
A Collapse Result for Constraint Queries over Stru
tures of SmallDegreeLeonid Libkin�Abstra
tCollapse results, whi
h are 
entral for understanding 
onstraint database queries, show that interms of the expressive power, a large 
lass of queries 
ollapses to a mu
h smaller one, typi
allyinvolving only a restri
ted form of quanti�
ation. Most 
ollapse results have been proved over
onstraints involving a linear order, and proofs are typi
ally rather nontrivial. In this short notewe give an easy proof of a powerful form of 
ollapse for a large 
lass of 
onstraints without a linearorder, namely those in whi
h all basi
 relations are of small degree.1 Introdu
tionA typi
al setting for database 
onstraint queries is as follows [5℄. We have an in�nite �rst-orderstru
ture M = hU;
i with U being the universe, and 
 a set of 
onstants, predi
ates and fun
tionson U . Furthermore, we have a relational vo
abulary � whose symbols are interpreted as �nite relations;the intended interpretation of those is �nite database relations whose elements 
ome from U . Thestandard query language in this setting is FO(M; �) { �rst-order logi
 in the language 
 [ �.Consider, for example, M = hR;+; �; 0; 1; <i, � = fSg, where S is binary, and a Boolean query(senten
e) � = 9a9b 8x8y (S(x; y)! a � x+ b = y);saying that S lies on a line. It is not immediately 
lear how to evaluate su
h a query due to thepresen
e of quanti�ers of the form 9a, 9b, meaning: 9a 2 R, 9b 2 R.However, often one 
an restri
t quanti�
ation to a �nite set. By the a
tive domain of a �nite �-stru
ture D we mean the (�nite) set adom(D) of all elements of U that o

ur in D. When we write9x 2 adom or 8y 2 adom , we mean that quanti�
ation is restri
ted to adom(D). For example, theabove query 
an be written in su
h a form: note that S lies on a line i� every triple of points in S is
ollinear. It is easy to write a formula 
ollinear(x1; y1; x2; y2; x3; y3) over hR;+; �; 0; 1; <i whi
h holdsi� (x1; y1); (x2; y2) and (x3; y3) are 
ollinear. Hen
e, � is equivalent to�0 = 8x1; y1; x2; y2; x3; y32adom (S(x1; y1)^S(x2; y2)^S(x3; y3)) ! 
ollinear(x1; y1; x2; y2; x3; y3):Noti
e that �-relations o

ur only in the s
ope of restri
ted quanti�ers 8x 2 adom and 9x 2 adom .Hen
e, if the theory of the underlying stru
ture M is de
idable, su
h queries 
an be evaluated in the�Department of Computer S
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usual bottom-up fashion, as normal relational 
al
ulus database queries (at least if all the elements inthe database are de�nable by formulae over M). Sin
e hR;+; �; 0; 1; <i has quanti�er-elimination, inour example unrestri
ted quanti�ers ranging over R 
an be eliminated altogether. We shall 
onsiderthis type of 
ollapse results in this note.2 De�nitions and Main TheoremWe shall refer to quanti�
ation over U as unrestri
ted quanti�
ation, and to quanti�
ation over adom(�)as restri
ted quanti�
ation.We say that M admits restri
ted quanti�er 
ollapse (RQC) if for any �, every FO(M; �) formula isequivalent to a formula in whi
h no �-symbol appears in the s
ope of an unrestri
ted quanti�er.IfM has quanti�er-elimination, RQC implies that all unrestri
ted quanti�ers 
an be eliminated { thisis a very strong 
ondition known as the natural-a
tive 
ollapse. It was shown in [6℄ for the additivegroup of the reals; sin
e then, many extensions and other examples appeared in the literature (see [5℄for a survey).Assume without loss of generality that only relation symbols appear in 
 (we 
an repla
e fun
tions bytheir graphs, and 
onstants by unary relations having one element). Given M = hU;
i, its Gaifmangraph G(M) is an undire
ted graph (U;E), su
h that (a; b) 2 U i� there is an 
-relation R su
h thatboth a and b o

ur in the same tuple of R (for example, if M itself is a graph, then G(M) is itsre
exive-symmetri
 
losure). We say that M is of small degree if there is a 
onstant d 2 N su
h thatevery a 2 U has degree at most d in G(M).From results in [1℄, one 
an 
on
lude the 
ollapse over su
h stru
tures only for generi
 queries: thosethat 
ommute with any permutation on U (for example, � shown above is not generi
). In general,
he
king if a query is generi
 is unde
idable. Here we prove a general result on the expressiveness ofFO(M; �) for stru
tures of small degree.Theorem 1 Every stru
ture of small degree admits the restri
ted quanti�er 
ollapse. 2Any stru
ture that has a linear order, or makes it possible to de�ne one, is not of small degree. However,there are important examples of stru
tures of small degrees, most often involving strings. One su
hexample is the set �� of all �nite strings over a �nite alphabet � 
onsidered as term algebras: that is,there is a 
onstant � for the empty string, and fun
tions x 7! x �a; a 2 � that add alphabet symbols atthe end of a string. Sin
e we deal with relational signatures, a proper representation of this stru
tureis h��; U�; (La)a2�i, where U� is interpreted as the singleton-set f�g, and La = f(a � x; x) j x 2 ��g.This stru
ture is of degree j�j + 1. Another example is a model-theoreti
 representation of queuesused in [7℄: a stru
ture h��; U�; (La; Ra)a2�i, where Ra = f(x � a; x) j x 2 ��g (that is, symbols 
ouldbe added both on the left and on the right).In general, a �rst-order theory T has the RQC if every model of the theory has it.Corollary 1 Let T be a 
omplete theory that has a model of small degree. Then T has the RQC.As another 
orollary to the proof, we shall see the following. We say that a fun
tion P : 2U ! 2U isM-de�nable if there is a �rst-order formula �P (x; y) su
h that P (X) = fb j M j= �P (a; b); a 2 Xg.2



Corollary 2 If M is of small degree, then every FO(M; �) senten
e � is equivalent to a senten
e �0in whi
h all quanti�ers range over P�(adom(D)), where P� is M-de�nable. Furthermore, there exista 
onstant 
 that depends on � only su
h that jP�(X)j � 
 � jXj for any �nite X � U . 2That is, it suÆ
es to restri
t quanti�
ation to a �nite set whose size is linear in jadom(D)j.3 Proof of the theoremFixM of degree at most d. Given ~a and b over U , by Æ(~a; b) we mean the shortest distan
e, in G(M),between b and an element of ~a. Let Br(~a) be the ball of radius r around ~a, that is, fb j Æ(~a; b) � rg.The r-neighborhood of ~a is the substru
ture of M whose universe is Br(~a); it is denoted by Nr(~a).For ~a = (a1; : : : ; an) and ~b = (b1; : : : ; bn), we write Nr(~a) �= Nr(~b) if there exists an isomorphismh : Nr(~a)! Nr(~b) su
h that h(ai) = bi; 1 � i � n.Note that there is an upper bound M(d; r) on the size of Br(a) that is determined by r and d only.Consequently, there is an upper bound I(d; r;m) on the number of isomorphism types of Nr(~a), ~a oflength m, that depends on d; r and m only.We will use the following result.Fa
t 1 (Gaifman [3℄) For every formula '(~x) overM there exists a number r � 0 su
h that Nr(~a) �=Nr(~b) implies M j= '(~a)$ '(~b).Next, 
onsider any in�nite set X � U , and any formula '(x; y), and let r be given by Gaifman'stheorem. Sin
e d is �xed, X is in�nite, and the number of isomorphism types of r-neighborhoods isbounded by I(d; r; 1), there are a; a0 2 X su
h that Nr(a) �= Nr(a0) and Æ(a; a0) > 2r + 1. Hen
e,Nr(a; a0) �= Nr(a0; a) and '(a; a0)$ '(a0; a), whi
h shows that no formula 
an de�ne a linear orderingon an in�nite set (that is, the theory of M is stable [4℄).We now use a suÆ
ient 
ondition for RQC, given in [2℄. We say that M has the �nite 
over prop-erty if there is a formula '(x; ~y) su
h that for every n, one 
an �nd n tuples ~a1; : : : ;~an su
h that9xVi6=j '(x;~ai) holds for every j � n, but 9xVi '(x;~ai) does not hold.We shall use the following result.Fa
t 2 (Flum-Ziegler [2℄) If M does not have the �nite 
over property, then it has the RCQ.To show that M does not have the �nite 
over property, we need the following, due to [8℄. Given aformula �(~x; ~y) and a tuple of 
onstants ~b, by �(�;~b) we mean f~a j �(~a;~b) holdsg. A formula '(x; y; ~z)is an equivalen
e formula if for every ~b, '(�; �;~b) is an equivalen
e relation. The result that we need,applied to our setting (that is, in the 
ase of stable theories), says the following.Fa
t 3 (Shelah [8℄) Assume that M has the following property: for every equivalen
e formula'(x; y; ~z), there is a number l that depends on ', su
h that if '(�; �;~b) is of �nite index for every~b, then, for every ~b, '(�; �;~b) has at most l equivalen
e 
lasses. Then M does not have the �nite 
overproperty. 3



Thus, it remains to prove the uniform bounds on the number of equivalen
e 
lasses of de�nableequivalen
e relations of �nite index. Consider an equivalen
e formula '(x; y; ~z) with ~z of length m.Let r be given by Fa
t 1. Fix ~
, and let �~
 be the equivalen
e relation given by '(�; �;~
). Assumethat it is of �nite index. We 
al
ulate an upper bound on the number of equivalen
e 
lasses of �~
that are disjoint from B2r+1(~
). For those equivalen
e 
lasses, whether a �~
 b, is determined by theisomorphism type of the neighborhood Nr(a; b).We 
all an equivalen
e 
lass sparse if there are two elements, a and b in it, su
h that Æ(a; b) > 2r+ 1.Let K1; : : : ;Ks be all the distin
t sparse equivalen
e 
lasses of �~
, and let (ai; bi) be a pair of elementsfrom Ki with Æ(ai; bi) > 2r + 1. Let l be M(d; 2r + 1), the upper bound on the size of B2r+1(e), for asingle element e. Assume that s > I(d; r; 2) � (l+1). Then for l+1 
lasses (without loss of generality,K1; : : : ;Kl+1), (ai; bi) realize the same isomorphism type of an r-neighborhood, for i � l + 1. Inparti
ular, for some i0 � l + 1, Æ(a1; bi0) > 2r + 1, by de�nition of l. Sin
e Æ(a1; b1) > 2r + 1,Æ(ai0 ; bi0) > 2r + 1, and Nr(a1; b1) �= Nr(ai0 ; bi0), we have Nr(a1; b1) �= Nr(a1; bi0). Hen
e a1 �~
 bi0and thusK1 = Ki0 , whi
h is impossible. This 
ontradi
tion shows that s � I(d; r; 2)�(M(d; 2r+1)+1).Now 
onsider nonsparse equivalen
e 
lasses. Sin
e �~
 is of �nite index, there are �nitely many ofthem, say C1; : : : ; Ct. Let a1; : : : ; at be representatives of those 
lasses. We know that Ci � B2r+1(ai),i = 1; : : : ; t.Let � be the isomorphism type of one of N2r+1(ai)s (without loss of generality, take N2r+1(a1)).Assume that there are in�nitely many points that realize � (that is, whose (2r+1)-neighborhoods areisomorphi
 to N2r+1(a1)). Sin
e M is in�nite and of small degree, we 
an �nd an in�nite sequen
e ofelements e1; e2; : : : su
h that:1. B2r+1(ei)s are pairwise disjoint, and all of them are disjoint from B2r+1(a1); and2. the equivalen
e 
lass of ei is not 
ontained in B2r+1(ei).In parti
ular, for ea
h ei we 
an �nd pi 62 B2r+1(ei) su
h that ei �~
 pi. If pi 62 B2r+1(a1), thenNr(ei; pi) �= Nr(a1; pi), thus showing pi �~
 a1, whi
h is impossible sin
e the �~
-equivalen
e 
lass of a1 is
ontained inB2r+1(a1). Thus, we 
an assume that pi 2 B2r+1(a1) for all i. Then there exist two indexesi; j su
h that pi = pj , and 
onsequently Nr(ei; pi) �= Nr(ej ; pj). This shows ei �~
 pi �~
 pj �~
 ej . Sin
eNr(ei; a1) �= Nr(ei; ej) we 
on
lude ei �~
 a1, whi
h again 
ontradi
ts the assumption that the �~
-equivalen
e 
lass of a1 is 
ontained in B2r+1(a1).This 
ontradi
tion shows that the number of points that realize � is �nite. Let �1; : : : ; �I(d;2r+1;1)enumerate all the isomorphism types of 2r + 1-neighborhoods of a single point, with �1; : : : ; �q beingthose with �nitely many elements realizing them. Suppose the number of elements realizing �i, i � q,is mi; then m1 + : : : +mq is the total number of points realizing 2r + 1-neighborhood with �nitelymany realizers. Sin
e we 
hose representatives of 
lasses C1; : : : ; Ct arbitrarily, this gives us a (m1 +: : : +mq) �M(d; 2r + 1) upper bound for t.Summing up, the number of equivalen
e 
lasses of �~
 that do not interse
t B2r+1(~
) is at mostI(d; r; 2) �M(d; 2r + 1) + (m1 + : : :+mq) �M(d; 2r + 1);and the number of 
lasses that interse
t B2r+1(~
) is at most M(d; 2r+1) �m. Hen
e, we have an upperbound on the number of equivalen
e 
lasses of �~
 that depends on ' and M only, but not on ~
. This
on
ludes the proof. 4



It remains to prove Corollaries 1 and 2. For Corollary 1, note that for ea
h d, there is a �rst-ordersenten
e saying that M is of degree at most d; hen
e if T is 
omplete and has a model of degree d, allits models are su
h. This shows that the bounds M(d; r) and I(d; r;m) are parameters of the theory,not a parti
ular model. Furthermore, sin
e d is �xed, for ea
h r; k � 0 and ea
h isomorphism type� of an r-neighborhood, there are �rst-order senten
es stating that are are fewer than k (exa
tly k,more than k) elements realizing � . Hen
e, if su
h a number is �nite, it is the same in every model ofT , and likewise if there are in�nitely many realizers, this is too true in every model of T . This showsthat the uniform bound on the number of equivalen
e 
lasses of '(�; �; ~z) will be the same in everymodel of T (that is, it depends only on '), thus showing that every model of T has the RQC.For Corollary 2, take a senten
e � and apply the RQC. Let �0 be the resulting senten
e. We lookat the subformulae �(~x) not involving restri
ted quanti�
ation. Note that all the variables ~x arebound by restri
ted quanti�ers (hen
e, they range over the a
tive domain). By [3℄ we 
an assume thatquanti�
ation in � is restri
ted to the r�-neighborhood of its free variables, for some �xed r�. Choosethe maximum r among r�'s; 
learly it is determined by �. Then quanti�
ation in �0 
an be assumedto be over Br(adom(D)), whi
h is of the size at most I(d; r; 1) � jadom(D)j. This 
ompletes the proof.2We 
on
lude by o�ering a 
ouple of remarks on the e�e
tiveness of the 
ollapse result. In general, themere existen
e of an equivalent query with restri
ted quanti�
ation does not imply that su
h a query
an be found e�e
tively, and some of the 
ollapse results (e.g., over the real �eld) were �rst provednon-
onstru
tively, and later 
onstru
tive proofs were found, see [5℄. The restri
tion to stru
tures ofsmall degree does not 
hange this general situation. Our proof relies heavily on a theorem by Flumand Ziegler [2℄, whi
h was proved non-
onstru
tively. In some 
ase, the RQC 
annot be made e�e
tiveeven with small degrees. To see this, let � : N ! N be a nonre
ursive bije
tion; we then de�ne arelation E = f(2i; 2�(i) + 1) j i > 0g of degree 1. Even though hN; Ei admits the RQC, it 
annotbe made e�e
tive. As another example, the 
ollapse over h��; U�; (Ra)a2�i is e�e
tive, whi
h 
an beshown by a tedious indu
tive proof that 
al
ulates the size of the neighborhood to whi
h quanti�
ationis restri
ted. In general, whether the RQC is e�e
tive, depends on every parti
ular stru
ture, and thegeneral proof presented here is unlikely to help answer this question.A
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