On the Complexity of Query Answering over Incomplete
XML Documents

Leonid Libkin
University of Edinburgh

libkin@inf.ed.ac.uk

Amélie Gheerbrant
University of Edinburgh

agheerbr@inf.ed.ac.uk

Tony Tan
University of Edinburgh

ttan@inf.ed.ac.uk

ABSTRACT

General Terms. Algorithms, Theory, Languages

Previous studies of incomplete XML documents have iden-

tified three main sources of incompleteness — in structural Keywords. XML, incomplete information, query answer-
information, data values, and labeling — and addressed datang, certain answers, open-world semantics, closed-world
complexity of answering analogs of unions of conjunctive semantics

gueries under the open world assumption. It is known that
structural incompleteness leads to intractability, while
completeness in data values and labeling still permits effi- 1.
cient computation of certain answers.

Introduction

f The need to deal with incomplete information has increased
dramatically over the past decade, due to large amounts of

documents. We look at more expressive languages, atdata on the Web [1] (which tend to be more prone to er-

other semantic assumptions, and at both data and combined®’s than data stored in traditional relational DBMSs) al we
complexity of query answering, to see whether some well- as the need to move data between different applications as,

behaving tractable classes have been missed. To incorpoi?’ €Xample, in data integration [21] and exchange [7] sce-
et non-posiie featres i query anguages we ook a1 [210%, DEFn! UBEs 816 el of neampitences fave
gentle ways of introducing negation via inequalities and/o mation uncertair’1 databases [6]. and probabilistic d 9 a
Boolean combinations of positive queries, as well as the ana P ; 2= [61, pre : st

log of relational calculus. We also look at the closed world [27]. While most investigations deal with relational data,
assumption which, due to the hierarchical structure of XML, isnegloer:]all;?gﬁg;g?ﬁ‘;rﬁﬂta\é%fgggnrgtelg t(z rg%%s\ll:g%gxigze
has two variations. For all combinations of languages and handlg incom Ieteness.in ad nafnié ge]ttin when docu-
semantics of incompleteness we determine data and com- P y 9

bined complexity of computing certain answers. We show ment's struciure is r_evealed by & sequence of queries, _vvh_ile
that structural incompleteness leads to intractabilitgam [12, 13] expressed incompleteness by means of description

all assumptions, while by dropping it we can recover effi- logic theories, and [20] surveyed incorporating probé&bai

cient evaluation algorithms for some queries that go beyond into XML.
those previously studied.

The goal of this paper is to provide a complete picture o
the complexity of query answering over incomplete XML

An attempt to reconstruct the classical relational thedry o
incompleteness [3, 19, 18] (in particular, issues such as se
mantics of incompleteness and the complexity of the main
computational problems associated with it) was done in [9].
That paper presented a very general model of XML doc-
uments with incomplete information, and studied several
computational problems, such as consistency of incomplete
specifications, representability of complete documents by
incomplete ones, and query answering.

Categories and Subject Descriptors. F.1.1

[Computation by Abstract Deviced: Models of Computa-
tion—Automata H.2.1 [Database Managemerjt Logical

Design—bata Models H.2.3 [Database managemeipt

Languages-Query Languaged.7.2 [Document and Text
Processing: Document PreparationMarkup languages

In the model of [9], there are three main sources of incom-
pleteness:

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providaticbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ICDT 2012 March 26-30, 2012, Berlin, Germany.

Copyright 2012 ACM 978-1-4503-0791-8/12/03510.00

e Incompleteness at the level of data values. This is the
same as in the relational case: nodes in XML trees may
carry attribute values, and some of those values may
not be known (i.e., nulls).

e Structural incompleteness. Some of the hierarchical
structure of an XML document may not be known. For

example, we may only know that a nodes a descen-
dant of a nodew’ without knowing the precise path
between them.

e Labeling incompleteness. Labels of some nodes may
not be known and replaced by wildcards.

root

*

Institute
v

Author

Title
(Newton) (Principia)

Institute
(69]

Figure 1: An incomplete XML document

Figure 1 gives an instance of an incomplete XML document.
In this document we have two nodes labefedhorandTi-

tle, and we know their attribute values (“Newton” and “Prin-
cipia”), as well as that the latter is next-sibling of therfaar.
However, we do not know what the common parent of these

nodes is: it may be the root, or another node, as the edges 2.

from the root to those nodes are labeledneaning descen-
dant. We also have dmstitutenode, with an unknown at-
tribute valuey, as well as anothdnstitutenode which is a
child of the Author node; its attribute is another unknown
valuez. Furthermore, there is a child of the root, but we
know neither its label (indicated by wildcardl nor its at-
tribute value.

root

/\
,/_\ Institute

V)

Author
(Newton)

Title
(Principia)

Institute
()

Figure 2: A rigid incomplete XML document

is shown Figure 2).

However, the picture is rather incomplete, and several-natu
ral questions arise.

1. Can the complexity of query evaluation over arbitrary
incomplete documents be lowered by using a seman-
tics based ortlosed rather than open world assump-
tion?

Can we extend the language of unions of conjunctive
queries to obtain tractable query evaluation (under both
open and closed world assumptions)?

. What can be said about combined complexity of com-
puting certain answers?

The main goal of the paper is to answer these questions. To
do so, we need to explain what we mean by closed world

The semantics of such incomplete documents was given byassumption in XML, and define languages extending UCQs

homomorphisms into complete XML trees; this will be il-
lustrated shortly and properly defined in the next section.
Such semantics correspondsofoen world assumptiofi9,

24], since it leaves a complete document open to adding new®

nodes.

As the class of queries to study, [9] used XML analogs of
unions of conjunctive querieer UCQs. In XML, conjunc-
tive queries are normally modeled \i@e patternd8, 10,
17]. The choice of this class is not arbitrary: in the rela-

that we want to study. We now informally introduce these.

Closed world semantics in XMLUn the case of relations,
losed world semantics is typically defined by having an
onto(surjective) mapping (homomorphism) from an incom-
plete database to a complete one. We shall follow the same
approach, but there is one issue that arises when we use tran-
sitive closures of axes, e.g., descendant relationshipg. S
we have just two nodes andw’, and we know that’ is a
descendant ofo. Any surjective mapping from such an in-

tional world, UCQs can be answered over incomplete tables complete description will produce a document with at most

by using the standard relational evaluation of queries;iti
usually referred to as naive evaluation [19]. In fact, fkis
the largest class of relational calculus queries for whighs
evaluation computes certain answers to queries [19, 22].

It was shown in [9] that data complexity of evaluating UCQs
over XML documents is always iaONP, and is almost in-
variably cONP-complete as long as structural incomplete-

two nodes. Does it mean that under the closed world as-
sumption we are then forced to reduce descendant relation-
ship to child? On the one hand, this agrees with the intuition
of not introducing new nodes; on the other hand, it seems
to infer new child relationship which does not correspond to
closed world assumption. So which alternative should we
choose?

ness is present. There are no known bounds on combined\Ve believe that both in fact are reasonable, and we answer

complexity; proofs in [9] only give nonelementary complex-
ity, but we shall see that this can be significantly improved.

When the structure is fully known, i.e., only data values
and labels of documents could be missing, evaluation of

all the questions for both interpretations of closed wodd a
sumptions. More precisely, we consider three different se-
mantics, which are shown in Figure 3, and are informally
described below.

UCQs becomes tractable and can be done using naive evalin Figure 3, we show documents that can be denoted by

uation (such incomplete trees were callgdd; an example

the incomplete document from Figure 1 under three differ-

root

root

o \ Book Book
—_— Author. - Title Institute
OWA (Newton) (Principia))) \
Author Title Author Title
(Newton) (Principia) (Einstein) (Relativity)
Institute
(x) Institute Institute
(Cambridge) (IAS)
root
root
* Book Book
—_— Author g Title Institute *
WCW /\ (Newton) (Principia)) Author Title Author
(Newton) (Principia) (Einstein)
Institute Institute Institute
(Cambridge) (IAS)
root
root
/ > " Book Institute
\ \ /\ (IAS)
S CWA — Author - _Title Institute i)
Newt Principi Author Title
(Newton) (Principia) » (Newton) (Principia)
Institute Institute
) (Cambridge)

Figure 3: Open and (weak and strong) closed world semanticsf incomplete XML

ent assumptions. Dashed lines show homomorphisms fromlook at intermediate ways of adding negation without imme-
the nodes of incomplete documents to the nodes of completediately jumping all the way up to an XML analog of FO.

ones. There are two such standard ways:
e Under the open world assumption\a), we permit e we can add inequalitieg as atomic formulae; or
any homomorphism (that preserves relationships be- o we can permit arbitrary Boolean combinations of pre-
tween nodes and their attributes) from an incomplete viously defined queries.

documentnto a complete one.

e Under the weak closed world assumptiongwa), we For example, adding: to UCQs we get a classCQ7 of
insist that the homomorphism be surjectioato) ex- unions of conjunctive queries with inequalities. By loakin
cept when nodes are in a relationship such as descenat Boolean combinations of those we get a class BCCQ of
dant: then we allow the introduction of new nodes, but Boolean combination of conjunctive queries, i.e., thewtes
only on a path between nodes that exist in an incom- of conjunctive queries under operations) ¢’, ¢ U ¢/, and
plete description. In the example in the picture, root ¢ — ¢’. Combining these, we shall obtain five languages that
is mapped to the root, and thestitute node with un- we study herelUCQ, UCQ7, BCCQ, BCCQ7, FO, and
known valuey into IAS. This lets us introduce a pathto thejr XML analogs.
it that has a book node with a descendant author (Ein- . o)
stein); note however that we cannot introduce a node ResultsAfter formally defining XML with incomplete in-
for book title (which was possible undewa) as it formation and query languages, we review what is known
will not be on the path to the IAS node. for relational databases. In addition to recalling knowmd(a

sometimes folklore but not explicitly proven) results, we

show a new result that for BCCQs, certain answers can be
computed in polynomial time.

e Under the strong closed world assumptisi{va), we
insist that the homomorphism be surjective.

Extensions of UCQs for XMIRelational UCQs correspond After that, we switch to XML. We show that for arbitrary in-

to the positive fragment of relational algebra. Thus, edten complete documents that permit structural incompleteness
ing them means introducing some form of negation. While under all assumptions, and for all the languages, data com-
we can just add it in an unrestricted way (like relationakalg plexity is intractable. We also establish combined complex
bra does, to capture full power of first-order logic, FO), we ity that in most cases is only marginally higher than data

complexity (most commonly just one level up in the polyno- e p: D — U AF assigns to each node € D a
mial hierarchy). k-tuple of data values for somie> 0.

We then switch to rigid trees. For them, we show that the))

complexity of all the query answering tasks is the same as We refer toD as thedomainof 7', and denote it by do(f’),
for relations. While lower bounds can be inferred from the and toA as theactive domair(of data values) of" and de-
relational case, upper bounds require work as we are deal-note it by adonil’). We always assume thdthas precisely
ing with more complex tree structure (we know, for instance, the elements of used inT', i.e., if v € A then there is a
that they need not hold in general with structural incongslet nodew such that occurs inp(w).

ness). We shall usually assume that for nodesw’ with the same

In particular, over rigid trees, analogs of UCQs can be an- 1abel, the arities ofp(w) and p(w’) are the same; this is
swered in polynomial time, by naive evaluation, under both customary for abstractions of XML documents although not
open and closed world assumptions, which implies efficient technically necessary for our results.

evaluation of queries. For analogs of BCCQs, we demon-
strate a tractable query evaluation algorithm too, with com
bined complexity a bit higher (one level in the polynomial
hierarchy) than for UCQs. We then conclude by discussing
practical implications of these results. Incomplete XML trees

We shall denote the transitive closure|dfy |} and the tran-
sitive closure of— by =-.

Organization Incomplete XML documents are defined in To define incomplete XML documents, we assume a count-
Section 2; query answering over incomplete relational and aply infinite supply of null values (or variable¥) Follow-
XML databases is discussed in Section 3. In Section 4 we ing [9], incompleteness can appear in documents in the fol-
establish results on query answering over arbitrary incom- Jowing ways:

plete trees, for all the languages considered here, anctin Se
tion 5 we do the same for rigid trees. Final remarks and

. - : e Data-values incompleteness. This is the same as in-
conclusions are in Section 6.

completeness in relational models: some data values
could be replaced by nulls.

2. Incompleteness in XML e Labeling incompleteness: instead of a known label,
some nodes can be labeled with a wildcard.

e Structural incompleteness. Some of the structure of

XML trees the document may not be known (e.g., we can use de-
] scendant edges in addition to child edges, or following-
To describe XML trees, we assume sibling edges instead of next-sibling).

* a countably infinite set of possible data values (n0- - Thjs can be captured as follows. Amcomplete tre@vers
tation C stands for “constants”, as opposed to nulls), s 3 2_sorted structure

and

e a countably infinite setC of node labels (element t = NV, L, == (Pa)acs, p), (2)
types). We shall normally denote labels by lowercase where
Greek letters.

.) e N is asetof nodes, arid is a set of values froldU V;
An XML tree over a finite alphabet C L is a 2-sorted

structure e |.|l,—,= are binary relations o/V;
T = (D, A, |,—,(Pa)aes, p), 1) e P.'s are disjoint subsets df ; and
where e pis afunction fromV to | J, -, V*.

e D is an unranked tree domain, i.e. a prefix-closed sub-
set of N* such thatw - i € D impliesw - j € D for
J<u

As before, dorf¥) refers toN, and adorft) to V. We now
distinguish between adaitt), which refers to elements 6f
in adon(t), and adom (¢), which refers to elements of in
e | and — are the child and next-sibling relations, for adontt).
which we shall use, as is common, the infix notation:
w | w-iwhenevew - i€ D,andw -i — w- (i + 1)
whenevew - (i + 1) € D;

These represent incompleteness in XML as follows:

e elements ol are the usual null values;

e P,’'s do not necessarily cover all éf; those nodes in
N not assigned a label can be thought of as labeled
e A C Cis afinite set of data values; and with a wildcard;

e eachP, isthe set of elements @ labeledx (of course
we require that these partitidn);

e structural incompleteness is captured by relatiopns Open and closed world assumptions
—, I}, = which could be arbitrary. For example, we
may know thatw | w’ without knowing anything Open world assumptiorofva) states that a database, or a
about the path between the two. document, is open to adding new facts (e.g., tuples, nodes,
associations between nodes). This is the semantics adopted
in [9], and defined above, for XML. In the relational world it
is normally expressed by having a homomorphism from an
incomplete instancmto a complete instance.

SemanticsAs is common with incomplete information, we
define semantics via homomorphisms. hAmomorphism
h : t — T from an incomplete tree = (N,V, |, ||, —,

=, (Pa)acx, p) to a complete XML treel" = (D, 4, |, On the other hand, closed world assumptiowi) states
—, (Pa)aesr, p), where¥ C ', is a pair of mapsh = that a database or a document is closed for adding new facts.
(h1,h2) whereh; : N — D andhy : V — A such that: In the relational case, this is usually formalized by having
a homomorphism from an incomplete instamcgo a com-
o if wRW in t, thenh, (w)Rhy (v') in T, whenR is plete instance. For XML, the situation is a bit more involved

however, due to the presence of transitive closures of the
child and next-sibling axes, as was explained informally in
the introduction. We now define the notions of weak and
strong closed world assumptions formally.

one of |, —, ||,= (recall that| and=- are interpreted
as descendant and following-sibling in complete XML
trees);

o if w e P, int,thenhy(w) € P, inT, foreachx € ¥; . . .
Of course we can adopt the relational notion of having an

e hy(c) = c whenever € C; and onto-homomorphism. We call thisstrong closed world as-
o ha(p(w)) = p(ha (w)) for eachw € N. sumptionor SCWA. More precisely,
[tlscwa = {T | exists an onto homomorphisim- T'}.
The semantics of an incomplete trets the set of all com- 5 homomorphismh = (hy,hs) is an onto homomor-
plete treed” that it has a homomorphism into: phism if boths, and h, are onto (surjective) maps. (The

reader may notice that it suffices to require that ohly
be surjective.) Equivalently, we can say tHafscwa =

The superscrippwa means that this is the semantics under {?(7) | i is a homomorphisnj.

the open world assumption; this will be explained in detail g, yhig assumption may be too strong if we deal with transi-
shortly. A homomorphism shows how missing features of e closure axes. Consider, for example, an incomplete tre

are interpreted in a complete documéght with two nodesy andv’ such thaty |} v’. Underscwa, it

RemarkAn incomplete tree may be inconsistent in the sense ¢an only be mapped into 2-node trees, while the interpreta-
that [t]owa = 0. This however will not affect any results we ~ tion of |} says that a path betweerandv’ of length greater
prove about query answering: as we shall see, over incom-thanl may be allowed. We thus weaken thewa, by allow-
plete trees, query answering will be @NP (or higher), ing paths between nodes for which orlpr = associations
and [10] showed that checking inconsistency can be done in€XISt.

CONP. Thus we can always assume that the input is first
checked for being inconsistent (in which case certain an-
swers are vacuously true).

[tlowa = {T' | exists a homomorphism— T'}.

Formally, we define theveak closed world assumptioar
WCWA, as follows. A homomorphisi = (hq,hs) : t — T

is called anncwA-homomorphisnf, for every nodew of T’
that is not in the image df; (i.e., not an image of a node of
Rigid trees t), there exist two nodes v’ of ¢ such that either

e v |} v holdsint andh(v) | w |} h(v") holds inT'; or

As we already mentioned, [9] showed that query answering | v = o holds int andh(v) = w = h(v') holds inT.

becomes tractable and can be achieved by naive evaluation
of rigid trees. These are trees in which no structural infor- That is, the homomorphisinmay not be surjective, but if a
mation is missing; that is, the only types of missing informa node is not in the image d@f, then it must be on a horizontal
tion are nulls and wildcards. A rigid tree is defined just as or a vertical path between two nodes that are in the image of
an XML tree (1), i.e.t = (D, A, |,—, (Pa)acs, p), With h.

only two differences: i
We then define

e Ais asubsetof UV rather than just (i.e., nulls are [tJwewa = {T'| exists avcwa-homomorphisnt — T'}.

permitted), and Clearly each surjective homomorphism is \®8CWA-

e the union ofP,'s need not be the entit@ (some nodes homomorphism, and thug]scwa C [tJwewa. Also in the
may be labeled with wildcards). absence of transitive closure axes, as in rigid trees, ikere
no difference between the two semantics, in which case we

. . . refer just tocwA semantics, and writ .
Note that the problem of inconsistency, mentioned above, J Bllcws

does not arise with rigid trees. Fixed vs nonfixed alphabetdNe have made an assumption

that labels come from an infinite sét A similar, and also Here x ranges over our semantic assumptions (that lead to
a reasonable assumption, is to have a finite but sufficiently different notions of certain answers).

large alphabet (e.g., to assume that no tree uses every sin- . .
gle available label: first, such an assumption is impraktica Conventionwhen we say that data complexity of a query

and second, it leads to query answering abnormalities w.r.t 1anguageL is complete for a complexity class' (e.g.,
certain answers [9]). More precisely, in this case we assumeSON P—complete)_, we mean that (1) for every quéeiyn L,
that labels come from a fixed finite alphalt,, and that 'S data complexity is i, and (2) there is a quedo in L
trees and queries do not exhaust it: for instance, we can as\VNose data complexity iS-hard.

sume that, given a trééand a query), we canreplace each computing certain answersFor arbitrary FO queries, the
label used in them by a new one. combined complexity of finding certain answers is undecid-

It turns out that all the results are the same under both as-aPle (finite validity). For one class of queries the problem

sumptions, except one: combined complexity for incomplete 1S solvable using the standard query evaluation. We define a

trees undepWA goes up by one exponent in the case of a naive evaluatiorof aquery as the _standard evaluation of it
fixed alphabet. However, we shall see that this only happensfollowed by removing tuples containing nulls. It was shown
when the query uses many wildcards. All lower bounds will " [19] that for unions of conjunctive querigsaive evalu-
hold even for fixed finite alphabets. Thus, with one excep- ation computes certain answers (which are in this case the

tion, we shall not be specifying our assumptions for the set S&Me under botbwa andcwa). In fact, the result is opti-
of possible labels. mal: no larger class of queries within FO has this property

[22]. Beyond unions of conjunctive queries, algorithms for
) . finding certain answers use more complex representations,
3. Query answering and incompleteness namely conditional tables [3, 19, 18].

Much of the work on complexity of query answering over
relational databases with nulls concentrated on languages
such as unions of conjunctive queries (UCQs), FO, and be-
yond (e.g., datalog). As the gap between UCQs and FO is
We now recall the basics of query answering over databasesyery large, one might look for classes between those two.
with incomplete information. Such a database, under the Some results about such classes are known: for example,
naive interpretation of nulls, is a database whose elesnent finding certain answers to UCQs with inequalities N P-
come from the domain of constanfsand the domain of complete [2]. On the XML side, we shall be dealing with
nulls V. The semantics is defined via homomorphisms analogs of the following relational languages, build upriro

h :V — C. Such a map is a homomorphism between two conjunctive queries by using Boolean operations, quanti-
database® andD’ of the same schema if, for every relation fiers, inequalities, and quantification:

R of D and every tuple of R, the tupleh(a) is in the rela-
tion of R of D’. As before, we viewrasamag UV — C
extended by letting.(c) = ¢ for eachc € C.

3.1 Relational queries

e UCQ andUCQ7: unions of conjunctive queries (with
inequalities, i.e. atoms # y are allowed);

This leads to two standard semantics[D]ows = e BCCQ andBCCQ”: Boolean combinations of con-
/ 1 1 / _ :

{5D| e>2§ts ahhomomorphhlsd? — D'} and[D]ews = junctive queries (with inequalities). In other words,

{h(D) | his a homomorphisin starting with conjunctive queries (with inequalities)

Given a relational query), its result on an incomplete ¢1(2),. .., 4m(2), we can close them under operations
database is defined by meanseftain answers qUq',qNq¢ andg —¢".

. B , , e FO, which can be viewed as closure of conjunctive

certain(Q, D) = ﬂ{Q@)| D" € [D]} queries under Boolean operations and quantification.

wherex is eitherowA or CWA.

While some complexity bounds (both data and combined)
are known for finding certain answers under botkia and
CWA, we are not aware of such results for BCCQs, and prove
them for the sake of completeness.

Computational problems As is common, we look atlata
complexityandcombined complexityf computing query an-
swers (in this case, certain answers under various seman
tics). More precisely, the problems we deal with are as fol-

lows: Theorem 1 Data complexity of finding certain answers
_ _ . to BCCQs is in PTIME, while for BCCQ7 it is CONP-
o Combined complexity of alanguage The inputcon- complete. For both classes of queries the combined com-

sists of a databasb, a queryQ in L, and a tuple of plexity isTT5-complete. These bounds hold under bottn
data values of the same arity a€); the questionis gndcwa.

whethers € certain (Q, D).

e Data complexity of a languagk. In this case we have We explain briefly the main idea behind theIRE algo-
afixedqueryQ in L; the input consists of a databaBe rithm for BCCQs undepwAThe key case is that of a spe-
and a tuple of data valugsf the same arity ag, and cial type of query with just one negation, namely a Boolean
the question is the same: whetlses certain(Q, D). queryQ = qV—q', whereg is a union of conjunctive queries,

data complexity combined complexity
CWA OWA CWA OWA
ucQ PTIME PTIME NP-complete | NP-complete
ucQ CcoNP-complete] cONP-complete
BCCQ PTIME PTIME I15-complete | II5-complete
BCCQ7” | coNP-complete] cONP-complete]
FO coNP-complete] undecidable | Pspacecomplete| undecidable

Figure 4: Complexity of computing certain answers: relaticmal case

and¢’ is a conjunctive query. Suppose we have a databaseconsidered in the XML setting. As is common in the scenar-
D with null values. We give an algorithm for checking ioswhen one needs to compute certain answers (by means of
whethercertainw. (Q, D) is false, i.e., whetheD’ = —q intersection) [8, 9], we look at queries that can only output
andD’ = ¢ for someD’ € [D]owa. This is done as fol- tuples of data values.

lows. First, convery into its tableau, Tafy’). Then let
DIq'] be the “disjoint union” ofD and Taljq’) (i.e., we re-
name all nulls in Tafy’) so that they would be different from
nulls in D). Then we show thatertainw. (Q, D) is false iff
certairyuwa (¢, D[¢']) is false. Since is a UCQ, checking the
latter condition can be done by naive evaluation, and hence
in PTIME.

The queries will be essentially fragments of first-ordeiidog
over XML trees; however, to avoid the clumsiness of a two-
sorted presentation, we follow the standard approach and de
fine them viapatterns For now, we shall look at patterns
based on the child/next-sibling axes; extensions will lse di
cussed later.

In the general case, when we deal with a Boolean combina-AN €xample of a pattern is

tion @ of conjunctive queriegy, . o m (assume they are az)/[B(x) — v(1),8(y) — v(z)].

Boolean), we look at all the assignmentsgof ..., ¢, to . , .

true and false that make the Boolean combination false. As-When evaluated on a tre®, it collects all instantiations of
sume we have such a valuation that assignsith i € I variablesr andy so that a tree has am-node whose data
to true andg; with j ¢ I to false. Then, checking whether ~Value isz, together with (1) gj-child with the same data
certaiua (Q, D) = L is witnessed by this assignment (i.e., Valuez whose next sibling is g-node with data valug;
whether there exist®’ € [D]owa SO that they,’s evaluate and (2) a§-chlld with data value; whose next sibling is a
to true/false on it as in the assignment) amounts to checking?-node with data value.

whethercertairgua(qV—q', D) = L whereg = Vo q;and pormally, patterns are given by the grammar:
q" = N;c; ¢i- For this we simply use the above algorithm,

as the query is now in the right shape. Sirgés fixed, so o= a(z)/[p -1l
is the number of assignments of tés to true/false, which o= T T
gives us an overall AME algorithm. wherea ranges ove or wildcard _, andz is a tuple of

variables and constants. We writéz) if Z is a tuple of
all the variables mentioned in. Also, to simplify nota-
tion, we shall writea(z)/5(y) instead of the more formal

a(z)/[5()]-

Figure 4 summarizes what is known about both data and We define the semantics with respect to an XML trée-
combined complexity of finding certain answers for rela- (D, A, |, —, (Ps)acs, p) and a valuationv for variablesz
tional queries; results are from [2, 3, 19, 28] and the abovein C:

theorem.

Forcwa, however, the algorithm is more involved, as the ba-
sic reduction no longer works if we usertaiwa (¢, D[¢']).
O

Note that there is a rather persistent confusion in the-liter ~ ® (1> w:¥) [F a(2)u1,..., un] if w € P, (Whenever

ature regardinglata complexity of certain answers of FO is aX-letter), p(w) = v(2), and there exist children

queries. It is very common to attribute such undecidabil- wy, ..., Wy OF w such thal(T, w;, v) = u; for each

ity to Trakhtenbrot's theorem, which is fine for combined L.

complexity, but not technically correct in the case of afixed o (T,w,v) = m1 — ... — 7, if there is a sequence

query. While the result itself seems to be folklore, we welnte w = w; — w2 — ... — wy 0f nodes so that

to clear this confusion and we shall provide in the full ver- (T, w;,v) |= ; for eachi < m.

sion a self-contained proof of undecidability of data com-

plexity of FO on naive tables. We shall write(T, w) = = (a) if (T, w,v) = =(z) wherey
assigns values to variablest.

3.2 Pattern-based XML queries Classes of pattern-based XML queries We now define
XML analogs of the five languages we considered in the re-
We now define the analogs of the relational languages welational case which are based on patterns. First, we need a

class ofconjunctive queriegessentially defined in [8, 10, It selects data valuessuch that if they are found in-nodes
17]): these are obtained by closing patterns under conjunc-with a 3-child, then the data valug of that child must also
tion and existential quantification of variables: be found in @-node whose parentis labelednd has a data
0(Z) = T G T (T G1) A - AT (E,) value different fromy.
The semantics is defined as follows. Given a ffeand a Certain answers Since queries in languages introduced
valuationa for variablesz, we havel’ = ¢(a) if there exist above produpe sets of tpples of data values, we can define
tuplesbr, . . ., b, of data values and nodes, . .., w, in T the usual notion of certain answers for evaluating them over
so that(T, w;) |= :(a, b;) for everyi < n. incomplete documents. That s, for a quénand an incom-
plete treet, we let
If inequality atoms ¢ # v) are allowed too, in addition to
patterns, we talk about conjunctive queries with ineqjigslit certain(Q,t) = ﬂ{Q(T) | T € [t].},
The semantics extends in the natural way.
wherex ranges oveowA, SCWA, andwCWwA. The problems

Now we define the languages we deal with. we consider for them are the same as in the relational case:

determining data and combined complexity.
UCQ,,, and UCQZ, These are defined as queries of the

formq, (Z)U. . .Uqn (Z), where eacl; is a conjunctive

query (with inequalities, respectively). 4. Query answering over arbitrary incomplete
BCCQ,,, and BCCQZ, These are obtained by closing trees

conjunctive queries (with inequalities) under opera-

tionsqU ¢, ¢ N ¢ andg —¢'. We now look at query answering over arbitrary incom-

FOyxw. These are obtained by closing patterns and equality plete XML trees. One data complexity result was previ-
atoms under the Boolean operations and both universalously known, namelg oNP-completeness fdfCQ,,, un-

and existential quantification. derowA [9]. We now complete the study, and present results
on both data and combined complexity for all five languages
ExamplesWe start with an example of@aCQ,,,. query: introduced in the previous section.
qi(z) = Fy,z a(z)/[Bly) = v(2)] Before we embark on this study, there is one natural ques-
vV tion we need to ask: can we obtain the desired results simply
. D ;
Iy alz)/8(y) by recourse to relational query answering? After all, ineom

plete XML trees are relational structures. The answer is tha
It selects data values found in a-labeled nodes which ei- we cannotmeaningfully adapt relational results. The main
ther have two consecutive children labelédand y (with reason is that, if we have an incomplete trepresented
some data values attached to them), or a child labe(atso as a relational databag®,, then[D,] is not the set of re-
with a data value in it). If in addition we want to impose a |ational representations of trees|it] (except in some very

requirement that the data values in theode (ord-node) be |imited cases). This is of course due to the fact fionly
different fromz, we use &JCQZ,, query: contains trees, bytD;] may contain databases that are not
©r) = 3y z (a@)/BE) —1(2)] Az £y) translations of trees.
i To apply relational results, we would need to impose an
3 Su) A extra constraint that complete databases are trees. This is
o 4 (a(x)/ W) Ao y) very problematic as, unde@wa, already much simpler con-
The following is an example of BCCQy,, query: straints lead to undecidability of query answering [11,.25]
Another alternative is to move from a quefyto a query
@3(z,y) = 3z (O‘(Z)/[V(I) - 5(?/)}) -t reevQ, wheret r ee expresses that a relational database
vV is a representation of an XML tree. This needs a fixpoint
3 mechanism. Thus, expressing the above query (t_hat also in-
N (a(x)/%z)/ﬁ(y)) volves = and V) puts us in the realm of disjunctive data-
It selects tupleéz, y) of data values that are eitheotfound log. While known results do give us decidability, complex-
in two consecutive children labeled withand § of an a- ity bounds we can infer “for free” will béI% for data com-
node, or found on a path labeled-v — /3, ina andf-nodes. plexity andcoNEXPN? for combined complexity [16] for
To require in addition that # y, we use BCCQJ,, query: BCCQZ, and its sublanguages. As we shall see, we can
obtain better (and often tight) complexity bounds working
ai(e.y) = =3z (a(2)/[1@) = BW] Az #4) directly on XML trees.
\%
3z (a(x)/v(2)/By) Az #y) 4.1 Query answering under OWA

Finally, we give an example of dnOxy. query:
As mentioned earlier, data complexity G Q,,, is known
Yy (a(iﬂ)/ﬁ(y) — Jzy(2)/0(y) Ny # Z) to becoNP-complete [9], while precise combined complex-

data complexity combined complexity
SCWA WCWA andOwA SCWA WCWA andOwA
UCQXML
UCQXML p p
BCOQy, coNP-complete] cONP-complete| II5-complete IT5-complete
BCCQiu, _ _
FOuuL coNP-completel undecidable | PsPaceEcomplete| undecidable

Figure 5: Complexity of computing certain answers over arbirary incomplete trees

ity was never stated. The proof of [9] only yields a nonele- tal or vertical paths which still need to be cut. This is done
mentary upper bound, but it turns out that the actual bound using the fact the we have an infinite supply of labels, and
is much lower. In the result below, for combined complexity, shorter paths can be relabeled in a way that does not satisfy

we assume that the alphabet of labels is infinite.

Theorem 2 Over arbitrary incomplete trees
under OWA, for each of the Ilanguages
UCQy, , UCQG, , BCCQy, , BCCQY,, , data com-

plexity is coNP-complete and combined complexity is
I15-complete. FurthermoreFOyy, is undecidable with
respect to both data and combined complexity.

Recall the convention regarding completeness of data com
plexity: stating that it iscONP-complete means that it is al-
ways inCoNP, and for some queries it ©NP-hard. Like-
wise, undecidability means that data complexity of some

any of the queries.

We then provide dI5-hardness reduction fdfiCQ,,, by
coding QSAT with av*3* quantifier prefix. |

The case of a fixed alphabeThe combined complexity re-
sult above, for languages frofiCQ,,, to BCCQZ,, , does

not work in the case of a fixed alphabet. As we mentioned
earlier, this is the only case when results are differeneund
these assumptions. We now state the result under the as-
“sumption that labels come from a finite but sufficiently large
alphabetCg,,.

Theorem 3 Under the finite alphabet assumption, the

fixed query is undecidable. We shall comment on the gap combined complexity ofUuCQ,,, , UCQfML , BCCQyuu »

for combined complexity without a bound on the number of
wildcards after sketching the proof.

Proof sketch SincecoNP-hardness ot/ CQ,,, is known
from [9], for data complexity it suffices to establisttaNP
upper bound foBCCQfML, and undecidability foF' Oy, .
For combined complexity we need to establisfrhardness

for UCQ,,, and acoNEXP upper bound foBCCQZ,,, -

We now explain the idea behind the upper bound for com-
bined complexity (oiBCCQ;’i,IL and others). The standard
way to obtain an upper bound for a quépysay, Boolean for
this sketch) ovet is to prove that ifcertainw. (Q, t) is false,
then there g} € [[t]owa With some specific size bounds (in
t) such thatl;, = —Q. While this was done in the past for
data complexity (e.qg., in [8, 9]), the bounds were extremely

and BCCQZ,, » underowa, is in CONEXP and IT5-hard.
Furthermore, if the number of wildcards in the query is fixed,
then it isTI;-complete.

Proof sketch The only difference in the proofis in cutting
long vertical and horizontal paths. To explain how this is
done under the fixed alphabet assumption, suppose we have
a long horizontal pathu; — ... — w; of nodes. It could
match some of the “horizontal” query subexpressions-

.. — m,. Looking at the roots of each pattern, we associate
each suchr; with a word over¥ U {_}. Next we collect all
words S in ¥* that are instantiations of such patterns with
wildcards that the horizontal path doest match (there are
at most exponentially many of them in the size of the query).

We claim that the path; — ... — «; can be cut to length

high in terms of the query. So we need to reduce the size gxponential in the size of the query so that it still does not
of the tree much more carefully to establish combined com- match any words ii$. To see this, we use the Aho-Corasick

plexity bounds.

The starting point of the proof is standard: suppose we have

T € [t]owa such thafl’ = —@Q. For the sketch, assume that
Q = q V...V q,, Where eacly; is a conjunctive query;
that is,T = —gq; for eachi < n. Take a homomorphism

h :t — T, and add to the image @f all nodes which are
least common ancestors of nodes in the image, plus the roo
We call it the skeleton. Now if we have any node that is
not on a vertical or a horizontal path between two nodes in

the skeleton, we can throw it away, together with the subtree’

rooted at it, and obtain a tré€ that agrees with" on all the
¢;S (by monotonicity).

The problem withI” is that we may have very long horizon-

algorithm [5] and construct a DFAs that accepts words
containing one word of5 as a pattern; its size is polyno-
mial in S and hence exponential in the query. Now take
the complement DFA s which accepts the label of the path
uy — ... — uy, and use pumping to reduce it to the required
size so that none of the querigsis satisfied (since none of
tthe words inS will have a match). For vertical paths, we
proceed similarly. Given the overall exponential size & th
tree (in terms of the size of the query), we get taNEXP
bound on combined complexity. If the number of wildcards
is fixed, then the se$ above is of polynomial size, which
results in a polynomial-size tree andI§ upper bound. The
I15-hardness proof of the previous theorem applies here ver-
batim. |

RemarkWe now comment on theoNEXP-IT, gap for com-
bined complexity. Itis due to the fact that the constructibn
the Aho-Corasick [5] automaton is polynomial in the num-
ber of patterns, but with wildcards (known as don’t-cares in
string pattern matching literature) the size of the set nay b
blown up exponentially (unless we restrict the use of wild-
card in the query).

Construction of DFAs for patterns with wildcards, that we

will be true and which will be false for Boolean combina-
tions). And sincel’Oy,,. can be translated into FO over a
relational representation, we get theHFACEbound from the
corresponding bound for combined complexity of FO. The
lower bound is also from the relational case, by encoding
relations as XML documents.

Summary Results for arbitrary incomplete trees are summa-
rized in Figure 5. A quick look shows the following:

would need to lower the bound, has so far been considered in

the case of a single pattern [23], and very recently for multi
patterns too [26]. While the latter yields an efficient patte

matching algorithm, it still gives an exponential blowup if
formulated in purely automata-theoretic terms. As ourtech

nigue for reducing the size of the tree depends on such au-

tomata construction, at present we do not see any posgibilit
of using our approach to reduce the bound, due to the lack of
pattern matching tools we can apply (although we conjecture
that combined complexity remainsii).

4.2 Query answering under CWA

We now move to the closed world assumption. Recall that
for arbitrary incomplete trees, there are two possiblerinte
pretations of it. Under the strong interpretatisawa, we

insist that each node in a complete tree correspond to a node

in an incomplete tree. Under the weak interpretatiarwa,
new nodes may be inserted between nodes relatee loy
by |}. Our first result is about the weak interpretation.

Theorem 4. UnderwcwaA, data and combined complexity
of query evaluation over arbitrary incomplete trees is the
same as undepwa, i.e., as described in Theorem 2.

Note thatowA upper bounds trivially apply, so the key ob-
servation is thabwa hardness results can be done using
OowA only to extend paths (rather than insert arbitrary trees),
which corresponds tevCwA.

Under the strong assumption, complexity bounds come
down only for the case dfOyy,, and stay as they were for
owA andwcwa for other languages. Note that for arbitrary

incomplete trees, we cannot yet reduce query evaluation un-

1. Data complexity is always intractable — unlike in the
relational case, we lose polynomial data complexity of
UCQyy. andBCCQ,,, - Combined complexity is el-
ementary (in fact at most 2-exponential) despite previ-
ous high bounds (except fdlOy,,. of course where it
is undecidable).

2. For arbitrary trees, closed world assumption —in either
form — does not help bring down complexity.

So, as in [9], this motivates looking at the restricted cédse o
rigid trees, for all of the languages and assumptions. Bhis i
what we do next.

5. Query answering over rigid incomplete
trees

Recall that in rigid trees we have no missing structural in-
formation. That is, they are of the form= (D, A, |, —

, (Pa)aes, p), whereD is a usual unranked tree domain,
and — are child and next-sibling relations, labeling predi-
catesP,’'s need not cover all oD, andp assigns data values
fromCuU V.

In particular, in the absence of structural incomplete-
ness, there is no difference betwesowA and wCwa,
and we shall talk just aboutwA. That is, [tJcwa =
{h(t) | his @ homomorphistn

As before, we start with the open world assumption, and then
consider the closed world assumption.

5.1 Query answering under OWA

derscwaAto the relational case, and indeed some bounds are

different (15 for trees and NP for relations for UCQs).

Corollary 1. Over arbitrary incomplete trees
under SCWA, for each of the languages
UCQyuu » UCQZ, , BCCQyy , BCCQL, , data com-

plexity is coNP-complete and combined complexity is
I15-complete. FofOyy , data complexity remainsoNP-
complete, while combined complexityAsPACEcomplete.

The only previously known result on the complexity of query
answering over rigid trees undewa states that data com-
plexity of UCQ,,, queriesisin PIME [9]. Moreover, query
answering can be done by naive evaluation. That is, one
simply computes)(t), and throws away tuples that contain
nulls, and this guarantees to produmtainw. (Q,t). By
translation into relational representation, this impliB-
completeness of combined complexity. We now complete
this picture.

For upper bounds, one simply guesses an onto homomor-

phismh so thata ¢ Q(h(t)). This gives acONP upper
bound for data complexity for all languages, aodNP-
hardness already follows from [9]. Since conjunctive ge®ri
with negation can be evaluated with NP combined complex-
ity, this also gives &I upper bounds for languages based on
conjunctive queries (with an additional guess which querie

10

Theorem 5 Under owa, data complexity oBCCQ,,,,
queries over rigid trees in irPTIME, while for queries
in UCQZ,. and BCCQZ,, it is coNP-complete, and for
FOyw. itis undecidable.

Combined complexity i P-complete folUCQ,,, andII-

complete folUCQZ,, , BCCQ,,, , andBCCQZ,, -

data complexity combined complexity

CWA OWA CWA OWA
UCQum PTIME PTIME NP-complete | NP-complete
UCQZu. | CONP-complete] cONP-complete
BCCQuu PTIME PTIME I15-complete | II5-complete
BCCQ},. | coONP-complete| cONP-complete
Oxme CONP-complete| undecidable | Pspacecomplete| undecidable

Figure 6: Complexity of computing certain answers over rigd incomplete trees

Thus, while for languages with inequalities we match the

high bounds for arbitrary incomplete trees, for one extamsi T
of UCQ,,, querieswe can geta polynomial-time evaluation L
algorithm, namely for Boolean combination of CQs. Com- . .
bined complexity bounds match the relational case, which Where each- is either— or =-. The semantics is extended
means they cannot be improved for any reasonable class ofS follows:

XML documents.)
® (T7w71/)): O‘(E)/[Mla'"7”“]//[/‘15"'7#2] ifw e

a(Z) /(s W/ 1 -5]

T oo T

RemarklIn the case of BCCQs for relations, which was P, (whenever is aX-letter), p(w) = v(Z), there ex-
tractable under botbwa andcwa, the algorithm was much ist . childrenw , . .., w,, of w such tha(T, w;,v) =
simpler underowA. To the contrary, for XML rigid trees u; for eachi < n, and there exisk descendants
the algorithm underowa is more complicated (but still w), ..., w), of w such that(T,w},v) = u! for each
tractable). i<n,

o (Tyw,v) E m ~ ...~ my, if there is a sequence
w = wi,...,w, of nodes so thatT', w;,v) | m; for
eachi < m andw; — w; 1 whenever théth ~» is —,
andw; = w;+1 whenever théth ~ is =-.

5.2 Query answering under CWA

The last question is howwA helps when we deal with rigid
trees. This is the case that is very close to relations: since
the structure is fixed, every completion of a relational eepr
sentation of a rigid tree would be structurally a tree. How-
ever, we still cannot apply relational results directlycéese

even undescwa, working with relational representations, e now show that tractable cases of query evaluation con-

we need to ensure that labeling predicates behave properlytinye to apply to queries based on extended patterns.
But this can be done, resulting in the following.

With these patterns, we define the classes of queries well as

UCQLT andBCCQL” just asUCQ,,, andBCCQ,,,
but based on extended patterns.

Proposition 1. Data complexity of computing
Theorem 6 Over rigid incomplete trees, data and com- C€Maiwa(Q,t) and certairw.(Q,t) remains polyno-
bined complexity of all languages excelpDy, are the mial for queriesq in UCQ/~ andBCCQU; over rigid

same undecwA and underowa. trees.
For FOyxy., data complexity icoNP-complete, and com-
bined complexity iPSPACEcomplete. We also remark that over rigid trees, certain answers can be

computed efficiently for an extension &fCQ,,, that ex-

)) presses tree-to-tree queries [15].
For UCQ,,, queries, certain answers are the same under

owa and undercwa (and thus both can be computed by Summary Going to rigid trees, i.e., giving up structural in-
naive evaluation). For the other tractable casBG€Q,,,, completeness while allowing null values and wildcards-low
queries, they need not be the same, and in fact the algo-ers the complexity of query evaluation for all the languages
rithms are more complex than the naive evaluation algorith to that of their relational counterparts. There is at least o
(as was remarked already, even in the relational case suctextension of the standard tractable class (namely Boolean
queries cannot be evaluated naively to generate certain ancombinations of CQs), but getting answers in polynomial
swers, unless they are equivalent to unions of conjunctive time requires changing the algorithm.

queries [22]). UsingcwaA does not help at all, except for the strongest lan-

guage FOyxy.), which is undecidable undewa as it codes
finite validity. In the case oEwa it lowers combined com-
plexity to that of relational calculus, but data complexiy

) _mains intractable.
We now show that the tractable cases withstand the addition

of transitive closure axes to queries. That is, we dedixe)
tendedpatterns by: 6. Conclusions

5.3 Extensions

11

The results of this paper, together with [9], present a com-
plete picture of both data and combined complexity of query
answering over incomplete XML documents. In just one
case, there is a small gap for combined complexity (which

[9] P.Barcelo, L. Libkin, A. Poggi, C. Sirangelo. XML witm¢omplete

information.J. ACM 58:1 (2010).

[10] H. Bjorklund, W. Martens, and T. Schwentick. Conjunetquery

containment over treed. Comput. Syst. Sci7(3): 450-472 (2011).

[11] A. Cali, D. Lembo, and R. Rosati. On the decidabilitdan

nonetheless present a significant improvement upon previ-

ously known nonelementary bounds), which seems to hinge1

upon currently unavailable techniques for using autontata f
pattern matching (or a new technique for reducing the size
of the witness tree).

Overall, we can infer the following from our study.

1. Structural incompleteness always leads to intractabil-
ity of query answering (and thus should not be allowed [15]

So the bottom line seems to be that one should use label an

in practical scenarios).

. Playing with the semantic assumptions, such as open
and closed world assumptions, does not have a sig-

nificant effect on query answering. Thus, it probably

makes sense to stick with the commonly accepted
in practical scenarios.

(23]

[14]

(18]

[16]

[17]

complexity of query answering over inconsistent and incletep
databases. IRODS’03 pages 260-271.

D. Calvanese, G. De Giacomo, M. Lenzerini. Semi-stricedd data
with constraints and incomplete information.Description Logics
1998.

D. Calvanese, G. De Giacomo, M. Lenzerini. Represegraind
reasoning on XML documents: a description logic approdchog.
Comput.9 (1999), 295-318.

M. Crochemore, W. Ryttedewels of Stringology: Text Algorithms
World Scientific 2002.

C. David, L. Libkin, F. Murlak. Certain answers for XMLugries. In
PODS 2010pages 191-202.

T. Eiter, G. Gottlob, H. Mannila. Disjunctive datalo§CM Trans.
Database Sys22(3):364-418 (1997).

G. Gottlob, C. Koch, and K. Schulz. Conjunctive queiesr trees.
J. ACM53(2):238-272, 2006.

G. GrahneThe Problem of Incomplete Information in Relational
DatabasesSpringer, 1991.

. When incompleteness is reduced to labeling and dataig) T. imielifiski and W. Lipski. Incomplete informatiom relational

values, efficient query answering is possible in query

databasesl. ACM 31(4):761-791, 1984.

languages that mimic relational languages admitting [20] B. kimelfeld, Y. Sagiv. Modeling and querying probasiic XML

efficient evaluation.

The most common such language is union of conjunc- [21]
tive queries, but we showed that several extensions

work as well.

data-value incompleteness only, und&ra, as this gives the
best hope for efficient query answering for practically rele
vant languages.

Acknowledgment Work partially supported by EPSRC
grant G049165 and FET-Open Project FoX, grant agreement
233599.

7.

(1]

(5]

References

S. Abiteboul, P. Buneman, D. SuciData on the Web: From
Relations to Semistructured Data and XMllorgan Kauffman,
1999.

S. Abiteboul, O. Duschka. Complexity of answering gasrusing
materialized views. iPODS 1998pages 254-263.

S. Abiteboul, P Kanellakis, and G. Grahne. On the repreg®on and
querying of sets of possible world§CS 78(1):158-187, 1991.

S. Abiteboul, L. Segoufin, and V. Vianu. Representing gndrying
XML with incomplete informationACM TODS 31(1):208-254,
2006.

A. V. Aho, M. Corasick. Efficient string matching: an aid t
bibliographic searchCommun. ACM.8(6):333-340 (1975).

L. Antova, T. Jansen, C. Koch, D. Olteanu. Fast and simglitional
processing of uncertain data. IBDE’08, pages 983-992.

M. Arenas, P. Barcel0, L. Libkin, F. MurlalRelational and XML
Data ExchangeMorgan & Claypool, 2010.

M. Arenas and L. Libkin. XML data exchange: consistenogl a
query answeringJ. ACM 55 (2), 2008.

12

[22]
Jek)
[24]

[25]
[26]

[27]

(28]

data.SIGMOD Record87(4): 69-77 (2008).

M. Lenzerini. Data integration: a theoretical pergpec In
PODS’'02 pages 233-246.

L. Libkin. Incomplete information and certain answergyeneral
data models. I1’?ODS’1], pages 59-70.

R. Pinter. Efficient string matching with don’t-caretfgans. In
Combinatorial ALgorithms on WordBIATO ASI Series, 1985.

R. Reiter. On closed world databases'llogic and Databases;’
H. Gallaire and J. Minker eds, Plenum Press, 1978, pages$55-7

R. Rosati. On the finite controllability of conjunctivgiery
answering in databases under open-world assumplic@omput.
Syst. Sci77(3):572-594 (2011).

P. Silvasti, S. Sippu, E. Soisalon-Soininen. Evah@tinear XPath
expressions by pattern-matching automataJCS16(5):833-851
(2010).

D. Suciu, D. Olteanu, C. Re, C. KocRrobabilistic Databases
Morgan & Claypool, 2011.

R. van der Meyden. The complexity of querying indefirdaa about
linearly ordered domaing. Comput. Syst. S&4(1): 113-135
(1997).

