
Consisteny of XML Spei�ationsMarelo Arenas1, Wenfei Fan2, and Leonid Libkin11 Department of Computer Siene, University of Toronto.fmarenas,libking�s.toronto.edu2 University of Edinburgh & Bell Laboratories.wenfei�researh.bell-labs.omAbstrat. Spei�ations of XML douments typially onsist of typinginformation (for example, a DTD), and integrity onstraints (for exam-ple, keys and foreign keys). We show that ombining the two may leadto seemingly reasonable spei�ations that are nevertheless inonsistent:there is no XML doument that both onforms to the DTD and satis-�es the onstraints. We then survey results on the omplexity of onsis-teny heking, and show that, depending on the lasses of DTDs andonstraints involved, it ranges from linear time to undeidable. Further-more, we show that for some of the most ommon lasses of spei�ationsheking onsisteny is intratable.1 IntrodutionAlthough a number of dependeny formalisms were developed for relationaldatabases, funtional and inlusion dependenies are the ones used most often.In fat, two sublasses of funtional and inlusion dependenies, namely, keysand foreign keys, are most ommonly found in pratie. Both are fundamental tooneptual database design, and are supported by the SQL standard [34℄. Theyprovide a mehanism by whih one an uniquely identify a tuple in a relationand refer to a tuple from another relation. They have proved useful in updateanomaly prevention, query optimization and index design [1, 41℄.XML (eXtensible Markup Language [11℄) has beome the prime standardfor data exhange on the Web. XML data typially originates in databases. IfXML is to represent data urrently residing in databases, it should support keysand foreign keys, whih are an essential part of the semantis of the data. Anumber of key and foreign key spei�ations have been proposed for XML, e.g.,the XML standard (Doument Type De�nition, DTD) [11℄, XML Data [31℄ andXML Shema [40℄. Keys and foreign keys for XML are important in, amongother things, query optimization [37℄, data integration [7, 8, 22, 27℄, and in datatransformations between XML and database formats [9, 18, 25, 26, 32, 38, 39℄.XML data usually omes with a DTD3 that spei�es how a doument isorganized. Thus, a spei�ation of an XML doument may onsist of both a DTD3 Throughout the hapter, by a DTD we mean its type spei�ation; we ignore itsID/IDREF onstraints sine their limitations have been well reognized [12, 24℄.



and a set of integrity onstraints, suh as keys and foreign keys. A legitimatequestion then is whether suh a spei�ation is onsistent, or meaningful: thatis, whether there exists an XML doument that both satis�es the onstraintsand onforms to the DTD.In the relational database setting, suh a question would have a trivial answer:one an write arbitrary (primary) key and foreign key spei�ations in SQL,without worrying about onsisteny. However, DTDs (and other shema spei-�ations for XML) are more omplex than relational shema: in fat, XML dou-ments are typially modeled as node-labeled trees, e.g., in XSLT [19℄, XQuery [10℄,XML Shema [40℄, XPath [20℄ and DOM [3℄. Consequently, DTDs may interatwith keys and foreign keys in a rather nontrivial way, as shown in the followingexamples.Example 1. As a simple example, onsider the DTD given below:<!ELEMENT db (foo)><!ELEMENT foo (foo)>Observe that there exists no �nite XML tree onforming to this DTD, andhene this spei�ation { that onsists only of a DTD and no onstraints { isinonsistent. �Example 2. To illustrate the interation between XML DTDs and key/foreignkey onstraints, onsider a DTD D, whih spei�es a (nonempty) olletion ofteahers:<!ELEMENT teahers (teaher+)><!ELEMENT teaher (teah, researh)><!ELEMENT teah (subjet, subjet)>It says that a teaher teahes two subjets. Here we omit the desriptions ofelements whose type is string (i.e., PCDATA in XML).Assume that eah teaher has an attribute name and eah subjet has anattribute taught by. Attributes are single-valued. That is, if an attribute l isde�ned for an element type � in a DTD, then in a doument onforming to theDTD, eah element of type � must have a unique l attribute with a string value.Consider a set of unary key and foreign key onstraints, �:teaher :name ! teaher ;subjet :taught by ! subjet ;subjet :taught by �FK teaher :name :That is, name is a key of teaher elements, taught by is a key of subjetelements and it is also a foreign key referening name of teaher elements. Morespei�ally, referring to an XML tree T , the �rst onstraint asserts that twodistint teaher nodes in T annot have the same name attribute value: the(string) value of name attribute uniquely identi�es a teaher node. It shouldbe mentioned that two notions of equality are used in the de�nition of keys: we
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Fig. 1. An XML tree onforming to Dassume string value equality when omparing name attribute values, and nodeidentity when it omes to omparing teaher elements. The seond key statesthat the taught by attribute value uniquely identi�es a subjet node in T . Thethird onstraint asserts that for any subjet node x, there is a teaher node yin T suh that the taught by attribute value of x equals the name attribute valueof y. Sine name is a key of teaher, the taught by attribute of any subjetnode refers to a unique teaher node.Obviously, there exists an XML tree onforming to D, as shown in Figure 1.However, there is no XML tree that both onforms to D and satis�es �. To seethis, let us �rst de�ne some notation. Given an XML tree T and an elementtype � , we use ext(�) to denote the set of all the nodes labeled � in T . Similarly,given an attribute l of � , we use ext(�:l) to denote the set of l attribute valuesof all � elements. Then immediately from � follows a set of dependenies:jext(teaher :name)j = jext(teaher )j;jext(subjet :taught by)j = jext(subjet)j;jext(subjet :taught by)j � jext(teaher :name)j;where j � j is the ardinality of a set. Therefore, we havejext(subjet)j � jext(teaher )j: (1)On the other hand, the DTD D requires that eah teaher must teah twosubjets. Sine no sharing of nodes is allowed in XML trees and the olletionof teaher elements is nonempty, from D follows:1 < 2 � jext(teaher )j = jext(subjet)j: (2)Thus jext(teaher )j < jext(subjet)j. Obviously, (1) and (2) ontradit eah otherand as an immediate result, there exists no XML doument that both satis�es



� and onforms to D. In partiular, the XML tree in Figure 1 violates the keysubjet :taught by ! subjet . �This example demonstrates that a DTD may impose dependenies on the ar-dinalities of ertain sets of objets in XML trees. These ardinality onstraintsinterat with keys and foreign keys. More spei�ally, keys and foreign keysalso enfore ardinality onstraints that interat with those imposed by DTD.This makes the onsisteny analysis of keys and foreign keys for XML far moreintriguing than its relational ounterpart.The onstraints in this example are fairly simple: there is an immediate anal-ogy between suh XML onstraints and relational keys and foreign keys. Therehave been a number of proposals for supporting more powerful keys and foreignkeys for XML (e.g., [11, 12, 40, 31℄). Not surprisingly, the interation betweenDTDs and those ompliated XML onstraints is more involved.In light of this we are interested in the following family of the onsisteny(or satis�ability) problems, where C ranges over lasses of integrity onstraints:PROBLEM : SAT(C).INPUT : A DTD D, a set � of C-onstraints.QUESTION : Is there an XML doument that onforms toD and satis�es �?In other words, we want to validate XML spei�ations statially, at ompile-time. The main reason is twofold: �rst, omplex interations between DTDsand onstraints are likely to result in inonsistent spei�ations, and seond, analternative dynami approah to validation (simply hek a doument to see ifit onforms to the DTD and satis�es the onstraints) would not tell us whetherrepeated failures are due to a bad spei�ation, or problems with the douments.This hapter presents the omplexity of the onsisteny analysis of XMLspei�ations. We onsider DTDs and a variety of XML keys and foreign keysommonly enountered in real-life XML spei�ations.The next setion gives a brief introdution to XML DTDs and XML dou-ments. It is followed by the de�nitions of two basi forms of XML onstraints,namely, absolute onstraints that hold in the entire doument, and relative on-straints that only hold in a part of the doument. Setion 4 is devoted to theonsisteny analyses of XML spei�ations with absolute onstraints, and Se-tion 5 onsiders relative onstraints. Extensions of the basi XML onstraintsby means of path expressions (regular expressions and XPath [20℄), suh asonstraints proposed by XML Shema [40℄, are treated in Setion 6. Finally,Setion 7 identi�es open problems for further study, and provides referenes tothe original papers.2 DTDs and XML TreesIn this setion, we present a formalism of XML DTDs [11℄ and review the XMLtree model.



Doument Type De�nition. We formalize the notion of DTDs as follows(f. [11, 15, 35, 23℄).De�nition 1. A DTD (Doument Type De�nition) is de�ned to be D = (E, A,P , R, r), where:{ E is a �nite set of element types;{ A is a �nite set of attributes, disjoint from E;{ for eah � 2 E, P (�) is a regular expression �, alled the element typede�nition of � : � ::= S j � 0 j � j �j� j �; � j ��;where S denotes the string type, � 0 2 E, � is the empty word, and \j", \;"and \�" denote union, onatenation, and the Kleene losure, respetively.In this hapter we also use the following shorthands: �+ for (�; ��) and �?for (�j�). We refer to the set of E types appearing in P (�) as the alphabetof P (�).{ for eah � 2 E, R(�) is a set of attributes in A;{ r 2 E and is alled the element type of the root. �We normally denote element types by � and attributes by l, and assume that rdoes not appear in P (�) for any � 2 E. We also assume that eah � in E n frgis onneted to r, i.e., either � appears in P (r), or it appears in P (� 0) for some� 0 that is onneted to r.Example 3. Let us onsider the DTD D given in Example 2. In our formalism,D an be represented as (E; A; P; R; r), where E = fteahers , teaher , teah ,researh , subjetg, A = fname, taught byg, r = teahers and P , R are as follows:P (teahers) = teaher+ R(teahers) = ;P (teaher ) = teah , researh R(teaher) = fnamegP (teah) = subjet , subjet R(teah) = ;P (subjet) = S R(subjet) = ftaught bygP (researh) = S R(researh) = ; �XML trees. An XML doument is typially modeled as a node-labeled tree.Below we desribe valid XML douments w.r.t. a DTD, along the same lines asXQuery [10℄, XML Shema [40℄ and DOM [3℄.De�nition 2. Let D = (E; A; P; R; r) be a DTD. An XML tree T onformingto D, written T j= D, is de�ned to be (V; lab; ele; att; val; root), where{ V is a �nite set of nodes;{ lab is a funtion that maps eah node in V to a label in E [A[ fSg; a nodev 2 V is alled an element of type � if lab(v) = � and � 2 E, an attributeif lab(v) 2 A, and a text node if lab(v) = S;



{ ele is a funtion that for any � 2 E, maps eah element v of type � to a(possibly empty) list [v1; :::; vn℄ of elements and text nodes in V suh thatlab(v1) : : : lab(vn) is in the regular language de�ned by P (�);{ att is a partial funtion from V �A to V suh that for any v 2 V and l 2 A,att(v; l) is de�ned i� lab(v) = � , � 2 E and l 2 R(�);{ val is a partial funtion from V to string values suh that for any nodev 2 V , val(v) is de�ned i� lab(v) = S or lab(v) 2 A;{ root is the root of T : root 2 V and lab(root) = r.For any node v 2 V , if ele(v) is de�ned, then the nodes v0 in ele(v) are alled thesubelements of v. For any l 2 A, if att(v; l) = v0, then v0 is alled an attributeof v. In either ase we say that there is a parent-hild edge from v to v0. Thesubelements and attributes of v are alled its hildren. The graph de�ned by theparent-hild relation is required to be a rooted tree. �Intuitively, V is the set of nodes of the tree T . The mapping lab labels everynode of V with a symbol (tag) from E [A[ fSg. Text nodes and attributes areleaves. For an element x of type � , the funtions ele and att de�ne the hildrenof x, whih are partitioned into subelements and attributes aording to P (�)and R(�) in the DTD D. The subelements of x are ordered and their labelssatisfy the regular expression P (�). In ontrast, its attributes are unordered andare identi�ed by their labels (names). The funtion val assigns string valuesto attributes and text nodes. We onsider single-valued attributes. That is, ifl 2 R(�) then every element of type � has a unique l attribute with a stringvalue. Sine T has a tree struture, sharing of nodes is not allowed in T .For example, Figure 1 depits an XML tree valid w.r.t. the DTD given inExample 2.Our model is simpler than the models of XQuery [10℄ and XML Shema [40℄as DTDs support only one basi type (PCDATA or string) and do not have om-plex type onstruts. Furthermore, we do not have nodes representing names-paes, proessing instrutions and referenes. These simpli�ations allow us toonentrate on the essene of the DTD/onstraint interation. It should furtherbe notied that they do not a�et the lower bounds results in the hapter. It isalso worth mentioning that we onsider ordered XML trees in this paper, butremoval of ordering does not a�et the semantis of XML onstraints and theomplexity of their onsisteny and impliation analyses.Notation. In this hapter, we also use the following notation. Referring to anXML tree T , if x is a � element in T and l is an attribute in R(�), then x:l denotesthe l attribute value of x, i.e., x:l = val(att(x; l)). If X is a list [l1; : : : ; ln℄ ofattributes in R(�), then x[X ℄ = [x:l1; : : : ; x:ln℄. We write jSj for the ardinalityof a set S.Given a DTD D = (E; A; P; R; r) and element types �; � 0 2 E, a string�1:�2: � � � :�n over E is a path in D from � to � 0 if �1 = � , �n = � 0 and foreah i 2 [2; n℄, �i is a symbol in the alphabet of P (�i�1). Moreover, we de�nePaths(D) = fp j there is � 2 E suh that p is a path in D from r to �g.We say that a DTD is non-reursive if Paths(D) is �nite, and reursiveotherwise. We also say that D is a no-star DTD if the Kleene star does not our



in any regular expression P (�) (note that this is a stronger restrition than being�-free, whih is a well-aepted onept with a standard de�nition [42℄: a regularexpression without the Kleene star yields a �nite language, while the languageof a �-free regular expression may still be in�nite as it allows boolean operatorsinluding omplement).3 Integrity Constraints for XMLWe onsider two forms of onstraints for XML: absolute onstraints that hold onthe entire doument, denoted byAC, and relative onstraints that hold on ertainsub-douments, denoted by RC. Below we de�ne both lasses of onstraints. Avariation of AC using regular expressions will be de�ned in Setion 6.1.3.1 Absolute keys and foreign keysA lass of absolute keys and foreign keys, denoted by AC�;�K ;FK (we shall ex-plain the notation shortly), is de�ned for element types as follows. An AC�;�K ;FKonstraint ' over a DTD D = (E; A; P; R; r) has one of the following forms:{ Key : � [X ℄! � , where � 2 E and X is a nonempty set of attributes in R(�).An XML tree T satis�es this onstraint, denoted by T j= � [X ℄! � , if8x; y 2 ext(�) (x[X ℄ = y[X ℄! x = y):{ Foreign key : �1[X ℄ �FK �2[Y ℄, where �1; �2 2 E, X and Y are nonempty listsof attributes in R(�1) and R(�2), respetively, and jX j = jY j. This onstraintis satis�ed by a tree T , denoted by T j= �1[X ℄ �FK �2[Y ℄, if T j= �2[Y ℄! �2,and in addition 8x 2 ext(�1) 9 y 2 ext(�2) (x[X ℄ = y[Y ℄):That is, � [X ℄ ! � says that the X-attribute values of a � element uniquelyidentify the element in ext(�), and �1[X ℄ �FK �2[Y ℄ says that the Y -attributevalues of a �2 element uniquely identify the element in ext(�2) and the list ofX-attribute values of every �1 node in T must math the list of Y -attributevalues of some �2 node in T . We use two notions of equality to de�ne keys: valueequality is assumed when omparing attributes, and node identity is used whenomparing elements. We shall use the same symbol `=' for both, as it will neverlead to ambiguity. It is worth remarking that keys and foreign keys are de�nedin terms of XML attributes, whih are of the string type and an not be nullvalues.Constraints of AC�;�K ;FK are generally referred to asmulti-attribute onstraintsas they may be de�ned with multiple attributes. An AC�;�K ;FK onstraint is said tobe unary if it is de�ned in terms of a single attribute; that is, jX j = jY j = 1 in theabove de�nition. In that ase, we write �:l ! � for unary keys, and �1:l1 �FK�2:l2 for unary foreign keys. For example, the set of onstraints onsidered inExample 2 are unary. As in relational databases, we also onsider primary keys:for eah element type, at most one key an be de�ned.



Example 4. To illustrate keys and foreign keys of AC�;�K ;FK , let us onsider aDTD D1 = (E1, A1, P1, R1, r1), where E1 = fshool , ourse , student , subjet ,enroll , nameg, A1 = fstudent id , ourse no, deptg, r1 = shool and P1, R1 areas follows:P1(shool ) = ourse�, student� R1(shool ) = ;P1(ourse) = subjet , enroll� R1(ourse) = fdept , ourse nogP1(student) = name R1(student) = fstudent idgP1(subjet) = S R1(subjet) = ;P1(enroll ) = � R1(enroll ) = fstudent idgP1(name) = S R1(name) = ;Typial AC�;�K ;FK onstraints over D1 inlude:student :student id ! student ;ourse[dept ; ourse no℄ ! ourse;enroll :student id �FK student :student id ;The �rst two onstraints are keys in AC�;�K ;FK and the last onstraint is a foreignkey. The �rst and the last onstraint are unary. �We shall use the following notation for sublasses of AC�;�K ;FK : subsripts K andFK denote keys and foreign keys, respetively. When the primary key restritionis imposed, we use subsript PK instead of K. The supersript `�' denotes multi-attribute, and `1' means unary. The �rst of these supersripts refers to keys, andthe seond to foreign keys.In this hapter we shall be dealing with the following sublasses of AC�;�K ;FK :{ AC�;1K ;FK is the lass of multi-attribute keys and unary foreign keys;{ AC�;1PK ;FK is the lass of primary multi-attribute keys and unary foreign keys;{ AC1;1K ;FK is the lass of unary keys and unary foreign keys;{ AC1;1PK ;FK is the lass of primary unary keys and unary foreign keys;{ AC�K is the lass of multi-attribute keys.Sine every foreign key impliitly ontains a key, the lass AC1;�K ;FK of unary keysand multi-attributes foreign keys is equal to AC�;�K ;FK . Thus, we do not onsiderAC1;�K ;FK in this hapter.3.2 Relative keys and foreign keysSine XML douments are hierarhially strutured, one may be interested inthe entire doument as well as in its sub-douments. The latter gives rise torelative integrity onstraints [12, 13℄, that only hold on ertain sub-douments.Below we de�ne relative keys and foreign keys. Reall that we use RC to denotevarious lasses of suh onstraints. We use the notation x � y when x and y aretwo nodes in an XML tree and y is a desendant of x.
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Fig. 2. An XML doument storing information about ountries and their administra-tive subdivisions.A lass of relative keys and foreign keys, denoted by RC�;�K ;FK , is de�ned asfollows. An RC�;�K ;FK onstraint ' over a DTD D = (E; A; P; R; r) has one ofthe following forms:{ Relative key : �(�1[X ℄ ! �1), where �; �1 2 E and X is a nonempty set ofattributes in R(�1). It says that relative to eah node x of element type � ,the set of attributes X is a key for all the �1 nodes that are desendants ofx. That is, if a tree T onforms to D, then T j= ' if8x 2 ext(�) 8 y; z 2 ext(�1) �(x � y) ^ (x � z) ^ y[X ℄ = z[X ℄! y = z�:{ Relative foreign key : �(�1[X ℄ �FK �2[Y ℄), where �; �1; �2 2 E, X and Y arenonempty lists of attributes in R(�1) and R(�2), respetively, and jX j = jY j.It indiates that for eah x in ext(�), X is a foreign key of desendants of xof type �1 that referenes a key Y of �2-desendants of x. That is, T satis�es', denoted by T j= �(�1[X ℄ �FK �2[Y ℄), if T j= �(�2[Y ℄! �2) and T satis�es8 x 2 ext(�) 8 y 2 ext(�1) �(x � y)!9 z 2 ext(�2) ((x � z) ^ y[X ℄ = z[Y ℄)�:Here � is alled the ontext type of '. Note that absolute onstraints are a speialase of relative onstraints when � = r: i.e., r(� [X ℄ ! �) is the usual absolutekey. As in the ase of absolute onstraints, a relative onstraint is said to beunary if it is de�ned in terms of a single attribute; that is, jX j = jY j = 1 in theabove de�nition. In that ase, we write �(�1:l ! �) for relative unary keys, and�(�1:l1 �FK �2:l2) for relative unary foreign keys.Example 5. Let us onsider an XML doument that for eah ountry lists itsadministrative subdivisions (e.g., into provines or states), as well as apitals ofprovines. A DTD is given below and an XML doument onforming to it isdepited in Figure 2.



<!ELEMENT db (ountry+)><!ELEMENT ountry (provine+, apital)><!ELEMENT provine (apital)>Eah ountry has a nonempty sequene of provines and a apital, and for eahprovine we speify its apital. Eah ountry and provine has an attribute name.Now suppose we want to de�ne keys for ountries and provines. One anstate that ountry name is a key for ountry elements. It is also tempting tosay that name is a key for provine, but this may not be the ase. The examplein Figure 2 learly shows that. Whih Limburg one is interested in probablydepends on whether one's interests are in database theory, or in the history ofthe European Union. To overome this problem, we de�ne name to be a key forprovine relative to a ountry; indeed, it is extremely unlikely that two provinesof the same ountry would have the same name. Thus, our onstraints are:ountry:name! ountry;ountry(provine:name! provine):The �rst onstraint is like those we have enountered before: it is an absolutekey, whih applies to the entire doument. The seond one is a relative onstraintwhih is spei�ed for sub-douments rooted at ountry elements. It asserts thatfor eah ountry, name is a key of provine elements. Note that relative on-straints are somewhat related to the notion of keys for weak entities in relationaldatabases (f. [41℄). �Following the notation for AC, we denote sublasses of RC as follows:{ RC�;1K ;FK : the lass of relative multi-attribute keys and unary foreign keys;{ RC�;1PK ;FK : the lass of relative primary multi-attribute keys and unary for-eign keys;{ RC1;1K ;FK : the lass of relative unary keys and unary foreign keys;{ RC1;1PK ;FK : the lass of relative primary unary keys and unary foreign keys;{ RC�K : the lass of relative multi-attribute keys. indexConstraints!relativeRC�;�K ;FK !multi-attribute keys RC�KAs in the ase of absolute onstraints, every relative foreign key impliitly on-tains a relative key and, hene, the lass RC1;�K ;FK of unary keys and multi-attributes foreign keys is equal to RC�;�K ;FK . Thus, there is no need to onsiderRC1;�K ;FK .4 Consisteny of Absolute Keys and Foreign KeysIn this setion we study the omplexity of the onsisteny problem for absolutekeys and foreign keys. We show that, in general, this problem is undeidable,and we identify several speial ases of the problem that are deidable.



4.1 Undeidability of onsistenyThe following result shows that in general it is not possible to verify statiallywhether an XML spei�ation is onsistent.Theorem 1. SAT(AC�;�K ;FK ) is undeidable. �This theorem was proved in [23℄ by showing that the impliation problem as-soiated with keys and foreign keys in relational databases is undeidable, andthen reduing (the omplement of) the impliation problem to the onsistenyproblem for AC�;�K ;FK onstraints.Given this negative result, it is desirable to �nd some restritions on AC�;�K ;FKthat lead to deidable ases. We identify several of these lasses in the nextsubsetions.4.2 Multi-attribute keysThe reason for the undeidability of SAT(AC�;�K ;FK ) is that the impliation prob-lem for funtional and inlusion dependenies in relational databases an beredued to it [23℄. However, this impliation problem is known to be deidable{ in fat, in ubi time { for single-attribute inlusion dependenies [21℄, thusgiving us hope to get deidability for multi-attribute keys and unary foreignkeys.While the deidability of the onsisteny problem for AC�;1K ;FK is still an openproblem, a losely-related problem, the onsisteny problem for multi-attributeprimary keys and unary foreign keys, SAT(AC�;1PK ;FK ), has shown to be deidable[4℄. Reall that a set � of AC�;1K ;FK onstraints is said to be primary if foreah element type � , there is at most one key in � de�ned for � elements.The deidability of SAT(AC�;1PK ;FK ) is shown by proving that, omplexity-wise,the problem is equivalent to a ertain extension of integer linear programmingstudied in [33℄:PROBLEM : PDE (Prequadrati Diophantine Equations).INPUT : An integer n �m matrix A, a vetor b 2 Zn, and aset E � f1; : : : ;mg � f1; : : : ;mg � f1; : : : ;mg.QUESTION : Is there a vetor x 2 Nm suh that Ax � b andxi � xj � xk for all (i; j; k) 2 E?Note that for E = ;, this is exatly the integer linear programming problem [36℄.Thus, PDE an be thought of as integer linear programming extended withinequalities of the form x � y � z among variables. It is therefore NP-hard, and[33℄ proved an NEXPTIME upper bound for PDE. The exat omplexity of theproblem remains unknown.Reall that two problems P1 and P2 are polynomially equivalent if thereare PTIME redutions from P1 to P2 and vie versa. It is shown in [4℄ thatSAT(AC�;1PK ;FK ) and PDE are polynomially equivalent. The following theorem isan immediate onsequene of this result.



Theorem 2. SAT(AC�;1PK ;FK ) is NP-hard, and an be solved in NEXPTIME. �Obviously the exat omplexity of SAT(AC�;1PK ;FK ) annot be obtained with-out resolving the orresponding question for PDE, whih appears to be quitehard [33℄.The result of Theorem 2 an be generalized to disjoint AC�;1K ;FK onstraints:that is, a set � of AC�;1K ;FK onstraints in whih for any two keys � [X ℄! � and� [Y ℄! � (on the same element type �) in �, X \ Y = ;. The proof of Theorem2 applies almost verbatim to show the following.Corollary 1. The restrition of SAT(AC�;1K ;FK ) to disjoint onstraints is NP-hard, and an be solved in NEXPTIME. �4.3 Unary keys and foreign keysOne important sublass of AC�;�K ;FK is AC1;1K ;FK , the lass of unary keys andunary foreign keys. A ursory examination of existing XML spei�ations revealsthat most keys and foreign keys are single-attribute onstraints, i.e., unary. Inpartiular, in XML DTDs, one an only speify unary onstraints with ID andIDREF attributes.The exat omplexity of SAT(AC1;1K ;FK ) was established in [23℄ by showingthat this problem is polynomially equivalent to linear integer programming [36℄:PROBLEM : Linear Integer Programming.INPUT : An integer n�m matrix A and vetor b 2 Zn.QUESTION : Is there a vetor x 2 Nm suh that Ax � b?Given that linear integer programming is known to be NP-omplete, the follow-ing theorem is an immediate onsequene of the polynomial equivalene of thetwo problems.Theorem 3. SAT(AC1;1K ;FK ) is NP-omplete. �Sine all the avors of the onsisteny problem presented so far are intratable,we next want to �nd suitable restritions that admit polynomial-time algorithms.For instane, one might think that the primary key restrition would simplifythe onsisteny analysis of AC1;1K ;FK onstraints. Unfortunately, as shown in [23℄,this is not the ase.Theorem 4. SAT(AC1;1PK ;FK ) remains NP-omplete. �Amore natural way of putting restritions appears to be by speifying what kindsof regular expressions are allowed in the DTDs. However, the hardness result anbe proved even for DTDs with neither reursion nor the Kleene star [23℄. In therest of this setion, we show that the hardness result for SAT(AC1;1K ;FK ) is veryrobust, and withstands severe restritions on onstraints and DTDs: namely, abound on the total number of onstraints, and a bound on the depth of the DTD.



However, imposing both of these bounds simultaneously makes SAT(AC1;1K ;FK )tratable.Reall that for a non-reursive DTD D, the set Paths(D) is �nite. We de�nethe depth of a non-reursive DTD D as maxp2Paths(D) length(p), denoted byDepth(D). By a depth-d SAT(AC1;1K ;FK ) we mean the restrition of SAT(AC1;1K ;FK )to pairs (D;�) with Depth(D) � d. By a k-onstraint SAT(AC1;1K ;FK ) we meanthe restrition of the onsisteny problem to pairs (D;�) where j�j � k. Ak-onstraint depth-d SAT(AC1;1K ;FK ) is a restrition to (D;�) with j�j � k andDepth(D) � d. The following theorem was proved in [4℄.Theorem 5. For non-reursive no-star DTDs:a) both k-onstraint SAT(AC1;1K ;FK ) and depth-d SAT(AC1;1K ;FK ) are NP-hard, fork � 2 and d � 2.b) for any �xed k; d > 0, the k-onstraint depth-d SAT(AC1;1K ;FK ) is solvable inNLOGSPACE. �4.4 Linear time deidable asesWhile the general onsisteny problem is undeidable, it is possible to identifysome deidable ases of low omplexity. The �rst one is heking whether a DTDhas a valid XML tree. This is a speial ase of the onsisteny problem, namely,when the given set of AC�;�K ;FK onstraints is empty. A more interesting speialase involves keys only.It was shown in [23℄ that the problem of verifying whether a given DTDhas a valid XML tree an be redued to the emptiness problem for a ontextfree grammar. Given that this redution an be omputed in linear time andthe emptiness problem for a ontext free grammar an be solved in linear time(f. [30℄), the problem of heking whether a DTD has a valid XML tree anbe solved in linear time. It was also shown in [23℄ that given any DTD D andany set � of keys in AC�K over D, � an be satis�ed by an XML tree validw.r.t. D if and only if D has a valid XML tree. Thus, the following theorem isa onsequene of our previous disussion.Theorem 6. The following problems are deidable in linear time:a) Given any DTD D, whether there exists an XML tree valid w.r.t. D.b) SAT(AC�K). �4.5 The impliation problemAnother lassial problem, whih is losely related to the onsisteny problem,is the impliation problem for a lass of onstraints C, denoted by Impl(C). Here,we onsider it in the presene of DTDs. We write (D;�) ` � if for every XMLtree T , T j= D and T j= � imply T j= �. The impliation problem Impl(C) is todetermine, given any DTD D and any set � [ f�g of C onstraints, whether ornot (D;�) ` �.



The simple result below gives us lower bounds for the omplexity of impli-ation, if we know the omplexity of the onsisteny problem. Reall that for aomplexity lass K, oK stands for f �P j P 2 Kg.Proposition 1. For any lass C of XML onstraints that ontains AC1;1PK ;FK , ifSAT(C) is K-hard for some omplexity lass K that ontains DLOGSPACE, thenImpl(C) is oK-hard. �Along the same lines as Setion 4.3 one an de�ne k-onstraint Impl(AC1;1K ;FK )and depth-d Impl(AC1;1K ;FK ). Proposition 1 in fat remains intat under the depth-d and the k-onstraint restritions for d � 2 and k � 2. It has also beenshown [23℄ that Impl(AC�K) is deidable in linear time. From these and the lower-bounds established for the onsisteny problem, we derive:Corollary 2. For the impliation problem for XML onstraints,{ Impl(AC�;�K ;FK ) is undeidable;{ both k-onstraint Impl(AC1;1K ;FK ) and depth-d Impl(AC1;1K ;FK ) are oNP-hardfor d � 2 and k � 2, and so is Impl(AC�;1PK ;FK );{ Impl(AC�;1PK ;FK ) is oNP-hard, and so are Impl(AC�;1K ;FK ) (and its restritionto disjoint onstraints) and Impl(AC1;1PK ;FK );{ Impl(AC�K) is in linear time. �4.6 SummaryFigure 3 shows a summary of the lower and upper bounds for the onsis-teny problem for absolute keys and foreign keys. Note that in many aseswe have mathing lower and upper bounds. Also notie that for k-onstraintSAT(AC1;1K ;FK ), depth-d SAT(AC1;1K ;FK ) and k-onstraint depth-d SAT(AC1;1K ;FK )we are only onsidering non-reursive no-star DTDs.5 Consisteny of Relative Keys and Foreign KeysIn this setion we study the onsisteny problem for relative keys and foreignkeys. Relative onstraints appear to be quite useful for apturing informationabout (hierarhial) XML douments that annot possibly be spei�ed by abso-lute onstraints. However, it turns out that the omplexity of their onsistenyanalysis is, in general, higher than the omplexity of the onsisteny problemfor absolute onstraints. In partiular, we show that even for relative unary on-straints the onsisteny problem is undeidable. In light of this negative result,we also identify some speial ases of this problem that are deidable.
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NP-hard, in NEXPTIMENP-hard

Fig. 3. A summary of the known omplexity bounds for the onsisteny problem forabsolute keys and foreign keys.5.1 Undeidability of onsisteny analysisGiven that RC�;�K ;FK ontains AC�;�K ;FK as a proper sublass, from Theorem 1 weobtain the following orollary.Corollary 3. SAT(RC�;�K ;FK ) is undeidable. �Sine SAT(AC�;1PK ;FK ), the onsisteny problem assoiated with absolute multi-attribute keys and unary foreign keys, is deidable, one would be tempted tothink that SAT(RC�;1PK ;FK ), the onsisteny problem for relative multi-attributekeys and unary foreign keys, is also deidable. Even more, given that SAT(AC1;1K ;FK )is NP-omplete, one would be tempted to believe that SAT(RC1;1K ;FK ), the on-sisteny problem for relative unary keys and foreign keys, must be deidable.However, it was shown in [4℄ that SAT(RC1;1K ;FK ) is not deidable, even if theprimary key restrition is imposed.Theorem 7. SAT(RC1;1PK ;FK ) is undeidable. �This undeidability was established by redution from the Hilbert's 10th problem[29℄, a well known undeidable problem.Corollary 4. SAT(RC�;1K ;FK ), SAT(RC�;1PK ;FK ) and SAT(RC1;1K ;FK ) are undeid-able. �
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library
(a) A hierarhial struture (b) A non-hierarhial strutureFig. 4. Two shemas for storing data in a library.5.2 Deidable hierarhial onstraintsOften, relative onstraints for XML douments have a hierarhial struture.For example, to store information about books we an use the struture givenin Figure 4 (a), with four relative onstraints:library(book :isbn ! book ); (3)book(author :name ! author); (4)book(hapter :number ! hapter ); (5)hapter (setion:title ! setion): (6)(3) says that isbn is a key for books, (4) says that two distint authors of thesame book annot have the same name and (5) says that two distint haptersof the same book annot have the same number. Constraint (6) asserts that twodistint setions of the same hapter annot have the same title.This spei�ation has a hierarhial struture: there are three ontext types(library, book, and hapter), and if a onstraint restrits one of them, then it doesnot impose a restrition on the others. For instane, (3) imposes a restritionon the hildren of library, but it does not restrit the hildren of book. To verifyif there is an XML doument onforming to this shema, we an separatelysolve three onsisteny problems for absolute onstraints: one for the subshemaontaining the element types library, book and isbn; another for book, author,name, hapter and number; and the last one for hapter, setion, and title.On the other hand, the example in Figure 4 (b) does not have a hierarhialstruture. In this ase, author info stores information about the authors of books,and, therefore, the following relative foreign key is inluded:library(author :name �FK author info:name):



In this ase, nodes of type author are restrited from ontext types library andbook. Thus, we annot separate the onsisteny problems for nodes of typeslibrary and book.The notion of hierarhial relative onstraints was introdued in [4℄. Belowwe introdue this notion via the notion of hierarhial DTDs and sets of rela-tive onstraints. Then, we show that the onsisteny problem for these kinds ofDTDs and sets of onstraints is deidable and show that under some additionalrestritions, it is PSPACE-omplete.Let D = (E; A; P; R; r) be a non-reursive DTD and � be a set of RC1;1K ;FK -onstraints over D. We say that � 2 E is a restrited type if � = r or � is theontext type of some �-onstraint. A restrited node in an XML tree is a nodewhose type is a restrited type. The sope of a restrited node x is the subtreerooted at x onsisting of: (1) all element nodes y that are reahable from x byfollowing some path �1:�2: � � � :�n (n � 2) suh that for every i 2 [2; n � 1℄, �iis not a restrited type, and (2) all the attributes of the nodes mentioned in(1). For instane, a node of type book in the example shown in Figure 4 (a) isa restrited node and its sope inludes a node of type book and some nodes oftypes author, name, hapter and number.Given two restrited types �1 and �2, we say that �1, �2 are a oniting pairin (D;�) if the sopes of the nodes of types �1 and �2 are related by a foreignkey. Formally, �1; �2 2 E are a oniting pair in (D;�) i� �1 6= �2 and (1) thereis a path in D from �1 to �2 and �2 is the ontext type of some onstraint in �;and (2) there is �3 2 E suh that �2 6= �3 and there exists a path in D from �2 to�3 and for some �4 2 E, either �1(�3:l3 �FK �4:l4) or �1(�4:l4 �FK �3:l3) is in �.As an example, library and book in Figure 4 (b) are a oniting pair, whereasthey are not in Figure 4 (a).If a spei�ation (D;�) does not ontain oniting pairs, then (D;�) is saidto be hierarhial [4℄. We de�ne the languageHRC1;1K ;FK as f(D;�) j D is a non-reursive DTD, � is a set of RC1;1K ;FK -onstraints and (D;�) is hierarhialg. Inthis ase, the input of SAT(HRC1;1K ;FK ) is (D;�) 2 HRC1;1K ;FK , and the problemis to determine whether there is an XML tree onforming to D and satisfying�. It was shown in [4℄ that if a HRC1;1K ;FK -spei�ation is onsistent, then atree onforming to D and satisfying � an be onstruted hierarhially, neverlooking at more than the sope of a single restrited node. More preisely, it wasshown in[4℄ that:Theorem 8. SAT(HRC1;1K ;FK ) is PSPACE-hard. The problem an be solved inEXPSPACE. �The exponential spae upper bound an be lowered by imposing some furtheronditions on the \geometry" of onstraints involved: namely, that for any inlu-sion onstraint �(�1:l1 �FK �2:l2), �1:l1 and �2:l2 are not too far from eah other.Formally, let D be a non-reursive DTD and � a set of RC1;1K ;FK -onstraints overD suh that (D;�) is hierarhial. Given d > 1, (D;�) is d-loal if, whenever



�1; �2 are restrited types, �2 is a desendant of �1 and no other node on a pathfrom �1 to �2 is a ontext type of a �-onstraint, then the length of that path isat most d.Let d-HRC1;1K ;FK be the language f(D;�) j (D;�) 2 HRC1;1K ;FK and is d-loalg. It was shown in [4℄ that:Theorem 9. For any d > 1, SAT(d-HRC1;1K ;FK ) is PSPACE-omplete. �5.3 A linear time deidable aseAs in the ase of absolute keys, it an be shown that given any DTD D and anyset � of keys in RC�K over D, � an be satis�ed by an XML tree valid w.r.t. Dif and only if D has a valid XML tree. Thus, the following theorem is analogousto Theorem 6.Theorem 10. SAT(RC�K) an be solved in linear time. �For impliation of relative onstraints, note that RC1;1PK ;FK and HRC1;1K ;FKontainAC1;1PK ;FK . Thus from Proposition 1 and the lower-bounds for onsistenyanalyses presented above. we derive:Corollary 5. For impliation of relative onstraints,{ Impl(RC1;1PK ;FK ) is undeidable, and so are Impl(RC�;1K ;FK ), Impl(RC�;1PK ;FK ),Impl(RC1;1K ;FK ) and Impl(AC�;1PK ;FK );{ Impl(HRC1;1K ;FK ) is PSPACE-hard. �5.4 SummaryFigure 5 shows a summary of the omplexity for the onsisteny problem forrelative keys and foreign keys.6 Consisteny of Path-Expression ConstraintsAll the XML onstraints that we have seen so far are de�ned for element typesand in terms of attributes. As XML data is hierarhially strutured, it is om-mon to �nd path expressions in query languages for XML (e.g., XQuery [10℄,XSLT [19℄). For the same reason, one is often interested in onstraints spei�edwith path expressions, either regular expressions [12, 13℄ or XPath [20℄ expres-sions [40℄. In this setion, we onsider two lasses of XML onstraints de�nedwith path expressions, namely, an extension of absolute onstraints with regularexpressions, and the lass of onstraints proposed by XML Shema [40℄ that isan extension of absolute onstraints with XPath expressions.



SAT(RC1;1K ;FK )SAT(RC�;1K ;FK ) SAT(RC�;1PK ;FK )SAT(RC�K)
SAT(RC�;�K ;FK )
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UndeidableUndeidableUndeidable UndeidableLINEAR TIME UndeidablePSPACE-hard, in EXPSPACEPSPACE-ompleteFig. 5. A summary of the omplexity bounds for the onsisteny problem for relativekeys and foreign keys.6.1 Consisteny of regular expression onstraintsTo apture the hierarhial nature of XML data, we extend AC�;�K ;FK to de�neabsolute onstraints on a olletion of elements identi�ed by a regular pathexpression.We de�ne a regular (path) expression over a DTD D = (E; A; P; R; r) asfollows: � ::= � j � j j �:� j � [ � j ��;where � denotes the empty word, � is an element type in E, ` ' stands for wildardthat mathes any symbol in E and `.', `[' and `�' denote onatenation, unionand Kleene losure, respetively. We assume that � is of the form r:�0 where �0does not inlude r; thus, ` ' is just a shorthand for E n frg. A regular expressionde�nes a language over the alphabet E, whih will be denoted by � as well.Reall that a path in a DTD is a list of E symbols, that is, a string in E�. Anypair of nodes x; y in an XML tree T with y a desendant of x uniquely determinesthe path, denoted by �(x; y), from x to y. We say that y is reahable from x byfollowing a regular expression � over D, denoted by T j= �(x; y), i� �(x; y) 2 �.For any �xed T , let nodes(�) stand for the set of nodes reahable from the rootby following the regular expression �: nodes(�) = fy j T j= �(root; y)g. Notethat for any element type � 2 E, nodes(r: �:�) = ext(�).



We now de�ne the lass ACregK ;FK of XML keys and foreign keys with reg-ular expressions. Here we only onsider unary onstraints. An XML ACregK ;FKonstraint ' over a DTD D = (E; A; P; R; r) has one of the following forms:{ Key : �:�:l ! �:� , where � 2 E, l 2 R(�) and � is a regular expression overD. An XML tree T satis�es this onstraint, denoted by T j= �:�:l ! �:� , if8x; y 2 nodes(�:�) (x:l = y:l! x = y):{ Foreign key : �1:�1:l1 �FK �2:�2:l2, where �1; �2 2 E, l1 2 R(�1), l2 2 R(�2)and �1; �2 are regular expressions over D. An XML tree T satis�es thisonstraint, denoted by T j= �1:�1:l1 �FK �2:�2:l2, if T j= �2:�2:l2 ! �2:�2and 8x 2 nodes(�1:�1) 9 y 2 nodes(�2:�2) (x:l1 = y:l2):In other words, an ACregK ;FK onstraint �:�:l ! �:� de�nes a key for the setnodes(�:�) of elements, i.e., all the elements reahable via the regular path ex-pression �:� ; similarly, an ACregK ;FK onstraint of the form �1:�1:l1 �FK �2:�2:l2de�nes a foreign key for the set nodes(�1:�1) of elements that referenes elementsin the set nodes(�2:�2).Example 6. Consider the XML doument depited in Figure 6, whih onformsto the following DTD for shools:<!ELEMENT r (students, ourses, faulty, labs)><!ELEMENT students (student+)><!ELEMENT ourses (s340, s108, s434)><!ELEMENT faulty (prof+)><!ELEMENT labs (dbLab, pLab)><!ELEMENT student (reord)> /* similarly for prof<!ELEMENT s434 (takenBy+)> /* similarly for s340, s108<!ELEMENT dbLab (a+)> /* similarly for pLabHere we omit the desriptions of elements whose type is string (PCDATA). As-sume that eah reord element has an attribute id, eah takenBy has an attributesid (for student id), and eah a (aount) has an attribute num. One may im-pose the following onstraints over the DTD of that doument:r: �:(student [ prof ):reord :id ! r: �:(student [ prof ):reord ;r: �:s434 :takenBy :sid �FK r: �:student :reord :id ;r: �:dbLab:a:num �FK r: �:s434 :takenBy :sid :The �rst onstraint says that id is a key for all reords of students and professors.The other onstraints speify foreign keys, whih assert that s434 an only betaken by students, and only students who are taking s434 an have an aountin the database lab. �
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Fig. 6. An XML doument.Both an upper and a lower bound for SAT(ACregK ;FK ) were established in[4℄. The lower bound already indiates that the problem is perhaps infeasiblein pratie, even for very simple DTDs. Finding the preise omplexity of theproblem remains open, and does not appear to be easy. In fat, even the urrentproof of the upper bound is quite involved, and relies on ombining the tehniquesfrom [23℄ for oding DTDs and onstraints as integer linear inequalities, andfrom [2℄ for reasoning about onstraints given by regular expressions by usingthe produt automaton for all the expressions involved in the onstraints.Theorem 11. SAT(ACregK ;FK ) is PSPACE-hard, and an be solved in NEXP-TIME. �The PSPACE-hardness of SAT(ACregK ;FK ) an be proved even for non-reursiveDTDs without the Kleene star [4℄.Observe that ACregK ;FK is a proper extension of the lass AC1;1K ;FK of unaryonstraints: substituting r: �:� for � in AC1;1K ;FK onstraints yields equivalentACregK ;FK onstraints. Similarly, an extension of multi-attribute AC�;�K ;FK on-straints an be de�ned in terms of regular expressions, denoted by ACreg(�;�)K ;FK .The undeidability of the onsisteny problem for ACreg(�;�)K ;FK is immediate fromTheorem 1.For the impliation analysis of regular-expression onstraints, from Proposi-tion 1 it follows immediately:Corollary 6. Impl(ACregK ;FK ) is PSPACE-hard, and Impl(ACreg(�;�)K ;FK ) is undeid-able.Observe that there are pratial ACregK ;FK onstraints that are not expressibleinAC1;1K ;FK , e.g., the foreign keys given in Example 6 are not de�nable inAC1;1K ;FK .In other words, ACregK ;FK is stritly more expressive than AC1;1K ;FK .



6.2 Consisteny of XML Shema spei�ationsAll the results shown so far are for DTDs and keys and foreign keys. Thesedays, the prime standard for speifying XML data is XML Shema [40℄. It isa rather rih language that supports spei�ations of both types and integrityonstraints. Its types subsume DTDs [11℄, and its onstraints { even keys andforeign keys { have a slightly di�erent semantis from what has been primarilystudied in the database literature. In this setion we investigate spei�ationsthat onsist of a DTD and a set of onstraints with the semantis proposed byXML Shema. We show that this little hange of semantis ompliates thingsonsiderably, as far as onsisteny heking is onerned.Example 7. Reall that given any DTD D and any set � of keys in AC�K (RC�K)over D, � an be satis�ed by an XML tree valid w.r.t. D if and only if Dhas a valid XML tree. Thus, any XML spei�ation (D;�) where D is non-reursive and � is a set of keys in AC�K (RC�K) is onsistent. We show here thata spei�ation in XML Shema may not be onsistent even for non-reursiveDTDs in the absene of foreign keys.Consider the following spei�ation S = (D;�) for biomedial data, whereD is the following DTD:<!ELEMENT seq (lone+)><!ELEMENT lone (DNA, gene)><!ELEMENT gene (DNA)>and � ontains only one key:seq :lone : �:DNA! seq :lone :The DTD desribes a nonempty sequene of lone elements: eah lone has aDNA subelement and a gene subelement, and gene in turn has a DNA subelement,while DNA arries text data (PCDATA). The key in � attempts to enfore thefollowing semanti information: there exist no two lone elements that have thesame DNA no matter where the DNA appears as their desendant. We note that thesyntax of XML Shema onstraints (to be formally introdued later) is di�erentfrom the syntax for XML onstraints presented so far in that it allows a regularexpression ( �:DNA in our example) to be the identi�er of an element type.This spei�ation is inonsistent. XML Shema requires that for any XMLdoument satisfying a key, the identi�er (that is, �:DNA in our example) mustexist and be unique. However, as depited in Fig. 7, in any XML doument thatonforms to the DTD D, a lone element must have two DNA desendants. Thus,it violates the uniqueness requirement of the key in �. �The goal of this setion is to show that the interation of types with integrityonstraints under the XML Shema semantis is more ompliated than underthe usual semantis for XML onstraints. To fous on the nature of the intera-tion and to simplify the disussion, we �rst onsider XML Shema spei�ationsin whih the type is a DTD and the onstraints are absolute keys. We show that



geneDNA DNAlone loneDNA geneDNA. . .seq
Fig. 7. An XML doument onforming to the DTD D shown in Example 7.keys of XML Shema already suÆe to demonstrate the ompliations ausedby the interation between types and onstraints.Before showing the main result of the setion, we need to de�ne the syntaxand semantis of absolute keys for XML Shema spei�ations. Given a DTDD = (E; A; P; R; r), a key over D is a onstraint of the formP [Q1; : : : ; Qn℄! P; (7)where n � 1 and P , Q1, : : :, Qn are regular expressions over the alphabet E[A.If n = 1, then the key is alled unary and is denoted by P:Q1 ! P . ExpressionP is alled the seletor of the key and is a regular expression onforming to thefollowing BNF grammar [40℄ (abusing the XPath syntax):seletor ::= path j path [ seletorpath ::= r: �.sequenesequene ::= � j j sequene.sequeneHere � 2 E and � represents any possible �nite sequene of node labels. TheexpressionsQ1, : : :, Qn are alled the �elds of the key and are regular expressionsonforming to the following BNF grammar [40℄:�eld ::= path j path [ �eldpath ::= �.sequene.last j sequene.lastsequene ::= � j � j j sequene.sequenelast ::= � j j �l j �Here � is a wildard that mathes any attribute and �l 2 A. This grammardi�ers from the one above in allowing the �nal step to math an attribute node.De�nition 3. Given an XML tree T = (V; lab; ele; att; val; root), T satis�esthe onstraint P [Q1; : : : ; Qn℄! P , denoted by T j= P [Q1; : : : ; Qn℄! P , if1) For eah x 2 nodes(P ) and i 2 [1; n℄, there is exatly one node yi suh thatT j= Qi(x; yi). Furthermore, lab(yi) 2 A or lab(yi) = S.2) For eah x1; x2 2 nodes(P ), if y1i , y2i are the only nodes suh that T j=Qi(x1; y1i ) and T j= Qi(x2; y2i ) (i = 1; : : : ; n), and val(y1i ) = val(y2i ) forevery i 2 [1; n℄, then x1 = x2. �



That is, P [Q1; : : : ; Qn℄ ! P de�nes a key for the set nodes(P ) of elements,i.e., the nodes reahable from the root by following path P , by asserting thatthe values of Q1, : : :, Qn uniquely identify the elements in nodes(P ). It furtherasserts that starting from eah element in nodes(P ) there is a unique label pathonforming to the regular expression Qi (i 2 [1; n℄).Observe that ondition 1 in the previous de�nition requires the uniquenessand existene of the �elds involved. For example, the XML tree depited in Fig. 7does not satisfy the key seq :lone : �:DNA ! seq :lone beause the uniquenessondition imposed by the key is violated. Uniqueness onditions are required bythe XML Shema semantis, but they are not present in various earlier proposalsfor XML keys oming from the database ommunity [12, 13, 23, 4℄.Sine SAT(AC�K) and SAT(RC�K), the onsisteny problems for absolute andrelative keys, respetively, are deidable in linear time, one would be temptedto think that the onsisteny problem for keys under the XML Shema seman-tis an be solved eÆiently. Somewhat surprisingly, it was shown in [5℄ thatthis is not the ase; the uniqueness and existene ondition makes the problemintratable, even for unary keys and very simple DTDs:Theorem 12. The onsisteny problem is NP-hard for unary keys of the form(7), even for non-reursive no-star DTDs. �This result shows that the interation of types and onstraints under the XMLShema semantis is so intriate that the onsisteny hek of XML Shemaspei�ations is infeasible.7 Seleted Topis and Bibliographi RemarksThis hapter has shown that the onsisteny analysis of XML spei�ations withDTDs and onstraints (keys, foreign keys) introdues new hallenges and is insharp ontrast with its trivial ounterpart for relational databases. Indeed, inthe presene of foreign keys, ompile-time veri�ation of onsisteny for XMLspei�ations is usually infeasible: the omplexity ranges from NP-hard to unde-idable. Worse still, the semantis of XML-Shema onstraints makes the on-sisteny analysis of spei�ations even more intriate.These negative results suggest that one develops eÆient approximate al-gorithms for stati heking of XML spei�ations. One open question is to�nd performane guarantees for the approximate algorithms to prevent exessiveoverkill of onsistent spei�ations. The tehniques of [4, 5, 23℄ for establishingthe omplexity results of this hapter may help develop suh performane guar-antees; they may also help study onsisteny of individual XML spei�ationswith types and onstraints.Another open problem is to lose the omplexity gaps. However, these areby no means trivial: for example, SAT(AC�;1PK ;FK ) was proved to be equivalentto a problem related to Diophantine equations whose exat omplexity remainsunknown. In the ases of SAT(ACregK ;FK ) and SAT(HRC1;1K ;FK ), we think that it ismore likely that our lower bounds orrespond to the exat omplexity of those



problems. However, the algorithms are quite involved, and we do not yet see away to simplify them to prove the mathing upper bounds.Bibliographi Notes. The omplexity results of this hapter are taken from [4,5, 23℄: the results for the onsisteny analysis of absolute onstraints were mostlyestablished by [23℄; relative onstraints were studied in [4℄; and a full treatmentof XML-Shema spei�ations was given in [5℄.Keys, foreign keys and the more general inlusion and funtional dependen-ies have been well studied for relational databases (f. [1℄). The interation be-tween ardinality onstraints and database shemas has been studied for objet-oriented [16, 17℄ and extended relational data models [28℄. These interationsare quite di�erent from what we explore in this hapter beause XML DTDs arede�ned in terms of extended ontext free grammars and they yield ardinalityonstraints more omplex than those studied for traditional databases.A number of spei�ations for XML keys and foreign keys have been pro-posed, e.g., XML Shema [40℄, XML-Data [31℄. The notion of relative onstraintswas introdued by [12℄, whih was further studied in [13℄. It is worth remarkingthat although through the use of ID attributes in a DTD [11℄, one an uniquelyidentify an element within an XML doument, it is not lear that ID attributesare intended to be used as keys rather than internal \pointers". For example,ID attributes are not soped. In ontrast to keys, they are unique within theentire doument rather than among a designated set of elements. As a result,one annot, for example, allow a student (element) and a person (element) touse the same SSN as an ID. Moreover using ID attributes as keys means thatwe are limiting ourselves to unary keys. Finally, one an speify at most one IDattribute for an element type, while in pratie one may want more than onekey.Other onstraints for semi-strutured data were studied in, e.g., [2, 14℄. Inpartiular, [14℄ also studied the interation between path onstraints and tra-ditional database shemas, whih are quite di�erent from XML onstraints andDTDs onsidered here. Funtional dependenies, an extension of XML keys, werereently proposed to de�ne a normal form for XML douments [6℄.Aknowledgments. M. Arenas and L. Libkin are supported in part by grantsfrom NSERC, BUL, and PREA. W. Fan is supported in part by NSF CareerAward IIS-0093168, NSFC 60228006 and EPSRC GR/S63205/01.Referenes1. S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley,1995.2. S. Abiteboul and V. Vianu. Regular path queries with onstraints. J. Computerand System Sienes (JCSS), 58(4):428{452, 1999.3. V. Apparao, S. Byrne, M. Champion, S. Isaas, I. Jaobs, A. Le Hors, G. Niol,J. Robie, R. Sutor, C. Wilson and L. Wood. Doument Objet Model (DOM)
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