
Logics with Aggregate OperatorsLauri HellaUniversity of HelsinkiandLeonid LibkinUniversity of Toronto and Bell LabsandJuha NurmonenUniversity of HelsinkiandLimsoon WongKRDL, SingaporeName: Lauri HellaA�liation: Department of MathematicsAddress: P.O. Box 4 (Yliopistonkatu 5), 00014 University of Helsinki, Finland, Email: lauri.hella@helsinki.�.Supported in part by grants 40734 and 28139 from the Academy of Finland.Name: Leonid LibkinA�liation: Department of Computer ScienceAddress: 6 King's College Road, University of Toronto, Toronto, Ontario, M5S 3H5, Canada. Email:libkin@cs.toronto.edu.Name: Juha NurmonenA�liation: Department of MathematicsAddress: P.O. Box 4 (Yliopistonkatu 5), 00014 University ofHelsinki, Finland, Email: juha.nurmonen@helsinki.�. Supported in part by grant 28139 from the Academyof Finland. This work was initiated while supported in part by EPSRC grant GR/K 96564.Name: Limsoon WongA�liation: Kent Ridge Digital LabsAddress: 21 Heng Mui Keng Terrace, Singapore 119613, Email: limsoon@krdl.org.sg. Supported in part by theSingapore National Science and Technology Board.Permission to make digital or hard copies of part or all of this work for personal or classroom use is grantedwithout fee provided that copies are not made or distributed for pro�t or direct commercial advantage and thatcopies show this notice on the �rst page or initial screen of a display along with the full citation. Copyrights forcomponents of this work owned by others than ACM must be honored. Abstracting with credit is permitted.To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this workin other works, requires prior speci�c permission and/or a fee. Permissions may be requested from PublicationsDept, ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 � L. Hella, L. Libkin, J. Nurmonen, L. WongWe study adding aggregate operators, such as summing up elements of a column of a relation, to logics withcounting mechanisms. The primarymotivation comes from database applications, where aggregate operators arepresent in all real life query languages. Unlike other features of query languages, aggregates are not adequatelycaptured by the existing logical formalisms. Consequently, all previous approaches to analyzing the expressivepower of aggregation were only capable of producing partial results, depending on the allowed class of aggregateand arithmetic operations.We consider a powerful counting logic, and extend it with the set of all aggregate operators. We show thatthe resulting logic satis�es analogs of Hanf's and Gaifman's theorems, meaning that it can only express lo-cal properties. We consider a database query language that expresses all the standard aggregates found incommercial query languages, and show how it can be translated into the aggregate logic, thereby providinga number of expressivity bounds, that do not depend on a particular class of arithmetic functions, and thatsubsume all those previously known. We consider a restricted aggregate logic that gives us a tighter captureof database languages, and also use it to show that some questions on expressivity of aggregation cannot beanswered without resolving some deep problems in complexity theory.Categories and Subject Descriptors: H.2.3 [Database management]: Query languages; F.4.1 [Mathematicallogic and formal languages]: Model theoryAdditional Key Words and Phrases: Database, Relational Calculus, Aggregation, Expressive Power, Locality1. INTRODUCTIONFirst-order logic over �nite structures plays a fundamental role in several computer science ap-plications, perhaps most notably, in database theory. The standard theoretical query languages{ relational algebra and calculus { that are the backbone for the commercial query languages,have precisely the power of �rst-order logic. However, while this power is su�cient for writingmany useful queries, in practice one often �nds that it is quite limited for two reasons. Firstly,in �rst-order logic, one cannot do �xpoint computation (for example, one cannot compute thetransitive closure of a graph). Secondly, one cannot express nontrivial counting properties (forexample, one cannot compare the cardinalities of two sets).From the practical point of view, �xpoint computation, although sometimes desirable, is ofless importance in the database context than counting. Indeed, in the de-facto standard ofthe commercial database world, SQL, a limited recursive construct has only been proposedfor the latest language standard (SQL3). At the same time, constructs such as cardinality ofa relation or the average value of a column, known as aggregate functions, are present in anycommercial implementation of SQL (they belong to what is called the entry level SQL92, whichis supported by all systems).

Logics with Aggregate Operators � 3On the theory side, however, �xpoint extensions of �rst-order logic and corresponding querylanguages are much better studied than their counting counterparts. A standard �xpointextension considered in the database literature is the query language datalog, and practicallyevery aspect of it { expressive power, optimization, adding negation, implementation techniques{ was the subject of numerous papers. For the study of expressive power of query languages,which will interest us most in this paper, a very nice result of [28] showed that the in�nitary logicwith �nitely many variables, L!1!, has a 0-1 law over �nite structures. As many �xpoint logicscan be embedded into it, this result gives many expressivity bounds for datalog-like languages.In the presence of an order relation, it is again a classical result that various �xpoint extensionsof �rst-order logic capture familiar complexity classes such as PTIME and PSPACE [22; 43].See [1; 12; 23] for an overview.For extensions with counting and aggregate operators, much less is known, especially in termsof expressive power of languages. In an early paper [26] it was shown how to extend bothrelational algebra and calculus with aggregate constructs, but the resulting language did notcorrespond naturally to any reasonable logic. It is known how to integrate aggregation intodatalog-like languages (both recursive and nonrecursive) [39; 42], and various aspects of suchaggregate languages were studied (e.g., query optimization [35], handling constraints involvingaggregation [40], query containment and rewriting [8; 18], interaction with functional program-ming constructs [6]). A powerful counting extension of �rst-order logic, LC, was introduced in[31], but the counting operators in that logic are quite di�erent from aggregate operators.At this point, let us give an example of a typical aggregate query that would be supported byall commercial versions of SQL, and use it to explain problems that arise when one attempts toanalyze expressiveness of the language. Suppose we have two database relations: a relation R1with attributes \employee" and \department", and a relation R2 with attributes \employee"and \salary". Suppose we want to �nd the average salary for each department that pays totalsalary at least $106. In SQL, this is done as follows.SELECT R1.Dept, AVG(R2.Salary)FROM R1, R2WHERE R1.Employee = R2.EmployeeGROUPBY R1.DeptHAVING SUM(R2.Salary) > 1000000Relations R1 and R2 separate the information about departments and salaries. This query joinsthem to put together departments, employees, and salaries, and then performs an aggregationover the salary column, for each department in the database, followed by selecting some of theresulting tuples.While the features of the language given by the SELECT, FROM and WHERE clauses are well-known

4 � L. Hella, L. Libkin, J. Nurmonen, L. Wongto be �rst-order, other features used in this example pose a problem.(1) We permit computation of aggregate operators such as AVG and SUM over the entire columnof a relation. This form of counting is rather di�erent from the counting quanti�ers orterms (see, e.g, [13; 25; 38]), normally supported by logical formalisms.(2) The GROUPBY clause creates an intermediate structure which is a set of sets { for eachdepartment, it groups together its employees. Again, this does not get captured adequatelyby existing logical formalisms.This shows why it is hard to capture aggregation in query languages by a logic whose expressivepower is easy to analyze. Still, some partial results exist. For example, [36] gives some boundsbased on the estimates on the largest number a query can produce; clearly such bounds arenot robust and do not withstand adding arithmetic operations. In [9] it is shown that thetransitive closure of a graph is not expressible in an aggregate extension of �rst-order logic ifDLOGSPACE 6= NLOGSPACE. In [33] this is proved without any complexity assumptions;a generalization of [33] to many other queries is given in [11]. One problem with the proofsof [33; 11] is that they are very \syntactic" { they work for a particular presentation of thelanguage, and rely heavily on complicated syntactic rewritings of queries, rather than on thesemantic properties of those. An attempt to remedy this was made in [30] which considered asublanguage that only permits aggregation over columns of natural numbers, returning naturalnumbers as well (for example, AVG is not allowed). Then [30] gave a somewhat complicatedencoding of the language in �rst-order logic with counting quanti�ers, for which expressivitybounds are known [30; 37]. The encoding of [30] was extended to aggregation over rationalnumbers [34]; it did allow more aggregates (e.g., AVG) and more arithmetic, at the expense ofa very unpleasant and complicated encoding procedure.Thus, �rst-order logic with counting quanti�ers is inadequate as a logic for expressing aggregatequery languages. It also brings up an analogy with the development of datalog-like languagesand L!1!, and raises the following question:Can we �nd a powerful logic into which aggregate queries can be easily embedded, andwhose properties can be analyzed so that bounds for query languages can be derived?Our main goal is to give the positive answer to this question. To do so, we combine anin�nitary counting logic from [31] with an elegant framework of [17] for adding aggregation. Asthe numerical domain, we choose the set of rational numbers Q, although other domains (e.g.,Z;R) can be chosen.While [17] gives a nice framework for modeling aggregation, it provides neither expressivitybounds nor techniques for proving them in a logic with aggregate operators. On the other

Logics with Aggregate Operators � 5hand, [31] presents a number of techniques for proving expressivity bounds, but the logic theredoes not have aggregate operators. We thus combine the two, which results in a logic Laggr.It de�nes every arithmetic operation and every aggregate function. We then show that it hasvery nice behavior: its formulae satisfy analogs of Hanf's [14; 19] and Gaifman's [16] theorems,meaning that it can only express local properties. In particular, properties such as connectivityof graphs cannot be expressed.We then consider a theoretical language RLaggr, similar to those de�ned in [5; 33], and explainhow it models all the features of SQL. Next, we show an embedding of RLaggr into Laggr, whichis much simpler than those previously considered for �rst-order with counting [30; 34]. Thisimplies that the behavior of aggregate queries is local over a large class of inputs, no matterwhat family of aggregate and arithmetic operations the language possesses.Not only is this result much stronger than all previous results on expressiveness of aggregation,its proof is also much cleaner than those that appeared in the literature. Furthermore, webelieve that logics with aggregation are interesting on their own right, as they give a ratherdisciplined approach to modeling aggregation and can be used to study other aspects of it.Organization. We give notations, including two-sorted structures and a formal de�nition ofaggregates in Section 2. In Section 3 we give the de�nition of the aggregate logic Laggr. InSection 4 we explain the locality theorems of Hanf and Gaifman and prove that Laggr satis�esanalogs of both of them, thus showing that it cannot express properties such as the connectivityof a graph.In Section 5, we de�ne an aggregate query language NRLaggr, on nested relations, that modelsboth aggregation and grouping features of SQL. We show, using standard techniques, thatqueries from at relations to at relations in this language can be expressed in a simplerlanguage called RLaggr, that does not use nested relations even as intermediate structures, andthen we give a translation of RLaggr into Laggr. This shows that NRLaggr queries over atdatabases that do not contain numbers are local. In Section 6 we consider a simpler logicLaggr and show that it captures the language RLaggr. We also show that some basic questionsabout expressive power of RLaggr cannot be answered without resolving some deep problems incomplexity theory, under the assumption that input databases are allowed to contain numbers.Extended abstract of this paper appeared in the Proceedings of the 14th IEEE Symposium onLogic in Computer Science, pp. 35-44, July 1999.2. NOTATIONMost logics we consider here are two-sorted, and they are de�ned on two-sorted structures,with one sort being numerical. We shall assume, throughout the paper, that the numerical sort

6 � L. Hella, L. Libkin, J. Nurmonen, L. Wongis interpreted as Q, the set of rational numbers. A two sorted relational signature � is a �nitecollection fR1(n1; J1); : : : ; Rl(nl; Jl)g where Ris are relation names, nis are their arities, andJi � f1; : : : ; nig is the set of indices for the �rst sort. For example, fR(3; f1; 2g)g is a signaturethat consists of a single ternary relation so that in each tuple (a; b; c) in R, a; b are of the �rstsort and c is of the second sort.We let U be an in�nite set, disjoint from Q, to be interpreted as the domain of the �rst sort.A structure of signature � (or �-structure) is A = hA;Q; RA1 ; : : : ; RAl i, where A � U is theuniverse of the �rst sort for A, and RAi � Qnik=1 dom(i; k), where dom(i; k) = A if k 2 Ji anddom(i; k) = Q if k 62 Ji. We shall always assume that A is �nite.For any set X and any tuple (x1; : : : ; xn) 2 Xn, the multiset (bag) consisting of the componentsof this tuple is denoted by fjx1; : : : ; xnjg. Here n is the cardinality of fjx1; : : : ; xnjg. We let fjXjgndenote the set of all such n-element multisets over X.Now, following [17], we de�ne an aggregate function as a collection F = ff0; f1; f2; : : : ; f!g offunctions, where fn : fjQjgn ! Q, and f! 2 Q. Each function fn shows how the aggregatefunction behaves on an n-element input multiset of rational numbers, and the value f! is theresult when the input is in�nite. We shall identify the function f0 with the constant it produceson the empty bag fjjg.Examples include the aggregates P and Q: P = fs0; s1; : : : ; s!g and Q = fp0; p1; : : : ; p!gwhere s0 = 0; sn(fjq1; : : : ; qnjg) = q1 + : : :+ qn; n > 0;and p0 = 1; pn(fjq1; : : : ; qnjg) = q1 � : : : � qn; n > 0:(We assume s! = p! = 0.) Standard database languages use other aggregates as well; in fact,the standard ones for SQL are the following:|P (also called TOTAL, which adds up all the elements of a bag),|MIN and MAX, de�ned as the minimum (maximum) element of the input bag,|COUNT, which returns the cardinality of a bag (that is, its ith function is the constant i),|AVG, which returns the average value of a bag (that is, its ith function is si=i for i > 0).3. AN AGGREGATE LOGICAssume that we are given two signatures on Q : one, denoted by
, of functions and predicates,and one, denoted by �, of aggregates. In addition we assume that there is a constant symbolcq for each q 2 Q. We now de�ne an aggregate logic Laggr(
;�), on two-sorted structures. We

Logics with Aggregate Operators � 7do it, similarly to [31], in two steps. We �rst de�ne a larger logic Laggr(
;�) and then put arestriction on its formulae.We de�ne terms and formulae of the two-sorted logic Laggr(
;�), over two-sorted structures,by simultaneous induction. Every variable of the ith sort is a term of the ith sort, i = 1; 2.Every constant cq 2 Q is a term of the second sort. Given a pair (n; J) with J � f1; : : : ; ng, wesay that an n-tuple of terms ~t = (t1; : : : ; tn) is of type (n; J), written ~t : (n; J), if ti is a �rst-sortterm for i 2 J and a second-sort term for i 62 J . For a formula '(~x), we write ' : (n; J) andsay that its type is (n; J) if ~x = (x1; : : : ; xn) and i 2 J i� xi is of the �rst sort.Now for each Ri(ni; Ji) in �, and ~t : (ni; Ji), we let Ri(~t) be a formula. Formulae arethen closed under in�nitary disjunctions W and conjunctions V, negation :, and quanti�ersover both �rst-sort domain A and second-sort domain Q. That is, if ' is a formula, then:';9x';8x';9q';8q' are formulae, where x is a �rst-sort variable and q is a second-sort vari-able. Furthermore, if 'i; i 2 I, is a (�nite or in�nite) collection of formulae, then Wi2I 'i andVi2I 'i are formulae.If t1; : : : ; tn are second-sort terms, and f an n-ary function symbol from
, then f(t1; : : : ; tn)is a second-sort term. For an n-ary predicate symbol P from
, P (t1; : : : ; tn) is a formula. Ift1; t2 are terms of the same sort, then t1 = t2 is a formula.Next, we add counting and aggregation to the logic. For any formula '(~x; ~y) with ~y beingvariables of the �rst sort, we let t(~x) = #~y:'(~x; ~y) be a second-sort term. Let F be anaggregate from �. Let '(~x; ~y) be a formula, and t(~x; ~y) a second-sort term, with no restrictionson the sorts of ~x; ~y. Then AggrF~y:('; t) is a second-sort term with free variables ~x.Remark Using in�nitary connectives is a convenient technical device, as it will make sometranslations easier, and the logic more expressive; however, it is possible to avoid using them.We prefer to work with an in�nitary logic here, so that we can use known results from [21; 31].Furthermore, the fact that this logic is not e�ective (and even has uncountably many formulas)is not important as we consider inexpressibility results for it, which would then apply to anyweaker logic.We now discuss the semantics. A tuple ~a = (a1; : : : ; an) is of type (n; J) if ai 2 U for i 2 J andai 2 Q for i 62 J . For every two-sorted �-structure A, a formula '(~x) or a term t(~x) of type(n; J) in the language of �, and a tuple ~a over A [Q of type (n; J), we de�ne the value tA(~a)of the term t on ~a in A and the relation A j= '(~a). The de�nition is standard, with only thecase of counting terms and aggregation requiring explanation. For t(~x) = #~y:'(~x; ~y), the valueof t(~a) in A is the (�nite) number of ~b over A such that A j= '(~a;~b).Let s(~x) = AggrF~y:('(~x; ~y); t(~x; ~y)), and let ~a be of the same type as ~x. De�ne '(~a;A) = f~b jA j= '(~a;~b)g. Let t('(~a;A)) be the multiset fjtA(~a;~b) j ~b 2 '(~a;A)jg. (This is a multiset since t

8 � L. Hella, L. Libkin, J. Nurmonen, L. Wongmay produce identical values on several (~a;~b).) Let n be the cardinality of this multiset. Thenthe value sA(~a) is de�ned to be fn(t('(~a;A))), where fn is the nth component of F . If the set'(~a;A) is in�nite, the value of sA(~a) is f!.This concludes the de�nition of Laggr(
;�). Next, we de�ne the notion of a rank of formulaeand terms, rk(') and rk(t). For a variable or constant t, rk(t) = 0. For each relation nameRi 2 � and terms t1; : : : ; tn, we let rk(Ri(t1; : : : ; tn)) = maxi rk(ti) and similarly rk(t = s) =maxfrk(t); rk(s)g. For any formula ' � P (t1; : : : ; tn) with P 2
, we have rk(') = maxi rk(ti),and similarly for a term f(~t) with f from
. We then have rk(W'i) = rk(V'i) = supi rk('i)and rk(:') = rk(').We let rk(9x') = rk(') + 1, for quanti�cation over the �rst sort, and rk(9q') = rk(') forquanti�cation over the second sort. For counting and aggregate terms, rk(#~y:') = rk(')+ j~y j,and rk(AggrF~y:('; t)) = max(rk('); rk(t))+k, where k is the number of �rst-sort variables in ~y.Definition 3.1. The formulae and terms of Laggr(
;�) are precisely the formulae and termsof Laggr(
;�) that have �nite rank. If there is no restriction on the signature (that is, allfunctions and predicates are allowed), we write All. Thus, Laggr(All;All) is the aggregate logicin which every function, predicate, and aggregate function on Q is available. 2Examples. First, counting terms are de�nable with P: #~y:'(~x; ~y) is equivalent toAggr�~y:('(~x; ~y); c1), where c1 is the symbol for constant 1.Next, we show how to express the example from the introduction in Laggr(f<g; fP;AVGg).The signature � has two relations: R1(2; f1; 2g) and R2(2; f1g), as only the last attribute of R2{ salary { is numerical. The query is now expressed as a Laggr formula '(x; q) with two freevariables, one of the �rst sort, one of the second sort, as follows:(9y9z: R1(x; y) ^R2(y; z))^ (q = AggrAVG z: (9y:R1(x; y) ^ R2(y; z); z))^ (Aggr� z: (9y:R1(x; y) ^R2(y; z); z) > c106):4. AGGREGATE LOGIC: EXPRESSIVE POWERIn this section we deal with the expressive power of the aggregate logic. Our main goal isto show that it satis�es a very strong locality property. Locality properties were introducedin model theory by Hanf [19] and Gaifman [16], and recently, following [14], they were asubject of renewed attention (see, e.g., [11; 30; 31; 33; 37] and references therein). Intuitively,those properties say that the behavior of logical formulae depends on the structure of smallneighborhoods. They imply strong expressivity bounds for queries de�nable by logical formulae.

Logics with Aggregate Operators � 9(See Subsection 4.2.)As there are several ways to de�ne locality, we want to establish the strongest property. Therelationship between various notions of locality was investigated in [21; 30], and it was shownthat the one based on Hanf's theorem implies the one based on Gaifman's theorem, which inturn implies other locality properties based on degrees of structures. Thus, our goal is to show(precise de�nition will be given a bit later in this section):Expressiveness of Laggr(All;All): Over �rst-sort structures, formulae of Laggr(All;All) areHanf-local.It is known that many properties requiring �xpoint computation, such as the connectivity andacyclicity tests for graphs, or computing the transitive closure, violate some form of locality.Thus, as a corollary, we shall see that adding unlimited arithmetic and aggregation to �rst-orderlogic does not enable it to express those properties.We start by showing how to embed Laggr(All;All) into a simpler logic LC that does not haveaggregate operations. We then review the main notions of locality used in �nite-model theory,and prove the strongest of them, Hanf-locality, of LC.4.1 Logic LCDefinition 4.1. The logic LC is de�ned to be Laggr(;; ;); that is, aggregate terms or numer-ical functions and predicates are not allowed.A slightly weaker version of this logic was studied in [31]. That logic, denoted by L�1!(C), wasde�ned as LC over one-sorted structures (although the formulae are two sorted) and the set Nof natural numbers as the numerical domain.For two logics we write L1 4 L2 if L2 is at least as powerful as L1. If for every formula inL1 there is an equivalent one in L2 of the same or smaller rank, we write L1 4rk L2. We useL1 t L2 if L1 4 L2 and L2 4 L1, and likewise for L1 trk L2.The main result that we show here is the following:Theorem 4.2. Laggr(All;All) trk LC. That is, for every formula of Laggr(All;All), there isan equivalent LC formula of the same rank.We devote the rest of this subsection to the proof of this theorem.The embedding LC 4rk Laggr(All;All) is trivial. For the other direction, we need the followinglemma, which will be used in the encoding of aggregate terms in order to count tuples over

10 � L. Hella, L. Libkin, J. Nurmonen, L. Wongboth numerical and �rst-sort domains.Lemma 4.3. For every formula '(~z; ~y) of LC and every natural number m, there exists anLC formula �m['](~z) such that �m['](~a) holds i� the number of tuples ~b such that '(~a;~b) holdsis precisely m. Moreover, rk(�m[']) = rk(') + k, where k is the number of �rst-sort variablesin ~y.Proof. To simplify the notation in the proof, we use tuples of rationals ~q = (q1; : : : ; qn) insteadof the o�cial notation (cq1; : : : ; cqn) in LC formulae. We assume m > 0 (if m = 0, then �m['](~z)can be taken to be :9~y: '(~z; ~y)). If all variables in ~y are �rst-sort, then �m['](~z) is #~y:' = m.If all variables in ~y are second-sort, then �m['](~z) is_B (~̂b2B'(~z;~b) ^ ~̂b62B:'(~z;~b));where the disjunction is taken over m-element sets B of tuples of rational numbers, of the samelength as ~y. Note that the rank of the above formula equals rk(').Now assume that ~y = (~y1; ~y2), where ~y1 are �rst-sort variables and ~y2 are second-sort variables.Let k be the length of ~y1 and p the length of ~y2, k; p > 0. For a given m > 0, let Sm be the setof all tuples (l1; : : : ; ls) of positive integers such that Psi=1 li = m. Then �m['](~z) is given by_(l1;:::;ls)2Sm _~a1;:::;~as2Qp~a1;:::;~as distinct " 8~y18~y2 '(~z; ~y1; ~y2)! s_i=1(~y2 = ~ai)! ^ ŝi=1(#~y1:'(~z; ~y1;~ai) = li)!#Clearly, rk(�m[']) = rk(') + k. To see correctness, note that if there are m tuples ~bi = (~bi1;~bi2)satisfying '(~z;~bi) (divided into two subtuples by sort), then the number of distinct tuples among~bi2, say s, is at most m, and if for each of the s such tuples ~bi2, li is the number of tuples ~c forwhich (~c;~bi2) is among ~bjs, thenPsi=1 li = m. Since the converse to this is true as well, and theabove formula codes this condition, we conclude the proof of the lemma. 2To prove Theorem 4.2, we de�ne for each second-sort term t(~x) a formula t(~x; z) of LC, and foreach formula '(~x) of Laggr(All;All) a formula '(~x) of LC such that A j= 't(~a; q) i� tA(~a) = q,and A j= '(~a) i� A j= '(~a), for any A and ~a a tuple of A of the same type as ~x. This is doneby simultaneous induction.Let t(~x) be a second-sort term. Then t(~x; z), where z is a second-sort variable not containedin ~x, is de�ned inductively as follows:|if t(~x) is a variable xi, then t(~x; z) is the formula z = xi;

Logics with Aggregate Operators � 11|if t(~x) is a constant symbol cq, then t(~x; z) is the formula z = cq;|if t(~x) is f(t1; : : : ; tn), where f is an n-ary function on Q, then t(~x; z) is the formula_(q;q1;:::;qn)2Qn+1f(q1;:::;qn)=q (z = cq ^ n̂i=1 ti(~x; cqi));|if t(~x) is #~y:'(~x; ~y), then t(~x; z) is the formula z = #~y: '(~x; ~y);|if t(~x) is AggrF~y:('(~x; ~y); s(~x; ~y)), where F is an aggregate function on Q, '(~x; ~y) is a formula,and s(~x; ~y) is a second-sort term, then t(~x; z) is the formula 1(~x; z) _ 2(~x; z) _ 3(~x; z).Here 1(~x; z) is _(~m;~q)2I (z = cq) ^ �m['](~x) ^ p̂i=1 �mi[' ^ s](~x; cqi)!where I is the set of all pairs of tuples ~m = (m1; : : : ;mp;m) 2 (N n f0g)p+1, p � m, and~q = (q1; : : : ; qm; q) 2 Qm+1 such that �pi=1mi = m, fm(fjq1; : : : ; qmjg) = q and the multiplicityof qi in fjq1; : : : ; qmjg is mi for each i = 1; : : : ;m.The formula 2(~x; z) is de�ned as(z = c!) ^ m̂2N:�m['](~x)where c! is the constant symbol corresponding to f! from F , and �m again binds variables~y.Finally, the formula 3(~x; z) is de�ned as(z = cf0) ^ :9~y '(~x; ~y):Let then '(~x) be a formula of Laggr(All;All). We may assume without loss of generalitythat for every occurrence of a � relation Ri(t1; : : : ; tni), each tj is a variable of the appro-priate sort. This is because the only �rst-sort terms are variables, and for second-sort termstj1; : : : ; tjs, we can introduce fresh variables vj1; : : : ; vjs of the second sort, and replace Ri(~t) by9vj1; : : : ; vjs (Vl vjl = tjl ^Ri(~t0)) where ~t0 is obtained from ~t by replacing each second-sort termtjl by vjl. Note that this transformation into an equivalent formula does not change the rank.We now de�ne the formula '(~x) of LC (simultaneously with formulae't) inductively as follows:|if '(~x) is a formula Ri(~x), where Ri(ni; Ji) 2 � and ~t : (ni; Ji) then '(~x) = '(~x);|if '(~x) is :�(~x), then '(~x) is : �(~x); and if '(~x) is W'i(~x) or V'i(~x), then '(~x) isW 'i(~x) or V 'i(~x), respectively;

12 � L. Hella, L. Libkin, J. Nurmonen, L. Wong|if '(~x) is 9y�(~x; y) or 8y�(~x; y), then '(~x) is 9y �(~x; y) or 8y �(~x; y), respectively;|if '(~x) is a formula t(~x) = s(~x) where t and s are �rst-sort terms (that is, �rst-sort variables),then '(~x) = '(~x);|if '(~x) is a formula t(~x) = s(~x) where t and s are second-sort terms, then '(~x) is the formulaWq2Q(t(~x; cq) ^ s(~x; cq));|if '(~x) is a formula P (t1; : : : ; tn) where each ti is a second-sort term and P is an n-arypredicate on Q, then '(~x) is the formula W(q1;:::;qn)2P (Vni=1 ti(~x; cqi)).Obviously t and ' constructed above are formulae of LC. It is also straightforward to verifyby induction that rk(t) = rk(t) and rk(') = rk('), for every second-sort term t and for everyformula ' of Laggr(All;All).It remains to verify that the constructed formulas t and ' have the desired properties. Thisis proved in the next lemma.Lemma 4.4. If t(~x) is a second-sort term, ~a is a tuple of A of the same type as ~x, and q 2 Q,then tA(~a) = q i� A j= t(~a; q). Similarly, if '(~x) is a formula of Laggr(All;All), and ~a is atuple of A of the same type as ~x, then A j= '(~a) i� A j= '(~a).Proof. Proof is by simultaneous induction. We sketch a few cases; others are straightforward.Let �rst t(~x) be a second-sort term, ~a a tuple of A of the same type as ~x, and q 2 Q. Thecases where t is a variable, constant symbol, counting term or of the form f(t1; : : : ; tn) for somef : Qn ! Q, are obvious.Let then t(~x) be AggrF~y:('(~x; ~y); s(~x; ~y)). Assume �rst that '(~a;A) is �nite and not empty.Then tA(~a) = q i� fm(s('(~a;A))) = q, where m is the cardinality of the multiset M =s('(~a;A)). Thus there exist distinct rationals q1; : : : ; qs such that the multiplicity of qi in Mis mi > 0, Psi=1mi = m, and for each qi, there are exactly mi tuples ~b such that '(~a;~b) holdsand tA(~a;~b) = qi. But this is exactly what 1 states. If '(~a;A) is in�nite, fm(s('(~a;A))) = qi� q = f!. Since 2 tests for M being in�nite and z being f!, and 3 tests for M being emptyand z being f0, we conclude the proof of correctness for the case of aggregate terms.Suppose then '(~x) is a formula of Laggr(All;All), and ~a is a tuple of A of the same type as ~x.Again, the �rst four cases above are obvious. If '(~x) is a formula t(~x) = s(~x) where t and s aresecond-sort terms, then A j= '(~a) i� for some q 2 Q, tA(~a) = q and sA(~a) = q. Since tA(~a) = qand sA(~a) = q hold i� A j= t(~a; q) and A j= s(~a; q), this is equivalent to A j= '(~a).If '(~x) is a formula P (t1; : : : ; tn) where each ti is a second-sort term and P is an n-ary pred-icate on Q, then A j= '(~a) i� for some (q1; : : : ; qn) 2 Qn we have tAi (~a) = qi for each i and(q1; : : : ; qn) 2 P . But this is exactly what ' states. 2

Logics with Aggregate Operators � 13Theorem 4.2 now follows immediately. 24.2 Notions of locality in �nite modelsIn this section, we only consider one-sorted �nite structures A = hA;RA1 ; : : : ; RAl i and two-sorted structures over signatures � that only contain relation symbols of the non-numericalsort (i.e., we assume that Ji = f1; : : : ; nig for every R(ni; Ji) 2 �). We call such two-sortedstructures pure. Note that each one-sorted �nite structure A can be extended to pure two-sorted structure simply by adding the set Q as the second sort (and interpreting the constantsymbols cq in the canonical way). We denote this extension of A by A�.Given a �nite one-sorted structure A, its Gaifman graph [12; 16; 14] G(A) is de�ned as hA;Eiwhere (a; b) is in E i� a 6= b and there is a tuple ~c 2 RAi for some i such that both a and bare in ~c. The distance d(a; b) is de�ned as the length of the shortest path from a to b in G(A);we assume d(a; a) = 0. If ~a = (a1; : : : ; an) and ~b = (b1; : : : ; bm), then d(~a;~b) = minij d(ai; bj).Given ~a over A, its r-sphere SAr (~a) is fb 2 A j d(~a; b) � rg. Its r-neighborhood NAr (~a) is de�nedas a structure in the signature that consists of � and n constant symbols:hSAr (~a); RA1 \ SAr (~a)n1 ; : : : ; RAl \ SAr (~a)nl ; a1; : : : ; aniThat is, the universe of NAr (~a) is SAr (~a), the interpretation of the �-relations is inherited fromA, and the n extra constants are the elements of ~a. If A is clear from the context, we writeSr(~a) and Nr(~a).Given a tuple ~a of elements of A, and d � 0, by ntpAd (~a) we denote the isomorphism type ofNAd (~a). Then ntpAd (~a) = ntpBd (~b) means that there is an isomorphism NAd (~a) ! NBd (~b) thatsends ~a to ~b; in this case we will also write ~a �A;Bd ~b. If A = B, we write ~a �Ad ~b. Given a tuple~a = (a1; : : : ; an) and an element c, we write ~ac for (a1; : : : ; an; c).For two �-structures A;B, we write A�dB if there exists a bijection f : A ! B such thatntpAd (a) = ntpBd (f(a)) for every a 2 A. That is, every isomorphism type of a d-neighborhood ofa point has equally many realizers in A and B. We write (A;~a)�d(B;~b) if there is a bijectionf : A! B such that ntpAd (~ac) = ntpBd (~bf(c)) for every c 2 A.Hanf-locality has been previously de�ned only for �nite one-sorted structures. In the followingwe make a natural extension of its de�nition to the case of pure two-sorted structures.Definition 4.5. (see [19; 14; 30; 21]) A formula '(~x) on pure two-sorted structures is calledHanf-local if there exist a number d � 0 such that for all �nite one-sorted structures A and B,(A;~a)�d(B;~b) implies A� j= '(~a) i� B� j= '(~b).The de�nition for open formulae is from [21]; most previous papers [19; 14; 30; 37] considered its

14 � L. Hella, L. Libkin, J. Nurmonen, L. Wongrestriction to sentences. It is known [14] that A�dB implies A�rB for r � d. It is also knownthat every (one-sorted) �rst-order sentence � is Hanf-local and d can be taken to be 3qr(�)�1[14]. This was generalized to various counting logics [37; 21], and the bound was improved to2qr(�)�1 � 1 [23; 31].Definition 4.6. (cf. [30; 31]) A formula '(~x) on pure two-sorted structures is calledGaifman-local if there exists a number r � 0 such that, for any �nite one-sorted structureA and any ~a;~b over A, ~a �Ar ~b implies that A� j= '(~a) i� A� j= '(~b).Gaifman's theorem [16] implies this notion of locality for �rst-order formulae, with a (7qr(') �1)=2 bound for r; in [31] a tight bound of 2qr(') � 1 is established.It is known that connectivity of graphs is not a Hanf-local property [14], and that the transitiveclosure of a graph is not Gaifman-local [16; 11]. Locality { either Gaifman or Hanf { implies anumber of results that describe outputs of local queries by relating degrees of elements in theinput and output. We now briey review one such result.With each formula '(x1; : : : ; xn) in the signature �, we associate a query that maps a �-structure A into '[A] = f~a 2 An j A j= '(~a)g. If A is a �-structure, and Ri is of arity pi, thendegreej(RAi ; a) for 1 � j � pi is the number of tuples ~a in RAi having a in the jth position. Inthe case of directed graphs, this gives us the usual notions of in- and out-degree. By deg set(A)we mean the set of all degrees realized in A, and deg count(A) stands for the cardinality ofdeg set(A).Definition 4.7. (see [33; 11; 30]) A query q, that is, a function that maps a �-structure Ato an m-ary relation on A, m � 1, is said to have the bounded number of degrees property, orBNDP, if there exists a function fq : N ! N such that deg count(q(A)) � fq(k) for every Awith deg set(A) � f0; 1; : : : ; kg. 2(Note that in several previous papers this was called the bounded degree property, or BDP,which was confusing as we talk about the number of degrees in the output. We thus decidedto change the name.)The intuition behind this property is that if A locally looks simple, then q(A) has a simplestructure as well { it cannot realize many di�erent degrees. The BNDP is very easy to use forproving expressivity bounds [33]. For example, if A is a successor relation, then deg set(A) =f0; 1g. However, if j A j= n, then deg count (TrCl(A)) = n, where TrCl(A) is the transitiveclosure of A. Thus, the transitive closure query cannot be expressible in any logic that has theBNDP.The relationship between the notions of locality we introduced is the following, when one deals

Logics with Aggregate Operators � 15with one-sorted �nite structures:Proposition 4.8. a) (see [21]) Every Hanf-local formula is Gaifman-local.b) (see [11]) Every query de�ned by a Gaifman-local formula has the BNDP. 2These results are not a�ected by the transfer to pure two-sorted structures.4.3 Locality of LCIn [37] it was proved that the extension of �rst-order logic by all unary generalized quanti�ers isHanf-local. The proof was based on bijective Ehrenfeucht-Fra��ss�e games [20] which characterizeequivalence of structures with respect to all unary quanti�ers. We now use these games toprove the Hanf-locality of LC.Let A and B be two �-structures, ~a 2 An, and ~b 2 Bn. The r-round bijective gameBEFr(A;~a;B;~b) is played by two players, called the spoiler and the duplicator. In each roundi = 1; : : : ; r, the duplicator selects a bijection fi : A ! B, and the spoiler selects an elementci 2 A (if jA j6=jB j, then the spoiler wins). After each round i, these moves determine therelation pi = p0 [f(cj; fj(cj)) j 1 � j � ig, where p0 is the initial relation f(aj; bj) j 1 � j � ngbetween the components of ~a and ~b. The spoiler wins the game, if for some i, pi is not a partialisomorphism A! B; otherwise the duplicator wins.Before using these games for the Hanf-locality result, we �rst mention the following simpleobservation.Lemma 4.9. Every formula in LC is equivalent to a formula that does not contain any quan-ti�ers 9q or 8q over second sort variables q.Proof. Clearly 9q'(~x; q) is equivalent to Wq2Q'(~x; cq), and similarly, 8q'(~x; q) is equivalent toVq2Q'(~x; cq). Hence the claim follows by straightforward induction. 2We now prove our main technical result of this subsection.Lemma 4.10. Let A and B be �nite one-sorted �-structures, ~a 2 An, ~b 2 Bn, and let A�and B� be the corresponding pure two-sorted structures. If the duplicator has a winning strategyin BEFr(A;~a;B;~b), then for every formula '(x1; : : : ; xn) in LC, with rk(') � r and all freevariables of the �rst sort, A� j= '(~a) if and only if B� j= '(~b).Proof. Let t(~x; ~z) be a second sort term, and '(~x; ~z) a formula of LC, where ~x are �rst sortvariables and ~z are second sort variables. Furthermore, let ~c and ~q be tuples of elements of A

16 � L. Hella, L. Libkin, J. Nurmonen, L. Wongand Q of matching lengths. We prove by simultaneous induction on i � r that the followingtwo claims hold whenever the duplicator is playing according to his winning strategy:(a) If rk(t) � i and ~c 2 (dom(pr�i))j~xj, then tA�(~c; ~q) = tB�(pr�i~c; ~q).(b) If rk(') � i and ~c 2 (dom(pr�i))j~xj, then A� j= '(~c; ~q) if and only if B� j= '(pr�i~c; ~q).Assume �rst that i = 0. If rk(t) = 0, then t is either a second sort variable or a constantsymbol. In both cases (a) holds trivially. Similarly, if rk(') = 0, then by Lemma 4.9, we canassume that ' is quanti�er free. Thus ' is Boolean combination of atomic formulas which areeither purely �rst-sort formulas or second-sort formulas of the form t = s for terms t, s. Thetruth of the �rst type is preserved by pr since pr is determined by a winning strategy of theduplicator, and so it is a partial isomorphism. For the second type atomic subformulas thetruth is preserved obviously since the values of the terms in A� and B� are the same.Assume then that i > 0 and the claims (a) and (b) hold for all j < i. Let rk(t) � i. Wecan assume without loss of generality that rk(t) = i; otherwise (a) follows directly from theinduction hypothesis, since pr�i � pr�j for all j < i. Thus, t is of the form #~y: (~x; ~y; ~z), whererk() = i� k for k =j~y j. Consider now the following function g : Ak ! Bk generated by thewinning strategy of the duplicator:g(d1; : : : ; dk) = (fr�i+1(d1); : : : ; fr�i+k(dk)):As each fr�i+j is a bijection A! B, it is easy to see that g is a bijection Ak ! Bk. Moreover,by the induction hypothesis, A� j= (~c; ~d; ~q) if and only if B� j= (pr�i+k~c; g(~d); ~q) for all~d = (d1; : : : ; dk) 2 Ak. In other words, g is a bijection between the sets (~c;A�; ~q) and (pr�i~c;B�; ~q), and so tA�(~c; ~q) = tB�(pr�i~c; ~q).To prove (b), assume (without loss of generality) that rk(') = i. If ' is of the form t = sfor second sort terms s and t, the claim follows easily from (a). The cases ' = : , ' = W�and ' = V� are also straightforward. Assume �nally, that ' = 9y (~x; y; ~z). If A� j= '(~c; ~q),then A� j= (~c; d; ~q) for some d 2 A. The induction hypothesis implies then that B� j= (pr�i~c; pr�i+1(d); ~q), whence B� j= '(pr�i~c; ~q). The converse implication is proved in the sameway. This completes the induction.The lemma follows now from the case i = r of claim (b). 2We now prove the desired locality result.Theorem 4.11. Over pure two-sorted structures, every formula of LC without free secondsort variables is Hanf-local.

Logics with Aggregate Operators � 17Proof. Let '(~x) be a formula of LC, where ~x are �rst-sort variables and rk(') = r. Let A andB be �nite one-sorted �-structures, and let ~a 2 An and ~b 2 Bn. It was proved in [37] thatif (A;~a)�d(B;~b) for d = 3r, then the duplicator has a winning strategy in the bijective gameBEFr(A;~a;B;~b), and hence by Lemma 4.10, A� j= '(~a) if and only if B� j= '(~b). Thus ' isHanf-local. 2By Theorem 4.2, we get as a consequence the Hanf-locality of the full aggregate logicLaggr(All;All).Corollary 4.12. Over pure two-sorted structures, all formulas of Laggr(All;All) without freesecond-sort variables are Hanf-local. 2As we said earlier, Hanf-locality is a very strong form of locality that implies others, andconsequently it gives us many expressivity bounds. Some of them are listed below. For ageneral overview of deriving expressiveness results from locality, see [11; 14; 16; 30; 33].Corollary 4.13. a) Over pure two-sorted structures, all formulas of Laggr(All;All) withoutfree second-sort variables are Gaifman-local and have the BNDP.b) None of the following can be expressed in Laggr(All;All) over graphs on the universe of the�rst sort: transitive closure, deterministic transitive closure, connectivity test, acyclicity test,the same-generation property for nodes in acyclic graphs, testing for balanced k-ary tree, k � 1.2Thus, despite its enormous counting power, Laggr(All;All) cannot express nonlocal properties,among them most properties requiring �xpoint computations.Remark. Note that in all the results proved so far the choice of numerical sort is irrelevant.The proofs go through if Q is replaced by any standard numerical domain, like N;Z;R or C .5. DATABASE QUERY LANGUAGES AND LaggrThe goal of this section is to show how standard SQL features can be coded in Laggr, therebyproviding bounds on the expressive power of database queries with aggregation. The codingthat we exhibit here is not only more general but also much simpler and more intuitive thanthat of [30; 34], thanks to the design of Laggr that does not limit available arithmetic operationsand makes it easy to code aggregation.

18 � L. Hella, L. Libkin, J. Nurmonen, L. Wong5.1 Languages NRLaggr and RLaggrWe de�ne a relational query language RLaggr(
;�), which extends standard relational querylanguages, such as relational algebra and calculus, with aggregation constructs. The language isparameterized by a collection of allowed arithmetic functions and predicates
 and a collectionof allowed aggregates �. We assume that the usual arithmetic operations (+, �, �, �) and theorder < on Q are always in
 and the summation aggregate (P) is always in �.The language is de�ned as a suitable restriction of a nested relational language NRLaggr(
;�),in the same way it was done previously [33; 34]. The type system is given byBase := b j Qrt := Base� : : :�Baseft := rt j frtgt := Base j t� : : :� t j ftgThe base types are b and Q, with the domain of b being an in�nite set U , disjoint from Q. Weuse � for product types; the semantics of t1 � : : :� tn is the cartesian product of the domainsof types t1; : : : ; tn. The semantics of ftg is the �nite powerset of elements of type t. Types rt(record types) and ft (at types) are used in restrictions that de�ne RLaggr.A database schema is a list of names of database relations (which may be nested relations)together with their types. We are particularly interested in the case of schemas consisting ofat relations, that is, those of types frtg. Such a list of names of relations and their at typesnaturally corresponds to a two-sorted signature. Indeed, a relation of type t = fb1 � : : :� bng,with each bi being either b or Q, corresponds to R(n; J) where J = fi j bi = bg.We thus identify at schemas and two-sorted signatures. Also, for each relational symbolR(n; J) in a two-sorted signature �, we write tp�(R) for its type, that is, fb1� : : :� bng wherebi = b for i 2 J and bi = Q for i 62 J .Expressions of the language (over a �xed schema �) are shown in Figure 1. We adopt theconvention of omitting the explicit type superscripts in these expressions whenever they can beinferred from the context.The set of free variables of an expression e is de�ned by induction on the structure of e and weoften write e(x1; : : : ; xn) to explicitly indicate that x1, ..., xn are free variables of e. 0, 1, R,and ;t have no free variables. The free variables of (e1; : : : ; en) are those of e1, ..., en. The freevariables of if e then e1 else e2 are those of e, e1, and e2. The free variables of f(e), P (e), �i;n eand feg are those of e. The free variables of = (e1; e2) and e1 [e2 are those of e1 and e2. Thefree variable of x is the variable x itself. The free variables of Sfe1 j x 2 e2g, Pfe1 j x 2 e2g,and AggrFfe1 j x 2 e2g are the free variables of e1, excluding x, and those of e2. In these three

Logics with Aggregate Operators � 19constructs, we require that x is not a free variable of e2.Semantics. For each �xed schema � and an expression e(x1; : : : ; xn), the value of e(x1; : : : ; xn)is de�ned by induction on the structure of e and with respect to a database (�nite �-structure)A and a substitution [x1:= a1; : : : ; xn:= an] that assigns to each variable xi a value ai of theappropriate type. We write e[x1:= a1; : : : ; xn:= an](A) to denote this value; if the context isunderstood, we often shorten this to e[x1:= a1; : : : ; xn:= an] or even just e. The values of 0 and1 are 0; 1 2 Q. For reason of economy, we use them to code Booleans, letting 0 code \true"and 1 code \false" (any other pair of rationals can be used for that purpose). The value of f(e)is the rational number obtained by applying the function f 2
 to the value of e. The valueof P (e) is 0 if the predicate in
 denoted by P holds on the tuple denoted by e; otherwise, itis 1. The value of R is the corresponding relation in A. The value of if e then e1 else e2 isthat of e1 if the value of e is 0; otherwise, it is that of e2. The value of (e1; : : : ; en) is the n-arytuple having the values of e1, ..., en at positions 1, ..., n respectively. The value of �i;n e is thevalue at the i-th position of the n-ary tuple denoted by e. The value of = (e1; e2) is 0 if e1 ande2 have the same value; otherwise, it is 1. The value of the variable x is the corresponding aassigned to x in the given substitution. The value of feg is the singleton set containing thevalue of e. The value of e1 [e2 is the union of the two sets denoted by e1 and e2. The valueof ; is the empty set.To de�ne the semantics of S,P and AggrF , assume that the value of e2 is the set fb1; : : : ; bmg.Then the value of Sfe1 j x 2 e2g is de�ned to bem[i=1 e1[x1:=a1; : : : ; xn:=an; x:=bi](A):The value of Pfe1 j x 2 e2g ismXi=1 e1[x1:=a1; : : : ; xn:=an; x:=bi](A):Finally, the value of AggrFfe1 j x 2 e2g is fm(fjc1; : : : ; cmjg), where fm is the mth function inF 2 �, and each ci is the value of e1[x1:=a1; : : : ; xn:=an; x:=bi](A), i = 1; : : : ;m.Language RLaggr. The at language RLaggr(
;�) is obtained from NRLaggr(
;�) by imposingthe following type restrictions:|each relation in � is of type frtg;|each expression is of type ft (at type);|for each rule in Group 2, all tis are replaced by Base;

20 � L. Hella, L. Libkin, J. Nurmonen, L. WongGroup 10; 1 : Q R 2 �R : tp�(R) e : Q e1 : t e2 : tif e then e1 else e2 : te : Q� : : :�Q (n times)f(e) : Q P (e) : Q for f : Qn ! Q and P � Qn from
Group 2e1 : t1; : : : en : tn(e1; : : : ; en) : t1 � : : :� tni � n e : t1 � : : :� tn�i;n e : ti e1 : t e2 : t= (e1; e2) : QGroup 3xt : t e : tfeg : ftg e1 : ftg e2 : ftge1 [e2 : ftg ;t : ftge1 : ft1g e2 : ft2gSfe1 j xt2 2 e2g : ft1g e1 : Q e2 : ftgPfe1 j xt 2 e2g : QF 2 � e1 : Q e2 : ftgAggrFfe1 j xt 2 e2g : QFig. 1. Expressions of NRLaggr(
;�) over signature �|for each rule in Group 3, all occurrences of t should be replaced by rt (record types).Thus, input databases for RLaggr expressions can be identi�ed with �nite �-structures, when� is a two-sorted signature. Furthermore, for a RLaggr(
;�) expression e(x1; : : : ; xn), all freevariables are of record types; thus, we shall write e[x1:= ~ai; : : : ; xn:= ~an](A) for the value ofthis expression, where ~ai are tuples of the same type as xi, and A is a �-structure. We shallnow assume, for the rest of the paper, that in �-structures, all relations are �nite.

Logics with Aggregate Operators � 215.2 Properties of NRLaggr(
;�) and RLaggr(
;�)The relational part of the language (without arithmetic and aggregation) is known to haveprecisely the power of the nested relational algebra, the standard query language for nestedrelations [5]. (The language of [5] coded Boolean values as elements of type funitg, where unitis a type having one value. We code Booleans as 0 and 1, but it does not a�ect expressiveness,see [34].) The at fragment of the language, without aggregation, has the power of the relationalalgebra, that is, �rst-order logic [44].When the standard arithmetic and theP aggregate are added, the language becomes powerfulenough to code standard SQL aggregation features such as the GROUPBY and HAVING clauses,and aggregate functions such as TOTAL, COUNT, AVG, MIN, MAX, present in all commercial versionsof SQL [41]. This was shown in [33]. The language we deal with here is a lot more powerful,as it puts no limitations on the class of allowed arithmetic operations and aggregate functions.Examples.We now give two examples of queries written in NRLaggr. First, the SQL GROUPBYcan be modeled by nesting. For example, given a relation R of type fb � bg, we can create anew relation of type fb�fbgg by grouping together all elements with the same �rst component,as follows: [8<: 8<:0@�1;2 x; [8<: if �1;2 x = �1;2 ythen f�2;2 ygelse fg ������ y 2 R9=;1A9=; ������ x 2 R9=;Next, we show how to express the example from the introduction in NRLaggr. We �rst joinrelations R1 and R2, to obtain a set of triples (employee, department, salary):e = [8<: [8<: if �1;2 x = �1;2 ythen f(�1;2 x; �2;2 x; �2;2 y)gelse fg ������ y 2 R29=;������ x 2 R19=;We then use this expression e to de�ne a new expression e0 that computes the set of pairs ofdepartments and total salaries that they pay:e0 = [8<: 8<:0@�2;3 x; X8<: if �2;3 x = �2;3 ythen �3;3 yelse 0 ������ y 2 e9=;1A9=; ������ x 2 e9=;The expression e00 obtained from e0 by changing �3;3 y to 1 in the then clause, computes theset of pairs of departments and total number of people they employ. We �nally use e0 and e00

22 � L. Hella, L. Libkin, J. Nurmonen, L. Wongto express the query from the introduction as follows:q = [8<: [8<: if �1;2 x = �1;2 y thenif �2;2 x > 106 then f(�1;2 x; �2;2 x�2;2 y)g else fgelse fg ������y 2 e009=;������ x 2 e09=;There are two comments we would like to make here. First, q is actually an expression ofRLaggr, as all type restrictions are satis�ed. We shall see soon that this is not an accident,and in fact all NRLaggr expressions, from at relations to at relations can be rewritten toequivalent RLaggr expressions, under some conditions on the arithmetic present.Secondly, the way to implement the query from the introduction by the expression q abovemay not be very e�cient. However,NRLaggr possesses an e�cient optimizer that was discussedelsewhere [44; 32]. Secondly, our primary concern here is the expressive power, and it shouldbe clear from the examples above that NRLaggr has enough power to model SQL grouping andaggregation constructs. For more on this, see [33; 34]. 2The following observation will be very useful for establishing expressivity bounds for NRLaggr.Recall that Q stands for the product aggregate. We writeQfe1 j x 2 e2g instead of Aggr�fe1 jx 2 e2g.Lemma 5.1. NRLaggr(All;All) t NRLaggr(All; fP;Qg).Proof. The inclusion of NRLaggr(All; fP;Qg) in NRLaggr(All;All) is trivial. For the inclusionof NRLaggr(All;All) in NRLaggr(All; fP;Qg), it is only necessary to show that each occurrenceof AggrFfe1 j x 2 e2g can be expressed in NRLaggr(All; fP;Qg), for e1 and e2 already inNRLaggr(All; fP;Qg).Let encode : Q! Q be an injective function that maps the rational numbers to prime numbers.This function is in NRLaggr(All; fP;Qg), since All contains all rational number functions. Letfje1 j x 2 e2jg be the multiset containing exactly the rational numbers that e1 takes as x rangesover the values of a set e2. Then Qfencode(e1) j x 2 e2g is an injection that maps multisetsfje1 j x 2 e2jg to rational numbers. Since All contains all functions on rational numbers, thereis a function F̂ in All for each aggregate function F in All such that for each n, for eachmultisetB having exactly n rational numbers b1, ..., bn, and for each fn 2 F , it is the case thatF̂(Qni=1(encode(bi))) = fn(B). Therefore, AggrFfe1 j x 2 e2g can be replaced by the expressionF̂(Qfencode(e1) j x 2 e2g) in NRLaggr(All; fP;Qg). 2For the following result, we let root(y; x) be any function Q�Q ! Q such that, for any n > 0,root(n; x) = sign(x) � npjx j if npjx j 2 Q.

Logics with Aggregate Operators � 23Proposition 5.2. (see [34]) Let
 include +, �, �, � and root(y; x). ThenNRLaggr(
; fP;Qg) is conservative over at types. That is, any expression e : ft ofNRLaggr(
; fP;Qg), having only free variables and relations of at types, is de�nable inRLaggr(
; fP;Qg). 25.3 Encoding RLaggr(
;�) in LaggrRecall that any two-sorted schema � naturally corresponds to a type of the form frt1g � : : :�frtng where all rt is are record types. We denote this type by �, too. Thus, any two-sorted�-structure can be considered as an object of type � and we can speak of applying NRLaggrqueries to it. Furthermore, any tuple ~x of free variables of a Laggr formula has a type, say(n; J), which corresponds to some record type rt . In this case we say that ~x has type rt . Ourgoal now is to show the following.Theorem 5.3. For any schema �, and for any expression e : frtg of RLaggr(
;�) over �without free variables, there exists a formula '(~x) of Laggr(
;�), with ~x of type rt, such thatfor any �-structure A, e(A) = f~a j A j= '(~a)g.Proof. Let us �rst extend Laggr with a \selector" term: if t0 is a term of sort Q and t1 and t2 areboth terms of sort b, then (t0 ! t1 j t2) is a term of sort b. If tA0 = 0, then (t0 ! t1 j t2)A = tA1 ;otherwise (t0 ! t1 j t2)A = tA2 . Due to the restriction of sorts, a \selector" term can onlyappear Laggr formulae in two contexts, either like R(: : : ; t; : : :) or t1 = t2, where t, t1, t2 areterms of sort b. It is therefore clear that \selector" terms can always be eliminated from Laggr byrecursively rewriting formulas using the following two equivalences: R(: : : ; (t0 ! t1 j t2); : : :)i� (t0 = 0 ^ R(: : : ; t1; : : :)) _ (:(t0 = 0) ^ R(: : : ; t2; : : :)), and t = ((t0 ! t1 j t2) i�(t0 = 0 ^ t = t1) _ (:(t0 = 0) ^ t = t2). Next, we assume that every subexpressionof the form if e1 then e2 else e3 in e is not of product type. Note that any subexpressionif e1 then e2 else e3 that is of product type can be replaced by an equivalent expression of theform (if e1 then �1;ne2 else �1;ne3; : : : ; if e1 then �n;ne2 else �n;ne3). Having introduced thesedevices of pure convenience, we can proceed with this proof.We need a translation of RLaggr expressions into formulae and terms of Laggr that accounts forfree variables (of record types) of RLaggr expressions. Let � be a set of variable assignments,that is, pairs (xrt ; ~y) where ~y has type rt and x is a variable of type rt . We require such a set tobe consistent, that is, to satisfy the following conditions. First, there are no two pairs in � withthe same �rst component but with di�erent second components. Second, no two componentsof the ~y tuples are the same. By �[xrt := ~y] we mean the result of adding the pair (xrt; ~y) to�, assuming that it does not violate the above consistency conditions. We write Cons(�;�0)

24 � L. Hella, L. Libkin, J. Nurmonen, L. Wongif � [�0 is consistent1. Given � = f(xi; ~yi) j i = 1; : : : ;mg, we de�ne �(xi) to be ~yi, ~y� to be(�(x1); : : : ;�(xm)), and (~y�; ~z) to be (�(x1); : : : ;�(xm); ~z).Let an expression e(xrt11 ; : : : ; xrtmm) be of type frtg. Let � be de�ned on x1; : : : ; xm so that �(xi)is ~yi for i = 1, ..., m. Let '(~y1; : : : ; ~ym; ~z) be an Laggr formula where ~z is fresh and of type rt.We adopt the convention that every formula '(~z) can also be considered as a formula '(~y; ~z)with any number of additional free variables, and similarly for terms. We write� ` e ~z=) 'to mean that, for any ~a1; : : : ;~am of types rt1; : : : ; rtm respectively, and for any �-structure A,it holds:(?) e[x1:=~a1; : : : ; xm:=~am](A) = f~a j A j= '(~a1; : : : ;~am;~a)gLet an expression e(xrt11 ; : : : ; xrtmm) be of type rt = b1� : : :� bp with each bi either b or Q. Let �be de�ned on x1; : : : ; xm so that �(xi) is ~yi for i = 1, ...,m. Let t1(~y1; : : : ; ~ym), ..., tp(~y1; : : : ; ~ym)be terms of Laggr of sorts agreeing with rt. We write� ` e =) t1 � : : : � tpif, for any ~a1; : : : ;~am of types rt1; : : : ; rtm respectively, and for any �-structure A, it holds:(??) (�i;m e)[x1:=~a1; : : : ; xm:=~am](A) = tAi (~a1; : : : ;~am); for all i = 1; : : : ; p:In Figure 2, we de�ne � ` e =) ~t and � ` e ~z=) ' inductively on the structure of RLaggrqueries. The free variables in ~t and ' are in ~y� and (~y�; ~z) respectively; we leave them implicitin the rules given in the �gure, except in the last two rules. Note that we need the summationaggregate P to code conditionals. We also use 0 instead of c0 in those rules. Note the use ofthe \selector" term to code if -then -else expressions of type b. Theorem 5.3 now follows fromProposition 5.4. The translation shown in Figure 2 satis�es conditions (?) and (??) forevery expression e of RLaggr(
;�).Proof of this proposition is by straightforward induction on RLaggr expressions. 2This completes the proof of Theorem 5.3. 21Technically speaking, � is a list, so the above condition says that any list containing precisely all the elementsthat occur in � and �0, without duplicates, is consistent.

Logics with Aggregate Operators � 25� ` e =) t� [�0 ` e =) t Cons(�;�0) � ` e ~z=) '� [�0 ` e ~z=) ' Cons(�;�0)q = 0; 1� ` q =) cq � ` R ~z=) R(~z) R 2 �� ` e =) t1 � : : : � tn� ` f(e) =) f(t1; : : : ; tn) f 2
 � ` e =) t1 � : : : � tn� ` P (e) ;=) P (t1; : : : ; tn) P 2
� ` e0 =) t0 � ` e1 ~z=) '1 � ` e2 ~z=) '2� ` if e0 then e1 else e2 ~z=) ((t0 = 0) ^'1) _ (:(t0 = 0) ^'2)� ` e0 =) t0 � ` e1 =) t1 � ` e2 =) t2� ` if e0 then e1 else e2 =) (t0 ! t1 j t2) e1; e2 : b� ` e0 =) t0 � ` e1 =) t1 � ` e2 =) t2� ` if e0 then e1 else e2 =) (P y:((t0 = 0) ^ (y = 0); t1))+ (P y:(:(t0 = 0) ^ (y = 0); t2)) e1; e2 : Q� ` e1 =) t1 : : : � ` en =) tn� ` (e1; : : : ; en) =) t1 � : : : � tn � ` e =) t1 � : : : � tn� ` �i;n(e) =) ti� ` e1 =) t1 � ` e2 =) t2� ` = (e1; e2) =) Pw:([(t1 = t2) ^ (w = 0)] _ [:(t1 = t2) ^ (w = 1)]; w)� ` xrt =) y1 � : : : � yn �(xrt) = (y1; : : : ; yn) � ` e =) t1 � : : : � tn� ` feg ~z=) Vni=1(zi = ti)� ` e1 ~z=) '1 � ` e2 ~z=) '2� ` e1 [e2 ~z=) '1 _ '2 � ` ; ~z=) false�[x:=~v] ` e1 ~z=) '(~y�; ~v; ~z) � ` e2 ~v=) (~y�; ~v)� ` Sfe1 j xrt 2 e2g ~z=) 9~v: (~y�; ~v) ^ '(~y�; ~v; ~z)�[x:=~v] ` e1 =) t(~y�; ~v) � ` e2 ~v=) (~y�; ~v)� ` AggrFfe1 j xrt 2 e2g =) AggrF~v:((~y�; ~v); t(~y�; ~v)) F 2 �Fig. 2. Translation

26 � L. Hella, L. Libkin, J. Nurmonen, L. Wong5.4 Expressiveness of NRLaggrEach NRLaggr expression e : t over schema � de�nes a query (map) Qe from �nite � structuresto objects of type t. Combining Theorem 5.3, Lemma 5.1 and Proposition 5.2, we obtain:Corollary 5.5. For every NRLaggr(All;All) expression e : frtg without free variables overa schema with all relations of at types, the query Qe de�ned by e can be expressed inLaggr(All;All). 2We call a record type relational if it is of the form b � : : :� b. We call a NRLaggr expressionwithout free variables relational if it is of type frtg where rt is relational. Finally, a query Qede�ned by a relational expression is called relational if all relations in � are of type fb� : : :�bg.From Hanf-locality of Laggr(All;All) we conclude:Corollary 5.6. [Expressiveness of Aggregation]Every relational query in NRLaggr(All;All) is Hanf-local, Gaifman-local and has the BNDP. 2This implies, for example, that NRLaggr(All;All) cannot express any query listed in Corollary4.13.The main result on expressibility bounds { Corollary 5.6 { makes the assumption that theinput structure is relational, that is, only contains elements of the base type b. One can relaxthis in two di�erent ways. First, input structures can be nested (that is, of arbitrary type t).Second, one can permit at structures of types frtg where rt is an arbitrary record type, notjust b � : : : � b. The natural question, then, is whether one can recover Corollary 5.6 underthose relaxations.The case of nested inputs is simple (see below). The case of numerical types is dealt with inthe next section.Proposition 5.7. There exist NRLaggr graph queries (not using arithmetic and aggregation)on graphs of type ffbg � fbgg that are neither Hanf-local nor Gaifman-local.Proof. Let G be an input graph of type ffbg � fbgg, that is, a set f(Xi; Yi) j i = 1; : : : ; ng,Xi; Yi � U . We de�ne a query Q that on G produces the graph whose edges are (X;Y) whereX;Y are among Xi; Yi, i = 1; : : : ; n, and X � Y . Clearly, this query is de�nable in NRL, andNRL can express the � relation [5]. Assume that this query is Gaifman-local, and let r > 0witness that. Let then n � 4r + 4, and let A = fa1; : : : ; ang be an n-element subset of U .De�ne Gn as a graph whose nodes are sets of the form fa1; : : : ; akg, k = 1; : : : ; n, and whose

Logics with Aggregate Operators � 27edge-relation En is n�1[k=1f(fa1; : : : ; akg; fa1; : : : ; ak; ak+1g)gLet X 0 = fa1; : : : ; ar+2g and X 00 = fa1; : : : ; a3r+3g. It is straightforward to verify that ther-neighborhoods of (X 0;X 00) and (X 00;X 0) in Gn are isomorphic (as unions of disjoint chains),but (X 0;X 00) belongs to the output of Q on Gn, and (X 00;X 0) does not. This shows that Q isnot Gaifman-local. By Proposition 4.8 it is not Hanf-local either. 26. RESTRICTIONS OF LaggrWhile Laggr subsumed SQL-like languages, and gave us bounds on their expressive power, itis not a direct analog of relational calculus for aggregate extensions, mostly because of its useof in�nitary connectives and quanti�cation over Q. We now consider a �nitary restriction ofLaggr, and show that it in a certain sense captures the language RLaggr.We need a standard de�nition of the active domain of a �nite database [1], slightly modi�edhere to deal with two base types. Given a �-structure A, the set of all elements of U that occurin A is denoted by adom(A), and the set of all constants from Q that occur in A is denotedby adomQ(A). Given a record type rt = b1 � : : :� bn, by adomrt(A) we mean A1 � : : : �Anwhere Ai = adom(A) whenever bi = b and Ai = adomQ(A) whenever bi = Q.Definition 6.1. The logic Laggr(
;�) is de�ned to be the restriction of Laggr(
;�) that doesnot permit in�nitary conjunctions and disjunctions, and 0; 1 are the only two constant terms ofthe rational sort. The semantics is modi�ed so that A j= 9x:'(x; � � �) means that A j= '(x0; � � �)for some x0 2 adom�(A), where adom� is adom for �rst-sort x, and adomQ for second-sort x.Furthermore, in AggrF~z:('; t), ~z ranges over adomrt(A) where rt is the type of ~z. 2In contrast with Laggr, Laggr formulae can be evaluated on �nite two-sorted structures in theusual bottom-up way, assuming e�ectiveness of all functions and predicates in
 and aggregatesin �. To connect this logic with RLaggr, we need to impose some conditions on the aggregatesfrom �.Definition 6.2. Let M = hQ;�; �i be a commutative monoid on Q. A monoidal aggregategiven by M is de�ned to be FM whose nth function is fn(fjx1; : : : ; xnjg) = x1�x2� : : :�xn forn > 0 and f0 returns �. (f! is arbitrary.) An aggregate signature is monoidal if every aggregatein it is. 2The usual aggregates P and Q are monoidal, given by hQ;+; 0i and hQ; �; 1i respectively.In fact, most aggregates in the database setting are either monoidal or can be obtained from

28 � L. Hella, L. Libkin, J. Nurmonen, L. Wongmonoidal aggregates by means of simple arithmetic operations [15].We now have to say what it means for a logic to capture a query language. In one direction,it is easy { every query must be de�nable by a logical formula. For the other direction, onehas to deal with the standard database problem of safety [1]: while queries always return �niteresults, arbitrary formulae need not, as they may de�ne in�nite subsets of Q. We circumventthis problem by using the following de�nition of capture.Definition 6.3. We say that Laggr(
;�) captures RLaggr(
;�) if the following two condi-tions hold for every signature �. First, for every RLaggr(
;�) expression e : frtg without freevariables there exists an Laggr(
;�) formula '(~x) with ~x of type rt such that e(A) = f~a j A j='(~a)g. Second, for every Laggr(
;�) formula '(~x) with ~x of type rt there exists a RLaggr(
;�)expression e(xrt) : Q such that the value of e[xrt:= ~a](A) is 0 if A j= '(~a) and 1 otherwise.Theorem 6.4. Let � be monoidal. Then Laggr(All;�) captures RLaggr(All;�). Moreover,Laggr(
; fPg) captures RLaggr(
; fPg) if
 contains (+;�; �;�), and Laggr(
; fP;Qg) cap-tures RLaggr(
; fP;Qg) if
 contains (+;�; �;�; root).Proof. The proof of Proposition 5.2 in [32] can be adapted to show that for � monoidal, everyexpression e of RLaggr(All;�) is equivalent to an expression e0 in which for every subexpressionof the form Sfe1 j x 2 e2g, Pfe1 j x 2 e2g, and AggrFfe1 j x 2 e2g, the expression e2is one of R 2 �. Moreover, if P is the only aggregate, the same is true for any expressionof RLaggr(
 [f+;�; �;�; g; fPg), and if P and Q are the only aggregates, this is true forany expression of RLaggr(
 [f+;�; �;�; rootg; fP;Qg), for any
. Now, to conclude theembedding of RLaggr into Laggr, we just follow the rules in Figure 2, and observe that in theresulting formulae all the quanti�cation is over the active domain, and no in�nitary connectivesare present.For the other direction, we show how to construct e' for every '(~x) so that e'[xrt:= ~a](A) is0 if A j= '(~a) and 1 otherwise, and how to construct at the same time, for each term t(~x), anexpression et(xrt) so that et[xrt:= ~a](A) is the value of term t(~a) in A.We �rst observe that for sets of type fQg that may not contain any element other than 0 or1, the operation MIN that selects the minimum element is de�nable in RLaggr: this is becauseMIN(X) = 1 � (Pf1 j x 2 Xg �Pfx j x 2 Xg). Also note that for each record type rt, wehave a RLaggr expression adomrt that de�nes adomrt(A) for every input A.We now de�ne e' and et by induction on the structure of formulae and terms. For c0; c1(constant symbols for 0 and 1) and terms of the form f(~t) and formulae P (~t) with f; P 2
,the translation is straightforward. For terms of the �rst sort (which must be variables), thetranslation is obtained by applying a projection operator to the tuple of free variables. For '

Logics with Aggregate Operators � 29being (t1 = t2), e' is = (et1; et2). We now give translations of the remaining constructs of Laggr.In what follows, we use the same symbols for free variables in formulae and RLaggr expressionfor better readability and to avoid repeated projections and tupling operations. For example,we write Sfe(y; ~x) j~x 2 Rg instead of the o�cial Sfe(y; �1;n x; ..., �n;n x) j x 2 Rg.|Assume that ' is R(t1; : : : ; tn) where tis are terms. Then e' is = (0;MIN(Sf=(x; (et1; : : : ; etn)) j x 2 Rg)).|For � :', e = 1 � e'. For � '1 _ '2, e is de�ned to be MIN(fe'1g [fe'2g).|Let (~y) � 9z:'(z; ~y). Then e is de�ned to be1� = (0; Xfif e'(z; ~y) then 1 else 0 j z 2 adom�g)where adom� refers to adom when z is of the �rst sort, and to adomQwhen z is of the secondsort.|If t(~y) � #~x:'(~x; ~y), and ~x is of type rt (which is in this case b � : : : � b), then et isPfif e'(~x; ~y) then 1 else 0 j ~x 2 adomrtg.|If t0(~x) � AggrF~z:('(~x; ~z); t(~x; ~z)) and ~z is of type rt, then et0 isAggrFfet(~x; ~z) j ~z 2[fif e'(~x;~v) then f~vg else ; j ~v 2 adomrtg gIt is straightforward to verify soundness of this translation. This completes the proof. 2As a corollary, we answer the question about expressivity of RLaggr over Q. Since �rst-orderlogic with counting quanti�ers is no more expressive than Laggr(f+; �;�; <g; fPg), the resultsof [4] imply the following.Corollary 6.5. Assume that the test for connectivity of graphs of type fQ�Qg is not de�n-able in RLaggr(f+;�; �;�; <g; fPg). Then there exists a problem in NLOGSPACE for whichthere are no constant-depth polynomial-size unbounded fan-in circuits with threshold gates.Proof. It can be easily seen that the �rst-order logic with counting quanti�ers [4] is no moreexpressive than Laggr(f+; �;�; <g; ;); since the former captures the class of problems for whichthere exist constant-depth polynomial-size unbounded fan-in circuits with threshold gates [4],and connectivity is in NLOGSPACE, the result follows. 2Whether the class of problems de�nable with polynomial-size constant-depth threshold circuits(called TC0 [3; 4]) is di�erent from NLOGSPACE (or even NP) remains an open problem incomplexity theory. In fact, there are indications that the problem is extremely hard (see [3] fora survey). It now follows that we cannot answer questions about expressivity of aggregate query

30 � L. Hella, L. Libkin, J. Nurmonen, L. Wonglanguages over Q without separating TC0 from NP. The key di�erence between this situationand earlier results on expressive power of NRLaggr is that the domain U is unordered, whereasover Q we do have an order. An analog of Corollary 6.5 can be proved for inputs of type fb�bgassuming that the domain U of type b is linearly ordered. Indeed, if the universe U of thebase type b is ordered, then each element x of type b that occurs in a database D is naturallyassociated with the number of y < x such that y of type b occurs in D. If the order on b isavailable, this number is clearly de�nable with the aggregate P. We thus obtain:Corollary 6.6. Let RLaggr< be de�ned just as RLaggr except that a linear order < is availableon the base type b in addition to the equality test. Assume that the test for connectivity of graphsof type fb � bg is not de�nable in RLaggr< (f+;�; �;�; <g; fPg). Then TC0 is di�erent fromNLOGSPACE. 2By changing a query from connectivity to a DLOGSPACE-complete one (e.g., deterministictransitive closure [24]), we can obtain a similar result showing that nonde�nability of deter-ministic transitive closure in RLaggr< (f+;�; �;�; <g; fPg) implies the separation between TC0and DLOGSPACE. Note that there are other known cases when expressivity bounds for querylanguages cannot be proved without separating complexity classes; see, for example, [2].7. CONCLUSIONSIn this paper we studied the problem of adding aggregate operators to logics. We were primarilymotivated by problems arising in database theory. Aggregation is indispensable in majority ofreal life applications, but the foundations of query languages that support it are not adequatelystudied. Here, we concentrated on the problem of expressive power. We �rst considered addingaggregation to logics that already have substantial counting power, and proved that the resultinglogics have a very nice behavior: over pure relational structures, they can only de�ne localproperties. We then considered a query language, that models all the standard aggregationfeatures of commercial query languages such as SQL (and, in fact, more, as it permits everywell-de�ned aggregate operator and every arithmetic function). We showed a simple embeddingof this language into aggregate logic, and thus proved that over a large class of inputs, it is alsolocal. In particular, over unordered domains, queries such as transitive closure are inexpressiblein SQL, no matter what collection of arithmetic functions and aggregate operators one adds.We believe that the use of logics like Laggr and Laggr is not limited to studying the expressivepower of languages. They provide a disciplined approach to design of declarative languagesfor aggregation, and hopefully this can be used to study other problems, such as languagedesign and optimization of aggregate queries. Known techniques for optimizing aggregatequeries are quite ad hoc, and perhaps a clean theoretical framework can help here. We notethat [29], starting with essentially the same motivation, designed a categorical calculus for

Logics with Aggregate Operators � 31aggregate queries. It will be interesting to see what are the connections between that calculusand Laggr. Among other possibilities for future work we would like to mention, are extensionsof the general approach to other datatypes used in applications, complexity and decidabilityproblems for fragments of Laggr, and extensions to logics that have a �xpoint mechanism aswell as counting power (in particular, we would like to see if bounds such as those of [7] can beproved in the presence of aggregation).Acknowledgement. We thank Rona Machlin for helpful comments.REFERENCES[1] S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases, Addison Wesley, 1995.[2] S. Abiteboul and V. Vianu. Computing with �rst-order logic. Journal of Computer and System Sciences50 (1995), 309{335.[3] E. Allender. Circuit complexity before the dawn of the new millennium. In Proc. 16th Conf. on Foundationsof Software Technology and Theoretical Computer Science (FST&TCS'96), Springer LNCS vol. 1180,1996, 1{18.[4] D.M. Barrington, N. Immerman, H. Straubing. On uniformity within NC1. Journal of Computer andSystem Sciences, 41:274{306,1990.[5] P. Buneman, S. Naqvi, V. Tannen, L. Wong. Principles of programmingwith complex objects and collectiontypes. Theoretical Computer Science, 149(1):3{48, September 1995.[6] L. Cabibbo and R. Torlone. A framework for the investigation of aggregate functions in database queries.In International Conference on Data Base Theory 1999, Springer LNCS vol. 1540, pages 383{397.[7] J. Cai, M. F�urer and N. Immerman. On optimal lower bound on the number of variables for graph identi-�cation. Combinatorica, 12 (1992), 389{410.[8] S. Cohen, W. Nutt and A. Serebrenik. Rewriting aggregate queries using views. In ACM Principles ofDatabase Systems 1999, pages 155-166,[9] M. Consens and A. Mendelzon. Low complexity aggregation in GraphLog and Datalog, Theoretical Com-puter Science 116 (1993), 95{116.[10] A. Dawar, S. Lindell, S. Weinstein. First order logic, �xed point logic, and linear order. In Computer ScienceLogic 1995, pages 161{177.[11] G. Dong, L. Libkin and L. Wong. Local properties of query languages. Theoretical Computer Science, 239(2000), 277{308.[12] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.[13] K. Etessami. Counting quanti�ers, successor relations, and logarithmic space, Journal of Computer andSystem Sciences, 54 (1997), 400{411.[14] R. Fagin, L. Stockmeyer and M. Vardi, On monadic NP vs monadic co-NP, Information and Computation,120 (1995), 78{92.[15] L. Fegaras and D. Maier. Towards an e�ective calculus for object query languages. In ACM SIGMOD'95,pages 47{58.[16] H. Gaifman. On local and non-local properties, Proceedings of the Herbrand Symposium, Logic Colloquium'81, North Holland, 1982.

32 � L. Hella, L. Libkin, J. Nurmonen, L. Wong[17] E. Gr�adel and Y. Gurevich. Meta�nite model theory. Information and Computation 140 (1998), 26{81.[18] S. Grumbach, M. Rafanelli and L. Tininini. Querying aggregate data. In ACM Principles of DatabaseSystems 1999, pages 174{184.[19] W. Hanf. Model-theoretic methods in the study of elementary logic. In J.W. Addison et al, eds, The Theoryof Models, North Holland, 1965, pages 132{145.[20] L. Hella. Logical hierarchies in PTIME. Information and Computation, 129 (1996), 1{19.[21] L. Hella, L. Libkin and J. Nurmonen. Notions of locality and their logical characterizations over �nitemodels. Journal of Symbolic Logic, 64 (1999), 1751-1773.[22] N. Immerman. Relational queries computable in polynomial time. Information and Control, 68 (1986),86{104.[23] N. Immerman. Descriptive Complexity. Springer Verlag, 1999.[24] N. Immerman. Languages that capture complexity classes. SIAM Journal on Computing 16 (1987), 760{778.[25] N. Immerman and E. Lander. Describing graphs: A �rst order approach to graph canonization. In \Com-plexity Theory Retrospective", Springer, Berlin, 1990.[26] A. Klug. Equivalence of relational algebra and relational calculus query languages having aggregate func-tions. Journal of the ACM 29 (1982), 699{717.[27] Ph. Kolaitis and J. V�a�an�anen. Generalized quanti�ers and pebble games on �nite structures. Annals ofPure and Applied Logic, 74 (1995), 23{75.[28] Ph. Kolaitis, M. Vardi. In�nitary logic and 0-1 laws. Information and Computation, 98 (1992), 258{294.[29] K. Lellahi and V. Tannen. A calculus for collections and aggregates. In Proc. Category Theory in ComputerScience 1997, pages 261{280.[30] L. Libkin. On the forms of locality over �nite models. In Proc. 12th IEEE Symp. on Logic in ComputerScience (LICS'97), Warsaw, Poland, June{July 1996, pages 204{215.[31] L. Libkin. Logics with counting and local properties. ACM Trans. on Computational Logic, 1 (2000), 33{59.[32] L. Libkin and L. Wong. Aggregate functions, conservative extensions, and linear orders. In Proc. DatabaseProgramming Languages 1993, Springer, 1994, pages 282{294.[33] L. Libkin, L. Wong. Query languages for bags and aggregate functions. Journal of Computer and SystemSciences 55 (1997), 241{272.[34] L. Libkin and L. Wong. On the power of aggregation in relational query languages. In Proc. DatabaseProgramming Languages 1997, Springer LNCS 1369, pages 260{280.[35] I.S. Mumick, H. Pirahesh, R. Ramakrishnan. Magic of duplicates and aggregates. In Conf. on Very LargeDatabases, 1990, pages 264{277.[36] I.S. Mumick and O. Shmueli. How expressive is strati�ed aggregation? Annals Math. and AI 15 (1995),407{435.[37] J. Nurmonen. On winning strategies with unary quanti�ers. Journal of Logic and Computation, 6 (1996),779{798.[38] M. Otto. Bounded Variable Logics and Counting: A Study in Finite Models. Springer Verlag, 1997.[39] K. Ross and Y. Sagiv. Monotonic aggregation in deductive databases. In ACM Principles of DatabaseSystems 1992, pages 114{126.[40] K. Ross, D. Srivastava, P. Stuckey and S. Sudarshan. Foundations of aggregation constraints. TheoreticalComputer Science 193 (1998), 149{179.

Logics with Aggregate Operators � 33[41] J. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science Press 1988.[42] A. Van Gelder. The well-founded semantics of aggregation. In ACM Principles of Database Systems 1992,pages 127{138.[43] M. Vardi. The complexity of relational query languages. In Proceedings, 14th ACM Symposium on Theoryof Computing, 1982, 137{146.[44] L. Wong. Normal forms and conservative properties for query languages over collection types. Journal ofComputer and System Sciences 52(1):495{505, June 1996.

