,and the aggregateP. This su�ces to express aggregates MIN, MAX, COUNT, TOTAL,but certainly not AVG, which produces rational numbers.We shall use the notations:{ sqlN for Algaggr(f+; �; <; 0; 1g; f�g), and{ sql<N for Alg<aggr(f+; �; <; 0; 1g; f�g).It is su�cient to have constants just for 0 and 1, as all other numbers are de�nablewith +.We show how a well-known counting logic FO(C) [3] can be embedded intosql<N . The importance of this lies in the fact that FO(C) over ordered structurescaptures a complexity class, called TC0 [3, 26], for which no nontrivial general

lower bounds are known. In fact, although TC0 is contained in DLOGSPACE,the containment is not known to be proper, and to this day we don't even knowif TC0 6= NP. Moreover, there are indications that proving such a separationresult, at least by traditional methods, is either impossible, or would have somevery unexpected cryptographic consequences [27].De�nition of FO(C) (see [3, 10, 19]) It is a two-sorted logic, with second sortbeing the sort of natural numbers. That is, a structure D is of the formhfa1; : : : ; ang; f1; : : : ; ng; <;+; �; 1; n; R1; : : : ; Rli;where the relations Ri are de�ned on the domain fa1; : : : ; ang, while on the nu-merical domain f1; : : : ; ng one has 1; n;< and +; � interpreted as ternary pred-icates (e.g., +(x; y; z) holds i� x + y = z). This logic extends �rst-order bycounting quanti�ers 9ix '(x), meaning that at least i elements satisfy '; herei refers to the numerical domain f1; : : : ; ng and x to the domain fa1; : : : ; ang.These quanti�ers bind x but not i.Theorem 4. Over ordered structures, FO(C) � sql<N . In particular,uniform TC0 � sql<N :Proof sketch. With order and aggregate TOTAL, one can de�ne the set f1; : : : ;mgwhere m =j adom(D) j (by counting the number of elements not greater thaneach element in the active domain). On this set, one de�nes +; �; <, and then usesthe standard translation of calculus into algebra, except for using the aggregateP to translate counting quanti�ers.Corollary 1. Assume that reachability is not expressible in sql<N . Then uniformTC0 is properly contained in NLOGSPACE.As separation of complexity classes is currently beyond reach, so is provingexpressivity bounds for sql<N .One can also show a closely-related upper bound on the class of decisionproblems expressible in sql<N :Proposition 2. Every Boolean query in sql<N is contained in P-uniform TC0.Notice that the reachability query, even over ordered domains of nodes, isorder-independent; that is, the result does not depend on a particular orderingon the nodes, just on the graph structure. Could it be that order-independentqueries in sqlN and sql<N are the same? Of course, such a result would implythat TC0 is properly contained in DLOGSPACE, and several papers suggestedthis approach towards separating complexity classes. Unfortunately, it does notwork, as shown in [17]:Proposition 3. There exist order-independent non-local queries expressible insql<N . Thus, there are order-independent sql<N queries not expressible in sqlN.Proof sketch. On the graph of an n-element successor relation with an extra pred-icate P interpreted as the �rst blog2 nc elements, one can de�ne the reachabilityquery restricted to the elements of P .

Counting abilities of sqlN are essential for this result, as its analog for rela-tional calculus does not hold [9].7.2 Rational NumbersThe language sql<N falls short of the class of queries real SQL can de�ne, as itonly uses natural numbers. To deal with rational arithmetic (and thus to permitaggregates such as AVG), we extend the numerical domain Num to that of rationalnumbers Q, and introduce the languagesql<Q as Alg<aggr(f+;�; �;�; <; 0; 1g; f�g).This is a stronger language than sql<N (and thus than FO(C)) { to see this,note that it can de�ne rational numbers, and if one represents those by pairs ofnatural numbers, in some queries these numbers may grow exponentially withthe size of the database: something that cannot happen in the context of sql<N .The most interesting feature of sql<Q is perhaps that it is capable of codinginputs with numbers:Theorem 5. Let SC be a pure relational schema. Then there is an sql<Q ex-pression eSC of type n such that for every SC-database D, eSC (D) is a singlerational number, and D1 6= D2) eSC (D1) 6= eSC (D2)Proof sketch. The proof is based on the following: if P1 and P2 are two distinctnonempty sets of prime numbers, then Pp2P1 1p 6= Pp2P2 1p . We then codetuples with prime numbers (at most polynomial in the size of the input) andadd up inverses of those codes.Thus, with the addition of some arithmetic operations, sql<Q can expressmany queries; in particular, sql<Q extended with all computable numerical func-tions expresses all computable queries over pure relational schemas! In fact, toexpress all computable Boolean queries over such schemas, it su�ces to add allcomputable functions from Q to f0; 1g. In contrast, one can show that addingall computable functions from N to f0; 1g to sql<N does not give us the samepower, as the resulting queries can be coded by non-uniform TC0 circuits. Still,the coding is just of theoretical interest; even for graphs with 20 nodes it canproduces codes of the form pq with p; q relatively prime, and q > 101000; forq > 1010000 one needs only 60 nodes.8 ConclusionDid SQL3 designers really have to introduce recursion, or is it expressible withwhat's already there? Our results show that they clearly had a good reason foradding a new construct, because:

1. Over unordered types, reachability queries cannot be expressed by the basicSQL SELECT-FROM-WHERE-GROUPBY-HAVING statements; in fact, all queriesexpressible by such statements are local.2. Over ordered domains, with limited arithmetic, reachability queries are mostlikely inexpressible, but proving this is hard as separating some complexityclasses (and perhaps as hard as refuting some cryptographic assumptions).Adding more arithmetic operations might help, but only at the expense ofencodings which are several thousand digits long { so the new construct isclearly justi�ed.Being a theoretician, I like to see proofs of theorems (even folk theorems!),hence writing all those papers [23, 21, 24, 18] on the expressiveness of SQL. Hav-ing �nished [18] just over a year ago, I felt that the whole story can be presentedin a nice and clean fashion, without asking the reader to spend days studying theprerequisites. I've attempted to give such a presentation here. I hope I convincedyou that next-generation database theory texts shouldn't just state that certainqueries are inexpressible in SQL, they should also include simple proofs of theseresults.Acknowledgements Although the presentation here is new, it is based entirely onprevious results obtained jointly with other people. Special thanks to Limsoon Wong,with whom many of those papers were coauthored, and who in fact suggested back in'93 that we look at the expressiveness of aggregation. The aggregate logic was developedjointly with Limsoon, Lauri Hella, and Juha Nurmonen, who also collaborated with meon various aspects of locality of logics. Simple proofs of locality of logics were discoveredin an attempt to answer some questions posed by Moshe Vardi. For their commentson the paper I thank Limsoon, Lauri, Juha, Martin Grohe, Thomas Schwentick, andLuc Segou�n. Part of this work was done while I was visiting the Verso group atINRIA-Rocquencourt.References1. S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases, Addison Wesley,1995.2. A. V. Aho and J. D. Ullman. Universality of data retrieval languages. In POPL'79,pages 110{120.3. D.M. Barrington, N. Immerman, H. Straubing. On uniformity within NC1. JCSS,41:274{306, 1990.4. P. Buneman, S. Naqvi, V. Tannen, L. Wong. Principles of programming withcomplex objects and collection types. TCS, 149 (1995), 3{48.5. J. Celko. SQL for Smarties: Advanced SQL Programming. Morgan Kaufmann,2000.6. M. Consens and A. Mendelzon. Low complexity aggregation in GraphLog andDatalog, TCS 116 (1993), 95{116. Extended abstract in ICDT'90.7. C. J. Date and H. Darwen. A Guide to the SQL Standard. Addison Wesley, 1997.8. G. Dong, L. Libkin and L. Wong. Local properties of query languages. TCS 239(2000), 277{308. Extended abstract in ICDT'97.

9. M. Grohe and T. Schwentick. Locality of order-invariant �rst-order formulas. ACMTOCL, 1 (2000), 112{130.10. K. Etessami. Counting quanti�ers, successor relations, and logarithmic space,JCSS, 54 (1997), 400{411.11. R. Fagin, L. Stockmeyer and M. Vardi, On monadic NP vs monadic co-NP, In-formation and Computation, 120 (1995), 78{92.12. S. Finkelstein, N. Mattos, I.S. Mumick, and H. Pirahesh. Expressing recursivequeries in SQL. ANSI Document X3H2-96-075r1, 1996.13. H. Gaifman. On local and non-local properties, Proceedings of the Herbrand Sym-posium, Logic Colloquium '81, North Holland, 1982.14. E. Gr�adel and Y. Gurevich. Meta�nite model theory. Information and Computa-tion 140 (1998), 26{81.15. W. Hanf. Model-theoretic methods in the study of elementary logic. In J.W. Ad-dison et al, eds, The Theory of Models, North Holland, 1965, pages 132{145.16. L. Hella. Logical hierarchies in PTIME. Information and Computation, 129 (1996),1{19.17. L. Hella, L. Libkin and J. Nurmonen. Notions of locality and their logical charac-terizations over �nite models. J. Symb. Logic, 64 (1999), 1751-1773.18. L. Hella, L. Libkin, J. Nurmonen and L. Wong. Logics with aggregate operators.In LICS'99, pages 35{44.19. N. Immerman. Descriptive Complexity. Springer Verlag, 1998.20. A. Klug. Equivalence of relational algebra and relational calculus query languageshaving aggregate functions. J. ACM 29 (1982), 699{717.21. L. Libkin. On the forms of locality over �nite models. In LICS'97, pages 204{215.22. L. Libkin. Logics with counting and local properties. ACM TOCL, 1 (2000), 33{59.Extended abstract in LICS'98.23. L. Libkin, L. Wong. Query languages for bags and aggregate functions. JCSS 55(1997), 241{272. Extended abstract in PODS'94.24. L. Libkin and L. Wong. On the power of aggregation in relational query languages.In DBPL'97, pages 260{280.25. P. O'Neil. Database: Principles, Programming, Performance. Morgan Kaufmann,1994.26. I. Parberry and G. Schnitger. Parallel computation and threshold functions. JCSS36 (1988), 278{302.27. A. Razborov and S. Rudich. Natural proofs. JCSS 55 (1997), 24{35.28. P. Wadler. Comprehending monads. Mathematical Structures in Computer Science2 (1992), 461{493.

