
On the Complexity of Query Answering over Incomplete
XML Documents

Amélie Gheerbrant
University of Edinburgh

agheerbr@inf.ed.ac.uk

Leonid Libkin
University of Edinburgh

libkin@inf.ed.ac.uk

Tony Tan
University of Edinburgh

ttan@inf.ed.ac.uk

ABSTRACT

Previous studies of incomplete XML documents have iden-
tified three main sources of incompleteness – in structural
information, data values, and labeling – and addressed data
complexity of answering analogs of unions of conjunctive
queries under the open world assumption. It is known that
structural incompleteness leads to intractability, whilein-
completeness in data values and labeling still permits effi-
cient computation of certain answers.

The goal of this paper is to provide a complete picture of
the complexity of query answering over incomplete XML
documents. We look at more expressive languages, at
other semantic assumptions, and at both data and combined
complexity of query answering, to see whether some well-
behaving tractable classes have been missed. To incorpo-
rate non-positive features into query languages, we look at
gentle ways of introducing negation via inequalities and/or
Boolean combinations of positive queries, as well as the ana-
log of relational calculus. We also look at the closed world
assumption which, due to the hierarchical structure of XML,
has two variations. For all combinations of languages and
semantics of incompleteness we determine data and com-
bined complexity of computing certain answers. We show
that structural incompleteness leads to intractability under
all assumptions, while by dropping it we can recover effi-
cient evaluation algorithms for some queries that go beyond
those previously studied.

Categories and Subject Descriptors. F.1.1
[Computation by Abstract Devices]: Models of Computa-
tion—Automata; H.2.1 [Database Management]: Logical
Design—Data Models; H.2.3 [Database management]:
Languages—Query Languages; I.7.2 [Document and Text
Processing]: Document Preparation—Markup languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0791-8/12/03 ...$10.00

General Terms. Algorithms, Theory, Languages

Keywords. XML, incomplete information, query answer-
ing, certain answers, open-world semantics, closed-world
semantics

1. Introduction

The need to deal with incomplete information has increased
dramatically over the past decade, due to large amounts of
data on the Web [1] (which tend to be more prone to er-
rors than data stored in traditional relational DBMSs) as well
as the need to move data between different applications as,
for example, in data integration [21] and exchange [7] sce-
narios. Different types and models of incompleteness have
been studied too, such as classical instances of missing infor-
mation, uncertain databases [6], and probabilistic databases
[27]. While most investigations deal with relational data,
several recent papers have attempted to model and analyze
incompleteness in XML. For example, [4] showed how to
handle incompleteness in a dynamic setting when docu-
ment’s structure is revealed by a sequence of queries, while
[12, 13] expressed incompleteness by means of description
logic theories, and [20] surveyed incorporating probabilities
into XML.

An attempt to reconstruct the classical relational theory of
incompleteness [3, 19, 18] (in particular, issues such as se-
mantics of incompleteness and the complexity of the main
computational problems associated with it) was done in [9].
That paper presented a very general model of XML doc-
uments with incomplete information, and studied several
computational problems, such as consistency of incomplete
specifications, representability of complete documents by
incomplete ones, and query answering.

In the model of [9], there are three main sources of incom-
pleteness:

• Incompleteness at the level of data values. This is the
same as in the relational case: nodes in XML trees may
carry attribute values, and some of those values may
not be known (i.e., nulls).

• Structural incompleteness. Some of the hierarchical
structure of an XML document may not be known. For

1

example, we may only know that a nodew is a descen-
dant of a nodew′ without knowing the precise path
between them.

• Labeling incompleteness. Labels of some nodes may
not be known and replaced by wildcards.

*

Title

*

Author
(Principia) (y)

(x)

Institute

Institute

root

(Newton)

*

Figure 1: An incomplete XML document

Figure 1 gives an instance of an incomplete XML document.
In this document we have two nodes labeledAuthorandTi-
tle, and we know their attribute values (“Newton” and “Prin-
cipia”), as well as that the latter is next-sibling of the former.
However, we do not know what the common parent of these
nodes is: it may be the root, or another node, as the edges
from the root to those nodes are labeled∗, meaning descen-
dant. We also have anInstitutenode, with an unknown at-
tribute valuey, as well as anotherInstitutenode which is a
child of theAuthor node; its attribute is another unknown
valuex. Furthermore, there is a child of the root, but we
know neither its label (indicated by wildcard) nor its at-
tribute value.

The semantics of such incomplete documents was given by
homomorphisms into complete XML trees; this will be il-
lustrated shortly and properly defined in the next section.
Such semantics corresponds toopen world assumption[19,
24], since it leaves a complete document open to adding new
nodes.

As the class of queries to study, [9] used XML analogs of
unions of conjunctive queries, or UCQs. In XML, conjunc-
tive queries are normally modeled viatree patterns[8, 10,
17]. The choice of this class is not arbitrary: in the rela-
tional world, UCQs can be answered over incomplete tables
by using the standard relational evaluation of queries; this is
usually referred to as naı̈ve evaluation [19]. In fact, thisis
the largest class of relational calculus queries for which such
evaluation computes certain answers to queries [19, 22].

It was shown in [9] that data complexity of evaluating UCQs
over XML documents is always inCONP, and is almost in-
variably CONP-complete as long as structural incomplete-
ness is present. There are no known bounds on combined
complexity; proofs in [9] only give nonelementary complex-
ity, but we shall see that this can be significantly improved.

When the structure is fully known, i.e., only data values
and labels of documents could be missing, evaluation of
UCQs becomes tractable and can be done using naı̈ve eval-
uation (such incomplete trees were calledrigid; an example

_

TitleAuthor
(Principia)

(x)
Institute

(Newton)

Institute
(y)

root

Figure 2: A rigid incomplete XML document

is shown Figure 2).

However, the picture is rather incomplete, and several natu-
ral questions arise.

1. Can the complexity of query evaluation over arbitrary
incomplete documents be lowered by using a seman-
tics based onclosed, rather than open world assump-
tion?

2. Can we extend the language of unions of conjunctive
queries to obtain tractable query evaluation (under both
open and closed world assumptions)?

3. What can be said about combined complexity of com-
puting certain answers?

The main goal of the paper is to answer these questions. To
do so, we need to explain what we mean by closed world
assumption in XML, and define languages extending UCQs
that we want to study. We now informally introduce these.

Closed world semantics in XMLIn the case of relations,
closed world semantics is typically defined by having an
onto(surjective) mapping (homomorphism) from an incom-
plete database to a complete one. We shall follow the same
approach, but there is one issue that arises when we use tran-
sitive closures of axes, e.g., descendant relationships. Say
we have just two nodesw andw′, and we know thatw′ is a
descendant ofw. Any surjective mapping from such an in-
complete description will produce a document with at most
two nodes. Does it mean that under the closed world as-
sumption we are then forced to reduce descendant relation-
ship to child? On the one hand, this agrees with the intuition
of not introducing new nodes; on the other hand, it seems
to infer new child relationship which does not correspond to
closed world assumption. So which alternative should we
choose?

We believe that both in fact are reasonable, and we answer
all the questions for both interpretations of closed world as-
sumptions. More precisely, we consider three different se-
mantics, which are shown in Figure 3, and are informally
described below.

In Figure 3, we show documents that can be denoted by
the incomplete document from Figure 1 under three differ-

2

WCWA

(IAS)(Cambridge)

Book

TitleAuthor Author Title
(Newton) (Principia)

Institute Institute

(Einstein) (Relativity)

root

Book

Title

*

Author
(Principia) (y)

(x)

Institute

Institute

root

(Newton)

root

(Cambridge)

Book

TitleAuthor
(Newton) (Principia)

Institute

Book

Author
(Einstein)

Institute
(IAS)

(Cambridge)

TitleAuthor
(Newton) (Principia)

Institute

root

Book
(IAS)

Institute

TitleAuthor
(Principia) (y)

(x)

Institute

Institute

root

(Newton)

Title

*

Author
(Principia) (y)

(x)

Institute

Institute

root

(Newton)

*

*
*

*

OWA

SCWA

Figure 3: Open and (weak and strong) closed world semantics of incomplete XML

ent assumptions. Dashed lines show homomorphisms from
the nodes of incomplete documents to the nodes of complete
ones.

• Under the open world assumption (OWA), we permit
any homomorphism (that preserves relationships be-
tween nodes and their attributes) from an incomplete
documentinto a complete one.

• Under the weak closed world assumption (WCWA), we
insist that the homomorphism be surjective (onto) ex-
cept when nodes are in a relationship such as descen-
dant: then we allow the introduction of new nodes, but
only on a path between nodes that exist in an incom-
plete description. In the example in the picture, root
is mapped to the root, and theInstitutenode with un-
known valuey into IAS. This lets us introduce a path to
it that has a book node with a descendant author (Ein-
stein); note however that we cannot introduce a node
for book title (which was possible underOWA) as it
will not be on the path to the IAS node.

• Under the strong closed world assumption (SCWA), we
insist that the homomorphism be surjective.

Extensions of UCQs for XMLRelational UCQs correspond
to the positive fragment of relational algebra. Thus, extend-
ing them means introducing some form of negation. While
we can just add it in an unrestricted way (like relational alge-
bra does, to capture full power of first-order logic, FO), we

look at intermediate ways of adding negation without imme-
diately jumping all the way up to an XML analog of FO.
There are two such standard ways:

• we can add inequalities6= as atomic formulae; or

• we can permit arbitrary Boolean combinations of pre-
viously defined queries.

For example, adding6= to UCQs we get a classUCQ 6= of
unions of conjunctive queries with inequalities. By looking
at Boolean combinations of those we get a class BCCQ of
Boolean combination of conjunctive queries, i.e., the closure
of conjunctive queries under operationsq ∩ q′, q ∪ q′, and
q − q′. Combining these, we shall obtain five languages that
we study here:UCQ, UCQ6=, BCCQ, BCCQ6=, FO, and
their XML analogs.

ResultsAfter formally defining XML with incomplete in-
formation and query languages, we review what is known
for relational databases. In addition to recalling known (and
sometimes folklore but not explicitly proven) results, we
show a new result that for BCCQs, certain answers can be
computed in polynomial time.

After that, we switch to XML. We show that for arbitrary in-
complete documents that permit structural incompleteness,
under all assumptions, and for all the languages, data com-
plexity is intractable. We also establish combined complex-
ity that in most cases is only marginally higher than data

3

complexity (most commonly just one level up in the polyno-
mial hierarchy).

We then switch to rigid trees. For them, we show that the
complexity of all the query answering tasks is the same as
for relations. While lower bounds can be inferred from the
relational case, upper bounds require work as we are deal-
ing with more complex tree structure (we know, for instance,
that they need not hold in general with structural incomplete-
ness).

In particular, over rigid trees, analogs of UCQs can be an-
swered in polynomial time, by naı̈ve evaluation, under both
open and closed world assumptions, which implies efficient
evaluation of queries. For analogs of BCCQs, we demon-
strate a tractable query evaluation algorithm too, with com-
bined complexity a bit higher (one level in the polynomial
hierarchy) than for UCQs. We then conclude by discussing
practical implications of these results.

Organization Incomplete XML documents are defined in
Section 2; query answering over incomplete relational and
XML databases is discussed in Section 3. In Section 4 we
establish results on query answering over arbitrary incom-
plete trees, for all the languages considered here, and in Sec-
tion 5 we do the same for rigid trees. Final remarks and
conclusions are in Section 6.

2. Incompleteness in XML

XML trees

To describe XML trees, we assume

• a countably infinite setC of possible data values (no-
tation C stands for “constants”, as opposed to nulls),
and

• a countably infinite setL of node labels (element
types). We shall normally denote labels by lowercase
Greek letters.

An XML tree over a finite alphabetΣ ⊂ L is a 2-sorted
structure

T = 〈D, A, ↓,→, (Pα)α∈Σ, ρ〉, (1)

where

• D is an unranked tree domain, i.e. a prefix-closed sub-
set ofN∗ such thatw · i ∈ D impliesw · j ∈ D for
j < i;

• ↓ and→ are the child and next-sibling relations, for
which we shall use, as is common, the infix notation:
w ↓ w · i wheneverw · i ∈ D, andw · i → w · (i + 1)
wheneverw · (i + 1) ∈ D;

• eachPα is the set of elements ofD labeledα (of course
we require that these partitionD);

• A ⊂ C is a finite set of data values; and

• ρ : D →
⋃

k≥0
Ak assigns to each nodew ∈ D a

k-tuple of data values for somek ≥ 0.

We refer toD as thedomainof T , and denote it by dom(T),
and toA as theactive domain(of data values) ofT and de-
note it by adom(T). We always assume thatA has precisely
the elements ofC used inT , i.e., if v ∈ A then there is a
nodew such thatv occurs inρ(w).

We shall usually assume that for nodesw, w′ with the same
label, the arities ofρ(w) and ρ(w′) are the same; this is
customary for abstractions of XML documents although not
technically necessary for our results.

We shall denote the transitive closure of↓ by⇓ and the tran-
sitive closure of→ by⇒.

Incomplete XML trees

To define incomplete XML documents, we assume a count-
ably infinite supply of null values (or variables)V . Follow-
ing [9], incompleteness can appear in documents in the fol-
lowing ways:

• Data-values incompleteness. This is the same as in-
completeness in relational models: some data values
could be replaced by nulls.

• Labeling incompleteness: instead of a known label,
some nodes can be labeled with a wildcard.

• Structural incompleteness. Some of the structure of
the document may not be known (e.g., we can use de-
scendant edges in addition to child edges, or following-
sibling edges instead of next-sibling).

This can be captured as follows. Anincomplete treeoverΣ
is a 2-sorted structure

t = 〈N, V, ↓,⇓,→,⇒, (Pα)α∈Σ, ρ〉, (2)

where

• N is a set of nodes, andV is a set of values fromC∪V ;

• ↓,⇓,→,⇒ are binary relations onN ;

• Pα’s are disjoint subsets ofN ; and

• ρ is a function fromN to
⋃

k≥0
V k.

As before, dom(t) refers toN , and adom(t) to V . We now
distinguish between adomc(t), which refers to elements ofC
in adom(t), and adom⊥(t), which refers to elements ofV in
adom(t).

These represent incompleteness in XML as follows:

• elements ofV are the usual null values;

• Pα’s do not necessarily cover all ofN ; those nodes in
N not assigned a label can be thought of as labeled
with a wildcard;

4

• structural incompleteness is captured by relations↓,
→, ⇓, ⇒ which could be arbitrary. For example, we
may know thatw ⇓ w′ without knowing anything
about the path between the two.

SemanticsAs is common with incomplete information, we
define semantics via homomorphisms. Ahomomorphism
h : t → T from an incomplete treet = 〈N, V, ↓, ⇓,→,
⇒, (Pα)α∈Σ, ρ〉 to a complete XML treeT = 〈D, A, ↓,
→, (Pα)α∈Σ′ , ρ〉, whereΣ ⊆ Σ′, is a pair of mapsh =
(h1, h2) whereh1 : N → D andh2 : V → A such that:

• if wRw′ in t, thenh1(w)Rh1(w
′) in T , whenR is

one of↓,→,⇓,⇒ (recall that⇓ and⇒ are interpreted
as descendant and following-sibling in complete XML
trees);

• if w ∈ Pα in t, thenh1(w) ∈ Pα in T , for eachα ∈ Σ;

• h2(c) = c wheneverc ∈ C; and

• h2(ρ(w)) = ρ(h1(w)) for eachw ∈ N .

The semantics of an incomplete treet is the set of all com-
plete treesT that it has a homomorphism into:

JtKOWA = {T | exists a homomorphismt → T }.

The superscriptOWA means that this is the semantics under
the open world assumption; this will be explained in detail
shortly. A homomorphism shows how missing features oft
are interpreted in a complete documentT .

RemarkAn incomplete tree may be inconsistent in the sense
thatJtKOWA = ∅. This however will not affect any results we
prove about query answering: as we shall see, over incom-
plete trees, query answering will be inCONP (or higher),
and [10] showed that checking inconsistency can be done in
CONP. Thus we can always assume that the input is first
checked for being inconsistent (in which case certain an-
swers are vacuously true).

Rigid trees

As we already mentioned, [9] showed that query answering
becomes tractable and can be achieved by naı̈ve evaluation
of rigid trees. These are trees in which no structural infor-
mation is missing; that is, the only types of missing informa-
tion are nulls and wildcards. A rigid tree is defined just as
an XML tree (1), i.e.t = 〈D, A, ↓,→, (Pα)α∈Σ, ρ〉, with
only two differences:

• A is a subset ofC ∪ V rather than justC (i.e., nulls are
permitted), and

• the union ofPα’s need not be the entireD (some nodes
may be labeled with wildcards).

Note that the problem of inconsistency, mentioned above,
does not arise with rigid trees.

Open and closed world assumptions

Open world assumption (OWA) states that a database, or a
document, is open to adding new facts (e.g., tuples, nodes,
associations between nodes). This is the semantics adopted
in [9], and defined above, for XML. In the relational world it
is normally expressed by having a homomorphism from an
incomplete instanceinto a complete instance.

On the other hand, closed world assumption (CWA) states
that a database or a document is closed for adding new facts.
In the relational case, this is usually formalized by having
a homomorphism from an incomplete instanceontoa com-
plete instance. For XML, the situation is a bit more involved
however, due to the presence of transitive closures of the
child and next-sibling axes, as was explained informally in
the introduction. We now define the notions of weak and
strong closed world assumptions formally.

Of course we can adopt the relational notion of having an
onto-homomorphism. We call this astrong closed world as-
sumption, or SCWA. More precisely,

JtKSCWA = {T | exists an onto homomorphismt → T }.

A homomorphismh = (h1, h2) is an onto homomor-
phism if bothh1 andh2 are onto (surjective) maps. (The
reader may notice that it suffices to require that onlyh1

be surjective.) Equivalently, we can say thatJtKSCWA =
{h(T) | h is a homomorphism}.

But this assumption may be too strong if we deal with transi-
tive closure axes. Consider, for example, an incomplete tree
with two nodesv andv′ such thatv ⇓ v′. UnderSCWA, it
can only be mapped into 2-node trees, while the interpreta-
tion of ⇓ says that a path betweenv andv′ of length greater
than1 may be allowed. We thus weaken theSCWA, by allow-
ing paths between nodes for which only⇓ or⇒ associations
exist.

Formally, we define theweak closed world assumption, or
WCWA, as follows. A homomorphismh = (h1, h2) : t → T
is called anWCWA-homomorphismif, for every nodew of T
that is not in the image ofh1 (i.e., not an image of a node of
t), there exist two nodesv, v′ of t such that either

• v ⇓ v′ holds int andh(v) ⇓ w ⇓ h(v′) holds inT ; or
• v ⇒ v′ holds int andh(v) ⇒ w ⇒ h(v′) holds inT .

That is, the homomorphismh may not be surjective, but if a
node is not in the image ofh, then it must be on a horizontal
or a vertical path between two nodes that are in the image of
h.

We then define

JtKWCWA = {T | exists aWCWA-homomorphismt → T }.

Clearly each surjective homomorphism is aWCWA-
homomorphism, and thusJtKSCWA ⊆ JtKWCWA . Also in the
absence of transitive closure axes, as in rigid trees, thereis
no difference between the two semantics, in which case we
refer just toCWA semantics, and writeJtKCWA .

Fixed vs nonfixed alphabetsWe have made an assumption

5

that labels come from an infinite setL. A similar, and also
a reasonable assumption, is to have a finite but sufficiently
large alphabet (e.g., to assume that no tree uses every sin-
gle available label: first, such an assumption is impractical,
and second, it leads to query answering abnormalities w.r.t.
certain answers [9]). More precisely, in this case we assume
that labels come from a fixed finite alphabetLfin, and that
trees and queries do not exhaust it: for instance, we can as-
sume that, given a treeT and a queryQ, we can replace each
label used in them by a new one.

It turns out that all the results are the same under both as-
sumptions, except one: combined complexity for incomplete
trees underOWA goes up by one exponent in the case of a
fixed alphabet. However, we shall see that this only happens
when the query uses many wildcards. All lower bounds will
hold even for fixed finite alphabets. Thus, with one excep-
tion, we shall not be specifying our assumptions for the set
of possible labels.

3. Query answering and incompleteness

3.1 Relational queries

We now recall the basics of query answering over databases
with incomplete information. Such a database, under the
naı̈ve interpretation of nulls, is a database whose elements
come from the domain of constantsC and the domain of
nulls V . The semantics is defined via homomorphisms
h : V → C. Such a map is a homomorphism between two
databasesD andD′ of the same schema if, for every relation
R of D and every tuplēa of R, the tupleh(ā) is in the rela-
tion of R of D′. As before, we viewh as a mapC ∪ V → C
extended by lettingh(c) = c for eachc ∈ C.

This leads to two standard semantics:JDKOWA =
{D′ | exists a homomorphismD → D′} and JDKCWA =
{h(D) | h is a homomorphism}.

Given a relational queryQ, its result on an incomplete
database is defined by means ofcertain answers:

certain∗(Q, D) =
⋂

{Q(D′) | D′ ∈ JDK∗}

where∗ is eitherOWA or CWA.

Computational problems As is common, we look atdata
complexityandcombined complexityof computing query an-
swers (in this case, certain answers under various seman-
tics). More precisely, the problems we deal with are as fol-
lows:

• Combined complexity of a languageL. The input con-
sists of a databaseD, a queryQ in L, and a tuple of
data values̄s of the same arity asQ; the question is
whether̄s ∈ certain∗(Q, D).

• Data complexity of a languageL. In this case we have
afixedqueryQ in L; the input consists of a databaseD
and a tuple of data values̄s of the same arity asQ, and
the question is the same: whethers̄ ∈ certain∗(Q, D).

Here∗ ranges over our semantic assumptions (that lead to
different notions of certain answers).

ConventionWhen we say that data complexity of a query
languageL is complete for a complexity classC (e.g.,
CONP-complete), we mean that (1) for every queryQ in L,
its data complexity is inC, and (2) there is a queryQ0 in L
whose data complexity isC-hard.

Computing certain answersFor arbitrary FO queries, the
combined complexity of finding certain answers is undecid-
able (finite validity). For one class of queries the problem
is solvable using the standard query evaluation. We define a
näıve evaluationof a query as the standard evaluation of it
followed by removing tuples containing nulls. It was shown
in [19] that for unions of conjunctive queries, naı̈ve evalu-
ation computes certain answers (which are in this case the
same under bothOWA andCWA). In fact, the result is opti-
mal: no larger class of queries within FO has this property
[22]. Beyond unions of conjunctive queries, algorithms for
finding certain answers use more complex representations,
namely conditional tables [3, 19, 18].

Much of the work on complexity of query answering over
relational databases with nulls concentrated on languages
such as unions of conjunctive queries (UCQs), FO, and be-
yond (e.g., datalog). As the gap between UCQs and FO is
very large, one might look for classes between those two.
Some results about such classes are known: for example,
finding certain answers to UCQs with inequalities isCONP-
complete [2]. On the XML side, we shall be dealing with
analogs of the following relational languages, build up from
conjunctive queries by using Boolean operations, quanti-
fiers, inequalities, and quantification:

• UCQ andUCQ 6=: unions of conjunctive queries (with
inequalities, i.e. atomsx 6= y are allowed);

• BCCQ andBCCQ6=: Boolean combinations of con-
junctive queries (with inequalities). In other words,
starting with conjunctive queries (with inequalities)
q1(x̄), . . . , qm(x̄), we can close them under operations
q ∪ q′, q ∩ q′ andq − q′.

• FO, which can be viewed as closure of conjunctive
queries under Boolean operations and quantification.

While some complexity bounds (both data and combined)
are known for finding certain answers under bothOWA and
CWA, we are not aware of such results for BCCQs, and prove
them for the sake of completeness.

Theorem 1. Data complexity of finding certain answers
to BCCQs is in PTIME, while for BCCQ 6= it is CONP-
complete. For both classes of queries the combined com-
plexity isΠp

2-complete. These bounds hold under bothOWA
andCWA.

We explain briefly the main idea behind the PTIME algo-
rithm for BCCQs underOWAṪhe key case is that of a spe-
cial type of query with just one negation, namely a Boolean
queryQ = q∨¬q′, whereq is a union of conjunctive queries,

6

data complexity combined complexity
CWA OWA CWA OWA

UCQ PTIME PTIME NP-complete NP-complete
UCQ 6= CONP-complete CONP-complete
BCCQ PTIME PTIME Πp

2-complete Πp
2-complete

BCCQ6= CONP-complete CONP-complete
FO CONP-complete undecidable PSPACE-complete undecidable

Figure 4: Complexity of computing certain answers: relational case

andq′ is a conjunctive query. Suppose we have a database
D with null values. We give an algorithm for checking
whethercertainOWA(Q, D) is false, i.e., whetherD′ |= ¬q
andD′ |= q′ for someD′ ∈ JDKOWA . This is done as fol-
lows. First, convertq′ into its tableau, Tab(q′). Then let
D[q′] be the “disjoint union” ofD and Tab(q′) (i.e., we re-
name all nulls in Tab(q′) so that they would be different from
nulls inD). Then we show thatcertainOWA(Q, D) is false iff
certainOWA(q, D[q′]) is false. Sinceq is a UCQ, checking the
latter condition can be done by naı̈ve evaluation, and hence
in PTIME.

In the general case, when we deal with a Boolean combina-
tion Q of conjunctive queriesq1, . . . , qm (assume they are
Boolean), we look at all the assignments ofq1, . . . , qm to
true and false that make the Boolean combination false. As-
sume we have such a valuation that assignsqi with i ∈ I
to true andqj with j 6∈ I to false. Then, checking whether
certainOWA(Q, D) = ⊥ is witnessed by this assignment (i.e.,
whether there existsD′ ∈ JDKOWA so that theqi’s evaluate
to true/false on it as in the assignment) amounts to checking
whethercertainOWA(q∨¬q′, D) = ⊥ whereq =

∨

j 6∈I qj and
q′ =

∧

i∈I qi. For this we simply use the above algorithm,
as the query is now in the right shape. SinceQ is fixed, so
is the number of assignments of theqi’s to true/false, which
gives us an overall PTIME algorithm.

ForCWA, however, the algorithm is more involved, as the ba-
sic reduction no longer works if we usecertainCWA(q, D[q′]).
2

Figure 4 summarizes what is known about both data and
combined complexity of finding certain answers for rela-
tional queries; results are from [2, 3, 19, 28] and the above
theorem.

Note that there is a rather persistent confusion in the liter-
ature regardingdata complexity of certain answers of FO
queries. It is very common to attribute such undecidabil-
ity to Trakhtenbrot’s theorem, which is fine for combined
complexity, but not technically correct in the case of a fixed
query. While the result itself seems to be folklore, we wanted
to clear this confusion and we shall provide in the full ver-
sion a self-contained proof of undecidability of data com-
plexity of FO on naı̈ve tables.

3.2 Pattern-based XML queries

We now define the analogs of the relational languages we

considered in the XML setting. As is common in the scenar-
ios when one needs to compute certain answers (by means of
intersection) [8, 9], we look at queries that can only output
tuples of data values.

The queries will be essentially fragments of first-order logic
over XML trees; however, to avoid the clumsiness of a two-
sorted presentation, we follow the standard approach and de-
fine them viapatterns. For now, we shall look at patterns
based on the child/next-sibling axes; extensions will be dis-
cussed later.

An example of a pattern is

α(x)/[β(x) → γ(1), δ(y) → γ(x)].

When evaluated on a treeT , it collects all instantiations of
variablesx andy so that a tree has anα-node whose data
value isx, together with (1) aβ-child with the same data
valuex whose next sibling is aγ-node with data value1;
and (2) aδ-child with data valuey whose next sibling is a
γ-node with data valuex.

Formally, patterns are given by the grammar:

π := α(z̄)/[µ, . . . , µ]
µ := π → . . . → π

whereα ranges overΣ or wildcard , and z̄ is a tuple of
variables and constants. We writeπ(x̄) if x̄ is a tuple of
all the variables mentioned inπ. Also, to simplify nota-
tion, we shall writeα(x̄)/β(ȳ) instead of the more formal
α(x̄)/[β(ȳ)].

We define the semantics with respect to an XML treeT =
〈D, A, ↓,→, (Pα)α∈Σ, ρ〉 and a valuationν for variablesx̄
in C:

• (T, w, ν) |= α(z̄)[µ1, . . . , µn] if w ∈ Pα (wheneverα
is aΣ-letter),ρ(w) = ν(z̄), and there existn children
w1, . . . , wn of w such that(T, wi, ν) |= µi for each
i ≤ n.

• (T, w, ν) |= π1 → . . . → πm if there is a sequence
w = w1 → w2 → . . . → wm of nodes so that
(T, wi, ν) |= πi for eachi ≤ m.

We shall write(T, w) |= π(ā) if (T, w, ν) |= π(x̄) whereν
assigns values̄a to variables̄x.

Classes of pattern-based XML queries We now define
XML analogs of the five languages we considered in the re-
lational case which are based on patterns. First, we need a

7

class ofconjunctive queries(essentially defined in [8, 10,
17]): these are obtained by closing patterns under conjunc-
tion and existential quantification of variables:

q(x̄) = ∃ȳ1 . . . ȳn π1(x̄, ȳ1) ∧ . . . ∧ πn(x̄, ȳn)

The semantics is defined as follows. Given a treeT and a
valuationā for variables̄x, we haveT |= q(ā) if there exist
tuplesb̄1, . . . , b̄n of data values and nodesw1, . . . , wn in T
so that(T, wi) |= πi(ā, b̄i) for everyi ≤ n.

If inequality atoms (u 6= v) are allowed too, in addition to
patterns, we talk about conjunctive queries with inequalities.
The semantics extends in the natural way.

Now we define the languages we deal with.

UCQXML and UCQ6=
XML These are defined as queries of the

formq1(x̄)∪. . .∪qm(x̄), where eachqi is a conjunctive
query (with inequalities, respectively).

BCCQXML and BCCQ6=
XML These are obtained by closing

conjunctive queries (with inequalities) under opera-
tionsq ∪ q′, q ∩ q′ andq − q′.

FOXML These are obtained by closing patterns and equality
atoms under the Boolean operations and both universal
and existential quantification.

ExamplesWe start with an example of aUCQXML query:

q1(x) := ∃y, z α(x)/[β(y) → γ(z)]

∨

∃y α(x)/δ(y)

It selects data valuesx found inα-labeled nodes which ei-
ther have two consecutive children labeledβ and γ (with
some data values attached to them), or a child labeledδ (also
with a data value in it). If in addition we want to impose a
requirement that the data values in theβ-node (orδ-node) be
different fromx, we use aUCQ6=

XML query:

q2(x) := ∃y, z
(

α(x)/[β(y) → γ(z)] ∧ x 6= y
)

∨

∃y
(

α(x)/δ(y) ∧ x 6= y
)

The following is an example of aBCCQXML query:

q3(x, y) := ¬∃z
(

α(z)/
[

γ(x) → β(y)
]

)

∨

∃z
(

α(x)/γ(z)/β(y)
)

It selects tuples(x, y) of data values that are eithernot found
in two consecutive children labeled withγ andβ of an α-
node, or found on a path labeledα−γ−β, in α andβ-nodes.
To require in addition thatx 6= y, we use aBCCQ 6=

XML query:

q4(x, y) := ¬∃z
(

α(z)/
[

γ(x) → β(y)
]

∧ x 6= y
)

∨

∃z
(

α(x)/γ(z)/β(y) ∧ x 6= y
)

Finally, we give an example of anFOXML query:

∀y
(

α(x)/β(y) −→ ∃z γ(z)/δ(y) ∧ y 6= z
)

It selects data valuesx such that if they are found inα-nodes
with a β-child, then the data valuey of that child must also
be found in aδ-node whose parent is labeledγ and has a data
value different fromy.

Certain answers Since queries in languages introduced
above produce sets of tuples of data values, we can define
the usual notion of certain answers for evaluating them over
incomplete documents. That is, for a queryQ and an incom-
plete treet, we let

certain∗(Q, t) =
⋂

{Q(T) | T ∈ JtK∗},

where∗ ranges overOWA, SCWA, andWCWA. The problems
we consider for them are the same as in the relational case:
determining data and combined complexity.

4. Query answering over arbitrary incomplete
trees

We now look at query answering over arbitrary incom-
plete XML trees. One data complexity result was previ-
ously known, namelyCONP-completeness forUCQXML un-
derOWA [9]. We now complete the study, and present results
on both data and combined complexity for all five languages
introduced in the previous section.

Before we embark on this study, there is one natural ques-
tion we need to ask: can we obtain the desired results simply
by recourse to relational query answering? After all, incom-
plete XML trees are relational structures. The answer is that
we cannotmeaningfully adapt relational results. The main
reason is that, if we have an incomplete treet represented
as a relational databaseDt, thenJDtK is not the set of re-
lational representations of trees inJtK (except in some very
limited cases). This is of course due to the fact thatJtK only
contains trees, butJDtK may contain databases that are not
translations of trees.

To apply relational results, we would need to impose an
extra constraint that complete databases are trees. This is
very problematic as, underOWA, already much simpler con-
straints lead to undecidability of query answering [11, 25].
Another alternative is to move from a queryQ to a query
¬tree∨Q, wheretree expresses that a relational database
is a representation of an XML tree. This needs a fixpoint
mechanism. Thus, expressing the above query (that also in-
volves¬ and∨) puts us in the realm of disjunctive data-
log. While known results do give us decidability, complex-
ity bounds we can infer “for free” will beΠp

2 for data com-
plexity andCONEXPNP for combined complexity [16] for
BCCQ6=

XML and its sublanguages. As we shall see, we can
obtain better (and often tight) complexity bounds working
directly on XML trees.

4.1 Query answering under OWA

As mentioned earlier, data complexity ofUCQXML is known
to beCONP-complete [9], while precise combined complex-

8

data complexity combined complexity
SCWA WCWA andOWA SCWA WCWA andOWA

UCQXML

UCQ 6=
XML

BCCQXML
CONP-complete CONP-complete Πp

2-complete Πp
2-complete

BCCQ6=
XML

FOXML CONP-complete undecidable PSPACE-complete undecidable

Figure 5: Complexity of computing certain answers over arbitrary incomplete trees

ity was never stated. The proof of [9] only yields a nonele-
mentary upper bound, but it turns out that the actual bound
is much lower. In the result below, for combined complexity,
we assume that the alphabet of labels is infinite.

Theorem 2. Over arbitrary incomplete trees
under OWA, for each of the languages
UCQXML , UCQ 6=

XML , BCCQXML , BCCQ6=
XML , data com-

plexity is CONP-complete and combined complexity is
Πp

2-complete. Furthermore,FOXML is undecidable with
respect to both data and combined complexity.

Recall the convention regarding completeness of data com-
plexity: stating that it isCONP-complete means that it is al-
ways inCONP, and for some queries it isCONP-hard. Like-
wise, undecidability means that data complexity of some
fixed query is undecidable. We shall comment on the gap
for combined complexity without a bound on the number of
wildcards after sketching the proof.

Proof sketch. SinceCONP-hardness ofUCQXML is known
from [9], for data complexity it suffices to establish aCONP
upper bound forBCCQ6=

XML , and undecidability forFOXML .
For combined complexity we need to establishΠp

2-hardness
for UCQXML and aCONEXP upper bound forBCCQ6=

XML .

We now explain the idea behind the upper bound for com-
bined complexity (ofBCCQ6=

XML and others). The standard
way to obtain an upper bound for a queryQ (say, Boolean for
this sketch) overt is to prove that ifcertainOWA(Q, t) is false,
then there isT0 ∈ JtKOWA with some specific size bounds (in
t) such thatT0 |= ¬Q. While this was done in the past for
data complexity (e.g., in [8, 9]), the bounds were extremely
high in terms of the query. So we need to reduce the size
of the tree much more carefully to establish combined com-
plexity bounds.

The starting point of the proof is standard: suppose we have
T ∈ JtKOWA such thatT |= ¬Q. For the sketch, assume that
Q = q1 ∨ . . . ∨ qn, where eachqi is a conjunctive query;
that is,T |= ¬qi for eachi ≤ n. Take a homomorphism
h : t → T , and add to the image ofh all nodes which are
least common ancestors of nodes in the image, plus the root.
We call it the skeleton. Now if we have any node that is
not on a vertical or a horizontal path between two nodes in
the skeleton, we can throw it away, together with the subtree
rooted at it, and obtain a treeT ′ that agrees withT on all the
qis (by monotonicity).

The problem withT ′ is that we may have very long horizon-

tal or vertical paths which still need to be cut. This is done
using the fact the we have an infinite supply of labels, and
shorter paths can be relabeled in a way that does not satisfy
any of the queries.

We then provide aΠp
2-hardness reduction forUCQXML by

coding QSAT with a∀∗∃∗ quantifier prefix. 2

The case of a fixed alphabetThe combined complexity re-
sult above, for languages fromUCQXML to BCCQ6=

XML , does
not work in the case of a fixed alphabet. As we mentioned
earlier, this is the only case when results are different under
these assumptions. We now state the result under the as-
sumption that labels come from a finite but sufficiently large
alphabetLfin.

Theorem 3. Under the finite alphabet assumption, the
combined complexity ofUCQXML , UCQ 6=

XML , BCCQXML ,
and BCCQ6=

XML , underOWA, is in CONEXP and Πp
2-hard.

Furthermore, if the number of wildcards in the query is fixed,
then it isΠp

2-complete.

Proof sketch. The only difference in the proof is in cutting
long vertical and horizontal paths. To explain how this is
done under the fixed alphabet assumption, suppose we have
a long horizontal pathu1 → . . . → ul of nodes. It could
match some of the “horizontal” query subexpressionsπ1 →
. . . → πm. Looking at the roots of each pattern, we associate
each suchπi with a word overΣ ∪ { }. Next we collect all
wordsS in Σ∗ that are instantiations of such patterns with
wildcards that the horizontal path doesnot match (there are
at most exponentially many of them in the size of the query).

We claim that the pathu1 → . . . → ul can be cut to length
exponential in the size of the query so that it still does not
match any words inS. To see this, we use the Aho-Corasick
algorithm [5] and construct a DFAAS that accepts words
containing one word ofS as a pattern; its size is polyno-
mial in S and hence exponential in the query. Now take
the complement DFAAS which accepts the label of the path
u1 → . . . → ul, and use pumping to reduce it to the required
size so that none of the queriesqi is satisfied (since none of
the words inS will have a match). For vertical paths, we
proceed similarly. Given the overall exponential size of the
tree (in terms of the size of the query), we get theCONEXP
bound on combined complexity. If the number of wildcards
is fixed, then the setS above is of polynomial size, which
results in a polynomial-size tree and aΠp

2 upper bound. The
Πp

2-hardness proof of the previous theorem applies here ver-
batim. 2

9

RemarkWe now comment on theCONEXP-Πp
2 gap for com-

bined complexity. It is due to the fact that the constructionof
the Aho-Corasick [5] automaton is polynomial in the num-
ber of patterns, but with wildcards (known as don’t-cares in
string pattern matching literature) the size of the set may be
blown up exponentially (unless we restrict the use of wild-
card in the query).

Construction of DFAs for patterns with wildcards, that we
would need to lower the bound, has so far been considered in
the case of a single pattern [23], and very recently for multi-
patterns too [26]. While the latter yields an efficient pattern-
matching algorithm, it still gives an exponential blowup if
formulated in purely automata-theoretic terms. As our tech-
nique for reducing the size of the tree depends on such au-
tomata construction, at present we do not see any possibility
of using our approach to reduce the bound, due to the lack of
pattern matching tools we can apply (although we conjecture
that combined complexity remains inΠp

2).

4.2 Query answering under CWA

We now move to the closed world assumption. Recall that
for arbitrary incomplete trees, there are two possible inter-
pretations of it. Under the strong interpretationSCWA, we
insist that each node in a complete tree correspond to a node
in an incomplete tree. Under the weak interpretationWCWA,
new nodes may be inserted between nodes related by⇒ or
by ⇓. Our first result is about the weak interpretation.

Theorem 4. UnderWCWA, data and combined complexity
of query evaluation over arbitrary incomplete trees is the
same as underOWA, i.e., as described in Theorem 2.

Note thatOWA upper bounds trivially apply, so the key ob-
servation is thatOWA hardness results can be done using
OWA only to extend paths (rather than insert arbitrary trees),
which corresponds toWCWA.

Under the strong assumption, complexity bounds come
down only for the case ofFOXML , and stay as they were for
OWA andWCWA for other languages. Note that for arbitrary
incomplete trees, we cannot yet reduce query evaluation un-
derSCWA to the relational case, and indeed some bounds are
different (Πp

2 for trees and NP for relations for UCQs).

Corollary 1 . Over arbitrary incomplete trees
under SCWA, for each of the languages
UCQXML , UCQ 6=

XML , BCCQXML , BCCQ6=
XML , data com-

plexity is CONP-complete and combined complexity is
Πp

2-complete. ForFOXML , data complexity remainsCONP-
complete, while combined complexity isPSPACE-complete.

For upper bounds, one simply guesses an onto homomor-
phismh so thatā 6∈ Q(h(t)). This gives aCONP upper
bound for data complexity for all languages, andCONP-
hardness already follows from [9]. Since conjunctive queries
with negation can be evaluated with NP combined complex-
ity, this also gives aΠp

2 upper bounds for languages based on
conjunctive queries (with an additional guess which queries

will be true and which will be false for Boolean combina-
tions). And sinceFOXML can be translated into FO over a
relational representation, we get the PSPACEbound from the
corresponding bound for combined complexity of FO. The
lower bound is also from the relational case, by encoding
relations as XML documents.

Summary Results for arbitrary incomplete trees are summa-
rized in Figure 5. A quick look shows the following:

1. Data complexity is always intractable – unlike in the
relational case, we lose polynomial data complexity of
UCQXML andBCCQXML . Combined complexity is el-
ementary (in fact at most 2-exponential) despite previ-
ous high bounds (except forFOXML of course where it
is undecidable).

2. For arbitrary trees, closed world assumption – in either
form – does not help bring down complexity.

So, as in [9], this motivates looking at the restricted case of
rigid trees, for all of the languages and assumptions. This is
what we do next.

5. Query answering over rigid incomplete
trees

Recall that in rigid trees we have no missing structural in-
formation. That is, they are of the formt = 〈D, A, ↓,→
, (Pα)α∈Σ, ρ〉, whereD is a usual unranked tree domain,↓
and→ are child and next-sibling relations, labeling predi-
catesPα’s need not cover all ofD, andρ assigns data values
from C ∪ V .

In particular, in the absence of structural incomplete-
ness, there is no difference betweenSCWA and WCWA,
and we shall talk just aboutCWA. That is, JtKCWA =
{h(t) | h is a homomorphism}.

As before, we start with the open world assumption, and then
consider the closed world assumption.

5.1 Query answering under OWA

The only previously known result on the complexity of query
answering over rigid trees underOWA states that data com-
plexity ofUCQXML queries is in PTIME [9]. Moreover, query
answering can be done by naı̈ve evaluation. That is, one
simply computesQ(t), and throws away tuples that contain
nulls, and this guarantees to producecertainOWA(Q, t). By
translation into relational representation, this impliesNP-
completeness of combined complexity. We now complete
this picture.

Theorem 5. Under OWA, data complexity ofBCCQXML

queries over rigid trees in inPTIME, while for queries
in UCQ 6=

XML and BCCQ6=
XML it is CONP-complete, and for

FOXML it is undecidable.
Combined complexity isNP-complete forUCQXML andΠp

2-
complete forUCQ 6=

XML , BCCQXML , andBCCQ6=
XML .

10

data complexity combined complexity
CWA OWA CWA OWA

UCQXML PTIME PTIME NP-complete NP-complete
UCQ 6=

XML CONP-complete CONP-complete
BCCQXML PTIME PTIME Πp

2-complete Πp
2-complete

BCCQ6=
XML CONP-complete CONP-complete

FOXML CONP-complete undecidable PSPACE-complete undecidable

Figure 6: Complexity of computing certain answers over rigid incomplete trees

Thus, while for languages with inequalities we match the
high bounds for arbitrary incomplete trees, for one extension
of UCQXML queries we can get a polynomial-time evaluation
algorithm, namely for Boolean combination of CQs. Com-
bined complexity bounds match the relational case, which
means they cannot be improved for any reasonable class of
XML documents.

RemarkIn the case of BCCQs for relations, which was
tractable under bothOWA andCWA, the algorithm was much
simpler underOWA. To the contrary, for XML rigid trees
the algorithm underOWA is more complicated (but still
tractable).

5.2 Query answering under CWA

The last question is howCWA helps when we deal with rigid
trees. This is the case that is very close to relations: since
the structure is fixed, every completion of a relational repre-
sentation of a rigid tree would be structurally a tree. How-
ever, we still cannot apply relational results directly, because
even underSCWA, working with relational representations,
we need to ensure that labeling predicates behave properly.
But this can be done, resulting in the following.

Theorem 6. Over rigid incomplete trees, data and com-
bined complexity of all languages exceptFOXML are the
same underCWA and underOWA.
For FOXML , data complexity isCONP-complete, and com-
bined complexity isPSPACE-complete.

For UCQXML queries, certain answers are the same under
OWA and underCWA (and thus both can be computed by
naı̈ve evaluation). For the other tractable case ofBCCQXML

queries, they need not be the same, and in fact the algo-
rithms are more complex than the naı̈ve evaluation algorithm
(as was remarked already, even in the relational case such
queries cannot be evaluated naı̈vely to generate certain an-
swers, unless they are equivalent to unions of conjunctive
queries [22]).

5.3 Extensions

We now show that the tractable cases withstand the addition
of transitive closure axes to queries. That is, we defineex-
tendedpatterns by:

π := α(z̄)/[µ, . . . , µ]//[µ, . . . , µ]
µ := π ; . . . ; π

where each; is either→ or ⇒. The semantics is extended
as follows:

• (T, w, ν) |= α(z̄)/[µ1, . . . , µn]//[µ′
1, . . . , µ

′
k] if w ∈

Pα (wheneverα is aΣ-letter),ρ(w) = ν(z̄), there ex-
ist n childrenw1, . . . , wn of w such that(T, wi, ν) |=
µi for each i ≤ n, and there existk descendants
w′

1, . . . , w
′
k of w such that(T, w′

i, ν) |= µ′
i for each

i ≤ n,.

• (T, w, ν) |= π1 ; . . . ; πm if there is a sequence
w = w1, . . . , wm of nodes so that(T, wi, ν) |= πi for
eachi ≤ m andwi → wi+1 whenever theith ; is→,
andwi ⇒ wi+1 whenever theith ; is⇒.

With these patterns, we define the classes of queries well as
UCQ

//,⇒
XML andBCCQ

//,⇒
XML just asUCQXML andBCCQXML

but based on extended patterns.

We now show that tractable cases of query evaluation con-
tinue to apply to queries based on extended patterns.

Proposition 1. Data complexity of computing
certainOWA(Q, t) and certainCWA(Q, t) remains polyno-

mial for queriesQ in UCQ
//,⇒
XML andBCCQ

//,⇒
XML over rigid

trees.

We also remark that over rigid trees, certain answers can be
computed efficiently for an extension ofUCQXML that ex-
presses tree-to-tree queries [15].

Summary Going to rigid trees, i.e., giving up structural in-
completeness while allowing null values and wildcards, low-
ers the complexity of query evaluation for all the languages
to that of their relational counterparts. There is at least one
extension of the standard tractable class (namely Boolean
combinations of CQs), but getting answers in polynomial
time requires changing the algorithm.

UsingCWA does not help at all, except for the strongest lan-
guage (FOXML), which is undecidable underOWA as it codes
finite validity. In the case ofCWA it lowers combined com-
plexity to that of relational calculus, but data complexityre-
mains intractable.

6. Conclusions

11

The results of this paper, together with [9], present a com-
plete picture of both data and combined complexity of query
answering over incomplete XML documents. In just one
case, there is a small gap for combined complexity (which
nonetheless present a significant improvement upon previ-
ously known nonelementary bounds), which seems to hinge
upon currently unavailable techniques for using automata for
pattern matching (or a new technique for reducing the size
of the witness tree).

Overall, we can infer the following from our study.

1. Structural incompleteness always leads to intractabil-
ity of query answering (and thus should not be allowed
in practical scenarios).

2. Playing with the semantic assumptions, such as open
and closed world assumptions, does not have a sig-
nificant effect on query answering. Thus, it probably
makes sense to stick with the commonly acceptedOWA
in practical scenarios.

3. When incompleteness is reduced to labeling and data
values, efficient query answering is possible in query
languages that mimic relational languages admitting
efficient evaluation.

The most common such language is union of conjunc-
tive queries, but we showed that several extensions
work as well.

So the bottom line seems to be that one should use label and
data-value incompleteness only, underOWA, as this gives the
best hope for efficient query answering for practically rele-
vant languages.

Acknowledgment Work partially supported by EPSRC
grant G049165 and FET-Open Project FoX, grant agreement
233599.

7. References

[1] S. Abiteboul, P. Buneman, D. Suciu.Data on the Web: From
Relations to Semistructured Data and XML. Morgan Kauffman,
1999.

[2] S. Abiteboul, O. Duschka. Complexity of answering queries using
materialized views. InPODS 1998, pages 254–263.

[3] S. Abiteboul, P Kanellakis, and G. Grahne. On the representation and
querying of sets of possible worlds.TCS, 78(1):158–187, 1991.

[4] S. Abiteboul, L. Segoufin, and V. Vianu. Representing andquerying
XML with incomplete information.ACM TODS, 31(1):208–254,
2006.

[5] A. V. Aho, M. Corasick. Efficient string matching: an aid to
bibliographic search.Commun. ACM18(6):333-340 (1975).

[6] L. Antova, T. Jansen, C. Koch, D. Olteanu. Fast and simplerelational
processing of uncertain data. InICDE’08, pages 983–992.

[7] M. Arenas, P. Barceló, L. Libkin, F. Murlak.Relational and XML
Data Exchange. Morgan & Claypool, 2010.

[8] M. Arenas and L. Libkin. XML data exchange: consistency and
query answering.J. ACM, 55 (2), 2008.

[9] P. Barceló, L. Libkin, A. Poggi, C. Sirangelo. XML with incomplete
information.J. ACM, 58:1 (2010).

[10] H. Björklund, W. Martens, and T. Schwentick. Conjunctive query
containment over trees.J. Comput. Syst. Sci.77(3): 450-472 (2011).

[11] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability and
complexity of query answering over inconsistent and incomplete
databases. InPODS’03, pages 260–271.

[12] D. Calvanese, G. De Giacomo, M. Lenzerini. Semi-structured data
with constraints and incomplete information. InDescription Logics,
1998.

[13] D. Calvanese, G. De Giacomo, M. Lenzerini. Representing and
reasoning on XML documents: a description logic approach.J. Log.
Comput.9 (1999), 295–318.

[14] M. Crochemore, W. Rytter.Jewels of Stringology: Text Algorithms.
World Scientific 2002.

[15] C. David, L. Libkin, F. Murlak. Certain answers for XML queries. In
PODS 2010, pages 191-202.

[16] T. Eiter, G. Gottlob, H. Mannila. Disjunctive datalog.ACM Trans.
Database Syst.22(3):364-418 (1997).

[17] G. Gottlob, C. Koch, and K. Schulz. Conjunctive queriesover trees.
J. ACM53(2):238-272, 2006.

[18] G. Grahne.The Problem of Incomplete Information in Relational
Databases. Springer, 1991.

[19] T. Imieliński and W. Lipski. Incomplete information in relational
databases.J. ACM, 31(4):761–791, 1984.

[20] B. Kimelfeld, Y. Sagiv. Modeling and querying probabilistic XML
data.SIGMOD Record37(4): 69-77 (2008).

[21] M. Lenzerini. Data integration: a theoretical perspective. In
PODS’02, pages 233–246.

[22] L. Libkin. Incomplete information and certain answersin general
data models. InPODS’11, pages 59–70.

[23] R. Pinter. Efficient string matching with don’t-care patterns. In
Combinatorial ALgorithms on Words, NATO ASI Series, 1985.

[24] R. Reiter. On closed world databases. In“Logic and Databases”,
H. Gallaire and J. Minker eds, Plenum Press, 1978, pages 55–76.

[25] R. Rosati. On the finite controllability of conjunctivequery
answering in databases under open-world assumption.J. Comput.
Syst. Sci.77(3):572-594 (2011).

[26] P. Silvasti, S. Sippu, E. Soisalon-Soininen. Evaluating linear XPath
expressions by pattern-matching automata.J. UCS16(5):833-851
(2010).

[27] D. Suciu, D. Olteanu, C. Re, C. Koch.Probabilistic Databases.
Morgan & Claypool, 2011.

[28] R. van der Meyden. The complexity of querying indefinitedata about
linearly ordered domains.J. Comput. Syst. Sci.54(1): 113-135
(1997).

12

