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We study adding aggregate operators, such as summing up elements of a column of a relation, to logics with
counting mechanisms. The primary motivation comes from database applications, where aggregate operators are
present in all real life query languages. Unlike other features of query languages, aggregates are not adequately
captured by the existing logical formalisms. Consequently, all previous approaches to analyzing the expressive
power of aggregation were only capable of producing partial results, depending on the allowed class of aggregate
and arithmetic operations.

We consider a powerful counting logic, and extend it with the set of all aggregate operators. We show that
the resulting logic satisfies analogs of Hanf’s and Gaifman’s theorems, meaning that it can only express lo-
cal properties. We consider a database query language that expresses all the standard aggregates found in
commercial query languages, and show how it can be translated into the aggregate logic, thereby providing
a number of expressivity bounds, that do not depend on a particular class of arithmetic functions, and that
subsume all those previously known. We consider a restricted aggregate logic that gives us a tighter capture
of database languages, and also use 1t to show that some questions on expressivity of aggregation cannot be
answered without resolving some deep problems in complexity theory.

Categories and Subject Descriptors: H.2.3 [Database management]: Query languages; F.4.1 [Mathematical
logic and formal languages|: Model theory

Additional Key Words and Phrases: Database, Relational Calculus, Aggregation, Expressive Power, Locality

1. INTRODUCTION

First-order logic over finite structures plays a fundamental role in several computer science ap-
plications, perhaps most notably, in database theory. The standard theoretical query languages
— relational algebra and calculus — that are the backbone for the commercial query languages,
have precisely the power of first-order logic. However, while this power is sufficient for writing
many useful queries, in practice one often finds that it is quite limited for two reasons. Firstly,
in first-order logic, one cannot do fixpoint computation (for example, one cannot compute the
transitive closure of a graph). Secondly, one cannot express nontrivial counting properties (for
example, one cannot compare the cardinalities of two sets).

From the practical point of view, fixpoint computation, although sometimes desirable, is of
less importance in the database context than counting. Indeed, in the de-facto standard of
the commercial database world, SQL, a limited recursive construct has only been proposed
for the latest language standard (SQL3). At the same time, constructs such as cardinality of
a relation or the average value of a column, known as aggregate functions, are present in any
commercial implementation of SQL (they belong to what is called the entry level SQL92, which
is supported by all systems).
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On the theory side, however, fixpoint extensions of first-order logic and corresponding query
languages are much better studied than their counting counterparts. A standard fixpoint
extension considered in the database literature is the query language datalog, and practically
every aspect of it — expressive power, optimization, adding negation, implementation techniques
— was the subject of numerous papers. For the study of expressive power of query languages,
which will interest us most in this paper, a very nice result of [28] showed that the infinitary logic
with finitely many variables, £ | has a 0-1 law over finite structures. As many fixpoint logics
can be embedded into it, this result gives many expressivity bounds for datalog-like languages.
In the presence of an order relation, it is again a classical result that various fixpoint extensions
of first-order logic capture familiar complexity classes such as PTIME and PSPACE [22; 43].

See [1; 12; 23] for an overview.

For extensions with counting and aggregate operators, much less is known, especially in terms
of expressive power of languages. In an early paper [26] it was shown how to extend both
relational algebra and calculus with aggregate constructs, but the resulting language did not
correspond naturally to any reasonable logic. It is known how to integrate aggregation into
datalog-like languages (both recursive and nonrecursive) [39; 42], and various aspects of such
aggregate languages were studied (e.g., query optimization [35], handling constraints involving
aggregation [40], query containment and rewriting [8; 18], interaction with functional program-
ming constructs [6]). A powerful counting extension of first-order logic, L¢, was introduced in
[31], but the counting operators in that logic are quite different from aggregate operators.

At this point, let us give an example of a typical aggregate query that would be supported by
all commercial versions of SQL, and use it to explain problems that arise when one attempts to
analyze expressiveness of the language. Suppose we have two database relations: a relation R1
with attributes “employee” and “department”, and a relation R2 with attributes “employee”
and “salary”. Suppose we want to find the average salary for each department that pays total
salary at least $10°. In SQL, this is done as follows.

SELECT R1.Dept, AVG(R2.Salary)
FROM R1, R2

WHERE R1.Employee = R2.Employee
GROUPBY R1.Dept

HAVING SUM(R2.Salary) > 1000000

Relations R1 and R2 separate the information about departments and salaries. This query joins
them to put together departments, employees, and salaries, and then performs an aggregation
over the salary column, for each department in the database, followed by selecting some of the
resulting tuples.

While the features of the language given by the SELECT, FROM and WHERE clauses are well-known
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to be first-order, other features used in this example pose a problem.

(1) We permit computation of aggregate operators such as AVG and SUM over the entire column
of a relation. This form of counting is rather different from the counting quantifiers or
terms (see, e.g, [13; 25; 38]), normally supported by logical formalisms.

(2) The GROUPBY clause creates an intermediate structure which is a set of sets — for each
department, it groups together its employees. Again, this does not get captured adequately
by existing logical formalisms.

This shows why it is hard to capture aggregation in query languages by a logic whose expressive
power is easy to analyze. Still, some partial results exist. For example, [36] gives some bounds
based on the estimates on the largest number a query can produce; clearly such bounds are
not robust and do not withstand adding arithmetic operations. In [9] it is shown that the
transitive closure of a graph is not expressible in an aggregate extension of first-order logic if
DLOGSPACE # NLOGSPACE. In [33] this is proved without any complexity assumptions;
a generalization of [33] to many other queries is given in [11]. One problem with the proofs
of [33; 11] is that they are very “syntactic” — they work for a particular presentation of the
language, and rely heavily on complicated syntactic rewritings of queries, rather than on the
semantic properties of those. An attempt to remedy this was made in [30] which considered a
sublanguage that only permits aggregation over columns of natural numbers, returning natural
numbers as well (for example, AVG is not allowed). Then [30] gave a somewhat complicated
encoding of the language in first-order logic with counting quantifiers, for which expressivity
bounds are known [30; 37]. The encoding of [30] was extended to aggregation over rational
numbers [34]; it did allow more aggregates (e.g., AVG) and more arithmetic, at the expense of
a very unpleasant and complicated encoding procedure.

Thus, first-order logic with counting quantifiers is inadequate as a logic for expressing aggregate
query languages. It also brings up an analogy with the development of datalog-like languages

and L£¢

“ ., and raises the following question:

Can we find a powerful logic into which aggregate queries can be easily embedded, and
whose properties can be analyzed so that bounds for query languages can be derived?

Our main goal is to give the positive answer to this question. To do so, we combine an
infinitary counting logic from [31] with an elegant framework of [17] for adding aggregation. As
the numerical domain, we choose the set of rational numbers Q, although other domains (e.g.,

Z,R) can be chosen.

While [17] gives a nice framework for modeling aggregation, it provides neither expressivity
bounds nor techniques for proving them in a logic with aggregate operators. On the other
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hand, [31] presents a number of techniques for proving expressivity bounds, but the logic there
does not have aggregate operators. We thus combine the two, which results in a logic Lagg.
It defines every arithmetic operation and every aggregate function. We then show that it has
very nice behavior: its formulae satisfy analogs of Hanf’s [14; 19] and Gaifman’s [16] theorems,
meaning that it can only express local properties. In particular, properties such as connectivity
of graphs cannot be expressed.

We then consider a theoretical language RL*8", similar to those defined in [5; 33], and explain
how it models all the features of SQL. Next, we show an embedding of RL*®5" into Lager, which
is much simpler than those previously considered for first-order with counting [30; 34]. This
implies that the behavior of aggregate queries is local over a large class of inputs, no matter
what family of aggregate and arithmetic operations the language possesses.

Not only is this result much stronger than all previous results on expressiveness of aggregation,
its proof is also much cleaner than those that appeared in the literature. Furthermore, we
believe that logics with aggregation are interesting on their own right, as they give a rather
disciplined approach to modeling aggregation and can be used to study other aspects of it.

Organization. We give notations, including two-sorted structures and a formal definition of
aggregates in Section 2. In Section 3 we give the definition of the aggregate logic L.ger. In
Section 4 we explain the locality theorems of Hanf and Gaifman and prove that L,g.. satisfies
analogs of both of them, thus showing that it cannot express properties such as the connectivity
of a graph.

In Section 5, we define an aggregate query language N'RL*®", on nested relations, that models

both aggregation and grouping features of SQL. We show, using standard techniques, that
queries from flat relations to flat relations in this language can be expressed in a simpler
language called RL*8" that does not use nested relations even as intermediate structures, and
then we give a translation of RL™®" into Lage. This shows that NRL*& queries over flat
databases that do not contain numbers are local. In Section 6 we consider a simpler logic
Liger and show that it captures the language RL™®®". We also show that some basic questions
about expressive power of RL*®" cannot be answered without resolving some deep problems in
complexity theory, under the assumption that input databases are allowed to contain numbers.

Extended abstract of this paper appeared in the Proceedings of the 14th IEEE Symposium on
Logic in Computer Science, pp. 35-44, July 1999.

2. NOTATION

Most logics we consider here are two-sorted, and they are defined on two-sorted structures,
with one sort being numerical. We shall assume, throughout the paper, that the numerical sort
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is interpreted as @, the set of rational numbers. A two sorted relational signature o is a finite
collection {Ry(ny,J1),..., Ri(ny, J;)} where R;s are relation names, n;s are their arities, and
J; €{1,...,n;} is the set of indices for the first sort. For example, { R(3,{1,2})} is a signature
that consists of a single ternary relation so that in each tuple (a,b,¢) in R, a,b are of the first
sort and ¢ is of the second sort.

We let U be an infinite set, disjoint from Q, to be interpreted as the domain of the first sort.
A structure of signature o (or o-structure) is A = (A, Q, R{,..., RY), where A C U is the
universe of the first sort for A, and RA C [][;L, dom(i, k), where dom(i, k) = A if k € J; and
dom(i, k) = Q if k & J;. We shall always assume that A is finite.

For any set X and any tuple (z1,...,2,) € X", the multiset (bag) consisting of the components
of this tuple is denoted by {|z1,...,z,[}. Here n is the cardinality of {|zy, ..., z,[}. Welet {{ X[}
denote the set of all such n-element multisets over X.

Now, following [17], we define an aggregate function as a collection F = {fo, f1, fo,..., fu} of
functions, where f, : {|Q}, — Q, and f, € Q. Each function f, shows how the aggregate
function behaves on an n-element input multiset of rational numbers, and the value f, is the
result when the input is infinite. We shall identify the function fy with the constant it produces
on the empty bag {|[}.

Examples include the aggregates > and [[: Y. = {so0,s1,...,5.} and [[ = {po,p1,--- P}

where
so=0, s.({lgr,---sml}) = an+... 4+ ¢, n>0,

and
po=1pu{le, - al}) = ¢1--oo Gu, n>0.

(We assume s, = p, = 0.) Standard database languages use other aggregates as well; in fact,
the standard ones for SQL are the following:

—>, (also called TOTAL, which adds up all the elements of a bag),

—MIN and MAX, defined as the minimum (maximum) element of the input bag,

—COUNT, which returns the cardinality of a bag (that is, its ¢th function is the constant ),
—AVG, which returns the average value of a bag (that is, its ¢th function is s;/i for ¢ > 0).

3. AN AGGREGATE LOGIC

Assume that we are given two signatures on Q : one, denoted by €, of functions and predicates,
and one, denoted by O, of aggregates. In addition we assume that there is a constant symbol
¢, for each ¢ € Q. We now define an aggregate logic Lage ({2, 0), on two-sorted structures. We
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do it, similarly to [31], in two steps. We first define a larger logic Lage (€2, ©) and then put a
restriction on its formulae.

We define terms and formulae of the two-sorted logic Lags: (€2, ©), over two-sorted structures,
by simultaneous induction. Every variable of the ith sort is a term of the ¢th sort, 7 = 1,2.
Every constant ¢, € Q is a term of the second sort. Given a pair (n,.J) with J C {1,...,n}, we
say that an n-tuple of terms £ = (ty,...,t,) is of type (n,J), written £ : (n,.J), if t; is a first-sort
term for « € J and a second-sort term for 7 € J. For a formula (&), we write ¢ : (n,.J) and
say that its type is (n,J) if ¥ = (21,...,2,) and ¢ € J iff z; is of the first sort.

Now for each R;(n;,J;) in o, and i (ng,J;), we let Rz(f) be a formula. Formulae are
then closed under infinitary disjunctions \/ and conjunctions A\, negation —, and quantifiers
over both first-sort domain A and second-sort domain Q. That is, if ¢ is a formula, then
-, drp, Vap, dgp, Vge are formulae, where x is a first-sort variable and ¢ is a second-sort vari-
able. Furthermore, if ;,7 € I, is a (finite or infinite) collection of formulae, then \/,_; ¢; and
Nier i are formulae.

If t1,...,t, are second-sort terms, and f an n-ary function symbol from Q, then f(¢y,...,1,)
is a second-sort term. For an n-ary predicate symbol P from Q, P(ty,...,t,) is a formula. If
t1,t, are terms of the same sort, then t; = 5 is a formula.

Next, we add counting and aggregation to the logic. For any formula ¢(Z,y) with § being
variables of the first sort, we let (%) = #y.¢(¥,y) be a second-sort term. Let F be an
aggregate from 0. Let ¢(¥,§) be a formula, and ¢(Z, i) a second-sort term, with no restrictions
on the sorts of ¥,y. Then Aggry.(¢,1) is a second-sort term with free variables 7.

Remark Using infinitary connectives is a convenient technical device, as it will make some
translations easier, and the logic more expressive; however, it is possible to avoid using them.
We prefer to work with an infinitary logic here, so that we can use known results from [21; 31].
Furthermore, the fact that this logic is not effective (and even has uncountably many formulas)
is not important as we consider inexpressibility results for it, which would then apply to any
weaker logic.

,J)if a; € U for v € J and
a; € Q for i ¢ J. For every two-sorted o-structure A, a formula (%) or a term ¢(Z) of type
(n,J) in the language of o, and a tuple @ over AU Q of type (n,.J), we define the value (@)
of the term t on @ in A and the relation A | ¢(d). The definition is standard, with only the
case of counting terms and aggregation requiring explanation. For ¢(¥) = #y.¢(Z, §), the value
of t(d@) in A is the (finite) number of b over A such that A E el(d, [;)

We now discuss the semantics. A tuple @ = (aq,...,a,) is of type (n

Let s(¥) = Aggrzy.(o(Z,9),t(Z,y)), and let @ be of the same type as . Define ¢(d, A) = {g |
A= ¢(@,b)}. Let t(¢(@, A)) be the multiset {{tA(@,b) | b € p(@, A)[}. (This is a multiset since ¢



38 . L. Hella, L. Libkin, J. Nurmonen, L. Wong

may produce identical values on several (

a,
the value s4(@) is defined to be f,(¢t(¢(d, A
©(a@, A) is infinite, the value of s4(@) is f,.

b).) Let n be the cardinality of this multiset. Then
))), where f, is the nth component of F. If the set

This concludes the definition of L (€2, ©). Next, we define the notion of a rank of formulae
and terms, rk(y) and rk(¢). For a variable or constant ¢, rk(¢) = 0. For each relation name
R; € o and terms ty,...,t,, we let rk(R;(t1,...,t,)) = max; rk(¢;) and similarly rk(t = s) =
max{rk(t),rk(s)}. For any formula ¢ = P(ty,...,t,) with P € Q, we have rk(y) = max, rk(t;),
and similarly for a term f(f) with f from Q. We then have rk(\/ ;) = rk(/ ;) = sup; rk(;)
and rk(—p) = rk(e).

We let rk(Jxp) = rk(e) + 1, for quantification over the first sort, and rk(3gp) = rk(p) for
quantification over the second sort. For counting and aggregate terms, rk(#4.¢) = rk(¢)+ |¥],
and rk(Aggrzv.(¢,1)) = max(rk(y), rk(t)) + k, where k is the number of first-sort variables in .

DEFINITION 3.1. The formulae and terms of Lage:(2, ©) are precisely the formulae and terms
0f Lager(Q2,©) that have finite rank. If there is no restriction on the signature (that is, all
functions and predicates are allowed), we write All. Thus, Lage(All, All) is the aggregate logic
in which every function, predicate, and aggregate function on Q is available. a
Frxamples. First, counting terms are definable with >7:  #¢.0(Z,7) is equivalent to
Agegrsy.(o(Z,9), c1), where ¢; is the symbol for constant 1.

Next, we show how to express the example from the introduction in L,z ({<}, {d>_, AVG}).
The signature o has two relations: Ry(2, {1,2}) and Ry(2,{1}), as only the last attribute of R»
— salary — is numerical. The query is now expressed as a L,g,, formula ¢(z,q) with two free
variables, one of the first sort, one of the second sort, as follows:

(Fy3z. Ri(a,y) A Ra(y, 2))
A (q=Aggrave #- (Fy.-Ri(x,y) A Ra(y, 2),2))
A (Aggry z. (Fy.Ri(z,y) A Re(y,2),2) > cio6)-

4. AGGREGATE LOGIC: EXPRESSIVE POWER

In this section we deal with the expressive power of the aggregate logic. Our main goal is
to show that it satisfies a very strong locality property. Locality properties were introduced
in model theory by Hanf [19] and Gaifman [16], and recently, following [14], they were a
subject of renewed attention (see, e.g., [11; 30; 31; 33; 37] and references therein). Intuitively,
those properties say that the behavior of logical formulae depends on the structure of small
neighborhoods. They imply strong expressivity bounds for queries definable by logical formulae.
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(See Subsection 4.2.)

As there are several ways to define locality, we want to establish the strongest property. The
relationship between various notions of locality was investigated in [21; 30], and it was shown
that the one based on Hanf’s theorem implies the one based on Gaifman’s theorem, which in
turn implies other locality properties based on degrees of structures. Thus, our goal is to show
(precise definition will be given a bit later in this section):

Expressiveness of L, (All,All): Over first-sort structures, formulae of Lz (All,All) are
Hanf-local.

It is known that many properties requiring fixpoint computation, such as the connectivity and
acyclicity tests for graphs, or computing the transitive closure, violate some form of locality.
Thus, as a corollary, we shall see that adding unlimited arithmetic and aggregation to first-order
logic does not enable it to express those properties.

We start by showing how to embed Lz (All, All) into a simpler logic L¢ that does not have
aggregate operations. We then review the main notions of locality used in finite-model theory,
and prove the strongest of them, Hanf-locality, of L¢.

4.1 Logic Lc¢

DEFINITION 4.1. The logic Lc is defined to be Loager(0,0); that is, aggregate terms or numer-
ical functions and predicates are not allowed.

A slightly weaker version of this logic was studied in [31]. That logic, denoted by £ (C), was
defined as L¢ over one-sorted structures (although the formulae are two sorted) and the set N
of natural numbers as the numerical domain.

For two logics we write £y < Ly if £, is at least as powerful as £;. If for every formula in
L1 there is an equivalent one in L, of the same or smaller rank, we write £ <, £2. We use

Lix=Lyif L1 < Ly and Ly < Ly, and likewise for £ = Lo.

The main result that we show here is the following:

THEOREM 4.2. Lo (Al All) =i Lc. That is, for every formula of Lage:(AllAll), there is
an equivalent Lo formula of the same rank.
We devote the rest of this subsection to the proof of this theorem.

The embedding L¢ <k Lager(All, All) is trivial. For the other direction, we need the following
lemma, which will be used in the encoding of aggregate terms in order to count tuples over
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both numerical and first-sort domains.

did

) of Lc and every natural number m, there exists an
holds iff the number of tuples b such that o(d,b) holds
k(p) + k, where k is the number of first-sort variables

LEMMA 4.3. For every formula o(

L formula vy, [p](Z) such that v, [](d)
is precisely m. Moreover, rk(vm|p]) = r

Proof. To simplify the notation in the proof, we use tuples of rationals ¢ = (¢i,...,q,) instead
of the official notation (¢, ..., ¢y, ) in Lo formulae. We assume m > 0 (if m = 0, then v, [¢](2)

can be taken to be =3y. ©(Z,y)). If all variables in ¢ are first-sort, then v, [@](2) is #y.p = m.
If all variables in ¢ are second-sort, then v, [p](2) is

\/(/\ 99(575) A /\_'99(575))7

B FeB bgB

where the disjunction is taken over m-element sets B of tuples of rational numbers, of the same
length as y. Note that the rank of the above formula equals rk(¢).

Now assume that § = (41, ¥2), where ¢ are first-sort variables and ¢, are second-sort variables.
Let k£ be the length of 4; and p the length of 5, k£, p > 0. For a given m > 0, let S,, be the set
of all tuples ({y,...,[;) of positive integers such that > °_ [; = m. Then v,,[¢](7) is given by

V V [(vglvgz (2370, 072) = \/ =i ) A (/\(#yz.@(a i, @) = m)]
(11,...715)65777, @1,...,As€QP =1
@1 ,..,@s distinct

Clearly, rk(l/m[ ) = rk(¢) + k. To see correctness, note that if there are m tuples b; = (321, 522)
satlsfymg (7, b; ) (divided into two subtuples by sort), then the number of distinct tuples among
bé, say s, is at most m, and if for each of the s such tuples b , [; is the number of tuples ¢ for
which (¢, 622) is among b] s, then Y 7 l; = m. Since the converse to this is true as well, and the
above formula codes this condition, we conclude the proof of the lemma. a

—

To prove Theorem 4.2, we define for each second-sort term ¢(&) a formula (%, z) of L, and for
each formula () of L,g (All, All) a formula ;/)@(_’) of L¢ such that A |= ¢4(d, q) iff t4(a@) = ¢,
and A = ¢(d) iff A |=,(d), for any A and @ a tuple of A of the same type as Z. This is done

by simultaneous induction.

Let t(Z) be a second-sort term. Then ¢4(Z, z), where z is a second-sort variable not contained
in 7, is defined inductively as follows:

—if t(¥) is a variable x;, then (&, z) is the formula z = x;;
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) is a constant symbol ¢,, then ¢4(Z, z) is the formula z = ¢,;
—if ¢(&) is f(t1,...,t,), where f is an n-ary function on Q, then (%, z) is the formula

\/ (Z:cq/\/\qvbti(fchi))
(9:91,--n) EQmH! =1
flar,an)=1q
—if (&) is #y.0(Z, ), then (T, z) is the formula z = #4514, (Z, ¥);
—if (%) is Aggrry.(p(Z,y), s(Z, 7)), where F is an aggregate function on Q, ¢(Z, 7)) is a formula,
and s(Z,Y) is a second-sort term, then (%, z) is the formula ¢ (Z, z) V (2, 2) V 3(, 2).
Here o1 (7, z) is

\ (( cq) N U [tho)(F /\um,mw](x >)

(m,q)el =1

where [ is the set of all pairs of tuples m = (my,...,m,,m) € (N\ {0})P*, p < m, and
G=1(q1,--sqm,q) € Q" such that ¥7_ m; = m, fr({lq1,- -, qn[}) = ¢ and the multiplicity
of g in {|lg1,...,qm|} is m; for each i = 1,... m.

The formula 5(%, ) is defined as
(z=co) A\ “wnle](@)
meN

where ¢, 1s the constant symbol corresponding to f, from F, and v, again binds variables

v.
Finally, the formula 13(, z) is defined as

(z=cp) N =35 @(Z,9).

Let then ¢(Z) be a formula of L, (All,All). We may assume without loss of generality

that for every occurrence of a o relation R;(t1,...,t,,), each ¢; is a variable of the appro-
priate sort. This is because the only first-sort terms are variables, and for second-sort terms
ti,...,t;., we can introduce fresh variables v, , ..., v;, of the second sort, and replace Rz(ﬂ by

Fvj, v (N, =t A Ri(1")) where t' is obtained from ¢ by replacing each second-sort term
t; by v;. Note that this transformation into an equivalent formula does not change the rank.

We now define the formula ¢, (Z) of L¢ (simultaneously with formulae ¢;) inductively as follows:
—if (&) is a formula R;(¥), where R;(n;,J;) € o and {: (n,J;) then ¥,(2) = p(@);

—if (Z) is (), then Y, (¥) is —Pe(Z); and if ©(Z) is \/ pi(Z) or A ¢i(¥), then ¢, (Z) is
V by, (%) or A by, (7), respectively;
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—if (&) is Jyb(Z, y) or Yyb(Z,y), then ¥, (Z) is Jye(Z, y) or Yye(Z,y), respectively;

—if (&) is a formula ¢(¥) = s(&) where ¢ and s are first-sort terms (that is, first-sort variables),
then ¢, (7) = ¢(7);

—if (%) is a formula ¢(Z¥) = s(Z) where ¢ and s are second-sort terms, then t,(Z) is the formula
vqu(¢t(fv cq) A ¢S(fv cq));

—if ©(Z) is a formula P(1,...,t,) where each ¢; is a second-sort term and P is an n-ary

predicate on @, then ¢, (&) is the formula \/(ql,...,qn)eP (N ¥4, (T, ¢q,)).

Obviously ¥, and v, constructed above are formulae of L. It is also straightforward to verify
by induction that rk(t;) = rk(t) and rk(t,) = rk(¢), for every second-sort term ¢ and for every
formula ¢ of Loz (All, All).

It remains to verify that the constructed formulas v, and v, have the desired properties. This
is proved in the next lemma.

LEMMA 4.4. Ift(Z) is a second-sort term, @ is a tuple of A of the same type as &, and q € Q,
then tA(@) = q iff A | ¥i(@,q). Similarly, if o(Z) is a formula of Lage(All,All), and @ is a
tuple of A of the same type as @, then A = o(d) iff A E ¥,(d).

Proof. Proof is by simultaneous induction. We sketch a few cases; others are straightforward.
Let first ¢(Z) be a second-sort term, @ a tuple of A of the same type as ¥, and ¢ € Q. The
cases where t is a variable, constant symbol, counting term or of the form f(¢y,...,¢,) for some
f:Q" — Q, are obvious.

Let then ¢(Z) be Aggrry.(o(Z,¥), s(Z,7)). Assume first that ¢(d,.A) is finite and not empty.
Then t4(@) = ¢ iff fu(s(p(@,A))) =
s(p(d, A)). Thus there exist distinct rationals ¢1,...,¢s such that the multiplicity of ¢; in M

g, where m is the cardinality of the multiset M =

ism; >0, >.7_ m; =m, and for each ¢, there are exactly m; tuples b such that o(d, I;) holds
and t4(a, I;) = ¢;. But this is exactly what v, states. If p(d,.A) is infinite, f,.(s(p(d, A))) = ¢
iff ¢ = f,. Since v, tests for M being infinite and z being f,, and 5 tests for M being empty
and z being fy, we conclude the proof of correctness for the case of aggregate terms.

Suppose then ¢(Z) is a formula of L. (All, All), and d is a tuple of A of the same type as 7.
Again, the first four cases above are obvious. If p(¥) is a formula ¢(#) = s(Z) where ¢t and s are
second-sort terms, then A |= (@) iff for some ¢ € Q, t4(@) = ¢ and s4(@) = q. Since t4(a@) = ¢
and s4(@) = ¢ hold iff A |=¢4(a@, q) and A |= 1,(@, q), this is equivalent to A = ¥,(@).

If (&) is a formula P(ty,...,t,) where each ¢; is a second-sort term and P is an n-ary pred-
icate on Q, then A |= (@) iff for some (qi,...,q,) € Q" we have t4(d@) = ¢ for each 7 and
(q1,-..,¢,) € P. But this is exactly what ¢, states. a
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Theorem 4.2 now follows immediately. a

4.2 Notions of locality in finite models

In this section, we only consider one-sorted finite structures A = (A, R}, ... Rf') and two-
sorted structures over signatures o that only contain relation symbols of the non-numerical
sort (i.e., we assume that J; = {1,... n,;} for every R(n;,J;) € o). We call such two-sorted
structures pure. Note that each one-sorted finite structure A can be extended to pure two-
sorted structure simply by adding the set @ as the second sort (and interpreting the constant
symbols ¢, in the canonical way). We denote this extension of A by A*.

Given a finite one-sorted structure A, its Gaifman graph [12; 16; 14] G(A) is defined as (A, F)
where (a,b) is in I iff @ # b and there is a tuple ¢ € R# for some 7 such that both a and b
are in €. The distance d(a,b) is defined as the length of the shortest path from a to b in G(A);
we assume d(a,a) = 0. If @ = (ay,...,a,) and b= (b1,...,bn), then d(d, I;) = miny; d(a;, b;).
Given @ over A, its r-sphere SA@) is {b € A | d(a@,b) < r}. Its r-neighborhood NA(@) is defined

as a structure in the signature that consists of o and n constant symbols:
(SA@), RN SA@)™, ..., RANSA@™, ay,. .. a,)

That is, the universe of NA(@) is S(@), the interpretation of the o-relations is inherited from
A, and the n extra constants are the elements of d@. If A is clear from the context, we write

Sr(@) and N, (a).

Given a tuple @ of elements of A, and d > 0, by ntp7}(a@) we denote the isomorphism type of
NA(@). Then ntp}(@) = ntp5(b) means that there is an isomorphism N7(@) — NF(b) that

5 ) . 3 ., o ABT LS - .
sends @ to b; in this case we will also write @ ~7"" b. If A = B, we write @ ~7' b. Given a tuple
d=(ay,...,a,) and an element ¢, we write dc for (ay,...,a,,c).

For two o-structures A, B, we write A5 ;B if there exists a bijection f : A — B such that
ntp7(a) = ntp5(f(a)) for every a € A. That is, every isomorphism type of a d-neighborhood of

a point has equally many realizers in A and B. We write (A, @) ,(B,b) if there is a bijection
f: A — B such that ntp7}(dc) = ntp5(bf(c)) for every ¢ € A.

Hanf-locality has been previously defined only for finite one-sorted structures. In the following
we make a natural extension of its definition to the case of pure two-sorted structures.

DEFINITION 4.5. (see [19; 14; 30; 21]) A formula (&) on pure two-sorted structures is called
Hanf-local if there exist a number d > 0 such that for all finite one-sorted structures A and B,
(A, d)S,4(B,b) implies A* |= o(a@) iff B* | ¢(b).

The definition for open formulae is from [21]; most previous papers [19; 14; 30; 37] considered its
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restriction to sentences. It is known [14] that AS ;B implies AS, B for r < d. It is also known
that every (one-sorted) first-order sentence ® is Hanf-local and d can be taken to be 39(®)~!
[14]. This was generalized to various counting logics [37; 21], and the bound was improved to

2ar(®)=1 1 [23; 31].

DEFINITION 4.6. (cf. [30; 31]) A formula @(¥) on pure two-sorted structures is called
Gaifman-local if there exists a number r > 0 such that, for any finite one-sorted structure

A and any Ei,l; over A, @ ~A b implies that A* = p(d) iff A* = ¢(b)

Gaifman’s theorem [16] implies this notion of locality for first-order formulae, with a (7("(@) —

1)/2 bound for r; in [31] a tight bound of 297(¥) — 1 is established.

It is known that connectivity of graphs is not a Hanf-local property [14], and that the transitive
closure of a graph is not Gaifman-local [16; 11]. Locality — either Gaifman or Hanf — implies a
number of results that describe outputs of local queries by relating degrees of elements in the
input and output. We now briefly review one such result.

With each formula ¢(xq,...,2,) in the signature o, we associate a query that maps a o-
structure A into p[A] ={d € A" | A= ¢(@)}. If Ais a o-structure, and R; is of arity p;, then
degreej(Rf‘, a) for 1 < j < p; is the number of tuples @ in R4 having a in the jth position. In
the case of directed graphs, this gives us the usual notions of in- and out-degree. By deg_set(.A)
we mean the set of all degrees realized in A, and deg_count(A) stands for the cardinality of

deg_set(A).

DEFINITION 4.7. (see [33; 11; 30]) A query ¢, that is, a function that maps a o-structure A
to an m-ary relation on A, m > 1, is said to have the bounded number of degrees property, or
BNDP, if there exists a function f, : N — N such that deg_count(q(A)) < f,(k) for every A
with deg_set(A) C{0,1,...,k}. O

(Note that in several previous papers this was called the bounded degree property, or BDP,
which was confusing as we talk about the number of degrees in the output. We thus decided
to change the name.)

The intuition behind this property is that if A locally looks simple, then ¢(A) has a simple
structure as well — it cannot realize many different degrees. The BNDP is very easy to use for
proving expressivity bounds [33]. For example, if A is a successor relation, then deg_set(A) =
{0,1}. However, if | A |= n, then deg_count(TrCI(A)) = n, where TrCI(A) is the transitive
closure of A. Thus, the transitive closure query cannot be expressible in any logic that has the

BNDP.

The relationship between the notions of locality we introduced is the following, when one deals
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with one-sorted finite structures:

PROPOSITION 4.8. a) (see [21]) Every Hanf-local formula is Gaifman-local.
b) (see [11]) Every query defined by a Gaifman-local formula has the BNDP. O

These results are not affected by the transfer to pure two-sorted structures.

4.3 Locality of L¢

In [37] it was proved that the extension of first-order logic by all unary generalized quantifiers is
Hanf-local. The proof was based on bijective Ehrenfeucht-Fraissé games [20] which characterize
equivalence of structures with respect to all unary quantifiers. We now use these games to
prove the Hanf-locality of L¢.

Let A and B be two o-structures, @ € A", and b € B". The rround bijective game
BEF,(A,d, B, I;) is played by two players, called the spoiler and the duplicator. In each round
1 = 1,...,r, the duplicator selects a bijection f; : A — B, and the spoiler selects an element
¢; € A (if | A|#| B, then the spoiler wins). After each round ¢, these moves determine the
relation p; = po U{(¢j, fi(e;)) | 1 <5 < i}, where pq is the initial relation {(a;,b;) |1 <j < n}
between the components of @ and b. The spoiler wins the game, if for some 1, p; is not a partial
isomorphism A — B; otherwise the duplicator wins.

Before using these games for the Hanf-locality result, we first mention the following simple
observation.

LEMMA 4.9. Every formula in Lc is equivalent to a formula that does not contain any quan-
tifiers dq or Yq over second sort variables q.

Proof. Clearly Jq¢(Z, q) is equivalent to \/ o ¢(Z, ¢;), and similarly, Vg (7, ¢) is equivalent to
/\qu (%, ¢;). Hence the claim follows by straightforward induction. O

We now prove our main technical result of this subsection.

LEMMA 4.10. Let A and B be finite one-sorted o-structures, @ € A", b e B™, and let A*
and B* be the corresponding pure two-sorted structures. If the duplicator has a winning strategy
in BEF,.(A, EL’,B,E), then for every formula @(x1,...,2,) in Lo, with rk(v) < r and all free
variables of the first sort, A* |= o(d) if and only if B* |= go(g)

Proof. Let t(Z,Z) be a second sort term, and ¢(Z,2) a formula of Lc, where ¥ are first sort
variables and 7 are second sort variables. Furthermore, let ¢ and ¢ be tuples of elements of A
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and Q of matching lengths. We prove by simultaneous induction on ¢ < r that the following
two claims hold whenever the duplicator is playing according to his winning strategy:

(a) If rk(t)
(b) If rk()

< and &€ (dom(p,_;))¥, then t4°(&,§) = 5" (p,_i, §).

< and &€ (dom(p,_;)), then A* = (€, q) if and only if B* |= ¢(p,_i€, §).
Assume first that ¢ = 0. If rk(¢) = 0, then ¢ is either a second sort variable or a constant
symbol. In both cases (a) holds trivially. Similarly, if rk(¢) = 0, then by Lemma 4.9, we can
assume that ¢ is quantifier free. Thus ¢ is Boolean combination of atomic formulas which are
either purely first-sort formulas or second-sort formulas of the form ¢t = s for terms ¢, s. The
truth of the first type is preserved by p, since p, is determined by a winning strategy of the
duplicator, and so it is a partial isomorphism. For the second type atomic subformulas the
truth is preserved obviously since the values of the terms in A* and B* are the same.

Assume then that ¢ > 0 and the claims (a) and (b) hold for all j < i. Let rk(t) < i. We
can assume without loss of generality that rk(t) = i; otherwise (a) follows directly from the
induction hypothesis, since p._; C p._; for all 7 < ¢. Thus, ¢ is of the form #y.4(Z, ¢, Z), where
rk(1)) = i — k for k =|¢|. Consider now the following function ¢ : A* — B* generated by the
winning strategy of the duplicator:

g(dh ce 7dk) = (fr—i+1(d1)7 ceey r—i—l—k(dk))-

As each f,_;y; is a bijection A — B, it is easy to see that g is a bijection A* — B*. Moreover,
by the induction hypothesis, A* = ;/)(E’,(Zcf) if and only if B* ;/)(p,,_HkE',g(@,q_j for all
d = (di,...,dy) € A*. In other words, g is a bijection between the sets (¢ A%, §) and
U(p,—i€, B*,q), and so t1(C, §) = t*" (p,_:C, q).

To prove (b), assume (without loss of generality) that rk(p) = i. If ¢ is of the form ¢ = s
for second sort terms s and ¢, the claim follows easily from (a). The cases p = =, p = \/ ®
and ¢ = /\ ® are also straightforward. Assume finally, that ¢ = Jy(Z,y, 2). If A* = ¢(¢, §),
then A* | (¢, d,q) for some d € A. The induction hypothesis implies then that B* =
Y (pr—iC, preit1(d), §), whence B* = ¢(pr—:C, ¢). The converse implication is proved in the same
way. This completes the induction.

The lemma follows now from the case i = r of claim (b). O
We now prove the desired locality result.

THEOREM 4.11. Quer pure two-sorted structures, every formula of Lo without free second
sort variables is Hanf-local.
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Proof. Let (%) be a formula of L¢, where & are first-sort variables and rk(¢) = r. Let A and
B be finite one-sorted o-structures, and let @ € A™ and b € B”. It was proved in [37] that

if (A, d)s,(B, I;) for d = 3", then the duplicator has a winning strategy in the bijective game

BEF, (A, d, B,b), and hence by Lemma 4.10, A* |= ¢(a@) if and only if B* |= ¢(b). Thus ¢ is
Hanf-local. a

By Theorem 4.2, we get as a consequence the Hanf-locality of the full aggregate logic
Loager(AllAll.

COROLLARY 4.12. Quer pure two-sorted structures, all formulas of Lagg:(All, All) without free
second-sort variables are Hanf-local. a

As we said earlier, Hanf-locality is a very strong form of locality that implies others, and
consequently it gives us many expressivity bounds. Some of them are listed below. For a
general overview of deriving expressiveness results from locality, see [11; 14; 16; 30; 33].

COROLLARY 4.13. a) Over pure two-sorted structures, all formulas of Loger(All, All) without
free second-sort variables are Gaifman-local and have the BNDP.

b) None of the following can be expressed in Lage(All,All) over graphs on the universe of the
first sort: transitive closure, deterministic transitive closure, connectivity test, acyclicity test,
the same-generation property for nodes in acyclic graphs, testing for balanced k-ary tree, k > 1.
O

Thus, despite its enormous counting power, L,q.(All, All) cannot express nonlocal properties,
among them most properties requiring fixpoint computations.

Remark. Note that in all the results proved so far the choice of numerical sort is irrelevant.
The proofs go through if Q is replaced by any standard numerical domain, like N, Z R or C.

5. DATABASE QUERY LANGUAGES AND L.,

The goal of this section is to show how standard SQL features can be coded in L,g, thereby
providing bounds on the expressive power of database queries with aggregation. The coding
that we exhibit here is not only more general but also much simpler and more intuitive than
that of [30; 34], thanks to the design of L,z that does not limit available arithmetic operations
and makes it easy to code aggregation.
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5.1 Languages NRL*8" and RL*8

We define a relational query language RL*8(Q, ©), which extends standard relational query
languages, such as relational algebra and calculus, with aggregation constructs. The language is
parameterized by a collection of allowed arithmetic functions and predicates €2 and a collection
of allowed aggregates ©. We assume that the usual arithmetic operations (4, —, *, =) and the
order < on Q are always in { and the summation aggregate (>) is always in ©.

The language is defined as a suitable restriction of a nested relational language NRL*®87(), ©),
in the same way it was done previously [33; 34]. The type system is given by

Base :=b | Q
rt := BASE X ... x BASE
ft == rt | {rt}
t:=Base | t x...xt | {t}

The base types are b and Q, with the domain of b being an infinite set U, disjoint from Q. We
use X for product types; the semantics of 7 x ... x t,, is the cartesian product of the domains
of types ti,...,t,. The semantics of {t} is the finite powerset of elements of type t. Types rt
(record types) and ft (flat types) are used in restrictions that define RL*®".

A database schema is a list of names of database relations (which may be nested relations)
together with their types. We are particularly interested in the case of schemas consisting of
flat relations, that is, those of types {rt}. Such a list of names of relations and their flat types
naturally corresponds to a two-sorted signature. Indeed, a relation of type ¢t = {b; x ... x b,},

with each b; being either b or Q, corresponds to R(n,.J) where J = {i | b; = b}.

We thus identify flat schemas and two-sorted signatures. Also, for each relational symbol
R(n,J) in a two-sorted signature o, we write tp,(R) for its type, that is, {b; x ... x b, } where
bi="0bfori € Jand b;=Q for i & J.

Expressions of the language (over a fixed schema o) are shown in Figure 1. We adopt the
convention of omitting the explicit type superscripts in these expressions whenever they can be
inferred from the context.

The set of free variables of an expression ¢ is defined by induction on the structure of e and we
often write e(xq,...,x,) to explicitly indicate that 1, ..., x, are free variables of e. 0, 1, R,
and () have no free variables. The free variables of (ey,...,¢e,) are those of ey, ..., ¢,. The free
variables of if e then e; else ey are those of e, €1, and e3. The free variables of f(e), P(e), 7, €
and {e} are those of e. The free variables of = (e, e3) and €; U ey are those of € and e;. The
free variable of x is the variable x itself. The free variables of [ J{e1 | € e2}, > {e1 | @ € es},
and Aggrr{e; | © € ey} are the free variables of e;, excluding x, and those of e3. In these three
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constructs, we require that x is not a free variable of e,.

Semantics. For each fixed schema o and an expression e(xy, ..., x,), the value of e(xq,...,x,)
is defined by induction on the structure of e and with respect to a database (finite o-structure)
A and a substitution [x;:= ay,...,2,:= a,] that assigns to each variable x; a value a; of the
appropriate type. We write e[x1:= ay,...,2,:= a,](A) to denote this value; if the context is
understood, we often shorten this to e[x;:= ay,...,2,:= a,] or even just e. The values of 0 and
1 are 0,1 € Q. For reason of economy, we use them to code Booleans, letting 0 code “true”
and 1 code “false” (any other pair of rationals can be used for that purpose). The value of f(e)
is the rational number obtained by applying the function f € () to the value of e. The value
of P(e) is 0 if the predicate in  denoted by P holds on the tuple denoted by e; otherwise, it
is 1. The value of R is the corresponding relation in A. The value of if e then ey else ey is
that of e; if the value of e is 0; otherwise, it is that of e;. The value of (ey,...,€e,) is the n-ary
tuple having the values of e, ..., e, at positions 1, ..., n respectively. The value of m;, € is the
value at the i-th position of the n-ary tuple denoted by e. The value of = (e, €3) is 0 if e; and
€2 have the same value; otherwise, it is 1. The value of the variable z is the corresponding «
assigned to x in the given substitution. The value of {e} is the singleton set containing the
value of e. The value of ¢; U ¢y is the union of the two sets denoted by e; and e;. The value
of () is the empty set.

To define the semantics of | J, > and Aggr, assume that the value of e; is the set {by,...,b,}.
Then the value of [ J{e1 | # € ez} is defined to be

U e1]ri=ay, ..., tpi=a,, v:=b;|(A).
=1

The value of > {e; | z € e} is

NE

er[rri=ay, ..., ti=a,, v:=b;](A).
1

.
Il

Finally, the value of Aggr-{e: | © € ez} is fn({le1,...,cnl}), where f,, is the mth function in
F € 0, and each ¢; is the value of ej[z1:=aq, ..., 2 :=a,, v:=b](A), i =1,...,m.

Language RL*%®%. The flat language RL*®% (), ©) is obtained from NRL* (), ©) by imposing

the following type restrictions:

—each relation in o is of type {rt};
—each expression is of type ft (flat type);
—for each rule in Group 2, all ¢;s are replaced by BASE;
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Group 1

Reo e:Q e :t eg:t
0,1:Q R:tp,(R) if e then ey else es : 1t

e:Qx...xQ (n times)

(ORI P(e): 0 for f: Q" - Q and P C Q" from Q2

Group 2
e1 1, ... en ity
(e1,...,en) it X ... X 1y
1<n ety X... X1, e1:t eg:t
Tin €1t = (e1,62) : Q
Group 3

et ep:{t} es: {t}
it {e} :{t} ep Ueq : {t} 0t {t}

er {1} ez :{la} e1:Q eq:{t}
Ufer [ 2™ €ea}t : {11} YAer |2t €ex}t:Q

FeO e:Q ez:{t}
Aggr {1 [ €ea] 1 0

Fig. 1. Expressions of NRL*®8(Q2, ©) over signature o

—for each rule in Group 3, all occurrences of ¢ should be replaced by rt (record types).

Thus, input databases for RL*8" expressions can be identified with finite o-structures, when
o is a two-sorted signature. Furthermore, for a RL*8(Q), ©) expression e(xy,...,x,), all free
variables are of record types; thus, we shall write e[x;:= @;,...,x,:= d@,](A) for the value of
this expression, where @; are tuples of the same type as z;, and A is a o-structure. We shall
now assume, for the rest of the paper, that in o-structures, all relations are finite.
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5.2 Properties of NRL*#(2, 0) and RL*# (), 0)

The relational part of the language (without arithmetic and aggregation) is known to have
precisely the power of the nested relational algebra, the standard query language for nested
relations [5]. (The language of [5] coded Boolean values as elements of type {unit}, where unit
is a type having one value. We code Booleans as 0 and 1, but it does not affect expressiveness,
see [34].) The flat fragment of the language, without aggregation, has the power of the relational
algebra, that is, first-order logic [44].

When the standard arithmetic and the ) aggregate are added, the language becomes powerful
enough to code standard SQL aggregation features such as the GROUPBY and HAVING clauses,
and aggregate functions such as TOTAL, COUNT, AVG, MIN, MAX, present in all commercial versions
of SQL [41]. This was shown in [33]. The language we deal with here is a lot more powerful,
as it puts no limitations on the class of allowed arithmetic operations and aggregate functions.

Examples. We now give two examples of queries written in A’RL*#", First, the SQL GROUPBY
can be modeled by nesting. For example, given a relation R of type {b x b}, we can create a
new relation of type {b x {b}} by grouping together all elements with the same first component,
as follows:

if T2 =T12Y
U T2 T, U then {my2 y} yeR r€eR
else {}

Next, we show how to express the example from the introduction in ARL*®E". We first join
relations Ry and Ry, to obtain a set of triples (employee, department, salary):

if T2 =T12Y
e = U U then {(mi2 @, m2 x, M2 y)} |y € Ry x € IRy
else {}

We then use this expression ¢ to define a new expression ¢’ that computes the set of pairs of
departments and total salaries that they pay:

if Mz =T33y

e = U Ta3 T, Z then w33y yEe T €e
else 0

The expression €” obtained from €’ by changing 335 y to 1 in the then clause, computes the
set of pairs of departments and total number of people they employ. We finally use ¢’ and ¢”
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to express the query from the introduction as follows:

if T x=m2y then
g = U U if T2 x> 10° then {(m 4 , Zi j)} ese {} |lyee V| zeé
else {}

There are two comments we would like to make here. First, ¢ is actually an expression of
RL*8" as all type restrictions are satisfied. We shall see soon that this is not an accident,
and in fact all A’RL*®" expressions, from flat relations to flat relations can be rewritten to
equivalent RL*®#" expressions, under some conditions on the arithmetic present.

Secondly, the way to implement the query from the introduction by the expression ¢ above
may not be very efficient. However, N'RL*®" possesses an efficient optimizer that was discussed
elsewhere [44; 32]. Secondly, our primary concern here is the expressive power, and it should
be clear from the examples above that N’RL*®" has enough power to model SQL grouping and
aggregation constructs. For more on this, see [33; 34]. O

The following observation will be very useful for establishing expressivity bounds for N’RL2#8",
Recall that [] stands for the product aggregate. We write [[{e; | * € e} instead of Aggry{e; |
T € 62}.

LEMMA 5.1. NRC* (Al All) &~ ARC (AL {3, T]}).

Proof. The inclusion of NRL*8 (AL {>,[[}) in NRL*8"(All, All) is trivial. For the inclusion
of NRL*(All, All) in NRL*E (AL {>",T]}), it is only necessary to show that each occurrence
of Aggrr{e1 | * € ey} can be expressed in NRL*¥ (Al {>",[[}), for e; and ey already in

NRLE(ANL {2 TTH)-

Let encode : Q@ — Q be an injective function that maps the rational numbers to prime numbers.
This function is in NRL*& (Al {3, []}), since All contains all rational number functions. Let
{lex | « € es]} be the multiset containing exactly the rational numbers that e; takes as @ ranges
over the values of a set e3. Then [[{encode(e;) | € €2} is an injection that maps multisets
{lex | « € ex]} to rational numbers. Since All contains all functions on rational numbers, there
is a function F in All for each aggregate function F in All such that for each n, for each

multiset B having exactly n rational numbers by, ..., b,, and for each f, € F, it is the case that
F(II:_,(encode(b;))) = f.(B). Therefore, Aggrr{e; | € e} can be replaced by the expression
ﬁ(H{encode(el) | @ € ex}) in NRL*%55(AIL{>, TTD)- 0

For the following result, we let root(y, x) be any function Q x Q@ — Q such that, for any n > 0,

root(n,x) = sign(x) \/|$ |if {/|z| € Q.
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PROPOSITION 5.2. (see [34]) Let Q include +, %, —, =+ and root(y,x). Then
NRLE(Q{>",TI}) is conservative over flat types. That is, any expression e : ft of
NRLE(Q {57, TI}), having only free variables and relations of flat types, is definable in

RLEE(Q, {25 111)- O

5.3 Encoding RL*8 (2, 0) in Loge

Recall that any two-sorted schema o naturally corresponds to a type of the form {rt;} x ... x
{rt,} where all rt;s are record types. We denote this type by o, too. Thus, any two-sorted
o-structure can be considered as an object of type ¢ and we can speak of applying NRL®8"
queries to it. Furthermore, any tuple T of free variables of a Lz, formula has a type, say
(n,J), which corresponds to some record type rt. In this case we say that & has type rt. Our
goal now is to show the following.

THEOREM 5.3. For any schema o, and for any expression e : {rt} of RL*®(Q,0) over o
without free variables, there exists a formula o(Z) of Lager(,0), with & of type rt, such that

for any o-structure A, e(A) = {ad| A ¢(@)}.

Proof. Let us first extend L,z with a “selector” term: if ¢; is a term of sort Q and ¢, and ¢, are
both terms of sort b, then (o — #1 | ) is a term of sort b. If #5' = 0, then (to — t; | t2)* = 1
otherwise (to — 1 | tz)A = tf‘. Due to the restriction of sorts, a “selector” term can only
appear Lag formulae in two contexts, either like R(...,¢,...) or t; = t5, where t, ¢y, t; are
terms of sort b. It is therefore clear that “selector” terms can always be eliminated from L,ge, by
recursively rewriting formulas using the following two equivalences: R(...,(to — t1 | t2),...)
iff (to =0 A R(...,t1,...)) V (=(to = 0) A R(...,t3,...)), and t = ((tc — t1 | t2) iff
(to =0 AN t=11) V (=(to = 0) A t =t3). Next, we assume that every subexpression
of the form if e; then ey else es in e is not of product type. Note that any subexpression
if e then ey else e3 that is of product type can be replaced by an equivalent expression of the
form (if ey then my 69 else my es,...,if e then m, s else T, ,e3). Having introduced these
devices of pure convenience, we can proceed with this proof.

We need a translation of RL*®" expressions into formulae and terms of L,ge that accounts for
free variables (of record types) of RL*®" expressions. Let 7 be a set of variable assignments,
that is, pairs (2™, ¢) where ¢ has type rt and z is a variable of type rt. We require such a set to
be consistent, that is, to satisfy the following conditions. First, there are no two pairs in 7 with
the same first component but with different second components. Second, no two components
of the ¥ tuples are the same. By 7 [z":= §] we mean the result of adding the pair (z", %) to
7, assuming that it does not violate the above consistency conditions. We write CONS(?,7)



24 . L. Hella, L. Libkin, J. Nurmonen, L. Wong

if 7 U7 is consistent!. Given ? = {(z;,%i) | i = 1,...,m}, we define 7 (z;) to be ¢;, §r to be
(T(x1),..., 7 (2m)), and (yr, 2) to be (?(x1),..., 7 (2m), 2).

Let an expression e(x]™, ..., z"™) be of type {rt}. Let ? be defined on 1,...,x,, so that ? (z;)
is y; for i =1, ..., m. Let ©(¥1,...,¥Um,2) be an Lage formula where 7 is fresh and of type rt.
We adopt the convention that every formula ¢(Z) can also be considered as a formula (¥, )
with any number of additional free variables, and similarly for terms. We write

The= o
to mean that, for any dy,...,d,, of types rty,...,rt,, respectively, and for any o-structure A,
it holds:
(%) elrr=dy,...,tpn=dn|(A) = {d|AEeld,...,dn,d)}
Let an expression e(z]", ..., ™) be of type rt = by x ... x b, with each b; either b or Q. Let ?

be defined on @1,..., 2, so that 7 (x;) isy; forve =1, ...,m. Let t1(41, .oy Um)y ooy tp(Y1s e e oy Uim)
be terms of Lz, of sorts agreeing with rt. We write

The=tix...xt,
if, for any dy,...,d,, of types rty,...,rt,, respectively, and for any o-structure A, it holds:
(3x) (Tim €)[T1:=01, ..., tmi=dn](A) = tHdy,...,d,), foralli=1,... p.
In Figure 2, we define ? Fe = {fand? ke = ¢ inductively on the structure of RL*5"
queries. The free variables in ¢ and ¢ are in yr and (yr, Z) respectively; we leave them implicit
in the rules given in the figure, except in the last two rules. Note that we need the summation

aggregate Y to code conditionals. We also use 0 instead of ¢q in those rules. Note the use of
the “selector” term to code if-then-else expressions of type b. Theorem 5.3 now follows from

PROPOSITION 5.4. The translation shown in Figure 2 satisfies conditions (x) and (5x) for
every expression e of RL*(Q,0).

Proof of this proposition is by straightforward induction on RL*®" expressions. O
This completes the proof of Theorem 5.3. O

!Technically speaking, I is a list, so the above condition says that any list containing precisely all the elements
that occur in I' and IV, without duplicates, is consistent.
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Fl_,e = ! Cons(I',T) Ire — Cons(I',T)
TullFe = TUTFe = ©
g=20,1
7 Re
i a—— IR = R(3) 7
I'kFe = tix...x1, I'te = t1x...x1,
SR Y Peq
L' fle) = flt,....t,) / T Ple) =% Pl,... 1)
I'Fey = o I'key :5> ©1 I'Fes :5> ©2
[k if eq then ey else es == ((to =0) Ap1) V (=(to = 0) A pa)
I'tey = 1t I'kFey, = I'tey = 1ty b
TFif eg then ey else e — (Lo = 11 | t2) €1, €2
I'kFey = 1o I'kFey, = I'tey = 1ty
. =0),%1)) er,es:Q
Tk th l — (Zy((o ) ( )
Zf € €n €1 eiLse €9 + (Zy(_‘(O—O) ( :0) tZ))

I'kFey, = I'ke, = 1t, I'te = t1x...x1,
TF(er,...,en) = t1x...41, I'Emale) =
F'rey, = 4 'Fexs =
't =(er,e2) = Y w((ti=t)A(w=0)]V[-(t1=t2) A(w=1)],w)

I'te = t1x...x1,
N P = () T
z — Yi1¥...%Yp F"{e} — /\i:l(zi:ti)

F|—61:5>g01 F|—62:5>§02
F|_61U62 :Z> ng\/QDQ

rro = false

Te=d]Fe; = P, #,7)  The =L (i, )
TFU{er | 2™ €ea} = F(ir, 0) A (i, 7, 7)

Te:=tlFex = t(yr,?) [k ey N Y(yr, ¥) Feco
I'HAggry{er [27 €en} = Aggrzt.(4 (4, V), {(dr, 7))

Fig. 2. Translation
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5.4 Expressiveness of A/RL®8"

Each NRL*8" expression e : ¢ over schema o defines a query (map) @, from finite o structures
to objects of type t. Combining Theorem 5.3, Lemma 5.1 and Proposition 5.2, we obtain:

COROLLARY 5.5. For every NRL*2"(All, All) expression e : {rt} without free variables over

a schema with all relations of flat types, the query Q. defined by e can be expressed in
Lager(AllLAll). O

We call a record type relational if it is of the form b x ... x b. We call a N'RL*® expression
without free variables relational if it is of type {rt} where rt is relational. Finally, a query .
defined by a relational expression is called relational if all relations in o are of type {bx...xb}.
From Hanf-locality of L (All, All) we conclude:

COROLLARY 5.6. [EXPRESSIVENESS OF AGGREGATION]
Every relational query in N'RLC*& (All, All) is Hanf-local, Gaifman-local and has the BNDP. O

This implies, for example, that NRL*(All, All) cannot express any query listed in Corollary
4.13.

The main result on expressibility bounds — Corollary 5.6 — makes the assumption that the
input structure is relational, that is, only contains elements of the base type b. One can relax
this in two different ways. First, input structures can be nested (that is, of arbitrary type ).
Second, one can permit flat structures of types {rt} where rt is an arbitrary record type, not
just b x ... x b. The natural question, then, is whether one can recover Corollary 5.6 under
those relaxations.

The case of nested inputs is simple (see below). The case of numerical types is dealt with in
the next section.

PROPOSITION 5.7. There exist NRL*®" graph queries (not using arithmetic and aggregation)
on graphs of type {{b} x {b}} that are neither Hanf-local nor Gaifman-local.

Proof. Let GG be an input graph of type {{b} x {b}}, that is, a set {(X;,Yi) | ¢ = 1,...,n},
X,,Y; CU. We define a query ) that on (& produces the graph whose edges are (X,Y) where
X,Y are among X;,Y;, i =1,....n, and X C Y. Clearly, this query is definable in N'RL, and
NRL can express the C relation [5]. Assume that this query is Gaifman-local, and let r > 0
witness that. Let then n > 4r + 4, and let A = {ay,...,a,} be an n-element subset of U.
Define G, as a graph whose nodes are sets of the form {ay,...,ar}, k = 1,...,n, and whose
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edge-relation F, is
n—1
U{Har, -k, fan, o an apa }))
k=1

Let X' = {a1,...,a,42} and X" = {ay,...,a343}. It is straightforward to verify that the
r-neighborhoods of (X', X”) and (X", X’) in (,, are isomorphic (as unions of disjoint chains),
but (X', X”) belongs to the output of @ on G,,, and (X", X’) does not. This shows that @ is
not Gaifman-local. By Proposition 4.8 it is not Hanf-local either. a

6. RESTRICTIONS OF Lag:

While L,ge subsumed SQL-like languages, and gave us bounds on their expressive power, it
is not a direct analog of relational calculus for aggregate extensions, mostly because of its use
of infinitary connectives and quantification over Q. We now consider a finitary restriction of
Lager, and show that it in a certain sense captures the language RL*®".

We need a standard definition of the active domain of a finite database [1], slightly modified
here to deal with two base types. Given a o-structure A, the set of all elements of & that occur
in A is denoted by adom(.A), and the set of all constants from Q that occur in A is denoted
by adomg(A). Given a record type rt = by X ... X b,, by adom;(A) we mean A; x ... x A,
where A; = adom(A) whenever b; = b and A; = adomg(A) whenever b; = Q.

DEFINITION 6.1. The logic L (2, 0) is defined to be the restriction of Loz (£), ©) that does
not permit infinitary conjunctions and disjunctions, and 0,1 are the only two constant terms of
the rational sort. The semantics is modified so that A |= Jx.p(x,---) means that A = o(xg, - -)
for some v € adom.(A), where adom, is adom for first-sort x, and adomq for second-sort x.
Furthermore, in AggrzZ.(¢,1), Z ranges over adom(A) where rt is the type of Z. O

In contrast with L.ger, Lager formulae can be evaluated on finite two-sorted structures in the
usual bottom-up way, assuming effectiveness of all functions and predicates in {) and aggregates
in ©. To connect this logic with RL*® we need to impose some conditions on the aggregates

from ©O.

DEFINITION 6.2. Let M = (Q, ®,¢) be a commutative monoid on Q. A monoidal aggregate
given by M is defined to be Faq whose nth function is fo({|x1,...,2.[}) = 210220 ... O, for
n >0 and fy returns ¢. (f, is arbitrary.) An aggregate signature is monoidal if every aggregate
in it is. O

The usual aggregates > and [] are monoidal, given by (Q,+,0) and (Q,*,1) respectively.
In fact, most aggregates in the database setting are either monoidal or can be obtained from



28 . L. Hella, L. Libkin, J. Nurmonen, L. Wong

monoidal aggregates by means of simple arithmetic operations [15].

We now have to say what it means for a logic to capture a query language. In one direction,
it is easy — every query must be definable by a logical formula. For the other direction, one
has to deal with the standard database problem of safety [1]: while queries always return finite
results, arbitrary formulae need not, as they may define infinite subsets of Q. We circumvent
this problem by using the following definition of capture.

DEFINITION 6.3. We say that Lag, (€2, 0) captures RL*®(Q, O) if the following two condi-
tions hold for every signature o. First, for every RL*® (), 0) expression e : {rt} without free
variables there exists an Lage (2, ©) formula () with & of type rt such that e(A) ={d | A |=
o(d)}. Second, for every Lag.(,0) formula o(Z) with & of type rt there exists a RL*8 (12, 0)
expression e(x™) : Q such that the value of e[z™:= d|(A) is 0 if A |E ©(@) and 1 otherwise.

THEOREM 6.4. Let © be monoidal. Then Lag.(All,0) captures RL*"(All,©). Moreover,

Laggr(,{>_1) captures RC*¥#(Q,{3°}) if Q conlains (4, =, +), and Lagge(2, {32, 11}) cap-
tures RC*&(Q{> [} if Q contains (+, —, *, +, root).

Proof. The proof of Proposition 5.2 in [32] can be adapted to show that for @ monoidal, every
expression e of RL*(All, ©) is equivalent to an expression €’ in which for every subexpression
of the form (J{e: | @ € ex}, D {er | v € ex}, and Aggre{e: | © € ez}, the expression ey
is one of R € 0. Moreover, if > is the only aggregate, the same is true for any expression
of RC*¥E(Q U {4+, —,*, =, },{D_}), and if > and [] are the only aggregates, this is true for
any expression of RL®8(Q U {4+, —,*, =, root}, {> ., [[}), for any Q. Now, to conclude the
embedding of RL*® into Laggr, we just follow the rules in Figure 2, and observe that in the
resulting formulae all the quantification is over the active domain, and no infinitary connectives
are present.

For the other direction, we show how to construct e, for every ¢(%) so that e [z™:= @](A) is
0 if A= ¢(d) and 1 otherwise, and how to construct at the same time, for each term #(Z), an
expression e;(x") so that e;[z™:= @](A) is the value of term ¢(d) in A.

We first observe that for sets of type {Q} that may not contain any element other than 0 or
1, the operation MIN that selects the minimum element is definable in RL*®": this is because

MIN(X)=1—-0 {1l |z € X} => {a | x € X}). Also note that for each record type rt, we

have a RL*®®" expression adom,, that defines adom (. A) for every input A.

We now define e, and e; by induction on the structure of formulae and terms. For ¢g, ¢
(constant symbols for 0 and 1) and terms of the form f(f) and formulae P(f) with f, P € Q,
the translation is straightforward. For terms of the first sort (which must be variables), the
translation is obtained by applying a projection operator to the tuple of free variables. For ¢
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being (1 = t3), €, is = (€4, €1,). We now give translations of the remaining constructs of Ly,
In what follows, we use the same symbols for free variables in formulae and RL*#®" expression
for better readability and to avoid repeated projections and tupling operations. For example,
we write | J{e(y, ¥) |7 € R} instead of the official ( {e(y, 1 @, .oy mop @) | @ € R}

—Assume that ¢ is R(ty,...,1,) where t;s are terms. Then e, is = (0, MIN((J{=
(x,(€ty,...,e,)) | @ € R})).

—For o = —p, ey =1 —e,. For ¢y = 1V s, €y is defined to be MIN({ey, } U {ey, }).

—Let ¢(y) = Jz.0(z,y). Then e, is defined to be

- =(0, Z{zf ex(z,Y) then 1 else 0 | z € adom.,})

where adom, refers to adom when z is of the first sort, and to adomg when =z is of the second
sort.

—If t(y) = #Z.9(&,y), and T is of type rt (which is in this case b x ... x b), then e; is
SHif e (@,7) then 1 else 0 | T € adom,.}.

—If to(¥) = Aggrz2.(¢(Z, 2),t(¥,2)) and Z is of type rt, then ey is
Aggrr{e(,2) | Z € | J{if e (%.7) then {G} else O | 7 € adom,,} }
It is straightforward to verify soundness of this translation. This completes the proof. a

As a corollary, we answer the question about expressivity of RL*®8 over Q. Since first-order
logic with counting quantifiers is no more expressive than Lag.({+,*, +, <},{D>_}), the results
of [4] imply the following.

COROLLARY 6.5. Assume that the test for connectivity of graphs of type {Qx Q} is not defin-
able in RL*® ({+, —,*, =, <}, {>_}). Then there exists a problem in NLOGSPACE for which

there are no constant-depth polynomial-size unbounded fan-in circuits with threshold gates.

Proof. It can be easily seen that the first-order logic with counting quantifiers [4] is no more
expressive than Lage({+, *, +, <}, 0); since the former captures the class of problems for which
there exist constant-depth polynomial-size unbounded fan-in circuits with threshold gates [4],
and connectivity is in NLOGSPACE, the result follows. O

Whether the class of problems definable with polynomial-size constant-depth threshold circuits
(called TC® [3; 4]) is different from NLOGSPACE (or even NP) remains an open problem in
complexity theory. In fact, there are indications that the problem is extremely hard (see [3] for
a survey). It now follows that we cannot answer questions about expressivity of aggregate query
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languages over Q without separating TC® from NP. The key difference between this situation
and earlier results on expressive power of N’RL*® is that the domain U is unordered, whereas
over Q we do have an order. An analog of Corollary 6.5 can be proved for inputs of type {b x b}
assuming that the domain U of type b is linearly ordered. Indeed, if the universe U of the
base type b is ordered, then each element = of type b that occurs in a database D is naturally
associated with the number of y < x such that y of type b occurs in D. If the order on b is
available, this number is clearly definable with the aggregate Y . We thus obtain:

COROLLARY 6.6. Let RLY5 be defined just as RL*®" except that a linear order < is available
on the base type b in addition to the equality test. Assume that the test for connectivity of graphs
of type {b x b} is not definable in RLX¥E ({+, — x,+,<},{>.}). Then TC® is different from
NLOGSPACE. 0

By changing a query from connectivity to a DLOGSPACE-complete one (e.g., deterministic
transitive closure [24]), we can obtain a similar result showing that nondefinability of deter-
ministic transitive closure in RC%& ({+, —, *, =, <}, {>°}) implies the separation between TC°
and DLOGSPACE. Note that there are other known cases when expressivity bounds for query
languages cannot be proved without separating complexity classes; see, for example, [2].

7. CONCLUSIONS

In this paper we studied the problem of adding aggregate operators to logics. We were primarily
motivated by problems arising in database theory. Aggregation is indispensable in majority of
real life applications, but the foundations of query languages that support it are not adequately
studied. Here, we concentrated on the problem of expressive power. We first considered adding
aggregation to logics that already have substantial counting power, and proved that the resulting
logics have a very nice behavior: over pure relational structures, they can only define local
properties. We then considered a query language, that models all the standard aggregation
features of commercial query languages such as SQL (and, in fact, more, as it permits every
well-defined aggregate operator and every arithmetic function). We showed a simple embedding
of this language into aggregate logic, and thus proved that over a large class of inputs, it is also
local. In particular, over unordered domains, queries such as transitive closure are inexpressible
in SQL, no matter what collection of arithmetic functions and aggregate operators one adds.

We believe that the use of logics like Lager and Lag,, is not limited to studying the expressive
power of languages. They provide a disciplined approach to design of declarative languages
for aggregation, and hopefully this can be used to study other problems, such as language
design and optimization of aggregate queries. Known techniques for optimizing aggregate
queries are quite ad hoc, and perhaps a clean theoretical framework can help here. We note
that [29], starting with essentially the same motivation, designed a categorical calculus for
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aggregate queries. It will be interesting to see what are the connections between that calculus
and Lager. Among other possibilities for future work we would like to mention, are extensions
of the general approach to other datatypes used in applications, complexity and decidability
problems for fragments of Lz, and extensions to logics that have a fixpoint mechanism as
well as counting power (in particular, we would like to see if bounds such as those of [7] can be
proved in the presence of aggregation).
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