
Tractable Iteration Mechanisms forBag LanguagesPreliminary ReportLatha S. Colby Leonid LibkinBell Laboratories/Lucent Technologies600 Mountain AvenueMurray Hill, NJ 07974, USAEmail: fjcolby, libkinjg@research.bell-labs.comAbstract. The goal of this paper is to study tractable iteration mech-anisms for bags. The presence of duplicates in bags prevents iterationmechanisms developed in the context of sets to be directly applied tobags without losing tractability. We study two constructs for controllingtractability of iteration over bags. The deationary �xpoint constructkeeps removing elements from a bag until a �xpoint is reached. Thebounded �xpoint construct is an inationary iteration mechanism thatnever exceeds some prede�ned bounding bag. We study these constructsin the context of a standard (nested) bag algebra. We show that the de-ationary and bounded inationary �xpoint constructs are equally ex-pressive and strictly more expressive than their set-based counterparts.We also show that, unlike in the set case, the bag algebra with bounded�xpoint fails to capture all PTIME queries over databases with ordereddomains. We then show that adding just one construct, which can beused to assign unique tags to duplicates, captures the class of all poly-nomial time queries over bags when a total ordering on the domain ofatomic elements is available. Finally, we compare the expressive pow-ers of the bag algebra and the nested relational algebra with aggregatefunctions in the presence of these �xpoint operators.1 IntroductionWhile much of database theory is based on the theory of sets, in recent years,there has been a growing trend towards research on other collection data typessuch as bags and lists. An important goal in the design of query languages is tostrike a reasonable balance between expressiveness and tractability. We use theterm tractability to mean polynomial-time computable. The focus of this paperis on studying tractable iteration mechanisms for bags.Such mechanisms have been developed in the context of set languages[11, 12, 14, 19, 21]. Most typically, an inationary �xpoint construct is used forat relations (sets of tuples). It was shown by Vardi [21] and by Immerman [14]that the relational algebra, when augmented with the inationary �xpoint con-struct, can express all polynomial time queries over sets in the presence of a

total ordering on the domain of elements. For nested relations, this causes in-tractability, as too many sets at a di�erent level of nesting can be constructed.For instance, the powerset operator is de�nable via an inationary �xpoint op-erator. Thus, several techniques have been developed in order to restrict the�xpoint operator. In [12], no operation creating additional levels of nesting canbe iterated over; and in [19] a bound for the result of the �xpoint operator isprecomputed. Both approaches give us precisely the PTIME queries over nestedsets when a total order on the domain of atomic elements is available (this followsfrom the results in the papers cited above and in [13]).It is shown in [10] that tractability may be obtained, in the context ofcomplex-object languages, by a combination of restrictions and assumptionsabout the input database. They considered families of calculi with restrictionson set nesting and showed that if the input database is dense1 with respect to itstypes, then the inationary and partial �xpoint extensions of the correspondingcalculus, express exactly the PTIME and PSPACE queries, respectively. Theyobtained similar expressiveness results by considering range-restricted versionsof the calculi.In the case of bags, the presence of duplicates prevents us from directlyextending the results from the set-oriented framework. For instance, �nite con-vergence for the inationary �xpoint is not guaranteed because one can keepadding elements to a bag inde�nitely. Iteration schemes with a predetermined�nite number of iteration steps (such as, for example, loops in [16]) are alsoprone to intractability problems. For example, the function �x:(x bag{union x),when applied repeatedly, will result in an exponential blow-up due to repeateddoubling [5]. Techniques for controlling recursion in the presence of duplicateswere presented in [5] in the context of nested lists and in [9] in the context ofpartially-ordered at multisets. Tractability was achieved in [5] by controllingthe number of recursion steps and the operations within the recursion steps, andin [9] by using a size-bounded structural recursion scheme.As pointed out in [3, 8, 16], most real-life database systems provide querylanguages based on bag semantics and it is therefore natural to investigate ex-pressiveness and tractability issues in the bag framework. We look at variousways of increasing expressiveness while maintaining tractability in a pure bag-oriented setting. In particular, we consider adding various tractable �xpointoperators to the standard nested bag algebra developed in [8, 7, 16, 17].We �rst introduce a deationary �xpoint operator, dfp which repeatedly re-moves elements from a bag, as opposed to inationary �xpoint which adds ele-ments. Thus, we avoid both nontermination and exponential blowup. We thenintroduce a (bag) bounded �xpoint operator, bfp, based on the one introducedby Buneman and studied in [19] in the context of nested relations. The mainidea of this operator is that before the iteration starts, a bounding set or bagis computed, and after each step the intersection of the current result and the1 Density is measured in terms of the ratio of the cardinality of the database to thecardinality of the set of all objects of a type that are constructible from the set ofatomic elements in the database.

bound is taken. Thus, the result of the �xpoint never exceeds this precomputedbound, and this avoids exponential blowup in the size of the result. It should benoted that the bounding is based on an element-wise comparison as opposed toa global size bound such as in the one used for controlling intractability in [9].There are two ways of introducing the �xpoint operators. We can de�ne a set-or bag-based �xpoint, depending on whether duplicates are or are not eliminatedat each iteration step. We then consider these operators in the context of thestandard (nested) bag algebra from [16], which we denote by BQL here. We provethat the set-based (bounded inationary and deationary) �xpoints are strictlyweaker than the bag-based �xpoints, and that the bounded inationary �xpointsare equivalent to their corresponding deationary �xpoints.In the case of sets, the (nested) relational algebra with the (bounded) �xpointoperator captures the class of all polynomial-time queries on (nested) relationsover ordered domains. Does an equivalent result hold in the case of the bag al-gebra? We answer this question in the negative by showing that the bounded�xpoint language fails to capture PTIME. However, the solution to this problemis remarkably simple. Only one extra primitive is required to capture all PTIMEqueries. We show that the gen primitive, introduced in [17], when added tothe bounded �xpoint bag algebra gives us a language that captures all PTIMEqueries (in the presence of an order on the domain). This operator was originallyde�ned in the context of NRLnat which is the nested algebra with aggregates.It takes a number n and generates a sequence of numbers from 0 to n. By de�-nition, this is a non-polynomial operation since it takes a number whose binaryrepresentation is of size logn and generates output that is of size O(n logn).However, in a bag setting, the corresponding operation is polynomial, since thenumbers are coded in unary, that is, n is represented as a bag of n empty tuples.It should be pointed out that the PTIME characterization presented in thispaper is di�erent from those of [5] and [9] for lists where a total ordering of allelements (including duplicates) is available (as opposed to an order relation onthe domain). Also, unlike [9], we do not consider exponential primitives such aspowerset when dealing with bags of nesting depth greater than one, and thus ourPTIME characterization is not restricted to at inputs and outputs. We believethat a similar PTIME result can be obtained by replacing the bounded (ordeationary) �xpoint constructs with a bounded structural recursion constructwhere the structural recursion is based on the insert presentation of bags (see[17]) and the bounding is similar to those used for the �xpoint constructs inthis paper. Structural recursion with a size-based bound as in [9] would yield asimilar characterization and would not require the gen operation since it wouldbe expressible using such a recursion scheme.The intuition behind the use of gen is rather simple. The order relation onthe domain is needed for capturing polynomial-time queries over sets so that theorder in which elements appear on a Turing machine tape can be modeled. Nowassume that we have a bag fja; a; ajg. This can be encoded on a Turing machinetape as fjenc(a)#enc(a)#enc(a)jg, assuming that fj; jg;#are in the alphabet andenc(a) is the encoding of a. Thus, from the point of view of a polynomial-time

TM there is the �rst a, the second a and the third a, whereas the bag algebra,even with the order relation, cannot distinguish between these a's! To eliminatethis mismatch, we can use the gen operator as a tagging primitive. Note thatgen does not force bag-based objects into set-based objects, because it uses bagsin an essential way, as will be seen later.Another interesting consequence of adding the gen operator is that the di�er-ence in expressive powers between the bag-based and set-based bounded �xpointsdisappears. In other words, the set-based �xpoint algebras are equivalent to thebag-based �xpoint algebras in the presence of the gen operator.We investigate the relationship between the bag languages and languageswith aggregates in the presence of �xpoint operators. In [17], it was shown thatthe bag algebra BQL has the same expressive power as a nested relational lan-guage with aggregate functions NRLnat. We show that adding the equivalent ofthe gen operation to NRLnat results in a language that is extremely powerful.In the presence of certain additional operators and set-based bounded �xpoint,it expresses all polynomial-time computable functions on natural numbers, butit can also express many EXPTIME computable functions.Organization The next section introduces the basic bag algebra BQL, and the(deationary and bounded inationary) bag-based and set-based �xpoint oper-ators. In Section 3, we study the relationship between these �xpoint constructs.The characterization of the PTIME queries over bags is given in Section 4. InSection 5, we study the connections between bag languages and set languageswith aggregates and �xpoints. Some open problems are listed in Section 6.2 Bag algebra and �xpoint operatorsIn this section, we give an overview of the bag language BQL, and introduce thedi�erent �xpoint operators.2.1 Bag algebraFigure 1 contains the expressions of the language BQL (Bag Query Language)[16, 17]. The design of this language is based on a general framework for the de-sign of query languages over collection types [2]. It must be noted that languageslike BQL normally have three equally expressive components: the algebra, thecalculus, and the comprehension language, cf. [2]. In this preliminary report weuse only the algebra; the calculus is very helpful in doing some inductive proofsand will be used, together with the algebra, in the full version.The types of BQL are given by the grammars; t ::= b j unit j s � t j fjsjg;where b is a base type whose domain is an unspeci�ed in�nite set, type unit hasthe unique element denoted by (), elements of type s� t are pairs (x; y) where x

ids : s! s h : r ! s g : s ! tg � h : r ! t g : r ! s h : r ! thg; hi : r ! s� t�s;t1 : s� t ! s �s;t2 : s� t! t !s : s ! unitb �s : s ! fjsjg b �s : fjfjsjgjg! fjsjg f : s ! tb map(f) : fjsjg ! fjtjgKfjjgs : unit ! fjsjg]s : fjsjg � fjsjg ! fjsjg b �s;t2 : s� fjtjg ! fjs� tjg: s: fjsjg � fjsjg ! fjsjg "s : fjsjg ! fjsjgFig. 1. Expressions of BQLis of type s and y is of type t, and elements of type fjsjg are �nite bags containingelements of type s.Let us briey review the semantics, cf. [17]. id is the identity function. g � his the composition of functions g and h; that is, (g � h)(x) = g(h(x)). The bang! produces () on all inputs. �1 and �2 are the two projections on pairs. hg; hi ispair formation; that is, hg; hi(x) = (g(x); h(x)). Kfjjg produces the empty bag.]is additive bag union; for example,](fj1; 2; 3jg; fj2;2;4jg) returns fj1; 2; 3; 2; 2; 4jg.b � forms singleton bags; for example, b �(3) evaluates to the singleton bag fj3jg.b � attens a bag of bags; for example, b �(fjfj1; 2jg; fj1; 3jg;fj2; 4jgjg) evaluates tofj1; 1; 2; 2; 3;4jg. b map(f) applies f to every item in the input bag; for example,b map(�x:1+x) fj1; 2; 1; 6jg evaluates to fj2; 3; 2; 7jg and b map(�x:1) fj1; 2; 1; 6jgevaluates to fj1; 1; 1; 1jg. b �2(x; y) pairs x with every item in the bag y; for exam-ple, b �2(3; fj1; 2; 3; 1jg) returns fj(3; 1); (3; 2); (3;3); (3; 1)jg. We use : to denotebag di�erence; for example, : (fj1; 1; 2; 3; 3jg;fj1; 2;2jg) = fj1; 3; 3jg. Finally, "eliminates duplicates: "(fj1; 1; 2; 2;2jg) = fj1; 2jg.We shall always omit the type superscripts as the most general types can beinferred. We shall also occasionally use the in�x notation for operations like :and], that is, we will write B : B0; B]B0, etc.The language BQL as presented here was introduced in [16]; it is also equiva-lent to the polynomial fragment of the BALG algebra of [8]. The operations max ,min, eq, member , subbag and many others are also de�nable in it [16] (max andmin are maximal and minimal bag intersections, and eq, member and subbagtest for equality, membership and containment). Following [17], for notationalconvenience we add booleans (truth value represented by fj()jg and false by fjjg)and the conditional construct if -then-else. We also use the �-notation, i.e. wewrite �x:f(x) provided x is of object type (that is, no higher-order functions are

allowed). For syntactic convenience, we de�ne functions �, � and � to denoteprojection, selection and cartesian product on bags. These constructs do not addexpressive power. For example, �i can be de�ned as b map(�i).In what follows, L(p1; : : : ; pn) is the notation for a language L augmentedwith primitives p1; : : : ; pn. We shall often use the language BQL(�), where thefunction �: b� b! fjunit jg testing a linear order on the elements of base typesis available.The following is from [2, 17]:Proposition1. Every function expressible in BQL(�) has polynomial-time com-plexity with respect to the size of the input. 22.2 Fixpoint operatorsAs we mentioned before, we must de�ne �xpoint operators over bags that donot lead to nontermination and maintain tractability. To this end, we look attwo possibilities for controlling the �xpoint computation. Both use the idea ofbounds. The �rst construct, the deationary �xpoint, removes elements fromsome initial bag at each step of the iteration. In contrast, the bounded �xpoint,keeps adding elements as long as they are within some precomputed bound.The iteration terminates when there is no change in the result of two successiveiteration steps.Let us give the formal de�nitions. Both deationary and bounded �xpointshave the following typing rule:f : s � fjtjg ! fjtjg g : s! fjtjgdfpf;g : s! fjtjg f : s � fjtjg ! fjtjg g : s! fjtjgbfpf;g : s! fjtjgTo de�ne the semantics of these operations, assume that we are given an inputobject x of type s. Let B = g(x). This is the \bound" for the computation. Wede�ne two families of bags:{ Y0 = fjjg, Yi+1 = (Yi] f(x; Yi)) min B;{ Z0 = B, Zi+1 = Zi : f(x; Zi).Now bfpf;g(x) is de�ned to be Yi where Yi = Yi+1 and i is the smallest such.We de�ne dfpf;g(x) to be Zi where Zi = Zi+1 and i is the smallest such. It iseasy to see that in both cases the i at which the computation stops is at mostthe cardinality of the bounding (or initial) bag B.It should be noted that the de�nition in [19] allows types of the form fjt1jg�fjt2jg � : : :� fjtmjg to be used in place of fjtjg in the de�nition of the bounded�xpoint for set languages. The operations [and \ are performed component-wise. It is then shown in [19] that this is only a matter of convenience, that is,no expressiveness is gained. Similar results can be shown in the bag setting.To simulate the more general �xpoint, we encode each tuple (B1; : : : ; Bm) oftype fjt1jg� fjt2jg� : : :� fjtmjg by a bag B of type fjfjt1jg� fjt2jg� : : :� fjtmjgjg,where for each x 2 Bi, there exists a tuple of the form (fjjg; :::; fjxjg; :::; fjjg) in B

(fjxjg occurs in the ith position). For example, (fja; bjg; fjjg;fjcjg) is representedby fj(fjajg; fjjg; fjjg); (fjbjg;fjjg; fjjg); (fjjg;fjjg;fjcjg)jg. Each Yi (or Zi) is representedusing this encoding and is decoded into the original representation before the�xpoint operation f is applied. The bounding bag g(x) is represented using thesame encoding. The encode and decode steps are easily expressible in BQL andare simpler2 than those used in [19]. Thus, for the sake of simplicity we use�xpoints as they are de�ned above in this report.Recursive queries such as the transitive closure of a graph can be expressedusing bfp by translating the corresponding solutions from the set case in [19] ver-batim to the bag case. For transitive closure, one uses B = "((�1(R)]�2(R))�(�1(R)]�2(R))) as the bound, where R is the binary relation representing theset of edges. That is, B is the complete graph on the set of nodes. Then thecomposition of relations is iterated until the transitive closure is constructed.As another example, we show how to de�ne the parity of the cardinality ofa bag using the deationary �xpoint construct. Letg = b map(!) andf = �(x; y):if eq(y; b �(!(y))) then Kfjjg(!(y)) else b �(!(y))] b �(!(y))In other words, for each n-element bag x, g(x) returns the bag of n units (),and f returns the empty bag if its input is fj()jg and it returns fj(); ()jg otherwise.Then dfpf;g(x) is fj()jg if n is odd, and fjjg if n is even, thus giving us the paritytest. Note that we did not use the order relation in this example.Finally, we de�ne the set-based bounded �xpoint bfpset and the set-based de-ationary �xpoint dfpset. Their typing rules are exactly the same as those forbfp and dfp. The semantics of bfpset is de�ned similar to the semantics of bfpexcept that B is de�ned as "(g(x)), not as g(x). That is, the result produced ateach iteration step has no duplicates. This corresponds precisely to the bounded�xpoint for set languages that was studied in [19]. The semantics of dfpset isde�ned analogously.Proposition2. Every function de�nable in BQL(�; dfp), or BQL(�; bfp), orBQL(�; bfpset), or BQL(�; dfpset) has polynomial-time complexity with respectto the size of the input.Proof sketch: The proof is by a simple induction argument. All functions express-ible in BQL(�) are polynomial-time computable. Suppose that y is an input tobfpf;g . The size of g(y) (and hence the size of the result of bfpf;g) is bounded bya polynomial p on the size of y. From the de�nition of bounded �xpoint, we seethat the number of iteration steps in the computation of bfpf;g is no greater thanthe cardinality of g(y), and each iteration step is polynomial-time computable,from which polynomial-time computability of bfpf;g(y) follows. The proofs fordfp, bfpset and dfpset are similar. 22 In [19], the encodings are chosen so that there is no increase in set height. This isnecessary for the proof of the conservativity result presented in that paper.

3 Relative expressive power of �xpoint operatorsIn this section, we study the relationship between the various �xpoint operatorsfrom the previous section. Our �rst result is this:Theorem3. (a) BQL(dfp) and BQL(bfp) have the same expressive power, and(b) BQL(dfpset) and BQL(bfpset) have the same expressive power.Proof sketch: We show that dfp is expressible inBQL(bfp) and, vice versa, that bfpis expressible in BQL(dfp). The main idea behind the simulation of dfp in termsof bfp is to use bfp to compute the complement of the result of the deationary�xpoint, and similarly for the converse simulation.Lemma4. Let f be a function of type s�fjtjg ! fjtjg and g be of type s! fjtjg.Let f 0 = �(y; z):f(y; (g(y) : z)). Then dfpf;g(o) = g(o) : bfpf 0;g(o) for anyobject o of type s.Proof: Fix o of type s and let Yi : fjtjg denote the ith iteration of bfpf 0;g(o), and Zidenote the ith step of dfpf;g(o). We show by induction on i, that g(o) : Yi = Zi.The lemma will follow from this. If i = 0, then this follows from Z0 = g(o) andY0 = fjjg. Assume g(o) : Yi = Zi and prove g(o) : Yi+1 = Zi+1:g(o) : Yi+1= g(o) : ((Yi] f(o; (g(o) : Yi))) min g(o)) by de�nition of bfp and f 0= g(o) : ((Yi] f(o; Zi)) min g(o)) by the hypothesis= g(o) : (Yi] f(o; Zi)) since A : (B min A) � A : B= (g(o) : Yi) : f(o; Zi) since (A : B) : C = A : (B]C)= Zi : f(o; Zi) by the hypothesis= Zi+1 by de�nition of dfpThe converse is established in the following lemma.Lemma5. Let f be a function of type s�fjtjg ! fjtjg and g be of type s! fjtjg.Let f 0 = �(y; z):f(y; (g(y) : z)). Then bfpf;g(o) = g(o) : dfpf 0 ;g(o), for anyobject o of type s.Proof: As before, �x o : s and let Yi and Zi denote ith stage of the computationof bfpf;g(o) and dfpf 0 ;g(o), resp. Again, it su�ces to show that g(o) : Zi = Yifor all i. The base case is the same as in Lemma 4. Now assume g(o) : Zi = Yiand prove g(o) : Zi+1 = Yi+1.First note that all Zjs are subbags of g(o). From this, using the equationsfor reasoning about the equivalence of bag expressions from [6], calculateg(o) : Zi+1= g(o) : (Zi : f 0(o; Zi)) by de�nition of dfp= g(o) : (Zi : f(o; (g(o) : Zi))) by de�nition of f 0= g(o) : (Zi : f(o; Yi)) by the hypothesis= (g(o) : Zi)] ((Ziminf(o; Yi)) : (Zi : g(o))) by (P8) of [6, p. 333]= (g(o) : Zi)] (Ziminf(o; Yi)) since Zi � g(o)

On the other hand,Yi+1 = (Yi] f(o; Yi))ming(o) by de�nition of bfp= ((g(o) : Zi)] f(o; Yi))ming(o) by the hypothesis= [(g(o) : Zi)ming(o)]] [f(o; Yi)min(g(o) : (g(o) : Zi))] by (P12) of [6]= (g(o) : Zi)] (Ziminf(o; Yi)) since Zi � g(o)which proves the lemma.Using these lemmas, one can show by a straightforward induction argument,that bfp is expressible in BQL(dfp) and vice versa, thus proving Theorem 3(a).We now sketch the proof of Theorem 3(b). Let dfpsetf;g be an expression inB(dfpset), and let f 0 be constructed as in the proofs of Lemmas 4 and 5. Then,for any object o,dfpsetf;g(o) = dfpf;("�g)(o) = "(g(o)) : bfpf 0;("�g)(o) = "(g(o)) : bfpsetf 0 ;g(o)Using this equation and its symmetric analog, one can easily conclude that dfpsetand bfpset are interde�nable, from which Theorem 3(b) follows. 2Next, we compare the expressive powers of the set- and bag-based �xpoints.Theorem6. BQL(bfp) is strictly more expressive than BQL(bfpset). Also,BQL(�; bfp) is strictly more expressive than BQL(�; bfpset). Similar results holdfor dfp and dfpset.Proof sketch: The inclusion is obvious as bfpset can be simulated with bfp:bfpsetf;g = bfpf;"�g. To prove strictness, let a be an object of base type b, andlet Ma be the collection of all bags of the form fja; : : : ; ajg. For any functionf : fjbjg ! fjunit jg, let TRUE(f; a) = fcard(x) j x 2Ma; f(x) = fj()jgg.To prove separation, we need the following proposition.Proposition7. For every BQL(�; bfpset) function f : fjbjg ! fjunit jg, and everyobject a of type b, the set TRUE(f; a) is either �nite or co-�nite. In particular,the parity test is inexpressible in BQL(�; bfpset).This proposition and the observation made above that the parity test isde�nable in BQL(bfp) prove the theorem.To sketch the proof of Proposition 7, we need a de�nition �rst. Given anumber k > 0, de�ne the class OBJk of k-objects as follows. First, every objectof the base type and the object () of type unit belong to OBJk. A pair (x; y) is ak-object if both its components are. Finally, a bag is a k-object if it has at mostk distinct elements and each of them is a k-object. Now, we prove the followinglemma.Lemma8. Let f : s ! t be a BQL(�; bfp) function, and let k > 0. Then thereexists a number c > 0, that depends only on k and f , such that for any x of types in OBJk, it is the case that f(x) 2 OBJc.

We prove this lemmaby induction on the BQL(�; bfp) expressions. Let us givea few cases for illustration. If f = b � and x 2 OBJk, then f(x) 2 OBJk2 . Indeed,if x = fjB1; : : : ; Bnjg with at most k of Bis being distinct, and each Bi having atmost k distinct elements, then B1] : : :] Bn has at most k2 distinct elements.Assume that f = b map(g) and x 2 OBJk. By induction hypothesis, �nd c0such that g(y) 2 OBJc0 for y in OBJk. Then we can take c to be max(c0; k):indeed, f(x) contains at most k distinct objects, each being a c0-object. Finally,if f = bfpg;h, then for each k, the constant c is determined by h, since if a bagB 2 OBJc and B0 is a subbag of B, then B0 2 OBJc.Given the lemma (which applies to every BQL(�; bfpset) function as well),we �x k and consider an expression of the form bfpsetf;g . When applied to a k-object x, it �rst computes a bound, "(g(x)). Since g(x) 2 OBJc for some �xedc, the bound has at most c elements and thus the �xpoint computation can besimulated directly in BQL(�). Applying this argument inductively, we obtainthat for every k > 0 and every BQL(�; bfpset) expression f , there is a BQL(�)expression f 0 such that f(x) = f 0(x) whenever x 2 OBJk. In particular, everyf : fjbjg ! fjunitjg coincides with some BQL(�) function f 0 on bags from Ma. Itfollows from the results of [16, 17] that BQL(�) can test only �nite or co-�nitecardinalities of bags from Ma, which completes the proof of Theorem 6. 2In particular, the theorem above shows that the set-based bounded �xpointwe de�ned is di�erent from "� bfp, since the parity test is de�nable using "� bfp,but is not de�nable using bfpset.The question arises: what does one have to add to BQL(bfpset) in order toexpress bfp? It turns out that we only need to add one extra primitive that willplay the crucial role in the next section.4 Capturing all PTIME queries on nested bagsIt was shown in [19] that adding the bounded �xpoint to a nested set languageis su�cient to capture all PTIME queries over nested sets, if a linear orderis available on the base type. One may ask if a similar result holds for bags.Somewhat surprisingly, the answer is no.Let us �rst recall the operator gen , introduced in [16]. Its type is fjunit jg !fjfjunitjgjg. We denote the bag of n units, fj(); : : : ; ()jg, by n. On the input n, genproduces fj0; : : : ; njg. For example,gen(fj(); (); ()jg) = fjfjjg; fj()jg;fj(); ()jg; fj(); (); ()jgjg:Note that gen is polynomial-time computable. In contrast, the analogous op-eration gennat on natural numbers de�ned as gennat(n) = f0; :::; ng, is not apolynomial operation.This operator is quite powerful and can compute some queries that are notde�nable in BQL, for example, the parity test, see [16]. The theorem belowdemonstrates that BQL(�; bfp) fails to capture all PTIME queries over bags, inparticular, gen.

Theorem9. The function gen is not de�nable in BQL(�; bfp).Proof. Recall the de�nition of k-objects from the proof of Proposition 7. Assumethat f is a function of BQL(�; bfp) that implements gen . Then, by Lemma 8,there exists a number c such that f(x) 2 OBJc for any input x to gen , sincex 2 OBJ1. However, gen(c) 2 OBJc+1 � OBJc. Thus, gen is not BQL(�; bfp)-de�nable. 2Now we de�ne the class PTIMEbag of polynomial-time queries over nestedbags. In what follows, we restrict ourselves to product-of-bag types, that is, typesof the form fjt1jg � : : : � fjtmjg, where tis are arbitrary types. In other words,we are interested in queries that take a tuple of bags as an input and produceoutputs that are tuples of bags. This restriction is often made when one capturesa complexity class over relations or complex objects, cf. [19, 20]. Extension toscalar types can be achieved rather straightforwardly, for example, by using afunction extracting an element from a singleton set.We use the standard encoding scheme such as the one in [1]. Given a set ofvalues A = fa1; : : : ; ang of the base type b such that a1 < : : : < an, we encode aias the binary representation of i. We use 0 to encode the unique element of typeunit . Next, using the brackets fj; jg; (;) and the separator # we encode complexobjects, relative to the set A. By the standard encoding of an object we nowmean the one relative to the active domain of the object.Consider two types s and t. We say that a function f from objects of type sto objects of type t that does not extend the active domain of its input, belongsto PTIMEbags;t if there exists a polynomial-time Turing machine M such that:(1) when the input tape does not have the standard encoding of an object oftype s, it prints a special symbol meaning \error" on its tape and stops, and(2) when the input tape contains the standard encoding of an object of type s(that is, the encoding relative to A, the active domain), it returns the encodingof f(x), relative to A.Finally, we de�ne PTIMEbag, the class of polynomial-time queries over nestedbags, to be the union of PTIMEbags;t for all pairs of (product-of-bags) types s andt. The following can be seen from Theorem 9.Corollary10. BQL(�; bfp) � PTIMEbag. 2The main result of this section characterizes the class PTIMEbag.Theorem11. The language BQL(�; bfp; gen) expresses precisely the class ofqueries in PTIMEbag: BQL(�; bfp; gen) = PTIMEbag.Proof sketch: The inclusion BQL(�; bfp; gen) � PTIMEbag follows from Propo-sition 2 and the polynomiality of gen . For the reverse inclusion, assume that aquery f of type s ! t is computable by a PTIME machine M , whose numberof steps is bounded by a polynomial p(n), where n is the length of the input. Itis not hard to construct an expression g that, given an object x whose encodingtakes n cells, produces m, where p(n) � m. This gives us the required count.Applying gen to m, we obtain a representation of the tape (i.e., each cell is now

identi�ed by its unique label). The rest of the proof follows the standard idea:an input is encoded, then the machine M 's actions are simulated on it, andthe result is decoded back into an object. Since we use the bounded �xpoint inour language, let us just give an idea of how the bound is computed and thework of M is simulated. Assume for simplicity that each cell is either 0 or 1(i.e., there are no other symbols in the alphabet; in fact, one needs three bitsto encode the alphabet that contains all appropriate delimiters). It can changeits value at most m times. The idea of the simulation is that when the ith cellchanges its value, we look at all pairs (i; l) in the working bag (which is of typefjfjunitjg � fjunitjgjg), �nd the maximum such l and add (i; l + 1) to the bag.Thus, we can use gen(m) � gen(m) as the bound for the �xpoint computationon the working bag that simulates M . When the simulation is done, a bag B iscomputed. One can use B to get the contents of the tape as follows: look at theinitial value of the ith cell and the parity of the bag ��1(x)=i(B). This determinesif the value of the cell has changed during the computation. Since this parity testcan be computed using either the �xpoint operation or gen , we get the encodingof the result which can then be decoded into the corresponding object. Moredetails and the routine encoding and decoding schemes will be given in the fullversion. 2Since the primitive gen assigns unique tags to duplicates, it is su�cient tosimulate bfp with bfpset. That is,Proposition12. BQL(bfpset; gen) can express bfp. 2From this we conclude:Corollary 13. BQL(�; bfpset; gen) = PTIMEbag. 25 Aggregation and �xpoint operatorsIn this section, we study the relationship between bag languages and languageswith aggregation in the presence of �xpoint operators. In [17], it is shown thatBQL has the same expressive power as the nested relational language with aggre-gate functions over the natural numbers, denoted by NRLnat. It is known howto capture PTIME over the nested relations [10, 13, 19], and it is also knownhow to capture many complexity classes for arithmetic functions [4, 15]. Thus,one might ask if the correspondence between BQL and NRLnat allows us to en-rich the latter to capture PTIME in both worlds: relational and arithmetical.We shall prove a few initial results indicating that it is hard to �nd a naturalextension like this.First, let us review how the language NRLnat is obtained. Take BQL andreplace each bag operator with its set analog. For example, replace] with unionand : with set di�erence. Then add the type of natural numbers Nwith the usualarithmetic operations +; �; : and 1 as a constant (that is, K1 : unit ! N), andthe summation construct P(f) : fsg ! N, provided f is of type s ! N. When

applied to a set fx1; : : : ; xng, the summation construct yields Pni=1 f(xi). Forinstance, if f = K1�! (that is, f(x) = 1 for any x), then P(f) is the cardinalityfunction.In the proof of equivalence of expressive power, each natural number n istranslated into n, that is, fj(); : : : ; ()jg, n times. Correspondingly, gen is translatedinto gennat : N! fNg, gennat(n) = f0; 1; : : : ; ng. Note that unlike gen , gennatis not a polynomial-time operation.Our �rst result shows that adding gennat to NRLnat makes the languagealready very powerful. Recall that a rudimentary set is a set of tuples of naturalnumbers de�nable by a formula of bounded arithmetic in the language LPA ofPeano arithmetic [15]. Equivalently, it is the class of the linear time hierarchylanguages over the natural numbers. A function is rudimentary if it is majorizedby a polynomial and its graph is a rudimentary set.Proposition14. All rudimentary functions are de�nable in NRLnat(gennat). 2Thus, NRLnat(gennat) is very powerful; for example, there are NP-completerudimentary sets that are de�nable in this language. However, not allpolynomial-time computable functions are de�nable in NRLnat(gennat). For ex-ample, the function d(x; y) = 2jxj�jyj, where j x j is the length of the binary rep-resentation of x, is in PTIME [15], but every function in NRLnat(gennat) ismajorized by a polynomial. We do not know if adding the function d(x; y) toNRLnat(gennat) su�ces to capture all PTIME functions on natural numbers, butwe can show the following, using Cobham's characterization of PTIME, cf. [18].Proposition15. Every polynomial-time computable function on natural num-bers is de�nable in NRLnat(gennat) augmented with d(x; y) and the set bounded�xpoint construct. 2One might ask why the function jx j is not mentioned in Proposition 15. Itturns out that this function is de�nable as the cardinality of the set Sx = fy jy � x; y = 2w for some wg. Notice that the following �rst-order formula (cf. [15])�(y) � 8v � y 8u < y: (v 6= 1 ^ u � v = y) ! (9z < v: 2 � z = v) holds i� y is apower of 2, and thus this test can be expressed in NRLnat(gennat) since all thequanti�cation is bounded.However, the language of Proposition 15 is very powerful. We can use someof the results from [4] to show the following.Proposition16. Let f be a EXPTIME-complexity function on natural numberssuch that f is majorized by a polynomial. Then f is de�nable in NRLnat(gennat)augmented with d(x; y) and the set bounded �xpoint construct. 2Thus, it is hard to �nd a reasonable balance between equally expressive andtractable languages over bags, and languages over sets with aggregate functions.

6 Conclusions and open problemsWe presented preliminary results on increasing the expressive power of languagesfor bag-based complex objects without losing tractability. We de�ned deation-ary and bounded inationary �xpoint operators and showed that they are equallyexpressive and strictly more expressive than their set-based counterparts. Weshowed that these �xpoint operators are not su�cient to capture the class ofall PTIME queries over bags and that the gen operator �lls the gap. Finally,we studied the e�ects of adding the �xpoint operators and the gen primitive tolanguages with aggregate functions.We now discuss some of the problems currently under investigation. The useof nesting is a key technique in achieving the characterization of PTIME overbags. We would like to �nd a language that captures PTIME over at bags.Of course, one can just use BQL restricted to queries from at inputs to atoutputs, but it would be desirable to �nd a natural at language. Note that theconservative extension property [17] does not help us here, because BQL onlypossesses this property beyond the �rst level of nesting.We know that the class of queries PTIMEbag is captured by BQL(�; bfp; gen).Can we obtain similar characterizations for other complexity classes, for exam-ple, Lbag, NLbag and NCbag? For example, a characterization of NC queries overnested relations that uses divide-and-conquer recursion was given in [20]. Doesa similar recursion mechanism (essentially the structural recursion on the unionpresentation, cf. [2]), when added to BQL(�; gen), capture NCbag? More gener-ally, let C be a complexity class, and L a set language of the form NRA(p;�)that captures all C queries over sets. Here NRA is the nested relational algebraand p is some family of primitives. Is there a systematic way of deriving a newfamily of bag primitives pb such that BQL(�;pb; gen) captures Cbag? Note thatgen has to be included for any class above L, unless it is de�nable with pb.We are continuing to investigate the relationship between BQL and NRLnatin the presence of gen and �xpoints. The power of gennat seems to be essential toexpress many arithmetic operations (e.g., minimization or various primitive re-cursion schemas), but makes it hard to �nd a tractable language with aggregatesthat would be equally expressive as some tractable bag language. However, a re-lated operator that takes an n-element set and returns f0; : : : ; ng is expressiblein NRLnat in the presence of order. We believe that this observation may helpus model more arithmetic in NRLnat without gennat and thus �nd a reasonablebalance between tractable bag languages and set languages with aggregates.Acknowledgements We thank Limsoon Wong and Tim Gri�n for their com-ments. The �rst author would also like to thank Dirk Van Gucht for severalinsightful discussions during the early stages of this work.References1. S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison Wesley,1995.

2. P. Buneman, S. Naqvi, V. Tannen, L. Wong. Principles of programming with com-plex objects and collection types. Theoretical Computer Science, 149(1):3{48,September 1995.3. S. Chaudhuri and M. Vardi. Optimization of real conjunctive queries. In Proceed-ings of the 12th Symposium on Principles of Database Systems, Washington DC,1994.4. P. Clote. Computation models and function algebras. Proc. Logic and Computa-tional Complexity, Springer LNCS 960, 1994, pages 98{130.5. L. S. Colby, E. L. Robertson, L. V. Saxton, and D. Van Gucht. A query languagefor list-based complex objects. In Proceedings of the 13th Symposium on Principlesof Database Systems, pages 179{189, Minneapolis, MN, 1994.6. T. Gri�n and L. Libkin. Incremental maintenance of views with duplicates. InProceedings ACM SIGMOD, 1995, pages 328{339.7. S. Grumbach, L. Libkin, T. Milo and L. Wong. Query languages for bags: expres-sive power and complexity. SIGACT News 27(2): 30{37, 1996.8. S. Grumbach and T. Milo. Towards tractable algebras for bags. In Proceedingsof the 12th -SIGART Symposium on Principles of Database Systems, pages 49{58,Washington, DC, May 1993.9. S. Grumbach and T. Milo. An algebra for pomsets. In Proceedings of the Interna-tional Conference on Database Theory, Prague, 1995, pages 191{207, 1994.10. S. Grumbach and V. Vianu. Tractable query languages for complex objectdatabases. J. Comput. and Syst. Sci. 51(2): 149{167, 1995.11. Y. Gurevich and S. Shelah. Fixed-point extensions of �rst-order logic. Annals ofPure and Applied Logic 32 (1986), 265{280.12. M. Gyssens and D. Van Gucht. A comparison between algebraic query languagesfor at and nested databases. Theoretical Computer Science 87 (1991), 263{286.13. M. Gyssens, D. Van Gucht and D. Suciu. On polynomially bounded �xpoint con-struct for nested relations. In Proceedings of 5th Workshop on Database Pro-gramming Languages, Gubbio, Italy, 1995. Available as Springer Electronic WiCpublication.14. N. Immerman. Relational queries computable in polynomial time. Informationand Control, 68:86{104, 1986.15. J. Kraj���cek. Bounded Arithmetic, Propositional Logic, and Complexity Theory.Cambridge University Press, 1995.16. L. Libkin and L. Wong. Some properties of query languages for bags. In Proceed-ings of the 4th Workshop on Database Programming Languages, Springer Verlag,1994.17. L. Libkin and L. Wong. Query languages for bags and aggregate functions.J. Comput. and Syst. Sci., to appear. Extended abstract in PODS'94.18. H. Rose. Subrecursion: Functions and Hierarchies. Oxford, 1984.19. D. Suciu. Fixpoints and bounded �xpoints for complex objects. In Proceedings ofthe 4th Workshop on Database Programming Languages, Springer Verlag, 1994.20. D. Suciu and V. Tannen. A query language for NC. In Proceedings of the 13thSymposium on Principles of Database Systems, Minneapolis, MN, 1994.21. M. Vardi. The complexity of relational query languages. In Proceedings of the 14thACM Symposium on Theory of Computing, pages 137{146, 1982.This article was processed using the LaTEX macro package with LLNCS style

