
An Information-Theoreti
 Approa
h to Normal Formsfor Relational and XML DataMar
elo ArenasUniversity of Torontomarenas�
s.toronto.edu Leonid LibkinUniversity of Torontolibkin�
s.toronto.eduAbstra
tNormalization as a way of produ
ing good database designs is a well-understood topi
.However, the same problem of distinguishing well-designed databases from poorly designed onesarises in other data models, in parti
ular, XML. While in the relational world the
riteria forbeing well-designed are usually very intuitive and
lear to state, they be
ome more obs
ure whenone moves to more
omplex data models.Our goal is to provide a set of tools for testing when a
ondition on a database design,spe
i�ed by a normal form,
orresponds to a good design. We use te
hniques of informationtheory, and de�ne a measure of information
ontent of elements in a database with respe
t toa set of
onstraints. We �rst test this measure in the relational
ontext, providing information-theoreti
 justi�
ation for familiar normal forms su
h as BCNF, 4NF, PJ/NF, 5NFR, DK/NF. Wethen show that the same measure applies in the XML
ontext, whi
h gives us a
hara
terizationof a re
ently introdu
ed XML normal form
alled XNF. Finally, we look at information-theoreti

riteria for justifying normalization algorithms.1 Introdu
tionWhat
onstitutes a good database design? This question has been studied extensively, with well-known solutions presented in pra
ti
ally all database texts. But what is it that makes a databasedesign good? This question is usually addressed at a mu
h less formal level. For instan
e, we knowthat BCNF is an example of a good design, and we usually say that this is be
ause BCNF eliminatesupdate anomalies. Most of the time this is suÆ
ient, given the simpli
ity of the relational modeland our good intuition about it.Several papers [15, 30, 20℄ attempted a more formal evaluation of normal forms, by relating it tothe elimination of update anomalies. Another
riterion is the existen
e of algorithms that produ
egood designs: for example, we know that every database s
heme
an be losslessly de
omposed intoone in BCNF, but some
onstraints may be lost along the way.The previous work was spe
i�
 for the relational model. As new data formats su
h as XMLare be
oming
riti
ally important,
lassi
al database theory problems have to be revisited in thenew
ontext [28, 26℄. However, there is as yet no
onsensus on how to address the problem ofwell-designed data in the XML setting [12, 3℄.It is problemati
 to evaluate XML normal forms based on update anomalies; while some pro-posals for update languages exist [27℄, no XML update language has been standardized. Likewise,using the existen
e of good de
omposition algorithms as a
riterion is problemati
: for example,to formulate losslessness, one needs to �x a small set of operations in some language, that wouldplay the same role for XML as relational algebra for relations. Stating dependen
y preservation1

and testing normal forms is even more problemati
: while in the relational world we have well-understood pro
edures for doing this, for XML we do not even know if impli
ation of fun
tionaldependen
ies is de
idable.This suggests that one needs a di�erent approa
h to the justi�
ation of normal forms andgood designs. Su
h an approa
h must be appli
able to new data models before the issues ofquery/update/
onstraint languages for them are
ompletely understood and resolved. There-fore, su
h an approa
h must be based on some intrinsi

hara
teristi
s of the data, as opposedto query/update languages for a parti
ular data model. In this paper we suggest su
h an approa
hbased on information-theoreti

on
epts, more spe
i�
ally, on measuring the information
ontent ofthe data. Our goal here is twofold. First, we present information-theoreti
 measures of \goodness"of a design, and test them in the relational world. To be appli
able in other
ontexts, we expe
tthese measures to
hara
terize familiar normal forms. Se
ond, we apply them in the XML
ontext,and show that they justify a normal form XNF proposed in [3℄. We also use our measures toreason about normalization algorithms, by showing that standard de
omposition algorithms neverde
rease the information
ontent of any pie
e of data in a database/do
ument.The rest of the paper is organized as follows. In Se
tion 2 we give the notations, and reviewthe basi
s of information theory (entropy and
onditional entropy). Se
tion 3 is an \appetizer"for the main part of the paper: we present a parti
ularly simple information-theoreti
 way of mea-suring the information
ontent of a database, and show how it
hara
terizes BCNF and 4NF. Themeasure, however, is too
oarse, and, furthermore,
annot be used to reason about normalizationalgorithms. In Se
tion 4 we present our main information-theoreti
 measure of the information
ontent of a database. Unlike the measure studied before [18, 8, 10, 19℄, our measure takes intoa

ount both database instan
e and s
hema
onstraints, and de�nes the
ontent with respe
t toa set of
onstraints. A well-designed database is one in whi
h the
ontent of ea
h datum is themaximum possible. We use this measure to
hara
terize BCNF and 4NF as the best way to de-sign s
hemas under FDs and MVDs, and to justify normal forms involving JDs (PJ/NF, 5NFR)and other types of integrity
onstraints (DK/NF). In Se
tion 5, we show that the main measureof Se
tion 4 straightforwardly extends to the XML setting, giving us a de�nition of well-designedXML spe
i�
ations. We prove that for
onstraints given by FDs, well-designed XML spe
i�
ationsare pre
isely those in XNF. In Se
tion 6, we use the measures of Se
tions 4 and 5 to reason aboutnormalization algorithms, by showing that good normalization algorithms do not de
rease the in-formation
ontent of ea
h datum at every step. Finally, Se
tion 7 presents the
on
lusions andsome ideas for future work.2 Notations2.1 S
hemas and Instan
esA database s
hema S is a �nite set of relation names, with a set of attributes, denoted by sort(R),asso
iated with ea
h R 2 S. We shall identify sort(R) of
ardinality m with f1; : : : ;mg. Through-out the paper, we assume that the domain of ea
h attribute is N+ , the set of positive integers. Aninstan
e I of s
hema S assigns to ea
h symbol R 2 S with m = jsort(R)j a relation I(R) whi
h isa �nite set of m-tuples over N+ . By adom(I) we mean the a
tive domain of I, that is, the set ofall elements of N+ that o

ur in I. The size of I(R) is de�ned as kI(R)k = jsort(R)j � jI(R)j, andthe size of I is kIk =PR2S kI(R)k. If I is an instan
e of S, the set of positions in I, denoted byPos(I), is the set f(R; t;A) j R 2 S; t 2 I(R) and A 2 sort(R)g. Note that jPos(I)j = kIk.We shall deal with integrity
onstraints whi
h are �rst-order senten
es over S. Given a set �2

of integrity
onstraints, �+ denotes the set of all
onstraints implied by it, that is,
onstraints' su
h that for every instan
e I, I j= � implies I j= '. We de�ne inst(S;�) as the set of alldatabase instan
es of S satisfying � and instk(S;�) as fI 2 inst(S;�) j adom(I) � [1; k℄g, where[1; k℄ = f1; : : : ; kg.2.2 Constraints and Normal Forms.Here we brie
y review the most
ommon normal forms BCNF, 4NF, PJ/NF, 5NFR and DK/NF.For more information, the reader is referred to [6, 17, 1, 7℄. The most widely used among these areBCNF and 4NF, de�ned in terms of fun
tional dependen
ies (FD) and multivalued dependen
ies(MVD), respe
tively. We shall use the standard notations X ! Y and X !! Y for FDs andMVDs. Given a set � of FDs over S, (S;�) is in BCNF if for every nontrivial FD X ! Y 2 �+,X is a key (that is, if X ! Y is de�ned over R, then X ! sort(R) 2 �+). If � is a set of FDs andMVDs over S, then 4NF is de�ned analogously [13℄: for every nontrivial MVD X !! Y 2 �+, Xmust be a key. Re
all that in the
ase of FDs nontrivial means Y 6� X, and in the
ase of MVDsnontrivial means Y 6� X and X [Y $ sort(R).The normal forms PJ/NF (proje
tion-join normal form) [14℄ and 5NFR [29℄ deal with FDs andjoin dependen
ies (JDs). Re
all that a JD over R 2 S is an expression of the form ./[X1; : : : ;Xn℄,where X1 [� � � [Xn = sort(R). A database instan
e I of S satis�es ./[X1; : : : ;Xn℄, if I(R) =�X1(I(R)) ./ � � � ./ �Xn(I(R)). Given a set � of FDs and JDs over S, (S;�) is in PJ/NF if � j= �,where � is the set of key dependen
ies in �+ (that is, dependen
ies of the form X ! sort(R) forX � sort(R)). In other words, every instan
e of S that satis�es all the keys in �+ must satisfy� as well. PJ/NF is an extension of both 4NF and BCNF. Sin
e an MVD X !! Y over R is aJD ./[XY;X(sort (R)� Y)℄, when only FDs and MVDs are present in �, the de�nition of PJ/NF
oin
ides with 4NF. If no MVDs are present at all, it redu
es to the de�nition of BCNF [14℄.An alternative normal form for FDs and JDs was introdu
ed in [29℄, whi
h is based on theoriginal de�nitions of BCNF and 4NF. Given a set of FDs and JDs � over S, a JD ' = ./[X1; : : : ;Xn℄in � is strong-redu
ed if for every i 2 [1; n℄, ./[X1; : : : ;Xi�1;Xi+1; : : : ;Xn℄ is not in �+ or X1 [� � � [Xi�1 [Xi+1 [� � � [Xn $ sort(R). (S;�) is in 5NFR (redu
ed 5th normal form) if for everynontrivial, strong-redu
ed join dependen
y ./[X1; : : : ;Xn℄ 2 �+ and every i 2 [1; n℄, Xi is a key.PJ/NF is stri
tly stronger than 5NFR.The \ultimate" normal form for relational databases was introdu
ed in [15℄. This normal formwas de�ned in terms of key dependen
ies and domain dependen
ies. In our setting, where domaindependen
ies are not
onsidered, it says the following. Given any set of integrity
onstraints � overS, (S;�) is in DK/NF (domain-key normal form) if � is implied by the set of key dependen
ies in�+.2.3 Basi
s of Information TheoryThe main
on
ept of information theory is that of entropy, whi
h measures the amount of infor-mation provided by a
ertain event. Assume that an event
an have n di�erent out
omes s1, : : :,sn, ea
h with probability pi, i � n. How mu
h information is gained by knowing that si o

urred?This is
learly a fun
tion of pi. Suppose g measures this information; then it must be
ontinuousand de
reasing fun
tion with domain (0; 1℄ (the higher the probability, the less information gained)and g(1) = 0 (no information is gained if the out
ome is known in advan
e). Furthermore, g isadditive: if out
omes are independent, the amount of information gained by knowing two su

essiveout
omes must be the sum of the two individuals amounts, that is, g(pi � pj) = g(pi) + g(pj). The3

A B C1 2 31 2 4 A B C1 1 22 3 4 A B C1 2 31 2 41 2 5(a) (b) (
)Figure 1: Database instan
es.only fun
tion satisfying these
onditions is g(x) = �
 lnx, where
 is an arbitrary positive
onstant[25℄. It is
ustomary to use base 2 logarithms: g(x) = � log x.The entropy of a probability distribution represents the average amount of information gainedby knowing that a parti
ular event o

urred. Let A = (fs1; : : : ; sng; PA) be a probability spa
e. Ifpi = PA(si), then the entropy of A, denoted by H(A), is de�ned to beH(A) = nXi=1 pi log 1pi = � nXi=1 pi log pi:Observe that some of the probabilities in the spa
e A
an be zero. For that
ase, we adopt the
onvention that 0 log 10 = 0, sin
e limx!0 x log 1x = 0. It is known that 0 � H(A) � logn, withH(A) = log n only for the uniform distribution PA(si) = 1=n [9℄.We shall also use
onditional entropy. Assume that we are given two probability spa
es A =(fs1; : : : ; sng; PA), B = (fs01; : : : ; s0mg; PB) and, furthermore, we know probabilities P (s0j ; si) of allthe events (s0j ; si) (that is, PA and PB need not be independent). Then the
onditional entropy ofB given A, denoted by H(B j A), gives the average amount of information provided by B if A isknown [9℄. It is de�ned using
onditional probabilities P (s0j j si) = P (s0j; si)=PA(si):H(B j A) = nXi=1�PA(si) mXj=1 P (s0j j si) log 1P (s0j j si)�:3 Information Theory and Normal Forms: an AppetizerWe will now see a parti
ularly simple way to provide information-theoreti

hara
terization ofnormal forms. Although it is very easy to present, it has a number of short
omings, and a moreelaborate measure will be presented in the next se
tion.Violating a normal form, e.g., BCNF, implies having redundan
ies. For example, if S =fR(A;B;C)g and � = fA ! Bg, then (S;�) is not in BCNF (A is not a key) and some in-stan
es
an
ontain redundant information: in Figure 1 (a), the value of the gray
ell must be equalto the value below it. We do not need to store this value as it
an be inferred from the remainingvalues and the
onstraints.We now use the
on
ept of entropy to measure the information
ontent of every position in aninstan
e of S. The basi
 idea is as follows: we measure how mu
h information we gain if we losethe value in a given position, and then someone restores it (either to the original, or to some othervalue, not ne
essarily from the a
tive domain). For instan
e, if we lose the value in the gray
ell inFigure 1 (a), we gain zero information if it gets restored, sin
e we know from the rest of the instan
eand the
onstraints that it equals 2. Formally, let I 2 instk(S;�) (that is, adom(I) � [1; k℄) and let4

p 2 Pos(I) be a position in I. For any value a, let Ip a be a database instan
e
onstru
ted fromI by repla
ing the value in position p by a. We de�ne a probability spa
e Ek�(I; p) = ([1; k + 1℄; P)and use its entropy as the measure of information in p (we de�ne it on [1; k + 1℄ to guarantee thatthere is at least one value outside of the a
tive domain). The fun
tion P is given by:P (a) = (0 Ip a 6j= �;1=jfb j Ip b j= �gj otherwise.In other words, let m be the number of b 2 [1; k + 1℄ su
h that Ip b j= � (note that m > 0 sin
eI j= �). For ea
h su
h b, P (b) = 1=m, and elsewhere P = 0. For example, for the instan
e in Figure1 (a) if p is the position of the gray
ell, then the probability distribution is as follows: P (2) = 1and P (a) = 0, for all other a 2 [1; k+1℄. Thus, the entropy of Ek�(I; p) for position p is zero, as weexpe
t. More generally, we
an show the following.Theorem 1 Let � be a set of FDs (or FDs and MVDs) over a s
hema S. Then (S;�) is in BCNF(or 4NF, resp.) if and only if for every k > 1, I 2 instk(S;�) and p 2 Pos(I),H(Ek�(I; p)) > 0:Proof: We give the proof for the
ase of FDs; for FDs and MVDs the proof is almost identi
al.()) Assume that (S;�) is in BCNF. Fix k > 0, I 2 instk(S;�) and p 2 Pos(I). Assume that ais the p-th element in I. We show that Ip k+1 j= �, from whi
h we
on
lude that H(Ek�(I; p)) > 0,sin
e Ek�(I; p) is uniformly distributed, and P (a); P (k + 1) 6= 0.Towards a
ontradi
tion, assume that Ip k+1 6j= �. Then there exist R 2 S, t01; t02 2 Ip k+1(R)and X ! A 2 �+ su
h that t01[X℄ = t02[X℄ and t01[A℄ 6= t02[A℄. Assume that t01; t02 were generatedfrom tuples t1; t2 2 I(R) (hen
e t1 6= t2), respe
tively. Note that t01[X℄ = t1[X℄ (if t1[X℄ 6= t01[X℄,then t01[B℄ = k + 1 for some B 2 X; given that k + 1 62 adom(I), only one position in Ip k+1mentions this value and, therefore, t01[X℄ 6= t02[X℄, a
ontradi
tion). Similarly, t02[X℄ = t2[X℄ and,therefore, t1[X℄ = t2[X℄. Given that (S;�) is in BCNF, X must be a key in R. Hen
e, t1 = t2,sin
e I j= �, whi
h is a
ontradi
tion.(() Assume that (S;�) is not in BCNF. We show that there exists k > 0, I 2 instk(S;�)and p 2 Pos(I) su
h that H(Ek�(I; p)) = 0. Sin
e (S;�) is not in BCNF, there exist R 2 S andX ! A 2 �+ su
h that A 62 X, X [fAg $ sort(R) and X is not a key in R. Thus, there existsa database instan
e I of S su
h that I j= � and I 6j= X ! sort(R). We
an assume that I(R)
ontains only two tuples, say t1; t2. Let k be the greatest value in I, i = t1[A℄ and p be the positionof t1[A℄ in I. It is easy to see that I 2 instk(S;�) and P (j) = 0, for every j 6= i in [1; k + 1℄, sin
et1[A℄ must be equal to t2[A℄ = i. Therefore, H(Ek�(I; p)) = 0. �Thus, a s
hema is in BCNF or 4NF i� for every instan
e, ea
h position
arries non-zero amount ofinformation. This is a
lean
hara
terization of BCNF and 4NF, but the measure H(Ek�(I; p)) isnot a

urate enough for a number of reasons. For example, let �1 = fA ! Bg and �2 = fA !!Bg. The instan
e I in Figure 1 (a) satis�es �1 and �2. Let p be the position of the gray
ell inI. Then H(Ek�1(I; p)) = H(Ek�2(I; p)) = 0. But intuitively, the information
ontent of p must behigher under �2 than �1, sin
e �1 says that the value in p must be equal to the value below it,and �2 says that this should only happen if the values of the C-attribute are distin
t.Next,
onsider I1 and I2 shown in Figures 1 (a) and (
), respe
tively. Let � = fA! Bg, and letp1 and p2 denote the positions of the gray
ells in I1 and I2. Then H(Ek�(I1; p1)) = H(Ek�(I2; p2)) =0. But again we would like them to have di�erent values, as the amount of redundan
y is higher5

A B C6 5 43 2 1 A B C1 7 31 2 4 A B Cv6 7 31 2 v1 A B C8 7 31 2 4(a) An enumeration of I (b) I(7;�a1) = �1(I(7;�a1)) (
) I(7;�a2) (d) �2(I(7;�a2))Figure 2: De�ning InfkI (p j �).in I2 than in I1. Finally, let S = R(A;B), � = f; !! Ag, and I = f1; 2g � f3; 4g 2 inst(S;�).For ea
h position, the entropy would be zero. However,
onsider both positions in attribute A
orresponding to the value 1. If they both disappear, then we know that no matter how they arerestored, the values must be the same. The measure presented in this se
tion
annot possibly talkabout inter-dependen
ies of this kind.In the next se
tion we will present a measure that over
omes these problems.4 A General De�nition of Well-Designed DataLet S be a s
hema, � a set of
onstraints, and I 2 inst(S;�) an instan
e with kIk = n. Re
all thatPos(I) is the set of positions in I, that is, f(R; t;A) j R 2 S; t 2 I(R) and A 2 sort(R)g. Our goalis to de�ne a fun
tion InfI(p j �), the information
ontent of a position p 2 Pos(I) with respe
tto the set of
onstraints �. For a general de�nition of well-designed data, we want to say thatthis measure has the maximum possible value. This is a bit problemati
 for the
ase of an in�nitedomain (N+), sin
e we only know what the maximum value of entropy is for a dis
rete distributionover k elements: log k. To over
ome this, we de�ne, for ea
h k > 0, a fun
tion InfkI (p j �) thatwould only apply to instan
es whose a
tive domain is
ontained in [1; k℄, and then
onsider theratio InfkI (p j �)= log k. This ratio tells us how
lose the given position p is to having the maximumpossible information
ontent, for databases with a
tive domain in [1; k℄. As our �nal measureInfI(p j �) we then take the limit of this sequen
e as k goes to in�nity.Informally, InfkI (p j �) is de�ned as follows. Let X � Pos(I)�fpg. Suppose the values in thosepositions X are lost, and then someone restores them from the set [1; k℄; we measure how mu
hinformation about the value in p this gives us. This measure is de�ned as the entropy of a suitably
hosen distribution. Then InfkI (p j �) is the average su
h entropy over all sets X � Pos(I) � fpg.Note that this is mu
h more involved than the de�nition of the previous se
tion, as it takes intoa

ount all possible intera
tions between di�erent positions in an instan
e and the
onstraints.We now present this measure formally. An enumeration of I with kIk = n, n > 0, is a bije
tionfI between Pos(I) and [1; n℄. From now on, we assume that every instan
e has an asso
iatedenumeration1. We say that the position of (R; t;A) 2 Pos(I) is p in I if the enumeration of Iassigns p to (R; t;A), and if R is
lear from the
ontext, we say that the position of t[A℄ is p. Wenormally asso
iate positions with their rank in the enumeration fI .Fix a position p 2 Pos(I). As the �rst step, we need to des
ribe all possible ways of removingvalues in a set of positions X, di�erent from p. To do this, we shall be pla
ing variables from aset fvi j i � 1g in positions where values are to be removed, where vi
an o

ur only in position i.Furthermore, we assume that ea
h set of positions is equally likely to be removed. To model this, let
(I; p) be the set of all 2n�1 ve
tors (a1; : : : ; ap�1; ap+1; : : : ; an) su
h that for every i 2 [1; n℄�fpg,1The
hoi
e of a parti
ular enumeration will not a�e
t the measures we de�ne.6

ai is either vi or the value in the i-th position of I. A probability spa
e A(I; p) = (
(I; p); P) isde�ned by taking P to be the uniform distribution.Example 1: Let I be the database instan
e shown in Figure 1 (a). An enumeration of the positionsin I is shown in Figure 2 (a). Assume that p is the position of the gray
ell shown in Figure 1 (a),that is, p = 5. Then �a1 = (4; 2; 1; 3; 1) and �a2 = (v1; 2; 1; 3; v6) are among the 32 ve
tors in
(I; p).For ea
h of these ve
tors, we de�ne P as 132 . �Our measure InfkI (p j �), for I 2 instk(S;�), will be de�ned as the
onditional entropy ofa distribution on [1; k℄, given the above distribution on
(I; p). For that, we de�ne
onditionalprobabilities P (a j �a) that
hara
terize how likely a is to o

ur in position p, if some values areremoved from I a

ording to the tuple �a from
(I; p) 2. We need a
ouple of te
hni
al de�nitions�rst. If �a = (ai)i6=p is a ve
tor in
(I; p) and a > 0, then I(a;�a) is a table obtained from I by puttinga in position p, and ai in position i; i 6= p. If k > 0, then a substitution � : �a! [1; k℄ assigns a valuefrom [1; k℄ to ea
h ai whi
h is a variable, and leaves other ais inta
t. We
an extend � to I(a;�a) andthus talk about �(I(a;�a)).Example 2: (example 1
ontinued) Let k = 8 and �1 be an arbitrary substitution from �a1 to[1; 8℄. Note that �1 is the identity substitution, sin
e �a1
ontains no variables. Figure 2 (b) showsI(7;�a1), whi
h is equal to �1(I(7;�a1)). Let �2 be a substitution from �a2 to [1; 8℄ de�ned as follows:�(v1) = 4 and �(v6) = 8. Figure 2 (
) shows I(7;�a2) and Figure 2 (d) shows the database instan
egenerated by applying �2 to I(7;�a2). �If � is a set of
onstraints over S, then SAT k�(I(a;�a)) is de�ned as the set of all substitutions� : �a ! [1; k℄ su
h that �(I(a;�a)) j= � and k�(I(a;�a))k = kIk (the latter ensures that no two tuples
ollapse as the result of applying �). With this, we de�ne P (a j �a) as:P (a j �a) = jSAT k�(I(a;�a))jXb2[1;k℄ jSAT k�(I(b;�a))j :We remark that this
orresponds to
onditional probabilities with respe
t to a distribution P 0on [1; k℄ �
(I; p) de�ned by P 0(a; �a) = P (a j �a) � (1=2n�1), and that P 0 is indeed a probabilitydistribution for every I 2 instk(S;�) and p 2 Pos(I).Example 3: (example 2
ontinued) Assume that � = fA ! Bg. Given that the only substi-tution � from �a1 to [1; 8℄ is the identity, for every a 2 [1; 8℄, a 6= 2, �(I(a;�a1)) 6j= �, and, therefore,SAT 8�(I(a;�a1)) = ;. Thus, P (2 j �a1) = 1 sin
e �(I(2;�a1)) j= �. This value re
e
ts the intuition thatif the value in the gray
ell of the instan
e shown in Figure 1 (a) is removed, then it
an be inferredfrom the remaining values and the FD A! B.There are 64 substitutions with domain �a2 and range [1; 8℄. A substitution � is in SAT 8�(I(7;�a2))if and only if �(v6) 6= 1, and, therefore, jSAT 8�(I(7;�a2))j = 56. The same
an be proved for everya 2 [1; 8℄, a 6= 2. On the other hand, the only substitution that is not in SAT 8�(I(2;�a2)) is �(v1) = 3and �(v6) = 1, sin
e �(I(2;�a2))
ontains only one tuple. Thus, jSAT 8�(I(2;�a2))j = 63 and, therefore,P (a j �a2) = 8><>: 63455 if a = 2;56455 otherwise. �2We use the same letter P here, but this will never lead to
onfusion. Furthermore, all probability distributionsdepend on I, p, k and �, but we omit them as parameters of P sin
e they will always be
lear from the
ontext.7

We de�ne a probability spa
e Bk�(I; p) = ([1; k℄; P) whereP (a) = 12n�1 X�a2
(I;p)P (a j �a) ;and, again, omit I, p, k and � as parameters, and overload the letter P sin
e this will never leadto
onfusion.The measure of the amount of information in position p, InfkI (p j �), is the
onditional entropyof Bk�(I; p) given A(I; p), that is, the average information provided by p, given all possible ways ofremoving values in the instan
e I:InfkI (p j �) def= H(Bk�(I; p) j A(I; p)) = X�a2
(I;p)�P (�a) Xa2[1;k℄P (a j �a) log 1P (a j �a)�:Note that for �a 2
(I; p),Pa2[1;k℄ P (a j �a) log 1P (aj�a) measures the amount of information in positionp, given a set of
onstraints � and some missing values in I, represented by the variables in �a. Thus,InfkI (p j �) is the average su
h amount over all �a 2
(I; p). Furthermore, from the de�nition of
onditional entropy, 0 � InfkI (p j �) � log k, and the measure InfkI (p j �) depends on the domainsize k. We now
onsider the ratio of InfkI (p j �) and the maximum entropy log k. It turns out thatthis sequen
e
onverges:Lemma 1 If � is a set of �rst-order
onstraints over a s
hema S, then for every I 2 inst(S;�)and p 2 Pos(I), limk!1 InfkI (p j �)= log k exists.The proof of this lemma is given in appendix A.1. In fa
t, Lemma 1 shows that su
h a limit existsfor any set of generi

onstraints, that is,
onstraints that do not depend on the domain. This�nally gives us the de�nition of InfI(p j �).De�nition 1 For I 2 inst(S;�) and p 2 Pos(I), the measure InfI(p j �) is de�ned aslimk!1 InfkI (p j �)log k :InfI(p j �) measures how mu
h information is
ontained in position p, and 0 � InfI(p j �) � 1.A well-designed s
hema should not have an instan
e with a position that has less than maximuminformation:De�nition 2 A database spe
i�
ation (S;�) is well-designed if for every I 2 inst(S;�) and everyp 2 Pos(I), InfI(p j �) = 1.Example 4: Let S be a database s
hema fR(A; B; C)g. Let �1 = fA! BCg. Figure 1 (b) showsan instan
e I of S satisfying �1 and Figure 3 (a) shows the value of InfkI (p j �1) for k = 5; 6; 7,where p is the position of the gray
ell. As expe
ted, the value of InfkI (p j �1) is maximal, sin
e(S;�1) is in BCNF. Indeed, given that we have to preserve the number of tuples, the A-values mustbe distin
t, hen
e all possibilities for sele
ting B and C are open.The next two examples show that the measure InfkI (p j �)
an distinguish
ases that wereindistinguishable with the measure of Se
tion 3. Let �2 = fA ! Bg and �02 = fA !! Bg.Figure 1 (a) shows an instan
e I of S satisfying both �2 and �02. Figure 3 (b) shows the value ofInfkI (p j �2) and InfkI (p j �02) for k = 5; 6; 7. As expe
ted, the values are smaller for �2. Finally,8

k A! BC log k5 2.3219 2.32196 2.5850 2.58507 2.8074 2.8074 k A! B A!! B5 2.0299 2.21806 2.2608 2.46377 2.4558 2.6708 k I1 I25 2.0299 1.80926 2.2608 2.01677 2.4558 2.1914(a) (b) (
)Figure 3: Value of
onditional entropy.let �3 = fA! Bg. Figures 1 (a) and 1 (
) show instan
es I1, I2 of S satisfying �3. We expe
t theinformation
ontent of the gray
ell to be smaller in I2 than in I1, but the measure used in Se
tion3
ould not distinguish them. Figure 3 (
) shows the values of InfkI1(p j �3) and InfkI2(p j �3)for k = 5; 6; 7. As expe
ted, the values are smaller for I2. In fa
t, InfI1(p j �3) = 0:875 andInfI2(p j �3) = 0:78125. �4.1 Basi
 PropertiesIt is
lear from the de�nitions that InfI(p j �) does not depend on a parti
ular enumeration ofpositions. Two other basi
 properties that we
an expe
t from the measure of information
ontentare as follows: �rst, it should not depend on a parti
ular representation of
onstraints, and se
ond,a s
hema without
onstraints must be well-designed (as there is nothing to tell us that it is not).Both are indeed true.Proposition 11) Let �1 and �2 be two sets of
onstraints over a s
hema S. If they are equivalent (that is,�+1 = �+2), then for any instan
e I satisfying �1 and any p 2 Pos(I), InfI(p j �1) = InfI(p j�2).2) If � = ;, then (S;�) is well-designed.Proof:1) Follows from the fa
t that for every instan
e I of S, I j= �1 i� I j= �2. Hen
e, for everya 2 [1; k℄ and �a 2
(I; p), SAT k�1(I(a;�a)) = SATk�2(I(a;�a)) and, therefore, H(Bk�1(I; p) jA(I; p)) = H(Bk�2(I; p) j A(I; p)).2) Follows from part 2) of Proposition 2, to be proved below. Sin
e for every I 2 inst(S;�),p 2 Pos(I) and a 2 N+�adom(I), we have Ip a j= �, this implies that (S;�) is well-designed.�In the following proposition we show a very useful stru
tural
riterion for InfI(p j �) = 1, namelythat a s
hema (S;�) is well-designed if and only if one position of an arbitrary I 2 inst(S;�)
an always be assigned a fresh value. Also in this proposition, we use this
riterion to show thatInfkI (p j �)
annot exhibit sub-logarithmi
 growth, that is, if limk!1 InfkI (p j �)= log k = 1, thenlimk!1[log k � InfkI (p j �)℄ = 0.Proposition 2 Let S be a s
hema and � a set of
onstraints over S. Then the following areequivalent. 9

1) (S;�) is well-designed.2) For every I 2 inst(S;�), p 2 Pos(I) and a 2 N+ � adom(I), Ip a j= �.3) For every I 2 inst(S;�) and p 2 Pos(I), limk!1[log k � InfkI (p j �)℄ = 0.The following lemma will be used in the proof of this proposition and in several other proofs.Lemma 2 Fix n;m > 0, an n-element set A and a probability spa
e A on A with the uniformdistribution PA. Assume that for ea
h k > 0, we have a probability spa
e on [1; k℄
alled Bk and ajoint distribution PBk ;A on [1; k℄ �A su
h that for some a0 2 A, and for all k > 0, the
onditionalprobability P (i j a0) = PBk ;A(i; a0)=PA(a0) = 0, for at least k�m elements of [1; k℄. Then for everyk > m2: H(Bk j A)log k < 1� 12n:In parti
ular, if limk!1H(Bk j A)= log k exists, then limk!1H(Bk j A)= log k < 1.Proof: First, assume that m > 1. Let k > m2 and M = fi 2 [1; k℄ j P (i j a0) > 0g. Observe thatjM j � m. ThenH(Bk j A)log k = 1log k�Xa2A 1n Xi2[1;k℄P (i j a) log 1P (i j a)�= 1n log k�� Xa2A�fa0g Xi2[1;k℄P (i j a) log 1P (i j a)�+� Xi2[1;k℄P (i j a0) log 1P (i j a0)��= 1n log k�� Xa2A�fa0g Xi2[1;k℄P (i j a) log 1P (i j a)�+�Xi2M P (i j a0) log 1P (i j a0)��� 1n log k�� Xa2A�fa0g log k�+ logm� (1)= 1n log k�(n� 1) log k + logm�= 1� 1n + logmn log k < 1� 1n + logmn logm2 = 1� 1n + 12n = 1� 12n:Now, assume that m = 1. In this
ase, logm in equation (1) is equal to 0 and, therefore, theprevious sequen
e of formulas show that H(Bk j A)= log k � 1� 1n < 1� 12n . �Proof of Proposition 2: We will prove the
hain of impli
ations 3)) 1)) 2)) 3).The impli
ation 3)) 1) is straightforward. Next we show 1)) 2). Towards a
ontradi
tion,assume that there exists I 2 inst(S;�), p 2 Pos(I) and a 2 N+�adom(I) su
h that Ip a 6j= �. Letk > 0 be su
h that adom(I)[fag � [1; k℄. By Claim 1 (see Appendix), for every b 2 [1; k℄�adom (I),Ip b 6j= �. Thus, for every a 2 [1; k℄ � adom(I), P (a j �a0) = 0, where �a0 is the tuple in
(I; p)
ontaining no variables. Therefore, applying Lemma 2 with n = 2kIk�1 and m = jadom(I)j, we
on
lude that for k > m2:InfkI (p j �)log k = H(Bk�(I; p) j A(I; p))log k < 1� 12 � 2kIk�1 :10

Sin
e InfI(p j �) = limk!1 InfkI (p j �)= log k exists by Lemma 1, we
on
lude that InfI(p j �) < 1and thus (S;�) is not well-designed, a
ontradi
tion.Next, we show 2)) 3). Let I 2 inst(I;�) and p 2 Pos(I). Let kIk = n and let k > n be su
hthat I 2 instk(S;�). First, we prove that for every a 2 [1; k℄� adom(I) and �a 2
(I; p),jSAT k�(I(a;�a))j � (k � n)jvar(�a)j (2)where var (�a) is the set of variables in �a. We do it by indu
tion on jvar(�a)j 3. We do it byindu
tion on jvar(�a)j. Assume that jvar (�a)j = 0. Then given that Ip a j= �, we
on
lude thatjSAT k�(I(a;�a))j = 1. Now assume that (2) is true for every tuple in
(I; p)
ontaining at most mvariables, and let jvar(�a)j = m+ 1. Suppose that �a = (a1; : : : ; ap�1; ap+1; : : : ; an) and ai = vi, forsome i 2 [1; p � 1℄ [[p + 1; n℄. Let I 0 = Ip a. By the assumption, I 0 j= �, and hen
e for everyb 2 [1; k℄ � adom(I 0) we have I 0i b j= �. Thus, given that j[1; k℄ � adom(I 0)j � k � n and forevery b1; b2 2 [1; k℄ � adom(I 0), jSAT k�(I 0(a;�b1))j = jSAT k�(I 0(a;�b2))j, where �bj (j = 1; 2) is a tuple
onstru
ted from �a by repla
ing vi by bj , we
on
lude that if �b is a tuple
onstru
ted from �a byrepla
ing vi by an arbitrary b 2 [1; k℄ � adom(I 0), then jSAT k�(I(a;�a))j � (k � n) � jSAT k�(I 0(a;�b))j,sin
e jadom(I 0)j � n. By the indu
tion hypothesis, jSAT k�(I 0(a;�b))j � (k�n)jvar(�b)j = (k�n)jvar(�a)j�1and, therefore, jSAT k�(I(a;�a))j � (k � n)jvar(�a)j, proving (2).Now we show that limk!1[log k� InfkI (p j �)℄ = 0. For every k � 1 su
h that adom(I) � [1; k℄,log k � InfkI (p j �) and, therefore, limk!1[log k � InfkI (p j �)℄ � 0. Hen
e, to prove the theoremwe will show that limk!1[log k � InfkI (p j �)℄ � 0: (3)Let k � 1 be su
h that adom(I) � [1; k℄. Assume that k > n. Let a 2 [1; k℄ � adom(I) and�a 2
(I; p). Sin
e Pb2[1;k℄ jSAT k�(I(b;�a))j � kjvar(�a)j+1, using (2), we getP (a j �a) � (k � n)jvar(�a)jkjvar(�a)j+1 = 1k (1� nk)jvar(�a)j: (4)By Claim 1 (see Appendix), for every a; b 2 [1; k℄�adom(I) and every �a 2
(I; p), P (a j �a) = P (b j�a). Thus, for every a 2 [1; k℄ � adom(I) and every �a 2
(I; p),P (a j �a) � 1=(k � jadom(I)j) � 1=(k � n): (5)In order to prove (3), we need to establish a lower bound for InfkI (p j �). We do this by using (4)and (5) as follows: Given the term P (a j �a) log 1P (aj�a) , we use (4) and (5) to repla
e P (a j �a) and3This indu
tion relies on the following simple idea: If a 62 adom(I), then Ip a j= � and, therefore, one
an repla
evalues in positions of �a one by one, provided that ea
h position gets a fresh value.
11

log 1P (aj�a) by smaller terms, respe
tively. More pre
isely,InfkI (p j �) = X�a2
(I;p)�P (�a) Xa2[1;k℄P (a j �a) log 1P (a j �a)�� 12n�1 Xa2[1;k℄�adom(I) X�a2
(I;p) 1k (1� nk)jvar(�a)j log(k � n)= 12n�1 log(k � n) 1k Xa2[1;k℄�adom(I) n�1Xi=0 �n� 1i �(1� nk)i= 12n�1 log(k � n) 1k Xa2[1;k℄�adom(I)((1� nk) + 1)n�1� 12n�1 log(k � n) 1k (k � n) (2� nk)n�1� 12n�1 log(k � n) 1k (k � n) (2� 2nk)n�1= 12n�1 log(k � n) (1� nk) 2n�1 (1� nk)n�1= log(k � n) (1� nk)n:Therefore, log k�InfkI (p j �) � log k�log(k�n) (1�nk)n. Sin
e limk!1[log k�log(k�n) (1�nk)n℄ =0 we
on
lude that (3) holds. This
ompletes the proof of Proposition 2 �A natural question at this point is whether the problem of
he
king if a relational s
hema is well-designed is de
idable. It is not surprising that for arbitrary �rst-order
onstraints, the problem isunde
idable:Proposition 3 The problem of verifying whether a relational s
hema
ontaining �rst-order
on-straints is well-designed is unde
idable.Proof: It is known that the problem of verifying whether a �rst-order senten
e ' of the form9�x8�y (�x; �y), where (�x; �y) is an arbitrary �rst-order formula, is �nitely satis�able is unde
idable.Denote this de
ision problem by P98.We will redu
e P98 to the
omplement of our problem. Let ' be a formula of the form shownabove. Assume that ' is de�ned over a relational s
hema fR1; : : : ; Rng and j�xj = m > 0, and letS be a relational s
hema fU1; U2; R1; : : : ; Rng, where U1, U2 are m-ary predi
ates. Furthermore,de�ne a set of
onstraints � over S as follows:� = f8�x (U1(�x)$ U2(�x)); 8�x (U1(�x)! 8�y (�x; �y))g: (6)It suÆ
es to show that ' 2 P98 if and only if (S;�) is not well-designed.()) Assume that ' 2 P98 and let I0 be an instan
e of fR1; : : : ; Rng satisfying '. De�neI 2 inst(S;�) as follows: I(Ri) = I0(Ri), for every i 2 [1; n℄, and I(U1) = I(U2) = f�ag, where �a isan m-tuple in I0 su
h that I0 j= 8�y (�a; �y). Let a 2 N+�adom(I) and p be an arbitrary position inI(U1). Then Ip a 6j= 8�x (U1(�x)$ U2(�x)) and, therefore, (S;�) is not well-designed by Proposition2. (() Assume that ' 62 P98. Then for every nonempty instan
e I 2 inst(S;�), I(U1) = I(U2)= ; and I(Ri) 6= ;, for some i 2 [1; n℄. But for every position p of a value in I(Rj) (j 2 [1; n℄) and12

every a 2 N+ � adom(I), Ip a j= � sin
e I(U1) and I(U2) are empty. We
on
lude that (S;�) iswell-designed by Proposition 2. �However, integrity
onstraints used in database s
hema design are most
ommonly universal, thatis, of the form 8�x (�x), where (�x) is a quanti�er-free formula. FDs, MVDs and JDs are universal
onstraints as well as more elaborated dependen
ies su
h as equality generating dependen
ies andfull tuple generating dependen
ies [1℄. For universal
onstraints, the problem of testing if a relationals
hema is well-designed is de
idable. In fa
t,Proposition 4 The problem of de
iding whether a s
hema
ontaining only universal
onstraintsis well-designed is
o-NEXPTIME-
omplete. Furthermore, if for a �xed m, ea
h relation in S hasat most m attributes, then the problem is �p2-
omplete.To prove this proposition, �rst we have to prove a lemma. In this lemma we use the followingterminology. A �rst-order
onstraint ' is a �n-senten
e if ' is of the form Q1x1Q2x2 � � �Qmxm ,where (1) Qi 2 f8;9g (i 2 [1;m℄); (2) is a quanti�er-free formula; (3) the string of quanti�ersQ1Q2 � � �Qm
onsists of n
onse
utive blo
ks, all quanti�ers in the same blo
k are the same and noadja
ent blo
ks have the same quanti�ers; and (4) the �rst blo
k
ontains existential quanti�ers.Moreover, �n-senten
es are de�ned analogously, but requiring that the �rst blo
k
ontains universalquanti�ers.Lemma 3 Let S be a relational s
hema and � be a set of �n [�n-senten
es over S, n � 1.Then there exists a relational s
hema S0 � S and a �n+1-senten
e ' over S0 su
h that (S;�) iswell-designed i� ' 2 �+. Moreover, k'k is O(k(S;�)k2).Proof: Assume that S = fRm11 ; : : : ; Rmnn g, wheremi is the arity of Ri (i 2 [1; n℄). De�ne a relationals
hema S0 as S [fRmii;j j i 2 [1; n℄ and j 2 [1;mi℄g [fU1g. To de�ne ', �rst we de�ne senten
e as the
onjun
tion of the following formulas.� Wni=1 9x1 � � � 9xmi Ri(x1; : : : ; xmi). For some i 2 [1; n℄, relation Ri is not empty.� 9x (U(x) ^ 8y (U(y)! x = y)). U
ontains exa
tly one element.� For every i 2 [1; n℄,8x8y1 � � � 8ymi�1 (U(x)! mîj=1:Ri(y1; : : : ; yj�1; x; yj ; : : : ; ymi�1)):That is, the element
ontained in U is not
ontained in the a
tive domain of relation Ri, forevery i 2 [1; n℄.� For every i 2 [1; n℄,(8x1 � � � 8xmi :Ri(x1; : : : ; xmi))! (mîj=18y1 � � � 8ymi :Ri;j(y1; : : : ; ymi)):If Ri is empty, then Ri;j is empty, for every j 2 [1;mi℄.13

� For every i 2 [1; n℄ and every j 2 [1;mi℄,9u1 � � � 9umi Ri(u1; : : : ; umi)!9x9x09y1 � � � 9yj�19yj+1 � � � 9ymi (Ri(y1; : : : ; yj�1; x; yj+1; : : : ; ymi)^:Ri;j(y1; : : : ; yj�1; x; yj+1; : : : ; ymi)^Ri;j(y1; : : : ; yj�1; x0; yj+1; : : : ; ymi) ^ U(x0)^8z1 � � � 8zmi ((zj 6= x ^ zj 6= x0) _ mi_k=1;k 6=j zk 6= yk !(Ri(z1; : : : ; zmi)$ Ri;j(z1; : : : ; zmi)))):If Ri is not empty, then there exists a tuple t in Ri and a tuple t0 in Ri;j su
h that t0 is notin Ri, t is not in Ri;j and t, t0
ontain exa
tly the same values, ex
ept for the element in thej-th
olumn where t0
ontains a value that is in relation U . Furthermore, every other tupleis in Ri if and only if is in Ri;j.Given i 2 [1; n℄ and j 2 [1;mi℄, we denote by �[Ri=Ri;j ℄ the set of �rst-order
onstraints generatedfrom � by repla
ing every o

urren
e of Ri by Ri;j. We de�ne senten
e ' as follows: ! n̂i=1 mîj=1�[Ri=Ri;j ℄: (7)Noti
e that is a �2-senten
e and, therefore, ' is a �n+1-senten
e, sin
e n � 1. To �nish theproof, we have to show that (S;�) is well-designed if and only if ' 2 �+.(() Assume that (S;�) is not well-designed. Then by Proposition 2, there exists I 2 inst(S;�),p 2 Pos(I) and a 2 N+ � adom(I) su
h that Ip a 6j= �. Assume that p is the position of someelement in the j0-th
olumn of Ri0 (i0 2 [1; n℄, j0 2 [1;mi0 ℄). Then we de�ne an instan
e I 0 of S0 asfollows. For every i 2 [1; n℄, I 0(Ri) = I(Ri), I(U) = fag and I 0(Ri0;j0) = Ip a(Ri0). Furthermore,for every i 2 [1; n℄ and j 2 [1;mi℄, with i 6= i0 or j 6= j0, if I(Ri) is empty, then I 0(Ri;j) is alsoempty, else I 0(Ri;j) is
onstru
ted by repla
ing an arbitrary element in the j-th
olumn of I(Ri)by a. Then I 0 j= �, sin
e I j= � and I 0(Ri) = I(Ri) for every i 2 [1; n℄. I 0 j= sin
e (1) I 0(Ri0)is not empty (I(Ri0) is not empty); (2) I 0(U) = fag and a 62 adom(I); (3) for every i 2 [1; n℄, ifI 0(Ri) is empty, then I 0(Ri;j) is empty, for every j 2 [1;mi℄; and (4) for every i 2 [1; n℄, j 2 [1;mi℄,if I 0(Ri) is not empty, then I 0(Ri;j) di�ers from I 0(Ri) by exa
tly one value, whi
h is in U . Finally,I 0 6j= �[Ri0=Ri0;j0 ℄, sin
e I 0(Ri0;j0) = Ip a(Ri0) and Ip a 6j= �. We
on
lude that I 0 6j= ' and,therefore, ' 62 �+.()) Assume that ' 62 �+. Then there exists a database instan
e I 0 of S0, i0 2 [1; n℄ andj0 2 [1;mi0 ℄ su
h that I 0 j= �, I 0 j= and I 0 6j= �[Ri0=Ri0;j0 ℄. We note that I 0(Ri0) is not empty(if I 0(Ri0) is empty, then I 0(Ri0;j0) is empty (I 0 j=) and, therefore, I 0(Ri0;j0) = I 0(Ri0) andI 0 j= �[Ri0=Ri0;j0 ℄, sin
e I 0 j= �, a
ontradi
tion). De�ne an instan
e I of S as follows. For everyi 2 [1; n℄, I(Ri) = I 0(Ri). Let a be the element in I 0(U) and let p be the position in I of theelement that has to be
hanged to obtain I 0(Ri0;j0) from I(Ri0). Then (1) I is not empty, sin
eI 0 j= ; (2) I j= �, sin
e I 0 j= � and I(Ri) = I 0(Ri), for every i 2 [1; n℄; and (3) Ip a 6j= �, sin
eI 0 6j= �[Ri0=Ri0;j0℄. Given that a 2 N+ � adom(I), sin
e I 0 j= , by Proposition 2 we
on
lude that(S;�) is not well-designed. ��2-senten
es
orrespond to the S
h�on�nkel-Bernays fragment of �rst-order logi
. It is known thatthe problem of verifying if a S
h�on�nkel-Bernays formula has a �nite model is NEXPTIME-
omplete14

[24℄ and be
omes �p2-
omplete if every relation has at mostm attributes, wherem is a �xed
onstant.Thus, from Lemma 3 we obtain the following
orollary and the proof of Proposition 4.Corollary 1 The problem of de
iding whether a s
hema
ontaining only �1[�1-senten
es is well-designed belongs to
o-NEXPTIME.Proof of Proposition 4: We
onsider only the
ase of unbounded-arity relations, being the
aseof �xed-arity relations similar. The membership part of the proposition is a parti
ular
ase ofCorollary 1. The hardness part of the proposition follows from the following observation. If in theredu
tion of Proposition 3 the formula ' is of the form 9�x8�y (�x; �y), where is quanti�er-free,then the set of
onstraints � de�ned in (6) is universal. Thus, the same redu
tion of Proposition 3shows that the problem of de
iding whether a �2-senten
e is �nitely satis�able is redu
ible to theproblem of de
iding whether a s
hema
ontaining only universal
onstraints is well-designed. �For spe
i�
 kinds of
onstraints, e.g., FDs, MVDs, lower
omplexity bounds will follow from theresults in the next se
tion.4.2 Justi�
ation of Relational Normal FormsWe now apply the
riterion of being well-designed to various relational normal forms. We show thatall of them lead to well-designed spe
i�
ations, and some pre
isely
hara
terize the well-designedspe
i�
ations that
an be obtained with a
lass of
onstraints.We start by �nding
onstraints that always give rise to well-designed s
hemas. Re
all that atyped unirelational equality generating dependen
y [1℄ is a
onstraint of the form:8 (R(�x1) ^ � � � ^R(�xm)! �x = �y);where 8 represents the universal
losure of a formula, �x; �y � �x1[� � �[�xm and there is an assignmentof variables to
olumns su
h that ea
h variable o

urs only in one
olumn and ea
h equality atominvolves a pair of variables assigned to the same
olumn. An extended key is a typed unirelationalequality generating dependen
y of the form:8 (R(�x1) ^ � � � ^R(�xm)! �xi = �xj);where i; j 2 [1;m℄. Note that every key is an extended key.Proposition 5 If S is a s
hema and � a set of extended keys over S, then (S;�) is well-designed.Before proving this proposition we introdu
e one de�nition that will be used in several proofs. LetI 2 inst(S;�), p 2 Pos(I), a 2 [1; k℄ and �a 2
(I; p). Given a substitution � : �a ! [1; k℄ andR 2 S, we say that a tuple t0 2 �(I(a;�a))(R) is generated by a tuple t 2 I(R) by means of a tuplet� 2 I(a;�a) if �(t�) = t0 and t�
an be obtained from t by repla
ing ea
h value in it by the elementof (a; �a) in the same position. We say t0 2 �(I(a;�a))(R) is generated by a tuple t 2 I(R) if it isgenerated by t by means of some t� 2 I(a;�a).Proof of Proposition 5: To prove the proposition, we now use part 2) of Proposition 2. LetI 2 inst(S;�), p 2 Pos(I) and a 2 N+ � adom(I). We have to show that Ip a j= �.Assume to the
ontrary that Ip a 6j= �. Then there exists R 2 S and an extended key8(R(�x1) ^ � � � ^R(�xm)! �xi = �xj) 2 � su
h that Ip a 6j= 8(R(�x1) ^ � � � ^R(�xm)! �xi = �xj). Thus,15

there exists a substitution �0 : �x1 [� � � [�xm ! [1; k℄ su
h that �0(�xl) = t0l and t0l 2 Ip a(R), forevery l 2 [1;m℄, and t0i 6= t0j. De�ne a substitution � : �x1 [� � � [�xm ! [1; k℄ as follows. Let b be thevalue in the p-th position of I. Then�(x) = (�0(x) �0(x) 6= ab OtherwiseLet �(�xl) = tl, for every l 2 [1; n℄. It is straightforward to verify that t01, : : :, t0n are generated fromt1, : : :, tn, respe
tively. Given that I j= �, ti = tj and, therefore, t0i = t0j. This
ontradi
tion provesthe proposition. �Corollary 2 A relational spe
i�
ation (S;�) in DK/NF is well-designed.In the rest of this se
tion, we also denote join dependen
ies by �rst-order senten
es. More pre
isely,a join dependen
y over a relation R is a �rst-order senten
e of the form:8 (R(�x1) ^ � � � ^R(�xm)! R(�x));where 8 represents the universal
losure of a formula, �x � �x1 [� � � [�xm, every variable not in �xo

urs in pre
isely one �xi (i 2 [1;m℄) and there is an assignment of variables to
olumns su
h thatea
h variable o

urs only in one
olumn. For example, join dependen
y ./[AB;BC℄ over a relationR(A;B;C)
an be denoted by8x8y8z8u18u2 (R(x; y; u1) ^R(u2; y; z)! R(x; y; z)):Next, we
hara
terize well-designed s
hemas with FDs and JDs.Theorem 2 Let � be a set of FDs and JDs over a relational s
hema S. (S;�) is well-designed ifand only if for every R 2 S and every nontrivial join dependen
y 8(R(�x1) ^ � � � ^ R(�xm)! R(�x))in �+, there exists M � f1; : : : ;mg su
h that:1. �x � Si2M �xi.2. For every i; j 2M , 8(R(�x1) ^ � � � ^R(�xm)! �xi = �xj) 2 �+.In the proof of Theorem 2 we shall use
hase for FDs and JDs [21℄ whi
h we now brie
y reviewfor the sake of
ompleteness. A tableau is a set of rows with one
olumn for ea
h attribute insome universe U . The rows are
omposed of distinguished and non-distinguished variables. Ea
hvariable may appear in only one
olumn and only one distinguished variable may appear in one
olumn. Let the non-distinguished variables be x1, : : :, xm. The
hase of T with respe
t to a set �of FDs and JDs is based on the su

essive appli
ation of the following two rules:FD rule: Let � be a fun
tional dependen
y in � of the form X ! A, where A is a singleattribute, and let u; v 2 T be su
h that u[X℄ = v[X℄ and u[A℄ 6= v[A℄. The result ofapplying the FD � to T is a new tableau T 0 de�ned as follows. If one of the variablesu[A℄; v[A℄ is distinguished, then all the o

urren
es of the other one are renamed tothat variable. If both are non-distinguished, then all the o

urren
es of the variablewith the larger subs
ript are renamed to the variable with the smaller subs
ript.JD rule: Let � be a join dependen
y of the form ./[X1; : : : ;Xn℄ and let u be a tuple not inT . If there are u1; : : : ; un 2 T su
h that ui[Xi℄ = u[Xi℄ for every i 2 [1; n℄, then theresult of applying the JD � over T is T [fug.16

A
hasing sequen
e of T by � is a sequen
e of tableaux T = T0, T1, T2, : : :, su
h that for ea
h i � 0,Ti+1 is the result of applying some dependen
y in � to Ti. It is known that any su
h sequen
eterminate and the resulting tableau does not depend on a parti
ular sequen
e [21℄; we denote thistableau by Chase(T;�).Every appli
ation of either the \FD rule" or the \JD rule" naturally de�nes a substitution ofvariables by variables (in the latter, this substitution is the identity). The substitution de�ned bythe
hase is obtained as the
omposition of the substitutions for ea
h step of the
hase. This sub-stitution enables us to map ea
h original variable (tuple) in T to a variable (tuple) in Chase(T;�).Given a set of FDs and JDs � [f�g, it was shown in [21℄ that the
hase
an be used for
he
king whether � j= �. The idea is to
onstru
t a tableau T�,
ompute Chase(T� ;�) and verifywhether some
ondition is satis�ed. If � is an FD X ! A, then T� has two rows: one
ontains onlydistinguished variables, and the other one
ontains distinguished variables in all the X-
olumnsand non-distinguished variables elsewhere. Then � j= � i� Chase(T� ;�) has only one distinguishedvariable in the A-
olumn [21℄. Moreover, if � is a JD ./[X1; : : : ;Xn℄, then T� has n rows. For everyi 2 [1; n℄, the i-th row
ontains distinguished variables in the Xi-
olumns and non-distinguishedvariables in the remaining
olumns. Furthermore, every non-distinguished variable in T� appearsexa
tly on
e. Then � j= � i� Chase(T�;�)
ontains a row of all distinguished variables [21℄.Chase, and all the results shown above,
an be generalized in a natural manner to the
ase ofmore expressive
onstraints like typed equality generating dependen
ies (see [1℄).We now move to the proof of Theorem 2. We need two lemmas �rst.Lemma 4 Let � be a set of FDs and JDs over a relational s
hema S and R 2 S. Assume that �
ontains a JD 8(R(�x1) ^ � � � ^ R(�xm) ! R(�x)) su
h that 8(R(�x1) ^ � � � ^ R(�xm) ! �x = �xi) 62 �+,for every i 2 [1;m℄. Then there exists I 2 inst(S;�) and p 2 Pos(I) su
h that InfI(p j �) < 1:Proof: Let T be a tableau
ontaining tuples f�x1; : : : ; �xmg, and let �x be the distinguishedvariables. Let � be a one-to-one fun
tion with the domain �x1 [� � � [�xm and the range
ontainedin N+ . De�ne I = �(Chase(T;�)). Assume that � is the
omposition of the substitutionsused in the
hase. Let tj = �(�(�xj)), for every j 2 [1;m℄, and t = �(�(�x)). Given that8(R(�x1) ^ � � � ^ R(�xm) ! �x = �xi) 62 �+, for every i 2 [1;m℄, we
on
lude that t 6= tj, for everyj 2 [1;m℄. Let A 2 sort(R), p be the position of t[A℄ in I and k su
h that adom(I) � [1; k℄. Sin
eI j= � and I
ontains t1, : : :, tm, the JD 8(R(�x1) ^ � � � ^R(�xm)! R(�x)) 2 � implies that I must
ontain t. Thus,
hanging any value in t generates an instan
e that does not satisfy �. Hen
e, forevery a 2 [1; k℄ � ft[A℄g, P (a j �a0) = 0, where �a0 is the tuple in
(I; p)
ontaining no variables.Applying Lemma 2 we
on
lude that H(Bk�(I; p) j A(I; p))= log k <
 for some
onstant
 < 1, forall suÆ
iently large k, and thus by Lemma 1, InfI(p j �) = limk!1 InfkI (p j �)= log k < 1: �Given a set � of FDs and JDs over a relational s
hema S and a JD ' 2 � of the form 8(R(�x1) ^� � � ^R(�xm)! R(�x)), de�ne an equivalen
e relation �' on tuples of variables as follows. For everyi; j 2 [1;m℄, �xi �' �xj if 8(R(�x1)^� � �^R(�xm)! �xi = �xj) 2 �+. Let [i℄' be the equivalen
e
lass of�xi, for every i 2 [1;m℄, and let var ([i℄') be the set of variables
ontained in all the tuples �xj 2 [i℄'.Lemma 5 Let � be a set of FDs and JDs over a relational s
hema S and R 2 S. Assume that�
ontains a JD ' of the form 8(R(�x1) ^ � � � ^ R(�xm) ! R(�x)) su
h that �x 6� var([i℄'), for everyi 2 [1;m℄. Then there exists I 2 inst(S;�) and p 2 Pos(I) su
h that InfI(p j �) < 1:Proof: If 8(R(�x1) ^ � � � ^ R(�xm) ! �x = �xi) 62 �+, for every i 2 [1;m℄, then by Lemma 4 thereexists I 2 inst(S;�) and p 2 Pos(I) su
h that InfI(p j �) < 1: Thus, we may assume that there17

exists i 2 [1;m℄ su
h that 8(R(�x1) ^ � � � ^ R(�xm)! �x = �xi) 2 �+. By the hypothesis, there existsl 2 [1; j�xj℄ and a variable x in the l-th
olumn of �x su
h that x 62 var ([i℄'). Let u be the variablein the l-th
olumn of �xi and Ui the set of variables in the l-
olumn of all the tuples �xj (j 2 [1;m℄)su
h that �xi �' �xj.Let T be a tableau f�x1; : : : ; �xmg, with �xi as distinguished variables. In Chase(T;�), all thetuples in the equivalen
e
lass of �xi (and no other) are identi�ed with this tuple. Denote the l-th
omponent of tuple �xj by �xlj (and similarly for other tuples).Let � be a one-to-one fun
tion with the domain �x1 [� � � [�xm and the range
ontained in N+and I = �(Chase(T;�)). Assume that � is the
omposition of the substitutions used in the
hase.Let tj = �(�(�xj)) be a tuple in I, for every j 2 [1;m℄. Note that �(�(�xi)) = �(�xi) sin
e �xi is a tupleof distinguished variables. Additionally, sin
e I satis�es 8(R(�x1) ^ � � � ^R(�xm)! �x = �xi), it mustbe the
ase that �(�(�x)) = �(�xi).Let p be the position in I of tli. The value in this position is �(u). We will show that for everya 2 [1; k℄ � f�(u)g, P (a j �a0) = 0, where �a0 is a tuple in
(I; p)
ontaining no variables.Denote by t0j the tuple of I(a;�a0) that
orresponds to tj in I. Note that t0j = tj for all j su
hthat �xj is not in [i℄'. When �xj is in [i℄', t0j di�ers from tj only in that the value in its l-th
olumn is a rather than �(u). Assume that I(a;�a0) satis�es �. Then it satis�es, in parti
ular,8(R(�x1) ^ � � � ^R(�xm)! R(�x)). Re
all that in this JD, every variable not in �x o

urs in a unique�xj. We give a substitution from the variable tuples �x1, : : :, �xm to the tuples t01, : : :, t0m, respe
tively.Let �0 : �x1 [� � � [�xm ! [1; k℄ be a substitution de�ned as follows. For every y 2 �x1 [� � � [�xm,�0(y) = (�(�(y)) if y 62 Uia otherwise.We
laim that for every j 2 [1;m℄, �0(�xj) = t0j . Clearly, we only need to
onsider the l-th
olumn.Indeed, if �xj is in [i℄', then t0j is tj, ex
ept in the l-
olumn, where tj
ontains the value a, sin
e�xlj is in Ui. Thus, �0(�xj) = t0j. If �xj is not in [i℄', then �xlj is either x, or a variable that o

ursonly in �xj . In either
ase, it is not in Ui. Thus, �0(�xj) = t0j. Sin
e I(a;�a0) is assumed to satisfyJD 8(R(�x1) ^ � � � ^ R(�xm) ! R(�x)), it must
ontain �0(�x). However, sin
e x is not in Ui, �0(�x) =�(�(�x)) = �(�xi) = ti in I, whi
h is not in I(a;�a0), a
ontradi
tion.We
on
lude that for every a 2 [1; k℄ � f�(u)g, P (a j �a0) = 0. Hen
e, by Lemma 2,InfkI (p j �)= log k <
 for some
onstant
 < 1, for all suÆ
iently large k, and then by Lemma 1,InfI(p j �) = limk!1 InfkI (p j �)= log k < 1. This proves the lemma. �Theorem 2 is a
orollary of Proposition 5 and Lemma 5. We note that this theorem justi�es variousnormal forms proposed for JDs and FDs [14, 29℄.Corollary 3 Let � be a set of FDs and JDs over a relational s
hema S. If (S;�) is in PJ/NF or5NFR, then it is well-designed.However, neither of these normal forms
hara
terizes pre
isely the notion of being well-de�ned:Proposition 6 There exists a s
hema S and a set of JDs and FDs � su
h that (S;�) is well-designed, but it violates all of the following: DK/NF, PJ/NF, 5NFR.Proof: Let S = fR(A;B;C)g and � = fAB ! C; AC ! B; ./[AB;AC;BC℄g. This spe
i�
ationis not in DK/NF and PJ/NF sin
e the set of keys implied by � is fAB ! ABC; AC ! ABC;18

ABC ! ABCg and this set does not imply ./[AB;AC;BC℄. Furthermore, this spe
i�
ation is notin 5NFR sin
e ./[AB;AC;BC℄ is a strong-redu
ed join dependen
y and BC is not a key in �.Join dependen
y ./[AB;AC;BC℄
orresponds to the following �rst order senten
e:8x8y8z8u18u28u3 (R(x; y; u1) ^R(x; u2; z) ^R(u3; y; z)! R(x; y; z)):From Theorem 2, we
on
lude that (S;�) is well designed sin
e � implies the senten
e8x8y8z8u18u28u3(R(x; y; u1) ^R(x; u2; z) ^R(u3; y; z)! y = u2 ^ z = u1):and (x; y; z) � (x; y; u1) [(x; u2; z). �By restri
ting Theorem 2 to the
ase of spe
i�
ations
ontaining only FDs and MVDs (or onlyFDs), we obtain the equivalen
e between well-designed databases and 4NF (respe
tively, BCNF).Theorem 3 Let � be a set of integrity
onstraints over a relational s
hema S.1. If �
ontains only FDs and MVDs, then (S;�) is well-designed if and only if it is in 4NF.2. If �
ontains only FDs, then (S;�) is well-designed if and only if it is in BCNF.5 Normalizing XML dataIn this se
tion we give an overview of the XML normal form
alled XNF, and show that thenotion of being well-designed straightforwardly extends from relations to XML. Furthermore, if all
onstraints are spe
i�ed as fun
tional dependen
ies, this notion pre
isely
hara
terizes XNF.5.1 Overview of XML Constraints and Normalization5.1.1 DTDs and XML treesWe shall use a somewhat simpli�ed model of XML trees in order to keep the notation simple. Weassume a
ountably in�nite set of labels L, a
ountably in�nite set of attributes A (we shall usethe notation �l1;�l2, et
 for attributes to distinguish them from labels), and a
ountably in�niteset V of values of attributes. Furthermore, we do not
onsider PCDATA elements in XML trees sin
ethey
an always be represented by attributes.A DTD (Do
ument Type De�nition) D is a 4-tuple (L0; P;R; r) where L0 is a �nite subset ofL, P is a set of rules a ! Pa for ea
h a 2 L0, where Pa is a regular expression over L0 � frg, Rassigns to ea
h a 2 L0 a �nite subset of A (possibly empty; R(a) is the set of attributes of a), andr 2 L0 (the root).Example 5: The DTD below is a part of DBLP [11℄ that stores
onferen
e data.<!ELEMENT db (
onf*)><!ELEMENT
onf (issue+)><!ATTLIST
onftitle CDATA #REQUIRED><!ELEMENT issue (inpro
eedings+)><!ELEMENT inpro
eedings EMPTY><!ATTLIST inpro
eedingsauthor CDATA #REQUIREDtitle CDATA #REQUIREDpages CDATA #REQUIREDyear CDATA #REQUIRED> 19

This DTD is represented as (L0; P; R; r), where r = db, L0 = fdb;
onf ; issue; inpro
eedingsg, P =fdb !
onf �,
onf ! issue+, issue ! inpro
eedings+, inpro
eedings ! �g, R(
onf) = f�titleg,R(inpro
eedings) = f�author ; �title; �pages ; �yearg and R(db) = R(issue) = ;. �An XML tree is a �nite rooted dire
ted tree T = (N;E) where N is the set of nodes and Eis the set of edges, together with the labeling fun
tion � : N ! L and partial attribute valuefun
tions ��l : N ! V for ea
h �l 2 A. We furthermore assume that for every node x in N , its
hildren x1; : : : ; xn are ordered and ��l(x) is de�ned for a �nite set of attributes �l. We say thatT
onforms to DTD D = (L0; P; R; r), written as T j= D, if the root of T is labeled r, for everyx 2 N with �(x) = a, the word �(x1) � � � �(xn) that
onsists of the labels of its
hildren belongsto the language denoted by Pa, and for every x 2 N with �(x) = a, �l 2 R(a) if and only if thefun
tion ��l is de�ned on x (and thus provides the value of attribute �l).5.1.2 Fun
tional Dependen
ies for XMLTo present a fun
tional dependen
y language for XML we need to introdu
e some terminology.Re
all that L and A are
ountably in�nite sets of labels and attributes, respe
tively. Then anelement path q is a word in L�, and an attribute path is a word of the form q:�l, where q 2 L� and�l 2 A. An element path q is
onsistent with a DTD D if there is a tree T j= D that
ontains anode rea
hable by q (in parti
ular, all su
h paths must have r as the �rst letter); if in addition thenodes rea
hable by q have attribute �l, then the attribute path q:�l is
onsistent with D. The setof all paths (element or attribute)
onsistent with D is denoted by paths(D). This set is �nite fora non-re
ursive D and in�nite if D is re
ursive.A fun
tional dependen
y over DTD D [3℄ is an expression of the form fq1; : : : ; qng ! q, wheren � 1 and q; q1; : : : ; qn 2 paths(D). To de�ne the notion of satisfa
tion for FDs, we use a relationalrepresentation of XML trees from [3℄. Given T j= D, a tree tuple in T is a mapping t : paths(D)!N [V [f?g su
h that if q is an element path whose last letter is a and t(q) 6= ?, then� t(q) 2 N and its label, �(t(q)), is a;� if q0 is a pre�x of q, then t(q0) 6= ? and the node t(q0) lies on the path from the root to t(q)in T ;� if �l is de�ned for t(q) and its value is v 2 V , then t(q:�l) = v.Intuitively, a tree tuple assigns nodes or attribute values or nulls (?) to paths in a
onsistentmanner. A tree tuple is maximal if it
annot be extended to another one by
hanging some nullsto values from N [V . The set of maximal tree tuples is denoted by tuplesD(T). Now we say thatFD fq1; : : : ; qng ! q is true in T if for any t1; t2 2 tuplesD(T), whenever t1(qi) = t2(qi) 6= ? for alli � n, then t1(q) = t2(q) holds.Example 6: Let D be the DTD from Example 5. Among the set � of FDs over this DTD are:db:
onf :�title ! db:
onf ;db:
onf :issue ! db:
onf :issue:inpro
eedings:�year :The �rst fun
tional dependen
y spe
i�es that two distin
t
onferen
es must have distin
t titles.The se
ond one spe
i�es that any two inpro
eedings
hildren of the same issue must have the samevalue of �year. �20

5.1.3 XNF: An XML Normal Form.Suppose we are given a DTD D and a set � of FDs over D. The set of all FDs implied by (D;�)is denoted by (D;�)+, this is, (D;�)+ is the set of all FD X ! Y over D su
h that for everyXML tree T
onforming to D and satisfying �, T j= X ! Y . An FD is
alled trivial if it belongsto (D; ;)+, that is, it is implied by the DTD alone. For example, q ! r, where r is the root, orq ! q:�l, are trivial FDs.We say that (D;�) is in XML Normal Form (XNF) [3℄ if for any nontrivial FD X ! q:�l in(D;�)+, the FD X ! q is in (D;�)+ as well. Intuitively, a violation of XNF means that there issome redundan
y in the do
ument: we may have many nodes rea
hable by path q but all of themwill have the same value of attribute �l (provided they agree on X).Example 7: The DBLP example 5 seen earlier may
ontain redundant information: year is storedmultiple times for the same issue of a
onferen
e. This XML spe
i�
ation is not in XNF sin
edb:
onf :issue ! db:
onf :issue:inpro
eedingsis not in (D;�)+. This suggests making �year an attribute of issue, and indeed, su
h a revisedspe
i�
ation
an easily be shown to be in XNF. �5.2 Well-designed XML dataWe do not need to introdu
e a new notion of being well-designed spe
i�
ally for XML: the de�nitionthat we formulated in Se
tion 4 for relational data will apply. We only have to de�ne the notionof positions in a tree, and then reuse the relational de�nition. For relational databases, positions
orrespond to the \shape" of relations, and ea
h position
ontains a value. Likewise, for XML,positions will
orrespond to the shape (that is more
omplex, sin
e do
uments are modeled astrees), and they must have values asso
iated with them. Consequently, we formally de�ne the setof positions Pos(T) in a tree T = (N;E) as f(x;�l) j x 2 N; �l 2 R(�(x))g. As before, weassume that there is an enumeration of positions (a bije
tion between Pos(T) and f1; : : : ; ng wheren = jPos(T)j) and we shall asso
iate positions with their numbers in the enumeration. We de�neadom(T) as the set of all values of attributes in T and Tp a as an XML tree
onstru
ted from Tby repla
ing the value in position p by a.As in the relational
ase, we take the domain of values V of the attributes to be N+ . Let �be a set of FDs over a DTD D and k > 0. De�ne inst(D;�) as the set of all XML trees that
onform to D and satisfy � and instk(D;�) as its restri
tion to trees T with adom(T) � [1; k℄.Now �x T 2 instk(D;�) and p 2 Pos(T). With the above de�nitions, we de�ne the probabilityspa
es A(T; p) and Bk�(T; p) exa
tly as we de�ned A(I; p) and Bk�(I; p) for a relational instan
e I.That is,
(T; p) is the set of all tuples �a of the form (a1; : : : ; ap�1; ap+1; : : : ; an) su
h that everyai is either a variable, or the value T has in the
orresponding position, SAT k�(T(a;�a)) as the set ofall possible ways to assign values from [1; k℄ to variables in �a that result in a tree satisfying �, andthe rest of the de�nition repeats the relational
ase one verbatim, substituting T for I.We use the above de�nitions to de�ne InfkT (p j �) as the entropy of Bk�(T; p) given A(T; p):InfkT (p j �) def= H(Bk�(T; p) j A(T; p)) :As in the relational
ase, we
an show that the limitlimk!1 InfkT (p j �)log kexists, and we denote it by InfT (p j �). Following the relational
ase, we introdu
e21

De�nition 3 An XML spe
i�
ation (D;�) is well-designed if for every T 2 inst(D;�) and everyp 2 Pos(T), InfT (p j �) = 1.Note that the information-theoreti
 de�nition of well-designed s
hema presented in Se
tion 4 forrelational data proved to be extremely robust, as it extended straightforwardly to a di�erent datamodel: we only needed a new de�nition of Pos(T) to use in pla
e of Pos(I), and Pos(T) is simply anenumeration of all the pla
es in a do
ument where attribute values o

ur. As in the relational
ase,it is possible to show that well-designed XML and XNF
oin
ide. Furthermore, it is also possibleto establish a useful stru
tural
riterion for InfT (p j �) = 1, namely that an XML spe
i�
ation(D;�) is well-designed if and only if one position of an arbitrary T 2 inst(D;�)
an always beassigned a fresh value.Theorem 4 Let D be a DTD and � a set of FDs over D. Then the following are equivalent.1) (D;�) is well-designed.2) (D;�) is in XNF.3) For every T 2 inst(D;�), p 2 Pos(T) and a 2 N+ � adom(T), Tp a j= �.The proof of the theorem follows rather
losely the proof of Proposition 2, by repla
ing relational
on
epts by their XML
ounterparts.Proof of Theorem 4: We will prove the
hain of impli
ations 1)) 2)) 3)) 1).1)) 2) Assume that (D;�) is not in XNF. We will show that there exists T 2 inst(D;�) andp 2 Pos(T) su
h that InfT (p j �) < 1.Given that (D;�) is not in XNF, there exists a nontrivial FD X ! q:�l 2 (D;�)+ su
hthat X ! q 62 (D;�)+. Thus, there is T 2 inst(D;�)
ontaining tree tuples t1; t2 su
h thatt1(q0) = t2(q0) and t1(q0) 6= ?, for every q0 2 X, and t1(q) 6= t2(q). We may assume that t1(q) 6= ?and t2(q) 6= ? (if t1(q) = ? or t2(q) = ?, then t1(q:�l) 6= t2(q:�l), whi
h would
ontradi
tT j= �). Let x = t1(q), p be the position of (x;�l) in T and a = t1(q:�l). Let �a0 be the ve
tor in
(T; p)
ontaining no variables. Given that t1(q) 6= t2(q) and none of these values is ?, for everyb 2 [1; k℄ � fag, T(b;�a0) 6j= �. Thus, for every b 2 [1; k℄ � fag, P (b j �a0) = 0. Now a straightforwardappli
ation of Lemma 2 impliesInfT (p j �) = limk!1 InfkT (p j �)= log k < 1:This
on
ludes the proof.2)) 3) Let (D;�) be an XML spe
i�
ation in XNF, T 2 inst(D;�), p 2 Pos(T) and a 2N+ � adom(T). We prove that Tp a j= �.Assume, to the
ontrary, that Tp a 6j= �. Then there exists a FD X ! q 2 � su
h thatTp a 6j= X ! q. Thus, there exists t01; t02 2 tuplesD(Tp a) su
h that t01(q0) = t02(q0) and t01(q0) 6= ?,for every q0 2 X, and t01(q) 6= t02(q). Assume that these tuples were generated from tuples t1; t2 2tuplesD(T). Given that a 2 N+ � adom(T), t1(q0) = t2(q0) and t1(q0) 6= ?, for every q0 2 X, and,therefore, t1(q) = t2(q), sin
e T j= �. If q is an element path, then t01(q) = t1(q) and t02(q) = t2(q),sin
e Tp a is
onstru
ted from T by modifying only the values of attributes. Thus, t01(q) = t02(q),a
ontradi
tion. Assume that q is an attribute path of the form q1:�l. In this
ase, X ! q1:�lis a nontrivial FD in � and, therefore, X ! q1 2 (D;�)+, sin
e (D;�) is in XNF. We
on
lude22

that t1(q1) = t2(q1). Given that q1 is an element path, as in the previous
ase we
on
lude thatt01(q1) = t02(q1). Hen
e, t01(q1:�l) = t02(q1:�l), again a
ontradi
tion.3)) 1) Let T 2 inst(D;�) and p 2 Pos(T). We have to prove that InfT (p j �) = 1. To showthis, it suÆ
es to prove that limk!1 InfkT (p j �)log k � 1: (8)Let n = jPos(T)j and k > 2n su
h that T 2 instk(D;�). If �a 2
(T; p) and var(�a) is the set ofvariables mentioned in �a, then for every a 2 [1; k℄ � adom(T),jSAT k�(T(a;�a))j � (k � 2n)jvar(�a)jsin
e by hypothesis one
an repla
e values in positions of �a one by one, provided that ea
h positiongets a fresh value. Thus, given that Pb2[1;k℄ jSAT k�(T(b;�a))j � kjvar(�a)j+1, for every a 2 [1; k℄ �adom(T) and every �a 2
(T; p), we have:P (a j �a) � (k � 2n)jvar(�a)jkjvar(�a)j+1 = 1k (1� 2nk)jvar(�a)j: (9)Fun
tional dependen
ies are generi

onstraints. Thus, for every a; b 2 [1; k℄� adom(T) and every�a 2
(T; p), P (a j �a) = P (b j �a). Hen
e, for every a 2 [1; k℄ � adom(T) and every �a 2
(T; p):P (a j �a) � 1k � jadom(T)j � 1k � n: (10)In order to prove (8), we need to establish a lower bound for InfkT (p j �). We do this by using (9)and (10) as follows: Given the term P (a j �a) log 1P (aj�a) , we use (9) and (10) to repla
e P (a j �a) andlog 1P (aj�a) by smaller terms, respe
tively. More pre
isely,InfkT (p j �) = X�a2
(T;p)�P (�a) Xa2[1;k℄P (a j �a) log 1P (a j �a)�� 12n�1 Xa2[1;k℄�adom(T) X�a2
(T;p) 1k (1� 2nk)jvar(�a)j log(k � n)= 12n�1 log(k � n) 1k Xa2[1;k℄�adom(I) n�1Xi=0 �n� 1i �(1� 2nk)i= 12n�1 log(k � n) 1k Xa2[1;k℄�adom(I)((1� 2nk) + 1)n�1� 12n�1 log(k � n) 1k (k � n) (2� 2nk)n�1= 12n�1 log(k � n) (1� nk) 2n�1 (1� nk)n�1= log(k � n) (1� nk)n:Therefore, InfkT (pj�)log k � log(k�n)log k (1 � nk)n. Sin
e limk!1 log(k�n)log k (1 � nk)n = 1, (8) follows. This
on
ludes the proof. �23

The theory of XML
onstraints and normal forms is not nearly as advan
ed as its relational
oun-terparts, but we demonstrated here that the de�nition of well-designed s
hemas works well for theexisting normal form based on FDs; thus, it
an be used to test other design
riteria for XML whenthey are proposed.6 Normalization algorithmsWe now show how the information-theoreti
 measure of Se
tion 4
an be used for reasoning aboutnormalization algorithms at the instan
e level. For this se
tion, we assume that � is a set of FDs,both for the relational and the XML
ases. The results shown here state that after ea
h step of ade
omposition algorithm, the amount of information in ea
h position does not de
rease.6.1 Relational DatabasesLet I 0 be the result of applying one step of a normalization algorithm to I. In order to
omparethe amount of information in these instan
es, we need to show how to asso
iate positions in Iand I 0. Sin
e we only
onsider here fun
tional dependen
ies, we deal with BCNF, and standardBCNF de
omposition algorithms use steps of the following kind: pi
k a relation R with the setof attributes W , and let W be the disjoint union of X;Y;Z, su
h that X ! Y 2 �+. Then aninstan
e I = I(R) of R gets de
omposed into IXY = �XY (I) and IXZ = �XZ(I), with the sets ofFDs �XY and �XZ , where �U stands for fC ! D 2 �+ j CD � U � Wg. This de
ompositiongives rise to two partial maps �XY : Pos(I)! Pos(IXY) and �XZ : Pos(I)! Pos(IXZ). If p is theposition of t[A℄ for some A 2 XY , then �XY (p) is de�ned, and equals the position of �XY (t)[A℄ inIXY ; the mapping �XZ is de�ned analogously. Note that �XY and �XZ
an map di�erent positionsin I to the same position of IXY or IXZ .We now show that the amount of information in ea
h position does not de
rease in the normal-ization pro
ess.Theorem 5 Let (X;Y;Z) partition the attributes of R, and let X ! Y 2 �+. Let I 2 inst(R;�)and p 2 Pos(I). If U is either XY or XZ and �U is de�ned on p, then InfI(p j �) � InfIU (�U (p) j�U):To prove this theorem, �rst we need to prove two lemmas.Lemma 6 Let � be a set of FDs over a relational s
hema S, I 2 inst(S;�), p 2 Pos(I) and�a 2
(I; p). Then limk!1 1log kPa2[1;k℄ P (a j �a) log 1P (aj�a) is either 0 or 1.Proof: Given in Appendix A.2. �Let R be a relation s
hema su
h that sort(R) = X [Y [Z, where X, Y and Z are nonemptypairwise disjoint sets of attributes. Let � be a set of FDs over R and I 2 inst(R;�). Assume thatX ! Y 2 �+. De�ne R0 as a relation s
hema su
h that sort(R0) = X [Y , �0 = �XY , and let I 0be �XY (I). Note that I 0 2 inst(R0;�0). We use Lemma 6 to show the following.Lemma 7 Let t0 2 I, t00 = �XY (t0) and A 2 X [Y . If t0[A℄ is the p-th element in I and t00[A℄ isthe p0-th element in I 0, then InfI(p j �) � InfI0(p0 j �0).24

Proof: Assume that kIk = n, X[Y = fA1; : : : ; Amg and ft[X℄ j t 2 Ig
ontains l tuples f�
1; : : : ; �
lg.For every i 2 [1; l℄,
hoose a tuple ti 2 I su
h that ti[X℄ = �
i. Without loss of generality, assumethat t0 = tl, A = Am and ti[Aj ℄ is the ((i � 1)m + j)-th element in I. Thus, t1[A1℄ is the �rstelement in I, t1[Am℄ is the m-th element in I and tl[Am℄ is the lm-th element in I. We note thatp = lm.For every �a = (a1; : : : ; ap�1; ap+1; : : : ; an) 2
(I; p), de�ne �a� = (a1; : : : ; ap�1; vp+1; : : : ; vn),that is, �a� is generated from �a by repla
ing ea
h ai (i 2 [p + 1; n℄) by a variable. Furthermore,de�ne
�(I; p) as f�a 2
(I; p) j for every i 2 [p + 1; n℄; ai is a variableg. It is easy to see thatif limk!1 1log kPa2[1;k℄ P (a j �a) log 1P (aj�a) = 1, then limk!1 1log kPa2[1;k℄ P (a j �a�) log 1P (aj�a�) = 1.Thus, by Lemma 6, for every �a 2
(I; p):limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) � limk!1 1log k Xa2[1;k℄P (a j �a�) log 1P (a j �a�) :Therefore, InfI(p j �) = limk!1 1log k X�a2
(I;p) 12n�1 Xa2[1;k℄P (a j �a) log 1P (a j �a)= 12n�1 X�a2
(I;p) limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a)� 12n�1 2n�p X�a2
�(I;p) limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a)= 12p�1 X�a2
�(I;p) limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) : (11)Observe that kI 0k = lm. Without loss of generality assume that p0 = lm = p. Then for every�a = (a1; : : : ; ap�1; ap+1; : : : ; an) 2
(I; p), de�ne �a0 2
(I 0; p0) as (a1; : : : ; ap0�1). As in the
aseof �a�, it is easy to see that limk!1 1log kPa2[1;k℄ P (a j �a) log 1P (aj�a) � limk!1 1log kPa2[1;k℄ P (a j�a0) log 1P (aj�a0) . Parti
ularly, this property holds for every �a 2
�(I; p). Thus, by (11) we
on
ludethat InfI0(p0 j �0) = limk!1 1log k X�a2
(I0;p0) 12p0�1 Xa2[1;k℄P (a j �a) log 1P (a j �a)= 12p0�1 X�a2
(I0;p0) limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a)� 12p�1 X�a2
�(I;p) limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a)� InfI(p j �): �Proof of Theorem 5: First, we noti
e that adding new relations and
onstraints over them to as
hema does not a�e
t the information
ontent of the old positions. Namely, let S = fR1; : : : ; Rmgbe a relational s
hema, � = �1 [� � � [�m be a set of FDs over S su
h that �i is a set ofFDs over Ri (i 2 [1;m℄), S0 = fR1g, �0 = �1, I 2 inst(S;�) and I 0 2 inst(S0;�0) su
h that25

I 0 = I(R1). Furthermore, let p be a position in I(R1) and p0 the
orresponding position in I 0. ThenInfI(p j �) = InfI0(p0 j �0). The theorem now is a dire
t
onsequen
e of this fa
t and Lemma 7. �A de
omposition algorithm is e�e
tive in I if for one of its basi
 steps, and for some p, the inequalityin Theorem 5 is stri
t: that is, the amount of information in
reases. This notion leads to another
hara
terization of BCNF.Proposition 7 (R;�) is in BCNF if and only if no de
omposition algorithm is e�e
tive in (R;�).Proof: ()) If (R;�) is in BCNF, then for every I 2 inst(R;�) and p 2 Pos(I), InfI(p j �) = 1.Thus, no de
omposition algorithm
an be e�e
tive on any I 2 inst(R;�).(() Assume that (R;�) is not in BCNF. We will show that there exists a de
ompositionalgorithm e�e
tive in (R;�).Given that (R;�) is not in BCNF, we
an �nd nonempty pairwise disjoint sets of attributesX, Y , Z su
h that X [Y [Z = sort(R), X ! Y 2 �+, X is not a key and (XY;�XY) is inBCNF. Let I be a database instan
e of R
ontaining two tuples t1; t2 de�ned as follows. For everyA 2 sort(R), t1[A℄ = 1. If X ! A 2 �+, then t2[A℄ = 1, otherwise t2[A℄ = 2. It is easy to seethat I 2 inst(R;�). Furthermore, for every A 2 Y and p 2 Pos(I) su
h that t1[A℄ (or t2[A℄) isthe p-th element in I, InfI(p j �) < 1 and InfIXY (�XY (p) j �XY) = 1 (sin
e (XY;�XY) is inBCNF). Therefore, InfI(p j �) < InfIXY (�XY (p) j �XY). Thus, a de
omposition algorithm thatde
omposes I into IXY and IXZ is e�e
tive in (R;�). �6.2 XML dataWe now treat the XML
ase. We shall prove a result similar to Theorem 5. However, to statethe result, we �rst need to review the normalization algorithm for XML data proposed in [3℄, andexplain how ea
h step of the algorithm indu
es a mapping between positions in two XML trees.Throughout the se
tion, we assume that the DTDs are non-re
ursive and that all FDs
ontainat most one element path on the left-hand side. Furthermore, for presenting the algorithm andproving the result, we also make the following assumption: if X ! q:�l is an FD that
auses aviolation of XNF, then every time that q:�l is not null, every path in X is not null (it is shown in[4℄ how to eliminate this assumption).To present the algorithm proposed in [3℄ we need to introdu
e some terminology. Given a DTDD and a set of FDs �, a nontrivial FD X ! q:�l is
alled anomalous, over (D;�), if it violatesXNF; that is, X ! q:�l 2 (D;�)+ but X ! q 62 (D;�)+. The algorithm eliminates anomalousfun
tional dependen
ies by using two basi
 steps: moving an attribute, and
reating a new elementtype.Moving attributes. Let D = (L0; P; R; r) be a DTD and � a set of FDs over D. Assume that(D;�)
ontains an anomalous FD q0 ! q:�l, where q0 is an element path. For instan
e, the DBLPdatabase shown in example 7
ontains an anomalous FD of this form:db:
onf :issue ! db:
onf :issue:inpro
eedings:�year : (12)To eliminate the anomalous FD, we move the attribute �l from the set of attributes of the lastelement a of q to the set of attributes of the last element a0 of q0, as shown in Figure 4 (a). Forinstan
e, to eliminate the anomalous fun
tional dependen
y (12) we move the attribute �year from26

r�l �mqa a0q0
(a) Moving an attribute

. . .

. . .

r q0 a0
�ln�l1

�l
�lana1�l1�ln aqq1qn a00

(b) Creating a new element typeFigure 4: Two transformations of the XML normalization algorithm.the set of attributes of inpro
eedings to the set of attributes of issue. Formally, the new DTDD[q:�l := q0:�m℄, where �m is an attribute, is (L0; P; R0; r), where R0(a0) = R(a0)[f�mg, R0(a)= R(a)� f�lg and R0(b) = R(b) for ea
h b 2 L0 � fa; a0g.After transforming D into a new DTD D[q:�l := q0:�m℄, a new set of fun
tional dependen
iesis generated. Formally, the set of FDs �[q:�l := q0:�m℄ over D[q:�l := q0:�m℄
onsists of all FDsX ! Y 2 (D;�)+ with X [Y � paths(D[q:�l := q0:�m℄). Observe that the new set of FDs doesnot in
lude the fun
tional dependen
y q ! q0:�l.Creating new element types. Let D = (L0; P; R; r) be a DTD and � a set of FDs overD. Assume that (D;�)
ontains an anomalous FD fq0; q1:�l1; : : : ; qn:�lng ! q:�l, where q0 isan element path and n � 1. For example,
onsider the following DTD that des
ribes a database
ontaining
ourses in di�erent universities:<!ELEMENT db (univ*)><!ELEMENT univ (
ourse*)><!ELEMENT
ourse (student*)><!ATTLIST
ourse
no CDATA #REQUIREDtitle CDATA #REQUIRED><!ELEMENT student EMPTY><!ATTLIST studentsno CDATA #REQUIREDname CDATA #REQUIREDgrade CDATA #REQUIRED>For every
ourse, we store its number (�
no), its title and the list of students taking the
ourse.For ea
h student taking a
ourse, we store his/her number (�sno), name, and the grade in the27

ourse. In this database we have the following fun
tional dependen
ies:fdb:univ ; db:univ :
ourse:�
nog ! db:univ :
ourse;fdb:univ ; db:univ :
ourse:student :�snog ! db:univ :
ourse:student :�name : (13)The �rst FD says that two distin
t
ourses of the same university must have distin
t �
no numbers,the se
ond one says that two students of the same university with the same �sno value must havethe same �name. We observe that (13) is an anomalous FD of the form des
ribed above sin
efdb:univ ; db:univ :
ourse:student :�snog ! db:univ :
ourse:student is not in (D;�)+.To eliminate the anomalous FD, we
onstru
t a new DTD D0 by
reating a new element type a00as a
hild of the last element a0 of q0, making a1, : : :, an its
hildren, �l its attribute, and �l1; : : : ;�lnattributes of a1, : : :, an, respe
tively. Furthermore, we remove �l from the set of attributes of thelast element a of q, as shown in Figure 4 (b). Formally, if fa00; a1; : : : ; ang are element types whi
hare not in L0, the new DTD, denoted by D[q:�l := q0:a00[a1:�l1; : : : ; an:�ln;�l℄℄, is (L00; P 0; R0; r),where L00 = L0 [fa00; a1; : : : ; ang and P 0, R0 are de�ned as follows.1) Assume that a0 ! Pa0 2 P . Then P 0 = (P � fa0 ! Pa0g) [fa0 ! (a00)�Pa0 ; a00 ! a�1 � � � a�n;a1 ! �; : : : ; an ! �g.2) R0(a00) = f�lg, R0(ai) = f�lig, for ea
h i 2 [1; n℄, R0(a) = R(a)� f�lg and R0(b) = R(b) forea
h b 2 L0 � fag.For instan
e, to eliminate the anomalous fun
tional dependen
y (13), we
reate a new element typeinfo as a
hild of
ourses, we remove �name as an attribute of student and we make it an attributeof info, we
reate an element type number as a
hild of info and we make �sno its attribute. Wenote that we do not remove �sno as an attribute of student.After transforming D into a new DTDD0 = D[q:�l := q0:a00[a1:�l1; : : : ; an:�ln;�l℄℄, a new setof fun
tional dependen
ies is generated. Formally, �[q:�l := q0:a00[a1:�l1; : : : ; an:�ln;�l℄℄ is a setof FDs over D0 de�ned as the union of the sets of
onstraints de�ned in 1), 2) and 3):1) X ! Y 2 (D;�)+ with X [Y � paths(D0);2) For ea
h FD X ! Y 2 (D;�)+ with X [Y � fq0; q1; : : : ; qn; q1:�l1; : : : ; qn:�ln; q:�lg, wein
lude an FD obtained from it by
hanging qi to q0:a00:ai, qi:�li to q:a00:ai:�li, and q:�l toq:a00:�l;3) fq0; q0:a00:a1:�l1; : : : ; q0:a00:an:�lng ! q0:a00, and fq0:a00; q0:a00:ai:�lig ! q0:a00:ai for i 2 [1; n℄.The Algorithm. In Figure 5 is shown the normalization algorithm proposed in [3℄. This algo-rithm applies the \moving attributes" and \
reating new element types" transformations until thes
hema is in XNF. We note that the \
reating new element types" transformation is not applied toan arbitrary anomalous FD, but rather to a minimal one. To understand the notion of minimalityfor XML FDs, we �rst introdu
e this notion for relational databases. Let R be a relation s
hema
ontaining a set of attributes U and � a set of FDs over R. If (R;�) is not in BCNF, then thereexist pairwise disjoint sets of attributes X, Y and Z su
h that U = X [Y [Z, � ` X ! Y and� 6` X ! A, for every A 2 Z. In this
ase we say that X ! Y is an anomalous FD. To eliminatethis anomaly, a de
omposition algorithm splits relation R into two relations: S(X;Y) and T (X;Z).A desirable property of the new s
hema is that S or T is in BCNF. We say that X ! Y is aminimal anomalous FD if S(X;Y) is in BCNF, that is, S(X;Y) does not
ontain an anomalous28

(1) If (D;�) is in XNF then return (D;�), otherwise go to step (2).(2) If there is an anomalous FD X ! q:�l and an element path q0 in D su
h that q0 2 X andq0 ! X 2 (D;�)+, then:(2.1) Choose a fresh attribute �m(2.2) D := D[q:�l := q0:�m℄(2.3) � := �[q:�l := q0:�m℄(2.4) Go to step (1)(3) Choose a (D;�)-minimal anomalous FD X ! q:�l, where X = fq0; q1:�l1; : : : ; qn:�lng(3.1) Create fresh element types a00, a1, : : :, an(3.2) D := D[q:�l := q0:a00[a1:�l1; : : : ; an:�ln; �l℄℄(3.3) � := �[q:�l := q0:a00[a1:�l1; : : : ; an:�ln; �l℄℄(3.4) Go to step (1)Figure 5: An XML normalization algorithm.FD. This
ondition
an be de�ned as follows: X ! Y is minimal if there are no pairwise disjointsets X 0; Y 0 � U su
h that X 0 [Y 0 $ X [Y , � ` X 0 ! Y 0 and � 6` X 0 ! X [Y .In the XML
ontext, the de�nition of minimality is similar in the sense that we expe
t thenew element types a00, a1, : : :, an form a stru
ture not
ontaining anomalous elements. However,the de�nition of minimality is more
omplex to a

ount for paths used in FDs. We say thatfq; q1:�l1; : : : ; qn:�lng ! q0:�l0 is (D;�)-minimal if there is no anomalous FD X ! qi:�li 2(D;�)+ su
h that i 2 [0; n℄ and X is a subset of fq; q1; : : : ; qn; q0:�l0; : : : ; qn:�lng su
h that jX j� nand X
ontains at most one element path.Now we prove that after ea
h step of the normalization algorithm proposed in [3℄, the amountof information in ea
h position does not de
rease. Let (D;�) be an XML spe
i�
ation and T 2inst(D;�). Assume that (D;�) is not in XNF. Let (D0;�0) be an XML spe
i�
ation obtainedby exe
uting one step of the normalization algorithm. Every step of this algorithm indu
es anatural transformation on XML do
uments. One of the properties of the algorithm is that forea
h normalization step that transforms T 2 inst(D;�) into T 0 2 inst(D0;�0), one
an �nd amap �T 0;T : Pos(T 0) ! 2Pos(T) that asso
iates ea
h position in the new tree T 0 with one or morepositions in the old tree T , as shown below.1) Assume that D0 = D[q:�l := q0:�m℄ and, therefore, q0 ! q:�l is an anomalous FD in(D;�). In this
ase, an XML tree T 0 is
onstru
ted from T as follows. For every t 2tuplesD(T), de�ne a tree tuple t0 by using the following rule: t0(q0:�m) = t(q:�l) and forevery q00 2 paths(D) � fq:�lg, t0(q00) = t(q00). Then T 0 is an XML tree whose tree tuples areft0 j t 2 tuplesD(T)g. Furthermore, positions in t0 are asso
iated to positions in t as follows:if p0 = (t0(q0);�m), then �T 0;T (p0) = f(t(q);�l)g; otherwise, �T 0;T (p0) = fp0g.2) Assume that (D0;�0) was generated by
onsidering a (D;�)-minimal anomalous FD fq0;q1:�l1; : : : ; qn:�lng ! q:�l. Thus, D0 = D[q:�l := q0:a00[a1:�l1; : : : ; an:�ln;�l℄℄. In this
ase, an XML tree T 0 is
onstru
ted from T as follows. For every t 2 tuplesD(T), de�nea tree tuple t0 by using the following rule: t0(q0:a00) is a fresh node identi�er, t0(q0:a00:�l) =t(q:�l), t0(q0:a00:ai) is a fresh node identi�er (i 2 [1; n℄), t0(q:a00:qi:�li) = t(qi:�li) and forevery q00 2 paths(D) � fq:�lg, t0(q00) = t(q00). Then T 0 is an XML tree whose tree tuplesare ft0 j t 2 tuplesD(T)g. Furthermore, positions in t0 are asso
iated to positions in t as29

follows. If p0 = (t0(q0:a00);�l), then �T 0;T (p0) = f(t(q);�l)g. If p0 = (t0(q0:a00:ai);�li), then(t(qi);�li) 2 �T 0;T (p0) (note that in this
ase �T 0;T (p) may
ontain more than one position).For any other position p0 in t0, �T 0;T (p0) = fp0g:Similarly to the relational
ase, we
an now show the following.Theorem 6 Let T be a tree that
onforms to a DTD D and satis�es a set of FDs �, and let T 0 2inst(D0;�0) result from T by applying one step of the normalization algorithm. Let p0 2 Pos(T 0).Then InfT 0(p0 j �0) � maxp2�T 0;T (p0) InfT (p j �):Proof: Let (D;�) be an XML spe
i�
ation and T 2 inst(D;�). Assume that (D;�) is not in XNF.Let (D0;�0) be an XML spe
i�
ation obtained by exe
uting one step of the normalization algorithm.We have to prove that for every p0 2 Pos(T 0), InfT 0(p0 j �0) � maxp2�T 0;T (p0) InfT (p j �): This
anbe done in exa
tly the same way as the proof of Theorem 5. First, by using the same proof as forLemma 6, we show that the same results holds for XML trees. Using this, we show the following:1) Assume D0 = D[q:�l := q0:�m℄ and q0 ! q:�l is an anomalous FD over (D;�). Let a0 bethe last element of q0 and p0 2 Pos(T 0). If p0 is of the form (x;�m), where �(x) = a0, thenInfT 0(p0 j �0) = 1 and, therefore, the theorem trivially holds. Otherwise, �T 0;T (p0) = fp0g andit
an be shown that InfT 0(p0 j �0) � InfT (p0 j �) by using the same proof as that of Lemma7.2) Assume that D0 = D[q:�l := q0:a00[a1:�l1; : : : ; an:�ln;�l℄℄ fq0; q1:�l1; : : : ; qn:�lng ! q:�l isa (D;�)-minimal anomalous FD. Let p0 2 Pos(T 0). If p0 is the position in T 0 of some valuerea
hable from the root by following path q0:a00:�l or q0:a00:ai:�li, for some i 2 [1; n℄, thenInfT 0(p0 j �0) = 1 sin
e fq0; q1:�l1; : : : ; qn:�lng ! q:�l is (D;�)-minimal. Thus, in this
ase the theorem trivially holds. Otherwise, �T 0;T (p0) = fp0g and again it
an be shown thatInfT 0(p0 j �0) � InfT (p0 j �) by using the same proof as for Lemma 7.This
ompletes the proof of the theorem. �Just like in the relational
ase, one
an de�ne e�e
tive steps of the algorithm as those in whi
h theabove inequality is stri
t for at least one position, and show that (D;�) is in XNF if and only ifno de
omposition algorithm is e�e
tive in (D;�).7 Con
lusions and Future WorkOur goal was to �nd
riteria for good data design, based on the intrinsi
 properties of a data modelrather than tools built on top of it, su
h as query and update languages. We were motivated by thejusti�
ation of normal forms for XML, where usual
riteria based on update anomalies or existen
eof lossless de
ompositions are not appli
able until we have standard and universally a

eptablequery and update languages.We proposed to use te
hniques from information theory, and measure the information
ontent ofelements in a database with respe
t to a set of
onstraints. We tested this approa
h in the relational
ase and showed that it works: that is, it
hara
terizes the familiar normal forms su
h as BCNFand 4NF as pre
isely those
orresponding to good designs, and justi�es others, more
ompli
ated30

ones, involving join dependen
ies. We then showed that the approa
h straightforwardly extendsto the XML setting, and for the
ase of
onstraints given by fun
tional dependen
ies, equates thenormal form XNF of [3℄ with good designs. In general, the approa
h is very robust: although we donot show it here due to spa
e limitations, it
an be easily adapted to the nested relational model,where it justi�es a normal form NNF [22, 23℄.It would be interesting to
hara
terize 3NF by using the measure developed in this paper. Sofar, a little bit is known about 3NF. For example, as in the
ase of BCNF, it is possible to prove thatthe synthesis approa
h for generating 3NF databases does not de
rease the amount of informationin ea
h position. Furthermore, given that 3NF does not ne
essarily eliminate all redundan
ies, one
an �nd 3NF databases where the amount of information in some positions is not maximal.We would like to
onsider more
omplex XML
onstraints and
hara
terize good designs theygive rise to. We also would like to
onne
t this approa
h with that of [16℄, where information
apa
ities of two s
hemas
an be
ompared based on the existen
e of queries in some standardlanguage that translate between them. For two
lasses of well-designed s
hemas (those with no
onstraints, and with keys only), being information-
apa
ity equivalent means being isomorphi
[2, 16℄, and we would like to see if this
onne
tion extends beyond the
lasses of s
hemas studiedin [2, 16℄.A
knowledgment We thank Pablo Bar
el�o and Mi
hael Benedikt for helpful
omments.We would also like to thank the anonymous referees for several very helpful
omments.Referen
es[1℄ S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.[2℄ J. Albert, Y. Ioannidis, and R. Ramakrishnan. Equivalen
e of keyed relational s
hemas by
onjun
tive queries. JCSS, 58(3):512{534, 1999.[3℄ M. Arenas and L. Libkin. A normal form for XML do
uments. In PODS'02, pages 85{96.[4℄ M. Arenas and L. Libkin. A normal form for XML do
uments. To appear in TODS.[5℄ C. Beeri. On the membership problem for fun
tional and multivalued dependen
ies in relationaldatabases. TODS, 5(3):241{259, 1980.[6℄ C. Beeri, P. Bernstein, and N. Goodman. A sophisti
ate's introdu
tion to database normal-ization theory. In VLDB'78, pages 113{124.[7℄ J. Biskup. A
hievements of relational database s
hema design theory revisited. In Semanti
sin Databases, LNCS 1358, pages 29{54. Springer-Verlag, 1995.[8℄ R. Cavallo and M. Pittarelli. The theory of probabilisti
 databases. In VLDB'87, pages 71{81.[9℄ T. Cover and J. Thomas. Elements of Information Theory. Wiley-Inters
ien
e, 1991.[10℄ M. Dalkili
 and E. Robertson. Information dependen
ies. In PODS'00, pages 245{253.[11℄ DBLP. http://www.informatik.uni-trier.de/ ~ley/db/.[12℄ D. W. Embley and W. Y. Mok. Developing XML do
uments with guaranteed \good" proper-ties. In ER'01, pages 426{441. 31

[13℄ R. Fagin. Multivalued dependen
ies and a new normal form for relational databases. ACMTODS, 2(3):262{278, 1977.[14℄ R. Fagin. Normal forms and relational database operators. In SIGMOD'79, pages 153{160.[15℄ R. Fagin. A normal form for relational databases that is based on domains and keys. ACMTODS, 6(3):387{415, 1981.[16℄ R. Hull. Relative information
apa
ity of simple relational database s
hemata. SIAM J.Comput., 15(3):856{886, 1986.[17℄ P. Kanellakis. Elements of Relational Database Theory, In Handbook of TCS, vol. B, pages1075{1144. 1990.[18℄ T. T. Lee. An information-theoreti
 analysis of relational databases - Part I: Data dependen
iesand information metri
. IEEE Trans. on Software Engineering, 13(10):1049{1061, 1987.[19℄ M. Levene and G. Loizou. Why is the snow
ake s
hema a good data warehouse design?Information Systems, to appear.[20℄ M. Levene and M. W. Vin
ent. Justi�
ation for in
lusion dependen
y normal form. IEEETKDE, 12(2):281{291, 2000.[21℄ D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing impli
ations of data dependen
ies. ACMTODS, 4(4):455{469, 1979.[22℄ W.Y. Mok, Y. K. Ng, D. Embley. A normal form for pre
isely
hara
terizing redundan
y innested relations. ACM TODS 21 (1996), 77{106.[23℄ Z. M. �Ozsoyoglu, L.-Y. Yuan. A new normal form for nested relations. ACM TODS 12(1):111{136, 1987.[24℄ C. H. Papadimitriou. Computational Complexity Addison-Wesley, 1994.[25℄ C.E. Shannon. A mathemati
al theory of
ommuni
ation. Bell System Te
hni
al Journal,27:379{423 (Part I), 623{656 (Part II), 1948.[26℄ D. Su
iu. On database theory and XML. SIGMOD Re
ord, 30(3):39{45, 2001.[27℄ I. Tatarinov, Z. Ives, A. Halevy, and D. Weld. Updating XML. In SIGMOD'01, pages 413{424.[28℄ V. Vianu. A Web Odyssey: from Codd to XML. In PODS'01, pages 1{15.[29℄ M. W. Vin
ent. A
orre
ted 5NF de�nition for relational database design. TCS, 185(2):379{391, 1997.[30℄ M. W. Vin
ent. Semanti
 foundations of 4NF in relational database design. A
ta Informati
a,36(3):173{213, 1999.
32

A ProofsA.1 Proof of Lemma 1We start with the following simple but useful observation. The proof follows immediately fromgeneri
ity.Claim 1 Let � be a set of generi
 integrity
onstraints over a relational s
hema S, I 2 instk(S;�)and p 2 Pos(I). Assume that a; b 2 [1; k℄� adom(I). Then for every �a 2
(I; p), jSAT k�(I(a;�a))j =jSAT k�(I(b;�a))j.Next, we need the following.Claim 2 Let � be a set of integrity
onstraints over a relational s
hema S, I 2 inst(S;�), p 2Pos(I) and �a 2
(I; p). Then for every a 2 N+ , there exists k0 2 N+ and a polynomial qa(k) su
hthat jSAT k�(I(a;�a))j = qa(k), for every k > k0.Proof: Let the variables of �a be v1; : : : ; vl. Fix a > 0, and let m be the maximum value inadom(I)[fag. De�ne k0 to bem+l+1. By generi
ity, jSAT k0� (I(a;�a))j = 0 implies jSAT k�(I(a;�a))j = 0for all k > k0, so we assume there is at least one substitution in SAT k0� (I(a;�a)).We
onsider the set of all triples P = (X;�X ;�) where� X � fv1; : : : ; vlg,� �X : X ! [1;m℄, and� � is a partition on fv1; : : : ; vlg �X.Given � 2 SAT k�(I(a;�a)), we write � � P if for every i 2 X, �(vi) = �X(vi), for every i 62 X,�(vi) 62 [1;m℄, and for every i; j 62 X, �(vi) = �(vj) i� i and j are in the same blo
k of �. Observethat for every � 2 SATk�(I(a;�a)), there exists exa
tly one triple P su
h that � � P.Let �; �0 � P be two substitutions. From the generi
ity of � we immediately see that �(I(a;�a)) j=� i� �0(I(a;�a)) j= �. Furthermore, if �
ollapses two rows in I(a;�a), then so does �0 (sin
e �(vi) =�(vj) i� �0(vi) = �0(vj)). We
on
lude that � 2 SAT k�(I(a;�a)) i� �0 2 SAT k�(I(a;�a)).The number of triples P depends on I; a and �a but not on k. For ea
h P, either all � with� � P belong to SAT k�(I(a;�a)), or none belongs to SAT k�(I(a;�a)). Thus, it will suÆ
e to show thatfor every P, there exists a polynomial qPa (k) su
h that jf� 2 SAT k�(I(a;�a)) j � � Pgj = qPa (k).The
ase when no � with � � P belongs to SAT k�(I(a;�a)) is trivial: qPa (k) = 0 for all k.Otherwise, let P = (X;�X ;�), and let mP be the number of partition blo
ks of �. The number of� � P is then the number of ways to
hose mP distin
t ordered elements in [m+ 1; k℄, that isqPa (k) = mP�1Yi=0 (k �m� i):Sin
e m and mP do not depend on k, this
on
ludes the proof of the
laim. �Proof of Lemma 1: Let I 2 inst(S;�), p 2 Pos(I), and �a 2
(I; p). To prove this lemma it suÆ
esto show that the following limit exists:limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) : (14)33

By Claims 1 and 2, there exists k0 > 0 and polynomials qa(k), for every a 2 adom(I), and q(k)su
h that for every k > k0:1. jSAT k�(I(a;�a))j = qa(k), for every a 2 adom(I);2. jSAT k�(I(a;�a))j = q(k), for every a 2 [1; k℄ � adom(I).Let n = jadom(I)j and r(k) = (k � n)q(k) +Pa2adom(I) qa(k). Then (14) is equal tolimk!1 1log k� Xa2adom(I)�qa(k)r(k) log r(k)qa(k)�+ (k � n)q(k)r(k) log r(k)q(k)�: (15)We �rst show that limk!1 1log k� Xa2adom(I) qa(k)r(k) log r(k)qa(k)� = 0: (16)Note that degree(r) � degree(qa) for every a 2 adom(I). If degree(r) > degree(qa), then
learlylimk!1 qa(k)r(k) log r(k)qa(k) = 0. If degree(r) = degree(qa), then limk!1 qa(k)r(k) log r(k)qa(k) exists and equalssome positive
onstant
a; hen
e limk!1 1log k qa(k)r(k) log r(k)qa(k) = 0. Thus, (16) holds and (15) equalslimk!1�(k � n)log k � q(k)r(k) � log r(k)q(k)�: (17)By the de�nition of r, degree(r) � degree(q) + 1. A simple
al
ulation shows that fordegree(r) = degree(q) + 1, (17) equals some positive
onstant that depends on the
oeÆ
ients of qand r, and for degree(r) > degree(q) + 1, (17) equals 0. Hen
e, the limit (15) always exists, whi
h
ompletes the proof. �A.2 Proof of Lemma 6Assume that limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) 6= 0: (18)We will show that this limit must be 1.First note that by (18), there exists k0 > 0 su
h that for every k � k0 and a 2 [1; k℄� adom(I),jSAT k�(I(a;�a))j � 1. If this were not true, then by Claim 1, for every a 2 N+ � adom(I), we wouldhave jSAT k�(I(a;�a))j = 0 and, therefore, Pa2[1;k℄ P (a j �a) log 1P (aj�a) � log jadom(I)j. We
on
ludethat limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) � limk!1 log jadom(I)jlog k = 0;whi
h
ontradi
ts (18).To prove the lemma we need to introdu
e an equivalen
e relation on the elements of �a andprove some basi
 properties about it. Assume that kIk = n; n > 0. Let k � k0 be su
h thatadom(I) $ [1; k℄. Given ai; aj 2 �a, we say that ai and aj are linked in (a; �a), written as ai � aj ,34

if for every substitution � : �a ! [1; k℄ su
h that �(I(a;�a)) j= �, it is the
ase that �(ai) = �(aj).Observe that if ai, aj are
onstants, then ai � aj i� ai = aj. It is easy to see that � is anequivalen
e relation on �a. We say that ai 2 �a is determined in (a; �a) if for every pair of substitutions�1; �2 : �a ! [1; k℄ su
h that �1(I(a;�a)) j= � and �2(I(a;�a)) j= �, it is the
ase that �1(ai) = �2(ai).Noti
e that if ai is a
onstant, then ai is determined in (a; �a). Furthermore, observe that if ai � ajand ai is determined in (a; �a), then aj is determined in (a; �a). Thus, we
an extend the de�nition forequivalen
e
lasses: [ai℄� is determined in (a; �a) if ai is determined in (a; �a). We de�ne undet(a; �a)as the set of all undetermined equivalen
e
lasses of �:undet(a; �a) = f[ai℄� j ai 2 �a and [ai℄� is not determinedg:Claim 31) For every a 2 adom(I) and b 2 [1; k℄ � adom(I), if there exists a substitution � : �a ! [1; k℄su
h that �(I(b;�a)) j= �, then jundet(b; �a)j � jundet(a; �a)j.2) For every a; b 2 [1; k℄ � adom(I), undet(b; �a) = undet(a; �a).Proof: 1) Let a 2 adom(I) and b 2 [1; k℄ � adom(I). Assume that there exists a substitution� : �a! [1; k℄ su
h that �(I(b;�a)) j= �. It is easy to see that for every ai; aj 2 �a, if ai is determinedin (b; �a), then ai is determined in (a; �a), and if ai; aj are linked in (b; �a), then ai; aj are linked in(a; �a). Thus, jundet(b; �a)j � jundet(a; �a)j.2) Trivial, by Claim 1. �Claim 4 Let a 2 [1; k℄ � adom(I). If k > 2n, then jSAT k�(I(a;�a))j � (k � 2n)jundet(a;�a)j.Proof: To prove this
laim, we
onsider two
ases.First assume that �a does not
ontain any variable. Then jundet(a; �a)j = 0 and we have to provethat jSAT k�(I(a;�a))j � 1. For that, it suÆ
es to show that I(a;�a) j= �. Towards a
ontradi
tion,assume that I(a;�a) 6j= �. Then by Claim 1, jSAT k�(I(b;�a))j = 0, for every b 2 N+ � adom(I), whi
h
ontradi
ts the existen
e of k0.Se
ond assume that �a
ontains at least one variable. Let �0 : �a ! [1; k℄ be a substitutionsu
h that �0(I(a;�a)) j= � (su
h a substitution exists by assumption (18)). Let � : �a ! [1; k℄be a substitution su
h that: (a) � and �0
oin
ide in determined equivalen
e
lasses; (b)for every undetermined
lass [ai℄�, � assigns the same value in [1; k℄ � (adom(I) [fag) toea
h element in this
lass; (
) for every pair of distin
t undetermined
lasses [ai℄�, [aj℄�,�(ai) 6= �(aj). Noti
e that su
h a fun
tion exists sin
e k > 2n. Given that �0(I(a;�a)) j= �, wehave �(I(a;�a)) j= �. Thus, jSAT k�(I(a;�a))j is greater than or equal to the number of substitutionswith domain �a and range
ontained in [1; k℄ satisfying
onditions (a), (b) and (
). Therefore,jSAT k�(I(a;�a))j � (k � (n+ 1))(k � (n+ 2)) � � � (k � (n+ jundet(a; �a)j)) � (k � 2n)jundet(a;�a)j. Thisproves the
laim. �We will use this
laim to prove that limk!1 1log kPa2[1;k℄ P (a j �a) log 1P (aj�a) = 1. Let k � k0 be su
hthat adom(I) � [1; k℄ and k > 2n. By Claim 4, for every a 2 [1; k℄ � adom(I), jSAT k�(I(a;�a))j �(k � 2n)jundet(a;�a)j. Furthermore, by Claim 3, for every a 2 [1; k℄ � adom(I):Xb2[1;k℄ jSAT k�(I(b;�a))j � Xb2[1;k℄kjundet(b;�a)j � kjundet(a;�a)j+135

Thus, for every a 2 [1; k℄ � adom(I):P (a j �a) � (k � 2n)jundet(a;�a)jkjundet(a;�a)j+1 = 1k (1� 2nk)jundet(a;�a)j: (19)By Claim 1, for every a; b 2 [1; k℄ � adom(I), P (a j �a) = P (b j �a) and, therefore,P (a j �a) � 1k � jadom(I)j � 1k � n: (20)Therefore, using (19) and (20) we
on
lude that:Xa2[1;k℄P (a j �a) log 1P (a j �a) � Xa2[1;k℄�adom(I) 1k (1� 2nk)jundet(b;�a)j log(k � n)� log(k � n) (1� nk)(1 � 2nk)jundet(b;�a)j;where b is an arbitrary element in [1; k℄ � adom(I). Thus,1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) � log(k � n)log k (1� nk)(1� 2nk)jundet(b;�a)j:It is straightforward to prove that limk!1[log(k�n)log k (1� nk)(1� 2nk)jundet(b;�a)j℄ = 1. Thus,limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) � 1and, therefore, limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) = 1;sin
e Pa2[1;k℄ P (a j �a) log 1P (aj�a) � log k. This
ompletes the proof of Lemma 6.

36

