Regular Path Queries on Graphs with Data-

Leonid Libkin Domagoj Vrgoc

ABSTRACT Categories and Subject Descriptors

Graph data models received much attention lately due toF.1.1 [Computation by Abstract Deviceg: Models of Com-
applications in social networks, semantic web, biological putation—Automata F.4.3 Mathematical logic and for-
databases and other areas. Typical query languages fdr grapmal language$: Formal Languages; H.2.Bjatabase man-
databases retrieve their topology, while actual data dtore agemen}: Languages—Query Languages

in them is usually queried using standard relational mech-

anisms.
_ _ _ General Terms
Our goal is to develop techniques that combine these two

modes of querying, and give us query languages that can askTheory, Languages, Algorithms
guestions about both data and topology. As the basic query-

ing mechanism we consider regular path queries, with the

key difference that conditions on paths between nodes nowKeywords

talk not only about labels but also specify how data changes

along the path. Paths that combine edge labels with dataGraph databases, regular path queries, data values eregist
values are closely related to data words, so for statingicond automata, regular expressions
tions in queries, we look at several data-word formalisms de

veloped recently. We show that many of them immediately

lead to intractable data complexity for graph queries, with 1. INTRODUCTION

the notable exception of register automata, which can spec-

ify many properties of interest, and have N&sPACEdata Querying graph-structured data has been actively studied
and FsPACE combined complexity. As register automata jn recent years, due to numerous applications in areas in-
themselves are not easy to use in querying, we define twoc|yding biological networks [31, 32, 36], social networks
types of extensions of regular expre.ssmnsthgt are more use [3g, 39], and the semantic Web [27, 37]. Such databases are
friendly, and develop query evaluation techniques for them represented as graphs in which nodes are objects, and edge
For one class, regular expressions with memory, we achieve|gpe|s specify relationships between them [1, 3]. Typical
the same bounds as for automata, and for the other classgueries over such databases look for reachability patterns
regular expressions with equality, we also obtain traetabl A very common and well studied class of queries is that of
combined complexity of query evaluation. In addmon, We regular path queriesor RPQs. An RPQ selects nodes con-
show that_ results extends to analogs of conjunctive regularected by a path that belongs to a regular language over the
path queries. labeling alphabet [13, 14, 15]. Their extensions have been
studied extensively too; for example, conjunctive RPQtesta
the existence of several paths [12, 18, 22], and extended con
junctive RPQs add comparisons of paths [4].

*Authors’ address: School of Informatics, University of &di

burgh, email: libkin@inf.ed.ac.uk, s1058408@sms.edkac. These standard queries over graph databases talk about
their topology, and do not mention data values. But graph
databases do contain data. For example, in a social network,
one would expect each node to correspond to a person, with
his/her attributes such as name, age, city, emalil, etc.; la-

Permission to make digital or hard copies of all or part o$ tivork for bels can specify types of connections between people, e.g.,

personal or classroom use is granted without fee providatidbpies are . . I : - -
not made or distributed for profit or commercial advantage that copies like/dislike, professional, etc. The querying mechanisms

bear this notice and the full citation on the first page. Toyaojherwise, to deals with are generally of one of these categories:
republish, to post on servers or to redistribute to listguies prior specific

permission and/or a fee. . .)
ICDT 2011 March 21-23, 2011, Uppsala, Sweden. e queries about topology such as finding nodes con

Copyright 2012 ACM 978-1-4503-0791-8/11/0003 ...$10.00 nected by a path with a certain label (e.g., people who

are connected via professional links), or

e queries about data, i.e., essentially relational queries
(e.g., finding pairs of people of the same age).

What these languages are incapable of doingpisbining
data and topology. As an example of a query that involves
such a combination, consider a query looking for people who
are connected via professional links and are of the same age.
This query states the existence of a path with a certain prop-
erty and then relates data values at the end of the path. An-
other example is a query that finds people who are connected

via professional links restricted to people of the same age. Va
this case, comparison of data values (having the same age)))
is done for every node along the path. Figure 1: A graph database with data values

Extending languages that handle structure to languages
that handle both structure and data is not new in database
theory. For very simple types of paths it was considered in ~ Whatkind of languages can we use in place of regular lan-
graph object-oriented models [42], but most notably it hap- guages to specify paths with data? To answer this, consider,
pened in the study of XML [8, 40, 41]. For example, lan- for example, a path;vzvsvs in the graph. If we traverse it
guages such as XPath exist in their structural variants #s we by starting inuy, reading its data value, then reading the label
as extensions that handle data comparisons [6, 9, 20, 34]. Aof (v1, v2), then the data value iy, etc., we end up with the
standard abstraction one uses for extending from structurefollowing sequencela2b3al. We shall refer to them atata
to data in the case of XML igata treesin which data val- ~ paths They are extremely close to an object that has been
ues are attached to tree nodes [9, 29, 40]. The focus of theactively studied in the XML context — namelgata words
study of such extensions has been both on querying, wherd8, 10, 40, 41]. A data word is a word in which every posi-
one is concerned with efficient evaluation [7, 24], and on tion is labeled by both a letter from a finite alphabet (exg.,
reasoning, where one is concerned with the decidability of Or b) and a data value (e.g., a number). Data paths are essen-
the satisfiability problem [9, 10]. tially data words with an extra data value. We can represent

the data patha2b3al as a data word™) (%) (5) (), where

So likewise, we consider graph databases where nodes can, is 5 special symbol reserved for the extra data value.
carry data values. An example of such a graph database is

shown in Fig. 1. It has five nodes,, . . ., v5; data values are We can thus use multiple formalisms developed for data
shown inside the nodes, and edge labels next to the edges. Awvords (with a minor adjustment for the extra value) to spec-
an initial assumption, we assume that each node carries jusify data paths. Such formalisms abound in the literaturd, an
one data value. This is not a real restriction for two reasons include first-order and monadic second-order logic wittadat
First, if a node has a tuple of data values (e.g., person’®nam comparisons [9, 10], LTL with freeze quantifiers [16], XPath
age, email, etc., in a social network) this could be modeled fragments [8, 20], and various automata models such as peb-
by extra edges to nodes with those data values. And secondble and register automata [11, 28, 29, 30, 33].

the way we design languages for querying graph databases
with data values will make it very easy to extend them to
such a setting.

The question is then, which one to choose? To answer
this, we look at data complexity of query answering for each
of these formalisms. We show that as long as the formalism
An RPQ may ask for pairs of nodes connected by a path is capable of expressing what is perhaps the most primitive
from the regular languaged)*. In the graphin Fig. 1, one language with data value comparisons (two data values are
possible answer igv;, v3), another {vq, v5). To combine equal) and is closed under complementation, ttegacom-
this with data values, we may ask queries of the following plexity is NP-hard. Clearly one cannot tolerate such high
kind: data complexity, and this rules out most of the formalisms
exceptregister automata
e Find nodes connected by a path frgnd)* such that
the data values at the beginning and at the end of the
path are the same. In this cage,,vs) is still in the
answer bufvy, vs) is not.

e We may extend comparisons to other nodes on the
path, not only to the first and last nodes. For example,
we may ask for nodes connected by paths along which
the data value remains the same, or on which all data
values are different from the first one. The pair, vs)
is in the answer to the first query (the path,v3 wit-
nesses it), while the paje, vs) is in the answer to the
second, as witnessed by the path,vs. However, automata are not an ideal way of specifying con-

We then study query answering with register automata
(adjusted for data paths from data words). We present an
algorithm that is based, as expected, on computing prod-
ucts of automata; with nonemptiness performed on-the-fly,
this gives us an NbGspAacEdata complexity bound, and
PspAacEcompleteness for combined complexity. The bound
for data complexity is good (it matches the usual RPQs) and
the bound for combined complexity is tolerable (equivalent
to that of FO, but higher than the NP bound for conjunctive
RPQs or the PiIME bound for RPQs).

ditions in queries. In RPQs, we use regular expressionsfrom X and nodes that store data values frbm
rather than NFAs. While some regular expressions have
been considered for register automata [30], they are very fa DEFINITION 2.1 (DATA GRAPHS). A.data grapf(over
from intuitive. So we propose two types of regular expres- > andD)is atripleG = (V. E, p), where:

sions that can be used in queries. e V is afinite set of nodes;

The first, close in spirit to automata themselves, lets one ® £ SV x £ x Vs aset of labeled edges; and
bind a data value and use it later. For example, to expressthe e p: V — D is a function that assigns a data value to

query “connected by a path along which the data value re- each node ir/.

mains the same”, we would use the expression{X[z=])*.

(i.e., to the first data value), and then go along, if labeds ar

arbitrary ¢) and the conditiorr=, meaning that the value T = 0101V202V3 . . . Un—10n—-1Un 1)

is equal toz, holds. These expressions are much easier to sych that eaclfv;, a;, vi41), for i < n, is an edge in&.
write than the automata, and at the same time they can becorresponding to the path(1) we have alata path
translated into register automata; thus data complexity of

queries remains in NGGSPACE We show that the com- wy = p(v1)aip(va)azp(vs) ... p(vn—1)an—1p(vn) (2)

bined complexity remains the same as for automata, i.e.,\hich is a sequence of alternating data values and labels,
PspacEcomplete (except in a rather limited case when the starting and ending with data values. The set ofdaita

This motivates a second class of expressions that restrictd€noted by:[D]". For both paths and data paths, we use the

the ability to compare data values along the path; instead, "0ftionA(m) or A(wr) to denote their label, i.e. the word
one can only do comparisons for chosen subexpressions. A% -+ dn-1 & X"

simple example of such an expressioixis, which denotes Returning to Figure 1 from the Introduction, one exam-
nonempty data paths that have same data value at the bep|e that we used was the path= vy avsbvsavs. The cor-

ginning and at the end of the pathi* indicates the label responding data path, is la2b3al since data values of
of the path, and the subscript states the condition forthe , 4, 4. andv; are1,2,3, and1, respectively. Its label

first and the last data values. A slightly more elaborate ex- js ;.
ample is¥* - ¥F - ¥*. It says that a subpath conforms to _
Y1, i.e., it denotes data paths on which two data values are Recall thatregular path queriesor RPQs over usual la-

equal. For expressions of this kind, we give a polynomial- peled graphs are queries of the fofin= = BN y, where
time algorithm for combined complexity. The key ideaisto 7, ¢ x* is a regular language. Given a gra@h(the data

translate expressions into push-down automata and then tak part is irrelevant for RPQsJ(G) is the set of pairs of nodes
the product with an automaton obtained efficiently from the (;, /) such that there is a pathfrom v to v whose label

graph database. A(m)isin L.

Finally, we ShIOW tharf our _reSUr|ltS exter&d to analogs of By analogy, we definelata path queries Syntactically
conjunctive regular path queries that use data comparisons,, . o o oreccion — » L. 4 as before, but nos C

There is no penalty to pay in terms of complexity except one - :
case, where we have to deal with the same increase of com-.E[D] is a set of data paths. @ is a data graph, the}(G)

; : ; : ; -~ is the set of pairs of nodds, v") such that there is a path
glne‘,;(ll(%gﬂg gﬂ?g from the usual RPQs to their conjunctive from v to v’ whose associated data path is in L.

As with relational queries and RPQs, we will be interested
in data and combined complexit§ query evaluation prob-
lem, i.e. checking, for a data path quepy a data graplds
and a pair of node@, v’), whether(v, v') € Q(G) (for data
complexity, of course, the quety will be fixed).

Organization In Section 2 we define data graphs and
generic queries over them. In Section 3 we rule out sev-
eral formalisms for specifying data paths due to prohiblgiv
high data complexity for them. In Section 4 we define reg-
ister automata and study complexity of query evaluation for
them. We do the same in Section 5 for regular expressions
with memory and in Section 6 for regular expressions with 3. | ANGUAGE FOR PATHS: RULING OUT

equality. Finally in Section 7 we look at conjunctive querie
based on the formalisms proposed in the previous sections. BAD ALTERNATIVES

Due to space limitations, most proofs are only sketched, and
complete proofs are given in the appendix. To talk about data path queries, as just defined, we need to
express properties of paths with data. As we already men-
tioned, these are essentially data words, with an extra data
2. PRELIMINARIES value attached. Quite a few languages and automata mod-
) els have been developed for data words over the past few
years, mainly in connection with the study of XML, espe-
Let> be afinite alphabet, arfd a countably infinite set of ~ cially XPath. We now give a quick overview of them. A
data values. Data graphs will have edges labeled by lettersmore extensive survey can be found in [40].

FO(~) and MSO(~) These are first-order logic and si,t1,s2,t2 In G, whether there exist two paths @, one
monadic second-order logic extended with the binary from s; to ¢; and the other froms, to ¢, that have no nodes
predicate~ saying that data values in two positions in common.
are the same. For exampte; 3y a(z) Aa(y) Az ~y

says that there are twa-labeled positions with the Assu(rjne thatz = (V. E) is a grarﬁ)h alr;?l’tl’ Sé’ t ared.
same data value. Two-variable fragmentsFei(~) our nodes inG. Here we assume that all four nodes are dis-

and existential MSO with the- predicate have been tinct. .It is easy to see that with this assumption the problem
shown to have decidable satisfiability problem [9, 10]. 'émains NP-complete, because we can always add two new
nodes for each repeated node and connect them with all the
Pebble automataThese are basically finite state automata nodes the repeated node was connected to, thus modifying
equipped with a finite set of pebbles. To ensure regular our problem to have all source and target nodes different.
behavior pebbles are required to adhere to a stack dis- Teq

We | be) = z =% y. Si il
cipline. The automata are modeled in such a way that Y€ |et our query b&) = x — y. Since our query wi

glisregard edge labels we can take= {a}. We will con-

; struct a data graphiy’ and two nodes,t € G’ such that
we are allowed to drop and lift pebbles over the current (s.£) € Q(G) if and only if there are two disjoint paths in

position. In addition to this we can also compare the o qf

current data value to the one that already has a pebble™ TOM s1 1011 and fromss to ¢.

placed over it. Algorithmic properties and connections | et v = {u,...,v,}. The graphG’ will contain two
with logics have been extensively studied in [33]. disjoint isomorphic copies af (with data values and labels

LTL | This is the standard LTL expanded with a freeze op- attached) connected by a single edge. We define the two iso-

erator that allows us to store the current data value into MOrPhic copiesiy = (Vi, E1, p1) andGz = (Va, Bz, p2)
a memory location and use it for future comparisons.

The full logic has undecidable satisfiability problem,

but various decidable restrictions are known [16, 17]. o Vi ={vf,...,u, },

Register automataThese are in essence finite state au- o V5 = {vf,..., 0/},
tomata extended with a finite set of registers allowing
us to store data values. Although first studied only on By = {(vj,a,v}) : (vi,v;) € E},
words over infinite alphabet [28, 33, 35] they are eas- By — {(o
ily extended to handle data words, as illustrated in [16, o Br={(t/,a
40]. They act as usual finite state automata in the sense 4
that they move from one position to another by read-
ing the appropriate letter from the finite alphabet, but , R
are also allowed to compare the current data value with @nd then le;’ = (V' E, p'), where
ones already stored in the registers.

v?): (vi,v;) € E}and

)

p1(v)) = pa(vf) =i, fori=1...n,

/
XPath fragments XPath is the standard language for navi- o VI=V1UW,
gating in XML documents, i.e., for describing paths in e B'=E UE,U{(t,,a,s4)} and
a way that may also include conditions on data values
that occur in documents. Fragments of XPath (with e o' =p1Ups.
and without data values) have been extensively stud-
ied, see, e.g., [6, 9]. While in general the satisfiability Note thaty’ is well defined sincé; andV; are disjoint.
problem is undecidable, several decidable restrictions
are known, e.g., [20, 21]. Finally we defines = s} andt = ¢.

o _ _ We claim that(s,) € Q(G’) if and only if there are two

In deciding which formalism to choose, we look at the disjoint paths inG from s; to t; and fromss to ¢ in G. To
data complexityof evaluating data path queries, and try to see this assume first thét,) € Q(G’). This means that
rule out those for which data complexity is intractable.ffec we have a path i’ which starts ins’ and ends iny. In
nically, a formalism just defines a set of allowed languages particular, it must pass the edge betwégands!, since this
L C X[D]*. It turns out that most of the formalisms for s the only edge connecting the two graphs. Also, since all
data words/paths are actually not suitable for graph query- data values on this path are different we know that no node
ing. This is implied by the following result. Lét., be the can repeat. But then we simply split this path into two dis-
language of data paths that contain two equal data values. joint paths in since the structure of edges@H is the same
as the one irG with the exception of edge betweénand
s4. Also, no node can be repeated, since the corresponding
nodes inG'; andGs have the same data values.

THEOREM 3.1. Assume that we have a formalism for
data paths that can define.,. Then data complexity of eval-
uating data path queries i P-hard.

Conversely, if we have two disjoint paths from to ¢;

ProoF The proof is by showing that witt.,, one can and froms, to ¢5 in G, we simply follow the corresponding
encode the 2-disjoint-paths problem which is NP-complete path froms} to ¢} in G; (and thus inG’), traverse the edge
[23]. This problemis to check, for a graghand four nodes between; ands and then follow the path itz (and thus

in G') from s to t!y corresponding to the path from to - o d,7 E ciheaiff d, 7 = ¢p andd, T = ¢o (and likewise

inG. forey Vv e);
This completes the proof.(] o d, 7 ciffdr#ec
In what follows, [k] is a shorthand fof1, ..., k}.

Note thatL., is about the simplest property one can ex-
press about data paths/words; it would be hard to imaginea DegNITION 4.1 (REGISTER DATA PATH AUTOMATA).
formalism that cannot check for the equality of data values. | et &© be a finite alphabet, ané a natural number. Ak-

The corollary below effectively rules out closure under eom register data path automatisra tupleA = (Q, q0, F, m0,6),
plement for such formalisms if they are to be used in graph where:

querying.
e) = Q,UQqg, whereQ,, and@ are two finite disjoint
COROLLARY 3.2. Assume that we have a formalism for sets of word states and data states;
data paths that can definé., and that is closed under o € Qq is the initial state;
complement. Then data complexity of evaluating data path e F C O, is the set of final states:

queries isNP-hard. _ o i i)
e 75 € D" is the initial configuration of the registers;
0 = (0w, d4) is @ pair of transition relations:

This immediately rules ouFO(~) and its two-variable

fragment, LTL with the freeze quantifier, XPath fragments — 51 € Qu x X xQqis the word transition relation;
closed under complement, and pebble automata. — 54 C Qu % Cy x 28 x Q,, is the data transition
The only hope we have among standard formalismexjs relation.

ister automatasince they are not closed under complemen-
tation [28]. In the next sections we show that we can achieve The intuition behind this definition is that since we alter-

good query answering complexity with them, as well as suf- nate between data values and word symbols in data paths, we

ficient expressivity. also alternate between data states (which expect data value
as the next symbol) and word states (which expect alphabet
letters as the next symbol). We start with a data value, so

4. DATA PATH QUERIES WITH REGIS- qo is a data state, end with a data value, so final states, seen

TER AUTOMATA after reading that value, are word states.

In a word state the automaton behaves like the usual NFA

As stated in the previous section, register automata are the(but moves to a data state). In a data state, the automaton
only standard formalism for defining classes of data words checks if the current data value and the configuration of the
that does not immediately lead to NP-hard data complex- registers satisfy a condition, and if they do, moves to a word
ity of queries on graphs with data. In this section we de- state and updates some of the registers with the read data
fine them and study query evaluation for data path queriesvalue.
based on these automata. We will slightly alter the defini- _
tion of register automata used in e.g. [16, 40] to work on Given a data path = doaodyas ... an—1dyn, Where each

data paths rather than data words, without affecting their d d: is @ data value and eaahis a letter, a configuration oA
sirable properties. onw is a tuple(j, ¢, 7), wherej is the current position of the

symbol inw that A readsg is the current state andec D

As mentioned earlier register automata move from one is the current state of the registers. The initial configorat
state to another by reading the appropriate letter from theis (0, ¢y, 7o) and any configuratiofyj, ¢, 7) with ¢ € F is a
finite alphabet and comparing the data value to one previ-final configuration.
ously stored into the registers. Our version of register au-) ,)
tomata will use slightly more involved comparisons which _ From a configuratiod” = (j, ¢, 7) we can move to a con-
will be boolean combinations of atomie, # comparisons figurationC” = (j +1,¢’,7') if one of the following holds:
of data values.

e the jth symbol is a lettera, there is a transition

To define such conditions formally, assume that, for each , ,)
(¢,a,q") € 6, andr’ = 7; or

k > 0, we have variables, ..., x;. Then conditions ity
are given by the grammar: e the current symbol is a data valdgand there is a tran-
sition (¢, ¢, I,q’) € 64 such thatd, 7 = ¢ andr’ coin-
¢ == ay |zl [cAcleVe|-e, 1<i<k. cides with except that théth component of’ is set

The satisfaction is defined with respect to a data védlaeD todwhenevet € 1.

and a tupler = (dy, . ..,dy) € DF as follows:
A data pathw is accepted by4 if A can move from the
o d,7 =27 iff d = di; initial configuration to a final configuration after reading
’ ' v The language of data paths accepted.dys denoted by
o d,7 = a7 iff d# di; L(A).

Data paths vs data words

Register automata have been previously studied for data
words [16, 40] and we now briefly explain the connection.
A dataword is a word itf> x D)*, i.e., each position carries

a label from¥ and a data value fro®». A k-register data
word automatond is a tuple(Q, qo, F, 70, 1) whereQ is a
finite set of states (no longer split into twa), € @ is the
initial state,F’ C Q is the set of final states, € D* is the
initial register assignment, aridis a finite set of transitions

of the form(q,a,¢) — (I,q’), wheregq, ¢’ are statesg is a
label,I C [k], andc is a condition irC.

The automaton traverses a data word from left to right,
starting ingo with 7y as the register configuration. If it reads
(Z) in stateq with register configurationr, it may apply a
transition(q, a,c) — (I,q’) if d, 7 = ¢; it then enters state
¢’ and changes contents of registergith i € I, to d.

The relationship between automata models, as needed for

our purposes, is described by the lemma below. With each
data pathv = dya; . ..a,—1d, € X[D]* we associate a data

word s, = () (%) ... (") over(S U {#}) x D, where

¢ 3 is a new alphabet symbol.

LEMMA 4.2. Given ak-register data path automata,
one can construct, iDL OGSPACE a k-register data word
automatonA’ such that a data pathv is in L(.A) iff the data
word s,, isin L(A").

It is known [16] that nonemptiness problem for data word
register automata isdPACEcomplete. The above lemma
shows that the ®PACEupper bound applies to data path au-
tomata. Moreover, one can verify that theFACEhardness
reduction applies to such automata as well. Hence, we have

COROLLARY 4.3. The nonemptiness problem for regis-
ter data path automata iBsPACEcomplete.

4.1 Regular data path queries

Our basic class of regular path queries on graphs with data
is based on register data path automata.

DEFINITION 4.4. A regular data path query (RDP@®

an expressioni) = x A, y whereA is a register data path
automaton.

Given a data grapltz, the result of the querg)(G) con-
sists of pairs of node&, v') such that there is a data path
w fromwv to v’ that belongs td.(A).

To evaluate RDPQs, we transform both a data gréph
and ak-register data path automato# into NFAs over
an extended alphabet and reduce query evaluation to NFA
nonemptiness. More precisely, to evalugtg=), we do the
following:

1. LetD be the set of all data values (.

2. TransformG = (V| E, p) into a graphG’ = (V', E’)

over the alphabet U D as follows:
v’ {vs,vp |v €V}
E {(vr,a,v() | (v,0,0) € E}

U{(Us,p(’l}),’l}t) | v e V}

Basically, we split each nodewith a data value into
a source node, and a target node; and add ad-
labeled edge between them; after that we restore the
edges fromE so that they go from target to source
nodes. This is illustrated below.

a
v v

d d
(o)(o—=(D—

Transform the automataa = (Q, qo, F, 70, (0w, 94))
into an NFAAp = (Q’, (., F’,¢’) as follows:

3.

e Q' =Q x D¥;
o q6 = (q()vTO);
o ' =F x D¥;

e ¥’ includes two types of transitions.

(a) Whenever we have a transitidn, a,¢’) in
0w, We add transition§(q, 7), a, (¢’, 7)) to ¢’
forall € D*.

(b) Whenever we have a transiti¢q, ¢, I, ¢’) in
04, We add transitiong(q, 7),d, (¢’, ")) if
d, T = cand7’ is obtained fromr by putting
d in positions from the set.

For two nodes, v' of G, we turnG’ into an NFAAq/ 4./
by lettingu, be its initial state and; be its final state. Then

we have the following.

PROPOSITION 4.5. LetQ = = - y be an RDPQ, and
G a data graph whose data values form a $etC D. Then

(’U,’U/) € Q(G) <~ L(AG’,U,U’ X AD) # @

Thus, query evaluation, like in the case of the usual RPQs,
is reduced to automata nonemptiness, although this time the
automata are over larger alphabets. Since the construction
is polynomial in the size o7 and exponential in the size
of A (ask gets into the exponent), we immediately get a
PTIME upper bound for data complexity and axAIME
upper bound for combined complexity. By performing on-
the-fly nonemptiness checking for the product, we can lower
these bounds.

THEOREM 4.6. Data complexity of RDPQs over data
graphs is inNLOGSPACE and the combined complexity of
RDPQs over data graphs BsPACEcomplete.

The bound for data complexity cannot be lowered as
there exist simple RPQs for which data complexity is
NLoGSsPACEcomplete.

5. QUERIES BASED ON REGULAR EX- The intuition behind the expressions is that they process a
PRESSIONS WITH MEMORY data path in the same way that the register automaton would,
by storing data values in variables, using these varialboles f
)) comparisons and moving through the word by reading a let-
Regular data path queries based on register automata haveger from the finite alphabet. Note that when we bound a vari-
acceptable complexity bounds: data complexity is the samegble we do not specify the scope of this binding. This means
as for RPQs, and combined complexity, although exceedingthat the variable can be used at any point after it was bounded
the bounds on conjunctive queries and RPQs, is the sama&i|| the end of the expression and is analogous to how registe
as for relational calculus or for RPQs extended with regu- gutomata store and use data values.
lar relations. Despite this, RDPQs as we defined them have
no chance to lead to a practical language as it is inconceiv- EXAMPLE 5.2. We now give four examples of such ex-
able that the user will specify a register automaton ovea dat pressions and languages they recognize, before formally
words. Even for queries such as RPQs and their extensions@efining their semantics.

conditions are normally specified via regular expressions. i i
1. The expressionz.(a[z7])T defines the language of

Our goal now is to introduce regular expressions that can data paths where all edges are labeteahd the first
be used in place of register automata in data path queries. data value is different from all other data values. It
Note that as long as they express languages accepted by reg- starts by bindinge to the first data value; then it pro-
ister automata, we shall achieve an dlispACEbound on ceeds checking that the letterdsand condition:# is
data complexity by Theorem 4.6. satisfied, which is expressed hj:7]; the expression

The first class of queries, studied in this section, is based Is then putin thg Scope & to indicate that the number
; . . of such values is arbitrary.
on an extension of regular expressions witamorythat lets _ o
us specify when data values are remembered and when they 2. The expressiofz.(ab)™ [z7] denotes the language of
are used. The basic idea is this: we can write expressions data paths whose label is of the fori. .. ab and for

like | z.a*[2=] saying: store the current data valueriand which the first data value is different from the last.
check that after reading a word frart we see the same data Note that the order of- and condition is now differ-
value (conditionz= is true). This will define data words of ent: the condition is checked after verifying that the
the formda . ..ad. Such expressions are relatively easy to label is in(ab)™, i.e., at the end of the word.
write and understand (much easier than automata), and the 3. The expressiofz.a™*[z~] + ¢ denotes the language
complexity of their query evaluation will not exceed that of of data paths where all labels ateand the first data
register automata. value is equal to the last. Note that one such data path
() is simply of the formd, for d € D, with labele.
DEFINITION 5.1 (EXPRESSIONS WITH MEMORY. : :
o 4 4. The languagé ., of data paths in which two data val-
LetX be a finite alpha_bet anfﬂl’ .-+, Tk A Sel O.f variables. ues are ?he garﬁze (see Sgction 3) is given by the expres-
ThenregL.JIar expressions with memosaye defined by the sionT* - | .X+[z=] - £*, whereX. is the shorthand for
grammar. a1+...+a;, whenevelk = {ay,...,a;} andS* isthe
e =clalete|ee|et|ed] lze (3) shorthand fo&* + e. It says: at some point, bing,
and then check that after one or more edges, we have
wherea ranges over alphabet letters,over conditions in the same data value.
Cx, andz over tuples of variables fromy, . .., 2.
A regular expression with memotyis well-formed if it SemanticsFirst, we define theoncatenatiorof two data
satisfies two conditions: pathsw = diay ...a,—1d, andw’ = dyay, ... ay-1d,y, S
ww' =dyay...an_1dpay ... amn_1d,. Note thatitis only
e Subexpressions', e[c|, and | z.e are not allowed ife defined if the last data value af equals the first data value
reduces tce. Formally,e reduces te if itis ¢, or it is of w’. The definition naturally extends to concatenation of
e1+e20re;-ez0re] O eq[c] or | Z.e; wheree; (and several data paths. 4 = w - - - w;, we shall refer to it as a
ez) reduce tee. splitting of a data path (inta., . . ., w;).
e No \farlable appears in a condition before it appears The semantics is defined by means of a relatiom, o) -
in|z. o', wheree € REG(X[x1,...,xx]) is a regular expression

with memoryw is a data path, and bothando’ arek-tuples

overD U {1} (the symboll means that a register has not

been assigned yet). The intuition is as follows: one can star

with a memory configuration (i.e., values ofrq, ..., xx)
The extra condition of being well-formed is to rule out and parsev according toe in such a way that at the end

pathological cases like[c] for checking conditions over the memory configuration is’. The language o is then

empty subexpressions, afz~| for checking equality with ~ defined as

a variable that has not been defined. In what follows we al- L(e) = {w | (e,w, 1)} ofor someo}),

ways assume that regular expressions with memory are well- B

formed. where L is the tuple oft values.l.

The class of well-formed regular expressions with memory
is denoted bREG(X[z1, . . ., xk]).

The relationt is defined inductively on the structure of
expressions. Recall that the empty word corresponds to a
data path with a single data valde(i.e., a single node in
a data graph). We use the notatiep_, for the valuation
obtained fromv by setting all the variables in to d.

e (c,w,0) F o iff w=dforsomed € Dands’ = 0.

(a,w,o) F o' iff w=dyjady ando’ = o.

e (e1-eq,w,0) F o iff there is a splittingw = w; - wo
of w and a valuatiow” such thaie;, w;,0) F ¢” and
(62,10270'”) = O'I.

o (e1+ex,w,0) b o iff (e1,w,0)F o’ or(ez,w,o) F

o’

o (e, w,0) I o iff there are a splittingy = wy - - - wy,
of w and valuationsr = o9, 01,...,0,, = o’ such
that (w, w;, 0;—1) F o; forall i € [m)].

o (|ZT.e,w,0) b o iff (e,w,0z-4) F o', whered is the
first data value ofv.

e (¢[c],w,0) b o' iff (e,w,0) F o' ando’,d E ¢,
whered is the last data value ab.

Take note that in the last item we require thgtand not,

From the same connection we also get the upper bound
(PspAacpE for combined complexity. It turns out that we
can achieve BrPACEhardness with expressions with mem-
ory (see the appendix for the proof). Thus, we have

THEOREM 5.6. Combined complexity of evaluating
RDPQ,,c., Queries isPSPACEcomplete.

The question is whether we can reduce this complexity —
ideally to Prime, but at least to NP, to match the combined
complexity of conjunctive queries. The following corolar
(to the proof of Theorem 5.6) shows that many restrictions

will not work.

COROLLARY 5.7. Combined complexity of evaluating
RDPQ,,.., queries remaindspAcEhard for expressions
that use at most oné and # symbol, are specified over a
singleton alphabet = {a}, and are evaluated over a fixed
graph.

In one case, we can lower the complexity.

PrRoOPOSITION 5.8. Combined complexity aiDPQ,,..,
qgueries whose regular expressions do not have subexpres-

satisfiesc. The reason for this is that our initial assignment sjons of the forne* is NP-complete.
might change before reaching the end of the expression and

we want this change to be reflected when we check that con-
dition ¢ holds.

Translation into automata We now show that regular ex-
pressions with memory can be efficiently translated inte reg
ister automata.

PROPOSITION 5.3. For each regular expression with
memorye € REG(X[z1,...,x]) one can construct, in
DL OGSPACE ak-register data path automata#, such that
L(e) = L(Ae). _

More precisely, the automatod. = (Q,qo,F,L,9)
(over data domairD U { L }) has the property that for any
two valuationsr, o’ and a data pathw, we havele, w, o) F
o’ iff the automator{@, qo, F', o, §) has an accepting run on
w that ends with the register configuratien.

5.1 Query evaluation

We now deal with the following queries.

DEFINITION 5.4, Aregular data path query with memory
is an expressio) = z — y, where e is regular expression
with memory.

Given a data grapltz, the result of the querg)(G) con-
sists of pairs of node&, v') such that there is a data path
w fromv to v’ that belongs td.(e).

The class of these queries is denotedbyPQ

mem*

Using Proposition 5.3 combined with Theorem 4.6 we im-
mediately obtain:

COROLLARY 5.5. Data complexity of RDPQ
queries is INNLOGSPACE

mem

The restriction, while achieving better combined complex-
ity, is too strong, as it effectively restricts one to langes.of
data paths whose projections Bih are finite. All the exam-
ples we saw earlier use subexpressiohsSo if we want to
achieve tractability, we need to look at a very different way
of restricting expressions. This is what we do in the next
section.

6. QUERIES BASED ON REGULAR EX-
PRESSIONS WITH EQUALITY

The class of regular expressions for data paths that lets us
lower the combined complexity of queries toIRE permits
testing for equality or inequality of data values at the begi
ning or the end of a data (sub)path. For exampe!).
denotes the set of all data paths having different first astd la
data values. The languade, of data paths on which two
data values are the same is given¥¥y - (X7)_ - X% it
checks for the existence of a nonempty subpath (with label
in X1) such that the nodes at the beginning and at the end of
this subpath have the same data value, indicated by subscrip

DEFINITION 6.1 (EXPRESSIONS WITH EQUALITY).
Let X be a finite alphabet. Theregular expressions with
equalityare defined by the grammar:

e clalete|ee|et [ex|exr (4)

wherea ranges over alphabet letters.

The languagé.(e) of data paths denoted by a regular ex-
pression with equality is defined as follows.

(
(
(e-e')=L(e)- L(e).

e L(e+e')=L(e)UL(e).
(et) ={wy---wy | k> 1and eachv; € L(e)}.
(
(

)
o L 6;) = {d1a1 e Qp—1dy € L(e) | dy = dn}
)

o L

These expressions sacrifice the ability to check condi-
tions as one goes along the path, making it only possible to
check conditions at the start and the end of chosen subex-
pressions. Looking at Example 5.2, all languages except
the first can be defined by regular expressions with mem-
ory. We already saw how to do the language; the ex-
pression| x.(ab) " [+7] is equivalent to(ab)X. The expres-
sion | z.(a[z7])* describing the language of data paths in
which all data values are different from the first one, regglir
checking a condition multiple times. We now show that this
goes beyond the power of expressions with equality, which
are strictly weaker than expressions with memory.

PROPOSITION 6.2. 1. For each regular expression
with equality, there is an equivalent regular expression
with memory.

2. For the regular expression with memajy:.(a[z7])*
there is no equivalent regular expression with equality.

6.1 Query evaluation

We now deal with the following queries.

DEFINITION 6.3. Aregular data path query with equality
is an expressiof) = z — y, where e is regular expression
with equality.

Given a data grapltz, the result of the querg)(G) con-
sists of pairs of node&, v') such that there is a data path
w fromo to v’ that belongs td.(e).

The class of these queries is denoteRbBYPQ_ .

Combining Propositions 5.3 and 6.2 we see that the power
of regular expressions with equality is subsumed by registe
automata; hence combined with Theorem 4.6 we immedi-
ately obtain:

COROLLARY 6.4. Data complexity oRDPQ_ queries
isin NLOGSPACE

We now show that combined complexity f®*DPQ_

whose data values are iM. More precisely,
every word in L(G.p) will be of the form
drardadoasdsds ... dp_1d,_1ay_1dy, whered; € D
anda; € Y. We say that this word, in which each
data value, except the first and the last, appears twice,
corresponds to the data pathu; dsasds . . . ay—1d,.

. We then converti. p, in polynomial time, into an

equivalent PDAA(G.. p).

. Given two nodew,v’ in G, we construct an NFA

Ag . Todo sowe firstdefineagragh = (V', E)
that will reflect the fact that all data values frarhave
to be doubled if they appear on a path as intermediate
nodes. We defin&’ = (V' E’) as follows:

o V'’ Vu{a,a|lueV}U{s,t}

o F {(v1,a,02) | (v1,a,v2) € E}

UL(@, p(u), @), (@, p(u),u) [u e V}

Similarly as when dealing with register automata we
triple each node and add an edge between new nodes
that will reflect the fact that every intermediate data
value will have to be doubled. This is illustrated below.

a
1 U’ (%)

d d d d
O e O e O e O O ©

In addition, we also add edge§s, p(v),v) and
(¥, p(v'),t) to E’. We now get the automatofs .

as the automaton obtained frafif by settings as the
initial andt as the final state. Note that the construction
of the automatoi . is polynomial.

. Finally, forQ = = - y we have(v,v') € Q(G) iff

the languaged¢ v has nonempty intersection with
the language generated by the gramgap. This fol-
lows by an argument similar to the proof of Proposition
4.5.

Since the intersection of a context-free language and
a regular language is context-free and can be obtained
by the product construction of a PDA and an NFA, this
means thatv, v’) € Q(Q) iff the productA(G. p) x
Ag v defines a nonempty language. This product is
a PDA, so we can check its nonemptiness in polyno-
mial time, giving us a polynomial algorithm for query
evaluation.

Steps 2, 3, and 4 above use the standard constructions of

queries is tractable, i.e., is even better than the combinedconverting CFGs into PDAs, taking products, and checking

complexity of conjunctive queries. Our outline of the
polynomial-time algorithm is as follows. We start with a
data graphG = (V, E, p) whose data values form a (finite)

PDAs for nonemptiness. So what is missing is the construc-
tion of the CFGG,, p, which we show next.

setD C D and a regular expression with equality

1. We first show that we can efficiently generate a
context-free grammag,. p whose language corre-
sponds to the set of all data paths frof(e)

Regular expressions with equality into CFGsAssume that
we have a finite seD of data values. We now inductively
construct CFGgj. p for all regular expressions with equal-
ity. The terminal symbols of these CFGs will be plus
all elements ofD. All nonterminals inG. p will be of the

form A,/ andAgf’, wheree’ ranges over subexpressions of
e andd,d’ € D. Intuitively, words derived fromA%?" will

whose data values come frof. Furthermore, the set of
words derived from each nontermindf®" corresponds to

correspond to (in a way previously described) data paths inthe set of data paths if(e) which start withd, end withd’,

L(e") with data values fronD that start withd and end with
d'; words derived fromA.. will correspond to data paths in
L(e’) with data values fromD. The start symbol for the
grammar corresponding to the expressiamill be A..

The productions of the grammags p are now defined
inductively as follows.

e If ¢ = ¢, we have productiond. — \/,., A% and
Add _, dforeachd € D.

e If ¢ = a, fora € X, we have productiongl, —
Vaawep Al andA2 — dad' forall d,d’ € D.

o lf € e1 - e3, we have productionsd,
Vaaep Adl and A% — Varen Agf”Ag;d/ for all
d,d’ € D together with all the productions of the
grammargy., p andgG., p.

o If ¢ e1 + e2, we have productionsd.
Vaaep Al and A2 — A | A2 for all d,d' €
D together with all the productions of the grammars
Ge, p andG,, p.

o If e (e1)™, we have productionsA,
Vaaep A and A4 — AL\, A2 AT
foralld,d € D together with all the productions of
the grammag,, p.

—

—

—

e If e = (e1)=, we have productiond, — \/,. A%
and A% — A% for all d € D together with all the
productions of the grammai,, p.

o lIf € (e1)+, we have productionsA,.
Vawep, aza AL andAd? — At foralld,d' € D
with d # d’, together with all the productions of the
grammatGe, p.

—

It is clear from the construction that all words generated
by this grammar(with the sole exception of the empty word)
have all of their intermediate data values (i.e. lettersesor
sponding to values iD) doubled, except the first and the
last one.

Note that with these expressions we assume ¢hedn
appear only when denoting the empty word and will be re-

and whose data values come frdm
Moreover, the CFG@. p can be constructed in polynomial
time frome and D.

This, together with the algorithm shown above, finally
gives us tractability of combined complexity.

THEOREM 6.6. Combined
queries is inPTIME.

complexity of RDPQ_

The correctness of the procedure shown in this section is
proved in the appendix.

7. CONJUNCTIVE REGULAR
QUERIES WITH DATA

PATH

A standard extension of RPQs is thattmjunctive RPQs
or CRPQs [12, 18, 22]. These add conjunctions of RPQs
and existential quantification over variables, in the sarag w
as conjunctive queries extend atomic formulae of relationa
calculus. We now look at similar extensions of RPQs with
data.

Formally, aconjunctive regular data path query (CRDPQ)
is an expression of the form

(5)

wherem > 0, eachz; Ly, y; is aregular data path query (in
one of the formalisms studied here), ani$ a tuple of vari-
ables among@ andy. A query with the headins() (i.e., no
variables in the output) is calledBooleanquery. Depend-
ing on which RDPQs are used in (5) we shall be referring
to CRDPQs, or CRDPQs with memory, or CRDPQs with
equality.

These queries extend RDPQs with conjunction, as well as
existential quantification: variables that appear in thdybo
but not in the head (i.e., variablesinandy but notz) are

moved otherwise. We require this, so that we would not get @5Sumed to be existentially quantified.

productions that produce objects that are not data patbls, su
as e.gddd for the expression - € - . Note that this is not a

problem, since all expressions can be rewritten to be of this 445 ,,

form in DLOGSPACE

The semantics of a CRDPQ of the form (5) over a data
graphG = (V, E, p) is defined as follows. Given a valu-

: Ulgigm{%‘,yi} — V, we write (G,v) E Q if
(v(x;),v(y;)) is in the answer of; — y; on G, for each

The main result connecting these CFGs with languages of; — 1,...,m. ThenQ(G) is defined as the set of all tuples
regular expressions with equality is this. Recall that when ,,(z) such that(G, v) |= Q. If Q is Boolean, we le€)(G) be

we say that a word ovet and D corresponds to a data path
with values inD, we mean that it equals the data path with
all the data values, except the first and the last, doubled.

PROPOSITION 6.5. The language of words derived by
each CFGG, p corresponds to the set of data pathdli(e)

true if (G, v) = Q for somev (that is, as usual, the empty
tuple models the Boolean constant true, and the empty set
models the Boolean constant false).

As with RDPQs, we study data and combined complexity
of the query evaluation problem, i.e. checking, fora CRDPQ

. RDPQ,em
Query answering RDPQ RDPQ,,em over finite words RDPQ_
data complexity NLOGSPACEC. | NLOGSPACEC. NLOGSPACEC. NLOGSPACEC.
combined complexity ~ PSPACEC. PSPACEC. NP-c. PTIME
(a) for single data path query

Query answering CRDPQ CRDPQ,,em CRDPQ_

data complexity NLOGSPACEC. | NLOGSPACEC. | NLOGSPACEC.

combined complexity PSPACEcC. PsPACEC. NP-c.

(b) for conjunctive queries

Figure 2: Summary of complexity results for classes of queds

(), a data grapl” and a tuple of nodes whetherw € Q(G)
(for data complexity the queng is fixed).

(using notations from the proof of Theorem 7.1) is the same
in all three cases: guess a tupleof nodes forz’, and check

whether all the RDPQs in conjunction (5) are true. We know
that for register automata and regular expressions with-mem

Bry the latter can be done irsPACE since BSPACEis closed

is incurred by going from RDPQs to CRDPQs as far as data

- under nondeterministic guesses we have theARE upper
complexity is concerned.

bound for combined complexity. For regular expressions
with equality, an NP upper bound for the algorithm follows
from the PriMme bound for combined complexity for RDPQs
with equality. O

THEOREM 7.1. Data complexity of conjunctive regular
data path queries remain$L oGspACEcomplete if they are
specified using register automata, regular expressionB wit
memory, or regular expressions with equality.

_ 8. SUMMARY AND FUTURE WORK

PrRoOOF Consider a query of the form (5) and Etbe the
tuple of variables front andy that is not present ia. To
check whethep € Q(G), we need to check whether there
exists a valuation’ for z’ so that under that valuation each
of the RDPQs in the conjunction in (5) is true.

The tables in Figure 2 give the summary of data and com-
bined complexity for various query languages studied is thi
paper. As we introduced models that expand the usual RPQs
and CRPQs that handle only edge labels and can now ma-
nipulate data in the nodes, we get, as expected, a slightly
whetherv - o' evaluates to true for some nodesy’ higher complexity bounds for combined complexity. How-
can be done with NbGsPAcEdata complexity for all the ever, using a large class of regular expressions that can ex-
formalisms mentioned in the theorem. Thus, given a data press many properties of interest, we can match the usual
graphG = (V, E, p), we can enumerate all the tuples from bound of RPQs. For CRPQs with data, the bounds are only
VIl and for each of them check the truth of all the RD- slightly higher. thlan thlose for data-free CRPQs; in some
PQs in conjunction (5). Since we deal with data complexity, ¢@ses they coincide with bounds for CRPQs extended with
|#/| is fixed, and thus such an enumeration can be done incomparisons of paths, and for some, there is no price to pay
logarithmic space, showing that query evaluation remains i fOr incorporating data comparisons into queries.

NLoGSPACE [This is an initial investigation on combining data and
topology in graph query languages, and we plan to extend

For combined complexity, we have the same bounds for this work in several directions. One of them has to do with
CRDPQs given by register automata and expressions withoptimizing queries, in particular, with studying contaiemt
memory as in the case of a single RDPQ. For regular expres-and equivalence as in [18, 25]. We are also interested in han-
sions with equality we get NP-completeness, which matchesdling constraints in graph query languages [2, 26]. Another
the combined complexity of conjunctive queries and CR- direction is to study extensions with path comparisons as in
PQs. [4], combined with querying data. We also plan to study
incomplete data, by extending patterns in [5] with data, po-
tentially incomplete.

We know from the previous sections that checking

THEOREM 7.2. Combined complexity of conjunctive reg-
ular data path queries remairBspAcecomplete if they are
specified using register automata or regular expressiotis wi Yet another direction we intend to pursue is to define our
memory. ItidNP-complete if they are specified using regular expressions over data words, a setting usually treateckin th
expressions with equality. literature, and try to study their classical language tagor

properties, such as membership testing, nonemptiness, con

PrROOFR Pspackehardness follows from the correspond- tainment, etc. To lower complexity we might even consider
ing results for RDPQs and RDPQs with memory, and NP- restricting regular expressions with memory in such a way
hardness follows from NP-hardness of relational conjunc- that equality tests are more explicit, while still allowitigem
tive queries. Thus we show upper bounds. The algorithm to be far more expressive than expressions with equality. We

would also like to specify a class of expressions that pre- 111-122.
cisely capture register automata in the same manner thaf27] C. Gutierrez, C. Hurtado, A. Mendelzon. Foundationsehantic
regular expressions capture finite state automata. We have Web databases. Comput. Syst. Sci7(3): 520-541 (2011).

indicati ; ; [28] M. Kaminski and N. Francez. Finite memory automdtheoretical
strong |r_1d|cat|<_3ﬂs that we will be able to do so with regular Computer Science 34(2):320-363, 1994,
expressions with memory. [29] M. Kaminski, T. Tan. Tree automata over infinite alphabén
Pillars of Computer Scien¢c008, pages 386-423.
l[30] M. Kaminski and T. Tan. Regular expressions for langsagver
infinite alphabetsFundam. Inform.69(3):301-318, 2006.

Acknowledgment Work partially supported by EPSRC
grant G049165 and FET-Open Project FoX, grant agreemen

233599.

9. REFERENCES

[1] S. Abiteboul, P. Buneman, D. SuciData on the Web: From
Relations to Semistructured Data and XMllorgan Kauffman,
1999.

[2] S. Abiteboul, V. Vianu. Regular path queries with coasits.J.
Comput. Syst. Scb8(3):428-452 (1999).

[3] R. Angles, C. Gutiérrez. Survey of graph database moé&is/
Comput. Surn40(1): (2008).

[4] P. Barceld, C. Hurtado, L. Libkin, P. Wood. Expressivedaages for
path queries over graph-structured dataP@®DS’1Q pages 3-14.

[5] P.Barceld, L. Libkin, J. Reutter. Querying graph patterin
PODS’1] pages 199-210.

[6] M. Benedikt, W. Fan, F. Geerts. XPath satisfiability ie fhresence of
DTDs.J. ACM55(2): (2008).

[7] M. Bojanczyk, P. Parys. XPath evaluation in linear tirtre.
PODS’08 pages 241-250.

[8] M. Bojanczyk. Automata for data words and data treeRTi\ 2010

[9] M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin.
Two-variable logic on data trees and XML reasonidgACM56(3):
(2009).

[10] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, Le§oufin.
Two-variable logic on words with datACM TOCL12(4): (2011).

[11] P. Bouyer, A. Petit, D. Thérien. An algebraic charaetgion of data
and timed language€ONCUR’01 pages 248-261.

[12] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi.
Containment of conjunctive regular path queries with igeein
KR’00, pages 176-185.

[13] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. VardévRiting
of regular expressions and regular path qued€s$
64(3):443-465, 2002.

[14] M. P. Consens, A. O. Mendelzon. GraphLog: a visual fdisnafor
real life recursion. IPODS’9Q pages 404-416.

[15] I. Cruz, A. Mendelzon, P. Wood. A graphical query langeia
supporting recursion. IBIGMOD’87, pages 323-330.

[16] S. Demri, R. Lazic. LTL with the freeze quantifier and istgr
automataACM TOCL10(3): (2009).

[17] S. Demri, R. Lazt, D. Nowak. On the freeze quantifier in constraint

LTL: Decidability and complexitylnf. Comput.205(1): 2—24 (2007).

[18] A. Deutsch, V. Tannen. Optimization properties forsslas of
conjunctive regular path queri€dBPL'01, pages 21-39.

[19] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu. Graph pattern matghifiom
intractable to polynomial timeé?VLDB3(1): 264-275 (2010).

[20] D. Figueira. Satisfiability of downward XPath with datquality
tests.PODS’09 197-206.

[21] D. Figueira and L. Segoufin. Bottom-up automata on datestand
vertical XPathSTACS’11pages 93-104.

[22] D. Florescu, A. Levy, D. Suciu. Query containment fongmctive
queries with regular expressions.PODS’98 pages 139-148.

[23] S. Fortune, J. Hopcroft, and J. Wyllie. The directed lromorphism
problem.Theoretical Computer Scienc€0:111-121, 1980.

[24] G. Gottlob, C. Koch, and R. Pichler. Efficient algoritarfor
processing XPath querie&CM Trans. Database Syst
30(2):444-491, 2005.

[25] G. Grahne, A. Thomo. Algebraic rewritings for optinmigi regular
path queries. I'CDT'01, pages 301-315.

[26] G. Grahne, A. Thomo. Query containment and rewritinggisiews
for regular path queries under constraintsPldDS’03 pages

[31] U. Leser. A query language for biological networBsoinformatics
21 (suppl 2) (2005), ii33—ii39.

[32] R. Milo, S. Shen-Orr, S. ltzkovitz, N. Kashtan, D. Chkdii,

U. Alon. Network motifs: simple building blocks of complex
networks.Science298(5594) (2002), 824-827.

[33] F. Neven, Th. Schwentick, V. Vianu. Finite state maeisiffior strings
over infinite alphabetsACM TOCL5(3):403-435 (2004).

[34] F. Neven, Th. Schwentick. XPath containment in the @nes of
disjunction, DTDs, and variablekogical Methods in Computer
Science2(3) (2006).

[35] H. Sakamoto and D. Ikeda., Intractability of decisianigems for
finite-memory automataheor. Comput. Sck31, 2, 297-308, 2000.

[36] F. Olken. Graph data management for molecular biol@yICS
7(1): 75-78 (2003).

[37] J. Pérez, M. Arenas, C. Gutierrez. Semantics and coitylef
SPARQL.ACM TODS34(3): 2009.

[38] R. Ronen and O. Shmueli. SoQL: a language for queryirt an
creating data in social networks. IGDE 2009

[39] M. San Martin, C. Gutierrez. Representing, querying an
transforming social networks with RDF/SPARQL.ESWC 2009
pages 293-307.

[40] L. Segoufin. Automata and logics for words and trees aveinfinite
alphabet. INCSL'06 pages 41-57.

[41] L. Segoufin. Static analysis of XML processing with degdues.
SIGMOD Record6(1): 31-38 (2007).

[42] J.Van den Bussche, G. Vossen. An extension of path egjmes to
simplify navigation in object-oriented queries.DOOD’93, pages
267-282.

