
Conservativity of Nested Relational Calculiwith Internal Generic Functions�Leonid Libkin and Limsoon WongDepartment of Computer and Information Science,University of Pennsylvania,Philadelphia, PA 19104-6389, USA.email: flibkin, limsoong@saul.cis.upenn.edu
AbstractIt is known that queries in nested relational calculus are independent of the depth of set nestingin the intermediate data and this remains true in the presence of aggregate functions. We prove thatthis continues to be true if the calculus is augmented with any internal generic family of functions.1 IntroductionParedaens and Van Gucht [7] proved that the nested relational calculus is no more expressive thanthe traditional relational calculus when input and output are
at relations. That is, every query oninput and output whose depth of set nesting is at most 1 (or
at relations) can be expressed withoutusing any intermediate data whose depth of set nesting is greater than 1. This result was generalizedby Wong [10] who showed that every query on input and output whose depth of set nesting is at mostk can be expressed without using any intermediate data whose depth of set nesting is greater than k.Hence the expressive power of the nested relational calculus is independent of the depth of set nestingallowed in the intermediate data. This property is called the conservative extension property. Libkinand Wong [5] showed that when the nested relational calculus is endowed with aggregate functions, itretains the conservative extension property.The aim of this paper is to demonstrate that the nested relational calculus continues to retain theconservative extension property even in the presence of any family of functions that are generic anddo not invent new values. The strategy is to combine the rewriting technique of Wong [10] and thee�ective lifting of linear orders of Libkin and Wong [5] to encode any such function into one whoseheight is minimum.�To appear in Information Processing Letters.

1

Lambda Calculus and Productsxs : s e : t�xs:e : s ! t e1 : s ! t e2 : se1 e2 : t () : unit e : s� t�1 e : s �2 e : t e1 : s e2 : t(e1; e2) : s� tSet Monadfgs : fsg e : sfeg : fsg e1 : fsg e2 : fsge1 [e2 : fsg e1 : ftg e2 : fsgSfe1 j xs 2 e2g : ftgBooleanstrue : B false : B e1 : B 2 : t 3 : tif e1 then e2 else e3 : t2 Nested relational calculusWe use the nested relational calculus NRC as presented in Breazu-Tannen, Buneman, and Wong [3].In this section, it is extended with natural numbers, simple arithmetics, and a summation operator.Types. A type in NRC is either a complex object type or is a function type s! t where s and t arecomplex object types. The complex object types are given by the grammar:s; t ::= b j B j unit j s�t j fsgObjects of type B are the two boolean values true and false. The unique object of type unit is denotedby (). Objects of type s� t are pairs whose �rst (or left) components are objects of type s and second(or right) components are objects of type t. Objects of type fsg are �nite sets of objects of type s.We also included some uninterpreted base types b.Expressions. Expressions of NRC are constructed using the rules in the �gure. The language alsocontains some uninterpreted constants c of base type Type(c) and uninterpreted functions p of functiontype Type(p).The type superscripts are omitted in the rest of the paper because they can be inferred [6]. Thesemantics of NRC was described in [3]. We repeat the meaning of the set monad constructs here. fgis the empty set. feg is the singleton set containing e. e1 [e2 is the union of sets e1 and e2. Theconstruct Sfe1 j x 2 e2g denotes the set obtained by �rst applying the function �x:e1 to elements ofthe set e2 and then taking their union. The shorthand fo1; : : : :ong is used to denote fo1g[: : :[fong,provided o1, ..., on are distinct objects.As it stands, NRC can merely express queries that are purely structural. It was shown in [3] thatendowing NRC with equality test =s: s� s! B at all types s elevates NRC to a fully
edged nestedrelational language (in fact, equivalent to classical nested relational algebra of [8]). That is, operationssuch as nest, membership test 2s: s � fsg ! B , subset test �s: fsg � fsg ! B , set intersection, set2

di�erence, etc. are expressible in NRC(=) (we write the additional primitive in brackets to distinguishvarious extensions of the language).Practical database query languages frequently have to deal with queries such as \select maximum ofcolumn," \select count from column," etc. To handle this kind of queries, we add natural numbers(whose type is denoted by N) and the following constructs:e1 : N 2 : Ne1 + e2 : N e1 : N 2 : Ne1 � e2 : N e1 : N 2 : Ne1 : e2 : N e1 : N 2 : fsgPfe1 j xs 2 e2g : Nwhere +, �, and : are respectively addition, multiplication, and modi�ed subtraction on naturalnumbers. (That is, if n � m, then n : m = 0; if n > m, then n : m = n � m.) The summationconstruct Pfe1 j xs 2 e2g denotes the number obtained by �rst applying the function �x:e1 to everyitem in the set e2 and then adding the results up. That is, Pfe1 j x 2 Xg is f(o1) + : : :+ f(on) if fis the function denoted by �x:e1 and fo1; : : : ong is the set denoted by X. It should be stressed thatin the construct Pfe1 j x 2 e2g, the fe1 j x 2 e2g part is not an expression; hence this construct isstronger than just adding P : fNg ! N.The extended language NRC(N;+; �; : ;P;=), where the additional base types and primitives are ex-plicitly listed between brackets, is capable of expressing many aggregate functions found in commercialdatabases. Here are two examples: \count the number of records in R" is count(R) ,Pf1j x 2 Rgand \total up the �rst column of R" is total(R) ,Pf�1 x j x 2 Rg.Now we formally de�ne the conservative extension property. The set height ht(s) of a type s is de�nedby induction on the structure of type: ht(unit) = ht(b) = 0, ht(s� t) = ht(s! t) = max(ht(s); ht(t)),and ht(fsg) = 1 + ht(s). Every expression of our language has a unique typing derivation. Theset height of expression e is de�ned as ht(e) = maxfht(s) j s occurs in the type derivation of eg.Let Li;o;h denote the class of functions whose input has set height at most i, whose output has setheight at most o, and which are de�nable in the language L using an expression whose set height isat most h � max(i; o). L is said to have the conservative extension property with �xed constant k ifLi;o;h = Li;o;h+1 for all i, o, and h � max(i; o; k).It is known from Wong [10] and Libkin and Wong [5] thatTheorem 2.1 NRC(N;+; �; : ;P;=) has the conservative extension property with �xed constant 0.Moreover, NRC(N;+; �; : ;P;=) endowed with any additional primitive p : s! t also has the conser-vative extension property with �xed constant ht(s! t). 23 Lifting of linear ordersIn this section we present a technique to lift linear order from base types to all types. This techniqueplays the key role in the encoding used in the next section.The following lemma is a folklore (see Wechler [9]):3

Lemma 3.1 Given a partially ordered set hA;�i, de�ne an ordering - on its �nite powerset P�n(A)as follows: X - Y i� max((X�Y)[(Y �X)) � Y , or, equivalently, if 8x 2 X�Y 9y 2 Y �X : x � y.Then - is a partial order. Moreover, if � is linear, then so is -. 2This way of lifting linear order can be easily expressed in NRC(N;+; �; : ;P;=). Therefore, we haveTheorem 3.2 Suppose a linear order �b is given for each base type b. Then a linear order �t iscomputable by NRC(N;+; �; : ;P;=) for each type t.Proof. De�ne �t by induction on types. For a base type �b is given. For pairs it is de�ned lexico-graphically: x �t�s y , if �1 x �s �1 y then (if �1 x =s �1 y then �2 x �t �2 y else true) else false.For set types we use lemma 3.1: X �fsg Y , if X v[s Y then (if Y v[s X then X �[s Y else true) else false.Here X v[s Y i� 8x 2 X9y 2 Y : x �s y and X �[s Y i� X�Y v[s Y �X. These can be implementedas follows. X v[s Y , 0 =B �fif (�fif x �s y then 1 else 0 j y 2 Y g) =N 0 then 1 else 0 j x 2 Xgand X �[s Y , (�fif x 2s Y then 0 else (if (�fif y 2s X then 0 else (if x �s y then 1 else 0) j y 2Y g) =N 0 then 1 else 0) j x 2 Xg) =N 0. 2We denoteNRC(N;+; �; : ;P;=) endowed with linear orders at base types byNRC(N;+; �; : ;P;=;�).Notice that if B and N are the only base types, then this does not add expressive power since theorderings on booleans and naturals are de�nable: false �B true and n �N m , (n : m =N 0).Corollary 3.3 A rank assignment is a function sort : fsg ! fs � Ng such that sortfa1; : : : ; ang =f(a1; 1); : : : ; (an; n)g where a1 �s : : : �s an. Rank assignment is expressible in NRC(N;+; �; : ;P;=;�).Proof. De�ne sort(x) , Sf(r;�fif c �s r then 1 else 0 j c 2 xg) j r 2 xg. 2Finally, we have the followingCorollary 3.4 If all orderings on the base types are well-founded, then so are the lifted orderings.Furthermore, if constant minb : b and function succb : b! b (meaning minimal element and successor)are given for each base type b, they can be de�ned for any type.Proof. The �rst statement follows from the fact that X - Y implies X v[Y where X v[Y i�8x 2 X9y 2 Y : x � y, and v[is known to be well-founded if � is [2]. Minimal elements are de�nableas follows: mint�s = (mint;mins) and minftg = fg. It is clear how to de�ne succ for pairs. To de�nesucc for set types, consider a set X : ftg. Let a be the minimal element of type t which is not in X,and let X0 = fx 2 X j x �t ag and X1 = fx 2 X j a �t xg. We claim X1 [a = succftg(X). Clearly,X �ftg X1 [a. Let X �ftg Y . Let a 2 Y . Assume x 2 X1 [a� Y = X1 � Y . Then x 2 X � Y andthere exists y 2 Y �X such that x �t y. Since y 6= a, we obtain y 2 Y � (X1 [a) and X1 [a �ftg Y .If a 62 Y and x 2 X1 [a � Y , then Y � (X1 [a) = Y �X1. Therefore, if x 2 X1 � Y , there existsy 2 Y � X1 such that x �t y. Let ym = max(Y � X1). If ym �t a, then Y �X1 � X0 and Y � Xwhich contradicts our assumption. Then, since a 62 Y , a �t ym and therefore X1 [a �ftg Y . Thisproves our claim. Therefore, succftg(X) is fmintg [X if mint 62 X and X1 [a if mint 2 X wherea = succt(x0) and x0 = minfx 2 X j succt(x) 62 Xg and X1 is de�ned as above. The expressibility ofsuccftg follows immediately. 24

4 The main resultWe �rst de�ne the notion of internal and generic family of functions. Then we show that the con-servative extension property of NRC(N;+; �; : ;P;=) endowed with well-founded linear orders can bepreserved in the presence of any such family of functions. Introduce type variables �i and considernonground complex object types�; � ::= � j b j B j N j unit j � � � j f�gIf �1, ..., �n occur in �, then �[s1=�1; : : : ; sn=�n] stands for the type obtained by replacing everyoccurrence of �i in � by si. A complex object type s is an instance of a nonground complex objecttype � if there are complex object types s1, ..., sn such that s = �[s1=�1; : : : ; sn=�n] where �1, ...,�n are all the type variables in �. The minimal height mht(�) of type � is de�ned as the depth ofnesting of set brackets in �. That is, mht(�) is equivalent to ht(s) where s is obtained from � byreplacing all occurrences of type variables in � by unit . Let p�1;:::;�n : � ! � stand for a family offunctions ps1;:::;sn : s ! t where s = �[s1=�1; : : : ; sn=�n] and t = � [s1=�1; : : : ; sn=�n]. (Note that foreach s1, ..., sn, there is exactly one ps1;:::;sn in the family p�1;:::;�n .) The minimal height mht(p) ofp�1;:::;�n : � ! � is de�ned as max(mht(�);mht(�)).Let s = �[s1=�1; : : : ; sn=�n; t=�]. Let doms;t�;�(o) be the set of subobjects of type t in the object o : soccurring at positions corresponding the the type variable �. Formally, de�ne doms;t�;� : s ! ftgas follows: doms;tb;�(x) = fg; doms;t�;�(x) = fxg; doms;t�0;�(x) = fg, where � and �0 are distinct typevariables; domu�v;t���;�(x; y) = domu;t�;�(x) [domv;t�;�(y); and domfsg;tf�g;�(X) = Sfdoms;t�;�(x) j x 2 Xg.De�nition 4.1 The family of functions p�1;:::;�n : � ! � is internal (see [4]) in �i if for all complexobject types s = �[s1=�1; : : : ; sn=�n], t = � [s1=�1; : : : ; sn=�n], and complex object o : s, it is the casethat domt;si�;�i(ps1;:::;sn(o)) � doms;si�;�i(o). 2In other words, p�1;:::;�n : � ! � is internal in �i if it does not invent new values in positionscorresponding to the type variable �i.Let s = �[s1=�1; : : : ; sn=�n; t=�], r = �[s1=�1; : : : ; sn=�n; t0=�], and : t! t0. Let modulates;t;t0�;�; (O)be the object O0 : r obtained by replacing every subobject o : t in O : s occurring in positionscorresponding to type variable � by (o) : t0. Formally, de�ne modulates;t;t0�;�; : s ! r as follows:modulates;t;t0b;�; (x) = x; modulates;t;t0�;�; (x) = (x); modulates;t;t0�0;�; (x) = x, where � and �0 are distincttype variables; modulateu�v;t;t0���;�; (x; y) = (modulateu;t;t0�;�; (x); (modulatev;t;t0�;�; (y)); modulatefsg;t;t0f�g;�; (X) =fmodulates;t;t0�;�; (x) j x 2 Xg.De�nition 4.2 The family of functions p�1;:::;�n : � ! � is generic in �i if for all complex object typess = �[s1=�1; : : : ; sn=�n], t = � [s1=�1; : : : ; sn=�n], complex object o : s, set R : frg, and : si ! rsuch that is a bijection from doms;si�;�i(o) to R and �1 : r ! si is its inverse when restricted to
5

doms;si�;�i(o), it is the case that s ps1;:::;sn - t
s0modulates;si;r�;�i; ? ps01;:::;s0n - t06modulatet0;r;si�;�i; �1the above diagram, where s0j = sj for j 6= i and s0i = r, commutes. 2A family p�1;:::;�n : � ! � is called internal generic if it is internal and generic in all type variables. Weremark here that our notion of genericity is slightly di�erent from that in [4]. In particular, genericdoes not imply internal, in contrast to [4].Now we demonstrate that adding a internal and generic family p�1;:::;�n to NRC(N;+; �; : ;P;=;�)does not destroy its conservative extension property. We assume that �b: b� b! B is a well-foundedlinear order for every base type b. Consider NRC(N;+; �; : ;P;=;�;F) obtained by adding thefollowing construct to NRC(N;+; �; : ;P;=;�):e1 : s e2 : ftgFfe1 j xt 2 e2g : swhere Ffe1 j xt 2 e2g is the greatest element in the set fe1 j xt 2 e2g (it is mins when the set isempty). Note that Ffe1 j x 2 e2g is already de�nable in NRC(N;+; �; : ;P;=;�) if e1 : fsg, andcan be treated as a syntactic sugar. It is clear that both doms;t�;� and modulates;t;t0�;�; are de�nable inNRC(N;+; �; : ;P;=;�;F) whenever is.Proposition 4.3 Let p�1;:::;�n : � ! � be a family of functions that is internal generic. ThenNRC(N;+; �; : ;P;=;�;F) endowed with the family of primitives p�1;:::;�n has precisely the expressivepower of NRC(N;+; �; : ;P;=;�;F) endowed with just the primitive pN;:::;N.Proof. For each s = �[s1=�1; : : : ; sn=�n] and o : fsig, de�ne� (o) , �x:Ffif x = �1 y then �2 y else 0 j y 2 sort(o)g and� �1(o) , �x:Ffif x = �2 y then �1 y else mins j y 2 sort(o)g,where sort : fsig ! fsi � Ng is as de�ned in corollary 3.3. (o) and �1(o) are functions of typesi ! N and N ! si respectively. Clearly, (o) when restricted to o is a bijection whose inverse is �1(o).Let ui = �[N=�1 ; : : : ;N=�i�1 ;si=�i; : : :sn=�n] and vi = � [N=�1 ; : : : ;N=�i�1 ;si=�i; : : :sn=�n].Note that s = u1 and t = v1. De�ne� i(o) ,modulateui;si;N�;�i; (doms;si�;�i (o)) and 6

� �1i (o) ,modulatevi+1;N;si�;�i; �1(doms;si�;�i (o)).Then the following diagram commutes by induction on n and by the assumption that the familyp�1;:::;�n is internal and generic.o : u1 1(o) - � : u2 � : un n(o)- � : un+1
� : v1ps1;:::;sn? � �11 (o) � : v2pN;s2;:::;sn? � : vn?pN;:::N;sn� �1n (o) � : vn+1?pN;:::;NHence ps1;:::;sn = �x: �11 (x) � � � � � �1n (x) � pN;:::;N � n(x) � � � � � 1(x). The right hand side is clearlyexpressible in NRC(N;+; �;�;�;P;=;�;F; pN;:::;N). 2Next we sketch the proof of the conservativity of NRC(N;+; �; : ;P;=;�;F).Proposition 4.4 NRC(N;+; �; : ;P;=;�;F) has the conservative extension property with �xed con-stant 0. Moreover, when endowed with any additional primitive p, it retains the conservative extensionproperty with �xed constant ht(p).Proof sketch. The proof of theorem 2.1 is based on rewriting expressions of the language to normalforms in which the e2 in subexpressions of the form Sfe1 j x 2 e2g are variables. Such rewrite systemwas exhibited in Wong [10]. In Libkin and Wong [5] additional rules forP were given which guaranteethat e2 in any subexpressionPfe1 j x 2 e2g is a variable. The rewrite system was shown to be stronglynormalizing and conservativity was derived by analyzing the normal forms.Now we add the following rewrite rules for F, assuming that the use of the construct Ffe1 j x 2 e2gis restricted to the situation when the type of e1 is not a set type (when e1 : fsg, it is treated as ashorthand.)� Ffe j x 2 fgg; min� Ffe1 j x 2 fe2gg; e1[e2=x]� Ffe j x 2 e1 [e2g; if Ffe j x 2 e1g � Ffe j x 2 e2g then Ffe j x 2 e2g else Ffe j x 2 e1g� Ffe1 j x 2 Sfe2 j y 2 e3gg; FfFfe1 j x 2 e2g j y 2 e3g� Ffe j x 2 if e1 then e2 else e3g; if e1 then Ffe j x 2 e2g else Ffe j x 2 e3g� �i Ffe1 j x 2 e2g; Sfif Pfif e1 � e1[y=x] then 1 else 0 j y 2 e2g = 1 then �i e1 else fg j x 2e2g, when e1 : fsg.� �i Ffe1 j x 2 e2g; Ffif Pfif e1 � e1[y=x] then 1 else 0 j y 2 e2g = 1 then �i e1 else fg j x 2e2g, when e1 is not of set type. 7

The extended collection of rewrite rules forms a weakly normalizing rewrite system and conservativitycan be derived by induction on the induced normal forms along the lines of Wong [10]. 2Putting together the two previous propositions, the desired theorem follows straightforwardly.Theorem 4.5 NRC(N;+; �; : ;P;=;�;F) endowed with a internal generic family p�1;:::;�n : � ! �has the conservative extension property with �xed constant mht(p). 25 Some corollariesAs remarked earlier, Ffe1 j x 2 e2g is already de�nable in NRC(N;+; �; : ;P;=;�) if e1 : fsg.Therefore, if every type variable occurs in the scope of some set brackets in � and � , then the assump-tion of well-foundedness on �b used in proposition 4.3 is not required and the proposition holds forNRC(N;+; �; : ;P;=;�). Thus, we haveCorollary 5.1 NRC(N;+; �; : ;P;=;�) endowed with a internal generic family p�1;:::;�n : � ! � ,where each type variable is within the scope of some set brackets, has the conservative extensionproperty at all input and output heights with �xed constant mht(p). 2In particular, any polymorphic function de�nable in the algebra of Abiteboul and Beeri [1], which isequivalent to NRC(=; powerset), gives rise to a internal generic family of functions for all possibleinstantiations of type variables. (Observe that this is not true for NRC(N;+; �; : ;P;=;�) becausesuccN is de�nable and therefore can be lifted to any type by corollary 3.4. This also indicates that thenotion of internal and generic family is more general than polymorphic functions.) Now we concludeimmediately that the following languages possess the conservative extension property (see also [5]):� NRC(N;+; �; : ;P;=;�;t) with �xed constant 1, and� NRC(N;+; �; : ;P;=;�; powrst) with �xed constant 2.where tcs : fs � sg ! fs � sg is the transitive closure of binary relations. Since the Abitebouland Beeri algebra has the power of a �xpoint logic, a great deal of polymorphic functions can beadded to NRC(N;+; �; : ;P;=;�) without destroying its conservative extension property (but maybe increasing the �xed constant).Acknowledgements. We thank Peter Buneman, Rick Hull and Dan Suciu for helpful discussions.We are also grateful to the anonymous referees for the useful comments. Leonid Libkin was supportedin part by NSF Grant IRI-90-04137 and AT&T Doctoral Fellowship and Limsoon Wong was supportedin part by ARO Grant DAAL03-89-C-0031-PRIME.References[1] S. Abiteboul and C. Beeri. On the power of languages for the manipulation of complex objects.In Proc. International Workshop on Theory and Applications of Nested Relations and ComplexObjects, Darmstadt, 1988. 8

[2] G. Birkho�. Lattice Theory. American Mathematical Society, 3rd edition, 1967.[3] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query languages. In J. Biskupand R. Hull, editors, LNCS 646: Proc. International Conference on Database Theory, Berlin,Germany, October, 1992, pages 140{154. Springer-Verlag, October 1992.[4] R. Hull. Relative information capacity of simple relational database schemata. SIAM Journal ofComputing, 15(3):865{886, 1986.[5] L. Libkin and L. Wong. Aggregate functions, conservative extension, and linear orders. InProceedings of 4th International Workshop on Database Programming Languages, Springer Verlag,1993, pages 279{292.[6] A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programming in Machiavelli: A poly-morphic language with static type inference. In J. Cli�ord, et al., editors, Proc. ACM-SIGMODInternational Conference on Management of Data, pages 46{57, Portland, Oregon, June 1989.[7] J. Paredaens and D. Van Gucht. Converting nested relational algebra expressions into
at algebraexpressions. ACM Transaction on Database Systems, 17(1):65{93, 1992.[8] S. J. Thomas and P. C. Fischer. Nested relational structures. In P. C. Kanellakis, editor, Advancesin Computing Research: The Theory of Databases, pages 269{307. JAI Press, 1986.[9] W. Wechler. Universal Algebra for Computer Scientists, Springer-Verlag, Berlin, 1992.[10] L. Wong. Normal forms and conservative properties for query languages over collection types. InProceedings of 12th ACM Symposium on Principles of Database Systems, pages 26{36, Washing-ton, D. C., May 1993.

9

