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Abstract

Collapse results, which are central for understanding constraint database queries, show that in
terms of the expressive power, a large class of queries collapses to a much smaller one, typically
involving only a restricted form of quantification. Most collapse results have been proved over
constraints involving a linear order, and proofs are typically rather nontrivial. In this short note
we give an easy proof of a powerful form of collapse for a large class of constraints without a linear
order, namely those in which all basic relations are of small degree.

1 Introduction

A typical setting for database constraint queries is as follows [5]. We have an infinite first-order
structure M = (U, Q) with U being the universe, and Q a set of constants, predicates and functions
on U. Furthermore, we have a relational vocabulary o whose symbols are interpreted as finite relations;
the intended interpretation of those is finite database relations whose elements come from U. The
standard query language in this setting is FO(M, o) — first-order logic in the language Q U o.

Consider, for example, M = (R +,-,0,1,<), o0 = {S}, where S is binary, and a Boolean query
(sentence)
& = FaIVaVy (S(z,y) 2 a-z+b=y),

saying that S lies on a line. It is not immediately clear how to evaluate such a query due to the
presence of quantifiers of the form da, 3b, meaning: da € R, 9b € R.

However, often one can restrict quantification to a finite set. By the active domain of a finite o-
structure D we mean the (finite) set adom (D) of all elements of U that occur in D. When we write
Jdz € adom or Yy € adom, we mean that quantification is restricted to adom (D). For example, the
above query can be written in such a form: note that S lies on a line iff every triple of points in S is
collinear. Tt is easy to write a formula collinear(x1,y1, 2, Y2, £3,y3) over (R, +,-,0,1, <) which holds
iff (z1,y1), (x2,y2) and (x3,y3) are collinear. Hence, ® is equivalent to

' = Vry,y1,29,y2, 23, y3 € adom (S(z1,y1) NS (22, y2) AS(z3,y3)) — collinear(z1,y1, T2, y2, T3, y3).

Notice that o-relations occur only in the scope of restricted quantifiers Vz € adom and dx € adom.
Hence, if the theory of the underlying structure M is decidable, such queries can be evaluated in the
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usual bottom-up fashion, as normal relational calculus database queries (at least if all the elements in
the database are definable by formulae over M). Since (R, +,-,0,1, <) has quantifier-elimination, in
our example unrestricted quantifiers ranging over R can be eliminated altogether. We shall consider
this type of collapse results in this note.

2 Definitions and Main Theorem

We shall refer to quantification over U as unrestricted quantification, and to quantification over adom(-)
as restricted quantification.

We say that M admits restricted quantifier collapse (RQC) if for any o, every FO(M, o) formula is
equivalent to a formula in which no o-symbol appears in the scope of an unrestricted quantifier.

If M has quantifier-elimination, RQC implies that all unrestricted quantifiers can be eliminated — this
is a very strong condition known as the natural-active collapse. It was shown in [6] for the additive
group of the reals; since then, many extensions and other examples appeared in the literature (see [5]
for a survey).

Assume without loss of generality that only relation symbols appear in 2 (we can replace functions by
their graphs, and constants by unary relations having one element). Given M = (U, Q), its Gaifman
graph G(M) is an undirected graph (U, E), such that (a,b) € U iff there is an Q-relation R such that
both ¢ and b occur in the same tuple of R (for example, if M itself is a graph, then G(M) is its
reflexive-symmetric closure). We say that M is of small degree if there is a constant d € N such that
every a € U has degree at most d in G(M).

From results in [1], one can conclude the collapse over such structures only for generic queries: those
that commute with any permutation on U (for example, ® shown above is not generic). In general,
checking if a query is generic is undecidable. Here we prove a general result on the expressiveness of
FO(M, o) for structures of small degree.

Theorem 1 FEvery structure of small degree admits the restricted quantifier collapse. O

Any structure that has a linear order, or makes it possible to define one, is not of small degree. However,
there are important examples of structures of small degrees, most often involving strings. One such
example is the set * of all finite strings over a finite alphabet ¥ considered as term algebras: that is,
there is a constant € for the empty string, and functions z — z-a,a € X that add alphabet symbols at
the end of a string. Since we deal with relational signatures, a proper representation of this structure
is (X%, Ue, (Lq)aex), where U, is interpreted as the singleton-set {e}, and L, = {(a - z,z) | x € £*}.
This structure is of degree |X| + 1. Another example is a model-theoretic representation of queues
used in [7]: a structure (X*, Uy, (Lq, Rg)acx), where Ry = {(z - a,z) | z € £*} (that is, symbols could
be added both on the left and on the right).

In general, a first-order theory T has the RQC if every model of the theory has it.
Corollary 1 Let T be a complete theory that has a model of small degree. Then T has the RQC.

As another corollary to the proof, we shall see the following. We say that a function P : 2V — 2V is
M-definable if there is a first-order formula ap(z,y) such that P(X) = {b | M = ap(a,b),a € X}.



Corollary 2 If M is of small degree, then every FO(M, o) sentence @ is equivalent to a sentence @’
in which all quantifiers range over Pg(adom(D)), where Py is M-definable. Furthermore, there exist
a constant ¢ that depends on ® only such that |Ps(X)| < ¢ |X| for any finite X C U. O

That is, it suffices to restrict quantification to a finite set whose size is linear in |adom (D).

3 Proof of the theorem

Fix M of degree at most d. Given @ and b over U, by d(d, b) we mean the shortest distance, in G(M),
between b and an element of @. Let B,(d@) be the ball of radius r around @, that is, {b | 6(a b) <r}.
The r-neighborhood of @ is the substructure of M whose universe is B, (a); it is denoted by N,(a).
For @ = (ay,...,ay) and b = (b1,...,bp), we write N,(d) = Nr(l_;) if there exists an isomorphism
h : N,(@) — N,(b) such that h(a;) = b;,1 <i < n.

Note that there is an upper bound M (d,r) on the size of B,(a) that is determined by r and d only.
Consequently, there is an upper bound I(d,r, m) on the number of isomorphism types of N,(d@), @ of
length m, that depends on d,r and m only.

We will use the following result.

Fact 1 (Gaifman [3]) For every formula ¢(Z) over M there exists a number r > 0 such that Ny (@) =
N, (b) implies M |= ¢(a@) < ¢(b).

Next, consider any infinite set X C U, and any formula ¢(x,y), and let r be given by Gaifman’s
theorem. Since d is fixed, X is infinite, and the number of isomorphism types of r-neighborhoods is
bounded by I(d,r, 1), there are a,a’ € X such that N,(a) = N,(a') and d(a,a’) > 2r + 1. Hence,
N,(a,a') =2 N,(da',a) and ¢(a,a’) + ¢(a’,a), which shows that no formula can define a linear ordering
on an infinite set (that is, the theory of M is stable [4]).

We now use a sufficient condition for RQC, given in [2]. We say that M has the finite cover prop-
erty if there is a formula ¢(z, ) such that for every m, one can find n tuples di,...,d, such that
3z Az ¢(@, ;) holds for every j < n, but 3z A, ¢(=,d;) does not hold.

We shall use the following result.
Fact 2 (Flum-Ziegler [2]) If M does not have the finite cover property, then it has the RCQ.

To show that M does not have the ﬁnlte cover property, we need the followmg, due to [8]. Given a
formula o(Z, ) and a tuple of constants b, by a(-,b) we mean {a@ | a(d@,b) holds}. A formula ¢(z,y, 7)
is an equivalence formula if for every 5, ol I;) is an equivalence relation. The result that we need,
applied to our setting (that is, in the case of stable theories), says the following.

Fact 3 (Shelah [8]) Assume that M has the following property: for every equivalence formula
¢(z.y,Z), there is a number | that depends on ¢, such that if ¢(-,-,b) is of finite index for every
b then, for every b o(-, ,b) has at most | equivalence classes. Then M does not have the finite cover

property.



Thus, it remains to prove the uniform bounds on the number of equivalence classes of definable
equivalence relations of finite index. Consider an equivalence formula ¢(z,y, 2) with Z’ of length m.
Let r be given by Fact 1. Fix ¢, and let ~z be the equivalence relation given by ¢(-,-,¢). Assume
that it is of finite index. We calculate an upper bound on the number of equivalence classes of ~z
that are disjoint from B, y1(¢). For those equivalence classes, whether a =~z b, is determined by the
isomorphism type of the neighborhood N, (a, b).

We call an equivalence class sparse if there are two elements, a and b in it, such that d(a,b) > 2r + 1.
Let K1,..., K, be all the distinct sparse equivalence classes of ~z, and let (a;, b;) be a pair of elements
from K; with é(a;,b;) > 2r + 1. Let [ be M(d,2r + 1), the upper bound on the size of By,;1(e), for a
single element e. Assume that s > I(d,r,2) - (I +1). Then for [ + 1 classes (without loss of generality,
Ki,...,K;11), (a;,b;) realize the same isomorphism type of an r-neighborhood, for i < [ + 1. In
particular, for some ig < I + 1, §(a1,b;,) > 2r + 1, by definition of I. Since d(a1,b1) > 2r + 1,
d(aiq, biy) > 2r + 1, and Ny(a1,b1) = Ny(a;,, bi,), we have N,(a1,b1) = N,(a1,b;,). Hence a1 =z b;,
and thus K; = K, which is impossible. This contradiction shows that s < I(d,r,2)-(M(d,2r+1)+1).

Now consider nonsparse equivalence classes. Since x; is of finite index, there are finitely many of
them, say C1,...,Cy. Let aq,...,a; be representatives of those classes. We know that C; C By, 1(a;),
i=1,....t

Let 7 be the isomorphism type of one of Ng,11(a;)s (without loss of generality, take No,i1(aq)).
Assume that there are infinitely many points that realize 7 (that is, whose (2r 4+ 1)-neighborhoods are
isomorphic to No,y1(aq)). Since M is infinite and of small degree, we can find an infinite sequence of
elements eq, eo, ... such that:

1. Bgr+1(e;)s are pairwise disjoint, and all of them are disjoint from B, 1(aq); and

2. the equivalence class of e; is not contained in By, 11(e;).

In particular, for each e; we can find p; & Bo,i1(e;) such that e; ~z p;. If p; & Bori1(ar), then
N, (ei,pi) = Ny(a1,pi), thus showing p; ~z a1, which is impossible since the ~zequivalence class of a; is
contained in By, 11(a1). Thus, we can assume that p; € Ba,11(ay) for all 7. Then there exist two indexes
i, j such that p; = p;, and consequently N, (e;,p;) = N,(ej,p;). This shows e; =z p; ~zp; =z e;. Since
Ny (ei,a1) = N,(ej, ej) we conclude e; ~z a1, which again contradicts the assumption that the ~

equivalence class of a; is contained in By, 41(aq).

This contradiction shows that the number of points that realize 7 is finite. Let 71,..., 772,411
enumerate all the isomorphism types of 2r 4 1-neighborhoods of a single point, with 71,..., 7, being
those with finitely many elements realizing them. Suppose the number of elements realizing 7;, i < ¢,
is m;; then my 4 ... 4+ my is the total number of points realizing 2r + 1-neighborhood with finitely
many realizers. Since we chose representatives of classes C1,. .., Cy arbitrarily, this gives us a (m; +
...+ mgy) - M(d,2r + 1) upper bound for ¢.

Summing up, the number of equivalence classes of ~; that do not intersect Bo,1(¢) is at most
I(d,r,2) - M(d,2r +1) + (my+...4+my)  M(d,2r +1),

and the number of classes that intersect Bo,1(€) is at most M (d, 2r +1)-m. Hence, we have an upper
bound on the number of equivalence classes of =~z that depends on ¢ and M only, but not on ¢. This
concludes the proof.



It remains to prove Corollaries 1 and 2. For Corollary 1, note that for each d, there is a first-order
sentence saying that M is of degree at most d; hence if T' is complete and has a model of degree d, all
its models are such. This shows that the bounds M(d,r) and I(d,r,m) are parameters of the theory,
not a particular model. Furthermore, since d is fixed, for each r,k > 0 and each isomorphism type
7 of an r-neighborhood, there are first-order sentences stating that are are fewer than k (exactly k,
more than k) elements realizing 7. Hence, if such a number is finite, it is the same in every model of
T, and likewise if there are infinitely many realizers, this is too true in every model of T'. This shows
that the uniform bound on the number of equivalence classes of ¢(-,-,Z) will be the same in every
model of T' (that is, it depends only on ¢), thus showing that every model of T' has the RQC.

For Corollary 2, take a sentence ® and apply the RQC. Let @' be the resulting sentence. We look
at the subformulae a(Z) not involving restricted quantification. Note that all the variables Z are
bound by restricted quantifiers (hence, they range over the active domain). By [3] we can assume that
quantification in « is restricted to the r,-neighborhood of its free variables, for some fixed r,. Choose
the maximum r among r,’s; clearly it is determined by ®. Then quantification in ®' can be assumed
to be over B,(adom(D)), which is of the size at most I(d,r,1) - |adom(D)|. This completes the proof.
O

We conclude by offering a couple of remarks on the effectiveness of the collapse result. In general, the
mere existence of an equivalent query with restricted quantification does not imply that such a query
can be found effectively, and some of the collapse results (e.g., over the real field) were first proved
non-constructively, and later constructive proofs were found, see [5]. The restriction to structures of
small degree does not change this general situation. Our proof relies heavily on a theorem by Flum
and Ziegler [2], which was proved non-constructively. In some case, the RQC cannot be made effective
even with small degrees. To see this, let 7 : N — N be a nonrecursive bijection; we then define a
relation F = {(24,2n(i) + 1) | ¢ > 0} of degree 1. Even though (N, F) admits the RQC, it cannot
be made effective. As another example, the collapse over (X*,Ue, (Ry)qcx) is effective, which can be
shown by a tedious inductive proof that calculates the size of the neighborhood to which quantification
is restricted. In general, whether the RQC is effective, depends on every particular structure, and the
general proof presented here is unlikely to help answer this question.

Acknowledgment Thanks to Michael Benedikt and Markus Junker for discussions on the finite cover
property, unary term algebras, and collapse, that gave rise to this note.
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