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Abstract

Normalization as a way of producing good database designs is a well-understood topic.
However, the same problem of distinguishing well-designed databases from poorly designed ones
arises in other data models, in particular, XML. While in the relational world the criteria for
being well-designed are usually very intuitive and clear to state, they become more obscure when
one moves to more complex data models.

Our goal is to provide a set of tools for testing when a condition on a database design,
specified by a normal form, corresponds to a good design. We use techniques of information
theory, and define a measure of information content of elements in a database with respect to
a set of constraints. We first test this measure in the relational context, providing information-
theoretic justification for familiar normal forms such as BCNF, 4NF, PJ/NF, 5NFR, DK/NF. We
then show that the same measure applies in the XML context, which gives us a characterization
of a recently introduced XML normal form called XNF. Finally, we look at information-theoretic
criteria for justifying normalization algorithms.

1 Introduction

What constitutes a good database design? This question has been studied extensively, with well-
known solutions presented in practically all database texts. But what is it that makes a database
design good? This question is usually addressed at a much less formal level. For instance, we know
that BCNF is an example of a good design, and we usually say that this is because BCNF eliminates
update anomalies. Most of the time this is sufficient, given the simplicity of the relational model
and our good intuition about it.

Several papers [15, 30, 20] attempted a more formal evaluation of normal forms, by relating it to
the elimination of update anomalies. Another criterion is the existence of algorithms that produce
good designs: for example, we know that every database scheme can be losslessly decomposed into
one in BCNF, but some constraints may be lost along the way.

The previous work was specific for the relational model. As new data formats such as XML
are becoming critically important, classical database theory problems have to be revisited in the
new context [28, 26]. However, there is as yet no consensus on how to address the problem of
well-designed data in the XML setting [12, 3].

It is problematic to evaluate XML normal forms based on update anomalies; while some pro-
posals for update languages exist [27], no XML update language has been standardized. Likewise,
using the existence of good decomposition algorithms as a criterion is problematic: for example,
to formulate losslessness, one needs to fix a small set of operations in some language, that would
play the same role for XML as relational algebra for relations. Stating dependency preservation



and testing normal forms is even more problematic: while in the relational world we have well-
understood procedures for doing this, for XML we do not even know if implication of functional
dependencies is decidable.

This suggests that one needs a different approach to the justification of normal forms and
good designs. Such an approach must be applicable to new data models before the issues of
query/update/constraint languages for them are completely understood and resolved. There-
fore, such an approach must be based on some intrinsic characteristics of the data, as opposed
to query/update languages for a particular data model. In this paper we suggest such an approach
based on information-theoretic concepts, more specifically, on measuring the information content of
the data. Our goal here is twofold. First, we present information-theoretic measures of “goodness”
of a design, and test them in the relational world. To be applicable in other contexts, we expect
these measures to characterize familiar normal forms. Second, we apply them in the XML context,
and show that they justify a normal form XNF proposed in [3]. We also use our measures to
reason about normalization algorithms, by showing that standard decomposition algorithms never
decrease the information content of any piece of data in a database/document.

The rest of the paper is organized as follows. In Section 2 we give the notations, and review
the basics of information theory (entropy and conditional entropy). Section 3 is an “appetizer”
for the main part of the paper: we present a particularly simple information-theoretic way of mea-
suring the information content of a database, and show how it characterizes BCNF and 4NF. The
measure, however, is too coarse, and, furthermore, cannot be used to reason about normalization
algorithms. In Section 4 we present our main information-theoretic measure of the information
content of a database. Unlike the measure studied before [18, 8, 10, 19], our measure takes into
account both database instance and schema constraints, and defines the content with respect to
a set of constraints. A well-designed database is one in which the content of each datum is the
maximum possible. We use this measure to characterize BCNF and 4NF as the best way to de-
sign schemas under FDs and MVDs, and to justify normal forms involving JDs (PJ/NF, 5NFR)
and other types of integrity constraints (DK/NF). In Section 5, we show that the main measure
of Section 4 straightforwardly extends to the XML setting, giving us a definition of well-designed
XML specifications. We prove that for constraints given by FDs, well-designed XML specifications
are precisely those in XNF. In Section 6, we use the measures of Sections 4 and 5 to reason about
normalization algorithms, by showing that good normalization algorithms do not decrease the in-
formation content of each datum at every step. Finally, Section 7 presents the conclusions and
some ideas for future work.

2 Notations

2.1 Schemas and Instances

A database schema S is a finite set of relation names, with a set of attributes, denoted by sort(R),
associated with each R € S. We shall identify sort(R) of cardinality m with {1,...,m}. Through-
out the paper, we assume that the domain of each attribute is NT, the set of positive integers. An
instance I of schema S assigns to each symbol R € S with m = |sort(R)| a relation I(R) which is
a finite set of m-tuples over N*. By adom(I) we mean the active domain of I, that is, the set of
all elements of N* that occur in I. The size of I(R) is defined as ||I(R)|| = |sort(R)| - |I(R)|, and
the size of I is |[I]| = Y peg [[I(R)[]. If T is an instance of S, the set of positions in I, denoted by
Pos(I), is the set {(R,t,A) | R€ S, t € I(R) and A € sort(R)}. Note that |Pos(I)| = ||I].

We shall deal with integrity constraints which are first-order sentences over S. Given a set X



of integrity constraints, ¥ denotes the set of all constraints implied by it, that is, constraints
¢ such that for every instance I, I |= ¥ implies I = ¢. We define inst(S,X) as the set of all
database instances of S satisfying ¥ and inst;(S,%) as {I € inst(S,X) | adom(I) C [1,k]}, where
1,k ={1,...,k}.

2.2 Constraints and Normal Forms.

Here we briefly review the most common normal forms BCNF, 4NF, PJ/NF, 5NFR and DK/NF.
For more information, the reader is referred to [6, 17, 1, 7]. The most widely used among these are
BCNF and 4NF, defined in terms of functional dependencies (FD) and multivalued dependencies
(MVD), respectively. We shall use the standard notations X — Y and X —— Y for FDs and
MVDs. Given a set ¥ of FDs over S, (S,%) is in BONF if for every nontrivial FD X — Y € &7,
X is a key (that is, if X — Y is defined over R, then X — sort(R) € 7). If ¥ is a set of FDs and
MVDs over S, then 4NF is defined analogously [13]: for every nontrivial MVD X —— Y € 1, X
must be a key. Recall that in the case of FDs nontrivial means Y ¢ X. and in the case of MVDs
nontrivial means Y ¢ X and X UY G sort(R).

The normal forms PJ/NF (projection-join normal form) [14] and 5NFR [29] deal with FDs and
join dependencies (JDs). Recall that a JD over R € S is an expression of the form <[X,..., X, ],
where X, U--- U X, = sort(R). A database instance I of S satisfies [X1,...,X,], if [(R) =
wx,(I(R)) <+ < 7x, (I(R)). Given a set ¥ of FDs and JDs over S, (S,%) is in PJ/NF if A = ¥,
where A is the set of key dependencies in X% (that is, dependencies of the form X — sort(R) for
X C sort(R)). In other words, every instance of S that satisfies all the keys in ¥ must satisfy
¥ as well. PJ/NF is an extension of both 4NF and BCNF. Since an MVD X —— Y over R is a
JD <[XY, X (sort(R) — Y)], when only FDs and MVDs are present in 3, the definition of PJ/NF
coincides with 4NF. If no MVDs are present at all, it reduces to the definition of BCNF [14].

An alternative normal form for FDs and JDs was introduced in [29], which is based on the
original definitions of BCNF and 4NF. Given a set of FDs and JDs ¥ over S, a JD ¢ = x[X7,..., X,,]
in ¥ is strong-reduced if for every ¢ € [1,n], =<[X1,..., X; 1, Xi41,...,Xy] is not in ¥ or X; U
e UXi U X U U Xy, G osort(R). (S, %) is in SNFR (reduced 5th normal form) if for every
nontrivial, strong-reduced join dependency >[X71,...,X,] € ¥ and every i € [1,n], X; is a key.
PJ/NF is strictly stronger than 5SNFR.

The “ultimate” normal form for relational databases was introduced in [15]. This normal form
was defined in terms of key dependencies and domain dependencies. In our setting, where domain
dependencies are not considered, it says the following. Given any set of integrity constraints X over
S, (S,%) is in DK/NF (domain-key normal form) if ¥ is implied by the set of key dependencies in
xt.

2.3 Basics of Information Theory

The main concept of information theory is that of entropy, which measures the amount of infor-
mation provided by a certain event. Assume that an event can have n different outcomes sq, ...,
Sn, €ach with probability p;, ¢+ < n. How much information is gained by knowing that s; occurred?
This is clearly a function of p;. Suppose g measures this information; then it must be continuous
and decreasing function with domain (0, 1] (the higher the probability, the less information gained)
and ¢g(1) = 0 (no information is gained if the outcome is known in advance). Furthermore, g is
additive: if outcomes are independent, the amount of information gained by knowing two successive
outcomes must be the sum of the two individuals amounts, that is, g(p; - p;) = g(pi) + g(p;). The
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Figure 1: Database instances.
only function satisfying these conditions is g(z) = —cInz, where c is an arbitrary positive constant
[25]. It is customary to use base 2 logarithms: g(z) = —logz.

The entropy of a probability distribution represents the average amount of information gained
by knowing that a particular event occurred. Let A = ({s1,...,sn}, P4) be a probability space. If
p; = P4(s;), then the entropy of A, denoted by H(A), is defined to be

n n
1
H(A) = Zpilog; = —> pilogp;.
i=1 L i=1

Observe that some of the probabilities in the space A can be zero. For that case, we adopt the
convention that Olog% = 0, since limxﬁgxlog% = 0. It is known that 0 < H(A) < logn, with
H(A) =logn only for the uniform distribution Py4(s;) = 1/n [9].

We shall also use conditional entropy. Assume that we are given two probability spaces A =
({s1,---y8n}s Pa), B=({s},...,8,}, Pg) and, furthermore, we know probabilities P(s},si) of all
the events (53-, s;) (that is, P4 and P need not be independent). Then the conditional entropy of
B given A, denoted by H(B | A), gives the average amount of information provided by B if A is
known [9]. It is defined using conditional probabilities P(s} | s;) = P(s, si)/Pa(s:):

H(B | A) = Z(msn S P(s) | 5i)log %)

s,
i=1 =1 (55 [ 5:)

3 Information Theory and Normal Forms: an Appetizer

We will now see a particularly simple way to provide information-theoretic characterization of
normal forms. Although it is very easy to present, it has a number of shortcomings, and a more
elaborate measure will be presented in the next section.

Violating a normal form, e.g., BCNF, implies having redundancies. For example, if § =
{R(A,B,C)} and ¥ = {A — B}, then (S,%) is not in BCNF (A4 is not a key) and some in-
stances can contain redundant information: in Figure 1 (a), the value of the gray cell must be equal
to the value below it. We do not need to store this value as it can be inferred from the remaining
values and the constraints.

We now use the concept of entropy to measure the information content of every position in an
instance of S. The basic idea is as follows: we measure how much information we gain if we lose
the value in a given position, and then someone restores it (either to the original, or to some other
value, not necessarily from the active domain). For instance, if we lose the value in the gray cell in
Figure 1 (a), we gain zero information if it gets restored, since we know from the rest of the instance
and the constraints that it equals 2. Formally, let I € inst,(S,%) (that is, adom(I) C [1,k]) and let



p € Pos(I) be a position in I. For any value a, let I, , be a database instance constructed from
I by replacing the value in position p by a. We define a probability space ££(I,p) = ([1,k + 1], P)
and use its entropy as the measure of information in p (we define it on [1, k£ + 1] to guarantee that
there is at least one value outside of the active domain). The function P is given by:

Py = {° Ty £ 3,
1/{b| I,y =3} otherwise.

In other words, let m be the number of b € [1,k + 1] such that I, = £ (note that m > 0 since
I |= ). For each such b, P(b) = 1/m, and elsewhere P = 0. For example, for the instance in Figure
1 (a) if p is the position of the gray cell, then the probability distribution is as follows: P(2) =1
and P(a) = 0, for all other a € [1,k + 1]. Thus, the entropy of E£(I, p) for position p is zero, as we
expect. More generally, we can show the following.

Theorem 1 Let X be a set of FDs (or FDs and MVDs) over a schema S. Then (S,X) is in BCNF
(or 4NF, resp.) if and only if for every k > 1, I € insty(S,X) and p € Pos(I),

H(EE(I,p)) > 0.

Proof: We give the proof for the case of FDs; for FDs and MVDs the proof is almost identical.

(=) Assume that (S,X) is in BONF. Fix k£ > 0, I € insty(S,%) and p € Pos(I). Assume that a
is the p-th element in 7. We show that I,. ;41 | ¥, from which we conclude that H(££(1,p)) > 0,
since (1, p) is uniformly distributed, and P(a), P(k + 1) # 0.

Towards a contradiction, assume that I, 1 = 3. Then there exist R € S, t,t, € I p1+1(R)
and X — A € X7 such that #|[X] = t4[X] and #|[A] # t,[A]. Assume that ¢}, were generated
from tuples t1,ty € I(R) (hence t; # to), respectively. Note that #|[X] = t;[X] (if ¢1[X] # t|[X],
then #|[B] = k + 1 for some B € X; given that k + 1 ¢ adom(I), only one position in I, 41
mentions this value and, therefore, #|[X] # t4[X], a contradiction). Similarly, ¢,[X] = #3[X] and,
therefore, #1[X] = #2[X]. Given that (S,X) is in BCNF, X must be a key in R. Hence, t; = to,
since I = ¥, which is a contradiction.

(<) Assume that (S,3) is not in BCNF. We show that there exists k& > 0, I € insty(S, %)
and p € Pos(I) such that H(EL(I,p)) = 0. Since (S,) is not in BCNF, there exist R € S and
X — A€ X" such that A ¢ X, X U{A} G sort(R) and X is not a key in R. Thus, there exists
a database instance I of S such that [ = X and I = X — sort(R). We can assume that I(R)
contains only two tuples, say ¢1,ts. Let k be the greatest value in I, i = ¢;[A] and p be the position
of t1[A] in I. Tt is easy to see that I € insty(S,X) and P(j) = 0, for every j # 4 in [1, k + 1], since
t1[A] must be equal to t5[A] = i. Therefore, H(EE(I,p)) = 0. O

Thus, a schema is in BCNF or 4NF iff for every instance, each position carries non-zero amount of
information. This is a clean characterization of BCNF and 4NF, but the measure H(EE(I,p)) is
not accurate enough for a number of reasons. For example, let ¥; = {A — B} and £y = {4 ——
B}. The instance I in Figure 1 (a) satisfies 31 and Y. Let p be the position of the gray cell in
I. Then H(EQI(I,p)) = H(5§2(I,p)) = 0. But intuitively, the information content of p must be
higher under X5 than 3, since X; says that the value in p must be equal to the value below it,
and X9 says that this should only happen if the values of the C-attribute are distinct.

Next, consider I; and Iy shown in Figures 1 (a) and (c), respectively. Let ¥ = {A — B}, and let
p1 and py denote the positions of the gray cells in I; and I. Then H(EE(I1,p1)) = H(EE(I2,p2)) =
0. But again we would like them to have different values, as the amount of redundancy is higher
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Figure 2: Defining INF&(p | X).

in Iy than in Iy. Finally, let S = R(A,B), ¥ = {0} —— A}, and I = {1,2} x {3,4} € inst(S,3).
For each position, the entropy would be zero. However, consider both positions in attribute A
corresponding to the value 1. If they both disappear, then we know that no matter how they are
restored, the values must be the same. The measure presented in this section cannot possibly talk
about inter-dependencies of this kind.

In the next section we will present a measure that overcomes these problems.

4 A General Definition of Well-Designed Data

Let S be a schema, 3 a set of constraints, and I € inst(S,¥) an instance with [|I|| = n. Recall that
Pos(I) is the set of positions in I, that is, {(R,t,A) | R€ S, t € I(R) and A € sort(R)}. Our goal
is to define a function INF;(p | ¥), the information content of a position p € Pos(I) with respect
to the set of constraints ». For a general definition of well-designed data, we want to say that
this measure has the maximum possible value. This is a bit problematic for the case of an infinite
domain (NT), since we only know what the maximum value of entropy is for a discrete distribution
over k elements: logk. To overcome this, we define, for each k > 0, a function INF§(p | ) that
would only apply to instances whose active domain is contained in [1,%], and then consider the
ratio INF¥(p | X)/log k. This ratio tells us how close the given position p is to having the maximum
possible information content, for databases with active domain in [1,k]. As our final measure
INF7(p | 3) we then take the limit of this sequence as k goes to infinity.

Informally, INF§(p | ©) is defined as follows. Let X C Pos(I) —{p}. Suppose the values in those
positions X are lost, and then someone restores them from the set [1,k]; we measure how much
information about the value in p this gives us. This measure is defined as the entropy of a suitably
chosen distribution. Then INF¥(p | ¥) is the average such entropy over all sets X C Pos(I) — {p}.
Note that this is much more involved than the definition of the previous section, as it takes into
account all possible interactions between different positions in an instance and the constraints.

We now present this measure formally. An enumeration of I with ||I|| = n, n > 0, is a bijection
fr between Pos(I) and [1,n]. From now on, we assume that every instance has an associated
enumeration'. We say that the position of (R,t, A) € Pos(I) is p in I if the enumeration of I
assigns p to (R,t,A), and if R is clear from the context, we say that the position of ¢[A] is p. We
normally associate positions with their rank in the enumeration f7.

Fix a position p € Pos(I). As the first step, we need to describe all possible ways of removing
values in a set of positions X, different from p. To do this, we shall be placing variables from a
set {v; | ¢ > 1} in positions where values are to be removed, where v; can occur only in position i.
Furthermore, we assume that each set of positions is equally likely to be removed. To model this, let
Q(I,p) be the set of all 2"~ ! vectors (ay, ..., ap_1, apt1, . .., an) such that for every i € [1,n]—{p},

!The choice of a particular enumeration will not affect the measures we define.



a; is either v; or the value in the i-th position of I. A probability space A(I,p) = (Q(I,p), P) is
defined by taking P to be the uniform distribution.

Example 1: Let I be the database instance shown in Figure 1 (a). An enumeration of the positions
in I is shown in Figure 2 (a). Assume that p is the position of the gray cell shown in Figure 1 (a),
that is, p = 5. Then a; = (4,2,1,3,1) and as = (v1,2,1,3,vg) are among the 32 vectors in Q(I,p).
For each of these vectors, we define P as 3% O

Our measure INFi(p | X), for I € inst;(S,%), will be defined as the conditional entropy of
a distribution on [1, k], given the above distribution on Q(I,p). For that, we define conditional
probabilities P(a | @) that characterize how likely a is to occur in position p, if some values are
removed from I according to the tuple a from Q(I,p) 2. We need a couple of technical definitions
first. If @ = (a;)ixp is a vector in Q(I, p) and a > 0, then I, 5 is a table obtained from I by putting
a in position p, and a; in position 7,7 # p. If k > 0, then a substitution o : a — [1, k] assigns a value
from [1, k] to each a; which is a variable, and leaves other a;s intact. We can extend o to I(, ) and

thus talk about o(/(,a)).

a,a

Example 2: (example 1 continued) Let £ = 8 and o7 be an arbitrary substitution from a; to
[1,8]. Note that oy is the identity substitution, since a; contains no variables. Figure 2 (b) shows
I(7,a,), which is equal to 01([(7,)). Let oo be a substitution from as to [1,8] defined as follows:
o(v1) = 4 and o(vg) = 8. Figure 2 (c) shows [(75,) and Figure 2 (d) shows the database instance

generated by applying o9 to I(73,). O
If 3 is a set of constraints over S, then SAT’%(I(G’@)) is defined as the set of all substitutions
o :a — [1,k] such that o(I(4)) F X and [|o([(44))]| = |[I]| (the latter ensures that no two tuples
collapse as the result of applying o). With this, we define P(a | @) as:
k
Pla|a) ATy (L)l
> ISATE (L))
be(1,k]

We remark that this corresponds to conditional probabilities with respect to a distribution P’
on [1,k] x Q(I,p) defined by P'(a,a) = P(a | @) - (1/2"!), and that P’ is indeed a probability
distribution for every I € inst;(S,%) and p € Pos(I).

Example 3: (example 2 continued) Assume that ¥ = {4 — B}. Given that the only substi-
tution o from a; to [1,8] is the identity, for every a € [1,8], a # 2, 0(I(44,)) ¥ X, and, therefore,
SAT%(I(a@I)) = (). Thus, P(2 | a1) = 1 since 0(I(25,)) = 2. This value reflects the intuition that
if the value in the gray cell of the instance shown in Figure 1 (a) is removed, then it can be inferred
from the remaining values and the FD A — B.
There are 64 substitutions with domain as and range [1,8]. A substitution o is in SAng(I(mQ))
if and only if o(vg) # 1, and, therefore, |SAT82(I(7"—12))\ = 56. The same can be proved for every
€ [1,8], a # 2. On the other hand, the only substitution that is not in SATSZ(I(Q’(—IQ)) iso(vy) =3
and o(vg) = 1, since 0((33,)) contains only one tuple. Thus, \SATSZ(I(Q’EQ))\ = 63 and, therefore,
2B ifa=2,
Pla|ag) =

56 .
o5 otherwise. 0

2We use the same letter P here, but this will never lead to confusion. Furthermore, all probability distributions
depend on I, p, k and X, but we omit them as parameters of P since they will always be clear from the context.



We define a probability space BE(I,p) = ([, k], P) where

Pla) = s Y0 Plala),

acQ(I,p)

and, again, omit I, p, k£ and X as parameters, and overload the letter P since this will never lead
to confusion.

The measure of the amount of information in position p, INF&(p | ), is the conditional entropy
of Bg([,p) given A(I,p), that is, the average information provided by p, given all possible ways of
removing values in the instance I:

INFf(p | 2) € H(BE(Lp) | ALp) = Y (P(a) Y Plala) lgﬁ)

acQ(I,p) a€[l,k]

Note that for a € Q(I, p), Zae[l’k} P(a|a)log % measures the amount of information in position
p, given a set of constraints X and some missing values in I, represented by the variables in a. Thus,
INFF(p | ¥) is the average such amount over all a € Q(I,p). Furthermore, from the definition of
conditional entropy, 0 < INF¥(p | £) < logk, and the measure INF¥(p | ¥) depends on the domain
size k. We now consider the ratio of INF’}(p | ) and the maximum entropy log k. It turns out that
this sequence converges:

Lemma 1 If ¥ is a set of first-order constraints over a schema S, then for every I € inst(S,X)
and p € Pos(I), limy_,. INFX(p | B)/log k eists.

The proof of this lemma is given in appendix A.1. In fact, Lemma 1 shows that such a limit exists
for any set of gemeric constraints, that is, constraints that do not depend on the domain. This
finally gives us the definition of INF;(p | X).

Definition 1 For I € inst(S,%) and p € Pos(I), the measure INFr(p | ¥) is defined as

k
k—oo  logk

INF7(p | £) measures how much information is contained in position p, and 0 < INF;(p | £) < 1.
A well-designed schema should not have an instance with a position that has less than maximum
information:

Definition 2 A database specification (S,Y) is well-designed if for every I € inst(S,3) and every
p € Pos(I), INFr(p | ) = 1.

Example 4: Let S be a database schema {R(A, B, C)}. Let ¥; = {A — BC}. Figure 1 (b) shows
an instance I of S satisfying ¥; and Figure 3 (a) shows the value of INF¥(p | £1) for k = 5,6,7,
where p is the position of the gray cell. As expected, the value of INF¥(p | ¥;) is maximal, since
(S,31) is in BCNF. Indeed, given that we have to preserve the number of tuples, the A-values must
be distinct, hence all possibilities for selecting B and C' are open.

The next two examples show that the measure INF5(p | ¥) can distinguish cases that were
indistinguishable with the measure of Section 3. Let ¥y = {A — B} and ¥}, = {4 —— B}.
Figure 1 (a) shows an instance I of S satisfying both 39 and Xf. Figure 3 (b) shows the value of
INFF(p | B9) and INF§(p | B5) for k = 5,6,7. As expected, the values are smaller for ¥y. Finally,



|k A— BC logk | |k A-B A— B| R I |
5 23219 2.3219 5 20299 22180 5 20299 1.8092
6 25850  2.5850 6 22608 24637 6 2.2608 2.0167
7 28074 2.8074 7 24558  2.6708 7 24558 2.1914

(a) (b) ()
Figure 3: Value of conditional entropy.

let 33 = {A — B}. Figures 1 (a) and 1 (c) show instances Iy, I5 of S satisfying ¥3. We expect the
information content of the gray cell to be smaller in /5 than in I}, but the measure used in Section
3 could not distinguish them. Figure 3 (c) shows the values of INF’}1 (p | ¥3) and INF’}2 (p | 23)
for kK = 5,6,7. As expected, the values are smaller for I,. In fact, INF7,(p | ¥3) = 0.875 and
INFr, (p | X3) = 0.78125. O

4.1 Basic Properties

It is clear from the definitions that INF;(p | ¥) does not depend on a particular enumeration of
positions. Two other basic properties that we can expect from the measure of information content
are as follows: first, it should not depend on a particular representation of constraints, and second,
a schema without constraints must be well-designed (as there is nothing to tell us that it is not).
Both are indeed true.

Proposition 1

1) Let 31 and X9 be two sets of constraints over a schema S. If they are equivalent (that is,
Y =%5), then for any instance I satisfying $1 and any p € Pos(I), INF;(p | £1) = INF[(p |
o).

2) If X =0, then (S,X) is well-designed.
Proof:
1) Follows from the fact that for every instance I of S, I = X, iff I = ¥5. Hence, for every
a € [Lk] and a € Q(I,p), SATS (Iia)) = SATE, (Iua)) and, therefore, H(BE (I,p) |
A(I,p)) = H(Bs,,(I,p) | A(I,p)).

2) Follows from part 2) of Proposition 2, to be proved below. Since for every I € inst(S,X),
p € Pos(I) and a € NT —adom(I), we have I, , = X, this implies that (S, X) is well-designed.

O

In the following proposition we show a very useful structural criterion for INF;(p | £) = 1, namely
that a schema (S,3) is well-designed if and only if one position of an arbitrary I € inst(S, )
can always be assigned a fresh value. Also in this proposition, we use this criterion to show that
INFA(p | £) cannot exhibit sub-logarithmic growth, that is, if limj_,o INF¥(p | £)/logk = 1, then
limg_ o0 [log k& — INFE(p | £)] = 0.

Proposition 2 Let S be a schema and ¥ a set of constraints over S. Then the following are
equivalent.



1) (S,%) is well-designed.

2) For every I € inst(S,%), p € Pos(I) and a € Nt — adom(I), I q =X

3) For every I € inst(S,%) and p € Pos(I), limy_,so[logk — INFE(p | 8)] = 0.
The following lemma will be used in the proof of this proposition and in several other proofs.
Lemma 2 Fiz n,m > 0, an n-element set A and a probability space A on A with the uniform
distribution P4. Assume that for each k > 0, we have a probability space on [1,k] called By and a
joint distribution Pg, 4 on [1,k] x A such that for some ag € A, and for all k > 0, the conditional

probability P(i | ag) = Pp, 4(%,a0)/Palag) =0, for at least k—m elements of [1,k]. Then for every
k> m?2:

BB A 1
log k 2n’

In particular, if img_,oo H(By | A)/logk exists, then limy_,c H(By | A)/logk < 1.

Proof: First, assume that m > 1. Let k > m? and M = {i € [1,k] | P(i | ap) > 0}. Observe that
|M| < m. Then

H(By | A)
log k log k

1
S5 X Pl oo )

aEA 1€]1,k]

- nligk< > ZP(ia)logﬁ)—i—(ZP ao)logﬁﬂ

- tacA—{ao} i€[1,k] €[1,k]

_ nligk-< 3 ZP(ia)logﬁ)—i—(lezMP a@logﬁ)]

- “a€A—{ao}i€[1,k]

nligk( > logk)-i—logm] (1)

- ta€A—{ao}

IN

LT
= —1)logk +1
nlogk (n Jog i+ ogm}
1 logm 1 logm 1 1 1
= 1-= R LU VAN S
+nlogk < n+nlogm2 n+2n 2n

Now, assume that m = 1. In this case, logm in equation (1) is equal to 0 and, therefore, the
1

previous sequence of formulas show that H (B, | A)/logk < 1 - < 1—5- O
Proof of Proposition 2: We will prove the chain of implications 3) = 1) = 2) = 3).

The implication 3) = 1) is straightforward. Next we show 1) = 2). Towards a contradiction,
assume that there exists I € inst(S,X), p € Pos(I) and a € N* — adom(I) such that I, , = X. Let
k > 0 be such that adom (I)U{a} C [1,k]. By Claim 1 (see Appendix), for every b € [1, k]—adom (I),
I,y = X. Thus, for every a € [1,k] — adom(I), P(a | ap) = 0, where ag is the tuple in Q(7,p)

containing no variables. Therefore, applying Lemma 2 with n = 2//l=1 and m = |adom(I)|, we
conclude that for k& > m?:
N T) _ HEBp AL _
log k log k 2. 2ll-1"
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Since INF7(p | ¥) = limy_, o INFF¥ (p | £)/log k exists by Lemma 1, we conclude that INFz(p | ¥) < 1
and thus (S, Y) is not well-designed, a contradiction.

Next, we show 2) = 3). Let I € inst(I,%) and p € Pos(I). Let ||I|| = n and let & > n be such
that I € insty(S,%). First, we prove that for every a € [1,k] — adom(I) and a € Q(I,p),

ISATE (Ia @) > (k—n)"r(@ (2)

where var(a) is the set of variables in a. We do it by induction on |var(a)| 3. We do it by
induction on |var(a)|. Assume that |var(a)] = 0. Then given that I, , = X, we conclude that
|SAT’§(I(G’E))\ = 1. Now assume that (2) is true for every tuple in Q(,p) containing at most m
variables, and let |var(a)| = m + 1. Suppose that a = (a1,....ap_1,0p41,...,a,) and a; = v;, for
some i € [1,p—1]U[p+1,n]. Let I' = I, ,. By the assumption, I’ = X, and hence for every
b € [1,k] — adom(I') we have I/, , = ¥. Thus, given that |[1,k] — adom(I')] > k — n and for

every by,by € [1,k] — adom(I'), ‘SAT]%(IEa,Bl)” = |SAT’§(I€G’52))\, where b; (j
constructed from @ by replacing v; by b;, we conclude that if b is a tuple constructed from a by

replacing v; by an arbitrary b € [1,k] — adom(I'), then |SATk( (@) = (k—n)- |SATY, (Iéa
since |adom (I')| < n. By the induction hypothesis, | SATE, (I' 5 )| > (k—n)lvar®l = (—p)lver(a

and, therefore, \SATk( (@a)| = (k — n)ver@l proving (2).

Now we show that limj_,[log k — INF(p | £)] = 0. For every k > 1 such that adom (I) C [1,k],
logk > INF¥(p | 22) and, therefore, limy, o [logk — INFF(p | )] > 0. Hence, to prove the theorem
we will show that

1,2) is a tuple

’13))‘7
)l

-1

Jim [log ks — INF(p | 2)] < 0. (3)

Let k& > 1 be such that adom(I) C [1,k]. Assume that & > n. Let a € [1,k] — adom(I) and
a € Q(I,p). Since Yy y \SATZ( )l <k Elvar(@+1 using (2), we get
_ (k- )‘var(a)‘ 1 T\ |var(a)|
> Y = (- .

By Claim 1 (see Appendix), for every a,b € [1, k] — adom(I) and every a € Q(I,p), P(a|a) = P(b |
a). Thus, for every a € [1,k] — adom(I) and every a € Q(I,p),

Plala) < 1/(k = ladom(I)]) < 1/(k = n). (5)

In order to prove (3), we need to establish a lower bound for INF¥(p | ©). We do this by using (4)
and (5) as follows: Given the term P(a | a)log Pl ‘ 7, We use (4) and (5) to replace P(a | @) and

3This induction relies on the following simple idea: If a ¢ adom(I), then I,, = X and, therefore, one can replace
values in positions of a one by one, provided that each position gets a fresh value.
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log P( ) by smaller terms, respectively. More precisely,

INFf(p| %) = > (P(“) > P(“'“)logP(ala)>

aeQ(1,p) a€[l1,k]

1 1 var(a
> o1 Z Z % ‘ @ log(k — n)
a€[l,k]—adom(I) aeQ(I,p
1 1 = (n-1 n.
a€[l,k]—adom(I) i=0
1 1 n _
= — log(k—n) - > (1— =)+ 1) !
2 k k
a€[l,k]—adom(I)
> iy loglk—n) 1 (k—n) (2— 1)
= gemr BT TR
1 1 2n
> - _ _ n—1
> o loglh—n) 3 (k—n) (2— =)
— L _ Ny oon—t LAY
= ooy loglk—m) (1= 1) 27 (1= 7)

= log(k—n) (1- )"

Therefore, log k—INFf (p | £) < log k—log(k—n) (1-%)". Since limy,_, o [log k—log(k—n) (1—
0 we conclude that (3) holds. This completes the proof of Proposition 2

)"]

B
ol

A natural question at this point is whether the problem of checking if a relational schema is well-
designed is decidable. Tt is not surprising that for arbitrary first-order constraints, the problem is
undecidable:

Proposition 3 The problem of verifying whether a relational schema containing first-order con-
straints is well-designed is undecidable.

Proof: Tt is known that the problem of verifying whether a first-order sentence ¢ of the form
JzVy 1 (z,y), where ¢(z,y) is an arbitrary first-order formula, is finitely satisfiable is undecidable.
Denote this decision problem by Pgy.

We will reduce Pzy to the complement of our problem. Let ¢ be a formula of the form shown
above. Assume that ¢ is defined over a relational schema {R;,...,R,} and |Z| = m > 0, and let
S be a relational schema {Uy,Us, Ry, ..., R,}, where Uy, Uy are m-ary predicates. Furthermore,
define a set of constraints 3 over S as follows:

% = {Vz (Ui(z) & Uz(2)), V& (Ur(z) = Yy (2, 9))}- (6)

It suffices to show that ¢ € Pay if and only if (S, X) is not well-designed.
(=) Assume that ¢ € P3y and let Iy be an instance of {Ry,...,R,} satisfying ¢. Define
I € inst(S, %) as follows: I(R;) = Io(R;), for every i € [1,n], and I(U;) = I(Uz) = {a}, where a is
an m-tuple in Iy such that Iy = Vj(a, 7). Let a € Nt —adom(I) and p be an arbitrary position in
I(Uy). Then I, #=Vz (Ui (z) <> Uz(z)) and, therefore, (S, X) is not well-designed by Proposition
2.
(<) Assume that ¢ ¢ P3y. Then for every nonempty instance I € inst(S, %), I(Uy) = I(Us)
= () and I(R;) # 0, for some i € [1,n]. But for every position p of a value in I(R;) (5 € [1,n]) and
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every a € Nt — adom(I), I, E ¥ since I(U;) and I(Us) are empty. We conclude that (S,X) is
well-designed by Proposition 2. O

However, integrity constraints used in database schema design are most commonly universal, that
is, of the form Vz ¢ (z), where ¢(z) is a quantifier-free formula. FDs, MVDs and JDs are universal
constraints as well as more elaborated dependencies such as equality generating dependencies and
full tuple generating dependencies [1]. For universal constraints, the problem of testing if a relational
schema is well-designed is decidable. In fact,

Proposition 4 The problem of deciding whether a schema containing only universal constraints
1s well-designed is co-NEXPTIME-complete. Furthermore, if for a fized m, each relation in S has
at most m attributes, then the problem is 115-complete.

To prove this proposition, first we have to prove a lemma. In this lemma we use the following
terminology. A first-order constraint ¢ is a X,-sentence if ¢ is of the form Q1x1Q2xs -+ Qmrm),
where (1) Q; € {V,3} (i € [1,m]); (2) ¢ is a quantifier-free formula; (3) the string of quantifiers
Q1Q2 - Q,, consists of n consecutive blocks, all quantifiers in the same block are the same and no
adjacent blocks have the same quantifiers; and (4) the first block contains existential quantifiers.
Moreover, II,,-sentences are defined analogously, but requiring that the first block contains universal
quantifiers.

Lemma 3 Let S be a relational schema and X be a set of X, U Il,-sentences over S, n > 1.

Then there ezists a relational schema S" O S and a 11, -sentence ¢ over S' such that (S,X) is
well-designed iff ¢ € . Moreover, ||¢| is O(]|(S, 2)]?).

Proof: Assume that S = {R{",..., RI"}, where m; is the arity of R; (i € [1,n]). Define a relational

schema S’ as SU{R} | i € [1,n] and j € [1,m;]} U {U'}. To define ¢, first we define sentence 1)

as the conjunction of the following formulas.
o \/ 3zy -+ Tz, Ri(z1, ..., 2m,). For some i € [1,n], relation R; is not empty.
e dz(U(z) ANVy (U(y) = x =1v)). U contains exactly one element.
e For every i € [1,n],

m;

Vivyl e 'vymifl (U(Hﬁ) — /\ _'Ri(yla ey Y1, T Yy aymifl))-
7=1

That is, the element contained in U is not contained in the active domain of relation R;, for
every i € [1,n].
e For every i € [1,n],

m;
(Vo1 -V, “Ri(z1,...,Tm,)) = (/\ Vyr - Vym, “Rij (Y1, Ym;))-
j=1

If R; is empty, then R; ; is empty, for every j € [1,m,].
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e For every i € [1,n] and every j € [1,m;],

Fuy -+ I, Ri(ur, ..., um,) —
Hxﬂm’ayl co Jyi—13Yi4 0 Fym (Ri(y1,- - yYi=1 T Yjt1s - - ’ymi)/\

—|Rm-(y1,...,yj_l,m,yj_q.l,---a?/mi)/\

Ri,j(yla e ,yj_l,x',yj+1, e aymi) A U(xl) A

m;
Vor o Vem, (7 2o Az #2)V \) oz Ay —
k=1,k#£]
(Ri(21,- -+ 2m;) < Rij(z1,...,2m;))))-

If R; is not empty, then there exists a tuple ¢ in R; and a tuple ¢’ in R; ; such that ¢ is not
in R;, t is not in R; ; and ¢, t' contain exactly the same values, except for the element in the
j-th column where t' contains a value that is in relation U. Furthermore, every other tuple
is in R; if and only if is in R; ;.

Given i € [1,n] and j € [1,m;], we denote by 3[R;/R; ;] the set of first-order constraints generated
from X by replacing every occurrence of R; by R; ;. We define sentence ¢ as follows:

n m;

P — /\ /\ Z[Ri/Ri’j]. (7)

i=1j=1

Notice that 1 is a Xo-sentence and, therefore, ¢ is a II,;1-sentence, since n > 1. To finish the
proof, we have to show that (S,Y) is well-designed if and only if ¢ € 2T,

(<) Assume that (S, ) is not well-designed. Then by Proposition 2, there exists I € inst(S, X),
p € Pos(I) and a € Nt — adom(I) such that I, = ¥. Assume that p is the position of some
element in the jo-th column of R;; (ig € [1,7], jo € [1,m;,]). Then we define an instance I' of S as
follows. For every i € [1,n], I'(R;) = I(R;), I(U) = {a} and I'(Rj, j,) = Ipa(Ri,). Furthermore,
for every i € [1,n] and j € [1,m;], with i # ig or j # jo, if I(R;) is empty, then I'(R; ;) is also
empty, else I'(R; ;) is constructed by replacing an arbitrary element in the j-th column of I(R;)
by a. Then I' = ¥, since I = ¥ and I'(R;) = I(R;) for every i € [1,n]. I' = 1 since (1) I'(R;,)
is not empty (I(R;,) is not empty); (2) I'(U) = {a} and a & adom(I); (3) for every i € [1,n], if
I'(R;) is empty, then I'(R; ;) is empty, for every j € [1,m;]; and (4) for every i € [1,n], j € [1,m;],
if I'(R;) is not empty, then I'(R; ;) differs from I'(R;) by exactly one value, which is in U. Finally,
I' ¥ X[Ri,/Riy.jo)s since I'(Rigjo) = Ipea(Riy) and Iy, = 3. We conclude that I' % ¢ and,
therefore, ¢ ¢ X+,

(=) Assume that ¢ ¢ ST. Then there exists a database instance I' of S’ ig € [1,n] and
jo € [1,m;,] such that I' =3, I' = ¢ and I' = X[R;,/Ri,.j,]. We note that I'(R;,) is not empty
(if I'(R;,) is empty, then I'(R;, j,) is empty (I’ = ) and, therefore, I'(R;, j,) = I'(R;,) and
I' = B[R;,/Riy.jo], since I' |= 3, a contradiction). Define an instance I of S as follows. For every
i € [1,n], I(R;) = I'(R;). Let a be the element in I'(U) and let p be the position in I of the
element that has to be changed to obtain I'(R;, j,) from I(R;;). Then (1) I is not empty, since
I''=4; (2) I =%, since I' = X and I(R;) = I'(R;), for every i € [1,n]; and (3) I, = X, since
I' f£ B[R;;/Riy o] Given that a € Nt — adom(I), since I' |= 1), by Proposition 2 we conclude that
(S,X) is not well-designed. O

Yo-sentences correspond to the Schonfinkel-Bernays fragment of first-order logic. It is known that
the problem of verifying if a Schonfinkel-Bernays formula has a finite model is NEXPTIME-complete
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[24] and becomes ¥f-complete if every relation has at most m attributes, where m is a fixed constant.
Thus, from Lemma 3 we obtain the following corollary and the proof of Proposition 4.

Corollary 1 The problem of deciding whether a schema containing only 31 UIl;-sentences is well-
designed belongs to co-NEXPTIME.

Proof of Proposition 4: We consider only the case of unbounded-arity relations, being the case
of fixed-arity relations similar. The membership part of the proposition is a particular case of
Corollary 1. The hardness part of the proposition follows from the following observation. If in the
reduction of Proposition 3 the formula ¢ is of the form 3zVy(z,y), where 1 is quantifier-free,
then the set of constraints ¥ defined in (6) is universal. Thus, the same reduction of Proposition 3
shows that the problem of deciding whether a Ys-sentence is finitely satisfiable is reducible to the
problem of deciding whether a schema containing only universal constraints is well-designed. [

For specific kinds of constraints, e.g., FDs, MVDs, lower complexity bounds will follow from the
results in the next section.

4.2 Justification of Relational Normal Forms

We now apply the criterion of being well-designed to various relational normal forms. We show that
all of them lead to well-designed specifications, and some precisely characterize the well-designed
specifications that can be obtained with a class of constraints.

We start by finding constraints that always give rise to well-designed schemas. Recall that a
typed unirelational equality generating dependency [1] is a constraint of the form:

V(R(Z1) A+ ANR(Zp) =z =1),

where V represents the universal closure of a formula, z,y C Z1U- - -UZ,, and there is an assignment
of variables to columns such that each variable occurs only in one column and each equality atom
involves a pair of variables assigned to the same column. An extended key is a typed unirelational
equality generating dependency of the form:

4 (R(fl) VANRERWA R(im) — I; = ij),
where i,j € [1,m]. Note that every key is an extended key.
Proposition 5 If S is a schema and ¥ a set of extended keys over S, then (S, %) is well-designed.

Before proving this proposition we introduce one definition that will be used in several proofs. Let
I € inst(S,%), p € Pos(I), a € [1,k] and a € Q(I,p). Given a substitution o : a — [1,k] and
R € S, we say that a tuple t' € 0(I(,3))(R) is generated by a tuple ¢ € I(R) by means of a tuple
t* € Iy if o(t*) = t' and ¢* can be obtained from ¢ by replacing each value in it by the element
of (a,a) in the same position. We say t' € o([(,4))(R) is generated by a tuple ¢t € I(R) if it is
generated by ¢ by means of some t* € I(, 5).

Proof of Proposition 5: To prove the proposition, we now use part 2) of Proposition 2. Let
I € inst(S, ), p € Pos(I) and a € N* — adom(I). We have to show that I, = 3.

Assume to the contrary that I, & 3. Then there exists R € S and an extended key
V(R(Z1) A+ ANR(Tm) = Z; = T;) € ¥ such that I, = V(R(z1) A+ A R(Zy) = Z; = z;). Thus,
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there exists a substitution p' : z; U --- Uz, — [1,k] such that p'(z;) = ¢] and t] € I, .(R), for
every | € [1,m], and t{ # t}. Define a substitution p: Z1 U--- UZ,, — [1,k] as follows. Let b be the
value in the p-th position of I. Then

o(a) = {p’(m) p(z) #a

b Otherwise
Let p(Z;) = t;, for every [ € [1,n]. It is straightforward to verify that ¢/, ..., ¢/, are generated from
t1, ..., tn, respectively. Given that I |= X, ¢; = t; and, therefore, t; = ¢’. This contradiction proves
the proposition. O

Corollary 2 A relational specification (S,X) in DK/NF is well-designed.

In the rest of this section, we also denote join dependencies by first-order sentences. More precisely,
a join dependency over a relation R is a first-order sentence of the form:

V(R(Z1) Ao A R(Zm) = R(T)),

where V represents the universal closure of a formula, x C z; U --- U z,,, every variable not in z
occurs in precisely one Z; (i € [1,m]) and there is an assignment of variables to columns such that
each variable occurs only in one column. For example, join dependency <[AB, BC] over a relation
R(A, B, C) can be denoted by

V:EVszVu1Vu2 (R(:E, Y, ul) N R(“?a Y, Z) - R(ZE, Y, Z))
Next, we characterize well-designed schemas with FDs and JDs.

Theorem 2 Let 3 be a set of FDs and JDs over a relational schema S. (S,X) is well-designed if
and only if for every R € S and every nontrivial join dependency Y(R(Z1) A --- AN R(Zy,) — R(Z))
in X7, there exists M C {1,...,m} such that:

1. :EQUZGM:EZ
2. For everyi,j € M,Y(R(Z1) A+ NR(Zm) — % = ;) € £7.

In the proof of Theorem 2 we shall use chase for FDs and JDs [21] which we now briefly review
for the sake of completeness. A tableau is a set of rows with one column for each attribute in
some universe U. The rows are composed of distinguished and non-distinguished variables. Each
variable may appear in only one column and only one distinguished variable may appear in one
column. Let the non-distinguished variables be z1, ..., z,,. The chase of T" with respect to a set X
of FDs and JDs is based on the successive application of the following two rules:

FD rule: Let o be a functional dependency in ¥ of the form X — A, where A is a single
attribute, and let u,v € T be such that u[X] = v[X] and u[A] # v[A]. The result of
applying the FD o to T is a new tableau T" defined as follows. If one of the variables
u[A], v[A] is distinguished, then all the occurrences of the other one are renamed to
that variable. If both are non-distinguished, then all the occurrences of the variable
with the larger subscript are renamed to the variable with the smaller subscript.

JD rule: Let o be a join dependency of the form >[X1,..., X,,] and let u be a tuple not in
T. If there are uy,...,u, € T such that u;[X;] = u[X;] for every i € [1,n], then the
result of applying the JD o over T is T'U {u}.
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A chasing sequence of T by X is a sequence of tableaux T' = Ty, Ty, Ty, . . ., such that for each 7 > 0,
Ti+1 is the result of applying some dependency in ¥ to T;. It is known that any such sequence
terminate and the resulting tableau does not depend on a particular sequence [21]; we denote this
tableau by Chase(T, ).

Every application of either the “FD rule” or the “JD rule” naturally defines a substitution of
variables by variables (in the latter, this substitution is the identity). The substitution defined by
the chase is obtained as the composition of the substitutions for each step of the chase. This sub-
stitution enables us to map each original variable (tuple) in T to a variable (tuple) in Chase(T, ).

Given a set of FDs and JDs ¥ U {¢}, it was shown in [21] that the chase can be used for
checking whether ¥ |= 0. The idea is to construct a tableau Ty, compute Chase(T,, %) and verify
whether some condition is satisfied. If o is an FD X — A, then T, has two rows: one contains only
distinguished variables, and the other one contains distinguished variables in all the X-columns
and non-distinguished variables elsewhere. Then ¥ = o iff Chase(T,, ) has only one distinguished
variable in the A-column [21]. Moreover, if o is a JD [X1, ..., X,,], then T, has n rows. For every
i € [1,n], the i-th row contains distinguished variables in the Xj;-columns and non-distinguished
variables in the remaining columns. Furthermore, every non-distinguished variable in T, appears
exactly once. Then ¥ |= o iff Chase(T,,3) contains a row of all distinguished variables [21].

Chase, and all the results shown above, can be generalized in a natural manner to the case of
more expressive constraints like typed equality generating dependencies (see [1]).

We now move to the proof of Theorem 2. We need two lemmas first.

Lemma 4 Let 3 be a set of FDs and JDs over a relational schema S and R € S. Assume that %
contains a JD Y(R(z1) A -+ A R(Zm) — R(x)) such that V(R(z1) A -+ A R(Zp,) — = =1;) ¢ BT,
for every i € [1,m]. Then there exists I € inst(S,X) and p € Pos(I) such that INF;(p | ) < 1.

Proof: Let T be a tableau containing tuples {Zi,...,Z,}, and let z be the distinguished
variables. Let p be a one-to-one function with the domain %y U --- U Z,;, and the range contained
in N*. Define I = p(Chase(T,%)). Assume that 6 is the composition of the substitutions
used in the chase. Let t; = p(6(Z;)), for every j € [I,m], and t = p(0(Z)). Given that
V(R(Z1) A+ NR(Zp) — & = z;) ¢ TF, for every i € [1,m], we conclude that ¢ # t;, for every
J € [1,m]. Let A € sort(R), p be the position of ¢[A] in I and k such that adom(I) C [1,k]. Since
I = ¥ and I contains ty, ..., ty, the JD V(R(Z1) A--- A R(Zy) — R(Z)) € ¥ implies that I must
contain £. Thus, changing any value in ¢ generates an instance that does not satisfy X. Hence, for
every a € [1,k] — {t[A]}, P(a | ag) = 0, where ag is the tuple in Q(I,p) containing no variables.
Applying Lemma 2 we conclude that H(BY(I,p) | A(I,p))/logk < c for some constant ¢ < 1, for
all sufficiently large k, and thus by Lemma 1, INF;(p | &) = limy_,o INF¥(p | 2)/logk < 1. O

Given a set ¥ of FDs and JDs over a relational schema S and a JD ¢ € ¥ of the form V(R(Z1) A
-+ ANR(Zp,) — R(Z)), define an equivalence relation ~, on tuples of variables as follows. For every
i,j € [1,m], Zj ~p T EV(R(T1) A+ AR(Zp) — T; = Tj) € L. Let [i], be the equivalence class of
z;, for every i € [1,m], and let var([],) be the set of variables contained in all the tuples z; € [i],.

Lemma 5 Let ¥ be a set of FDs and JDs over a relational schema S and R € S. Assume that
¥ contains a JD ¢ of the form Y(R(Z1) A -+ AN R(Z,,) — R(Z)) such that Z € var([i],), for every
i € [1,m]. Then there exists I € inst(S,%) and p € Pos(I) such that INF;(p | £) < 1.

Proof: It Y(R(Z1) A+ AN R(ZTp) — T = 7;) € T, for every ¢ € [1,m], then by Lemma 4 there
exists I € inst(S,X) and p € Pos(I) such that INF;(p | £) < 1. Thus, we may assume that there
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exists ¢ € [1,m] such that V(R(z1) A+ A R(Z;,) — T = z;) € 7. By the hypothesis, there exists
l € [1,|z|] and a variable z in the [-th column of Z such that = ¢ var([i],). Let u be the variable
in the [-th column of z; and U; the set of variables in the [-column of all the tuples z; (j € [1,m])
such that z; ~, 7;.

Let T be a tableau {z1,..., %}, with z; as distinguished variables. In Chase(T,X), all the
tuples in the equivalence class of Z; (and no other) are identified with this tuple. Denote the [-th
component of tuple z; by i"g (and similarly for other tuples).

Let p be a one-to-one function with the domain Z; U - -+ U Z,, and the range contained in NT
and I = p(Chase(T,Y)). Assume that 6 is the composition of the substitutions used in the chase.
Let t; = p(0(Z;)) be a tuple in I, for every j € [1,m]. Note that p(6(Z;)) = p(Z;) since Z; is a tuple
of distinguished variables. Additionally, since I satisfies V(R(Z1) A -+ A R(Zy,) — Z = T;), it must
be the case that p(0(z)) = p(z;).

Let p be the position in I of té. The value in this position is p(u). We will show that for every
a€[1,k] —{p(u)}, P(a|ap) =0, where ag is a tuple in Q(/,p) containing no variables.

Denote by t;- the tuple of I, 5,) that corresponds to ¢; in I. Note that t; = t; for all j such
that z; is not in [i],. When z; is in [i]y, #; differs from #; only in that the value in its [-th
column is a rather than p(u). Assume that I(4,a0) satisfies 3. Then it satisfies, in particular,
V(R(z1) A+ AN R(ZTm) — R(z)). Recall that in this JD, every variable not in z occurs in a unique
z;. We give a substitution from the variable tuples Zi, ..., Zy, to the tuples ¢}, ..., ¢, respectively.
Let p': Z1 U---UZ;, — [1, k] be a substitution defined as follows. For every y € 1 U -+ U Ty,

a otherwise.

We claim that for every j € [1,m], p'(z;) = t]. Clearly, we only need to consider the I-th column.
Indeed, if Z; is in [y, then t;- is tj, except in the /-column, where ¢; contains the value a, since
g‘cé is in U;. Thus, p'(7;) = t. If Z; is not in [i],, then a_cé is either z, or a variable that occurs
only in z;. In either case, it is not in U;. Thus, p'(z;) = #;. Since I(,3,) is assumed to satisfy
JD Y(R(Z1) A -+ AN R(Zy) — R(Z)), it must contain p'(Z). However, since z is not in U, p/(Z) =
p(0(z)) = p(z;) = t; in I, which is not in I(, 5., a contradiction.

We conclude that for every a € [1,k] — {p(u)}, P(a | @) = 0. Hence, by Lemma 2,
INFE(p | 22)/logk < c for some constant ¢ < 1, for all sufficiently large &, and then by Lemma 1,
INF7(p | £) = limg_,o0 INF¥(p | £)/log k < 1. This proves the lemma. O

Theorem 2 is a corollary of Proposition 5 and Lemma 5. We note that this theorem justifies various
normal forms proposed for JDs and FDs [14, 29].

Corollary 3 Let X be a set of FDs and JDs over a relational schema S. If (S,X) is in PJ/NF or
SNFR, then it is well-designed.

However, neither of these normal forms characterizes precisely the notion of being well-defined:

Proposition 6 There exists a schema S and a set of JDs and FDs ¥ such that (S,X) is well-
designed, but it violates all of the following: DK/NF, PJ/NF, 5NFR.

Proof: Let S ={R(A,B,C)} and ¥ = {AB — C, AC — B, ~<[AB, AC, BC]}. This specification
is not in DK/NF and PJ/NF since the set of keys implied by ¥ is {AB — ABC, AC — ABC,
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ABC — ABC'} and this set does not imply <[AB, AC, BC]. Furthermore, this specification is not
in 5NFR since <[AB, AC, BC] is a strong-reduced join dependency and BC is not a key in 3.
Join dependency <[AB, AC, BC] corresponds to the following first order sentence:

VaVyVzVuiVusVus (R(z, y,u1) A R(x,ug, z) A R(us,y,z) — R(z,y,z2)).
From Theorem 2, we conclude that (S,X) is well designed since ¥ implies the sentence
VaVyVzVuiVusVus(R(x, y, u1) A R(x,ug,2z) A R(us,y,z) =y =us Az =uy).

and (Hﬁ,y,Z) c (Iayaul) U (HS,UQ,Z). U

By restricting Theorem 2 to the case of specifications containing only FDs and MVDs (or only
FDs), we obtain the equivalence between well-designed databases and 4NF (respectively, BCNF).

Theorem 3 Let 3 be a set of integrity constraints over a relational schema S.

1. If ¥ contains only FDs and MVDs, then (S,X) is well-designed if and only if it is in 4NF.
2. If & contains only FDs, then (S, %) is well-designed if and only if it is in BCNF.

5 Normalizing XML data

In this section we give an overview of the XML normal form called XNF, and show that the
notion of being well-designed straightforwardly extends from relations to XML. Furthermore, if all
constraints are specified as functional dependencies, this notion precisely characterizes XNF.

5.1 Overview of XML Constraints and Normalization
5.1.1 DTDs and XML trees

We shall use a somewhat simplified model of XML trees in order to keep the notation simple. We
assume a countably infinite set of labels L, a countably infinite set of attributes A (we shall use
the notation @Iy, @Iy, etc for attributes to distinguish them from labels), and a countably infinite
set V of values of attributes. Furthermore, we do not consider PCDATA elements in XML trees since
they can always be represented by attributes.

A DTD (Document Type Definition) D is a 4-tuple (Lo, P, R,r) where Ly is a finite subset of
L, P is a set of rules a — P, for each a € Ly, where P, is a regular expression over Ly — {r}, R
assigns to each a € Lg a finite subset of A (possibly empty; R(a) is the set of attributes of a), and
r € Lo (the root).

Example 5: The DTD below is a part of DBLP [11] that stores conference data.

<!ELEMENT db (confx*)>
<!ELEMENT conf (issue+)>
<!ATTLIST conf
title CDATA #REQUIRED>
<!ELEMENT issue (inproceedings+)>
<!ELEMENT inproceedings EMPTY>
<!ATTLIST inproceedings
author CDATA #REQUIRED
title CDATA #REQUIRED
pages CDATA #REQUIRED
year CDATA #REQUIRED>
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This DTD is represented as (Lo, P, R, ), where r = db, Ly = {db, conf, issue, inproceedings }, P =
{db — conf*, conf — issue™, issue — inproceedings™, inproceedings — €}, R(conf) = {Qtitle},
R(inproceedings) = {Q@author, Qtitle, Qpages, Qyear} and R(db) = R(issue) = . O

An XML tree is a finite rooted directed tree T' = (N, FE) where N is the set of nodes and F
is the set of edges, together with the labeling function A : N — L and partial attribute value
functions pq; : N — V for each @[ € A. We furthermore assume that for every node z in N, its
children z1, ..., z, are ordered and pgq;(z) is defined for a finite set of attributes @/. We say that
T conforms to DTD D = (Lgy, P, R, r), written as T' |= D, if the root of T is labeled r, for every
z € N with A(z) = a, the word A(z1)--- A(z,) that consists of the labels of its children belongs
to the language denoted by P,, and for every 2 € N with A(xz) = a, Q] € R(a) if and only if the
function pq, is defined on z (and thus provides the value of attribute QI).

5.1.2 Functional Dependencies for XML

To present a functional dependency language for XML we need to introduce some terminology.
Recall that L and A are countably infinite sets of labels and attributes, respectively. Then an
element path q is a word in L*, and an attribute path is a word of the form ¢.@l, where ¢ € L* and
@l € A. An element path ¢ is consistent with a DTD D if there is a tree T' = D that contains a
node reachable by ¢ (in particular, all such paths must have r as the first letter); if in addition the
nodes reachable by ¢ have attribute @[, then the attribute path ¢.@Ql is consistent with D. The set
of all paths (element or attribute) consistent with D is denoted by paths(D). This set is finite for
a non-recursive D and infinite if D is recursive.

A functional dependency over DTD D [3] is an expression of the form {qi,...,q,} — ¢, where
n>1and q,q,...,q, € paths(D). To define the notion of satisfaction for FDs, we use a relational
representation of XML trees from [3]. Given T' |= D, a tree tuple in T' is a mapping t : paths(D) —
N UV U{L} such that if ¢ is an element path whose last letter is a and ¢(q) # L, then

e i(q) € N and its label, \(¢(q)), is a;
e if ¢’ is a prefix of ¢, then #(¢') # L and the node £(¢') lies on the path from the root to #(q)
in T,
e if @/ is defined for #(q) and its value is v € V', then t(q.Ql) = v.
Intuitively, a tree tuple assigns nodes or attribute values or nulls (L) to paths in a consistent
manner. A tree tuple is maximal if it cannot be extended to another one by changing some nulls
to values from N U V. The set of maximal tree tuples is denoted by tuples,(T). Now we say that

FD {qi,...,qn} — qis true in T if for any ¢,y € tuples,(T'), whenever t1(q;) = ta(g;) # L for all
i < n, then t1(q) = t2(q) holds.

Example 6: Let D be the DTD from Example 5. Among the set X of FDs over this DTD are:

db.conf .Qtitle — db.conf,

db.conf .issue — db.conf .issue.inproceedings.Qyear.

The first functional dependency specifies that two distinct conferences must have distinct titles.
The second one specifies that any two inproceedings children of the same issue must have the same
value of @year. O
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5.1.3 XNF: An XML Normal Form.

Suppose we are given a DTD D and a set 3 of FDs over D. The set of all FDs implied by (D, %)
is denoted by (D,X)", this is, (D,%)" is the set of all FD X — Y over D such that for every
XML tree T conforming to D and satisfying 3, T = X — Y. An FD is called trivial if it belongs
to (D,0)", that is, it is implied by the DTD alone. For example, ¢ — r, where r is the root, or
q — q.QI, are trivial FDs.

We say that (D,X) is in XML Normal Form (XNF) [3] if for any nontrivial FD X — ¢.@[ in
(D,¥)", the FD X — ¢ is in (D,X)" as well. Intuitively, a violation of XNF means that there is
some redundancy in the document: we may have many nodes reachable by path ¢ but all of them
will have the same value of attribute Q[ (provided they agree on X).

Example 7: The DBLP example 5 seen earlier may contain redundant information: year is stored
multiple times for the same issue of a conference. This XML specification is not in XNF since

db.conf .issue — db.conf .issue.inproceedings

is not in (D,¥)*. This suggests making @year an attribute of issue, and indeed, such a revised
specification can easily be shown to be in XNF. O

5.2 Well-designed XML data

We do not need to introduce a new notion of being well-designed specifically for XML: the definition
that we formulated in Section 4 for relational data will apply. We only have to define the notion
of positions in a tree, and then reuse the relational definition. For relational databases, positions
correspond to the “shape” of relations, and each position contains a value. Likewise, for XML,
positions will correspond to the shape (that is more complex, since documents are modeled as
trees), and they must have values associated with them. Consequently, we formally define the set
of positions Pos(T) in a tree T = (N, E) as {(z,@Ql) | x € N, @Ql € R(A(z))}. As before, we
assume that there is an enumeration of positions (a bijection between Pos(T) and {1,...,n} where
n = |Pos(T)|) and we shall associate positions with their numbers in the enumeration. We define
adom(T) as the set of all values of attributes in 7' and T, , as an XML tree constructed from T
by replacing the value in position p by a.

As in the relational case, we take the domain of values V of the attributes to be N*. Let 2
be a set of FDs over a DTD D and k > 0. Define inst(D,3) as the set of all XML trees that
conform to D and satisfy ¥ and insti(D,X) as its restriction to trees T' with adom(T) C [1,k].
Now fix T' € insty(D,X) and p € Pos(T). With the above definitions, we define the probability
spaces A(T,p) and B%(T,p) exactly as we defined A(I,p) and B&(I,p) for a relational instance I.
That is, Q(T'.p) is the set of all tuples a of the form (ay, ..., ap—1, apy1, ..., ay) such that every
a; is either a variable, or the value 71" has in the corresponding position, SAT@(T(a,a)) as the set of
all possible ways to assign values from [1, k] to variables in a that result in a tree satisfying X, and
the rest of the definition repeats the relational case one verbatim, substituting 7" for I.

We use the above definitions to define INF4(p | ©) as the entropy of BE(T, p) given A(T, p):

Inek (p | 2) € H(BE(T,p) | AT, p)) .

As in the relational case, we can show that the limit

INFE(p | &
e IR | %)
k— 00 log k

exists, and we denote it by INFr(p | ¥). Following the relational case, we introduce
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Definition 3 An XML specification (D,X) is well-designed if for every T € inst(D,X) and every
p € Pos(T), INFp(p | ) = 1.

Note that the information-theoretic definition of well-designed schema presented in Section 4 for
relational data proved to be extremely robust, as it extended straightforwardly to a different data
model: we only needed a new definition of Pos(T') to use in place of Pos(I), and Pos(T) is simply an
enumeration of all the places in a document where attribute values occur. As in the relational case,
it is possible to show that well-designed XML and XNF coincide. Furthermore, it is also possible
to establish a useful structural criterion for INFy(p | ¥) = 1, namely that an XML specification
(D,Y) is well-designed if and only if one position of an arbitrary T € inst(D,3) can always be
assigned a fresh value.

Theorem 4 Let D be a DTD and X a set of FDs over D. Then the following are equivalent.
1) (D,%) is well-designed.
2) (D,X%) is in XNF.
3) For every T € inst(D,X), p € Pos(T) and a € Nt — adom(T), Tpeq E 2.

The proof of the theorem follows rather closely the proof of Proposition 2, by replacing relational
concepts by their XML counterparts.

Proof of Theorem 4: We will prove the chain of implications 1) = 2) = 3) = 1).

1) = 2) Assume that (D, %) is not in XNF. We will show that there exists T' € inst(D, >) and
p € Pos(T) such that INFp(p | ¥) < 1.

Given that (D,Y) is not in XNF, there exists a nontrivial FD X — ¢.@Ql € (D,%)" such
that X — ¢ € (D,¥)*. Thus, there is T € inst(D,Y) containing tree tuples t1,¢5 such that
t1(q") = ta(q’) and t1(¢') # L, for every ¢’ € X, and t1(q) # t2(q). We may assume that ¢;(q) # L
and to(q) # L (if t1(q) = L or ta(q) = L, then #1(q.Ql) # t3(q.@Ql), which would contradict
T = %). Let x = t1(q), p be the position of (z,@Ql) in T and a = ¢1(¢q.@[). Let @y be the vector in
Q(T,p) containing no variables. Given that ¢1(q) # t2(¢q) and none of these values is L, for every
b€ [L,k] —{a}, Tpa,) # . Thus, for every b € [1,k] — {a}, P(b|ag) = 0. Now a straightforward
application of Lemma 2 implies

INFr(p | 2) = kILIQOINF’;,(p\E)/logk < 1.

This concludes the proof.

2) = 3) Let (D,X) be an XML specification in XNF, T' € inst(D,X), p € Pos(T) and a €
N* — adom(T). We prove that T, , = %.

Assume, to the contrary, that T,., & ¥. Then there exists a FD X — ¢ € ¥ such that
Tpea = X — q. Thus, there exists ¢}, t5 € tuples p(Tpq) such that ¢} (q") = t5(¢') and ¢} (¢') # L,
for every ¢’ € X, and t(q) # t4(q). Assume that these tuples were generated from tuples t1,t9 €
tuples p(T). Given that a € N — adom(T), t1(¢') = t2(¢') and t1(¢') # L, for every ¢’ € X, and,
therefore, ¢1(q) = t2(q), since T = X. If ¢ is an element path, then ¢} (q) = t1(q) and t5(q) = t2(q),
since Ty, is constructed from T by modifying only the values of attributes. Thus, #|(q) = t5(q),
a contradiction. Assume that ¢ is an attribute path of the form ¢;.@Q[. In this case, X — ¢.@Q]
is a nontrivial FD in ¥ and, therefore, X — ¢; € (D, X)", since (D,X) is in XNF. We conclude
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that t1(q1) = t2(q1). Given that ¢; is an element path, as in the previous case we conclude that
t1(q1) = t(q1). Hence, t|(q1.Ql) = ¢, (g1.Ql), again a contradiction.

3) = 1) Let T € inst(D, %) and p € Pos(T). We have to prove that INF7(p | £) = 1. To show
this, it suffices to prove that
INF}(p | )
k—oo  logk

Let n = |Pos(T)| and k > 2n such that T' € insty(D,X). If a € Q(T,p) and var(a) is the set of
variables mentioned in a, then for every a € [1,k] — adom(T),

> L (8)

SATE(Tiamy)| > (k — 2n)/ver(@)

since by hypothesis one can replace values in positions of a one by one, provided that each position
gets a fresh value. Thus, given that 37, |SATk( @) < k‘”‘“"( a)l+1, for every a € [1,k] —
adom(T') and every a € Q(T,p), we have:

_ (k — 2n)lver _1
Plala) 2 W =

2n

-

ylvar@) (9)

Functional dependencies are generic constraints. Thus, for every a,b € [1, k] — adom(T) and every
a € QT,p), Pla|a) = P(b|a). Hence, for every a € [1,k] — adom(T) and every a € Q(T,p):
1 1

P a) < < .
(afa) < — ladom(T)| = k—n

(10)

In order to prove (8), we need to establish a lower bound for INF&(p | ©). We do this by using (9)
and (10) as follows: Given the term P(a | @) log P( 7y We use (9) and (10) to replace P(a | @) and

log P( B by smaller terms, respectively. More precisely,

INek(p | B) = z:<Pa)§:PM|@bgﬂ£EQ
a P

a€[1,k]

1 1 21 par
> g Y X =@ gk =)
a€[1,k]—adom(T) acQ(T,p)
n—1
1 n—1 2n
= g7 loglh—n) £ (Z )ﬂ—%ﬁ
a€[1,k]—adom(I) 1=0
B 1 2n no1
= S log(k — n) A ((1—?)4-1)
a€[l,k]—adom(I)
> oy loglk—n) 7 (k—m) (2 2"
= guo1 0BT RSN k
_ L o _ﬁ n—1 _E n—1
= oo log(k —n) (1 k) 2 (1 k)

zl%w—nﬂ1—%ﬂ

INFA (p|S log(k— . . log(k— .
Therefore, NFlgg(f]j ) > Ogl;(()gkn)(l — 7). Since limy_, Ogl(()gk")(l - )" =1, (8) follows. This

concludes the proof. O

23



The theory of XML constraints and normal forms is not nearly as advanced as its relational coun-
terparts, but we demonstrated here that the definition of well-designed schemas works well for the
existing normal form based on FDs; thus, it can be used to test other design criteria for XML when
they are proposed.

6 Normalization algorithms

We now show how the information-theoretic measure of Section 4 can be used for reasoning about
normalization algorithms at the instance level. For this section, we assume that X is a set of FDs,
both for the relational and the XML cases. The results shown here state that after each step of a
decomposition algorithm, the amount of information in each position does not decrease.

6.1 Relational Databases

Let I' be the result of applying one step of a normalization algorithm to I. In order to compare
the amount of information in these instances, we need to show how to associate positions in [
and I'. Since we only consider here functional dependencies, we deal with BCNF, and standard
BCNF decomposition algorithms use steps of the following kind: pick a relation R with the set
of attributes W, and let W be the disjoint union of X,Y,Z, such that X — Y € 7. Then an
instance I = I(R) of R gets decomposed into Ixy = wxy(I) and Ixyz = wxz(I), with the sets of
FDs Y xy and Yxz, where ¥y stands for {C — D € ¥* | CD C U C W}. This decomposition
gives rise to two partial maps wyy : Pos(I) — Pos(Ixy) and wxz : Pos(I) — Pos(Ixyz). If pis the
position of ¢[A] for some A € XY, then wxy (p) is defined, and equals the position of 7wxy (¢)[4] in
Ixy; the mapping 7xz is defined analogously. Note that mxy and mxz can map different positions
in I to the same position of Ixy or Ix.

We now show that the amount of information in each position does not decrease in the normal-
ization process.

Theorem 5 Let (X,Y, Z) partition the attributes of R, and let X —Y € X, Let I € inst(R,Y)
and p € Pos(I). IfU is either XY or XZ and wy is defined on p, then INFr(p | ) < INFr, (77 (p) |

Yu).
To prove this theorem, first we need to prove two lemmas.

Lemma 6 Let ¥ be a set of FDs over a relational schema S, I € inst(S,X), p € Pos(I) and

a € QI,p). Then limy_, o @ >acp Pla | @)log % is either 0 or 1.

Proof: Given in Appendix A.2. O

Let R be a relation schema such that sort(R) = X UY U Z, where X, Y and Z are nonempty
pairwise disjoint sets of attributes. Let ¥ be a set of FDs over R and I € inst(R,Y). Assume that
X =Y € ¥, Define R as a relation schema such that sort(R') = X UY, ¥/ = Xxy, and let I’
be mxy (I). Note that I' € inst(R',X'). We use Lemma, 6 to show the following.

Lemma 7 Let tg € I, t) = wxy(to) and A € X UY . If to[A] is the p-th element in I and ty[A] is
the p'-th element in I', then INF;(p | ) < INFp(p' | X).
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Proof: Assume that ||I|| =n, XUY = {A;y,..., A} and {¢{[X] | t € I} contains [ tuples {¢1,...,¢}.
For every i € [1,1], choose a tuple t; € I such that ¢;[X] = ¢;. Without loss of generality, assume
that to = #;, A = A, and #;[A;] is the ((¢ — 1)m + j)-th element in I. Thus, ¢;[A;] is the first
element in I, t;[Ay,] is the m-th element in I and ¢;[A,,] is the Im-th element in I. We note that
p=Im.

For every a = (a1,...,0p—1,0p41,-..,0n) € Q(I,p), define a* = (a1,...,ap—1,0p41,...,0p),
that is, a* is generated from a by replacing each a; (i € [p+ 1,n]) by a variable. Furthermore,

define Q*(I,p) as {a € Q(I,p) | for every i € [p+ 1,n], a; is a variable}. It is easy to see that

if g o0 557 Doaepp P | @)10g pryzy = 1, then limy oo ooz Yaepnp Pla | @*)log prmey = L.

)
Thus, by Lemma 6, for every a € Q(I,p):

1 1 1
Pla|a)l < i Pla|a*)log ————.
b oo log k D, Plala) ©Pala) = kseologk 2. (aa®)log 5T
a€1,k] a€ll,k]
Therefore,
INFy(p | ®) = lim — LS pla)a)log =—
P - k‘iﬂologkaew on—1 G B Ta)
D) a€[l,k]
1 1
- Pla|a)l
1 >, Jim log k D Plala)log Pla|a)
acQ(1,p) a€[1,k]
1 1 1
< n—p 1 P 1
= et 2. ioc log k D Plaja)log (@] a)
ac0* (I,p) a€[LH]
1 1 1
- I Pla|a)l . 11
o1 >, Jim log k D Plaja)log Plaa) (11)
aeQ* (I p) a€[LH]

Observe that ||I'|| = Im. Without loss of generality assume that p’ = Im = p. Then for every

a = (ai,...,ap—1,0pt1,...,0y) € QI,p), define @' € Q(I',p') as (a1,...,apy_1). As in the case
of a*, it is easy to see that limy @ > acp g Pla | a) log% < limg 00 @ > acp Pla |

a') log W. Particularly, this property holds for every a € Q*(I,p). Thus, by (11) we conclude
that
N [3) = lim — 3 = 3" P(a]a)log ——
! koo log k 201 P(a | a)
acQ(I' p') a€[1,k]
= Y w3 Plela)ls g
= 11m a | a
=1 b oo log K ¢ Plaa)
acQ(I' p') a€[1,k]
> LS gim Y Pla]a)log——
1m a | a
= 1 F oo log k ¢ Plaa)
a€Q*(I,p) a€[L,k]
> INrFr(p | X).
]

Proof of Theorem 5: First, we notice that adding new relations and constraints over them to a
schema does not affect the information content of the old positions. Namely, let S = {R1,..., Ry}
be a relational schema, ¥ = X; U--- U X,, be a set of FDs over S such that 3; is a set of
FDs over R; (i € [1,m]), S" = {R1}, ¥ = 3y, I € inst(S,X) and I' € inst(S’,¥') such that
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I' = I(R;). Furthermore, let p be a position in I(R;) and p’ the corresponding position in I'. Then
INF;(p | ¥) = INFp(p' | ¥'). The theorem now is a direct consequence of this fact and Lemma 7. O

A decomposition algorithm is effective in I if for one of its basic steps, and for some p, the inequality
in Theorem 5 is strict: that is, the amount of information increases. This notion leads to another
characterization of BCNF.

Proposition 7 (R,X) is in BONF if and only if no decomposition algorithm is effective in (R,Y).

Proof: (=) If (R,X) is in BCNF, then for every I € inst(R,%) and p € Pos(I), INF;(p | ¥) = 1.
Thus, no decomposition algorithm can be effective on any I € inst(R, X).

(<) Assume that (R,X) is not in BCNF. We will show that there exists a decomposition
algorithm effective in (R, Y).

Given that (R,Y) is not in BCNF, we can find nonempty pairwise disjoint sets of attributes
X, Y, Z such that X UY UZ = sort(R), X - Y € ", X is not a key and (XY, Xxy) is in
BCNF. Let I be a database instance of R containing two tuples t1,to defined as follows. For every
A € sort(R), t1[A] = 1. If X — A € IF, then t3[A] = 1, otherwise t3[A] = 2. It is easy to see
that I € inst(R,Y). Furthermore, for every A € Y and p € Pos(I) such that t;[A] (or to[A]) is
the p-th element in I, INF;(p | ¥) < 1 and INF7,., (mxy(p) | Exy) = 1 (since (XY, Xxy) is in
BCNF). Therefore, INF;(p | £) < INF7,, (7xy(p) | £xyv). Thus, a decomposition algorithm that
decomposes I into Ixy and Ixy is effective in (R, X). O

6.2 XML data

We now treat the XML case. We shall prove a result similar to Theorem 5. However, to state
the result, we first need to review the normalization algorithm for XML data proposed in [3], and
explain how each step of the algorithm induces a mapping between positions in two XML trees.
Throughout the section, we assume that the DTDs are non-recursive and that all FDs contain
at most one element path on the left-hand side. Furthermore, for presenting the algorithm and
proving the result, we also make the following assumption: if X — ¢.@Q[ is an FD that causes a
violation of XNF, then every time that ¢.@Q[ is not null, every path in X is not null (it is shown in
[4] how to eliminate this assumption).

To present the algorithm proposed in [3] we need to introduce some terminology. Given a DTD
D and a set of FDs X, a nontrivial FD X — ¢.@[ is called anomalous, over (D, ), if it violates
XNF; that is, X — ¢.@Ql € (D,X)" but X — ¢ ¢ (D,¥)". The algorithm eliminates anomalous
functional dependencies by using two basic steps: moving an attribute, and creating a new element

type.

Moving attributes. Let D = (Lo, P, R, r) be a DTD and ¥ a set of FDs over D. Assume that
(D,X) contains an anomalous FD ¢’ — ¢.@[, where ¢’ is an element path. For instance, the DBLP
database shown in example 7 contains an anomalous FD of this form:

db.conf .issue — db.conf .issue.inproceedings.Qyear. (12)

To eliminate the anomalous FD, we move the attribute @/ from the set of attributes of the last
element a of ¢ to the set of attributes of the last element a’ of ¢’, as shown in Figure 4 (a). For
instance, to eliminate the anomalous functional dependency (12) we move the attribute @year from
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(a) Moving an attribute i 3 ‘

(b) Creating a new element type

Figure 4: Two transformations of the XML normalization algorithm.

the set of attributes of inproceedings to the set of attributes of issue. Formally, the new DTD
D[q.Ql := ¢'.@m], where @m is an attribute, is (Lo, P, R', r), where R'(a') = R(a')U{@m}, R'(a)
= R(a) — {@Q[} and R'(b) = R(b) for each b € Ly — {a,a’}.

After transforming D into a new DTD DJ[q.@Q[ := ¢'.@Qm], a new set of functional dependencies
is generated. Formally, the set of FDs X[q.Ql := ¢'.@Qm] over D[q.Ql := ¢'.@Qm)] consists of all FDs
X —»Y e (D,%)" with X UY C paths(D[q.Ql := ¢'.@m)]). Observe that the new set of FDs does
not include the functional dependency g — ¢'.@I.

Creating new element types. Let D = (Lg, P, R, r) be a DTD and ¥ a set of FDs over
D. Assume that (D,X) contains an anomalous FD {¢',¢1.@Ql4,...,¢,.Ql,} — ¢.Ql, where ¢’ is
an element path and n > 1. For example, consider the following DTD that describes a database
containing courses in different universities:

<!ELEMENT db (univ*)>
<!ELEMENT univ (coursex*)>
<!ELEMENT course (student*)>
<!'ATTLIST course
cno CDATA #REQUIRED
title CDATA #REQUIRED>
<!ELEMENT student EMPTY>
<!'ATTLIST student
sno CDATA #REQUIRED
name CDATA #REQUIRED
grade CDATA #REQUIRED>

For every course, we store its number (@cno), its title and the list of students taking the course.
For each student taking a course, we store his/her number (@sno), name, and the grade in the
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course. In this database we have the following functional dependencies:

{db.univ, db.univ.course.Qcno} — db.univ.course,

{db.univ, db.univ.course.student.Qsno} — db.univ.course.student.Qname. (13)

The first FD says that two distinct courses of the same university must have distinct @cno numbers,
the second one says that two students of the same university with the same @sno value must have
the same @name. We observe that (13) is an anomalous FD of the form described above since
{db.univ, db.univ.course.student.Qsno} — db.univ.course.student is not in (D, %)™,

To eliminate the anomalous FD, we construct a new DTD D’ by creating a new element type a”
as a child of the last element o’ of ¢/, making a1, .. ., a, its children, @[ its attribute, and @iy, ..., @[,
attributes of aq, ..., a,, respectively. Furthermore, we remove @[ from the set of attributes of the
last element a of ¢, as shown in Figure 4 (b). Formally, if {a”, a1, ..., a,} are element types which
are not in Lg, the new DTD, denoted by D[q.Ql := ¢'.a"[a,.Ql4, ..., a,.Ql,, Q]], is (L, P', R', r),
where Ly = Lo U {da", a1, ..., ap} and P’, R" are defined as follows.

1) Assume that ¢’ — P, € P. Then P' = (P — {d’ = Py}) U{d — (¢")*Py, d" — a}---al,
ay — €, ..., Gy —> €}.

2) R'(a") ={@l}, R'(a;) = {@l;}, for each i € [1,n], R'(a) = R(a) — {@Q[} and R'(b) = R(b) for
each b € Ly — {a}.

For instance, to eliminate the anomalous functional dependency (13), we create a new element type
info as a child of courses, we remove @name as an attribute of student and we make it an attribute
of info, we create an element type number as a child of info and we make @sno its attribute. We
note that we do not remove @sno as an attribute of student.

After transforming D into a new DTDD’ = D[q.Ql := ¢'.a"[a1.Ql4, ..., a,.Ql,, Q[]], a new set
of functional dependencies is generated. Formally, X[q.Ql := ¢'.a"[a;.@l4, ..., a,.Ql,, @Q[]] is a set
of FDs over D' defined as the union of the sets of constraints defined in 1), 2) and 3):

1) X Y € (D,X)" with X UY C paths(D');

2) For each FD X — Y € (D,X)" with X UY C{¢, q1, ---, qu, q1.Ql1, ..., q,.Ql,, q.Ql}, we
include an FD obtained from it by changing ¢; to ¢'.a".a;, ¢;.Ql; to q.a".a;.Ql;, and ¢.Ql to
n
q.a".Ql;

3) {d, ¢.d".a1.@Qly, ..., ¢.d".a,.Ql,} — ¢.a", and {¢'.d", ¢'.a".a;.Ql;} — ¢'.a".a; for i € [1,n].

The Algorithm. In Figure 5 is shown the normalization algorithm proposed in [3]. This algo-
rithm applies the “moving attributes” and “creating new element types” transformations until the
schema is in XNF. We note that the “creating new element types” transformation is not applied to
an arbitrary anomalous FD, but rather to a minimal one. To understand the notion of minimality
for XML FDs, we first introduce this notion for relational databases. Let R be a relation schema
containing a set of attributes U and ¥ a set of FDs over R. If (R, ) is not in BCNF, then there
exist pairwise disjoint sets of attributes X, Y and Z such that U = XUY UZ, ¥ F X — Y and
Y X — A, for every A € Z. In this case we say that X — Y is an anomalous FD. To eliminate
this anomaly, a decomposition algorithm splits relation R into two relations: S(X,Y’) and T'(X, Z).
A desirable property of the new schema is that S or T is in BCNF. We say that X — Y is a
minimal anomalous FD if S(X,Y) is in BCNF, that is, S(X,Y) does not contain an anomalous
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(1) If (D, ¥) is in XNF then return (D, ), otherwise go to step (2).
(2) If there is an anomalous FD X — ¢.@Q[ and an element path ¢’ in D such that ¢’ € X and
¢ — X € (D,X)", then:
(2.1) Choose a fresh attribute @Qm
(2.2) D := D[q.Ql := ¢'.Qm)]
(2.3) ¥ := X[q.Ql := ¢'.Qm)]
(2.4) Go to step (1)
(3) Choose a (D, X)-minimal anomalous FD X — ¢.@Q[, where X = {¢, ¢1.Ql4, ..., ¢,.Ql,}
(3.1) Create fresh element types o, ay, ..., a,
(3.2) D := D[q.Ql := ¢'.a"[a1.Ql4, ..., a,.Ql,, Q[]]
(3.3) X :=X[q.Ql := ¢".a"[a1.Ql4, ..., a,.Ql,, Q]
(3.4) Go to step (1)

Figure 5: An XML normalization algorithm.

FD. This condition can be defined as follows: X — Y is minimal if there are no pairwise disjoint
sets X', Y' C U such that X' UY' G XUY, XF X' =Y and BV X' = X UY.

In the XML context, the definition of minimality is similar in the sense that we expect the
new element types a”, ay, ..., a, form a structure not containing anomalous elements. However,
the definition of minimality is more complex to account for paths used in FDs. We say that
{¢,q1.Qlq,...,q,.Ql,} — qo.@Qly is (D, X)-minimal if there is no anomalous FD X — ¢;.Q[; €
(D,X)" such that ¢ € [0,n] and X is a subset of {q,q1,...,qn,q0-Qlg, ..., q,-@Ql,} such that | X |< n
and X contains at most one element path.

Now we prove that after each step of the normalization algorithm proposed in [3], the amount
of information in each position does not decrease. Let (D,Y) be an XML specification and T' €
inst(D,Y). Assume that (D,Y) is not in XNF. Let (D',¥') be an XML specification obtained
by executing one step of the normalization algorithm. Every step of this algorithm induces a
natural transformation on XML documents. One of the properties of the algorithm is that for
each normalization step that transforms T € inst(D,X) into T" € inst(D',%'), one can find a
map 77 7 : Pos(T') — 27°5(T) that associates each position in the new tree 7" with one or more
positions in the old tree 7', as shown below.

1) Assume that D' = D[q.Ql := ¢'.@Qm] and, therefore, ¢ — ¢.@l is an anomalous FD in
(D,X). In this case, an XML tree T" is constructed from T as follows. For every t €
tuplesp(T), define a tree tuple ¢ by using the following rule: ¢'(¢’.@m) = t(q.@Ql) and for
every ¢" € paths(D) — {q.@Ql}, t'(¢") = t(¢"). Then T" is an XML tree whose tree tuples are
{t" | t € tuples(T)}. Furthermore, positions in ¢’ are associated to positions in ¢ as follows:
if p' = (t'(¢'), @m), then w7 7 (p') = {(t(q), Q)}; otherwise, w7 v (p') = {p'}.

2) Assume that (D', %') was generated by considering a (D,3)-minimal anomalous FD {¢/,
¢1-Qly, ..., ¢u.Ql,} — ¢.@Ql. Thus, D' = D[q.Ql := ¢'.a"[a1.Ql4,...,a,.Ql,, Q[]]. In this
case, an XML tree T" is constructed from T as follows. For every t € tuplesp(T), define
a tree tuple ¢’ by using the following rule: #'(¢’.a”) is a fresh node identifier, #'(¢'.a".Ql) =
t(q.Ql), t'(¢".a".a;) is a fresh node identifier (i € [1,n]), t'(q.a”.¢;.Ql;) = ¢(q;-Ql;) and for
every ¢" € paths(D) — {q.@l}, t'(¢") = t(¢"). Then T" is an XML tree whose tree tuples
are {t' | t € tuplesp(T)}. Furthermore, positions in ¢’ are associated to positions in ¢ as

29



follows. If p' = (t'(¢".a"),@l), then 7 7 (p') = {(t(g),Ql)}. If p’ = (#'(¢’.a".a;),Ql;), then
(t(g;), @Ql;) € g (p') (note that in this case myv r(p) may contain more than one position).
For any other position p’ in ', 7 7(p') = {p'}.

Similarly to the relational case, we can now show the following.

Theorem 6 Let T be a tree that conforms to a DTD D and satisfies a set of FDs X, and let T' €
inst(D',X) result from T by applying one step of the normalization algorithm. Let p' € Pos(T").
Then

INFr(p' | X)) > max INFp(p | X).
pETp 1 (p')

Proof: Let (D, %) be an XML specification and T' € inst(D, ). Assume that (D, Y) is not in XNF.
Let (D', ¥') be an XML specification obtained by executing one step of the normalization algorithm.
We have to prove that for every p’ € Pos(T'), INFp(p' | X') > maxyeq,, . (p) INFr(p | ¥). This can
be done in exactly the same way as the proof of Theorem 5. First, by using the same proof as for
Lemma 6, we show that the same results holds for XML trees. Using this, we show the following:

1) Assume D' = D[q.Ql := ¢".@Qm] and ¢’ — ¢.@[ is an anomalous FD over (D,Y). Let a' be
the last element of ¢’ and p’ € Pos(T"). If p is of the form (z,@m), where A\(z) = a’, then
INFp (p' | ¥') = 1 and, therefore, the theorem trivially holds. Otherwise, w7 r(p') = {p'} and
it can be shown that INFg(p' | ') > INFp(p' | 2) by using the same proof as that of Lemma
7.

2) Assume that D' = D[q.Ql := ¢'.a"[a1.Ql4, ..., a,.Ql,, Ql]] {¢, ¢1.Ql4, ..., q,.Ql,} — ¢q.Ql is
a (D,X)-minimal anomalous FD. Let p’ € Pos(T"). If p' is the position in T" of some value
reachable from the root by following path ¢'.a”.@Ql or ¢'.a".a;.Ql;, for some i € [1,n], then
INFp (p' | &) = 1 since {¢, ¢1.@Ql4, ..., ¢,.Ql,} — ¢.@Q[ is (D,X)-minimal. Thus, in this
case the theorem trivially holds. Otherwise, mv 7(p') = {p’} and again it can be shown that
INFp (p' | ') > INFp(p' | 2) by using the same proof as for Lemma 7.

This completes the proof of the theorem. O

Just like in the relational case, one can define effective steps of the algorithm as those in which the
above inequality is strict for at least one position, and show that (D,X) is in XNF if and only if
no decomposition algorithm is effective in (D, ).

7 Conclusions and Future Work

Our goal was to find criteria for good data design, based on the intrinsic properties of a data model
rather than tools built on top of it, such as query and update languages. We were motivated by the
justification of normal forms for XML, where usual criteria based on update anomalies or existence
of lossless decompositions are not applicable until we have standard and universally acceptable
query and update languages.

We proposed to use techniques from information theory, and measure the information content of
elements in a database with respect to a set of constraints. We tested this approach in the relational
case and showed that it works: that is, it characterizes the familiar normal forms such as BCNF
and 4NF as precisely those corresponding to good designs, and justifies others, more complicated
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ones, involving join dependencies. We then showed that the approach straightforwardly extends
to the XML setting, and for the case of constraints given by functional dependencies, equates the
normal form XNF of [3] with good designs. In general, the approach is very robust: although we do
not show it here due to space limitations, it can be easily adapted to the nested relational model,
where it justifies a normal form NNF [22, 23].

It would be interesting to characterize 3NF by using the measure developed in this paper. So
far, a little bit is known about 3NF. For example, as in the case of BCNF, it is possible to prove that
the synthesis approach for generating 3NF databases does not decrease the amount of information
in each position. Furthermore, given that 3NF does not necessarily eliminate all redundancies, one
can find 3NF databases where the amount of information in some positions is not maximal.

We would like to consider more complex XML constraints and characterize good designs they
give rise to. We also would like to connect this approach with that of [16], where information
capacities of two schemas can be compared based on the existence of queries in some standard
language that translate between them. For two classes of well-designed schemas (those with no
constraints, and with keys only), being information-capacity equivalent means being isomorphic
[2, 16], and we would like to see if this connection extends beyond the classes of schemas studied
in [2, 16].
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A Proofs

A.1 Proof of Lemma 1

We start with the following simple but useful observation. The proof follows immediately from
genericity.

Claim 1 Let X be a set of generic integrity constraints over a relational schema S, I € insty(S,X)
and p € Pos(I). Assume that a,b € [1,k] — adom(I). Then for every a € Q(I,p), |SAT§(I(a,a))| =
|SATS (Iip0)-

Next, we need the following.

Claim 2 Let X be a set of integrity constraints over a relational schema S, I € inst(S,X), p €
Pos(I) and a € Q(I,p). Then for every a € NV, there exists ko € Nt and a polynomial qq(k) such
that |SAT’§(I(G"—I))\ = qq(k), for every k > k.

Proof: Let the variables of a be vy,...,v;.. Fix a > 0, and let m be the maximum value in
adom(I)U{a}. Define kg to be m+I+1. By genericity, |SAT'§°(I(G,@>)\ = 0 implies \SAT@(I((M)H =0
for all k& > ko, so we assume there is at least one substitution in SAT;O(I(a@)).

We consider the set of all triples P = (X, ox,II) where

° Xg{vla"'avl}a
e ox: X — [1,m], and
e II is a partition on {vy,..., v} — X.

Given o € SAT%(I(a,a)), we write 0 ~ P if for every i € X, o(v;) = ox(v;), for every i ¢ X,
o(v;) & [1,m], and for every i,j ¢ X, o(v;) = o(v;) iff ¢ and j are in the same block of II. Observe
that for every o € SAT’%(I(G’&)), there exists exactly one triple P such that o ~ P.

Let 0,0’ ~ P be two substitutions. From the genericity of ¥ we immediately see that o(1(4,4))
¥ iff 0'(I(4,)) = X. Furthermore, if o collapses two rows in I(, 5, then so does o' (since o(v;) =
o(vj) iff o' (v;) = 0'(v;)). We conclude that o € SAT@(I(Q’,—I)) iff o' € SAT’%(I(G’&)).

The number of triples P depends on I,a and a but not on k. For each P, either all ¢ with
o ~ P belong to SAT%(I(a@)), or none belongs to SAT’%(I(G,@)). Thus, it will suffice to show that
for every P, there exists a polynomial g7 (k) such that [{o € SAT’%(I(a@)) o ~ P} =ql (k).

The case when no o with o ~ P belongs to SAT%(I(G"—I)) is trivial: ¢7 (k) = 0 for all k.
Otherwise, let P = (X, 0x,1I), and let mp be the number of partition blocks of II. The number of
o ~ P is then the number of ways to chose mp distinct ordered elements in [m + 1, k|, that is

mp—1
a k) = JI (k=m—i).
i=0
Since m and mp do not depend on k, this concludes the proof of the claim. O

Proof of Lemma 1: Let I € inst(S,X), p € Pos(I), and a € Q(I,p). To prove this lemma it suffices
to show that the following limit exists:

1

hyoo0 log k

> P(a]a)log

a€[1,k]

1
Plala) (14)
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By Claims 1 and 2, there exists ky > 0 and polynomials ¢,(k), for every a € adom(I), and g(k)
such that for every k& > kq:

L. \SAT’%(I(G’@)H = qa(k), for every a € adom(I);
2. \SAT@(I(G’E)H = q(k), for every a € [1,k] — adom(I).
Let n = |adom(I)| and r(k) = (k —n)q(k) + > scadom(r) 9a(k). Then (14) is equal to

N GWl®) | (k) ah) | r(k)
kli”élologk[ 2 (r(k) logqa(k)>+(k_")ﬁlogm]' (15)

acadom(I)

We first show that

lim — [ Y qa(k)log;(k)} _— (16)

k—oo log k s adom(l) r(k)

Note that degree(r) > degree(q,) for every a € adom(I). If degree(r) > degree(q,), then clearly

limy o0 r(( )) log ((k)) = 0. If degree(r) = degree(qq), then limy_, r(( )) log (( )) exists and equals

some positive constant c¢,; hence limy_, o loék q“((kk)) log (;1(—(]2)) = 0. Thus, (16) holds and (15) equals

i [t o
k—oo| logk  r(k)

q(k)

By the definition of r, degree(r) > degree(q) + 1. A simple calculation shows that for
degree(r) = degree(q) + 1, (17) equals some positive constant that depends on the coefficients of ¢
and r, and for degree(r) > degree(q) + 1, (17) equals 0. Hence, the limit (15) always exists, which
completes the proof. O

- log T(k)} (17)

A.2 Proof of Lemma 6

Assume that

P aalogP(a1|a) £ 0. (18)

k—)oo log k oe[L ]

We will show that this limit must be 1.

First note that by (18), there exists kg > 0 such that for every k£ > k¢ and a € [1, k] — adom(I),
|SAT’§(I(a,a))\ > 1. If this were not true, then by Claim 1, for every a € Nt — adom(I), we would
have \SAT’%(I(a@)H = 0 and, therefore, > .y ;1 P(a | a)log P( m < log |adom(I)|. We conclude
that

1 . log|adom(I)]
E P( 1 < lim ———— =
(ala)log prray = Jm — 0% 0
a€[1,k]

lim
h o0 log k
which contradicts (18).
To prove the lemma we need to introduce an equivalence relation on the elements of a and
prove some basic properties about it. Assume that ||I|| = n,n > 0. Let k& > ko be such that
adom/(I) ; [1,k]. Given a;,a; € a, we say that a; and a; are linked in (a,a), written as a; ~ a;,
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if for every substitution o : @ — [1,k] such that 0([(4,4)) = %, it is the case that o(a;) = o(a;).
Observe that if a;, a; are constants, then a; ~ a; iff a; = a;. It is easy to see that ~ is an
equivalence relation on a. We say that a; € a is determined in (a, a) if for every pair of substitutions
01,02 : @ — [1,k] such that o1(I,5)) = ¥ and 02(I(45)) F %, it is the case that o1(a;) = oa(a;).
Notice that if a; is a constant, then a; is determined in (a,a). Furthermore, observe that if a; ~ a;
and a; is determined in (a, @), then a; is determined in (a,@). Thus, we can extend the definition for
equivalence classes: [a;]~ is determined in (a,a) if a; is determined in (a,a). We define undet(a,a)
as the set of all undetermined equivalence classes of ~:

undet(a,a) = {[a;]~ | a; € @ and [a;]~ is not determined}.
Claim 3

1) For every a € adom(I) and b € [1,k] — adom(I), if there exists a substitution o : a — [1,k]
such that o(Iyq)) = %, then |undet(b,a)| > |undet(a,a)|.

2) For every a,b € [1,k] — adom(I), undet(b,a) = undet(a,a).

Proof: 1) Let a € adom(I) and b € [1,k] — adom(I). Assume that there exists a substitution
o :a — [1,k] such that o(I(4)) = 3. It is easy to see that for every a;,a; € @, if a; is determined
in (b,a), then a; is determined in (a,a), and if a;,a; are linked in (b,a), then a;,a; are linked in
(a,a). Thus, |undet(b,a)| > |undet(a,a)|.

2) Trivial, by Claim 1. O

Claim 4 Let a € [1,k] — adom(I). If k > 2n, then \SAT’%(I(G@))\ > (k — 2n)lundet(a.a)]

Proof: To prove this claim, we consider two cases.

First assume that a does not contain any variable. Then |undet(a,a)| = 0 and we have to prove
that |SAT’§(I(G"—I))\ > 1. For that, it suffices to show that [, ;) = X. Towards a contradiction,
assume that I(, ;) % . Then by Claim 1, [SAT% (I q))| = 0, for every b € N* — adom(I), which
contradicts the existence of k.

Second assume that a contains at least one variable. Let op : @ — [1,k] be a substitution
such that o¢(I(43) = ¥ (such a substitution exists by assumption (18)). Let o : a — [1,k]
be a substitution such that: (a) o and oy coincide in determined equivalence classes; (b)
for every undetermined class [a;]., o assigns the same value in [1,k] — (adom(I) U {a}) to
each element in this class; (c) for every pair of distinct undetermined classes [a;]~, [aj]~,
o(a;) # o(a;). Notice that such a function exists since k > 2n. Given that oo(/(,q)) = %, we
have o(I(44)) = . Thus, \SAT’%(I(a@)H is greater than or equal to the number of substitutions
with domain @ and range contained in [1, k] satisfying conditions (a), (b) and (c). Therefore,
|SATE (Ia0)| = (k= (n+1))(k = (n+2)) - (k = (n+ |undet(a,a)|)) > (k — 2n)/undet(@a)] Thig
proves the claim. O

We will use this claim to prove that limy,_, o @ Zaeu,k} P(a|a)log m = 1. Let & > kg be such
that adom(I) C [1,k] and k > 2n. By Claim 4, for every a € [1,k] — adom(I), |SAT'§(I(a,a))\ >
(k — 2n)lvndet(@.a)l - Furthermore, by Claim 3, for every a € [1,k] — adom(I):

Z ‘SAT’{)(I([,’&))‘ < Z k\undet(b,d)\ < k_\undet(a,d)Hl
be[l,k] be[1,k]
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Thus, for every a € [1,k] — adom(I):

B (]{) _2n)\undet(a,&)\ B 1
P(a ‘ a) > Llundet(a,a)|+1 Tk (1- ?)

By Claim 1, for every a,b € [1,k] — adom(I), P(a |a) = P(b| a) and, therefore,

1 1
P a) < < .
(al@) < k—ladom(I)| = k—n

Therefore, using (19) and (20) we conclude that:

1 1 2n a
Y Plalalg g > Y x (1= 2y uetea) og(s — )
a€(1,k] P(a ‘ a) a€(l,k]—adom(I) k k

n 2n

> log(k—n) (1 - E)(l - )lundet(b.a)]

)

where b is an arbitrary element in [1, k] — adom(I). Thus,

1 _ 1 log(k — n) n 2N |undet(b.a
- P 1 > 1- 2y - 22 |undet(b,a)
log k ;{;ﬂ (@la)los promy 2 g - p - 3)

It is straightforward to prove that limk%oo[logl:(()l;;n) (1-3)(1- %")‘“”d@t(b:@)\] = 1. Thus,

and, therefore,

1
li P a) =1
Koo log k 2. Plala) “®Pala)
a€[l,k]

since ),y Pla | @)log % < logk. This completes the proof of Lemma 6.
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