
A Collapse Result for Constraint Queries over Strutures of SmallDegreeLeonid Libkin�AbstratCollapse results, whih are entral for understanding onstraint database queries, show that interms of the expressive power, a large lass of queries ollapses to a muh smaller one, typiallyinvolving only a restrited form of quanti�ation. Most ollapse results have been proved overonstraints involving a linear order, and proofs are typially rather nontrivial. In this short notewe give an easy proof of a powerful form of ollapse for a large lass of onstraints without a linearorder, namely those in whih all basi relations are of small degree.1 IntrodutionA typial setting for database onstraint queries is as follows [5℄. We have an in�nite �rst-orderstruture M = hU;
i with U being the universe, and 
 a set of onstants, prediates and funtionson U . Furthermore, we have a relational voabulary � whose symbols are interpreted as �nite relations;the intended interpretation of those is �nite database relations whose elements ome from U . Thestandard query language in this setting is FO(M; �) { �rst-order logi in the language 
 [ �.Consider, for example, M = hR;+; �; 0; 1; <i, � = fSg, where S is binary, and a Boolean query(sentene) � = 9a9b 8x8y (S(x; y)! a � x+ b = y);saying that S lies on a line. It is not immediately lear how to evaluate suh a query due to thepresene of quanti�ers of the form 9a, 9b, meaning: 9a 2 R, 9b 2 R.However, often one an restrit quanti�ation to a �nite set. By the ative domain of a �nite �-struture D we mean the (�nite) set adom(D) of all elements of U that our in D. When we write9x 2 adom or 8y 2 adom , we mean that quanti�ation is restrited to adom(D). For example, theabove query an be written in suh a form: note that S lies on a line i� every triple of points in S isollinear. It is easy to write a formula ollinear(x1; y1; x2; y2; x3; y3) over hR;+; �; 0; 1; <i whih holdsi� (x1; y1); (x2; y2) and (x3; y3) are ollinear. Hene, � is equivalent to�0 = 8x1; y1; x2; y2; x3; y32adom (S(x1; y1)^S(x2; y2)^S(x3; y3)) ! ollinear(x1; y1; x2; y2; x3; y3):Notie that �-relations our only in the sope of restrited quanti�ers 8x 2 adom and 9x 2 adom .Hene, if the theory of the underlying struture M is deidable, suh queries an be evaluated in the�Department of Computer Siene, University of Toronto, 6 King's College Road, Toronto, Ontario M5S 3H5, Canada.E-mail: libkin�s.toronto.edu. 1



usual bottom-up fashion, as normal relational alulus database queries (at least if all the elements inthe database are de�nable by formulae over M). Sine hR;+; �; 0; 1; <i has quanti�er-elimination, inour example unrestrited quanti�ers ranging over R an be eliminated altogether. We shall onsiderthis type of ollapse results in this note.2 De�nitions and Main TheoremWe shall refer to quanti�ation over U as unrestrited quanti�ation, and to quanti�ation over adom(�)as restrited quanti�ation.We say that M admits restrited quanti�er ollapse (RQC) if for any �, every FO(M; �) formula isequivalent to a formula in whih no �-symbol appears in the sope of an unrestrited quanti�er.IfM has quanti�er-elimination, RQC implies that all unrestrited quanti�ers an be eliminated { thisis a very strong ondition known as the natural-ative ollapse. It was shown in [6℄ for the additivegroup of the reals; sine then, many extensions and other examples appeared in the literature (see [5℄for a survey).Assume without loss of generality that only relation symbols appear in 
 (we an replae funtions bytheir graphs, and onstants by unary relations having one element). Given M = hU;
i, its Gaifmangraph G(M) is an undireted graph (U;E), suh that (a; b) 2 U i� there is an 
-relation R suh thatboth a and b our in the same tuple of R (for example, if M itself is a graph, then G(M) is itsreexive-symmetri losure). We say that M is of small degree if there is a onstant d 2 N suh thatevery a 2 U has degree at most d in G(M).From results in [1℄, one an onlude the ollapse over suh strutures only for generi queries: thosethat ommute with any permutation on U (for example, � shown above is not generi). In general,heking if a query is generi is undeidable. Here we prove a general result on the expressiveness ofFO(M; �) for strutures of small degree.Theorem 1 Every struture of small degree admits the restrited quanti�er ollapse. 2Any struture that has a linear order, or makes it possible to de�ne one, is not of small degree. However,there are important examples of strutures of small degrees, most often involving strings. One suhexample is the set �� of all �nite strings over a �nite alphabet � onsidered as term algebras: that is,there is a onstant � for the empty string, and funtions x 7! x �a; a 2 � that add alphabet symbols atthe end of a string. Sine we deal with relational signatures, a proper representation of this strutureis h��; U�; (La)a2�i, where U� is interpreted as the singleton-set f�g, and La = f(a � x; x) j x 2 ��g.This struture is of degree j�j + 1. Another example is a model-theoreti representation of queuesused in [7℄: a struture h��; U�; (La; Ra)a2�i, where Ra = f(x � a; x) j x 2 ��g (that is, symbols ouldbe added both on the left and on the right).In general, a �rst-order theory T has the RQC if every model of the theory has it.Corollary 1 Let T be a omplete theory that has a model of small degree. Then T has the RQC.As another orollary to the proof, we shall see the following. We say that a funtion P : 2U ! 2U isM-de�nable if there is a �rst-order formula �P (x; y) suh that P (X) = fb j M j= �P (a; b); a 2 Xg.2



Corollary 2 If M is of small degree, then every FO(M; �) sentene � is equivalent to a sentene �0in whih all quanti�ers range over P�(adom(D)), where P� is M-de�nable. Furthermore, there exista onstant  that depends on � only suh that jP�(X)j �  � jXj for any �nite X � U . 2That is, it suÆes to restrit quanti�ation to a �nite set whose size is linear in jadom(D)j.3 Proof of the theoremFixM of degree at most d. Given ~a and b over U , by Æ(~a; b) we mean the shortest distane, in G(M),between b and an element of ~a. Let Br(~a) be the ball of radius r around ~a, that is, fb j Æ(~a; b) � rg.The r-neighborhood of ~a is the substruture of M whose universe is Br(~a); it is denoted by Nr(~a).For ~a = (a1; : : : ; an) and ~b = (b1; : : : ; bn), we write Nr(~a) �= Nr(~b) if there exists an isomorphismh : Nr(~a)! Nr(~b) suh that h(ai) = bi; 1 � i � n.Note that there is an upper bound M(d; r) on the size of Br(a) that is determined by r and d only.Consequently, there is an upper bound I(d; r;m) on the number of isomorphism types of Nr(~a), ~a oflength m, that depends on d; r and m only.We will use the following result.Fat 1 (Gaifman [3℄) For every formula '(~x) overM there exists a number r � 0 suh that Nr(~a) �=Nr(~b) implies M j= '(~a)$ '(~b).Next, onsider any in�nite set X � U , and any formula '(x; y), and let r be given by Gaifman'stheorem. Sine d is �xed, X is in�nite, and the number of isomorphism types of r-neighborhoods isbounded by I(d; r; 1), there are a; a0 2 X suh that Nr(a) �= Nr(a0) and Æ(a; a0) > 2r + 1. Hene,Nr(a; a0) �= Nr(a0; a) and '(a; a0)$ '(a0; a), whih shows that no formula an de�ne a linear orderingon an in�nite set (that is, the theory of M is stable [4℄).We now use a suÆient ondition for RQC, given in [2℄. We say that M has the �nite over prop-erty if there is a formula '(x; ~y) suh that for every n, one an �nd n tuples ~a1; : : : ;~an suh that9xVi6=j '(x;~ai) holds for every j � n, but 9xVi '(x;~ai) does not hold.We shall use the following result.Fat 2 (Flum-Ziegler [2℄) If M does not have the �nite over property, then it has the RCQ.To show that M does not have the �nite over property, we need the following, due to [8℄. Given aformula �(~x; ~y) and a tuple of onstants ~b, by �(�;~b) we mean f~a j �(~a;~b) holdsg. A formula '(x; y; ~z)is an equivalene formula if for every ~b, '(�; �;~b) is an equivalene relation. The result that we need,applied to our setting (that is, in the ase of stable theories), says the following.Fat 3 (Shelah [8℄) Assume that M has the following property: for every equivalene formula'(x; y; ~z), there is a number l that depends on ', suh that if '(�; �;~b) is of �nite index for every~b, then, for every ~b, '(�; �;~b) has at most l equivalene lasses. Then M does not have the �nite overproperty. 3



Thus, it remains to prove the uniform bounds on the number of equivalene lasses of de�nableequivalene relations of �nite index. Consider an equivalene formula '(x; y; ~z) with ~z of length m.Let r be given by Fat 1. Fix ~, and let �~ be the equivalene relation given by '(�; �;~). Assumethat it is of �nite index. We alulate an upper bound on the number of equivalene lasses of �~that are disjoint from B2r+1(~). For those equivalene lasses, whether a �~ b, is determined by theisomorphism type of the neighborhood Nr(a; b).We all an equivalene lass sparse if there are two elements, a and b in it, suh that Æ(a; b) > 2r+ 1.Let K1; : : : ;Ks be all the distint sparse equivalene lasses of �~, and let (ai; bi) be a pair of elementsfrom Ki with Æ(ai; bi) > 2r + 1. Let l be M(d; 2r + 1), the upper bound on the size of B2r+1(e), for asingle element e. Assume that s > I(d; r; 2) � (l+1). Then for l+1 lasses (without loss of generality,K1; : : : ;Kl+1), (ai; bi) realize the same isomorphism type of an r-neighborhood, for i � l + 1. Inpartiular, for some i0 � l + 1, Æ(a1; bi0) > 2r + 1, by de�nition of l. Sine Æ(a1; b1) > 2r + 1,Æ(ai0 ; bi0) > 2r + 1, and Nr(a1; b1) �= Nr(ai0 ; bi0), we have Nr(a1; b1) �= Nr(a1; bi0). Hene a1 �~ bi0and thusK1 = Ki0 , whih is impossible. This ontradition shows that s � I(d; r; 2)�(M(d; 2r+1)+1).Now onsider nonsparse equivalene lasses. Sine �~ is of �nite index, there are �nitely many ofthem, say C1; : : : ; Ct. Let a1; : : : ; at be representatives of those lasses. We know that Ci � B2r+1(ai),i = 1; : : : ; t.Let � be the isomorphism type of one of N2r+1(ai)s (without loss of generality, take N2r+1(a1)).Assume that there are in�nitely many points that realize � (that is, whose (2r+1)-neighborhoods areisomorphi to N2r+1(a1)). Sine M is in�nite and of small degree, we an �nd an in�nite sequene ofelements e1; e2; : : : suh that:1. B2r+1(ei)s are pairwise disjoint, and all of them are disjoint from B2r+1(a1); and2. the equivalene lass of ei is not ontained in B2r+1(ei).In partiular, for eah ei we an �nd pi 62 B2r+1(ei) suh that ei �~ pi. If pi 62 B2r+1(a1), thenNr(ei; pi) �= Nr(a1; pi), thus showing pi �~ a1, whih is impossible sine the �~-equivalene lass of a1 isontained inB2r+1(a1). Thus, we an assume that pi 2 B2r+1(a1) for all i. Then there exist two indexesi; j suh that pi = pj , and onsequently Nr(ei; pi) �= Nr(ej ; pj). This shows ei �~ pi �~ pj �~ ej . SineNr(ei; a1) �= Nr(ei; ej) we onlude ei �~ a1, whih again ontradits the assumption that the �~-equivalene lass of a1 is ontained in B2r+1(a1).This ontradition shows that the number of points that realize � is �nite. Let �1; : : : ; �I(d;2r+1;1)enumerate all the isomorphism types of 2r + 1-neighborhoods of a single point, with �1; : : : ; �q beingthose with �nitely many elements realizing them. Suppose the number of elements realizing �i, i � q,is mi; then m1 + : : : +mq is the total number of points realizing 2r + 1-neighborhood with �nitelymany realizers. Sine we hose representatives of lasses C1; : : : ; Ct arbitrarily, this gives us a (m1 +: : : +mq) �M(d; 2r + 1) upper bound for t.Summing up, the number of equivalene lasses of �~ that do not interset B2r+1(~) is at mostI(d; r; 2) �M(d; 2r + 1) + (m1 + : : :+mq) �M(d; 2r + 1);and the number of lasses that interset B2r+1(~) is at most M(d; 2r+1) �m. Hene, we have an upperbound on the number of equivalene lasses of �~ that depends on ' and M only, but not on ~. Thisonludes the proof. 4



It remains to prove Corollaries 1 and 2. For Corollary 1, note that for eah d, there is a �rst-ordersentene saying that M is of degree at most d; hene if T is omplete and has a model of degree d, allits models are suh. This shows that the bounds M(d; r) and I(d; r;m) are parameters of the theory,not a partiular model. Furthermore, sine d is �xed, for eah r; k � 0 and eah isomorphism type� of an r-neighborhood, there are �rst-order sentenes stating that are are fewer than k (exatly k,more than k) elements realizing � . Hene, if suh a number is �nite, it is the same in every model ofT , and likewise if there are in�nitely many realizers, this is too true in every model of T . This showsthat the uniform bound on the number of equivalene lasses of '(�; �; ~z) will be the same in everymodel of T (that is, it depends only on '), thus showing that every model of T has the RQC.For Corollary 2, take a sentene � and apply the RQC. Let �0 be the resulting sentene. We lookat the subformulae �(~x) not involving restrited quanti�ation. Note that all the variables ~x arebound by restrited quanti�ers (hene, they range over the ative domain). By [3℄ we an assume thatquanti�ation in � is restrited to the r�-neighborhood of its free variables, for some �xed r�. Choosethe maximum r among r�'s; learly it is determined by �. Then quanti�ation in �0 an be assumedto be over Br(adom(D)), whih is of the size at most I(d; r; 1) � jadom(D)j. This ompletes the proof.2We onlude by o�ering a ouple of remarks on the e�etiveness of the ollapse result. In general, themere existene of an equivalent query with restrited quanti�ation does not imply that suh a queryan be found e�etively, and some of the ollapse results (e.g., over the real �eld) were �rst provednon-onstrutively, and later onstrutive proofs were found, see [5℄. The restrition to strutures ofsmall degree does not hange this general situation. Our proof relies heavily on a theorem by Flumand Ziegler [2℄, whih was proved non-onstrutively. In some ase, the RQC annot be made e�etiveeven with small degrees. To see this, let � : N ! N be a nonreursive bijetion; we then de�ne arelation E = f(2i; 2�(i) + 1) j i > 0g of degree 1. Even though hN; Ei admits the RQC, it annotbe made e�etive. As another example, the ollapse over h��; U�; (Ra)a2�i is e�etive, whih an beshown by a tedious indutive proof that alulates the size of the neighborhood to whih quanti�ationis restrited. In general, whether the RQC is e�etive, depends on every partiular struture, and thegeneral proof presented here is unlikely to help answer this question.Aknowledgment Thanks to Mihael Benedikt and Markus Junker for disussions on the �nite overproperty, unary term algebras, and ollapse, that gave rise to this note.Referenes[1℄ J. Baldwin, M. Benedikt. Embedded �nite models, stability theory and the impat of order. LICS1998, pages 490{500.[2℄ J. Flum and M. Ziegler. Pseudo-�nite homogeneity and saturation. J. Symboli Logi 64 (1999),1689{1699.[3℄ H. Gaifman. On loal and non-loal properties. In Proeedings of the Herbrand Symposium, LogiColloquium '81, North-Holland, 1982.[4℄ W. Hodges. Model Theory. Cambridge, 1993.[5℄ G. Kuper, L. Libkin, and J. Paredaens (editors). Constraint Databases. Springer-Verlag, 2000.5
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