
Explainable Certain Answers

Giovanni Amendola1, Leonid Libkin2

1 University of Calabria
2 University of Edinburgh

amendola@mat.unical.it, libkin@inf.ed.ac.uk

Abstract
When a dataset is not fully specified and can repre-
sent many possible worlds, one commonly answers
queries by computing certain answers to them. A
natural way of defining certainty is to say that an
answer is certain if it is consistent with query an-
swers in all possible worlds, and is furthermore the
most informative answer with this property. How-
ever, the existence and complexity of such answers
is not yet well understood even for relational da-
tabases. Thus in applications one tends to use dif-
ferent notions, essentially the intersection of query
answers in possible worlds. However, justification
of such notions has long been questioned. This
leads to two problems: are certain answers based on
informativeness feasible in applications? and can
a clean justification be provided for intersection-
based notions?
Our goal is to answer both. For the former, we show
that such answers may not exist, or be very large,
even in simple cases of querying incomplete data.
For the latter, we add the concept of explanations to
the notion of informativeness: it shows not only that
one object is more informative than the other, but
also says why this is so. This leads to a modified no-
tion of certainty: explainable certain answers. We
present a general framework for reasoning about
them, and show that for open and closed world re-
lational databases, they are precisely the common
intersection-based notions of certainty.

1 Introduction
Problems where AI and data management techniques meet
are characterized by the need to compute answers to queries
over many possible worlds, such as instances of a global
schema in data integration [Calı̀ et al., 2003; Lenzerini,
2002] or solutions in data exchange [Arenas et al., 2014;
Fagin et al., 2005] or results of chasing a database with on-
tology constraints [Calvanese et al., 2007; Calı̀ et al., 2012].
This is due to the fact that datasets one uses for query answer-
ing typically contain null values (i.e., unknown individuals),
and thus they represent potentially many possible complete
worlds (i.e., datasets without null values). Query answering

that takes all of them into account is based on the notion of
certain answers.

Intuitively, certain answers are those that are true in all
possible worlds. However, defining this notion formally is
not completely straightforward. There are two different ap-
proaches. One of them, applicable when databases are rela-
tions (sets or multisets of tuples), simply looks for tuples that
are present in all answers [Imielinski and Lipski, 1984], i.e.,
the intersection of query answers in all possible worlds. We
refer to this notion as intersection-based. In fact one often
uses its slight generalization that also allows tuples with null
values in the output [Lipski, 1984]. This is what one typically
finds in the literature on querying incomplete information, or
its applications such as data integration, data exchange, or
ontology-based data access (OBDA).

While this notion looks rather natural, it comes with little
justification, which led to an attempt [Libkin, 2016] to pro-
vide a systematic approach to defining certain answers; it gen-
eralized earlier approaches that utilized techniques from pro-
gramming semantics [Buneman et al., 1991; Rounds, 1991].
Suppose we have an incomplete object x, and let JxK, the se-
mantics of x, be the set of all of its possible worlds. To answer
a query Q on x, we need to extract certain information from
QpJxKq “ tQpyq | y P JxKu, where Qpyq is the answer to
Q on y. The key element of this approach is the assumption
that we have an ordering on query answers: a ď a1 means
that a1 is at least as informative as a (i.e., a1 contains at least
all information from a). This defines the notion of a candi-
date answer, which is an object a such that a ď Qpyq for
all y P JxK. In other words, a candidate answer is no more
informative than any of query answers in possible worlds.
A certain answer is the maximal candidate answer, i.e., the
most informative answer consistent with answers in all possi-
ble worlds (formally, it is the greatest lower bound of the set
QpJxKq). We refer to this notion as informativeness-based.

To compare this approach with the intersection-based ap-
proach for the relational data model, we need to explain what
the incomplete objects are and how the informativeness or-
dering is interpreted. Most commonly, incompleteness is rep-
resented by marked nulls [Imielinski and Lipski, 1984] (this
is in fact the model typically used in applications such as
data integration and exchange and OBDA). In databases with
marked nulls, some of the entries are nulls that represent cur-
rently unknown values. Possible worlds are obtained by as-

signing values to nulls; e.g., by means of a function v on nulls
whose values are constants that can appear in complete data-
bases.

Queries over relational databases produce relations as well.
Let R and R1 be two relations that can appear as a query
answers, and assume that R1 has no nulls, i.e., it is a query
answer on a complete database. Then R1 is at least as infor-
mative as R if vpRq Ď R1 for some valuation v of nulls in
R. That is, R1 provides additional information by instantiat-
ing nulls in R and adding some tuples. With these notions in
place, we can now see how the two approaches to defining
certainty compare.
Example 1. Consider an incomplete database D “

tRp1, 1q, Rp2, 1q, Rp2,Kq, SpK, 1qu with three tuples in re-
lation R and one tuple in relation S, where K denotes a null
value. Let Qpx, yq “ Rpx, yq ^ Spx, yq be the query com-
puting the difference of R and S. Possible worlds of D could
be of three kinds:
• D1 “ tRp1, 1q, Rp2, 1q, Sp1, 1qu, if K is mapped to 1;
• D2 “ tRp1, 1q, Rp2, 1q, Rp2, 2q, Sp2, 1qu, if K is mapped

to 2, and
• Dc “ tRp1, 1q, Rp2, 1q, Rp2, cq, Spc, 1qu, if K is mapped

to some other value c ‰ 1, 2.
This gives us the following sets of answers
• QpD1q “ tp2, 1qu,
• QpD2q “ tp1, 1q, p2, 2qu, and
• QpDcq “ tp1, 1q, p2, 1q, p2, cqu, for c ‰ 1, 2.
There are no tuples present in all these answers, and thus the
standard intersection-based approach will return the empty
set. Its generalization that permits nulls in answers will re-
turn the single tuple p2,Kq. Indeed, if K is mapped to 1, then
p2, 1q P QpD1q; if K is mapped to 2, then p2, 2q P QpD2q;
and if K is mapped to c ‰ 1, 2, then p2, cq P QpDcq.

The informativeness-based notion of certain answer results
in the set A “ tpK1, 1q, p2,K2qu. Indeed, one can see that for
each c, there is v such that vpAq Ď QpDcq, and it is not hard
to show thatA is the greatest lower bound of allQpDcqs.

Thus, the informativeness-based notion of certainty may be
different from the intersection-based notion. We do not yet
understand the informativeness-based notion well, however.
For example, we do not know whether the certain answer de-
fined as the greatest lower bound always exists, nor do we
know how large it can be when it does exist. The latter ques-
tion was partially answered in [Arenas et al., 2017]: even for
unions of conjunctive queries with inequalities, it can be of
super-polynomial size under the open-world interpretation of
incomplete databases. We complete the picture. First we show
that for open-world, even for first-order queries, such certain
answers need not exist. For closed-world semantics, certain
answers exist for queries expressible in any reasonable logical
language, but could still be of super-polynomial size. So sud-
denly the informativeness-based approach to defining certain
answers faces a very serious obstacle of either non-existence
or infeasible sizes of answers.

The reason for this bad behavior lies in the excessive per-
missiveness of the definition of certain answers with respect

to information content. If y P JxK, there must be a specific ex-
planation as to why y is a possible world. However, we only
require a ď Qpyq if a is candidate answer: that is, such an
answer is less informative than Qpyq but for reason that may
have nothing to do with the fact that y is a possible world
for x. This may lead to bizarre candidate answers. Indeed, re-
turning to Example 1, consider the tuple p1,K1q. It matches
QpD1q, obtained by interpreting K as 1, when K1 is mapped
to 2, and it matches QpD2q, obtained by interpreting K as 2,
when K1 is mapped to 1. Thus, there is no connection be-
tween how a possible world is obtained, and why the tuple is
in the answer to Q in that possible world.

Instead of the very permissive definition of candidate and
certain answers, it seems much more natural to require, for a
candidate answer a, that a ď Qpyq for the same reason that
y is in JxK: that is, whatever explanation is given to y P JxK,
it should also explain why a ď Qpyq. This idea gives us the
notion of explainable candidate answers, and maximal such
answer is the explainable certain answer.

Our main contribution is to extend the theory of
informativeness-based notion of certainty to include expla-
nations of why tuples appear in the answer, and to relate ex-
plainable certain answers to the classical intersection-based
approach. As the first step, we develop a general, datamodel-
independent, framework to reason about explanations applied
to incomplete objects, and to query answers. Essentially, ex-
planations are viewed as operations that can be applied to ob-
jects to make them more informative; such explanations com-
pose, and naturally lead to notions of explainable candidate
and certain answers.

We then see how these notions look in the familiar rela-
tional model, under both open- and closed-world semantics
of incompleteness. Our main result in this case is that for
both semantics, explainable certain answers always exist, are
of at most polynomial size in the size of the input, and are,
essentially, the intersection-based answers (to be more pre-
cise, their slight extension that allows nulls in the output: the
one that produced the answer p2,Kq in Example 1). Thus, the
standard notion so common in data management and reason-
ing literature is well justified after all, by applying the concept
of explanations to both database objects and query answers.
Organization. Basic definitions are in Section 2. Exis-
tence and size of answers as greatest lower bounds is stud-
ied in Section 3. Section 4 compares the intersection- and
informativeness-based notions of certainty. Section 5 intro-
duces the framework of explanations, and Section 6 shows
what explainable certain answers are for common semantics.

2 Preliminaries
Incomplete databases. An incomplete databaseD represents
many possible worlds, or complete databases, known as its se-
mantics JDK. As a concrete model of incompleteness we look
at relational databases with marked nulls that dominate appli-
cations such as data integration, OBDA, and data exchange
[Arenas et al., 2014; Lenzerini, 2002; Bienvenu and Ortiz,
2015]. Entries in databases come from the sets of constants
and nulls, denoted by Const and Null. We use the symbol K
for nulls. A databaseD is a set of relations over ConstYNull;

a k-ary relation is a finite subset of pConstYNullqk. Sets of
constants and nulls that occur in D are denoted by ConstpDq
and NullpDq. Its domain is dompDq “ ConstpDq YNullpDq.
A complete database has no nulls.

A homomorphism h : D Ñ D1 is a mapping from dompDq
to dompD1q such that hpcq “ c for c P ConstpDq, and for
each tuple ā in relation R of D, the tuple hpāq is in relation
R of D1. The image of h is denoted by hpDq.

A homomorphism v is a valuation if its range contains only
constants, i.e., vpKq P Const for each null (we shall be using
v for valuations, and h for arbitrary homomorphisms). Two
most common semantics of incompleteness, under open- and
closed-world assumptions (OWA and CWA) are given as fol-
lows [Abiteboul et al., 1995; Imielinski and Lipski, 1984]:

JDKOWA “ tD1 complete | D valuation v : D Ñ D1u
JDKCWA “ tD1 complete | D valuation v : D1 “ vpDqu

That is, under CWA, one just replaces nulls with constants,
and under OWA, one can add extra tuples, cf. [Reiter, 1977].

Query answering. A relational query Q of arity k takes
a complete database D and returns a set of k-tuples over
ConstpDq. If such a query Q is asked on an incomplete da-
tabase D, to answer it under semantics J K, one has to ana-
lyze QpJDKq “ tQpD1q | D1 P JDKu. The definition one
sees most commonly in the literature is simply

Ş

QpJDKq “
Ş

tQpD1q | D1 P JDKu. We shall consider a slightly more
permissive definition:

lOWApQ,Dq “ tā | @v : D Ñ D1 vpāq P QpD1qu
lCWApQ,Dq “ tā | @v : vpāq P QpvpDqqu

where v ranges over valuations on D, and ā is a tuple over
constants and nulls. The latter comes from [Lipski, 1984],
and has often been used as a substitute for intersection-
based definition since null-free tuples in lCWApQ,Dq and
Ş

QpJDKCWAq are exactly the same (and likewise for OWA).
For Boolean (true/false) queries, where the standard repre-
sentations of true and false are tpqu and H (i.e., the set con-
taining the empty tuple pq, and the empty set), lpQ,Dq and
Ş

QpJDKq are the same for both OWA and CWA semantics.
Otherwise lOWApQ,Dq and lCWApQ,Dq may produce infor-
mative tuples with nulls. For instance, if Q returns a relation
R in D, then lOWApQ,Dq “ lCWApQ,Dq “ R, while both
Ş

QpJDKOWAq and
Ş

QpJDKCWAq contain only null-free tu-
ples in R.

Query languages. As our basic query language, we shall
use first-order predicate logic (FO) over the relational vo-
cabulary. Its formulae are built up from relational atoms
Rpx̄q and equality atoms x “ y, using Boolean connectives
^,_, , and quantifiers D,@. The D,^-fragment of FO is
known as conjunctive queries. Their unions are denoted by
UCQ (unions of conjunctive queries); in terms of their ex-
pressiveness, they correspond to the D,^,_-fragment of FO.
If inequality atoms x ‰ y are allowed in them, we have the
class of unions of conjunctive queries with inequalities, de-
noted by UCQ‰.

3 Query answers as greatest lower bounds
We now outline a general approach to viewing certain query
answers as greatest lower bounds in orderings induced by in-

formation content, and then see what it yields for answering
relational queries, under both OWA and CWA semantics.

A general framework
We review the basics of the framework of [Libkin, 2016]. A
database domain is a triple xD,C, J Ky where D is a set of da-
tabase objects (e.g., all databases of a given schema), C Ď D
is a set of complete objects, and J K is the semantic function
that assigns complete objects (possible worlds) to an incom-
plete object, i.e., JxK Ď C. With such a domain, we associate
its information ordering given by x ď y iff JyK Ď JxK. The
intuition is that the more possible worlds there are for x, the
less information about x we have.

Given two database domains xD1,C1, J K1y and xD,C, J Ky,
a query is a mapping Q : C1 Ñ C, i.e., a mapping from com-
plete objects (query inputs) to complete objects (query an-
swers). This is consistent with the standard query languages.
To extend Q to arbitrary elements of D in a correct way, we
need to extract certain information from QpJxKq. We say that
a is a candidate answer to Q on x if a ď Qpcq for every
c P JxK, and a is a certain answer to Q on x if it is maximal
among candidate answers. In other words, the certain answer
is the greatest lower bound of QpJxKq in ordering ď, denoted
by glbďQpJxKq. Depending on a concrete ordering ď on D,
certain answers may or may not exist. If certain answers do
exist, then JyK1 Ď JxK1 implies glbďQpJxKq ď glbďQpJyKq.
That is, more informative query inputs yield more informative
query answers.

The framework for relational databases
When elements of database domains are relational databases,
for query inputs we use either OWA or CWA semantics. For
the semantics of answers, it is common to use OWA. Indeed,
a partial query answer can be improved in two ways: either
by finding more tuples, or by instantiating nulls with values.
This is precisely what the OWA semantics does. The ordering
it generates, D Ď D1 iff JD1KOWA Ď JDKOWA, has a nice de-
scription: D Ď D1 iff there is a homomorphism h : D Ñ D1,
see [Gheerbrant et al., 2014].

This is a well-known and studied relation [Hell and
Nešetřil, 2004], and we now recall some basic notions related
to it. It is a preorder, that is, reflexive and transitive. If both
D Ď D1 and D1 Ď D hold, we say that D and D1 are homo-
morphically equivalent and write D « D1; note that « is an
equivalence relation. A relational structure is a core if it has
no proper substructure that is homomorphically equivalent to
it. A substructure D1 of D is called a core of D if it is a core
andD « D1. It is known that up to isomorphism, there is only
one core of D, and thus one speaks of the core of D, denoted
by corepDq. Any two homomorphically equivalent structures
will have the same core (up to isomorphism).

The certain answer to a relational query Q on an incom-
plete database D is glbĎQpJDKq, where J K is either J KOWA or
J KCWA, and the greatest lower bound is taken with respect to
Ď. Since Ď is a preorder, glbĎ is defined up to homomorphic
equivalence, and one typically takes the core of these homo-
morphically equivalent structures to represent glbĎ.

For structures D1 and D2, their greatest lower bound is
any structure homomorphically equivalent to D1ˆD2 [Hell
and Nešetřil, 2004]. Thus, there is the smallest such structure,

namely corepD1ˆD2q. If homomorphisms are required to
preserve constants, the definition of the productD1̂ D2 needs
a small adjustment: if ai P dompDiq, for i “ 1, 2, then we
replace the pair pa1, a2q in the domain of D1ˆD2 by a1 if
a1 “ a2 P Const and by a fresh null otherwise [ten Cate and
Dalmau, 2015; Libkin, 2011]).

While glbĎ exists for finite sets, our goal is to find it for
infinite sets QpJDKq. That is what we analyze now.

Certain answers for UCQs.
In the case of unions of conjunctive queries, there is an easy
description of these greatest lower bounds. By QpDq we
mean the naı̈ve evaluation of Q on D that treats nulls sim-
ply as new constant values. Then, if Q P UCQ,

glbĎQpJDKOWAq “ glbĎQpJDKCWAq “ QpDq ,

see [Imielinski and Lipski, 1984; Gheerbrant et al., 2014;
Libkin, 2016]. Thus, it is of interest to us what happens for
more complex queries, e.g., UCQ‰ or FO queries.

Bounds under OWA.
Now we have a relational query Q and we want to compute
glbĎQpJDKOWAq for a database D. It was shown already in
[Arenas et al., 2017] that its size could be exponential even
for UCQ‰ queries. That is, glbĎQpJDKOWAq always exists if
Q P UCQ‰, and, moreover, there exists a sequence Dn, n P
N, of databases of increasing size and a UCQ‰ query Q such
that the size of glbĎQpJDnKOWAq is 2Op}Dn}q, where the size
}D} of a database is measured as the number of tuples in it.

When we move to arbitrary FO queries, the situation is
much worse.

Theorem 1. There is an FO query Q and a database D such
that glbĎQpJDKOWAq does not exist.

Proof idea. Let D contain a unary relation U with a single
element, and an empty binary relation R. Let q state that for
each element of R, its indegree and outdegree are 1, and let
Q return R if q is true, and tpx, xq | x P Uu otherwise. A
database D1 in JDKOWA contains a graph R and a set U ; then
Q returns R if it is a disjoint union of directed cycles, and
single loops on elements of U otherwise.

Let Cn be a directed cycle of length n. From the above
and the fact that Cn Ď Cn \ Cm (where \ denotes disjoint
union) it is easy to derive that glbĎQpJDKOWAq “ glbĎtCn |
n ą 0u. Since Cmn Ď Cm, we then get that the latter equals
glbĎtCn! | n ą 0u. Now one can use techniques from [Hell
and Nešetřil, 2004] to show that such a greatest lower bound
does not exist.

Bounds under CWA.
For CWA, we can recover the existence of greatest lower
bounds for a large class of queries, but we still have very high
bounds on their sizes. Recall that a queryQ is generic [Abite-
boul et al., 1995] if QpπpDqq “ πpQpDqq for every per-
mutation of the domain (i.e., for a bijection π : dompDq Ñ
dompDq). All queries in FO and many other logics over the
relational vocabulary are such.

Theorem 2. If Q is a generic query, then glbĎQpJDKCWAq

always exists, and its size is bounded by 22Op}D}q

.

Proof idea. Given a database D, a valuation v is admis-
sible if its range is contained in ConstpDq together with
|NullpDq|`1 new constants not present inD. LetApQ,Dq “
tQpvpDqq | v admissible valuationu. Note that ApQ,Dq Ď
QpJDKCWAq, and ApQ,Dq is a finite set. The key lemma is to
show that glbĎpJDKCWAq “ glbĎApQ,Dq.

To construct glbĎApQ,Dq, we have to find the core of the
product of the elements of ApQ,Dq; since the number of ad-
missible valuations is exponential, the product size is at most
doubly exponential.

As for the lower bound, we can adapt the construction of
[Arenas et al., 2017] to show the following:
Proposition 1. There exists a family of incomplete databases
Dn, for n P N, of increasing size, and a UCQ‰ queryQ such
that the size of glbĎQpJDnKCWAq is 2Op}Dn}q.

This still leaves a gap between the exponential lower bound
and the double exponential upper bound. To give an idea
why it is very hard to close the gap, note that lower bound
proofs are based on constructing, for each n, a polynomial-
size family of cores of size up to n that are closed under prod-
uct; this results in an exponential size greatest lower bound.
For a double-exponential bound, we would need to find an
exponential-size family of cores closed under product. How-
ever the existence of such a family is not known.

A double exponential lower bound can be produced for
monadic second-order logic, MSO (the fragment of second-
order where all second-order quantification is over sets, and
both first- and second-order free variables are allowed).
Proposition 2. There is a family of incomplete databasesDn,
for n P N, of increasing size, and an MSO query Q such that
the size of glbĎQpJDnKCWAq is 22Ωp}Dn}q

.
Proof idea. We first show how with an MSO query, we
can generate, on JDnKCWA, outputs which are directed cy-
cles of lengths up to 2n, where Dn has Opnq tuples. Thus,
glbĎQpJDnKCWAq must contain corep

Ś

iď2n Ciq, which is
known to be CN , where N is the least common multiplier
of numbers up to 2n. Thus, N ě

ś

tp ď 2n | p primeu,
and lnN ě θp2nq, where θpxq is the sum of ln p over prime
p ď x. It is known that θpxq ě x for sufficiently large x,
see [Rosser and Schoenfeld, 1962], and thus N ě e2n

, from
which the bound is easily derived. l

4 Comparing certainty notions
We have defined certain answers as greatest lower bounds
glbĎQpJDK˚q when ˚ is OWA or CWA. On the other hand,
we have standard notions of certain answers in the literature,
namely lCWApQ,Dq and lOWApQ,Dq. How do they com-
pare?

We know that lCWApQ,Dq and lOWApQ,Dq are can-
didate answers, under the appropriate semantics; that is,
l˚pQ,Dq Ď QpD1q for each D1 P JDK˚. How-
ever, they are not in general informativeness-based cer-
tain answers: we already saw, in Example 1, that
glbĎQpJDKCWAq and lCWApQ,Dq can be different. In that ex-
ample, lCWApQ,Dq “ tp2,Kqu, while glbĎQpJDKCWAq “

tpK1, 1q, p2,K2qu. A similar example can be constructed un-
der OWA as well.

In fact Example 1 showed that the intersection-based
notion can miss some of the answers justified under
the informativeness-based notion. On the other hand, the
informativeness-based notion of certainty does not behave
well computationally: it may not exist, or may be pro-
hibitively large. To reconcile good properties of the two no-
tions, it would thus be nice to produce proper justifications
for answers of the form l˚pQ,Dq. To do so, we observe the
following: in Example 1, each of the possible worlds for D is
explained by means of a valuation v. If we take, in that exam-
ple, the tuple ā “ pK1, 1q which belongs to glbĎQpJDKCWAq

but not to lCWApQ,Dq, we shall always have some valuation
v1 so that v1pāq P QpvpDqq, but we cannot ensure that v1 al-
ways equals v. In other words, we cannot ensure that the same
explanation accounts for a possible world for an incomplete
database, and for the tuple being an answer in that possible
world.

This is an informal description of why the notions of
l˚pQ,Dq are justified: they appear to be the most informa-
tive answers under the assumption that the same explanation
accounts for a possible world and the query answer in that
possible world. We next formalize the notion of explanations.

5 Explanations: the framework
We now present an abstract framework to reason about ex-
planations applied to incomplete database objects, while pro-
viding analogies with the common OWA and CWA relational
semantics. This is done to keep the intuition clear; detailed
treatment of these semantics will be presented in Section 6.

Assume that we have a set D of database objects, as in
Section 3. On this set we have an oblivious preorder ĺε; in-
tuitively, x ĺε y means that we know that y is at least as
informative as x without having to provide additional infor-
mation. For example, under OWA, this will be the subset or-
dering D Ď D1 (tuples can be added freely), and under CWA,
it is just the identity D “ D1.

Next, we need actions; these are functions on objects that
return objects. Some actions with special properties will be
viewed as explanations of incomplete information. The set of
actions Ω is a monoid: actions can be composed, and there is
the identity (unit) action. This is captured by:

Definition 1 (Action Structure). An action structure A con-
sists of:

• a set D of database objects with an oblivious preorder ĺε;
• a monoid Ω with an associative composition operation de-

noted by ωω1 and unit ε (i.e., εω “ ωε “ ω); and
• a function D ˆ Ω Ñ D, whose result on x P D and ω P Ω

is denoted by xω , such that xε “ x and xωω
1

“ pxωqω
1

,
and furthermore x ĺε y implies xω ĺε y

ω for all x, y P D
and ω, ω1 P Ω.

The intuition, in the case of relational databases, is as fol-
lows. Actions are functions that can modify database entries,
i.e., they are functions f : ConstYNull Ñ ConstYNull.
They can provide us with additional knowledge (e.g., by re-
placing a null with a constant), or to the contrary decrease our
knowledge (by doing the reverse). The unit of the monoid of

functions is the identity function. Then xω is the result of ap-
plying an action to an object. In case of relational databases,
if we have a database D and a function f as above, the result
of applying this action is simply fpDq. The last condition
says that if x is obliviously at most as informative as y, then
changing information in both x and y in the same way does
not change that.

We extend ĺε to all elements of Ω by defining x ĺω y iff
xω ĺ y. It says that by applying the action ω, object x is at
most as informative as y.
Lemma 1. x ĺω y and y ĺω1 z imply x ĺωω1 z.

Explanations are special kinds of actions. A relational in-
tuition for actions is replacing some values in relational data-
bases by others. When we replace nulls by other values, this
explains why one object is more informative than another. In
particular, we can replace all nulls by constants, resulting in
a complete object, to which no further explanations apply.
The following definition captures this distinction between ar-
bitrary actions and explanations.
Definition 2 (Explanation Structure). An explanation struc-
ture E is a restriction of an action structure A to a submonoid
Σ of Ω, whose elements are called explanations, so that for
each x P D, there is σ P Σ, called x-complete, such that
pxσqσ

1

“ xσ , for all σ1 P Σ. If ε is x-complete, then x is
called a complete object, and the set of such objects is de-
noted by C.

If σ is x-complete, then no other explanation changes xσ ,
i.e., σ already explained all the incompleteness of x. A com-
plete object in C is one for which ε is x-complete, i.e., there is
no incompleteness to explain, and xσ “ x for all σ P Σ. In the
relational case, explanations are maps f : ConstYNull Ñ
ConstYNull that are the identity on constants (i.e., homo-
morphisms). For a relational database D, an explanation is
D-complete if it is a valuation on D, i.e., it maps D to a com-
plete database. Complete databases, under this definition, will
be those without nulls.

Given an explanation structure E, we define the semantics
of an object x P D with respect to an explanation σ P Σ as the
set of all complete objects which are at least as informative as
x with the help of explanation σ, i.e.,

JxKEσ “ tc P C | x ĺσ cu.

The semantics of an object is the set of complete objects that
can be explained to be at least as informative as x:

JxKE “
ď

σPΣ

JxKEσ .

We also write x ĺ y if x ĺσ y for some σ P Σ. Below we
summarize basic properties of these notions.
Proposition 3. • ĺ is a preorder.

• If xσ is a complete object, then xσ P JxKEσ .

• If x ĺσ y, then JyKEσ1 Ď JxKEσσ1 , for each σ1 P Σ.

Semantics and ordering
It is standard to define information ordering on objects by
comparing their semantics, i.e., x ĺ y iff JyK Ď JxK. Here

we took a different path and defined both the semantics and
the ordering based on the actions of explanations on objects.
Does the connection between them continue to hold?

The answer is positive in the presence of canonical expla-
nations. These are analogous, in the case of relational data-
bases, to replacing null values with new distinct constants.
These are important for defining naı̈ve evaluation of queries,
when nulls are treated as constants. Crucially such explana-
tions are invertible: one can change these new constants back
into nulls, and apply this inverse to other objects that use the
same constants. The following definition captures this intu-
ition. First, we say that ω P Ω is explainable on x if xω “ xσ

for some σ P Σ. That is, the action of ω may not always be
an explanation, but on x it is.
Definition 3 (Canonical explanation). For an object y P D,
a y-complete τ P Σ is a canonical explanation for y if two
conditions hold. (1) There is τ 1 P Ω such that yττ

1

“ y. (2)
If σ P Σ is a y-complete explanation, and x P D satisfies
x ĺσ1 yσ for some σ1 P Σ, then σ1τ 1 is explainable on x.
Theorem 3. Given an explanation structure E, let y P D be
such that there is a canonical explanation for it. Then, for
x P D, we have x ĺ y if and only if JyKE Ď JxKE.

Explainable answers to queries
Let D and D1 be two sets of database objects, and let Σ be a
monoid of explanations that gives rise to explanation struc-
tures E and E1 on these sets. We use notations with 1 for all
the concepts in E1, i.e., C1 for complete objects, ĺ1σ and ĺ1.
Definition 4 (Explainable answers). A queryQ is a map from
C to C1. Given x P D and a P D1, we say that a is an explain-
able candidate answer to Q on x if for every c P JxKσ we
have a ĺ1σ Qpcq. A maximal, with respect to ĺ1, explainable
candidate answer is called an explainable certain answer.

That is, for explainable candidate answers, the same expla-
nation has to account for c being a possible world of x, and
for a being at most as informative as the answer in that world.
Certain answers, as before, are maximal candidate answers.
These behave in the expected way.
Theorem 4. Let Q : CÑ C1 be a query.
• Assume that x ĺσ y for x, y P D. If a is an explainable

candidate answer toQ on x, then aσ is an explainable can-
didate answer to Q on y.

• If glbĺ1QpJxKq exists, then it is an explainable certain an-
swer to Q on x.

• If x ĺ y and a, b are explainable certain answers to Q on
x and y respectively, then a ĺ1 b.
These say that query answers are still more informative on

more informative inputs, but extra information in query an-
swers is not arbitrary: instead it is added according to the way
in which information was added to the inputs.

6 Explainable certain answers in open and
closed worlds

We now look at action and explanation structures for the com-
mon OWA and CWA semantics. These are easy to construct.

Their elements are relational databases, complete objects are
databases without nulls, actions are functions on database en-
tries, and explanations are those actions that preserve con-
stants (i.e., they either assign a constant to a null, or equate
two nulls). The only difference between them is the oblivi-
ous ordering, which is subset for OWA (to account for adding
tuples), and identity for CWA. We then prove that in both of
these explanation structures, lOWA and lCWA are exactly the
explainable certain answers.

6.1 Explainable answers under OWA

Let ρ be a relational vocabulary. We define action and ex-
planation structures AOWApρq and EOWApρq for relational data-
bases over ρ. In AOWApρq:
• the domain Dpρq is the set of all databases of vocabulary ρ

over ConstYNull;
• the oblivious preorder ĺε is the subset relation Ď;
• the monoid Ω contains all functions f : ConstYNull Ñ
ConstYNull, with the identity function as its unit element,
and composition of functions as its binary operation.

The relation D ĺf D
1 is thus given by fpDq Ď D1.

For the explanation structure EOWApρq, the submonoid of Ω
is H, the set of all homomorphisms, which are maps h P Ω
such that hpcq “ c for every c P Const. Recall that a homo-
morphism h is called a valuation if hpNullq Ď Const.

Let J KEOWApρq be the semantics defined by EOWApρq, and let
ĺ be the associated preorder, as shown in the previous sec-
tion. The theorem below summarizes properties of the struc-
tures, the preorder, and the semantics.
Theorem 5. For each relational vocabulary ρ:
• AOWApρq is an action structure and EOWApρq is an explana-

tion structure;
• every valuation v P H is a complete explanation;
• complete objects are exactly ρ-databases without nulls;

• J KEOWApρq coincides with J KOWA;
• the preorder ĺ is Ď (the existence of a homomorphism);
• for D P Dpρq, canonical explanations are valuations that

are bijections with the range disjoint from ConstpDq.
The existence of canonical explanations implies that D ĺ

D1 iff JD1KEOWApρq Ď JDKEOWApρq, which also follows from
[Gheerbrant et al., 2014].

A relational k-ary query Q takes a complete database from
Dpρq and produces a complete database in Dpρ1q, where ρ1
consists of a single k-ary relation A (for answer). To define
the notion of explainable candidate and certain answers on
arbitrary databases, we need explanation structures on Dpρq
and Dpρ1q. As mentioned earlier, query answers are always
interpreted in EOWApρ

1q. When query inputs are interpreted in
EOWApρq, we can view Q as a map from complete objects in
EOWApρq to complete objects in EOWApρ

1q. This, by Definition
4, gives us the notions of explainable candidate and certain
answers under OWA. The result below provides their precise
characterization.
Theorem 6. If Q is a k-ary relational query defined on com-
plete databases, and D is an arbitrary database, then

• the explainable certain answer under OWA is lOWApQ,Dq;
• explainable candidate answers under OWA are exactly the

subsets of lOWApQ,Dq.

This justifies the use of lOWA and its approximations for
finding certain answers under the OWA semantics.

6.2 Explainable answers under CWA

We define action and explanation structures ACWApρq and
ECWApρq just as we did for the OWA case, with a single change:
now the oblivious preorder, which we denote by Ĳε to distin-
guish it from the OWA case, is the identity (i.e., only D Ĳε D
is true). This reflects the fact that under CWA, no information
is added to an incomplete database except by applying a map
to its nulls. This extends to relations Ĳh for for h P H, where
D Ĳh D1 iff D1 “ hpDq. Let Ĳ be the union of all such
relations, and let J KECWApρq be the semantics associated with
ECWApρq. The following is an analog of Theorem 5 for CWA.

Theorem 7. For each relational vocabulary ρ:

• ACWApρq is an action structure and ECWApρq is an explana-
tion structure;

• every valuation h P H is a complete explanation;
• complete objects are exactly ρ-databases without nulls;

• J KECWApρq coincides with J KCWA;
• D Ĳ D1 iff hpDq “ D1 for some homomorphism h.

Let Q be a query from complete databases in Dpρq to com-
plete databases in Dpρ1q, where again ρ1 consists of a single
k-ary relationA. We consider inputs as elements of the expla-
nation structure ECWApρq and outputs, as before, as elements
of the explanation structure EOWApρ

1q. Then again Definition 4
gives us notions of explainable candidate and certain answers,
this time under CWA. They can be characterized as follows.

Theorem 8. If Q is a k-ary relational query defined on com-
plete databases, and D is an arbitrary database, then

• the explainable certain answer under CWA is lCWApQ,Dq;
• explainable candidate answers under CWA are exactly the

subsets of lCWApQ,Dq.

Thus, similarly to the OWA case, this result justifies the use
of lCWA for finding certain answers under the CWA semantics.

6.3 Justification for intersection-based certain
answers

Theorems 6 and 8 allow us to provide justifications for
the commonly used intersection-based certain answers, i.e.,
lX˚ pQ,Dq “

Ş

tQpD1q | D1 P JDK˚u, where ˚ is OWA or
CWA. We say that a tuple ā is an explainable answer to Q on
D under semantics ˚ if it belongs to the explainable certain
answer under ˚. Then:

Corollary 1. Let Q be a k-ary relational query, D a data-
base, and c̄ a k-tuple over ConstpDq. Then c̄ is an explain-
able answer to Q on D under ˚ iff c̄ P lX˚ pQ,Dq, where ˚ is
OWA or CWA.

Thus, lX˚ pQ,Dq is the maximal explainable candidate an-
swer containing only constant tuples, under both OWA and

CWA. Also, Corollary 1 implies that for Boolean queries,
lX˚ pQ,Dq is precisely the explainable certain answer, under
both OWA and CWA, thereby providing justification for the no-
tions of certainty most commonly found in query answering
literature.

7 Conclusions
Our goal was to bridge the gap between two existing ways of
defining certainty of query answers over incomplete data. We
have done it by introducing the notion of explanations in se-
mantics of incompleteness, and defining certainty by saying
that it is the same explanation that has to account for a pos-
sible world and the query answer in it. This way, we justified
the most commonly used (although hitherto without proper
justification) notion of certainty in the literature.

As the outcome of this work, we believe that the right no-
tions of certainty to use, in the case of relational data, are
intersection-based; that is lCWA or lOWA, depending on the
semantics of data. Now these notions come with a proper jus-
tification. If one is only interested in tuples of constants, the
classical definition of

Ş

tQpD1q | D1 P JDK˚u is the right no-
tion. The informativeness-based definition is still more gen-
eral and can capture answers that intersection-based notions
would miss, but pragmatically one should use intersection-
based notions due to their computational properties.

In the future, we plan to extend the ideas of this paper in
three ways. One extension is to other semantics of incom-
pleteness (e.g., weaker notions of CWA, cf. [Reiter, 1980;
Minker, 1982]). Another direction is to look for notions
of explanations as they directly arise in applications such
as data integration, data exchange, OBDA, and others. Fi-
nally, we would like to consider other data models, in par-
ticular graph models and RDF, where the study of query-
ing incomplete data (such as blank nodes) and certain an-
swers has recently received attention [Ahmetaj et al., 2015;
Gheerbrant and Fontaine, 2014; Hogan et al., 2014; Nikolaou
and Koubarakis, 2016].

Acknowledgments
Part of this work was done while the first author was visit-
ing the University of Edinburgh. The first author was sup-
ported by MISE under projects PIUCultura and S2BDW, and
by the EU Horizon 2020 programme under project MIREL,
grant agreement 690974. The second author is supported by
EPSRC grants M025268 and N023056. We are grateful to
anonymous referees for their comments.

References
[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and

Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[Ahmetaj et al., 2015] Shqiponja Ahmetaj, Wolfgang Fischl,
Reinhard Pichler, Mantas Simkus, and Sebastian Skritek.
Towards reconciling SPARQL and certain answers. In
WWW, pages 23–33, 2015.

[Arenas et al., 2014] Marcelo Arenas, Pablo Barceló, Leonid
Libkin, and Filip Murlak. Foundations of Data Exchange.
Cambridge University Press, 2014.

[Arenas et al., 2017] Marcelo Arenas, Elena Botoeva,
Egor V. Kostylev, and Vladislav Ryzhikov. A note on
computing certain answers to queries over incomplete
databases. In AMW, 2017.

[Bienvenu and Ortiz, 2015] Meghyn Bienvenu and Mag-
dalena Ortiz. Ontology-mediated query answering with
data-tractable description logics. In Reasoning Web, pages
218–307, 2015.

[Buneman et al., 1991] Peter Buneman, Achim Jung, and
Atsushi Ohori. Using powerdomains to generalize rela-
tional databases. Theoretical Computer Science, 91(1):23–
55, 1991.

[Calı̀ et al., 2003] Andrea Calı̀, Domenico Lembo, and Ric-
cardo Rosati. Query rewriting and answering under con-
straints in data integration systems. In IJCAI, pages 16–21,
2003.

[Calı̀ et al., 2012] Andrea Calı̀, Georg Gottlob, and Thomas
Lukasiewicz. A general datalog-based framework for
tractable query answering over ontologies. J. Web Sem.,
14:57–83, 2012.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. J. Au-
tom. Reasoning, 39(3):385–429, 2007.

[Fagin et al., 2005] Ronald Fagin, Phokion G. Kolaitis, Re-
nee J. Miller, and Lucian Popa. Data exchange: Seman-
tics and query answering. Theoretical Computer Science,
336:89–124, 2005.

[Gheerbrant and Fontaine, 2014] Amélie Gheerbrant and
Gaëlle Fontaine. Querying incomplete graphs with data.
In AMW, 2014.

[Gheerbrant et al., 2014] Amélie Gheerbrant, Leonid
Libkin, and Cristina Sirangelo. Naı̈ve evaluation of
queries over incomplete databases. ACM Trans. Database
Syst., 39(4):31:1–31:42, 2014.

[Hell and Nešetřil, 2004] Pavol Hell and Jaroslav Nešetřil.
Graphs and Homomorphisms. Oxford University Press,
2004.

[Hogan et al., 2014] Aidan Hogan, Marcelo Arenas, Alejan-
dro Mallea, and Axel Polleres. Everything you always
wanted to know about blank nodes. J. Web Sem., 27:42–69,
2014.

[Imielinski and Lipski, 1984] Tomasz Imielinski and Witold
Lipski. Incomplete information in relational databases.
Journal of the ACM, 31(4):761–791, 1984.

[Lenzerini, 2002] Maurizio Lenzerini. Data integration: a
theoretical perspective. In ACM Symposium on Principles
of Database Systems (PODS), pages 233–246, 2002.

[Libkin, 2011] Leonid Libkin. Incomplete information and
certain answers in general data models. In ACM Sympo-
sium on Principles of Database Systems (PODS), pages
59–70, 2011.

[Libkin, 2016] Leonid Libkin. Certain answers as objects
and knowledge. Artificial Intelligence, 232:1–19, 2016.

[Lipski, 1984] Witold Lipski. On relational algebra with
marked nulls. In PODS, pages 201–203, 1984.

[Minker, 1982] Jack Minker. On indefinite databases and the
closed world assumption. In CADE, pages 292–308, 1982.

[Nikolaou and Koubarakis, 2016] Charalampos Nikolaou
and Manolis Koubarakis. Querying incomplete infor-
mation in RDF with SPARQL. Artificial Intelligence,
237:138–171, 2016.

[Reiter, 1977] Raymond Reiter. On closed world data bases.
In Logic and Data Bases, pages 55–76, 1977.

[Reiter, 1980] Raymond Reiter. Equality and domain closure
in first-order databases. Journal of the ACM, 27(2):235–
249, 1980.

[Rosser and Schoenfeld, 1962] J. B. Rosser and L. Schoen-
feld. Approximate formulas for some functions of prime
numbers. Illinois J. Math., 6(2):64–94, 1962.

[Rounds, 1991] Bill Rounds. Situation-theoretic aspects of
databases. In Situation Theory and Applications, vol-
ume 26 of CSLI, pages 229–256. 1991.

[ten Cate and Dalmau, 2015] Balder ten Cate and Vı́ctor
Dalmau. The product homomorphism problem and appli-
cations. In ICDT, pages 161–176, 2015.

