
An Information-Theoreti Approah to Normal Formsfor Relational and XML DataMarelo ArenasUniversity of Torontomarenas�s.toronto.edu Leonid LibkinUniversity of Torontolibkin�s.toronto.eduAbstratNormalization as a way of produing good database designs is a well-understood topi.However, the same problem of distinguishing well-designed databases from poorly designed onesarises in other data models, in partiular, XML. While in the relational world the riteria forbeing well-designed are usually very intuitive and lear to state, they beome more obsure whenone moves to more omplex data models.Our goal is to provide a set of tools for testing when a ondition on a database design,spei�ed by a normal form, orresponds to a good design. We use tehniques of informationtheory, and de�ne a measure of information ontent of elements in a database with respet toa set of onstraints. We �rst test this measure in the relational ontext, providing information-theoreti justi�ation for familiar normal forms suh as BCNF, 4NF, PJ/NF, 5NFR, DK/NF. Wethen show that the same measure applies in the XML ontext, whih gives us a haraterizationof a reently introdued XML normal form alled XNF. Finally, we look at information-theoretiriteria for justifying normalization algorithms.1 IntrodutionWhat onstitutes a good database design? This question has been studied extensively, with well-known solutions presented in pratially all database texts. But what is it that makes a databasedesign good? This question is usually addressed at a muh less formal level. For instane, we knowthat BCNF is an example of a good design, and we usually say that this is beause BCNF eliminatesupdate anomalies. Most of the time this is suÆient, given the simpliity of the relational modeland our good intuition about it.Several papers [15, 30, 20℄ attempted a more formal evaluation of normal forms, by relating it tothe elimination of update anomalies. Another riterion is the existene of algorithms that produegood designs: for example, we know that every database sheme an be losslessly deomposed intoone in BCNF, but some onstraints may be lost along the way.The previous work was spei� for the relational model. As new data formats suh as XMLare beoming ritially important, lassial database theory problems have to be revisited in thenew ontext [28, 26℄. However, there is as yet no onsensus on how to address the problem ofwell-designed data in the XML setting [12, 3℄.It is problemati to evaluate XML normal forms based on update anomalies; while some pro-posals for update languages exist [27℄, no XML update language has been standardized. Likewise,using the existene of good deomposition algorithms as a riterion is problemati: for example,to formulate losslessness, one needs to �x a small set of operations in some language, that wouldplay the same role for XML as relational algebra for relations. Stating dependeny preservation1

and testing normal forms is even more problemati: while in the relational world we have well-understood proedures for doing this, for XML we do not even know if impliation of funtionaldependenies is deidable.This suggests that one needs a di�erent approah to the justi�ation of normal forms andgood designs. Suh an approah must be appliable to new data models before the issues ofquery/update/onstraint languages for them are ompletely understood and resolved. There-fore, suh an approah must be based on some intrinsi harateristis of the data, as opposedto query/update languages for a partiular data model. In this paper we suggest suh an approahbased on information-theoreti onepts, more spei�ally, on measuring the information ontent ofthe data. Our goal here is twofold. First, we present information-theoreti measures of \goodness"of a design, and test them in the relational world. To be appliable in other ontexts, we expetthese measures to haraterize familiar normal forms. Seond, we apply them in the XML ontext,and show that they justify a normal form XNF proposed in [3℄. We also use our measures toreason about normalization algorithms, by showing that standard deomposition algorithms neverderease the information ontent of any piee of data in a database/doument.The rest of the paper is organized as follows. In Setion 2 we give the notations, and reviewthe basis of information theory (entropy and onditional entropy). Setion 3 is an \appetizer"for the main part of the paper: we present a partiularly simple information-theoreti way of mea-suring the information ontent of a database, and show how it haraterizes BCNF and 4NF. Themeasure, however, is too oarse, and, furthermore, annot be used to reason about normalizationalgorithms. In Setion 4 we present our main information-theoreti measure of the informationontent of a database. Unlike the measure studied before [18, 8, 10, 19℄, our measure takes intoaount both database instane and shema onstraints, and de�nes the ontent with respet toa set of onstraints. A well-designed database is one in whih the ontent of eah datum is themaximum possible. We use this measure to haraterize BCNF and 4NF as the best way to de-sign shemas under FDs and MVDs, and to justify normal forms involving JDs (PJ/NF, 5NFR)and other types of integrity onstraints (DK/NF). In Setion 5, we show that the main measureof Setion 4 straightforwardly extends to the XML setting, giving us a de�nition of well-designedXML spei�ations. We prove that for onstraints given by FDs, well-designed XML spei�ationsare preisely those in XNF. In Setion 6, we use the measures of Setions 4 and 5 to reason aboutnormalization algorithms, by showing that good normalization algorithms do not derease the in-formation ontent of eah datum at every step. Finally, Setion 7 presents the onlusions andsome ideas for future work.2 Notations2.1 Shemas and InstanesA database shema S is a �nite set of relation names, with a set of attributes, denoted by sort(R),assoiated with eah R 2 S. We shall identify sort(R) of ardinality m with f1; : : : ;mg. Through-out the paper, we assume that the domain of eah attribute is N+ , the set of positive integers. Aninstane I of shema S assigns to eah symbol R 2 S with m = jsort(R)j a relation I(R) whih isa �nite set of m-tuples over N+ . By adom(I) we mean the ative domain of I, that is, the set ofall elements of N+ that our in I. The size of I(R) is de�ned as kI(R)k = jsort(R)j � jI(R)j, andthe size of I is kIk =PR2S kI(R)k. If I is an instane of S, the set of positions in I, denoted byPos(I), is the set f(R; t;A) j R 2 S; t 2 I(R) and A 2 sort(R)g. Note that jPos(I)j = kIk.We shall deal with integrity onstraints whih are �rst-order sentenes over S. Given a set �2

of integrity onstraints, �+ denotes the set of all onstraints implied by it, that is, onstraints' suh that for every instane I, I j= � implies I j= '. We de�ne inst(S;�) as the set of alldatabase instanes of S satisfying � and instk(S;�) as fI 2 inst(S;�) j adom(I) � [1; k℄g, where[1; k℄ = f1; : : : ; kg.2.2 Constraints and Normal Forms.Here we briey review the most ommon normal forms BCNF, 4NF, PJ/NF, 5NFR and DK/NF.For more information, the reader is referred to [6, 17, 1, 7℄. The most widely used among these areBCNF and 4NF, de�ned in terms of funtional dependenies (FD) and multivalued dependenies(MVD), respetively. We shall use the standard notations X ! Y and X !! Y for FDs andMVDs. Given a set � of FDs over S, (S;�) is in BCNF if for every nontrivial FD X ! Y 2 �+,X is a key (that is, if X ! Y is de�ned over R, then X ! sort(R) 2 �+). If � is a set of FDs andMVDs over S, then 4NF is de�ned analogously [13℄: for every nontrivial MVD X !! Y 2 �+, Xmust be a key. Reall that in the ase of FDs nontrivial means Y 6� X, and in the ase of MVDsnontrivial means Y 6� X and X [Y $ sort(R).The normal forms PJ/NF (projetion-join normal form) [14℄ and 5NFR [29℄ deal with FDs andjoin dependenies (JDs). Reall that a JD over R 2 S is an expression of the form ./[X1; : : : ;Xn℄,where X1 [� � � [Xn = sort(R). A database instane I of S satis�es ./[X1; : : : ;Xn℄, if I(R) =�X1(I(R)) ./ � � � ./ �Xn(I(R)). Given a set � of FDs and JDs over S, (S;�) is in PJ/NF if � j= �,where � is the set of key dependenies in �+ (that is, dependenies of the form X ! sort(R) forX � sort(R)). In other words, every instane of S that satis�es all the keys in �+ must satisfy� as well. PJ/NF is an extension of both 4NF and BCNF. Sine an MVD X !! Y over R is aJD ./[XY;X(sort (R)� Y)℄, when only FDs and MVDs are present in �, the de�nition of PJ/NFoinides with 4NF. If no MVDs are present at all, it redues to the de�nition of BCNF [14℄.An alternative normal form for FDs and JDs was introdued in [29℄, whih is based on theoriginal de�nitions of BCNF and 4NF. Given a set of FDs and JDs � over S, a JD ' = ./[X1; : : : ;Xn℄in � is strong-redued if for every i 2 [1; n℄, ./[X1; : : : ;Xi�1;Xi+1; : : : ;Xn℄ is not in �+ or X1 [� � � [Xi�1 [Xi+1 [� � � [Xn $ sort(R). (S;�) is in 5NFR (redued 5th normal form) if for everynontrivial, strong-redued join dependeny ./[X1; : : : ;Xn℄ 2 �+ and every i 2 [1; n℄, Xi is a key.PJ/NF is stritly stronger than 5NFR.The \ultimate" normal form for relational databases was introdued in [15℄. This normal formwas de�ned in terms of key dependenies and domain dependenies. In our setting, where domaindependenies are not onsidered, it says the following. Given any set of integrity onstraints � overS, (S;�) is in DK/NF (domain-key normal form) if � is implied by the set of key dependenies in�+.2.3 Basis of Information TheoryThe main onept of information theory is that of entropy, whih measures the amount of infor-mation provided by a ertain event. Assume that an event an have n di�erent outomes s1, : : :,sn, eah with probability pi, i � n. How muh information is gained by knowing that si ourred?This is learly a funtion of pi. Suppose g measures this information; then it must be ontinuousand dereasing funtion with domain (0; 1℄ (the higher the probability, the less information gained)and g(1) = 0 (no information is gained if the outome is known in advane). Furthermore, g isadditive: if outomes are independent, the amount of information gained by knowing two suessiveoutomes must be the sum of the two individuals amounts, that is, g(pi � pj) = g(pi) + g(pj). The3

A B C1 2 31 2 4 A B C1 1 22 3 4 A B C1 2 31 2 41 2 5(a) (b) ()Figure 1: Database instanes.only funtion satisfying these onditions is g(x) = � lnx, where is an arbitrary positive onstant[25℄. It is ustomary to use base 2 logarithms: g(x) = � log x.The entropy of a probability distribution represents the average amount of information gainedby knowing that a partiular event ourred. Let A = (fs1; : : : ; sng; PA) be a probability spae. Ifpi = PA(si), then the entropy of A, denoted by H(A), is de�ned to beH(A) = nXi=1 pi log 1pi = � nXi=1 pi log pi:Observe that some of the probabilities in the spae A an be zero. For that ase, we adopt theonvention that 0 log 10 = 0, sine limx!0 x log 1x = 0. It is known that 0 � H(A) � logn, withH(A) = log n only for the uniform distribution PA(si) = 1=n [9℄.We shall also use onditional entropy. Assume that we are given two probability spaes A =(fs1; : : : ; sng; PA), B = (fs01; : : : ; s0mg; PB) and, furthermore, we know probabilities P (s0j ; si) of allthe events (s0j ; si) (that is, PA and PB need not be independent). Then the onditional entropy ofB given A, denoted by H(B j A), gives the average amount of information provided by B if A isknown [9℄. It is de�ned using onditional probabilities P (s0j j si) = P (s0j; si)=PA(si):H(B j A) = nXi=1�PA(si) mXj=1 P (s0j j si) log 1P (s0j j si)�:3 Information Theory and Normal Forms: an AppetizerWe will now see a partiularly simple way to provide information-theoreti haraterization ofnormal forms. Although it is very easy to present, it has a number of shortomings, and a moreelaborate measure will be presented in the next setion.Violating a normal form, e.g., BCNF, implies having redundanies. For example, if S =fR(A;B;C)g and � = fA ! Bg, then (S;�) is not in BCNF (A is not a key) and some in-stanes an ontain redundant information: in Figure 1 (a), the value of the gray ell must be equalto the value below it. We do not need to store this value as it an be inferred from the remainingvalues and the onstraints.We now use the onept of entropy to measure the information ontent of every position in aninstane of S. The basi idea is as follows: we measure how muh information we gain if we losethe value in a given position, and then someone restores it (either to the original, or to some othervalue, not neessarily from the ative domain). For instane, if we lose the value in the gray ell inFigure 1 (a), we gain zero information if it gets restored, sine we know from the rest of the instaneand the onstraints that it equals 2. Formally, let I 2 instk(S;�) (that is, adom(I) � [1; k℄) and let4

p 2 Pos(I) be a position in I. For any value a, let Ip a be a database instane onstruted fromI by replaing the value in position p by a. We de�ne a probability spae Ek�(I; p) = ([1; k + 1℄; P)and use its entropy as the measure of information in p (we de�ne it on [1; k + 1℄ to guarantee thatthere is at least one value outside of the ative domain). The funtion P is given by:P (a) = (0 Ip a 6j= �;1=jfb j Ip b j= �gj otherwise.In other words, let m be the number of b 2 [1; k + 1℄ suh that Ip b j= � (note that m > 0 sineI j= �). For eah suh b, P (b) = 1=m, and elsewhere P = 0. For example, for the instane in Figure1 (a) if p is the position of the gray ell, then the probability distribution is as follows: P (2) = 1and P (a) = 0, for all other a 2 [1; k+1℄. Thus, the entropy of Ek�(I; p) for position p is zero, as weexpet. More generally, we an show the following.Theorem 1 Let � be a set of FDs (or FDs and MVDs) over a shema S. Then (S;�) is in BCNF(or 4NF, resp.) if and only if for every k > 1, I 2 instk(S;�) and p 2 Pos(I),H(Ek�(I; p)) > 0:Proof: We give the proof for the ase of FDs; for FDs and MVDs the proof is almost idential.()) Assume that (S;�) is in BCNF. Fix k > 0, I 2 instk(S;�) and p 2 Pos(I). Assume that ais the p-th element in I. We show that Ip k+1 j= �, from whih we onlude that H(Ek�(I; p)) > 0,sine Ek�(I; p) is uniformly distributed, and P (a); P (k + 1) 6= 0.Towards a ontradition, assume that Ip k+1 6j= �. Then there exist R 2 S, t01; t02 2 Ip k+1(R)and X ! A 2 �+ suh that t01[X℄ = t02[X℄ and t01[A℄ 6= t02[A℄. Assume that t01; t02 were generatedfrom tuples t1; t2 2 I(R) (hene t1 6= t2), respetively. Note that t01[X℄ = t1[X℄ (if t1[X℄ 6= t01[X℄,then t01[B℄ = k + 1 for some B 2 X; given that k + 1 62 adom(I), only one position in Ip k+1mentions this value and, therefore, t01[X℄ 6= t02[X℄, a ontradition). Similarly, t02[X℄ = t2[X℄ and,therefore, t1[X℄ = t2[X℄. Given that (S;�) is in BCNF, X must be a key in R. Hene, t1 = t2,sine I j= �, whih is a ontradition.(() Assume that (S;�) is not in BCNF. We show that there exists k > 0, I 2 instk(S;�)and p 2 Pos(I) suh that H(Ek�(I; p)) = 0. Sine (S;�) is not in BCNF, there exist R 2 S andX ! A 2 �+ suh that A 62 X, X [fAg $ sort(R) and X is not a key in R. Thus, there existsa database instane I of S suh that I j= � and I 6j= X ! sort(R). We an assume that I(R)ontains only two tuples, say t1; t2. Let k be the greatest value in I, i = t1[A℄ and p be the positionof t1[A℄ in I. It is easy to see that I 2 instk(S;�) and P (j) = 0, for every j 6= i in [1; k + 1℄, sinet1[A℄ must be equal to t2[A℄ = i. Therefore, H(Ek�(I; p)) = 0. �Thus, a shema is in BCNF or 4NF i� for every instane, eah position arries non-zero amount ofinformation. This is a lean haraterization of BCNF and 4NF, but the measure H(Ek�(I; p)) isnot aurate enough for a number of reasons. For example, let �1 = fA ! Bg and �2 = fA !!Bg. The instane I in Figure 1 (a) satis�es �1 and �2. Let p be the position of the gray ell inI. Then H(Ek�1(I; p)) = H(Ek�2(I; p)) = 0. But intuitively, the information ontent of p must behigher under �2 than �1, sine �1 says that the value in p must be equal to the value below it,and �2 says that this should only happen if the values of the C-attribute are distint.Next, onsider I1 and I2 shown in Figures 1 (a) and (), respetively. Let � = fA! Bg, and letp1 and p2 denote the positions of the gray ells in I1 and I2. Then H(Ek�(I1; p1)) = H(Ek�(I2; p2)) =0. But again we would like them to have di�erent values, as the amount of redundany is higher5

A B C6 5 43 2 1 A B C1 7 31 2 4 A B Cv6 7 31 2 v1 A B C8 7 31 2 4(a) An enumeration of I (b) I(7;�a1) = �1(I(7;�a1)) () I(7;�a2) (d) �2(I(7;�a2))Figure 2: De�ning InfkI (p j �).in I2 than in I1. Finally, let S = R(A;B), � = f; !! Ag, and I = f1; 2g � f3; 4g 2 inst(S;�).For eah position, the entropy would be zero. However, onsider both positions in attribute Aorresponding to the value 1. If they both disappear, then we know that no matter how they arerestored, the values must be the same. The measure presented in this setion annot possibly talkabout inter-dependenies of this kind.In the next setion we will present a measure that overomes these problems.4 A General De�nition of Well-Designed DataLet S be a shema, � a set of onstraints, and I 2 inst(S;�) an instane with kIk = n. Reall thatPos(I) is the set of positions in I, that is, f(R; t;A) j R 2 S; t 2 I(R) and A 2 sort(R)g. Our goalis to de�ne a funtion InfI(p j �), the information ontent of a position p 2 Pos(I) with respetto the set of onstraints �. For a general de�nition of well-designed data, we want to say thatthis measure has the maximum possible value. This is a bit problemati for the ase of an in�nitedomain (N+), sine we only know what the maximum value of entropy is for a disrete distributionover k elements: log k. To overome this, we de�ne, for eah k > 0, a funtion InfkI (p j �) thatwould only apply to instanes whose ative domain is ontained in [1; k℄, and then onsider theratio InfkI (p j �)= log k. This ratio tells us how lose the given position p is to having the maximumpossible information ontent, for databases with ative domain in [1; k℄. As our �nal measureInfI(p j �) we then take the limit of this sequene as k goes to in�nity.Informally, InfkI (p j �) is de�ned as follows. Let X � Pos(I)�fpg. Suppose the values in thosepositions X are lost, and then someone restores them from the set [1; k℄; we measure how muhinformation about the value in p this gives us. This measure is de�ned as the entropy of a suitablyhosen distribution. Then InfkI (p j �) is the average suh entropy over all sets X � Pos(I) � fpg.Note that this is muh more involved than the de�nition of the previous setion, as it takes intoaount all possible interations between di�erent positions in an instane and the onstraints.We now present this measure formally. An enumeration of I with kIk = n, n > 0, is a bijetionfI between Pos(I) and [1; n℄. From now on, we assume that every instane has an assoiatedenumeration1. We say that the position of (R; t;A) 2 Pos(I) is p in I if the enumeration of Iassigns p to (R; t;A), and if R is lear from the ontext, we say that the position of t[A℄ is p. Wenormally assoiate positions with their rank in the enumeration fI .Fix a position p 2 Pos(I). As the �rst step, we need to desribe all possible ways of removingvalues in a set of positions X, di�erent from p. To do this, we shall be plaing variables from aset fvi j i � 1g in positions where values are to be removed, where vi an our only in position i.Furthermore, we assume that eah set of positions is equally likely to be removed. To model this, let
(I; p) be the set of all 2n�1 vetors (a1; : : : ; ap�1; ap+1; : : : ; an) suh that for every i 2 [1; n℄�fpg,1The hoie of a partiular enumeration will not a�et the measures we de�ne.6

ai is either vi or the value in the i-th position of I. A probability spae A(I; p) = (
(I; p); P) isde�ned by taking P to be the uniform distribution.Example 1: Let I be the database instane shown in Figure 1 (a). An enumeration of the positionsin I is shown in Figure 2 (a). Assume that p is the position of the gray ell shown in Figure 1 (a),that is, p = 5. Then �a1 = (4; 2; 1; 3; 1) and �a2 = (v1; 2; 1; 3; v6) are among the 32 vetors in
(I; p).For eah of these vetors, we de�ne P as 132 . �Our measure InfkI (p j �), for I 2 instk(S;�), will be de�ned as the onditional entropy ofa distribution on [1; k℄, given the above distribution on
(I; p). For that, we de�ne onditionalprobabilities P (a j �a) that haraterize how likely a is to our in position p, if some values areremoved from I aording to the tuple �a from
(I; p) 2. We need a ouple of tehnial de�nitions�rst. If �a = (ai)i6=p is a vetor in
(I; p) and a > 0, then I(a;�a) is a table obtained from I by puttinga in position p, and ai in position i; i 6= p. If k > 0, then a substitution � : �a! [1; k℄ assigns a valuefrom [1; k℄ to eah ai whih is a variable, and leaves other ais intat. We an extend � to I(a;�a) andthus talk about �(I(a;�a)).Example 2: (example 1 ontinued) Let k = 8 and �1 be an arbitrary substitution from �a1 to[1; 8℄. Note that �1 is the identity substitution, sine �a1 ontains no variables. Figure 2 (b) showsI(7;�a1), whih is equal to �1(I(7;�a1)). Let �2 be a substitution from �a2 to [1; 8℄ de�ned as follows:�(v1) = 4 and �(v6) = 8. Figure 2 () shows I(7;�a2) and Figure 2 (d) shows the database instanegenerated by applying �2 to I(7;�a2). �If � is a set of onstraints over S, then SAT k�(I(a;�a)) is de�ned as the set of all substitutions� : �a ! [1; k℄ suh that �(I(a;�a)) j= � and k�(I(a;�a))k = kIk (the latter ensures that no two tuplesollapse as the result of applying �). With this, we de�ne P (a j �a) as:P (a j �a) = jSAT k�(I(a;�a))jXb2[1;k℄ jSAT k�(I(b;�a))j :We remark that this orresponds to onditional probabilities with respet to a distribution P 0on [1; k℄ �
(I; p) de�ned by P 0(a; �a) = P (a j �a) � (1=2n�1), and that P 0 is indeed a probabilitydistribution for every I 2 instk(S;�) and p 2 Pos(I).Example 3: (example 2 ontinued) Assume that � = fA ! Bg. Given that the only substi-tution � from �a1 to [1; 8℄ is the identity, for every a 2 [1; 8℄, a 6= 2, �(I(a;�a1)) 6j= �, and, therefore,SAT 8�(I(a;�a1)) = ;. Thus, P (2 j �a1) = 1 sine �(I(2;�a1)) j= �. This value reets the intuition thatif the value in the gray ell of the instane shown in Figure 1 (a) is removed, then it an be inferredfrom the remaining values and the FD A! B.There are 64 substitutions with domain �a2 and range [1; 8℄. A substitution � is in SAT 8�(I(7;�a2))if and only if �(v6) 6= 1, and, therefore, jSAT 8�(I(7;�a2))j = 56. The same an be proved for everya 2 [1; 8℄, a 6= 2. On the other hand, the only substitution that is not in SAT 8�(I(2;�a2)) is �(v1) = 3and �(v6) = 1, sine �(I(2;�a2)) ontains only one tuple. Thus, jSAT 8�(I(2;�a2))j = 63 and, therefore,P (a j �a2) = 8><>: 63455 if a = 2;56455 otherwise. �2We use the same letter P here, but this will never lead to onfusion. Furthermore, all probability distributionsdepend on I, p, k and �, but we omit them as parameters of P sine they will always be lear from the ontext.7

We de�ne a probability spae Bk�(I; p) = ([1; k℄; P) whereP (a) = 12n�1 X�a2
(I;p)P (a j �a) ;and, again, omit I, p, k and � as parameters, and overload the letter P sine this will never leadto onfusion.The measure of the amount of information in position p, InfkI (p j �), is the onditional entropyof Bk�(I; p) given A(I; p), that is, the average information provided by p, given all possible ways ofremoving values in the instane I:InfkI (p j �) def= H(Bk�(I; p) j A(I; p)) = X�a2
(I;p)�P (�a) Xa2[1;k℄P (a j �a) log 1P (a j �a)�:Note that for �a 2
(I; p),Pa2[1;k℄ P (a j �a) log 1P (aj�a) measures the amount of information in positionp, given a set of onstraints � and some missing values in I, represented by the variables in �a. Thus,InfkI (p j �) is the average suh amount over all �a 2
(I; p). Furthermore, from the de�nition ofonditional entropy, 0 � InfkI (p j �) � log k, and the measure InfkI (p j �) depends on the domainsize k. We now onsider the ratio of InfkI (p j �) and the maximum entropy log k. It turns out thatthis sequene onverges:Lemma 1 If � is a set of �rst-order onstraints over a shema S, then for every I 2 inst(S;�)and p 2 Pos(I), limk!1 InfkI (p j �)= log k exists.The proof of this lemma is given in appendix A.1. In fat, Lemma 1 shows that suh a limit existsfor any set of generi onstraints, that is, onstraints that do not depend on the domain. This�nally gives us the de�nition of InfI(p j �).De�nition 1 For I 2 inst(S;�) and p 2 Pos(I), the measure InfI(p j �) is de�ned aslimk!1 InfkI (p j �)log k :InfI(p j �) measures how muh information is ontained in position p, and 0 � InfI(p j �) � 1.A well-designed shema should not have an instane with a position that has less than maximuminformation:De�nition 2 A database spei�ation (S;�) is well-designed if for every I 2 inst(S;�) and everyp 2 Pos(I), InfI(p j �) = 1.Example 4: Let S be a database shema fR(A; B; C)g. Let �1 = fA! BCg. Figure 1 (b) showsan instane I of S satisfying �1 and Figure 3 (a) shows the value of InfkI (p j �1) for k = 5; 6; 7,where p is the position of the gray ell. As expeted, the value of InfkI (p j �1) is maximal, sine(S;�1) is in BCNF. Indeed, given that we have to preserve the number of tuples, the A-values mustbe distint, hene all possibilities for seleting B and C are open.The next two examples show that the measure InfkI (p j �) an distinguish ases that wereindistinguishable with the measure of Setion 3. Let �2 = fA ! Bg and �02 = fA !! Bg.Figure 1 (a) shows an instane I of S satisfying both �2 and �02. Figure 3 (b) shows the value ofInfkI (p j �2) and InfkI (p j �02) for k = 5; 6; 7. As expeted, the values are smaller for �2. Finally,8

k A! BC log k5 2.3219 2.32196 2.5850 2.58507 2.8074 2.8074 k A! B A!! B5 2.0299 2.21806 2.2608 2.46377 2.4558 2.6708 k I1 I25 2.0299 1.80926 2.2608 2.01677 2.4558 2.1914(a) (b) ()Figure 3: Value of onditional entropy.let �3 = fA! Bg. Figures 1 (a) and 1 () show instanes I1, I2 of S satisfying �3. We expet theinformation ontent of the gray ell to be smaller in I2 than in I1, but the measure used in Setion3 ould not distinguish them. Figure 3 () shows the values of InfkI1(p j �3) and InfkI2(p j �3)for k = 5; 6; 7. As expeted, the values are smaller for I2. In fat, InfI1(p j �3) = 0:875 andInfI2(p j �3) = 0:78125. �4.1 Basi PropertiesIt is lear from the de�nitions that InfI(p j �) does not depend on a partiular enumeration ofpositions. Two other basi properties that we an expet from the measure of information ontentare as follows: �rst, it should not depend on a partiular representation of onstraints, and seond,a shema without onstraints must be well-designed (as there is nothing to tell us that it is not).Both are indeed true.Proposition 11) Let �1 and �2 be two sets of onstraints over a shema S. If they are equivalent (that is,�+1 = �+2), then for any instane I satisfying �1 and any p 2 Pos(I), InfI(p j �1) = InfI(p j�2).2) If � = ;, then (S;�) is well-designed.Proof:1) Follows from the fat that for every instane I of S, I j= �1 i� I j= �2. Hene, for everya 2 [1; k℄ and �a 2
(I; p), SAT k�1(I(a;�a)) = SATk�2(I(a;�a)) and, therefore, H(Bk�1(I; p) jA(I; p)) = H(Bk�2(I; p) j A(I; p)).2) Follows from part 2) of Proposition 2, to be proved below. Sine for every I 2 inst(S;�),p 2 Pos(I) and a 2 N+�adom(I), we have Ip a j= �, this implies that (S;�) is well-designed.�In the following proposition we show a very useful strutural riterion for InfI(p j �) = 1, namelythat a shema (S;�) is well-designed if and only if one position of an arbitrary I 2 inst(S;�)an always be assigned a fresh value. Also in this proposition, we use this riterion to show thatInfkI (p j �) annot exhibit sub-logarithmi growth, that is, if limk!1 InfkI (p j �)= log k = 1, thenlimk!1[log k � InfkI (p j �)℄ = 0.Proposition 2 Let S be a shema and � a set of onstraints over S. Then the following areequivalent. 9

1) (S;�) is well-designed.2) For every I 2 inst(S;�), p 2 Pos(I) and a 2 N+ � adom(I), Ip a j= �.3) For every I 2 inst(S;�) and p 2 Pos(I), limk!1[log k � InfkI (p j �)℄ = 0.The following lemma will be used in the proof of this proposition and in several other proofs.Lemma 2 Fix n;m > 0, an n-element set A and a probability spae A on A with the uniformdistribution PA. Assume that for eah k > 0, we have a probability spae on [1; k℄ alled Bk and ajoint distribution PBk ;A on [1; k℄ �A suh that for some a0 2 A, and for all k > 0, the onditionalprobability P (i j a0) = PBk ;A(i; a0)=PA(a0) = 0, for at least k�m elements of [1; k℄. Then for everyk > m2: H(Bk j A)log k < 1� 12n:In partiular, if limk!1H(Bk j A)= log k exists, then limk!1H(Bk j A)= log k < 1.Proof: First, assume that m > 1. Let k > m2 and M = fi 2 [1; k℄ j P (i j a0) > 0g. Observe thatjM j � m. ThenH(Bk j A)log k = 1log k�Xa2A 1n Xi2[1;k℄P (i j a) log 1P (i j a)�= 1n log k�� Xa2A�fa0g Xi2[1;k℄P (i j a) log 1P (i j a)�+� Xi2[1;k℄P (i j a0) log 1P (i j a0)��= 1n log k�� Xa2A�fa0g Xi2[1;k℄P (i j a) log 1P (i j a)�+�Xi2M P (i j a0) log 1P (i j a0)��� 1n log k�� Xa2A�fa0g log k�+ logm� (1)= 1n log k�(n� 1) log k + logm�= 1� 1n + logmn log k < 1� 1n + logmn logm2 = 1� 1n + 12n = 1� 12n:Now, assume that m = 1. In this ase, logm in equation (1) is equal to 0 and, therefore, theprevious sequene of formulas show that H(Bk j A)= log k � 1� 1n < 1� 12n . �Proof of Proposition 2: We will prove the hain of impliations 3)) 1)) 2)) 3).The impliation 3)) 1) is straightforward. Next we show 1)) 2). Towards a ontradition,assume that there exists I 2 inst(S;�), p 2 Pos(I) and a 2 N+�adom(I) suh that Ip a 6j= �. Letk > 0 be suh that adom(I)[fag � [1; k℄. By Claim 1 (see Appendix), for every b 2 [1; k℄�adom (I),Ip b 6j= �. Thus, for every a 2 [1; k℄ � adom(I), P (a j �a0) = 0, where �a0 is the tuple in
(I; p)ontaining no variables. Therefore, applying Lemma 2 with n = 2kIk�1 and m = jadom(I)j, weonlude that for k > m2:InfkI (p j �)log k = H(Bk�(I; p) j A(I; p))log k < 1� 12 � 2kIk�1 :10

Sine InfI(p j �) = limk!1 InfkI (p j �)= log k exists by Lemma 1, we onlude that InfI(p j �) < 1and thus (S;�) is not well-designed, a ontradition.Next, we show 2)) 3). Let I 2 inst(I;�) and p 2 Pos(I). Let kIk = n and let k > n be suhthat I 2 instk(S;�). First, we prove that for every a 2 [1; k℄� adom(I) and �a 2
(I; p),jSAT k�(I(a;�a))j � (k � n)jvar(�a)j (2)where var (�a) is the set of variables in �a. We do it by indution on jvar(�a)j 3. We do it byindution on jvar(�a)j. Assume that jvar (�a)j = 0. Then given that Ip a j= �, we onlude thatjSAT k�(I(a;�a))j = 1. Now assume that (2) is true for every tuple in
(I; p) ontaining at most mvariables, and let jvar(�a)j = m+ 1. Suppose that �a = (a1; : : : ; ap�1; ap+1; : : : ; an) and ai = vi, forsome i 2 [1; p � 1℄ [[p + 1; n℄. Let I 0 = Ip a. By the assumption, I 0 j= �, and hene for everyb 2 [1; k℄ � adom(I 0) we have I 0i b j= �. Thus, given that j[1; k℄ � adom(I 0)j � k � n and forevery b1; b2 2 [1; k℄ � adom(I 0), jSAT k�(I 0(a;�b1))j = jSAT k�(I 0(a;�b2))j, where �bj (j = 1; 2) is a tupleonstruted from �a by replaing vi by bj , we onlude that if �b is a tuple onstruted from �a byreplaing vi by an arbitrary b 2 [1; k℄ � adom(I 0), then jSAT k�(I(a;�a))j � (k � n) � jSAT k�(I 0(a;�b))j,sine jadom(I 0)j � n. By the indution hypothesis, jSAT k�(I 0(a;�b))j � (k�n)jvar(�b)j = (k�n)jvar(�a)j�1and, therefore, jSAT k�(I(a;�a))j � (k � n)jvar(�a)j, proving (2).Now we show that limk!1[log k� InfkI (p j �)℄ = 0. For every k � 1 suh that adom(I) � [1; k℄,log k � InfkI (p j �) and, therefore, limk!1[log k � InfkI (p j �)℄ � 0. Hene, to prove the theoremwe will show that limk!1[log k � InfkI (p j �)℄ � 0: (3)Let k � 1 be suh that adom(I) � [1; k℄. Assume that k > n. Let a 2 [1; k℄ � adom(I) and�a 2
(I; p). Sine Pb2[1;k℄ jSAT k�(I(b;�a))j � kjvar(�a)j+1, using (2), we getP (a j �a) � (k � n)jvar(�a)jkjvar(�a)j+1 = 1k (1� nk)jvar(�a)j: (4)By Claim 1 (see Appendix), for every a; b 2 [1; k℄�adom(I) and every �a 2
(I; p), P (a j �a) = P (b j�a). Thus, for every a 2 [1; k℄ � adom(I) and every �a 2
(I; p),P (a j �a) � 1=(k � jadom(I)j) � 1=(k � n): (5)In order to prove (3), we need to establish a lower bound for InfkI (p j �). We do this by using (4)and (5) as follows: Given the term P (a j �a) log 1P (aj�a) , we use (4) and (5) to replae P (a j �a) and3This indution relies on the following simple idea: If a 62 adom(I), then Ip a j= � and, therefore, one an replaevalues in positions of �a one by one, provided that eah position gets a fresh value.
11

log 1P (aj�a) by smaller terms, respetively. More preisely,InfkI (p j �) = X�a2
(I;p)�P (�a) Xa2[1;k℄P (a j �a) log 1P (a j �a)�� 12n�1 Xa2[1;k℄�adom(I) X�a2
(I;p) 1k (1� nk)jvar(�a)j log(k � n)= 12n�1 log(k � n) 1k Xa2[1;k℄�adom(I) n�1Xi=0 �n� 1i �(1� nk)i= 12n�1 log(k � n) 1k Xa2[1;k℄�adom(I)((1� nk) + 1)n�1� 12n�1 log(k � n) 1k (k � n) (2� nk)n�1� 12n�1 log(k � n) 1k (k � n) (2� 2nk)n�1= 12n�1 log(k � n) (1� nk) 2n�1 (1� nk)n�1= log(k � n) (1� nk)n:Therefore, log k�InfkI (p j �) � log k�log(k�n) (1�nk)n. Sine limk!1[log k�log(k�n) (1�nk)n℄ =0 we onlude that (3) holds. This ompletes the proof of Proposition 2 �A natural question at this point is whether the problem of heking if a relational shema is well-designed is deidable. It is not surprising that for arbitrary �rst-order onstraints, the problem isundeidable:Proposition 3 The problem of verifying whether a relational shema ontaining �rst-order on-straints is well-designed is undeidable.Proof: It is known that the problem of verifying whether a �rst-order sentene ' of the form9�x8�y (�x; �y), where (�x; �y) is an arbitrary �rst-order formula, is �nitely satis�able is undeidable.Denote this deision problem by P98.We will redue P98 to the omplement of our problem. Let ' be a formula of the form shownabove. Assume that ' is de�ned over a relational shema fR1; : : : ; Rng and j�xj = m > 0, and letS be a relational shema fU1; U2; R1; : : : ; Rng, where U1, U2 are m-ary prediates. Furthermore,de�ne a set of onstraints � over S as follows:� = f8�x (U1(�x)$ U2(�x)); 8�x (U1(�x)! 8�y (�x; �y))g: (6)It suÆes to show that ' 2 P98 if and only if (S;�) is not well-designed.()) Assume that ' 2 P98 and let I0 be an instane of fR1; : : : ; Rng satisfying '. De�neI 2 inst(S;�) as follows: I(Ri) = I0(Ri), for every i 2 [1; n℄, and I(U1) = I(U2) = f�ag, where �a isan m-tuple in I0 suh that I0 j= 8�y (�a; �y). Let a 2 N+�adom(I) and p be an arbitrary position inI(U1). Then Ip a 6j= 8�x (U1(�x)$ U2(�x)) and, therefore, (S;�) is not well-designed by Proposition2. (() Assume that ' 62 P98. Then for every nonempty instane I 2 inst(S;�), I(U1) = I(U2)= ; and I(Ri) 6= ;, for some i 2 [1; n℄. But for every position p of a value in I(Rj) (j 2 [1; n℄) and12

every a 2 N+ � adom(I), Ip a j= � sine I(U1) and I(U2) are empty. We onlude that (S;�) iswell-designed by Proposition 2. �However, integrity onstraints used in database shema design are most ommonly universal, thatis, of the form 8�x (�x), where (�x) is a quanti�er-free formula. FDs, MVDs and JDs are universalonstraints as well as more elaborated dependenies suh as equality generating dependenies andfull tuple generating dependenies [1℄. For universal onstraints, the problem of testing if a relationalshema is well-designed is deidable. In fat,Proposition 4 The problem of deiding whether a shema ontaining only universal onstraintsis well-designed is o-NEXPTIME-omplete. Furthermore, if for a �xed m, eah relation in S hasat most m attributes, then the problem is �p2-omplete.To prove this proposition, �rst we have to prove a lemma. In this lemma we use the followingterminology. A �rst-order onstraint ' is a �n-sentene if ' is of the form Q1x1Q2x2 � � �Qmxm ,where (1) Qi 2 f8;9g (i 2 [1;m℄); (2) is a quanti�er-free formula; (3) the string of quanti�ersQ1Q2 � � �Qm onsists of n onseutive bloks, all quanti�ers in the same blok are the same and noadjaent bloks have the same quanti�ers; and (4) the �rst blok ontains existential quanti�ers.Moreover, �n-sentenes are de�ned analogously, but requiring that the �rst blok ontains universalquanti�ers.Lemma 3 Let S be a relational shema and � be a set of �n [�n-sentenes over S, n � 1.Then there exists a relational shema S0 � S and a �n+1-sentene ' over S0 suh that (S;�) iswell-designed i� ' 2 �+. Moreover, k'k is O(k(S;�)k2).Proof: Assume that S = fRm11 ; : : : ; Rmnn g, wheremi is the arity of Ri (i 2 [1; n℄). De�ne a relationalshema S0 as S [fRmii;j j i 2 [1; n℄ and j 2 [1;mi℄g [fU1g. To de�ne ', �rst we de�ne sentene as the onjuntion of the following formulas.� Wni=1 9x1 � � � 9xmi Ri(x1; : : : ; xmi). For some i 2 [1; n℄, relation Ri is not empty.� 9x (U(x) ^ 8y (U(y)! x = y)). U ontains exatly one element.� For every i 2 [1; n℄,8x8y1 � � � 8ymi�1 (U(x)! mîj=1:Ri(y1; : : : ; yj�1; x; yj ; : : : ; ymi�1)):That is, the element ontained in U is not ontained in the ative domain of relation Ri, forevery i 2 [1; n℄.� For every i 2 [1; n℄,(8x1 � � � 8xmi :Ri(x1; : : : ; xmi))! (mîj=18y1 � � � 8ymi :Ri;j(y1; : : : ; ymi)):If Ri is empty, then Ri;j is empty, for every j 2 [1;mi℄.13

� For every i 2 [1; n℄ and every j 2 [1;mi℄,9u1 � � � 9umi Ri(u1; : : : ; umi)!9x9x09y1 � � � 9yj�19yj+1 � � � 9ymi (Ri(y1; : : : ; yj�1; x; yj+1; : : : ; ymi)^:Ri;j(y1; : : : ; yj�1; x; yj+1; : : : ; ymi)^Ri;j(y1; : : : ; yj�1; x0; yj+1; : : : ; ymi) ^ U(x0)^8z1 � � � 8zmi ((zj 6= x ^ zj 6= x0) _ mi_k=1;k 6=j zk 6= yk !(Ri(z1; : : : ; zmi)$ Ri;j(z1; : : : ; zmi)))):If Ri is not empty, then there exists a tuple t in Ri and a tuple t0 in Ri;j suh that t0 is notin Ri, t is not in Ri;j and t, t0 ontain exatly the same values, exept for the element in thej-th olumn where t0 ontains a value that is in relation U . Furthermore, every other tupleis in Ri if and only if is in Ri;j.Given i 2 [1; n℄ and j 2 [1;mi℄, we denote by �[Ri=Ri;j ℄ the set of �rst-order onstraints generatedfrom � by replaing every ourrene of Ri by Ri;j. We de�ne sentene ' as follows: ! n̂i=1 mîj=1�[Ri=Ri;j ℄: (7)Notie that is a �2-sentene and, therefore, ' is a �n+1-sentene, sine n � 1. To �nish theproof, we have to show that (S;�) is well-designed if and only if ' 2 �+.(() Assume that (S;�) is not well-designed. Then by Proposition 2, there exists I 2 inst(S;�),p 2 Pos(I) and a 2 N+ � adom(I) suh that Ip a 6j= �. Assume that p is the position of someelement in the j0-th olumn of Ri0 (i0 2 [1; n℄, j0 2 [1;mi0 ℄). Then we de�ne an instane I 0 of S0 asfollows. For every i 2 [1; n℄, I 0(Ri) = I(Ri), I(U) = fag and I 0(Ri0;j0) = Ip a(Ri0). Furthermore,for every i 2 [1; n℄ and j 2 [1;mi℄, with i 6= i0 or j 6= j0, if I(Ri) is empty, then I 0(Ri;j) is alsoempty, else I 0(Ri;j) is onstruted by replaing an arbitrary element in the j-th olumn of I(Ri)by a. Then I 0 j= �, sine I j= � and I 0(Ri) = I(Ri) for every i 2 [1; n℄. I 0 j= sine (1) I 0(Ri0)is not empty (I(Ri0) is not empty); (2) I 0(U) = fag and a 62 adom(I); (3) for every i 2 [1; n℄, ifI 0(Ri) is empty, then I 0(Ri;j) is empty, for every j 2 [1;mi℄; and (4) for every i 2 [1; n℄, j 2 [1;mi℄,if I 0(Ri) is not empty, then I 0(Ri;j) di�ers from I 0(Ri) by exatly one value, whih is in U . Finally,I 0 6j= �[Ri0=Ri0;j0 ℄, sine I 0(Ri0;j0) = Ip a(Ri0) and Ip a 6j= �. We onlude that I 0 6j= ' and,therefore, ' 62 �+.()) Assume that ' 62 �+. Then there exists a database instane I 0 of S0, i0 2 [1; n℄ andj0 2 [1;mi0 ℄ suh that I 0 j= �, I 0 j= and I 0 6j= �[Ri0=Ri0;j0 ℄. We note that I 0(Ri0) is not empty(if I 0(Ri0) is empty, then I 0(Ri0;j0) is empty (I 0 j=) and, therefore, I 0(Ri0;j0) = I 0(Ri0) andI 0 j= �[Ri0=Ri0;j0 ℄, sine I 0 j= �, a ontradition). De�ne an instane I of S as follows. For everyi 2 [1; n℄, I(Ri) = I 0(Ri). Let a be the element in I 0(U) and let p be the position in I of theelement that has to be hanged to obtain I 0(Ri0;j0) from I(Ri0). Then (1) I is not empty, sineI 0 j= ; (2) I j= �, sine I 0 j= � and I(Ri) = I 0(Ri), for every i 2 [1; n℄; and (3) Ip a 6j= �, sineI 0 6j= �[Ri0=Ri0;j0℄. Given that a 2 N+ � adom(I), sine I 0 j= , by Proposition 2 we onlude that(S;�) is not well-designed. ��2-sentenes orrespond to the Sh�on�nkel-Bernays fragment of �rst-order logi. It is known thatthe problem of verifying if a Sh�on�nkel-Bernays formula has a �nite model is NEXPTIME-omplete14

[24℄ and beomes �p2-omplete if every relation has at mostm attributes, wherem is a �xed onstant.Thus, from Lemma 3 we obtain the following orollary and the proof of Proposition 4.Corollary 1 The problem of deiding whether a shema ontaining only �1[�1-sentenes is well-designed belongs to o-NEXPTIME.Proof of Proposition 4: We onsider only the ase of unbounded-arity relations, being the aseof �xed-arity relations similar. The membership part of the proposition is a partiular ase ofCorollary 1. The hardness part of the proposition follows from the following observation. If in theredution of Proposition 3 the formula ' is of the form 9�x8�y (�x; �y), where is quanti�er-free,then the set of onstraints � de�ned in (6) is universal. Thus, the same redution of Proposition 3shows that the problem of deiding whether a �2-sentene is �nitely satis�able is reduible to theproblem of deiding whether a shema ontaining only universal onstraints is well-designed. �For spei� kinds of onstraints, e.g., FDs, MVDs, lower omplexity bounds will follow from theresults in the next setion.4.2 Justi�ation of Relational Normal FormsWe now apply the riterion of being well-designed to various relational normal forms. We show thatall of them lead to well-designed spei�ations, and some preisely haraterize the well-designedspei�ations that an be obtained with a lass of onstraints.We start by �nding onstraints that always give rise to well-designed shemas. Reall that atyped unirelational equality generating dependeny [1℄ is a onstraint of the form:8 (R(�x1) ^ � � � ^R(�xm)! �x = �y);where 8 represents the universal losure of a formula, �x; �y � �x1[� � �[�xm and there is an assignmentof variables to olumns suh that eah variable ours only in one olumn and eah equality atominvolves a pair of variables assigned to the same olumn. An extended key is a typed unirelationalequality generating dependeny of the form:8 (R(�x1) ^ � � � ^R(�xm)! �xi = �xj);where i; j 2 [1;m℄. Note that every key is an extended key.Proposition 5 If S is a shema and � a set of extended keys over S, then (S;�) is well-designed.Before proving this proposition we introdue one de�nition that will be used in several proofs. LetI 2 inst(S;�), p 2 Pos(I), a 2 [1; k℄ and �a 2
(I; p). Given a substitution � : �a ! [1; k℄ andR 2 S, we say that a tuple t0 2 �(I(a;�a))(R) is generated by a tuple t 2 I(R) by means of a tuplet� 2 I(a;�a) if �(t�) = t0 and t� an be obtained from t by replaing eah value in it by the elementof (a; �a) in the same position. We say t0 2 �(I(a;�a))(R) is generated by a tuple t 2 I(R) if it isgenerated by t by means of some t� 2 I(a;�a).Proof of Proposition 5: To prove the proposition, we now use part 2) of Proposition 2. LetI 2 inst(S;�), p 2 Pos(I) and a 2 N+ � adom(I). We have to show that Ip a j= �.Assume to the ontrary that Ip a 6j= �. Then there exists R 2 S and an extended key8(R(�x1) ^ � � � ^R(�xm)! �xi = �xj) 2 � suh that Ip a 6j= 8(R(�x1) ^ � � � ^R(�xm)! �xi = �xj). Thus,15

there exists a substitution �0 : �x1 [� � � [�xm ! [1; k℄ suh that �0(�xl) = t0l and t0l 2 Ip a(R), forevery l 2 [1;m℄, and t0i 6= t0j. De�ne a substitution � : �x1 [� � � [�xm ! [1; k℄ as follows. Let b be thevalue in the p-th position of I. Then�(x) = (�0(x) �0(x) 6= ab OtherwiseLet �(�xl) = tl, for every l 2 [1; n℄. It is straightforward to verify that t01, : : :, t0n are generated fromt1, : : :, tn, respetively. Given that I j= �, ti = tj and, therefore, t0i = t0j. This ontradition provesthe proposition. �Corollary 2 A relational spei�ation (S;�) in DK/NF is well-designed.In the rest of this setion, we also denote join dependenies by �rst-order sentenes. More preisely,a join dependeny over a relation R is a �rst-order sentene of the form:8 (R(�x1) ^ � � � ^R(�xm)! R(�x));where 8 represents the universal losure of a formula, �x � �x1 [� � � [�xm, every variable not in �xours in preisely one �xi (i 2 [1;m℄) and there is an assignment of variables to olumns suh thateah variable ours only in one olumn. For example, join dependeny ./[AB;BC℄ over a relationR(A;B;C) an be denoted by8x8y8z8u18u2 (R(x; y; u1) ^R(u2; y; z)! R(x; y; z)):Next, we haraterize well-designed shemas with FDs and JDs.Theorem 2 Let � be a set of FDs and JDs over a relational shema S. (S;�) is well-designed ifand only if for every R 2 S and every nontrivial join dependeny 8(R(�x1) ^ � � � ^ R(�xm)! R(�x))in �+, there exists M � f1; : : : ;mg suh that:1. �x � Si2M �xi.2. For every i; j 2M , 8(R(�x1) ^ � � � ^R(�xm)! �xi = �xj) 2 �+.In the proof of Theorem 2 we shall use hase for FDs and JDs [21℄ whih we now briey reviewfor the sake of ompleteness. A tableau is a set of rows with one olumn for eah attribute insome universe U . The rows are omposed of distinguished and non-distinguished variables. Eahvariable may appear in only one olumn and only one distinguished variable may appear in oneolumn. Let the non-distinguished variables be x1, : : :, xm. The hase of T with respet to a set �of FDs and JDs is based on the suessive appliation of the following two rules:FD rule: Let � be a funtional dependeny in � of the form X ! A, where A is a singleattribute, and let u; v 2 T be suh that u[X℄ = v[X℄ and u[A℄ 6= v[A℄. The result ofapplying the FD � to T is a new tableau T 0 de�ned as follows. If one of the variablesu[A℄; v[A℄ is distinguished, then all the ourrenes of the other one are renamed tothat variable. If both are non-distinguished, then all the ourrenes of the variablewith the larger subsript are renamed to the variable with the smaller subsript.JD rule: Let � be a join dependeny of the form ./[X1; : : : ;Xn℄ and let u be a tuple not inT . If there are u1; : : : ; un 2 T suh that ui[Xi℄ = u[Xi℄ for every i 2 [1; n℄, then theresult of applying the JD � over T is T [fug.16

A hasing sequene of T by � is a sequene of tableaux T = T0, T1, T2, : : :, suh that for eah i � 0,Ti+1 is the result of applying some dependeny in � to Ti. It is known that any suh sequeneterminate and the resulting tableau does not depend on a partiular sequene [21℄; we denote thistableau by Chase(T;�).Every appliation of either the \FD rule" or the \JD rule" naturally de�nes a substitution ofvariables by variables (in the latter, this substitution is the identity). The substitution de�ned bythe hase is obtained as the omposition of the substitutions for eah step of the hase. This sub-stitution enables us to map eah original variable (tuple) in T to a variable (tuple) in Chase(T;�).Given a set of FDs and JDs � [f�g, it was shown in [21℄ that the hase an be used forheking whether � j= �. The idea is to onstrut a tableau T�, ompute Chase(T� ;�) and verifywhether some ondition is satis�ed. If � is an FD X ! A, then T� has two rows: one ontains onlydistinguished variables, and the other one ontains distinguished variables in all the X-olumnsand non-distinguished variables elsewhere. Then � j= � i� Chase(T� ;�) has only one distinguishedvariable in the A-olumn [21℄. Moreover, if � is a JD ./[X1; : : : ;Xn℄, then T� has n rows. For everyi 2 [1; n℄, the i-th row ontains distinguished variables in the Xi-olumns and non-distinguishedvariables in the remaining olumns. Furthermore, every non-distinguished variable in T� appearsexatly one. Then � j= � i� Chase(T�;�) ontains a row of all distinguished variables [21℄.Chase, and all the results shown above, an be generalized in a natural manner to the ase ofmore expressive onstraints like typed equality generating dependenies (see [1℄).We now move to the proof of Theorem 2. We need two lemmas �rst.Lemma 4 Let � be a set of FDs and JDs over a relational shema S and R 2 S. Assume that �ontains a JD 8(R(�x1) ^ � � � ^ R(�xm) ! R(�x)) suh that 8(R(�x1) ^ � � � ^ R(�xm) ! �x = �xi) 62 �+,for every i 2 [1;m℄. Then there exists I 2 inst(S;�) and p 2 Pos(I) suh that InfI(p j �) < 1:Proof: Let T be a tableau ontaining tuples f�x1; : : : ; �xmg, and let �x be the distinguishedvariables. Let � be a one-to-one funtion with the domain �x1 [� � � [�xm and the range ontainedin N+ . De�ne I = �(Chase(T;�)). Assume that � is the omposition of the substitutionsused in the hase. Let tj = �(�(�xj)), for every j 2 [1;m℄, and t = �(�(�x)). Given that8(R(�x1) ^ � � � ^ R(�xm) ! �x = �xi) 62 �+, for every i 2 [1;m℄, we onlude that t 6= tj, for everyj 2 [1;m℄. Let A 2 sort(R), p be the position of t[A℄ in I and k suh that adom(I) � [1; k℄. SineI j= � and I ontains t1, : : :, tm, the JD 8(R(�x1) ^ � � � ^R(�xm)! R(�x)) 2 � implies that I mustontain t. Thus, hanging any value in t generates an instane that does not satisfy �. Hene, forevery a 2 [1; k℄ � ft[A℄g, P (a j �a0) = 0, where �a0 is the tuple in
(I; p) ontaining no variables.Applying Lemma 2 we onlude that H(Bk�(I; p) j A(I; p))= log k < for some onstant < 1, forall suÆiently large k, and thus by Lemma 1, InfI(p j �) = limk!1 InfkI (p j �)= log k < 1: �Given a set � of FDs and JDs over a relational shema S and a JD ' 2 � of the form 8(R(�x1) ^� � � ^R(�xm)! R(�x)), de�ne an equivalene relation �' on tuples of variables as follows. For everyi; j 2 [1;m℄, �xi �' �xj if 8(R(�x1)^� � �^R(�xm)! �xi = �xj) 2 �+. Let [i℄' be the equivalene lass of�xi, for every i 2 [1;m℄, and let var ([i℄') be the set of variables ontained in all the tuples �xj 2 [i℄'.Lemma 5 Let � be a set of FDs and JDs over a relational shema S and R 2 S. Assume that� ontains a JD ' of the form 8(R(�x1) ^ � � � ^ R(�xm) ! R(�x)) suh that �x 6� var([i℄'), for everyi 2 [1;m℄. Then there exists I 2 inst(S;�) and p 2 Pos(I) suh that InfI(p j �) < 1:Proof: If 8(R(�x1) ^ � � � ^ R(�xm) ! �x = �xi) 62 �+, for every i 2 [1;m℄, then by Lemma 4 thereexists I 2 inst(S;�) and p 2 Pos(I) suh that InfI(p j �) < 1: Thus, we may assume that there17

exists i 2 [1;m℄ suh that 8(R(�x1) ^ � � � ^ R(�xm)! �x = �xi) 2 �+. By the hypothesis, there existsl 2 [1; j�xj℄ and a variable x in the l-th olumn of �x suh that x 62 var ([i℄'). Let u be the variablein the l-th olumn of �xi and Ui the set of variables in the l-olumn of all the tuples �xj (j 2 [1;m℄)suh that �xi �' �xj.Let T be a tableau f�x1; : : : ; �xmg, with �xi as distinguished variables. In Chase(T;�), all thetuples in the equivalene lass of �xi (and no other) are identi�ed with this tuple. Denote the l-thomponent of tuple �xj by �xlj (and similarly for other tuples).Let � be a one-to-one funtion with the domain �x1 [� � � [�xm and the range ontained in N+and I = �(Chase(T;�)). Assume that � is the omposition of the substitutions used in the hase.Let tj = �(�(�xj)) be a tuple in I, for every j 2 [1;m℄. Note that �(�(�xi)) = �(�xi) sine �xi is a tupleof distinguished variables. Additionally, sine I satis�es 8(R(�x1) ^ � � � ^R(�xm)! �x = �xi), it mustbe the ase that �(�(�x)) = �(�xi).Let p be the position in I of tli. The value in this position is �(u). We will show that for everya 2 [1; k℄ � f�(u)g, P (a j �a0) = 0, where �a0 is a tuple in
(I; p) ontaining no variables.Denote by t0j the tuple of I(a;�a0) that orresponds to tj in I. Note that t0j = tj for all j suhthat �xj is not in [i℄'. When �xj is in [i℄', t0j di�ers from tj only in that the value in its l-tholumn is a rather than �(u). Assume that I(a;�a0) satis�es �. Then it satis�es, in partiular,8(R(�x1) ^ � � � ^R(�xm)! R(�x)). Reall that in this JD, every variable not in �x ours in a unique�xj. We give a substitution from the variable tuples �x1, : : :, �xm to the tuples t01, : : :, t0m, respetively.Let �0 : �x1 [� � � [�xm ! [1; k℄ be a substitution de�ned as follows. For every y 2 �x1 [� � � [�xm,�0(y) = (�(�(y)) if y 62 Uia otherwise.We laim that for every j 2 [1;m℄, �0(�xj) = t0j . Clearly, we only need to onsider the l-th olumn.Indeed, if �xj is in [i℄', then t0j is tj, exept in the l-olumn, where tj ontains the value a, sine�xlj is in Ui. Thus, �0(�xj) = t0j. If �xj is not in [i℄', then �xlj is either x, or a variable that oursonly in �xj . In either ase, it is not in Ui. Thus, �0(�xj) = t0j. Sine I(a;�a0) is assumed to satisfyJD 8(R(�x1) ^ � � � ^ R(�xm) ! R(�x)), it must ontain �0(�x). However, sine x is not in Ui, �0(�x) =�(�(�x)) = �(�xi) = ti in I, whih is not in I(a;�a0), a ontradition.We onlude that for every a 2 [1; k℄ � f�(u)g, P (a j �a0) = 0. Hene, by Lemma 2,InfkI (p j �)= log k < for some onstant < 1, for all suÆiently large k, and then by Lemma 1,InfI(p j �) = limk!1 InfkI (p j �)= log k < 1. This proves the lemma. �Theorem 2 is a orollary of Proposition 5 and Lemma 5. We note that this theorem justi�es variousnormal forms proposed for JDs and FDs [14, 29℄.Corollary 3 Let � be a set of FDs and JDs over a relational shema S. If (S;�) is in PJ/NF or5NFR, then it is well-designed.However, neither of these normal forms haraterizes preisely the notion of being well-de�ned:Proposition 6 There exists a shema S and a set of JDs and FDs � suh that (S;�) is well-designed, but it violates all of the following: DK/NF, PJ/NF, 5NFR.Proof: Let S = fR(A;B;C)g and � = fAB ! C; AC ! B; ./[AB;AC;BC℄g. This spei�ationis not in DK/NF and PJ/NF sine the set of keys implied by � is fAB ! ABC; AC ! ABC;18

ABC ! ABCg and this set does not imply ./[AB;AC;BC℄. Furthermore, this spei�ation is notin 5NFR sine ./[AB;AC;BC℄ is a strong-redued join dependeny and BC is not a key in �.Join dependeny ./[AB;AC;BC℄ orresponds to the following �rst order sentene:8x8y8z8u18u28u3 (R(x; y; u1) ^R(x; u2; z) ^R(u3; y; z)! R(x; y; z)):From Theorem 2, we onlude that (S;�) is well designed sine � implies the sentene8x8y8z8u18u28u3(R(x; y; u1) ^R(x; u2; z) ^R(u3; y; z)! y = u2 ^ z = u1):and (x; y; z) � (x; y; u1) [(x; u2; z). �By restriting Theorem 2 to the ase of spei�ations ontaining only FDs and MVDs (or onlyFDs), we obtain the equivalene between well-designed databases and 4NF (respetively, BCNF).Theorem 3 Let � be a set of integrity onstraints over a relational shema S.1. If � ontains only FDs and MVDs, then (S;�) is well-designed if and only if it is in 4NF.2. If � ontains only FDs, then (S;�) is well-designed if and only if it is in BCNF.5 Normalizing XML dataIn this setion we give an overview of the XML normal form alled XNF, and show that thenotion of being well-designed straightforwardly extends from relations to XML. Furthermore, if allonstraints are spei�ed as funtional dependenies, this notion preisely haraterizes XNF.5.1 Overview of XML Constraints and Normalization5.1.1 DTDs and XML treesWe shall use a somewhat simpli�ed model of XML trees in order to keep the notation simple. Weassume a ountably in�nite set of labels L, a ountably in�nite set of attributes A (we shall usethe notation �l1;�l2, et for attributes to distinguish them from labels), and a ountably in�niteset V of values of attributes. Furthermore, we do not onsider PCDATA elements in XML trees sinethey an always be represented by attributes.A DTD (Doument Type De�nition) D is a 4-tuple (L0; P;R; r) where L0 is a �nite subset ofL, P is a set of rules a ! Pa for eah a 2 L0, where Pa is a regular expression over L0 � frg, Rassigns to eah a 2 L0 a �nite subset of A (possibly empty; R(a) is the set of attributes of a), andr 2 L0 (the root).Example 5: The DTD below is a part of DBLP [11℄ that stores onferene data.<!ELEMENT db (onf*)><!ELEMENT onf (issue+)><!ATTLIST onftitle CDATA #REQUIRED><!ELEMENT issue (inproeedings+)><!ELEMENT inproeedings EMPTY><!ATTLIST inproeedingsauthor CDATA #REQUIREDtitle CDATA #REQUIREDpages CDATA #REQUIREDyear CDATA #REQUIRED> 19

This DTD is represented as (L0; P; R; r), where r = db, L0 = fdb; onf ; issue; inproeedingsg, P =fdb ! onf �, onf ! issue+, issue ! inproeedings+, inproeedings ! �g, R(onf) = f�titleg,R(inproeedings) = f�author ; �title; �pages ; �yearg and R(db) = R(issue) = ;. �An XML tree is a �nite rooted direted tree T = (N;E) where N is the set of nodes and Eis the set of edges, together with the labeling funtion � : N ! L and partial attribute valuefuntions ��l : N ! V for eah �l 2 A. We furthermore assume that for every node x in N , itshildren x1; : : : ; xn are ordered and ��l(x) is de�ned for a �nite set of attributes �l. We say thatT onforms to DTD D = (L0; P; R; r), written as T j= D, if the root of T is labeled r, for everyx 2 N with �(x) = a, the word �(x1) � � � �(xn) that onsists of the labels of its hildren belongsto the language denoted by Pa, and for every x 2 N with �(x) = a, �l 2 R(a) if and only if thefuntion ��l is de�ned on x (and thus provides the value of attribute �l).5.1.2 Funtional Dependenies for XMLTo present a funtional dependeny language for XML we need to introdue some terminology.Reall that L and A are ountably in�nite sets of labels and attributes, respetively. Then anelement path q is a word in L�, and an attribute path is a word of the form q:�l, where q 2 L� and�l 2 A. An element path q is onsistent with a DTD D if there is a tree T j= D that ontains anode reahable by q (in partiular, all suh paths must have r as the �rst letter); if in addition thenodes reahable by q have attribute �l, then the attribute path q:�l is onsistent with D. The setof all paths (element or attribute) onsistent with D is denoted by paths(D). This set is �nite fora non-reursive D and in�nite if D is reursive.A funtional dependeny over DTD D [3℄ is an expression of the form fq1; : : : ; qng ! q, wheren � 1 and q; q1; : : : ; qn 2 paths(D). To de�ne the notion of satisfation for FDs, we use a relationalrepresentation of XML trees from [3℄. Given T j= D, a tree tuple in T is a mapping t : paths(D)!N [V [f?g suh that if q is an element path whose last letter is a and t(q) 6= ?, then� t(q) 2 N and its label, �(t(q)), is a;� if q0 is a pre�x of q, then t(q0) 6= ? and the node t(q0) lies on the path from the root to t(q)in T ;� if �l is de�ned for t(q) and its value is v 2 V , then t(q:�l) = v.Intuitively, a tree tuple assigns nodes or attribute values or nulls (?) to paths in a onsistentmanner. A tree tuple is maximal if it annot be extended to another one by hanging some nullsto values from N [V . The set of maximal tree tuples is denoted by tuplesD(T). Now we say thatFD fq1; : : : ; qng ! q is true in T if for any t1; t2 2 tuplesD(T), whenever t1(qi) = t2(qi) 6= ? for alli � n, then t1(q) = t2(q) holds.Example 6: Let D be the DTD from Example 5. Among the set � of FDs over this DTD are:db:onf :�title ! db:onf ;db:onf :issue ! db:onf :issue:inproeedings:�year :The �rst funtional dependeny spei�es that two distint onferenes must have distint titles.The seond one spei�es that any two inproeedings hildren of the same issue must have the samevalue of �year. �20

5.1.3 XNF: An XML Normal Form.Suppose we are given a DTD D and a set � of FDs over D. The set of all FDs implied by (D;�)is denoted by (D;�)+, this is, (D;�)+ is the set of all FD X ! Y over D suh that for everyXML tree T onforming to D and satisfying �, T j= X ! Y . An FD is alled trivial if it belongsto (D; ;)+, that is, it is implied by the DTD alone. For example, q ! r, where r is the root, orq ! q:�l, are trivial FDs.We say that (D;�) is in XML Normal Form (XNF) [3℄ if for any nontrivial FD X ! q:�l in(D;�)+, the FD X ! q is in (D;�)+ as well. Intuitively, a violation of XNF means that there issome redundany in the doument: we may have many nodes reahable by path q but all of themwill have the same value of attribute �l (provided they agree on X).Example 7: The DBLP example 5 seen earlier may ontain redundant information: year is storedmultiple times for the same issue of a onferene. This XML spei�ation is not in XNF sinedb:onf :issue ! db:onf :issue:inproeedingsis not in (D;�)+. This suggests making �year an attribute of issue, and indeed, suh a revisedspei�ation an easily be shown to be in XNF. �5.2 Well-designed XML dataWe do not need to introdue a new notion of being well-designed spei�ally for XML: the de�nitionthat we formulated in Setion 4 for relational data will apply. We only have to de�ne the notionof positions in a tree, and then reuse the relational de�nition. For relational databases, positionsorrespond to the \shape" of relations, and eah position ontains a value. Likewise, for XML,positions will orrespond to the shape (that is more omplex, sine douments are modeled astrees), and they must have values assoiated with them. Consequently, we formally de�ne the setof positions Pos(T) in a tree T = (N;E) as f(x;�l) j x 2 N; �l 2 R(�(x))g. As before, weassume that there is an enumeration of positions (a bijetion between Pos(T) and f1; : : : ; ng wheren = jPos(T)j) and we shall assoiate positions with their numbers in the enumeration. We de�neadom(T) as the set of all values of attributes in T and Tp a as an XML tree onstruted from Tby replaing the value in position p by a.As in the relational ase, we take the domain of values V of the attributes to be N+ . Let �be a set of FDs over a DTD D and k > 0. De�ne inst(D;�) as the set of all XML trees thatonform to D and satisfy � and instk(D;�) as its restrition to trees T with adom(T) � [1; k℄.Now �x T 2 instk(D;�) and p 2 Pos(T). With the above de�nitions, we de�ne the probabilityspaes A(T; p) and Bk�(T; p) exatly as we de�ned A(I; p) and Bk�(I; p) for a relational instane I.That is,
(T; p) is the set of all tuples �a of the form (a1; : : : ; ap�1; ap+1; : : : ; an) suh that everyai is either a variable, or the value T has in the orresponding position, SAT k�(T(a;�a)) as the set ofall possible ways to assign values from [1; k℄ to variables in �a that result in a tree satisfying �, andthe rest of the de�nition repeats the relational ase one verbatim, substituting T for I.We use the above de�nitions to de�ne InfkT (p j �) as the entropy of Bk�(T; p) given A(T; p):InfkT (p j �) def= H(Bk�(T; p) j A(T; p)) :As in the relational ase, we an show that the limitlimk!1 InfkT (p j �)log kexists, and we denote it by InfT (p j �). Following the relational ase, we introdue21

De�nition 3 An XML spei�ation (D;�) is well-designed if for every T 2 inst(D;�) and everyp 2 Pos(T), InfT (p j �) = 1.Note that the information-theoreti de�nition of well-designed shema presented in Setion 4 forrelational data proved to be extremely robust, as it extended straightforwardly to a di�erent datamodel: we only needed a new de�nition of Pos(T) to use in plae of Pos(I), and Pos(T) is simply anenumeration of all the plaes in a doument where attribute values our. As in the relational ase,it is possible to show that well-designed XML and XNF oinide. Furthermore, it is also possibleto establish a useful strutural riterion for InfT (p j �) = 1, namely that an XML spei�ation(D;�) is well-designed if and only if one position of an arbitrary T 2 inst(D;�) an always beassigned a fresh value.Theorem 4 Let D be a DTD and � a set of FDs over D. Then the following are equivalent.1) (D;�) is well-designed.2) (D;�) is in XNF.3) For every T 2 inst(D;�), p 2 Pos(T) and a 2 N+ � adom(T), Tp a j= �.The proof of the theorem follows rather losely the proof of Proposition 2, by replaing relationalonepts by their XML ounterparts.Proof of Theorem 4: We will prove the hain of impliations 1)) 2)) 3)) 1).1)) 2) Assume that (D;�) is not in XNF. We will show that there exists T 2 inst(D;�) andp 2 Pos(T) suh that InfT (p j �) < 1.Given that (D;�) is not in XNF, there exists a nontrivial FD X ! q:�l 2 (D;�)+ suhthat X ! q 62 (D;�)+. Thus, there is T 2 inst(D;�) ontaining tree tuples t1; t2 suh thatt1(q0) = t2(q0) and t1(q0) 6= ?, for every q0 2 X, and t1(q) 6= t2(q). We may assume that t1(q) 6= ?and t2(q) 6= ? (if t1(q) = ? or t2(q) = ?, then t1(q:�l) 6= t2(q:�l), whih would ontraditT j= �). Let x = t1(q), p be the position of (x;�l) in T and a = t1(q:�l). Let �a0 be the vetor in
(T; p) ontaining no variables. Given that t1(q) 6= t2(q) and none of these values is ?, for everyb 2 [1; k℄ � fag, T(b;�a0) 6j= �. Thus, for every b 2 [1; k℄ � fag, P (b j �a0) = 0. Now a straightforwardappliation of Lemma 2 impliesInfT (p j �) = limk!1 InfkT (p j �)= log k < 1:This onludes the proof.2)) 3) Let (D;�) be an XML spei�ation in XNF, T 2 inst(D;�), p 2 Pos(T) and a 2N+ � adom(T). We prove that Tp a j= �.Assume, to the ontrary, that Tp a 6j= �. Then there exists a FD X ! q 2 � suh thatTp a 6j= X ! q. Thus, there exists t01; t02 2 tuplesD(Tp a) suh that t01(q0) = t02(q0) and t01(q0) 6= ?,for every q0 2 X, and t01(q) 6= t02(q). Assume that these tuples were generated from tuples t1; t2 2tuplesD(T). Given that a 2 N+ � adom(T), t1(q0) = t2(q0) and t1(q0) 6= ?, for every q0 2 X, and,therefore, t1(q) = t2(q), sine T j= �. If q is an element path, then t01(q) = t1(q) and t02(q) = t2(q),sine Tp a is onstruted from T by modifying only the values of attributes. Thus, t01(q) = t02(q),a ontradition. Assume that q is an attribute path of the form q1:�l. In this ase, X ! q1:�lis a nontrivial FD in � and, therefore, X ! q1 2 (D;�)+, sine (D;�) is in XNF. We onlude22

that t1(q1) = t2(q1). Given that q1 is an element path, as in the previous ase we onlude thatt01(q1) = t02(q1). Hene, t01(q1:�l) = t02(q1:�l), again a ontradition.3)) 1) Let T 2 inst(D;�) and p 2 Pos(T). We have to prove that InfT (p j �) = 1. To showthis, it suÆes to prove that limk!1 InfkT (p j �)log k � 1: (8)Let n = jPos(T)j and k > 2n suh that T 2 instk(D;�). If �a 2
(T; p) and var(�a) is the set ofvariables mentioned in �a, then for every a 2 [1; k℄ � adom(T),jSAT k�(T(a;�a))j � (k � 2n)jvar(�a)jsine by hypothesis one an replae values in positions of �a one by one, provided that eah positiongets a fresh value. Thus, given that Pb2[1;k℄ jSAT k�(T(b;�a))j � kjvar(�a)j+1, for every a 2 [1; k℄ �adom(T) and every �a 2
(T; p), we have:P (a j �a) � (k � 2n)jvar(�a)jkjvar(�a)j+1 = 1k (1� 2nk)jvar(�a)j: (9)Funtional dependenies are generi onstraints. Thus, for every a; b 2 [1; k℄� adom(T) and every�a 2
(T; p), P (a j �a) = P (b j �a). Hene, for every a 2 [1; k℄ � adom(T) and every �a 2
(T; p):P (a j �a) � 1k � jadom(T)j � 1k � n: (10)In order to prove (8), we need to establish a lower bound for InfkT (p j �). We do this by using (9)and (10) as follows: Given the term P (a j �a) log 1P (aj�a) , we use (9) and (10) to replae P (a j �a) andlog 1P (aj�a) by smaller terms, respetively. More preisely,InfkT (p j �) = X�a2
(T;p)�P (�a) Xa2[1;k℄P (a j �a) log 1P (a j �a)�� 12n�1 Xa2[1;k℄�adom(T) X�a2
(T;p) 1k (1� 2nk)jvar(�a)j log(k � n)= 12n�1 log(k � n) 1k Xa2[1;k℄�adom(I) n�1Xi=0 �n� 1i �(1� 2nk)i= 12n�1 log(k � n) 1k Xa2[1;k℄�adom(I)((1� 2nk) + 1)n�1� 12n�1 log(k � n) 1k (k � n) (2� 2nk)n�1= 12n�1 log(k � n) (1� nk) 2n�1 (1� nk)n�1= log(k � n) (1� nk)n:Therefore, InfkT (pj�)log k � log(k�n)log k (1 � nk)n. Sine limk!1 log(k�n)log k (1 � nk)n = 1, (8) follows. Thisonludes the proof. �23

The theory of XML onstraints and normal forms is not nearly as advaned as its relational oun-terparts, but we demonstrated here that the de�nition of well-designed shemas works well for theexisting normal form based on FDs; thus, it an be used to test other design riteria for XML whenthey are proposed.6 Normalization algorithmsWe now show how the information-theoreti measure of Setion 4 an be used for reasoning aboutnormalization algorithms at the instane level. For this setion, we assume that � is a set of FDs,both for the relational and the XML ases. The results shown here state that after eah step of adeomposition algorithm, the amount of information in eah position does not derease.6.1 Relational DatabasesLet I 0 be the result of applying one step of a normalization algorithm to I. In order to omparethe amount of information in these instanes, we need to show how to assoiate positions in Iand I 0. Sine we only onsider here funtional dependenies, we deal with BCNF, and standardBCNF deomposition algorithms use steps of the following kind: pik a relation R with the setof attributes W , and let W be the disjoint union of X;Y;Z, suh that X ! Y 2 �+. Then aninstane I = I(R) of R gets deomposed into IXY = �XY (I) and IXZ = �XZ(I), with the sets ofFDs �XY and �XZ , where �U stands for fC ! D 2 �+ j CD � U � Wg. This deompositiongives rise to two partial maps �XY : Pos(I)! Pos(IXY) and �XZ : Pos(I)! Pos(IXZ). If p is theposition of t[A℄ for some A 2 XY , then �XY (p) is de�ned, and equals the position of �XY (t)[A℄ inIXY ; the mapping �XZ is de�ned analogously. Note that �XY and �XZ an map di�erent positionsin I to the same position of IXY or IXZ .We now show that the amount of information in eah position does not derease in the normal-ization proess.Theorem 5 Let (X;Y;Z) partition the attributes of R, and let X ! Y 2 �+. Let I 2 inst(R;�)and p 2 Pos(I). If U is either XY or XZ and �U is de�ned on p, then InfI(p j �) � InfIU (�U (p) j�U):To prove this theorem, �rst we need to prove two lemmas.Lemma 6 Let � be a set of FDs over a relational shema S, I 2 inst(S;�), p 2 Pos(I) and�a 2
(I; p). Then limk!1 1log kPa2[1;k℄ P (a j �a) log 1P (aj�a) is either 0 or 1.Proof: Given in Appendix A.2. �Let R be a relation shema suh that sort(R) = X [Y [Z, where X, Y and Z are nonemptypairwise disjoint sets of attributes. Let � be a set of FDs over R and I 2 inst(R;�). Assume thatX ! Y 2 �+. De�ne R0 as a relation shema suh that sort(R0) = X [Y , �0 = �XY , and let I 0be �XY (I). Note that I 0 2 inst(R0;�0). We use Lemma 6 to show the following.Lemma 7 Let t0 2 I, t00 = �XY (t0) and A 2 X [Y . If t0[A℄ is the p-th element in I and t00[A℄ isthe p0-th element in I 0, then InfI(p j �) � InfI0(p0 j �0).24

Proof: Assume that kIk = n, X[Y = fA1; : : : ; Amg and ft[X℄ j t 2 Ig ontains l tuples f�1; : : : ; �lg.For every i 2 [1; l℄, hoose a tuple ti 2 I suh that ti[X℄ = �i. Without loss of generality, assumethat t0 = tl, A = Am and ti[Aj ℄ is the ((i � 1)m + j)-th element in I. Thus, t1[A1℄ is the �rstelement in I, t1[Am℄ is the m-th element in I and tl[Am℄ is the lm-th element in I. We note thatp = lm.For every �a = (a1; : : : ; ap�1; ap+1; : : : ; an) 2
(I; p), de�ne �a� = (a1; : : : ; ap�1; vp+1; : : : ; vn),that is, �a� is generated from �a by replaing eah ai (i 2 [p + 1; n℄) by a variable. Furthermore,de�ne
�(I; p) as f�a 2
(I; p) j for every i 2 [p + 1; n℄; ai is a variableg. It is easy to see thatif limk!1 1log kPa2[1;k℄ P (a j �a) log 1P (aj�a) = 1, then limk!1 1log kPa2[1;k℄ P (a j �a�) log 1P (aj�a�) = 1.Thus, by Lemma 6, for every �a 2
(I; p):limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) � limk!1 1log k Xa2[1;k℄P (a j �a�) log 1P (a j �a�) :Therefore, InfI(p j �) = limk!1 1log k X�a2
(I;p) 12n�1 Xa2[1;k℄P (a j �a) log 1P (a j �a)= 12n�1 X�a2
(I;p) limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a)� 12n�1 2n�p X�a2
�(I;p) limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a)= 12p�1 X�a2
�(I;p) limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) : (11)Observe that kI 0k = lm. Without loss of generality assume that p0 = lm = p. Then for every�a = (a1; : : : ; ap�1; ap+1; : : : ; an) 2
(I; p), de�ne �a0 2
(I 0; p0) as (a1; : : : ; ap0�1). As in the aseof �a�, it is easy to see that limk!1 1log kPa2[1;k℄ P (a j �a) log 1P (aj�a) � limk!1 1log kPa2[1;k℄ P (a j�a0) log 1P (aj�a0) . Partiularly, this property holds for every �a 2
�(I; p). Thus, by (11) we onludethat InfI0(p0 j �0) = limk!1 1log k X�a2
(I0;p0) 12p0�1 Xa2[1;k℄P (a j �a) log 1P (a j �a)= 12p0�1 X�a2
(I0;p0) limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a)� 12p�1 X�a2
�(I;p) limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a)� InfI(p j �): �Proof of Theorem 5: First, we notie that adding new relations and onstraints over them to ashema does not a�et the information ontent of the old positions. Namely, let S = fR1; : : : ; Rmgbe a relational shema, � = �1 [� � � [�m be a set of FDs over S suh that �i is a set ofFDs over Ri (i 2 [1;m℄), S0 = fR1g, �0 = �1, I 2 inst(S;�) and I 0 2 inst(S0;�0) suh that25

I 0 = I(R1). Furthermore, let p be a position in I(R1) and p0 the orresponding position in I 0. ThenInfI(p j �) = InfI0(p0 j �0). The theorem now is a diret onsequene of this fat and Lemma 7. �A deomposition algorithm is e�etive in I if for one of its basi steps, and for some p, the inequalityin Theorem 5 is strit: that is, the amount of information inreases. This notion leads to anotherharaterization of BCNF.Proposition 7 (R;�) is in BCNF if and only if no deomposition algorithm is e�etive in (R;�).Proof: ()) If (R;�) is in BCNF, then for every I 2 inst(R;�) and p 2 Pos(I), InfI(p j �) = 1.Thus, no deomposition algorithm an be e�etive on any I 2 inst(R;�).(() Assume that (R;�) is not in BCNF. We will show that there exists a deompositionalgorithm e�etive in (R;�).Given that (R;�) is not in BCNF, we an �nd nonempty pairwise disjoint sets of attributesX, Y , Z suh that X [Y [Z = sort(R), X ! Y 2 �+, X is not a key and (XY;�XY) is inBCNF. Let I be a database instane of R ontaining two tuples t1; t2 de�ned as follows. For everyA 2 sort(R), t1[A℄ = 1. If X ! A 2 �+, then t2[A℄ = 1, otherwise t2[A℄ = 2. It is easy to seethat I 2 inst(R;�). Furthermore, for every A 2 Y and p 2 Pos(I) suh that t1[A℄ (or t2[A℄) isthe p-th element in I, InfI(p j �) < 1 and InfIXY (�XY (p) j �XY) = 1 (sine (XY;�XY) is inBCNF). Therefore, InfI(p j �) < InfIXY (�XY (p) j �XY). Thus, a deomposition algorithm thatdeomposes I into IXY and IXZ is e�etive in (R;�). �6.2 XML dataWe now treat the XML ase. We shall prove a result similar to Theorem 5. However, to statethe result, we �rst need to review the normalization algorithm for XML data proposed in [3℄, andexplain how eah step of the algorithm indues a mapping between positions in two XML trees.Throughout the setion, we assume that the DTDs are non-reursive and that all FDs ontainat most one element path on the left-hand side. Furthermore, for presenting the algorithm andproving the result, we also make the following assumption: if X ! q:�l is an FD that auses aviolation of XNF, then every time that q:�l is not null, every path in X is not null (it is shown in[4℄ how to eliminate this assumption).To present the algorithm proposed in [3℄ we need to introdue some terminology. Given a DTDD and a set of FDs �, a nontrivial FD X ! q:�l is alled anomalous, over (D;�), if it violatesXNF; that is, X ! q:�l 2 (D;�)+ but X ! q 62 (D;�)+. The algorithm eliminates anomalousfuntional dependenies by using two basi steps: moving an attribute, and reating a new elementtype.Moving attributes. Let D = (L0; P; R; r) be a DTD and � a set of FDs over D. Assume that(D;�) ontains an anomalous FD q0 ! q:�l, where q0 is an element path. For instane, the DBLPdatabase shown in example 7 ontains an anomalous FD of this form:db:onf :issue ! db:onf :issue:inproeedings:�year : (12)To eliminate the anomalous FD, we move the attribute �l from the set of attributes of the lastelement a of q to the set of attributes of the last element a0 of q0, as shown in Figure 4 (a). Forinstane, to eliminate the anomalous funtional dependeny (12) we move the attribute �year from26

r�l �mqa a0q0
(a) Moving an attribute

. . .

. . .

r q0 a0
�ln�l1

�l
�lana1�l1�ln aqq1qn a00

(b) Creating a new element typeFigure 4: Two transformations of the XML normalization algorithm.the set of attributes of inproeedings to the set of attributes of issue. Formally, the new DTDD[q:�l := q0:�m℄, where �m is an attribute, is (L0; P; R0; r), where R0(a0) = R(a0)[f�mg, R0(a)= R(a)� f�lg and R0(b) = R(b) for eah b 2 L0 � fa; a0g.After transforming D into a new DTD D[q:�l := q0:�m℄, a new set of funtional dependeniesis generated. Formally, the set of FDs �[q:�l := q0:�m℄ over D[q:�l := q0:�m℄ onsists of all FDsX ! Y 2 (D;�)+ with X [Y � paths(D[q:�l := q0:�m℄). Observe that the new set of FDs doesnot inlude the funtional dependeny q ! q0:�l.Creating new element types. Let D = (L0; P; R; r) be a DTD and � a set of FDs overD. Assume that (D;�) ontains an anomalous FD fq0; q1:�l1; : : : ; qn:�lng ! q:�l, where q0 isan element path and n � 1. For example, onsider the following DTD that desribes a databaseontaining ourses in di�erent universities:<!ELEMENT db (univ*)><!ELEMENT univ (ourse*)><!ELEMENT ourse (student*)><!ATTLIST ourseno CDATA #REQUIREDtitle CDATA #REQUIRED><!ELEMENT student EMPTY><!ATTLIST studentsno CDATA #REQUIREDname CDATA #REQUIREDgrade CDATA #REQUIRED>For every ourse, we store its number (�no), its title and the list of students taking the ourse.For eah student taking a ourse, we store his/her number (�sno), name, and the grade in the27

ourse. In this database we have the following funtional dependenies:fdb:univ ; db:univ :ourse:�nog ! db:univ :ourse;fdb:univ ; db:univ :ourse:student :�snog ! db:univ :ourse:student :�name : (13)The �rst FD says that two distint ourses of the same university must have distint �no numbers,the seond one says that two students of the same university with the same �sno value must havethe same �name. We observe that (13) is an anomalous FD of the form desribed above sinefdb:univ ; db:univ :ourse:student :�snog ! db:univ :ourse:student is not in (D;�)+.To eliminate the anomalous FD, we onstrut a new DTD D0 by reating a new element type a00as a hild of the last element a0 of q0, making a1, : : :, an its hildren, �l its attribute, and �l1; : : : ;�lnattributes of a1, : : :, an, respetively. Furthermore, we remove �l from the set of attributes of thelast element a of q, as shown in Figure 4 (b). Formally, if fa00; a1; : : : ; ang are element types whihare not in L0, the new DTD, denoted by D[q:�l := q0:a00[a1:�l1; : : : ; an:�ln;�l℄℄, is (L00; P 0; R0; r),where L00 = L0 [fa00; a1; : : : ; ang and P 0, R0 are de�ned as follows.1) Assume that a0 ! Pa0 2 P . Then P 0 = (P � fa0 ! Pa0g) [fa0 ! (a00)�Pa0 ; a00 ! a�1 � � � a�n;a1 ! �; : : : ; an ! �g.2) R0(a00) = f�lg, R0(ai) = f�lig, for eah i 2 [1; n℄, R0(a) = R(a)� f�lg and R0(b) = R(b) foreah b 2 L0 � fag.For instane, to eliminate the anomalous funtional dependeny (13), we reate a new element typeinfo as a hild of ourses, we remove �name as an attribute of student and we make it an attributeof info, we reate an element type number as a hild of info and we make �sno its attribute. Wenote that we do not remove �sno as an attribute of student.After transforming D into a new DTDD0 = D[q:�l := q0:a00[a1:�l1; : : : ; an:�ln;�l℄℄, a new setof funtional dependenies is generated. Formally, �[q:�l := q0:a00[a1:�l1; : : : ; an:�ln;�l℄℄ is a setof FDs over D0 de�ned as the union of the sets of onstraints de�ned in 1), 2) and 3):1) X ! Y 2 (D;�)+ with X [Y � paths(D0);2) For eah FD X ! Y 2 (D;�)+ with X [Y � fq0; q1; : : : ; qn; q1:�l1; : : : ; qn:�ln; q:�lg, weinlude an FD obtained from it by hanging qi to q0:a00:ai, qi:�li to q:a00:ai:�li, and q:�l toq:a00:�l;3) fq0; q0:a00:a1:�l1; : : : ; q0:a00:an:�lng ! q0:a00, and fq0:a00; q0:a00:ai:�lig ! q0:a00:ai for i 2 [1; n℄.The Algorithm. In Figure 5 is shown the normalization algorithm proposed in [3℄. This algo-rithm applies the \moving attributes" and \reating new element types" transformations until theshema is in XNF. We note that the \reating new element types" transformation is not applied toan arbitrary anomalous FD, but rather to a minimal one. To understand the notion of minimalityfor XML FDs, we �rst introdue this notion for relational databases. Let R be a relation shemaontaining a set of attributes U and � a set of FDs over R. If (R;�) is not in BCNF, then thereexist pairwise disjoint sets of attributes X, Y and Z suh that U = X [Y [Z, � ` X ! Y and� 6` X ! A, for every A 2 Z. In this ase we say that X ! Y is an anomalous FD. To eliminatethis anomaly, a deomposition algorithm splits relation R into two relations: S(X;Y) and T (X;Z).A desirable property of the new shema is that S or T is in BCNF. We say that X ! Y is aminimal anomalous FD if S(X;Y) is in BCNF, that is, S(X;Y) does not ontain an anomalous28

(1) If (D;�) is in XNF then return (D;�), otherwise go to step (2).(2) If there is an anomalous FD X ! q:�l and an element path q0 in D suh that q0 2 X andq0 ! X 2 (D;�)+, then:(2.1) Choose a fresh attribute �m(2.2) D := D[q:�l := q0:�m℄(2.3) � := �[q:�l := q0:�m℄(2.4) Go to step (1)(3) Choose a (D;�)-minimal anomalous FD X ! q:�l, where X = fq0; q1:�l1; : : : ; qn:�lng(3.1) Create fresh element types a00, a1, : : :, an(3.2) D := D[q:�l := q0:a00[a1:�l1; : : : ; an:�ln; �l℄℄(3.3) � := �[q:�l := q0:a00[a1:�l1; : : : ; an:�ln; �l℄℄(3.4) Go to step (1)Figure 5: An XML normalization algorithm.FD. This ondition an be de�ned as follows: X ! Y is minimal if there are no pairwise disjointsets X 0; Y 0 � U suh that X 0 [Y 0 $ X [Y , � ` X 0 ! Y 0 and � 6` X 0 ! X [Y .In the XML ontext, the de�nition of minimality is similar in the sense that we expet thenew element types a00, a1, : : :, an form a struture not ontaining anomalous elements. However,the de�nition of minimality is more omplex to aount for paths used in FDs. We say thatfq; q1:�l1; : : : ; qn:�lng ! q0:�l0 is (D;�)-minimal if there is no anomalous FD X ! qi:�li 2(D;�)+ suh that i 2 [0; n℄ and X is a subset of fq; q1; : : : ; qn; q0:�l0; : : : ; qn:�lng suh that jX j� nand X ontains at most one element path.Now we prove that after eah step of the normalization algorithm proposed in [3℄, the amountof information in eah position does not derease. Let (D;�) be an XML spei�ation and T 2inst(D;�). Assume that (D;�) is not in XNF. Let (D0;�0) be an XML spei�ation obtainedby exeuting one step of the normalization algorithm. Every step of this algorithm indues anatural transformation on XML douments. One of the properties of the algorithm is that foreah normalization step that transforms T 2 inst(D;�) into T 0 2 inst(D0;�0), one an �nd amap �T 0;T : Pos(T 0) ! 2Pos(T) that assoiates eah position in the new tree T 0 with one or morepositions in the old tree T , as shown below.1) Assume that D0 = D[q:�l := q0:�m℄ and, therefore, q0 ! q:�l is an anomalous FD in(D;�). In this ase, an XML tree T 0 is onstruted from T as follows. For every t 2tuplesD(T), de�ne a tree tuple t0 by using the following rule: t0(q0:�m) = t(q:�l) and forevery q00 2 paths(D) � fq:�lg, t0(q00) = t(q00). Then T 0 is an XML tree whose tree tuples areft0 j t 2 tuplesD(T)g. Furthermore, positions in t0 are assoiated to positions in t as follows:if p0 = (t0(q0);�m), then �T 0;T (p0) = f(t(q);�l)g; otherwise, �T 0;T (p0) = fp0g.2) Assume that (D0;�0) was generated by onsidering a (D;�)-minimal anomalous FD fq0;q1:�l1; : : : ; qn:�lng ! q:�l. Thus, D0 = D[q:�l := q0:a00[a1:�l1; : : : ; an:�ln;�l℄℄. In thisase, an XML tree T 0 is onstruted from T as follows. For every t 2 tuplesD(T), de�nea tree tuple t0 by using the following rule: t0(q0:a00) is a fresh node identi�er, t0(q0:a00:�l) =t(q:�l), t0(q0:a00:ai) is a fresh node identi�er (i 2 [1; n℄), t0(q:a00:qi:�li) = t(qi:�li) and forevery q00 2 paths(D) � fq:�lg, t0(q00) = t(q00). Then T 0 is an XML tree whose tree tuplesare ft0 j t 2 tuplesD(T)g. Furthermore, positions in t0 are assoiated to positions in t as29

follows. If p0 = (t0(q0:a00);�l), then �T 0;T (p0) = f(t(q);�l)g. If p0 = (t0(q0:a00:ai);�li), then(t(qi);�li) 2 �T 0;T (p0) (note that in this ase �T 0;T (p) may ontain more than one position).For any other position p0 in t0, �T 0;T (p0) = fp0g:Similarly to the relational ase, we an now show the following.Theorem 6 Let T be a tree that onforms to a DTD D and satis�es a set of FDs �, and let T 0 2inst(D0;�0) result from T by applying one step of the normalization algorithm. Let p0 2 Pos(T 0).Then InfT 0(p0 j �0) � maxp2�T 0;T (p0) InfT (p j �):Proof: Let (D;�) be an XML spei�ation and T 2 inst(D;�). Assume that (D;�) is not in XNF.Let (D0;�0) be an XML spei�ation obtained by exeuting one step of the normalization algorithm.We have to prove that for every p0 2 Pos(T 0), InfT 0(p0 j �0) � maxp2�T 0;T (p0) InfT (p j �): This anbe done in exatly the same way as the proof of Theorem 5. First, by using the same proof as forLemma 6, we show that the same results holds for XML trees. Using this, we show the following:1) Assume D0 = D[q:�l := q0:�m℄ and q0 ! q:�l is an anomalous FD over (D;�). Let a0 bethe last element of q0 and p0 2 Pos(T 0). If p0 is of the form (x;�m), where �(x) = a0, thenInfT 0(p0 j �0) = 1 and, therefore, the theorem trivially holds. Otherwise, �T 0;T (p0) = fp0g andit an be shown that InfT 0(p0 j �0) � InfT (p0 j �) by using the same proof as that of Lemma7.2) Assume that D0 = D[q:�l := q0:a00[a1:�l1; : : : ; an:�ln;�l℄℄ fq0; q1:�l1; : : : ; qn:�lng ! q:�l isa (D;�)-minimal anomalous FD. Let p0 2 Pos(T 0). If p0 is the position in T 0 of some valuereahable from the root by following path q0:a00:�l or q0:a00:ai:�li, for some i 2 [1; n℄, thenInfT 0(p0 j �0) = 1 sine fq0; q1:�l1; : : : ; qn:�lng ! q:�l is (D;�)-minimal. Thus, in thisase the theorem trivially holds. Otherwise, �T 0;T (p0) = fp0g and again it an be shown thatInfT 0(p0 j �0) � InfT (p0 j �) by using the same proof as for Lemma 7.This ompletes the proof of the theorem. �Just like in the relational ase, one an de�ne e�etive steps of the algorithm as those in whih theabove inequality is strit for at least one position, and show that (D;�) is in XNF if and only ifno deomposition algorithm is e�etive in (D;�).7 Conlusions and Future WorkOur goal was to �nd riteria for good data design, based on the intrinsi properties of a data modelrather than tools built on top of it, suh as query and update languages. We were motivated by thejusti�ation of normal forms for XML, where usual riteria based on update anomalies or existeneof lossless deompositions are not appliable until we have standard and universally aeptablequery and update languages.We proposed to use tehniques from information theory, and measure the information ontent ofelements in a database with respet to a set of onstraints. We tested this approah in the relationalase and showed that it works: that is, it haraterizes the familiar normal forms suh as BCNFand 4NF as preisely those orresponding to good designs, and justi�es others, more ompliated30

ones, involving join dependenies. We then showed that the approah straightforwardly extendsto the XML setting, and for the ase of onstraints given by funtional dependenies, equates thenormal form XNF of [3℄ with good designs. In general, the approah is very robust: although we donot show it here due to spae limitations, it an be easily adapted to the nested relational model,where it justi�es a normal form NNF [22, 23℄.It would be interesting to haraterize 3NF by using the measure developed in this paper. Sofar, a little bit is known about 3NF. For example, as in the ase of BCNF, it is possible to prove thatthe synthesis approah for generating 3NF databases does not derease the amount of informationin eah position. Furthermore, given that 3NF does not neessarily eliminate all redundanies, onean �nd 3NF databases where the amount of information in some positions is not maximal.We would like to onsider more omplex XML onstraints and haraterize good designs theygive rise to. We also would like to onnet this approah with that of [16℄, where informationapaities of two shemas an be ompared based on the existene of queries in some standardlanguage that translate between them. For two lasses of well-designed shemas (those with noonstraints, and with keys only), being information-apaity equivalent means being isomorphi[2, 16℄, and we would like to see if this onnetion extends beyond the lasses of shemas studiedin [2, 16℄.Aknowledgment We thank Pablo Barel�o and Mihael Benedikt for helpful omments.We would also like to thank the anonymous referees for several very helpful omments.Referenes[1℄ S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.[2℄ J. Albert, Y. Ioannidis, and R. Ramakrishnan. Equivalene of keyed relational shemas byonjuntive queries. JCSS, 58(3):512{534, 1999.[3℄ M. Arenas and L. Libkin. A normal form for XML douments. In PODS'02, pages 85{96.[4℄ M. Arenas and L. Libkin. A normal form for XML douments. To appear in TODS.[5℄ C. Beeri. On the membership problem for funtional and multivalued dependenies in relationaldatabases. TODS, 5(3):241{259, 1980.[6℄ C. Beeri, P. Bernstein, and N. Goodman. A sophistiate's introdution to database normal-ization theory. In VLDB'78, pages 113{124.[7℄ J. Biskup. Ahievements of relational database shema design theory revisited. In Semantisin Databases, LNCS 1358, pages 29{54. Springer-Verlag, 1995.[8℄ R. Cavallo and M. Pittarelli. The theory of probabilisti databases. In VLDB'87, pages 71{81.[9℄ T. Cover and J. Thomas. Elements of Information Theory. Wiley-Intersiene, 1991.[10℄ M. Dalkili and E. Robertson. Information dependenies. In PODS'00, pages 245{253.[11℄ DBLP. http://www.informatik.uni-trier.de/ ~ley/db/.[12℄ D. W. Embley and W. Y. Mok. Developing XML douments with guaranteed \good" proper-ties. In ER'01, pages 426{441. 31

[13℄ R. Fagin. Multivalued dependenies and a new normal form for relational databases. ACMTODS, 2(3):262{278, 1977.[14℄ R. Fagin. Normal forms and relational database operators. In SIGMOD'79, pages 153{160.[15℄ R. Fagin. A normal form for relational databases that is based on domains and keys. ACMTODS, 6(3):387{415, 1981.[16℄ R. Hull. Relative information apaity of simple relational database shemata. SIAM J.Comput., 15(3):856{886, 1986.[17℄ P. Kanellakis. Elements of Relational Database Theory, In Handbook of TCS, vol. B, pages1075{1144. 1990.[18℄ T. T. Lee. An information-theoreti analysis of relational databases - Part I: Data dependeniesand information metri. IEEE Trans. on Software Engineering, 13(10):1049{1061, 1987.[19℄ M. Levene and G. Loizou. Why is the snowake shema a good data warehouse design?Information Systems, to appear.[20℄ M. Levene and M. W. Vinent. Justi�ation for inlusion dependeny normal form. IEEETKDE, 12(2):281{291, 2000.[21℄ D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing impliations of data dependenies. ACMTODS, 4(4):455{469, 1979.[22℄ W.Y. Mok, Y. K. Ng, D. Embley. A normal form for preisely haraterizing redundany innested relations. ACM TODS 21 (1996), 77{106.[23℄ Z. M. �Ozsoyoglu, L.-Y. Yuan. A new normal form for nested relations. ACM TODS 12(1):111{136, 1987.[24℄ C. H. Papadimitriou. Computational Complexity Addison-Wesley, 1994.[25℄ C.E. Shannon. A mathematial theory of ommuniation. Bell System Tehnial Journal,27:379{423 (Part I), 623{656 (Part II), 1948.[26℄ D. Suiu. On database theory and XML. SIGMOD Reord, 30(3):39{45, 2001.[27℄ I. Tatarinov, Z. Ives, A. Halevy, and D. Weld. Updating XML. In SIGMOD'01, pages 413{424.[28℄ V. Vianu. A Web Odyssey: from Codd to XML. In PODS'01, pages 1{15.[29℄ M. W. Vinent. A orreted 5NF de�nition for relational database design. TCS, 185(2):379{391, 1997.[30℄ M. W. Vinent. Semanti foundations of 4NF in relational database design. Ata Informatia,36(3):173{213, 1999.
32

A ProofsA.1 Proof of Lemma 1We start with the following simple but useful observation. The proof follows immediately fromgeneriity.Claim 1 Let � be a set of generi integrity onstraints over a relational shema S, I 2 instk(S;�)and p 2 Pos(I). Assume that a; b 2 [1; k℄� adom(I). Then for every �a 2
(I; p), jSAT k�(I(a;�a))j =jSAT k�(I(b;�a))j.Next, we need the following.Claim 2 Let � be a set of integrity onstraints over a relational shema S, I 2 inst(S;�), p 2Pos(I) and �a 2
(I; p). Then for every a 2 N+ , there exists k0 2 N+ and a polynomial qa(k) suhthat jSAT k�(I(a;�a))j = qa(k), for every k > k0.Proof: Let the variables of �a be v1; : : : ; vl. Fix a > 0, and let m be the maximum value inadom(I)[fag. De�ne k0 to bem+l+1. By generiity, jSAT k0� (I(a;�a))j = 0 implies jSAT k�(I(a;�a))j = 0for all k > k0, so we assume there is at least one substitution in SAT k0� (I(a;�a)).We onsider the set of all triples P = (X;�X ;�) where� X � fv1; : : : ; vlg,� �X : X ! [1;m℄, and� � is a partition on fv1; : : : ; vlg �X.Given � 2 SAT k�(I(a;�a)), we write � � P if for every i 2 X, �(vi) = �X(vi), for every i 62 X,�(vi) 62 [1;m℄, and for every i; j 62 X, �(vi) = �(vj) i� i and j are in the same blok of �. Observethat for every � 2 SATk�(I(a;�a)), there exists exatly one triple P suh that � � P.Let �; �0 � P be two substitutions. From the generiity of � we immediately see that �(I(a;�a)) j=� i� �0(I(a;�a)) j= �. Furthermore, if � ollapses two rows in I(a;�a), then so does �0 (sine �(vi) =�(vj) i� �0(vi) = �0(vj)). We onlude that � 2 SAT k�(I(a;�a)) i� �0 2 SAT k�(I(a;�a)).The number of triples P depends on I; a and �a but not on k. For eah P, either all � with� � P belong to SAT k�(I(a;�a)), or none belongs to SAT k�(I(a;�a)). Thus, it will suÆe to show thatfor every P, there exists a polynomial qPa (k) suh that jf� 2 SAT k�(I(a;�a)) j � � Pgj = qPa (k).The ase when no � with � � P belongs to SAT k�(I(a;�a)) is trivial: qPa (k) = 0 for all k.Otherwise, let P = (X;�X ;�), and let mP be the number of partition bloks of �. The number of� � P is then the number of ways to hose mP distint ordered elements in [m+ 1; k℄, that isqPa (k) = mP�1Yi=0 (k �m� i):Sine m and mP do not depend on k, this onludes the proof of the laim. �Proof of Lemma 1: Let I 2 inst(S;�), p 2 Pos(I), and �a 2
(I; p). To prove this lemma it suÆesto show that the following limit exists:limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) : (14)33

By Claims 1 and 2, there exists k0 > 0 and polynomials qa(k), for every a 2 adom(I), and q(k)suh that for every k > k0:1. jSAT k�(I(a;�a))j = qa(k), for every a 2 adom(I);2. jSAT k�(I(a;�a))j = q(k), for every a 2 [1; k℄ � adom(I).Let n = jadom(I)j and r(k) = (k � n)q(k) +Pa2adom(I) qa(k). Then (14) is equal tolimk!1 1log k� Xa2adom(I)�qa(k)r(k) log r(k)qa(k)�+ (k � n)q(k)r(k) log r(k)q(k)�: (15)We �rst show that limk!1 1log k� Xa2adom(I) qa(k)r(k) log r(k)qa(k)� = 0: (16)Note that degree(r) � degree(qa) for every a 2 adom(I). If degree(r) > degree(qa), then learlylimk!1 qa(k)r(k) log r(k)qa(k) = 0. If degree(r) = degree(qa), then limk!1 qa(k)r(k) log r(k)qa(k) exists and equalssome positive onstant a; hene limk!1 1log k qa(k)r(k) log r(k)qa(k) = 0. Thus, (16) holds and (15) equalslimk!1�(k � n)log k � q(k)r(k) � log r(k)q(k)�: (17)By the de�nition of r, degree(r) � degree(q) + 1. A simple alulation shows that fordegree(r) = degree(q) + 1, (17) equals some positive onstant that depends on the oeÆients of qand r, and for degree(r) > degree(q) + 1, (17) equals 0. Hene, the limit (15) always exists, whihompletes the proof. �A.2 Proof of Lemma 6Assume that limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) 6= 0: (18)We will show that this limit must be 1.First note that by (18), there exists k0 > 0 suh that for every k � k0 and a 2 [1; k℄� adom(I),jSAT k�(I(a;�a))j � 1. If this were not true, then by Claim 1, for every a 2 N+ � adom(I), we wouldhave jSAT k�(I(a;�a))j = 0 and, therefore, Pa2[1;k℄ P (a j �a) log 1P (aj�a) � log jadom(I)j. We onludethat limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) � limk!1 log jadom(I)jlog k = 0;whih ontradits (18).To prove the lemma we need to introdue an equivalene relation on the elements of �a andprove some basi properties about it. Assume that kIk = n; n > 0. Let k � k0 be suh thatadom(I) $ [1; k℄. Given ai; aj 2 �a, we say that ai and aj are linked in (a; �a), written as ai � aj ,34

if for every substitution � : �a ! [1; k℄ suh that �(I(a;�a)) j= �, it is the ase that �(ai) = �(aj).Observe that if ai, aj are onstants, then ai � aj i� ai = aj. It is easy to see that � is anequivalene relation on �a. We say that ai 2 �a is determined in (a; �a) if for every pair of substitutions�1; �2 : �a ! [1; k℄ suh that �1(I(a;�a)) j= � and �2(I(a;�a)) j= �, it is the ase that �1(ai) = �2(ai).Notie that if ai is a onstant, then ai is determined in (a; �a). Furthermore, observe that if ai � ajand ai is determined in (a; �a), then aj is determined in (a; �a). Thus, we an extend the de�nition forequivalene lasses: [ai℄� is determined in (a; �a) if ai is determined in (a; �a). We de�ne undet(a; �a)as the set of all undetermined equivalene lasses of �:undet(a; �a) = f[ai℄� j ai 2 �a and [ai℄� is not determinedg:Claim 31) For every a 2 adom(I) and b 2 [1; k℄ � adom(I), if there exists a substitution � : �a ! [1; k℄suh that �(I(b;�a)) j= �, then jundet(b; �a)j � jundet(a; �a)j.2) For every a; b 2 [1; k℄ � adom(I), undet(b; �a) = undet(a; �a).Proof: 1) Let a 2 adom(I) and b 2 [1; k℄ � adom(I). Assume that there exists a substitution� : �a! [1; k℄ suh that �(I(b;�a)) j= �. It is easy to see that for every ai; aj 2 �a, if ai is determinedin (b; �a), then ai is determined in (a; �a), and if ai; aj are linked in (b; �a), then ai; aj are linked in(a; �a). Thus, jundet(b; �a)j � jundet(a; �a)j.2) Trivial, by Claim 1. �Claim 4 Let a 2 [1; k℄ � adom(I). If k > 2n, then jSAT k�(I(a;�a))j � (k � 2n)jundet(a;�a)j.Proof: To prove this laim, we onsider two ases.First assume that �a does not ontain any variable. Then jundet(a; �a)j = 0 and we have to provethat jSAT k�(I(a;�a))j � 1. For that, it suÆes to show that I(a;�a) j= �. Towards a ontradition,assume that I(a;�a) 6j= �. Then by Claim 1, jSAT k�(I(b;�a))j = 0, for every b 2 N+ � adom(I), whihontradits the existene of k0.Seond assume that �a ontains at least one variable. Let �0 : �a ! [1; k℄ be a substitutionsuh that �0(I(a;�a)) j= � (suh a substitution exists by assumption (18)). Let � : �a ! [1; k℄be a substitution suh that: (a) � and �0 oinide in determined equivalene lasses; (b)for every undetermined lass [ai℄�, � assigns the same value in [1; k℄ � (adom(I) [fag) toeah element in this lass; () for every pair of distint undetermined lasses [ai℄�, [aj℄�,�(ai) 6= �(aj). Notie that suh a funtion exists sine k > 2n. Given that �0(I(a;�a)) j= �, wehave �(I(a;�a)) j= �. Thus, jSAT k�(I(a;�a))j is greater than or equal to the number of substitutionswith domain �a and range ontained in [1; k℄ satisfying onditions (a), (b) and (). Therefore,jSAT k�(I(a;�a))j � (k � (n+ 1))(k � (n+ 2)) � � � (k � (n+ jundet(a; �a)j)) � (k � 2n)jundet(a;�a)j. Thisproves the laim. �We will use this laim to prove that limk!1 1log kPa2[1;k℄ P (a j �a) log 1P (aj�a) = 1. Let k � k0 be suhthat adom(I) � [1; k℄ and k > 2n. By Claim 4, for every a 2 [1; k℄ � adom(I), jSAT k�(I(a;�a))j �(k � 2n)jundet(a;�a)j. Furthermore, by Claim 3, for every a 2 [1; k℄ � adom(I):Xb2[1;k℄ jSAT k�(I(b;�a))j � Xb2[1;k℄kjundet(b;�a)j � kjundet(a;�a)j+135

Thus, for every a 2 [1; k℄ � adom(I):P (a j �a) � (k � 2n)jundet(a;�a)jkjundet(a;�a)j+1 = 1k (1� 2nk)jundet(a;�a)j: (19)By Claim 1, for every a; b 2 [1; k℄ � adom(I), P (a j �a) = P (b j �a) and, therefore,P (a j �a) � 1k � jadom(I)j � 1k � n: (20)Therefore, using (19) and (20) we onlude that:Xa2[1;k℄P (a j �a) log 1P (a j �a) � Xa2[1;k℄�adom(I) 1k (1� 2nk)jundet(b;�a)j log(k � n)� log(k � n) (1� nk)(1 � 2nk)jundet(b;�a)j;where b is an arbitrary element in [1; k℄ � adom(I). Thus,1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) � log(k � n)log k (1� nk)(1� 2nk)jundet(b;�a)j:It is straightforward to prove that limk!1[log(k�n)log k (1� nk)(1� 2nk)jundet(b;�a)j℄ = 1. Thus,limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) � 1and, therefore, limk!1 1log k Xa2[1;k℄P (a j �a) log 1P (a j �a) = 1;sine Pa2[1;k℄ P (a j �a) log 1P (aj�a) � log k. This ompletes the proof of Lemma 6.

36

