Tractable Iteration Mechanisms for
Bag Languages

Preliminary Report

Latha S. Colby Leonid Libkin

Bell Laboratories/Lucent Technologies
600 Mountain Avenue
Murray Hill, NJ 07974, USA
Email: {colby, libkin[} @research.bell-labs.com

Abstract. The goal of this paper is to study tractable iteration mech-
anisms for bags. The presence of duplicates in bags prevents iteration
mechanisms developed in the context of sets to be directly applied to
bags without losing tractability. We study two constructs for controlling
tractability of iteration over bags. The deflationary fixpoint construct
keeps removing elements from a bag until a fixpoint is reached. The
bounded fixpoint construct is an inflationary iteration mechanism that
never exceeds some predefined bounding bag. We study these constructs
in the context of a standard (nested) bag algebra. We show that the de-
flationary and bounded inflationary fixpoint constructs are equally ex-
pressive and strictly more expressive than their set-based counterparts.
We also show that, unlike in the set case, the bag algebra with bounded
fixpoint fails to capture all PTIME queries over databases with ordered
domains. We then show that adding just one construct, which can be
used to assign unique tags to duplicates, captures the class of all poly-
nomial time queries over bags when a total ordering on the domain of
atomic elements is available. Finally, we compare the expressive pow-
ers of the bag algebra and the nested relational algebra with aggregate
functions in the presence of these fixpoint operators.

1 Introduction

While much of database theory is based on the theory of sets, in recent years,
there has been a growing trend towards research on other collection data types
such as bags and lists. An important goal in the design of query languages is to
strike a reasonable balance between expressiveness and tractability. We use the
term tractability to mean polynomial-time computable. The focus of this paper
is on studying tractable iteration mechanisms for bags.

Such mechanisms have been developed in the context of set languages
[11, 12, 14, 19, 21]. Most typically, an inflationary fixpoint construct is used for
flat relations (sets of tuples). It was shown by Vardi [21] and by Immerman [14]
that the relational algebra, when augmented with the inflationary fixpoint con-
struct, can express all polynomial time queries over sets in the presence of a

total ordering on the domain of elements. For nested relations, this causes in-
tractability, as too many sets at a different level of nesting can be constructed.
For instance, the powerset operator is definable via an inflationary fixpoint op-
erator. Thus, several techniques have been developed in order to restrict the
fixpoint operator. In [12], no operation creating additional levels of nesting can
be iterated over; and in [19] a bound for the result of the fixpoint operator is
precomputed. Both approaches give us precisely the PTIME queries over nested
sets when a total order on the domain of atomic elements is available (this follows
from the results in the papers cited above and in [13]).

It is shown in [10] that tractability may be obtained, in the context of
complex-object languages, by a combination of restrictions and assumptions
about the input database. They considered families of calculi with restrictions
on set nesting and showed that if the input database is dense® with respect to its
types, then the inflationary and partial fixpoint extensions of the corresponding
calculus, express exactly the PTIME and PSPACE queries, respectively. They
obtained similar expressiveness results by considering range-restricted versions
of the calculi.

In the case of bags, the presence of duplicates prevents us from directly
extending the results from the set-oriented framework. For instance, finite con-
vergence for the inflationary fixpoint is not guaranteed because one can keep
adding elements to a bag indefinitely. Iteration schemes with a predetermined
finite number of iteration steps (such as, for example, loops in [16]) are also
prone to intractability problems. For example, the function Az.(z bag—union z),
when applied repeatedly, will result in an exponential blow-up due to repeated
doubling [5]. Techniques for controlling recursion in the presence of duplicates
were presented in [5] in the context of nested lists and in [9] in the context of
partially-ordered flat multisets. Tractability was achieved in [5] by controlling
the number of recursion steps and the operations within the recursion steps, and
in [9] by using a size-bounded structural recursion scheme.

As pointed out in [3, 8, 16], most real-life database systems provide query
languages based on bag semantics and it is therefore natural to investigate ex-
pressiveness and tractability issues in the bag framework. We look at various
ways of increasing expressiveness while maintaining tractability in a pure bag-
oriented setting. In particular, we consider adding various tractable fixpoint
operators to the standard nested bag algebra developed in [8, 7, 16, 17].

We first introduce a deflationary fizpoint operator, dfp which repeatedly re-
moves elements from a bag, as opposed to inflationary fixpoint which adds ele-
ments. Thus, we avoid both nontermination and exponential blowup. We then
introduce a (bag) bounded fizpoint operator, bfp, based on the one introduced
by Buneman and studied in [19] in the context of nested relations. The main
idea of this operator is that before the iteration starts, a bounding set or bag
is computed, and after each step the intersection of the current result and the

! Density is measured in terms of the ratio of the cardinality of the database to the
cardinality of the set of all objects of a type that are constructible from the set of
atomic elements in the database.

bound is taken. Thus, the result of the fixpoint never exceeds this precomputed
bound, and this avoids exponential blowup in the size of the result. It should be
noted that the bounding is based on an element-wise comparison as opposed to
a global size bound such as in the one used for controlling intractability in [9].

There are two ways of introducing the fixpoint operators. We can define a set-
or bag-based fixpoint, depending on whether duplicates are or are not eliminated
at each iteration step. We then consider these operators in the context of the
standard (nested) bag algebra from [16], which we denote by BQL here. We prove
that the set-based (bounded inflationary and deflationary) fixpoints are strictly
weaker than the bag-based fixpoints, and that the bounded inflationary fixpoints
are equivalent to their corresponding deflationary fixpoints.

In the case of sets, the (nested) relational algebra with the (bounded) fixpoint
operator captures the class of all polynomial-time queries on (nested) relations
over ordered domains. Does an equivalent result hold in the case of the bag al-
gebra? We answer this question in the negative by showing that the bounded
fixpoint language fails to capture PTIME. However, the solution to this problem
is remarkably simple. Only one extra primitive is required to capture all PTIME
queries. We show that the gen primitive, introduced in [17], when added to
the bounded fixpoint bag algebra gives us a language that captures all PTIME
queries (in the presence of an order on the domain). This operator was originally
defined in the context of MRL™* which is the nested algebra with aggregates.
It takes a number n and generates a sequence of numbers from 0 to n. By defi-
nition, this is a non-polynomial operation since it takes a number whose binary
representation is of size logn and generates output that is of size O(nlogn).
However, in a bag setting, the corresponding operation is polynomial, since the
numbers are coded in unary, that is, n is represented as a bag of n empty tuples.

It should be pointed out that the PTIME characterization presented in this
paper is different from those of [5] and [9] for lists where a total ordering of all
elements (including duplicates) is available (as opposed to an order relation on
the domain). Also, unlike [9], we do not consider exponential primitives such as
powerset when dealing with bags of nesting depth greater than one, and thus our
PTIME characterization is not restricted to flat inputs and outputs. We believe
that a similar PTIME result can be obtained by replacing the bounded (or
deflationary) fixpoint constructs with a bounded structural recursion construct
where the structural recursion is based on the insert presentation of bags (see
[17]) and the bounding is similar to those used for the fixpoint constructs in
this paper. Structural recursion with a size-based bound as in [9] would yield a
similar characterization and would not require the gen operation since it would
be expressible using such a recursion scheme.

The intuition behind the use of gen is rather simple. The order relation on
the domain is needed for capturing polynomial-time queries over sets so that the
order in which elements appear on a Turing machine tape can be modeled. Now
assume that we have a bag {|a, @, a[}. This can be encoded on a Turing machine
tape as {enc(a)#tenc(a)#enc(a)[}, assuming that {, [}, # are in the alphabet and
enc(a) is the encoding of a. Thus, from the point of view of a polynomial-time

TM there is the first a, the second @ and the third a, whereas the bag algebra,
even with the order relation, cannot distinguish between these a’s! To eliminate
this mismatch, we can use the gen operator as a tagging primitive. Note that
gen does not force bag-based objects into set-based objects, because it uses bags
in an essential way, as will be seen later.

Another interesting consequence of adding the gen operator is that the differ-
ence in expressive powers between the bag-based and set-based bounded fixpoints
disappears. In other words, the set-based fixpoint algebras are equivalent to the
bag-based fixpoint algebras in the presence of the gen operator.

We investigate the relationship between the bag languages and languages
with aggregates in the presence of fixpoint operators. In [17], it was shown that
the bag algebra BQL has the same expressive power as a nested relational lan-
guage with aggregate functions ARL™*. We show that adding the equivalent of
the gen operation to NRL™"* results in a language that is extremely powerful.
In the presence of certain additional operators and set-based bounded fixpoint,
it expresses all polynomial-time computable functions on natural numbers, but
it can also express many EXPTIME computable functions.

Organization The next section introduces the basic bag algebra BQL, and the
(deflationary and bounded inflationary) bag-based and set-based fixpoint oper-
ators. In Section 3, we study the relationship between these fixpoint constructs.
The characterization of the PTIME queries over bags is given in Section 4. In
Section 5, we study the connections between bag languages and set languages
with aggregates and fixpoints. Some open problems are listed in Section 6.

2 Bag algebra and fixpoint operators

In this section, we give an overview of the bag language BOL, and introduce the
different fixpoint operators.

2.1 Bag algebra

Figure 1 contains the expressions of the language BOL (Bag Query Language)
[16, 17]. The design of this language is based on a general framework for the de-
sign of query languages over collection types [2]. It must be noted that languages
like BQL normally have three equally expressive components: the algebra, the
calculus, and the comprehension language, cf. [2]. In this preliminary report we
use only the algebra; the calculus is very helpful in doing some inductive proofs
and will be used, together with the algebra, in the full version.
The types of BOL are given by the grammar

s,t=b| unit | s xt | {s[,

where b is a base type whose domain is an unspecified infinite set, type unit has
the unique element denoted by (), elements of type s x ¢t are pairs (z,y) where z

h:r—>s g:s—t g:r—s h:r—ot

id®:5—+ s go h:r—t {g:hy:r > s xt
mtisxt s mytisxt ot 1% : 5 — unit
fis—t

b s —{slt bu’: {{sl}} = {s} bmap(f): {s} — {t]}

K" unit — Js} " {slx st > s} bps® i s x {t — {5 x t]}

=t {lalt < {lslt = {sb & {s = {s}

Fig. 1. Expressions of BOL

is of type s and y is of type ¢, and elements of type {|s[} are finite bags containing
elements of type s.

Let us briefly review the semantics, cf. [17]. id is the identity function. go h
is the composition of functions g and h; that is, (g o h)(z) = g(h(z)). The bang
! produces () on all inputs. m; and 7 are the two projections on pairs. {g, h) is
pair formation; that is, (g, h)(z) = (g9(z), h(z)). K{[} produces the empty bag. &
is additive bag union; for example, W({|1, 2,3}, {2, 2,4[}) returns {1, 2, 3, 2, 2, 4]}
b_n forms singleton bags; for example, b.n(3) evaluates to the singleton bag {|3[}.
by flattens a bag of bags; for example, b_u({{1, 2[}, {1, 3}, {12, 4} }) evaluates to
{1,1,2,2,3,4[}. b_map(f) applies f to every item in the input bag; for example,
bomap(Az.14+2z) {1,2,1,6[} evaluates to {2, 3,2, 7} and b_map(Az.1) {1,2,1,6[}
evaluates to {|1, 1,1, 1[}. b_p2(z, y) pairs z with every item in the bag y; for exam-
ple, b-p2(3,{1,2,3,1}) returns {(3,1),(3,2),(3,3),(3,1)[}. We use ~ to denote
bag difference; for example, ~ ({1,1,2,3,3[},{1,2,2}) = {1,3,3[}. Finally, ¢
eliminates duplicates: €({1,1,2,2,2[}) = {1, 2[}.

We shall always omit the type superscripts as the most general types can be
inferred. We shall also occasionally use the infix notation for operations like ~
and 4, that is, we will write B = B', BW B’, etc.

The language BOL as presented here was introduced in [16]; it is also equiva-
lent to the polynomial fragment of the BALG algebra of [8]. The operations maz,
min, eq, member, subbag and many others are also definable in it [16] (maz and
min are maximal and minimal bag intersections, and eq, member and subbag
test for equality, membership and containment). Following [17], for notational
convenience we add booleans (truth value represented by {/()[} and false by {|[})
and the conditional construct if-then-else. We also use the A-notation, i.e. we
write Az.f(z) provided z is of object type (that is, no higher-order functions are

allowed). For syntactic convenience, we define functions I7, o and x to denote
projection, selection and cartesian product on bags. These constructs do not add
expressive power. For example, II; can be defined as b_map(m;).

In what follows, L£(p1,...,pn) is the notation for a language £ augmented
with primitives p1,...,pn. We shall often use the language BOL(<), where the
function <: b x b — {Junit[} testing a linear order on the elements of base types
is available.

The following is from [2, 17]:

Propositionl. Every function ezpressible in BOL(<) has polynomial-time com-
plexity with respect to the size of the input. a

2.2 Fixpoint operators

As we mentioned before, we must define fixpoint operators over bags that do
not lead to nontermination and maintain tractability. To this end, we look at
two possibilities for controlling the fixpoint computation. Both use the idea of
bounds. The first construct, the deflationary fizpoint, removes elements from
some initial bag at each step of the iteration. In contrast, the bounded fizpoint,
keeps adding elements as long as they are within some precomputed bound.
The iteration terminates when there is no change in the result of two successive
iteration steps.

Let us give the formal definitions. Both deflationary and bounded fixpoints
have the following typing rule:

Fosx{th =t g:s— {tf Fosx{th =t g:s— {tf
dfpsq s s — {Ith bfps g s — {th

To define the semantics of these operations, assume that we are given an input
object z of type s. Let B = g(z). This is the “bound” for the computation. We
define two families of bags:

= Yo =A{}, Yiy1 = (V3 ¥ f(2,Y;)) min B;
— ZO — B, Zi+1 — Zi - f(m’ZZ)

Now bfpf,g(m) is defined to be Y; where ¥; = Y;;1 and ¢ is the smallest such.
We define dfpﬁg(m) to be Z; where Z; = Z;11 and 4 is the smallest such. It is
easy to see that in both cases the ¢z at which the computation stops is at most
the cardinality of the bounding (or initial) bag B.

It should be noted that the definition in [19] allows types of the form {¢1[} x
{t2} x ... x {ltm[} to be used in place of {|¢[} in the definition of the bounded
fixpoint for set languages. The operations U and N are performed component-
wise. It is then shown in [19] that this is only a matter of convenience, that is,
no expressiveness is gained. Similar results can be shown in the bag setting.

To simulate the more general fixpoint, we encode each tuple (Bi,. .., Bm) of
type {lt1[} X {lt2f} x ... X {|ltm[} by a bag B of type {{t1[} x {t20} X ... X {tm[]},
where for each z € B;, there exists a tuple of the form ({[}, ..., {z[, ..., {[}) in B

({lz[} occurs in the ith position). For example, ({la, b[}, {|[}, {lc[}) is represented
by {(Jalh, 00, 40), (06l 40, 10, ({13, 13, b} Bach i (or Z.) is represented
using this encoding and is decoded into the original representation before the
fixpoint operation f is applied. The bounding bag g(z) is represented using the
same encoding. The encode and decode steps are easily expressible in BOL and
are simpler? than those used in [19]. Thus, for the sake of simplicity we use
fixpoints as they are defined above in this report.

Recursive queries such as the transitive closure of a graph can be expressed
using bfp by translating the corresponding solutions from the set case in [19] ver-
batim to the bag case. For transitive closure, one uses B = ¢((II1(R)WII2(R)) x
(II;(R) W II3(R))) as the bound, where R is the binary relation representing the
set of edges. That is, B is the complete graph on the set of nodes. Then the
composition of relations is iterated until the transitive closure is constructed.

As another example, we show how to define the parity of the cardinality of
a bag using the deflationary fixpoint construct. Let

g = b_map(!) and

f=X=,9)-4f eq(y,bn('(y))) then K{[}}(((y)) else bn(!(y)) ¥ bn(!(y))

In other words, for each n-element bag z, g(z) returns the bag of n units (),
and f returns the empty bag if its input is {|()[} and it returns {(), ()} otherwise.
Then dfp; ,(z) is {|()[} if » is odd, and {|} if » is even, thus giving us the parity
test. Note that we did not use the order relation in this example.

Finally, we define the set-based bounded fizpoint bfp™* and the set-based de-
flationary fizpoint dfp®*. Their typing rules are exactly the same as those for
bfp and dfp. The semantics of bfp**® is defined similar to the semantics of bfp
except that B is defined as e(g(z)), not as g(z). That is, the result produced at
each iteration step has no duplicates. This corresponds precisely to the bounded
fixpoint for set languages that was studied in [19]. The semantics of dfp*t is
defined analogously.

Proposition2. Every function definable in BQL(<, dfp), or BAL(<L, bfp), or
BOL(<, bfp™"), or BOL(<, dfp°*) has polynomial-time complezity with respect
to the size of the input.

Proof sketch: The proof is by a simple induction argument. All functions express-
ible in BQL(<L) are polynomial-time computable. Suppose that y is an input to
bfps,4- The size of g(y) (and hence the size of the result of bfp; ;) is bounded by
a polynomial p on the size of y. From the definition of bounded fixpoint, we see
that the number of iteration steps in the computation of bfp; , is no greater than
the cardinality of g(y), and each iteration step is polynomial-time computable,
from which polynomial-time computability of bfpﬁg(y) follows. The proofs for

dfp, bfp** and dfp*** are similar. O

% In [19], the encodings are chosen so that there is no increase in set height. This is
necessary for the proof of the conservativity result presented in that paper.

3 Relative expressive power of fixpoint operators

In this section, we study the relationship between the various fixpoint operators
from the previous section. Our first result is this:

Theorem 3. (o) BAL(dfp) and BOL(bfp) have the same expressive power, and
(b) BOL(dfp***) and BAL(bfp**) have the same expressive power.

Proof sketch: We show that dfp is expressible in BOL(bfp) and, vice versa, that bfp
is expressible in BOL(dfp). The main idea behind the simulation of dfp in terms
of bfp is to use bfp to compute the complement of the result of the deflationary
fixpoint, and similarly for the converse simulation.

Lemmad4. Let f be a function of type s x {t[} — {|t[} and g be of type s — {i[}.
Let f' = My, 2)-f(y,(9(y) = 2)). Then dfp; ,(0) = g(o) = bfp; 4(0) for any
object o of type s.

Proof: Fix o of type s and let Y; : {|¢[} denote the ith iteration of bfp;/ ,(0), and Z;
denote the ith step of dfp; ,(0). We show by induction on i, that g(o) ~ ¥; = Z;.
The lemma will follow from this. If 4 = 0, then this follows from Zy = g(o) and
Yo = {|[}. Assume g(0) ~ Y; = Z; and prove g(o) ~ Yiy1 = Zit1:

g(0) = Yy

=g(o) ~ ((Y: W f(o,(g(0) ~Y;))) min g(o)) by definition of bfp and f’
=g(o) ~ ((Y: W f(o, Z;)) min g(o0)) by the hypothesis

=g(o) = (Y; W f(o, Z;)) since A ~ (B min A)= A~ B

= (g(o) ~ ;) = f(o, Z;) since (A~B)~C=A~-~ (B4 ()
=2Z; ~ f(o, Z;) by the hypothesis

=Zit1 by definition of dfp

The converse is established in the following lemma.

Lemma 5. Let f be a function of type s x {t[} — {|t[} and g be of type s — {i[}.

Let f' = My, 2)-f(y,(g(y) ~ 2)). Then bfpﬁg(o) = g(o) ~ dfpf,7g(o), for any
object o of type s.

Proof: As before, fix 0: s and let ¥; and Z; denote ¢th stage of the computation
of bfps (o) and dfp;: ,(0), resp. Again, it suffices to show that g(o) = Z; = ¥;
for all 2. The base case is the same as in Lemma 4. Now assume g(o) ~ Z; = Y;
and prove g(o) =~ Z;11 = Yiy1.

First note that all Z;s are subbags of g(o0). From this, using the equations
for reasoning about the equivalence of bag expressions from [6], calculate

g(o) 'L+1
=g(o) ~(Z; ~ f’(o Z;)) by definition of dfp
=g(o) = (Z; ~ f(o, (9(0) ~ Z:))) by definition of f’
=g(o) - (Z flo,¥7)) by the hypothesis

~ (g(0) = Z:) & (Z:min f(0, %)) = (% = g(0))) by (P8) of [6, p. 333]

= (g(0) ~ Z;) W (Z; min f(0,Y3)) since Z; C g(o)

On the other hand,

Yit1 = (YiW f(o,Y;)) ming(o) by definition of bfp
= ((g(o) ~ ZZ) W f(o, Y)) min g(o) by the hypothesis
= [(g(0) = Z;) ming(0)] W [f(o, i) min(g(0) = (g(0) =~ Z))] by (P12) of [6]

= (g(0) =~ Z;) W (Z; min f(o,Y7)) since Z; C g(o)

which proves the lemma.

Using these lemmas, one can show by a straightforward induction argument,
that bfp is expressible in BOL(dfp) and vice versa, thus proving Theorem 3(a).

We now sketch the proof of Theorem 3(b). Let dfpSet be an expression in
B(dfp*"), and let f' be constructed as in the proofs of Lemmas 4 and 5. Then,
for any object o,

dfp¥5(0) = dfp; (o) (0) = €(9(0)) = bfp 41 (c0g)(0) = €(g(0)) + bfpF: (o)

Using this equation and its symmetric analog, one can easily conclude that dfp
and bfp®* are interdefinable, from which Theorem 3(b) follows. ad

set

Next, we compare the expressive powers of the set- and bag-based fixpoints.

Theorem 6. BOL(bfp) is strictly more ezpressive than BQL(bfp**). Also,
BOL(<, bfp) is strictly more expressive than BOL(<, bfp**). Similar results hold
for dfp and dfp®*.

Proof sketch: The inclusion is obvious as bfp** can be simulated with bfp:

bfpSet bfP4,e0q- To prove strictness, let a be an object of base type b, and
let M be the collection of all bags of the form {la,...,al}. For any function
7+ {6} — {unitl}, 1et TRUE(f, a) = {card(z) | = € Ma, £(z) = {(}}-

To prove separation, we need the following proposition.

Proposition 7. For every BOL(<, bfp*") function f : {{b[} — {unit}, and every
object a of type b, the set TRUE(f, a) is either finite or co-finite. In particular,
the parity test is inezpressible in BOL(<, bfp®*t).

This proposition and the observation made above that the parity test is
definable in BOL(bfp) prove the theorem.

To sketch the proof of Proposition 7, we need a definition first. Given a
number k& > 0, define the class OBJj of k-objects as follows. First, every object
of the base type and the object () of type unit belong to OBJs. A pair (z,y) is a
k-object if both its components are. Finally, a bag is a k-object if it has at most
k distinct elements and each of them is a k-object. Now, we prove the following
lemma.

Lemma8. Let f : s = ¢ be a BOL(L, bfp) function, and let k > 0. Then there
exists a number ¢ > 0, that depends only on k and f, such that for any = of type
s in OBJy, it is the case that f(z) € OBJ,.

We prove this lemma by induction on the BQL(<, bfp) expressions. Let us give
a few cases for illustration. If f = b_p and z € OBJy, then f(z) € OBJg2. Indeed,
if # = {Bi,...,Bn[} with at most k of B;s being distinct, and each B; having at
most k distinct elements, then B; & ... B, has at most k? distinct elements.
Assume that f = b_map(g) and z € OBJ;. By induction hypothesis, find ¢g
such that g(y) € OBJ,, for y in OBJk. Then we can take ¢ to be max(co, k):
indeed, f(z) contains at most k distinct objects, each being a co-object. Finally,
if f = bfp, 1, then for each k, the constant c is determined by A, since if a bag
B € OBJ, and B’ is a subbag of B, then B’ € OBJ..

Given the lemma (which applies to every BQL(<, bfp®*) function as well),
we fix k& and consider an expression of the form bfp;f;. When applied to a k-
object z, it first computes a bound, £(g(z)). Since g(z) € OBJ, for some fixed
¢, the bound has at most ¢ elements and thus the fixpoint computation can be
simulated directly in BOL(<). Applying this argument inductively, we obtain
that for every k > 0 and every BQL(<, bfp®*) expression f, there is a BOL(<)
expression f' such that f(z) = f'(z) whenever z € OBJ. In particular, every
f {6} = {unit]} coincides with some BOL(<) function f’ on bags from M,. It
follows from the results of [16, 17] that BQL(<) can test only finite or co-finite
cardinalities of bags from M,, which completes the proof of Theorem 6. a

In particular, the theorem above shows that the set-based bounded fixpoint
we defined is different from ¢ o bfp, since the parity test is definable using € o bfp,
but is not definable using bfp®°*.

The question arises: what does one have to add to BQL(bfp*") in order to
express bfp? It turns out that we only need to add one extra primitive that will

play the crucial role in the next section.

4 Capturing all PTIME queries on nested bags

It was shown in [19] that adding the bounded fixpoint to a nested set language
is sufficient to capture all PTIME queries over nested sets, if a linear order
is available on the base type. One may ask if a similar result holds for bags.
Somewhat surprisingly, the answer is no.

Let us first recall the operator gen, introduced in [16]. Its type is {unit[} —
{|{unit}[}. We denote the bag of n units, {|(),...,)[}, by n. On the input n, gen
produces {0, ...,n[}. For example,

gen(10, 0, OB = HEAO0E L0, OF 40, 0 ORL-

Note that gen is polynomial-time computable. In contrast, the analogous op-
eration gen™' on natural numbers defined as gen™*(n) = {0,...,n}, is not a
polynomial operation.

This operator is quite powerful and can compute some queries that are not
definable in BQOL, for example, the parity test, see [16]. The theorem below
demonstrates that BOL(<, bfp) fails to capture all PTIME queries over bags, in
particular, gen.

Theorem 9. The function gen is not definable in BOL(<, bfp).

Proof. Recall the definition of k-objects from the proof of Proposition 7. Assume
that f is a function of BQL(<, bfp) that implements gen. Then, by Lemma 8,
there exists a number ¢ such that f(z) € OBJ, for any input z to gen, since
z € OBJ;. However, gen(c) € OBJ.y1 — OBJ.. Thus, gen is not BOL(<, bfp)-
definable. ad

Now we define the class PTIME®®8 of polynomial-time queries over nested
bags. In what follows, we restrict ourselves to product-of-bag types, that is, types
of the form {J¢1[} x ... X {tm[}, where ¢;s are arbitrary types. In other words,
we are interested in queries that take a tuple of bags as an input and produce
outputs that are tuples of bags. This restriction is often made when one captures
a complexity class over relations or complex objects, cf. [19, 20]. Extension to
scalar types can be achieved rather straightforwardly, for example, by using a
function extracting an element from a singleton set.

We use the standard encoding scheme such as the one in [1]. Given a set of
values A = {ay,...,a,} of the base type b such that a1 < ... < an, we encode a;
as the binary representation of i. We use 0 to encode the unique element of type
unit. Next, using the brackets {, [}, (,) and the separator # we encode complex
objects, relative to the set A. By the standard encoding of an object we now
mean the one relative to the active domain of the object.

Consider two types s and t. We say that a function f from objects of type s
to objects of type ¢ that does not extend the active domain of its input, belongs
to PTIMEEig if there exists a polynomial-time Turing machine M such that:
(1) when the input tape does not have the standard encoding of an object of
type s, it prints a special symbol meaning “error” on its tape and stops, and
(2) when the input tape contains the standard encoding of an object of type s
(that is, the encoding relative to A, the active domain), it returns the encoding
of f(z), relative to A.

Finally, we define PTIME®28, the class of polynomial-time queries over nested
bags, to be the union of PTIMEEig for all pairs of (product-of-bags) types s and
t. The following can be seen from Theorem 9.

Corollary 10. BOL(<, bfp) C PTIMEP?8, O
The main result of this section characterizes the class PTIMEP28.

Theorem 11. The language BOL(<, bfp, gen) ezpresses precisely the class of
queries in PTIMEP?€; BOL(<, bfp, gen) = PTIMEP2,

Proof sketch: The inclusion BOL(<, bfp, gen) C PTIMEP?# follows from Propo-
sition 2 and the polynomiality of gen. For the reverse inclusion, assume that a
query f of type s — t is computable by a PTIME machine M, whose number
of steps is bounded by a polynomial p(n), where n is the length of the input. It
is not hard to construct an expression g that, given an object # whose encoding
takes n cells, produces m, where p(n) < m. This gives us the required count.
Applying gen to m, we obtain a representation of the tape (i.e., each cell is now

identified by its unique label). The rest of the proof follows the standard idea:
an input is encoded, then the machine M’s actions are simulated on it, and
the result is decoded back into an object. Since we use the bounded fixpoint in
our language, let us just give an idea of how the bound is computed and the
work of M 1is simulated. Assume for simplicity that each cell is either 0 or 1
(i.e., there are no other symbols in the alphabet; in fact, one needs three bits
to encode the alphabet that contains all appropriate delimiters). It can change
its value at most m times. The idea of the simulation is that when the ith cell
changes its value, we look at all pairs (4,!) in the working bag (which is of type
{{unit} x {Junit}}), find the maximum such ! and add (4,1 + 1) to the bag.
Thus, we can use gen(m) x gen(m) as the bound for the fixpoint computation
on the working bag that simulates M. When the simulation is done, a bag B is
computed. One can use B to get the contents of the tape as follows: look at the
initial value of the ith cell and the parity of the bag o'r, (2)=i(B). This determines
if the value of the cell has changed during the computation. Since this parity test
can be computed using either the fixpoint operation or gen, we get the encoding
of the result which can then be decoded into the corresponding object. More
details and the routine encoding and decoding schemes will be given in the full
version. ad

Since the primitive gen assigns unique tags to duplicates, it is sufficient to
g g
simulate bfp with bfpset. That is,

Proposition12. BOL(bfp*", gen) can express bfp. O
From this we conclude:

Corollary 13. BOL(<, bfp**, gen) = PTIME®?S, O

5 Aggregation and fixpoint operators

In this section, we study the relationship between bag languages and languages
with aggregation in the presence of fixpoint operators. In [17], it is shown that
BQL has the same expressive power as the nested relational language with aggre-
gate functions over the natural numbers, denoted by ARL™*. Tt is known how
to capture PTIME over the nested relations [10, 13, 19], and it is also known
how to capture many complexity classes for arithmetic functions [4, 15]. Thus,
one might ask if the correspondence between BQOL and NRL™ allows us to en-
rich the latter to capture PTIME in both worlds: relational and arithmetical.
We shall prove a few initial results indicating that it is hard to find a natural
extension like this.

First, let us review how the language NRL™* is obtained. Take BQL and
replace each bag operator with its set analog. For example, replace W with union
and - with set difference. Then add the type of natural numbers N with the usual
arithmetic operations +, #,~ and 1 as a constant (that is, K1 : unit — N), and
the summation construct Y (f) : {s} — N, provided f is of type s — N. When

applied to a set {z1,...,2,}, the summation construct yields 3., f(z;). For
instance, if f = Klo! (that is, f(z) = 1 for any), then »_(f) is the cardinality
function.

In the proof of equivalence of expressive power, each natural number n is
translated into n, that is, {(), .. ., ()[}, » times. Correspondingly, gen is translated
into gen™* : N — {N}, gen™*(n) = {0, 1,...,n}. Note that unlike gen, gen™®*
is not a polynomial-time operation.

Our first result shows that adding gen™t to A'RL™* makes the language
already very powerful. Recall that a rudimentary set is a set of tuples of natural
numbers definable by a formula of bounded arithmetic in the language Lpa of
Peano arithmetic [15]. Equivalently, it is the class of the linear time hierarchy
languages over the natural numbers. A function is rudimentary if it is majorized
by a polynomial and its graph is a rudimentary set.

Proposition14. All rudimentary functions are definable in NRL"(gen™®t). O

Thus, /\fRCnat(gen“at) is very powerful; for example, there are NP-complete
rudimentary sets that are definable in this language. However, not all
polynomial-time computable functions are definable in ARL">*(gen™at). For ex-
ample, the function d(z,y) = 2®#, where | z| is the length of the binary rep-
resentation of z, is in PTIME [15], but every function in AMRL"®(gen™®t) is
majorized by a polynomial. We do not know if adding the function d(z,y) to
NRL"(gen™@t) suffices to capture all PTIME functions on natural numbers, but
we can show the following, using Cobham’s characterization of PTIME, cf. [18].

Proposition15. Every polynomial-time computable function on natural num-
bers is definable in NRL">*(gen™*) augmented with d(z,y) and the set bounded
fizpoint construct. a

One might ask why the function |z | is not mentioned in Proposition 15. It
turns out that this function is definable as the cardinality of the set S = {y |
y < z,y = 2" for some w}. Notice that the following first-order formula (cf. [15])
dy)=w<yVu<y (v£A1Auv-v=y) > (Fz<v.2-z=v) holdsiff yis a
power of 2, and thus this test can be expressed in /\fRCnat(gen“at) since all the
quantification is bounded.

However, the language of Proposition 15 is very powerful. We can use some
of the results from [4] to show the following.

Proposition16. Let f be a EXPTIME-complezity function on natural numbers
such that f is majorized by a polynomial. Then f is definable in /\fRCnat(gen“at)
augmented with d(z,y) and the set bounded fizpoint construct. a

Thus, it is hard to find a reasonable balance between equally expressive and
tractable languages over bags, and languages over sets with aggregate functions.

6 Conclusions and open problems

We presented preliminary results on increasing the expressive power of languages
for bag-based complex objects without losing tractability. We defined deflation-
ary and bounded inflationary fixpoint operators and showed that they are equally
expressive and strictly more expressive than their set-based counterparts. We
showed that these fixpoint operators are not sufficient to capture the class of
all PTIME queries over bags and that the gen operator fills the gap. Finally,
we studied the effects of adding the fixpoint operators and the gen primitive to
languages with aggregate functions.

We now discuss some of the problems currently under investigation. The use
of nesting is a key technique in achieving the characterization of PTIME over
bags. We would like to find a language that captures PTIME over flat bags.
Of course, one can just use BOL restricted to queries from flat inputs to flat
outputs, but it would be desirable to find a natural flat language. Note that the
conservative extension property [17] does not help us here, because BOL only
possesses this property beyond the first level of nesting.

We know that the class of queries PTIMEP®8 is captured by BOL(<, bfp, gen).
Can we obtain similar characterizations for other complexity classes, for exam-
ple, L*28, NLP*6 and NCP28? For example, a characterization of NC queries over
nested relations that uses divide-and-conquer recursion was given in [20]. Does
a similar recursion mechanism (essentially the structural recursion on the union
presentation, cf. [2]), when added to BOL(<, gen), capture NCP28? More gener-
ally, let C be a complexity class, and £ a set language of the form NRA(p, <)
that captures all C queries over sets. Here A’/RA is the nested relational algebra
and p is some family of primitives. Is there a systematic way of deriving a new
family of bag primitives p, such that BOL(<, py, gen) captures CP*8? Note that
gen has to be included for any class above L, unless it is definable with pj.

We are continuing to investigate the relationship between BOL and NRL™
in the presence of gen and fixpoints. The power of gen™® seems to be essential to
express many arithmetic operations (e.g., minimization or various primitive re-
cursion schemas), but makes it hard to find a tractable language with aggregates
that would be equally expressive as some tractable bag language. However, a re-
lated operator that takes an n-element set and returns {0,...,n} is expressible
in MRL™" in the presence of order. We believe that this observation may help
us model more arithmetic in MRL™* without gen™t and thus find a reasonable
balance between tractable bag languages and set languages with aggregates.

Acknowledgements We thank Limsoon Wong and Tim Griffin for their com-
ments. The first author would also like to thank Dirk Van Gucht for several
insightful discussions during the early stages of this work.

References

1. S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison Wesley,
1995.

2. P. Buneman, S. Naqvi, V. Tannen, L. Wong. Principles of programming with com-
plex objects and collection types. Theoretical Computer Science, 149(1):3-48,
September 1995.

3. S. Chaudhuri and M. Vardi. Optimization of real conjunctive queries. In Proceed-
ings of the 12th Symposium on Principles of Database Systems, Washington DC,
1994.

4. P. Clote. Computation models and function algebras. Proc. Logic and Computa-
tional Complezity, Springer LNCS 960, 1994, pages 98-130.

5. L. S. Colby, E. L. Robertson, L. V. Saxton, and D. Van Gucht. A query language
for list-based complex objects. In Proceedings of the 13th Symposium on Principles
of Database Systems, pages 179-189, Minneapolis, MN, 1994.

6. T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. In
Proceedings ACM SIGMOD, 1995, pages 328-339.

7. S. Grumbach, L. Libkin, T. Milo and L. Wong. Query languages for bags: expres-
sive power and complexity. SIGACT News 27(2): 30-37, 1996.

8. S. Grumbach and T. Milo. Towards tractable algebras for bags. In Proceedings
of the 12th -SIGART Symposium on Principles of Database Systems, pages 49-58,
Washington, DC, May 1993.

9. S. Grumbach and T. Milo. An algebra for pomsets. In Proceedings of the Interna-
tional Conference on Database Theory, Prague, 1995, pages 191-207, 1994.

10. S. Grumbach and V. Vianu. Tractable query languages for complex object
databases. J. Comput. and Syst. Sci. 51(2): 149-167, 1995.

11. Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals of
Pure and Applied Logic 32 (1986), 265—-280.

12. M. Gyssens and D. Van Gucht. A comparison between algebraic query languages
for flat and nested databases. Theoretical Computer Science 87 (1991), 263-286.

13. M. Gyssens, D. Van Gucht and D. Suciu. On polynomially bounded fixpoint con-
struct for nested relations. In Proceedings of 5th Workshop on Database Pro-
gramming Languages, Gubbio, Italy, 1995. Available as Springer Electronic WiC
publication.

14. N. Immerman. Relational queries computable in polynomial time. Information
and Control, 68:86-104, 1986.

15. J. Krajiéek. Bounded Arithmetic, Propositional Logic, and Complezity Theory.
Cambridge University Press, 1995.

16. L. Libkin and L. Wong. Some properties of query languages for bags. In Proceed-
ings of the 4th Workshop on Database Programming Languages, Springer Verlag,
1994.

17. L. Libkin and L. Wong. Query languages for bags and aggregate functions.
J. Comput. and Syst. Sci., to appear. Extended abstract in PODS’94.

18. H. Rose. Subrecursion: Functions and Hierarchies. Oxford, 1984.

19. D. Suciu. Fixpoints and bounded fixpoints for complex objects. In Proceedings of
the 4th Workshop on Database Programming Languages, Springer Verlag, 1994.

20. D. Suciu and V. Tannen. A query language for NC. In Proceedings of the 13th
Symposium on Principles of Database Systems, Minneapolis, MN, 1994.

21. M. Vardi. The complexity of relational query languages. In Proceedings of the 14th
ACM Symposium on Theory of Computing, pages 137-146, 1982.

This article was processed using the IATEX macro package with LLNCS style

