
Disjoint Pattern Matching and Implication in Strings

Leonid Libkin∗ Cristina Sirangelo†

Abstract

We deal with the problem of deciding whether a given set of string patterns implies the presence
of a fixed pattern. While checking whether a set of patterns occurs in a string is solvable in
polynomial time, this implication problem is well-known to be intractable. Here we consider a
version of the problem when patterns in the set are required to be disjoint. We show that for such
a version of the problem the situation is reversed: checking whether a set of patterns occurs in a
string is NP-complete, but the implication problem is solvable in polynomial time.

1 Introduction and the main result

The problem we consider in this note was motivated by answering queries in incompletely specified
XML documents. Suppose that L is a set of letters, or labels, assumed to be countably infinite, and
that is a special symbol (wildcard) not in L. By L we denote L∪{ }. A pattern is a finite string over
L . If a string s over L matches a pattern π, we write s |= π. More precisely, if s = a0 . . . an−1 and
π = b0 . . . bm−1, then s |= π if there is a number j ≤ n − m so that for each bi that is not a wildcard,
we have bi = ai+j (i.e., a wildcard can match every symbol). In this case we also say s matches π

from j to j + m − 1. If s matches every pattern in a set Π of patterns, we write s |= Π.

We say that a set Π of patterns implies a pattern π, written as Π ⊢ π if s |= π whenever s |= Π, for
every finite string s over L. Now, for each pattern π, consider the implication problem Impl(π): its
input is a set Π of patterns, and the question is whether Π ⊢ π.

This problem is known to be coNP-complete, even for very simple patterns π. To see hardness,
consider the following well-known NP-complete problem [4]: given strings s1, . . . , sl and a number K

in unary, is there a string s of length K so that each si is a substring of s? For the reduction, assume
that $ is in L but not used in any of the si’s, and take each si as a pattern, as well as the string
$. . . $ (consisting of exactly K wildcards between a leading and a trailing $-symbol). Then this set
of patterns implies $ iff every string that contains all the si’s has length greater than K (as it has
symbols both left and right of a $); this shows coNP-hardness of Impl($).

Notice, however, that in this reduction the matches for the si’s may well overlap. We are concerned
with the implication when pattern matches are required to be disjoint. More precisely, we say that s

disjointly matches {π0, . . . , πn−1} if there are disjoint intervals [i0, j0], . . ., [in−1, jn−1] so that s matches
each πl from il to jl. We denote this by s |=d {π0, . . . , πn−1}. We then say that {π0, . . . , πn−1} disjointly
implies π, written as {π0, . . . , πn−1} ⊢d π, if, for every s, we have s |= π whenever s |=d {π0, . . . , πn−1}.

The disjoint implication problem Impld(π) then takes a set of patterns Π as an input and checks
whether Π ⊢d π.

The motivation for this notion comes from the study of querying incompletely described XML
documents [1, 2, 3]. For instance, one may have an incomplete description of children of a node, and a

∗School of Informatics, University of Edinburgh, libkin@inf.ed.ac.uk
†LSV, ENS-Cachan, cristina.sirangelo@lsv.ens-cachan.fr

1

query given by a pattern over a set of possible labels of nodes. The standard database approach is to
look for certain answers, i.e., query evaluation should return true if every XML document matching
the incomplete description matches the query pattern as well. This is precisely the pattern implication
problem. Very often, XML documents are accessed using the DOM interface, in which every node
has its own unique id. Then matches of different subpatterns cannot overlap, as this would lead to
id clashes. Hence, query answering in incomplete XML documents with node ids corresponds to the
problem of disjoint pattern implication. It is also common to consider the setting where a query is
fixed, while data varies (the notion of data complexity).

For the usual matching notion, checking whether s |= Π is polynomial, but Impl(π) could be coNP-
hard, as we have just seen. For the disjoint versions of these problems, the situation is exactly the
opposite: checking whether s |=d Π is intractable, while Impld(π) is solvable in polynomial time for
every π.

Theorem 1 • The problem of checking, for a string s and a set of patterns Π, whether s |=d Π
is NP-complete. It remains NP-complete even if the patterns do not use the wildcard.

• For each pattern π, the problem Impld(π) is solvable in polynomial time.

2 Proof of Theorem 1

We start with the first item. NP membership is immediate – just guess a disjoint matching. For hard-
ness, we use a reduction from the following version of binpacking: given a set N = {u0, . . . , un−1} ⊂ N,
as well as ℓ ∈ N (number of bins) and m ∈ N (capacity of bins), is there a partition of N into ℓ sets so
that the sum of numbers in each set is at most m? The problem is NP-hard even if all the numbers
are in unary. Now assume that 0 and 1 are elements of L; define πi as 0ui for each i ≤ n − 1, and
define s = (0m1)ℓ. Then s |=d {π0, . . . , πn−1} iff there exists a solution to the binpacking problem.

We now move to the second item. We start with some additional notations and auxiliary results.

Given a string s and a position i < |s|, we shall refer to i as the prefix of that position in s and to
|s| − i − 1 as the suffix of that position. If s |= π from i to j, we will also say that s matches π with
prefix i and suffix |s| − j − 1.

We apply the notion of pattern matching, as is, to pairs of patterns: given two patterns π1 =
a0 . . . an−1 and π2 = b0 . . . bm−1 in L∗, we write π1 |= π2 iff there is a number j ≤ n − m so that for
each bi that is not a wildcard, we have bi = ai+j .

We also extend the notion of disjoint pattern matching to ordered sets of patterns. Given a string
s ∈ L∗, a set of patterns Π = {π0, . . . πn−1} in L∗, a subset O ⊆ Π, and a total order <O over O,
we say that s disjointly matches Π under <O, and write s |=d (Π, <O), if there are disjoint intervals
[i0, j0], . . ., [in−1, jn−1] so that:

• s matches each πl from il to jl;

• for all πl, πr ∈ O, if πl <O πr then jl < ir.

This naturally leads to the notion (Π, <O) ⊢d π.

Assume that π is a pattern in L∗. Let Π = {π0, . . . , πn−1} be a set of patterns in L∗. Without loss
of generality, let

π = ()kpreπc()ksuf

where kpre, ksuf ≥ 0 and πc is either the empty string or

πc = ℓ0ℓ2 · · · ℓp−1

2

with ℓ0, ℓp−1 ∈ L and p ≥ 1.

If πc is empty, Impld(π) is straightforward: Π ⊢d ()k iff
∑

πi∈Π
|πi| ≥ k. In fact if

∑
πi∈Π

|πi| ≥ k,

given a string s such that s |=d Π we know |s| ≥
∑

πi∈Π
|πi| ≥ k. Then s |= ()k. On the other hand,

for each πi ∈ Π, by definition of the matching relation, there exists always a string si such that si |= πi

and |si| = |πi|. Then the string s = s0s1 · · · sn−1 disjointly matches Π and has size |s| =
∑

πi∈Π
|πi|.

Thus if
∑

πi∈Π
|πi| < k, clearly s 6|= ()k, and therefore Π 0d ()k.

Hence, in the rest of the proof πc is assumed to be non-empty. Then, given a string s, clearly s |= π

iff s |= πc with prefix at least kpre and suffix at least ksuf .

We will also need the following:

Claim 1 If O = {ρ0, . . . , ρm−1} is an ordered set of patterns (with ordering <O), then there exists a
string s over L such that s |=d (O,<O) and, if s |= π, there exists an index i ∈ [0, . . . ,m − 1] so that
the following hold:

• ρi |= πc;

• if i = 0 then ρi |= πc with prefix at least kpre;

• if i = m − 1 then ρi |= πc with suffix at least ksuf .

Proof Assume w.l.o.g. that in the ordered set O, we have ρi <O ρj whenever i < j. We construct the
string s as follows. Let l be an arbitrary label of L not occurring in πc. For each ρi, if ρi = a0 · · · ak,
construct the string si = b0 · · · bk, where bi = ai if ai ∈ L, and bi = l if ai is a wildcard. Fix arbitrarily
an integer w ≥ |πc| and define s = s0l

ws1l
w . . . lwsm−1 (which gives s = s0 in the case m = 1). Clearly

s |=d (O,<O).

Now assume that s |= π. This implies that s |= πc from some position ic to some position jc with
prefix at least kpre and suffix at least ksuf . Since πc = ℓ0ℓ1 · · · ℓp−1 with ℓ0, ℓp−1 ∈ L, the following
holds:

• positions ic and jc occur within some of the substrings si’s; in fact s(ic) = ℓ0 and s(jc) = ℓp−1

and this can occur only in the si’s as all other positions have label l not occurring in πc.

• positions ic and jc occur in the same substring si of s, since w ≥ |πc|.

Fix i, with 0 ≤ i ≤ m − 1, and assume that ic and jc occur in si; then si |= πc starting from some
position j. As a consequence, for all ℓk which is not a wildcard we have si(j + k) = ℓk. Then, by
construction, also ρi(j + k) = ℓk, which shows that ρi |= πc from position j to position j + |πc| − 1. In
particular, if i = 0, then j = ic ≥ kpre; thus ρi |= πc with prefix at least kpre. Similarly, if i = m − 1,
then the suffix of position j + |πc| − 1 in si (as well as in ρi) equals the suffix of position jc in s, which
is at least ksuf ; therefore ρi |= πc with suffix at least ksuf .

This implies the claim. �

We now describe the procedure to verify whether Π ⊢d π. Let B be the set of all patterns πk ∈ Π
such that πk |= πc (and |B| its cardinality). Let HB be the set of all possible matchings of πc in
patterns of B, i.e., HB is the set of all pairs (πk, [i, j]) such that πk ∈ B and πk |= πc from i to j.
These sets can be computed in time polynomial in the size of Π and π; indeed for each pattern πk ∈ Π,
and for each position in πk, we simply check whether πk |= πc starting from that position.

We now show that if B = ∅, then Π 0d π. Let <Π be an arbitrary total order on Π. We know that
there exists a string s |=d (Π, <Π) satisfying conditions of Claim 1. Clearly s |=d Π, but on the other
hand s 6|= π, otherwise by Claim 1, we would have πi |= πc for some πi ∈ Π. Then πi would belong to
B, which would contradict the fact that B is empty. Hence Π 0d π for empty B.

3

Now assume B 6= ∅. Observe that for each string s, we have s |=d Π iff s |=d (Π, <B) for some total
order <B on B.

For each total order <B on B and for each matching µ = (πk, [i, j]) ∈ HB , define integers pre<B
(µ)

and suf<B
(µ) as the prefix and suffix of the interval [i, j] in µ, ordered with <B . More precisely:

pre<B
(µ) = i +

∑

πl∈B, πl<Bπk

|πl|

suf<B
(µ) = |πk| − j − 1 +

∑

πl∈B, πk<Bπl

|πl|

Since HB can be computed in polynomial time in the size of Π and π, for each given total order
<B , the integers pre<B

(µ) and suf<B
(µ) for all µ ∈ HB can be computed in polynomial time as well.

Claim 2 For each string s such that s |=d (Π, <B) and pattern πk ∈ B, there exists a partition (S, S′)
of Π \ B and integers P ≥

∑
πi∈S |πi| and X ≥

∑
πi∈S′ |πi| such that the following holds:

if µ ∈ HB is a matching in πk, then s |= πc with prefix pre<B
(µ)+P and suffix suf<B

(µ)+X;

Proof Since s |=d (Π, <B), there exist disjoint intervals [ik, jk] in s which match patterns πk of Π, for
k = 0, . . . , n− 1. In particular, among these intervals of s, the ones matching patterns of B follow the
order induced by <B . Therefore since πk ∈ B, intervals [ir, jr] such that πr <B πk precede [ik, jk].
Similarly intervals [ir, jr] such that πk <B πr follow [ik, jk]. Moreover there exists a partition (S, S′)
of Π \B such that intervals [ir, jr] with πr ∈ S precede [ik, jk] and intervals [ir, jr] with πr ∈ S′ follow
[ik, jk]. Since all those intervals are disjoint, and since the cardinality of [ir, jr] is equal to |πr|, we
have ik ≥

∑
πr<Bπk

|πr| +
∑

πr∈S |πr| and |s| − jk − 1 ≥
∑

πk<Bπr
|πr| +

∑
πr∈S′ |πr|. In particular let

ik =
∑

πr<Bπk

|πr| + P with P ≥
∑

πr∈S

|πr|

and
|s| − jk − 1 =

∑

πk<Bπr

|πr| + X with X ≥
∑

πr∈S′

|πr|

Let µ = (πk, [ic, jc]) be a matching in πk, i.e., πk matches πc from ic to jc. By transitivity of the
matching relation, s matches πc from ik + ic to ik + jc. Since πk ∈ B, the prefix of ik + ic is

ik + ic =
∑

πr<Bπk

|πr| + P + ic = pre<B
(µ) + P

and the suffix of ik + jc is

|s| − 1 − (ik + jc) = |s| − 1 − jk + jk − (ik + jc) =
∑

πk<Bπr

|πr| + X + jk − ik − jc = suf<B
(µ) + X

Then s matches πc with prefix pre<B
(µ) + P and suffix suf<B

(µ) + X, as claimed. �

We now distinguish two cases. If |B| ≥ kpre + ksuf + 1, then Π ⊢d π, as shown below.

Claim 3 If |B| ≥ kpre + ksuf + 1, then Π ⊢d π.

4

Proof Given a string s such that s |=d Π then, as observed above, s |=d (Π, <B) for some total
order <B on B. W.l.o.g. let B, totally ordered with <B, be the sequence π0 . . . π|B|−1 of patterns
of Π and let r = kpre. We now take the pattern πr which must belong to B and have, according
to <B, exactly kpre preceding patterns in B and at least ksuf following patterns in B. Then we
take an arbitrary matching µ = (πr, [i, j]) ∈ HB and have pre<B

(µ) ≥ |π0| + · · · + |πr−1| ≥ kpre and
suf<B

(µ) ≥ |πr+1|+ · · ·+ |π|B|−1| ≥ ksuf . It follows from Claim 2 that s |= πc with prefix at least kpre

and suffix at least ksuf . This shows that s |= π and concludes the proof of the claim. �

Now assume |B| < kpre + ksuf + 1. In this case |B| is bounded by a constant that only depends
on the number of leading and trailing wildcards in π (since π is fixed); this allows us to consider all
possible total orders <B on B. That is, we can check whether Π ⊢d π by checking (Π, <B) ⊢d π for
each total order <B on B. Now we show how to check whether (Π, <B) ⊢d π.

Assume again w.l.o.g. that B ordered with <B is given by the sequence π0, . . . π|B|−1 of patterns of
Π. We first check in time polynomial in the size of Π and π whether there exists a matching µ ∈ HB

such that pre<B
(µ) ≥ kpre and suf<B

(µ) ≥ ksuf . The claim below says that this allows to conclude
that (Π, <B) ⊢d π.

Claim 4 If there exists a matching µ ∈ HB such that pre<B
(µ) ≥ kpre and suf<B

(µ) ≥ ksuf , then
(Π, <B) ⊢d π

Proof Given a string s such that s |=d (Π, <B), by Claim 2, s |= πc with prefix at least pre<B
(µ) ≥ kpre

and suffix at least suf<B
(µ) ≥ ksuf . Therefore s |= π. �

If there does not exist a matching satisfying conditions of Claim 4, there are two possibilities covered
by the following three claims.

Claim 5 If for all πi ∈ B, either all matchings µ ∈ HB into πi have pre<B
(µ) < kpre or all matchings

µ ∈ HB into πi have suf<B
(µ) < ksuf , then (Π, <B) 0d π.

Proof We show that there must exist a partition of the sequence (π0, . . . , π|B|−1) into two (possibly
empty) subsequences σ1 = (π0, . . . , πj) and σ2 = (πj+1, . . . , π|B|−1) such that

• for each πi in σ1, all matchings µ ∈ HB into πi have pre<B
(µ) < kpre and

• for each πi in σ2, all matchings µ ∈ HB into πi have suf<B
(µ) < ksuf .

Let j be the maximum index in [0, . . . , |B| − 1] such that all the matchings µ ∈ HB into πj have
pre<B

(µ) < kpre, if it exists. If j exists, let σ1 = (π0, . . . , πj) and σ2 = (πj+1, . . . , π|B|−1), otherwise
let σ1 be empty and σ2 = (π0, . . . , π|B|−1). Clearly, for all πi in σ1 and for all matchings µ ∈ HB into
πi, we also have pre<B

(µ) < kpre. Moreover, by definition of σ1 and σ2 and by the hypothesis of the
claim, for all πi in σ2, all matchings µ ∈ HB into πi have suf<B

(µ) < ksuf . This proves the above
mentioned properties of σ1 and σ2.

Now let πpre (resp. πsuf) be the pattern obtained as the concatenation of patterns of σ1 (resp.,
σ2), in the same order as they appear in σ1 (resp., σ2). We take the totally ordered set of patterns
O = {πpre, π|B|, . . . , πn−1, πsuf} and let <O be the corresponding total order. We know that there
exists a string s satisfying conditions of Claim 1 with O. Notice that s |=d (Π, <B); we now show that
s 6|= π, thus showing that (Π, <B) 0d π.

Assume to the contrary that s |= π. Then there exists an index i ∈ [0, . . . , |O| − 1] where the
conditions of Claim 1 are satisfied. This index i must be equal to either 0 or |O| − 1, otherwise
there would exists a pattern in {π|B|, . . . , πn−1} matching πc; then this pattern would belong to B,
contradicting the hypothesis that B = {π0, . . . , π|B|−1}. Assume first i = 0.

5

In this case, by Claim 1, πpre |= πc with prefix p ≥ kpre. On the other hand p must be at most
equal to the maximum value of pre<B

(µ) for all matchings µ ∈ HB in patterns of σ1. By definition of
σ1, this maximum value is strictly less than kpre, then p < kpre. This is a contradiction.

With a symmetric argument we reach a contradiction also in the case that i = |O| − 1. This proves
that (Π, <B) 0d π, as claimed. �

If conditions of Claim 5 are not satisfied, there must exist πr ∈ B and two matchings µ1, µ2 ∈ HB in
πr such that suf<B

(µ1) ≥ ksuf and pre<B
(µ2) ≥ kpre. On the other hand we must have pre<B

(µ1) <

kpre and suf<B
(µ2) < ksuf , otherwise either µ1 or µ2 would satisfy conditions of Claim 4. (Notice that

such a πr, as well as µ1 and µ2 can be found by simply scanning HB.) In this situation there are again
two cases depending on whether

∑
π∈Π\B |πi| ≥ kpre + ksuf holds.

Claim 6 If
∑

π∈Π\B |πi| ≥ kpre + ksuf , then (Π, <B) ⊢d π.

Proof Let s |=d (Π, <B), then s with the pattern πr satisfies properties of Claim 2. In particular,
since both µ1 and µ2 are matchings in πr, Claim 2 implies that there exist integers P and X such that
P + X ≥

∑
πi∈Π\B |πi| ≥ kpre + ksuf and both the following conditions hold:

• s |= πc with prefix p1 = pre<B
(µ1) + P and suffix x1 = suf<B

(µ1) + X ≥ ksuf ;

• s |= πc with prefix p2 = pre<B
(µ2) + P ≥ kpre and suffix x2 = suf<B

(µ2) + X.

Now there are two cases. If P ≥ kpre, then p1 ≥ kpre, therefore s |= πc with prefix p1 ≥ kpre and
suffix x1 ≥ ksuf . If conversely P < kpre, then X > ksuf , hence x2 > ksuf ; therefore s |= πc with prefix
p2 ≥ kpre and suffix x2 ≥ ksuf . In both cases s |= π. This shows that (Π, <B) ⊢d π. �

If
∑

πi∈Π\B |πi| < kpre + ksuf , this quantity is a constant depending only on the number of leading
and trailing wildcards in the pattern π. Then we consider all possible partitions of Π\B into two sets
S and S′; there is a constant number of them. Checking all these partitions, we can verify whether
(Π, <B) ⊢d π as follows.

Claim 7 If for each partition (S, S′) of Π \ B there exists a matching µ ∈ HB into πr such that
pre<B

(µ) +
∑

πi∈S |πi| ≥ kpre and suf<B
(µ) +

∑
πi∈S′ |πi| ≥ ksuf , then (Π, <B) ⊢d π. Otherwise

(Π, <B) 0d π.

Proof Assume s |=d (Π, <B). Then we know that for s and πr there exists a partition (S, S′) of Π \B

and integers P and X as stated in Claim 2. By the hypothesis, we also know that there exists a
matching µ ∈ HB into πr such that pre<B

(µ) +
∑

πi∈S |πi| ≥ kpre and suf<B
(µ) +

∑
πi∈S′ |πi| ≥ ksuf .

Then by Claim 2, s |= πc with prefix pre<B
(µ) + P ≥ pre<B

(µ) +
∑

πi∈S |πi| ≥ kpre and suffix
suf<B

(µ) + X ≥ suf<B
(µ) +

∑
πi∈S′ |πi| ≥ ksuf . This shows that s |= π and therefore (Π, <B) ⊢d π.

Conversely, assume there exists a partition (S, S′) of Π \B such that all matchings µ ∈ HB into πr

have either pre<B
(µ) +

∑
πi∈S |πi| < kpre or suf<B

(µ) +
∑

πi∈S′ |πi| < ksuf . Notice that in particular
µ1 must have pre<B

(µ1) +
∑

πi∈S |πi| < kpre, because it satisfies suf<B
(µ1) ≥ ksuf . Similarly we must

have suf<B
(µ2) +

∑
πi∈S′ |πi| < ksuf .

Let πS and πS′ be the concatenations of patterns of S and of S′, respectively, in an arbitrary order.
Let πSS′ be πSπ0 · · · π|B|−1πS′ . We know there exists a string s satisfying the conditions of Claim 1
with O = {πSS′}; notice that s |=d (Π, <B). We now show that s 6|= π, thus showing that (Π, <B) 0d π.

Assume to the contrary that s |= π. Then, by Claim 1, πSS′ |= πc with prefix p ≥ kpre and suffix
x ≥ ksuf . Moreover notice that the existence of matchings µ1 and µ2 in πr implies that πSS′ |= πc

with prefix |πS |+pre<B
(µi) and suffix |πS′ |+ suf<B

(µi), for both i = 1 and i = 2. Now there are three
cases.

6

• If p ≤ |πS | + pre<B
(µ1) then p < kpre, which is a contradiction.

• If x ≤ |πS′ | + suf<B
(µ2) then x < ksuf , which is a contradiction.

• Otherwise the matching into πSS′ with prefix p and suffix x corresponds to some matching into
πr. More precisely there exists a matching µ ∈ HB into πr such that p = |πS | + pre<B

(µ) and
x = |πS′ | + suf<B

(µ). Then either p < kpre or x < ksuf . This is also a contradiction.

This proves that s 6|= π and therefore (Π, <B) 0d π, thus concluding the proof of the claim. �

Since one of the cases considered in Claims 3, 4, 5, 6 and 7 has to occur, the above results define a
procedure for checking whether Π ⊢d π.

The cost of this procedure is dominated by the cost of the following computation:

• compute sets B and HB;

• check |B| ≥ kpre + ksuf + 1;

• in the case |B| < kpre + ksuf + 1, for each total order <B on B

– compute pre<B
(µ) and suf<B

(µ) for all µ ∈ HB;

– check conditions of Claims 4, 5, 6 and 7.

We have already observed that sets B and HB, as well as pre<B
(µ) and suf<B

(µ), for all µ ∈ HB,
can be computed in polynomial time in the sizes of Π and π. Moreover, conditions of Claims 4, 5, 6
can be checked in time polynomial in the sizes of Π and π. This is also true for Claim 7 if kpre and
ksuf are fixed (which is our case, as π is fixed). This implies that the cost of the above computation is
O(p(|Π|+ |π|)), for some polynomial p depending only on the number of leading and trailing wildcards
in π, and concludes the proof of Theorem 1. �

Remark 1 The proof shows that the problem of checking whether Π ⊢d π, with π being a part of

the input, is in PTIME if the number of leading and trailing wildcards in π is fixed. That is, for every
fixed k, ℓ, the problem of checking whether Π ⊢d ()kaπb()ℓ, with a, b ∈ L and π ∈ L∗, is solvable in
polynomial time when both Π and π are inputs.

Acknowledgment Supported by EPSRC grants E005039 and F028288 and by the FET-Open FOX
project, grant agreement 233599. We thank Pablo Barceló and Gonzalo Navarro for their comments.

References

[1] S. Abiteboul, L. Segoufin, V. Vianu. Representing and querying XML with incomplete information.
ACM TODS, 31 (2006), 208–254.

[2] P. Barceló, L. Libkin, A. Poggi, C. Sirangelo. XML with incomplete information: models, proper-
ties, and query answering. In PODS’09, pages 237–246.

[3] H. Björklund, W. Martens, T. Schwentick. Conjunctive query containment over trees. DBPL’07,
pages 66–80. Full version to appear in JCSS.

[4] D. Maier. The complexity of some problems on subsequences and supersequences. J. ACM 25(2):
322–336 (1978).

[5] Document Object Model (DOM). W3C Recommendation, April 2004.
http://www.w3.org/TR/DOM-Level-3-Core.

7

