
On Representation and Querying Incomplete Informationin Databases with BagsLeonid LibkinAT&T Bell Laboratories600 Mountain AvenueMurray Hill, NJ 07974, USAEmail: libkin@research.att.com Limsoon WongReal World Computing Partnership Novel FunctionInstitute of Systems Science LaboratoryHeng Mui Keng Terrace, Singapore 0511Email: limsoon@iss.nus.sgAbstractWe extend the approach to representation of partial information based on orderings on objectsfrom sets to multisets. We characterize orderings arising under closed- and open-world assumptionsand analyze their complexity. In contrast to the set case, where orderings are �rst-order de�nableand are thus expressible in standard database query languages, the orderings on bags are notexpressible in standard bag languages. We give an example of a query on nested relations whoseinexpressibility in the extension of relational algebra to nested objects cannot be proved by reductionto the �rst-order case.1 IntroductionOne approach to representing partial information in databases that treats objects as elements ofpartially ordered sets, where the meaning of the order is \being more informative", has proved tobe very useful for analyzing incompleteness of information in the relational database model and itsextensions [3, 5, 9, 12]. In particular, it has allowed a number of powerful tools from denotationalsemantics of programming languages to be used to analyze the phenomenon of incomplete information[1, 4, 7, 8]. All these papers deal with set-based databases. However, real database systems frequentlyuse bags (also called multisets) as the underlying model. While there was a urry of activity in studyingmany aspects of bag-based databases { query language design, expressive power and complexity, queryoptimization and view maintenance, to name a few { no work has been done on partial informationand bags.We present two main results. First, we extend the order-theoretic approach from sets to bags. Thisresults in two orderings that must be used for bags under the open- and the closed-world assumptions.Second, we prove that these orderings are not de�nable in basic bag algebras such as those in [2, 11].This may impact query language design for bag-based databases. While in the set case, orderings arede�nable in any language that extends relational calculus, in the bag case one may have to enrichbasic languages with primitives capable of expressing these orderings. In addition, as a somewhatunexpected corollary, we prove that the existence of systems of distinct representatives cannot betested in the nested relational algebra, which is a natural extension of relational algebra to nestedrelations or complex objects. Unlike all other known limitations of expressive power of the nestedrelational algebra, this one cannot be proved by a reduction to the �rst-order case.1



2 Ordering on Objects and PartialityDatabase objects are built from base objects such as tuples of reals, booleans, etc. by using collectiontype constructors such as sets and bags. The \being more informative" ordering is given for values ofbase types, usually by specifying possible null values; for example, the no-information null ? is lessinformative than any non-null value. Therefore, to order arbitrary database objects, one has to liftorderings to collections.We consider sets �rst. Suppose a partially-ordered set hA;�i is given and we want to lift � to �nitesubsets of A. Three liftings are frequently used in semantics of concurrency [4]: the Hoare, Smyth,and Plotkin orderings de�ned below. They are generally pre-orders. However, when restricted toantichains, which are sets without comparable elements, they become partial orders.(Hoare) X �H Y , 8x 2 X 9y 2 Y : x � y(Smyth) X �S Y , 8y 2 Y 9x 2 X : x � y(Plotkin) X �P Y , X �H Y and X �S YOrdering Sets of Incomplete ObjectsTo de�ne orderings for collections, we adopt the approach of [9]. A collection C1 is more informativethan C2 if C2 can be obtained from C1 by a sequence of elementary updates that add information.This approach reduces the problem of choosing an ordering to the problem of formulating elementaryupdates. Such updates depend on certain assumptions on partial data. We consider two, following [5,3]. The closed-world assumption or CWA, says that only elementary updates that improve knowledgeabout objects in the database are allowed. That is, adding new objects is not allowed, unless theyimprove upon objects already in the database. In contrast, the open-world assumption or OWA, allowsboth adding objects and improving knowledge of objects already stored. That is, databases are openfor new objects.To formalize this, we de�ne the following updates on subsets of hA;�i:X CWA7�! (X � fxg) [X 0 where x 2 X, X 0 6= ; and x � x0 for all x0 2 X 0.X OWA7�! Y i� X CWA7�! Y or X � Y .Let vCWA and vOWA denote the transitive-reexive closure of CWA7�! and OWA7�!. That is, X vCWA Y orX vOWA Y if Y is obtained from X by a sequence of allowed updates that add information.Proposition 2.1 (See [9, 8].) X vOWA Y i� X �H Y , and X vCWA Y i� X �P Y . Moreover, thiscontinues to hold when subsets are restricted to antichains and updates are modi�ed in such a waythat after each update only maximal (most informative) elements are retained. 2We should remark that the Smyth ordering �S corresponds to or-sets that are sets of possible choices.This was �rst observed in [14] and formalized in a way similar to Proposition 2.1 in [9]. It should alsobe noted that in early work on using orderings for partiality, orderings for collections were usuallychosen in an ad hoc way, without any justi�cation.2



Ordering Bags of Incomplete ObjectsWe now use similar techniques to de�ne orderings for bags. To extend the update idea, notice that inbags we do not identify objects even if information we have about them is the same, since later wemay obtain additional information that would distinguish one object from the other.This justi�es the following de�nition. Bag B2 is more informative than bag B1 if B2 can be obtainedfrom B1 by a sequence of updates of the following form: (1) an element a in B1 is replaced by anelement b such that b is more informative than a, and under the OWA, (2) an element b is added toB1. Notice that in contrast to the set case, updates of form (1) replace an element by an element. Insets we do identify elements if we have the same information about them. Thus, we had to permitreplacement of an element by a set to account for the fact that one element of a set may representmore than one object.Formally, let hA;�i be a partially-ordered set. We use the fjjg brackets for bags. We also use ] foradditive union and : for bag di�erence. Updates are de�ned as follows:B CWA (B : fjajg) ] fjbjg if a 2 B and a � b.B OWA B0 i� B CWA B0 or B0 = B ] fjbjg.As for sets, we denote the reexive-transitive closure of CWA and OWA respectively by ECWA and EOWA.To describe these relations, let Nq denote the totally unordered poset whose elements are naturalnumbers. (The superscript is used to distinguish it from N, which typically denotes natural numberswith the usual ordering.) Given a �nite bag B and an injective map � : B ! Nq , which is called alabeling, we denote the set f(b; �(b)) j b 2 Bg by �(B). In other words, � assigns a unique label toeach element of a bag. The ordering on pairs (b; n) where b 2 B and n 2 Nq is the usual pair ordering;that is, (b; n) � (b0; n0) i� b � b0 and n = n0.Proposition 2.2 Binary relations ECWA and EOWA on bags are partial orders. Given two bags B1and B2, B1 ECWA B2 (B1 EOWA B2) i� there exist labelings � and  on B1 and B2 such that �(B1) �P (B2) (respectively �(B1) �H  (B2)).Proof. We prove the statement about EOWA; the statement about ECWA is proved similarly. We writeB1 4 B2 if there exist � and  such that �(B1) �H  (B2). We �rst demonstrate that 4 is a partialorder.Reexivity is obvious. To prove transitivity, let B1 4 B2 and B2 4 B3. That is, �(B1) �H �(B2) and�(B2) �H  (B3). Let  be a bijection on N such that  � � = �. De�ne � as  � �. Then for everyb 2 B1 there is b0 2 B2 such that b � b0 and �(b) = �(b0). Therefore, �(b) = �(b0) and there existsb00 2 B3 such that  (b00) = �(b0) and b00 � b0. This shows �(B1) �H  (B3) and hence B1 4 B3.To show that 4 is anti-symmetric, let B1 4 B2 and B2 4 B1. As was shown above, there exist�; � and  such that �(B1) �H �(B2) �H  (B1). In particular, if we de�ne g : �(B1) !  (B1) byg(b; n) = (b0; n) where  (b0) = n, then g is one-to-one and inationary. Since B1 is �nite, it is theidentity map. If b00 2 B2 and �(b00) = n, then b � b00 � b0 = b, so b = b00 where �(b) =  (b0) = n.Therefore, every element of B1 is in B2 and vice versa, i.e. B1 = B2. This shows that 4 is a partialorder.Since B1 OWA B2 implies B1 4 B2, we conclude EOWA � 4. Conversely, if B1 4 B2, i.e. �(B1) �H3



 (B2), then, according to Proposition 2.1,  (B2) can be obtained from �(B1) by a sequence of OWA7�!updates which, if we drop labels, are translated into OWA updates on bags. Therefore, B1 EOWA B2,which proves EOWA = 4. 2The Hoare ordering �H on sets can be e�ectively veri�ed. Indeed, if two sets are given, there is anO(n2) time algorithm to check if they are comparable. The description of EOWA and ECWA given aboveseems to be somewhat awkward, algorithmically. However, it is not much harder to test for.Proposition 2.3 There exists an O(n5=2) time algorithm that, given two bags B1 and B2 of elementsof a poset A, returns true if B1 EOWA B2 (B1 ECWA B2) and false otherwise, provided that the orderingon A can be tested in O(1) time.Proof. The proof is almost the same for both EOWA and ECWA. Given B1 and B2, consider twolabelings � and  on B1 and B2 with disjoint codomains. De�ne a bipartite graph G = hV;Ei byV := �(B1) [  (B2) and E := f((b; n); (b0; n0)) j (b; n) 2 �(B1); (b0; n0) 2  (B2); b � b0g. It can beeasily concluded from Proposition 2.2 that B1 EOWA B2 i� there is a matching in G that contains all�(B1). In other words, B1 EOWA B2 i� the cardinality of the maximal matching in G is that of B1.The proposition now follows from the facts that all maximal matching in G have the same cardinalityand that the Hopcroft-Karp algorithm �nds a maximal matching in O(n5=2) where n = jV j. 2There is a big di�erence between orders on sets and bags. While X �H Y does not say anything aboutcardinality of X and Y , B1 EOWA B2 implies that the cardinality of B1 is at most the cardinalityof B2. Indeed, elements of a bag represent distinct objects that cannot be identi�ed in the processof gaining information. Under the CWA, cardinality is always preserved, which also conforms to theintuition about the closed worlds.Remark. Using bags to represent incomplete information was also studied in [6, 15], but the focus ofthese papers is very di�erent from ours. In [15] a bagdomain is de�ned, which is a category whoseobjects are bags over an ordered set, and morphisms are so-called re�nements. Both EOWA and ECWAare examples of re�nements, but so are many other orderings that are not well suited for representingpartiality in databases. In [6] the main construction of [15] is extended so that it can be viewed asfreely generated in a certain sense by the underlying poset.3 Querying Bags of Incomplete ObjectsThe orderings �H and �P used for sets under the OWA and the CWA are de�ned by �rst-orderformulae. Thus, any language with relational algebra or calculus as a sublanguage has enough powerto lift � to �H and �P. The situation is very di�erent in the bag case.In order to demonstrate this result, we need a \standard" language for bags that has a role similar tothat of relational calculus for sets. Such a language has recently been proposed and studied [2, 11].The object types are given by the grammart := b j t� t j fjtjgwhere b ranges over a collection of base types (among them bool , the type of Booleans), t1 � t2 is thetype of pairs (we use pairs rather than records to keep notation simple), and values of type fjtjg are4



�nite bags of values of type t. Note that we deal with complex objects, which may involve nesting ofbags, and not just at bags, which are bags of records of base types.The operations of the language include pair formation and projections, function composition, if-then-else,and the following operations on bags (in addition, empty bag is available as constant):� b � : t! fjtjg forms singleton bags.� ] : fjtjg � fjtjg ! fjtjg is the additive union of bags.� : : fjtjg � fjtjg ! fjtjg is the bag di�erence.� b � : fjfjtjgjg ! fjtjg attens a bag of bags, adding up multiplicities.� unique : fjtjg ! fjtjg is the duplicate elimination operation.� b map(f) : fjsjg ! fjtjg applies the function f of type s! t to every element of a bag of type fjsjg.� b �2 : s� fjtjg ! fjs� tjg is the function that pairs an object with every element in a bag.We call this language BQL [11] (also called BALG without powerset in [2]). Now we prove our mainresult that BQL cannot express an algorithm that lifts a binary relation � to EOWA or ECWA in theway described in Proposition 2.2.Theorem 3.1 The orderings EOWA and ECWA cannot be de�ned in BQL.Proof. Let b be a base type with in�nite domain, with only equality test available on it. A directedgraph X : fjb�bjg is called a chain if it has the form fj(x1; x2); (x2; x3); : : : ; (xm�1; xm)jg, where all xi'sare distinct. Let chaineven : fjb� bjg ! bool be a predicate such that for every chain X, chaineven(X)is true i� X has an even number of nodes.A bag of bags B = fjB1; : : : ; Bnjg : fjfjbjgjg is said to have a family of distinct representatives i� it ispossible to pick an element xi from each Bi such that xi 6= xj whenever i 6= j. Note that both B and itselements are allowed to have duplicates, but the xi picked must be distinct. Let sdr : fjfjbjgjg ! boolbe the predicate such that for every bag of bags B, sdr(B) is true i� B has a family of distinctrepresentatives.The proof is based on the following two lemmas.Lemma 3.2 Let Xm : fjbjg be a chain fj(x1; x2), ..., (xm�1; xm)jg. De�ne Sm : fjfjbjgjg to be the bagfjfjx1jg, fjxmjg, fjx1; x3jg, fjx2; x4jg, ..., fjxm�2; xmjgjg, as depicted in Figure 1. Then for m > 2,sdr(Sm) is true i� m is even.Lemma 3.3 BQL cannot express chaineven.First, let us show how the theorem follows from the lemmas. Consider a chain Xm as in Lemma3.2 and construct two bags of bags (objects of type fjfjbjgjg): one is Sm and the other is Tm =fjfjx1jg; fjx2jg; : : : ; fjxm�1jg; fjxmjgjg. Both Tm and Sm are de�nable in BQL. For example, Tm =b map(b �)(unique(](b map(�1)(Xm); b map(�2)(Xm)))), where �1 and �2 are the �rst and the secondprojections.For bags of type fjbjg, de�ne B1 � B2 i� B1 is a subbag of B2. This ordering is de�nable in BQL;see [11]. Assume that an algorithm lifting � to EOWA or to ECWA is de�nable in BQL. Since Tm andSm have the same cardinality, Tm EOWA Sm i� Tm ECWA Sm. Moreover, it is immediately seen from5
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Sm = fj jgFigure 1: De�nition of SmProposition 2.2 that Tm EOWA Sm i� Sm has a family of distinct representatives. (Those representativesare given by the matching between Sm and Tm that EOWA or ECWA establishes.)Thus, if EOWA or ECWA were de�nable, it would be possible to de�ne a function in BQL that, for achain Xm, tests if sdr(Sm) is true. That is, it tests if m is even, according to Lemma 3.2. Then itwould be possible to write the chaineven query in BQL, but this is impossible, according to Lemma3.3. So, to �nish the proof of the theorem, it remains to prove the two lemmas.Proof of Lemma 3.2. First, �x some notation. Given Xm, let Y mi be fjx1jg for i = 1, fjxmjg for i = m,and fjxi�1; xi+1jg for 1 < i < m. If a family fjY mi jg of bags has a system of distinct representatives,then we use c(Y mi ) to denote the representative of Y mi .We prove this claim by induction onm. Form = 3 or 4 it is easy to see that claim is true. Now, assumethat m > 4 and m is even. By induction hypothesis, we know Sm�2 has a system of distinct repre-sentatives. For any i < m� 2, Y mi = Y m�2i . Furthermore, Y m�2m�2 = fjxm�2jg, Y mm�2 = fjxm�3; xm�1jg,Y mm�1 = fjxm�2; xmjg, Y mm = fjxmjg. Then Sm has a system of distinct representatives: for k < m� 2,c(Y mk ) = c(Y m�2k ), c(Y mm�2) = xm�1, c(Y mm�1) = xm�2 and c(Y mm ) = xm.Now let m > 4 be odd. We know Sm�2 does not have a system of distinct representatives. AssumeSm does have it. Then c(Y mm ) = xm, c(Y mm�1) = xm�2, and c(Y mm�2) is either xm�3 or xm�1. Ifc(Y mm�2) = xm�3, then xm�1 is not present in any other Y ml and hence will never get selected. Butsince the cardinalities of Xm and Sm coincide, this means Sm does not have a system of distinctrepresentatives. Thus, c(Y mm�2) = xm�1 and for any i < m � 2, c(Y mi ) = xj where j < m � 2. SinceY mi = Y m�2i for i < m� 2, then by taking c(Y m�2i ) = c(Y mi ) for i < m� 2 and c(Y m�2m�2 ) = xm�2 weobtain a system of distinct representatives for Sm�2, contradiction. Lemma 3.2 is proved.Proof of Lemma 3.3. We prove this claim via a detour to a nested relational algebra with arithmeticoperations and aggregate functions. According to [11], the language BQL has exactly the same poweras the set language that we call NRLnat here (cf. [11, 10]). Its types are given by the grammart := b j N j t� t j ftg where values of type ftg are �nite sets of values of type t. The operationson records are the same as those of BQL. The set operations are s �, [, s �, s �2 and s map, whichcorrespond to similar operations of BQL, but duplicates are eliminated. Also, equality test eq : t�t!bool is available for all types. The operations on natural numbers include addition, multiplication,modi�ed subtraction : , and the summation operatorP[f ] : ftg ! N, where f : t! N, with semanticsP[f ](fx1; : : : ; xng) = f(x1) + : : : + f(xn). The language NRL obtained from NRLnat by removingthe arithmetic operations is equivalent to the nested relational algebra, which is a generalization of6



relational algebra to complex objects (cf. [13, 16]).According to [11], for any boolean query q of type fb� bg ! bool in NRLnat, there exists a number ksuch that for any l1, l2 � k and any two cycles C1 and C2 of length l1 and l2 respectively, q(C1) = q(C2).Thus, NRLnat cannot de�ne a query that is equivalent to chaineven on sets, because it is possible touse chaineven to distinguish cycles of even and odd cardinality. Since BQL and NRLnat are equallyexpressive, we conclude that chaineven is not expressible in BQL. This �nishes the proof of the theorem.2.Now observe the we can extract the following corollary from the proof of our main theorem.Corollary 3.4 The nested relational algebra cannot test whether a family of sets has a system ofdistinct representatives. 2What makes this result di�erent from other known limitations of the nested relational algebra is that itcannot be proved by reduction to the �rst-order case. So far, all inexpressibility results for the nestedrelational languages were proved in the following way. First, a conservativity result is established thatshows that expressive power of the language is independent of the depth of set nesting in intermediateresults (see [10, 13, 16] for examples of such results). Then the desired results are proved by reductionto the �rst-order case, when no nested relations are allowed. For example, the at fragment of thenested relational algebra is equivalent to the relational algebra [13, 16]. Hence, recursive queries suchas transitive closure cannot be expressed. In contrast, the query asking whether there exists a systemof distinct representatives requires set nesting of depth two, and it does not have a at analog. Thus,it cannot be proved by standard conservativity techniques.Acknowledgements. We thank anonymous referees for their helpful suggestions.References[1] P. Buneman, A. Jung, A. Ohori. Using powerdomains to generalize relational databases. Theo-retical Computer Science 91(1991), 23{55.[2] S. Grumbach and T. Milo. Towards tractable algebras for bags. Proc. of the 12th Symposium onPrinciples of Database Systems, Washington DC, 1993, pages 49{58.[3] G. Grahne. \The Problem of Incomplete Information in Relational Databases". Springer-Verlag,Berlin, 1991.[4] C. Gunter. \Semantics of Programming Languages". The MIT Press, 1992.[5] T. Imielinski and W. Lipski. Incomplete information in relational databases. Journal of ACM31(1984), 761{791.[6] P.T. Johnstone. Partial products, bagdomains and hyperlocal toposes. In Applications of Cate-gories in Computer Science, London Math. Soc. Lecture Notes, v. 177, 1992, pages 315{339.[7] M. Levene and G. Loizou. The nested relation type model: An application of domain theory todatabases. The Computer Journal 33 (1990), 19-30.7
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