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38 � M. Benedikt, G. Dong, L. Libkin, L. WongTheorem 6. Let 
o-min be an o-minimal signature on U. Then NFOLG(
o-min; <) =AFO(<).Proof. Note that the AFO(<) � NFOLG(
o-min; <) inclusion is trivial. For the reverseinclusion, we �rst give a simple proof for the case when U= R, and then outline the generalproof. We have: NFOLG(R;
o-min; <)= NFOLG(R;<) by Theorem 4� AFOLG(R;+;�;0; 1; <) by Fact 2= AFO(R; <) by Theorem 1When U is arbitrary, let Q be in NFOLG(U;
o-min; <). By Theorem 4 it is in NFOLG(U; <).Since (U;<) is o-minimal, we can �nd a de�nitional expansion to (U;<;�) that admits quanti�erelimination. By [8; 9], we obtain Q 2 AFOLG(U; <;�), and then Q is in AFO(U;<) byTheorem 1. 2Corollary 6. Let 
o-min be an o-minimal signature. Then NFO(
o-min; <) cannot ex-press transitive closure, deterministic transitive closure, parity test, and connectivity test. Inparticular, none of the above is expressible under the natural interpretation of the relational cal-culus with constraints of the form f(~x)�g(~x) where � 2 f=;�g and f; g are functions de�nablein the signature (+;�; �; ex; 0). 2In conclusion, we have settled the open problem of whether parity and connectivity can beexpressed in the relational calculus with arithmetic constraints. We have shown that the addi-tion of arithmetics does not give us more power to de�ne generic queries, for both the activedomain semantics and the natural semantics. In fact, we have proved that the two semanticsoften coincide when limited to generic queries. Thus, we have given a clear picture of theexpressiveness of the relational calculus with arithmetic constraints, where generic queries areconcerned.The diagram shown in Figure 1 summarizes our expressiveness results for databases over thereals. By 
o-min we mean any o-minimal signature and by 
sparse we mean any sparse sig-nature. The == edge means equality and the ,! arrow means proper embedding. ThatAFOTG(+;�; �; 0; 1) ,! NFOTG(+; �; 0; 1) follows from the fact that there are TG-queries thatare not expressible in relational calculus without order. The embedding NFOTG(+; �; 0; 1) ,!NFOLG(+; �; 0; 1) follows from the following observation. Let the schema contain two unaryrelation symbols R1 and R2 and let Q be 8x8y:(R1(x)^R2(y))! x < y. Since Q is LG but notTG, it separates NFOLG(+; �; 0; 1) from NFOTG(+; �; 0; 1). Other embeddings and equationsfollow from the results of this paper.
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sparse) � - NFOLG(
o-min; <) ======== AFOLG(
; <)AFOTG(+;�; �; 0; 1)wwwwwwwwww � - NFOTG(+; �; 0; 1) � - NFOLG(+; �; 0; 1)wwwwwwwwww ===== AFOLG(+;�; �; 0; 1;<)wwwwwwwwwwAFOTG(+;�; 0; 1)wwwwwwwwww � - NFOTG(+;�; 0; 1;<)wwwwwwwwww �- NFOLG(+;�; 0; 1;<)wwwwwwwwww ====[30] AFOLG(+;�; 0; 1; <)wwwwwwwwwwAFOwwwwwwwwwww =================[20] NFOTG[6 � [1] - NFOLG(<)wwwwwwwwww ===============AFO(<)wwwwwwwwwwwFig. 1. Summary of the expressiveness results for databases over the realsThus, the query given by � can be expressed by a formula in the language of SC in , � andequality. The proof is complete. 2Now we immediately obtain the following collapse results for nonboolean queries.Corollary 5. 1) Under the active semantics, for any signature 
 on orderedU, every locallygeneric constraint query is equivalent to a <-relational query.2) Under the active semantics, for any sparse signature 
 on R, every totally generic constraintquery is equivalent to a relational query.3) Under the natural semantics, for any o-minimal signature 
 on ordered U, every locallygeneric constraint query is equivalent to a <-relational query. 27. PUTTING IT ALL TOGETHERIn this section, we �rst tie together our results on the active semantics and the natural semanticsof generic queries. Then we provide a summary of this paper followed by some concludingremarks.



36 � M. Benedikt, G. Dong, L. Libkin, L. WongQ('DB) = Q('0DB ) = '0(Q(DB)), which in turn is equivalent to (a1; : : : ; an) 2 Q(DB) orDB j= �(a1; : : : ; an). We also see that (1) is equivalent to(10) In DB , for every i = 1; : : : ; n, Si is a singleton faig.Since (10) and DB j= �(a1; : : : ; an) hold i� DB j= Q�, we conclude the proof of F -genericityof Q�. Note that this proof works for both active and natural interpretations. (In fact, allquanti�cation in Q� other than that inside � is bounded to the active domain.)Now we prove 1. Since Q� is inAFOF(U;
), we can �nd a query Q0 inAFOF(U;�) equivalentto Q�. That is, Q0 is a sentence in the language of SC and � such that Q�(DB ) = Q0(DB) forany DB 2 Inst(U;SC). Assume that y1; : : : ; yn are variables not mentioned by Q0. We thende�ne a formula  (y1; : : : ; yn) in the language of SC in and � by replacing each subformula ofQ0 of the form Si(z) by z = yi.We now claim that for every ~c = (c1; : : : ; cn) 2 Un and any SC in database DB , DB j= �(~c) i�DB j=  (~c) (under the natural interpretation); this clearly implies 1. To see this, we de�neDB [~c] as a SC database in which all SC in relations are interpreted as in DB , and each Si isinterpreted as fcig. Then we obtain the following equivalences, since � and  do not mentionany symbols Si: DB j=  (~c), DB [~c] j=  (~c), DB [~c] j= Q0, DB [~c] j= Q�, DB [~c] j= �(~c), DB j= �(~c)To prove 2, we de�ne  as before and observe that the proof above shows that DB j= �(~c) i�DB j=  (~c) for any ~c 2 adom(DB)n. Indeed, to prove the �rst and the last equivalences, observethat for formulae not mentioning any of the Sis, the only di�erence in terms of satisfaction onDB and DB [~c] is the range of quanti�cation. For ~c 2 adom(DB )n, adom(DB [~c]) = adom(DB),so all quanti�ed variables range over the same set.Let adom[SC in ](x) be a formula in the language of SC in such that DB j= adom[SC in](c) i�c 2 adom(DB); such a formula exists, see [1]. Then, using the fact that F is adom-preserving,we �nish the proof of 2 as follows. For any ~c 2 Un,~c 2 Q(DB), ~c 2 adom(DB )n and ~c 2 Q(DB), ~c 2 adom(DB )n and DB j= �(~c), ~c 2 adom(DB )n and DB j=  (~c), DB j=  (~c) ^ adom[SC in ](c1) ^ : : : ^ adom[SC in ](cn):



Expressive Power of Constraint Languages � 35Now for any i; j: �i(Q(DB)) = Q(�i(DB)) = Q(�j(DB)) = �j(Q(DB)); hence �1(X) = : : : =�n(X). In particular, every �i(x) 2 �1(X), whence card(�1(X)) > card(X). This contradictionproves the case. 2If 
 and � are two signatures on U, we say that there is a (
;�) Boolean collapse of F-genericnatural queries if NFOF (U;
) = NFOF(U;�) holds for any schema SC . We say that thereis a (
;�) complete collapse of F-generic natural queries if NFOF [SC in! SCout ](U;
) =NFOF [SC in!SCout ](U;�) holds for any input schema SC in and output schema SCout . Wesimilarly de�ne the collapse of the active queries, replacing NFO with AFO.Theorem 5. Let F be an extensible class of partial endomaps on U, and 
 and � twosignatures on U. Then:(1) If there is a (
;�) Boolean collapse of F-generic natural queries, then there is a (
;�)complete collapse of F-generic natural queries.(2) If F is adom-preserving and there is a (
;�) Boolean collapse of F-generic activequeries, then there is a (
;�) complete collapse of F-generic active queries.Proof. It is enough to prove the theorem for just one n-ary relation in the output schema.Assume that a F -generic query Q is given by a formula �(x1; : : : ; xn); that is, (c1; : : : ; cn) 2Q(DB) i� DB j= �(c1; : : : ; cn). Now we extend SC in to a new schema SC by adding n unaryrelational symbols S1; : : : ; Sn that are not present in SC in [SCout . De�ne a boolean constraintquery Q� as follows:n̂i=1((9x:Si(x)) ^ (8x8y:(Si(x)^Si(y)! x = y)))^(8x1 : : :8xn:(S1(x1)^: : :^Sn(xn))! �(x1; : : : ; xn))That is, Q� says that in a SC database all Sis are singletons and � is satis�ed on their elements.Next, we claim that Q� is F -generic. The proof given below works for both active and naturalcases. Let DB be a SC-database and ' a map in F de�ned on adom(DB). We must show thatDB j= Q� i� 'DB j= Q�. It follows from the de�nition of Q� that 'DB j= Q� i� the followingconditions hold:(1) For every i = 1; : : : ; n, 'Si is a singleton fbig.(2) 'DB j= �(b1; : : : ; bn).Using extensibility, we �nd a map '0 2 F that extends ' to adom(DB) [ adom(Q(DB)).Now every bi is in the image of ' (and '0); we let ai be the element of adom(DB ) that ismapped to bi. Such an element is unique by injectivity. Now (2) is equivalent to (b1; : : : ; bn) 2



34 � M. Benedikt, G. Dong, L. Libkin, L. Wongsuch that DB j= �i(c1; : : : ; cn)1. When we use the active-domain (natural) interpretation forthe sentence �i(c1; : : : ; cn), we obtain the class of queries de�nable under the active-domain(natural) interpretation. These classes will be denoted by AFO[SC in! SCout ](U;
) andNFO[SC in!SCout ](U;
) respectively.The notions of genericity are generalized for nonboolean queries straightforwardly. Insteadof saying Q('DB) = Q(DB), as we did for boolean queries, we de�ne generic queries asthose satisfying Q('DB) = '(Q(DB)) for a given class of maps. More precisely, for a classF of partial injective endofunctions on U, we say that Q is F-generic if, for any databaseDB and any ' 2 F de�ned on adom(DB) [ adom(Q(DB)), it is the case that Q('DB) ='(Q(DB)). Total genericity and local genericity are examples of F -genericity for the classesof injective partial maps and monotone partial maps. We denote classes of F -generic queriesin AFO[SC in!SCout ](U;
) and NFO[SC in!SCout ](U;
) by AFOF [SC in!SCout ](U;
) andNFOF [SC in!SCout ](U;
) respectively.Now we are ready to prove the main result of this section saying that a collapse result for booleanqueries implies a similar result for arbitrary queries. We say that F is adom-preserving iffor any F -generic query Q and any database DB , adom(Q(DB)) � adom(DB). We say thatF is extensible if for any F -generic Q, any database DB and any function ' in F whosedomain is adom(DB), we can �nd an extension of ' to '0 2 F whose domain is adom(DB) [adom(Q(DB)). These two notions impose verymild restrictions on the classes of generic queries.The class of all partial maps is extensible on any in�nite set, and the class of all monotonepartial maps is extensible on any ordered set without endpoints. Also, any adom-preserving Fis extensible. Furthermore,Proposition 13. Totally generic and locally generic queries do not extend active domainsof their inputs.Proof. We prove the local genericity case; the simpler proof for TG queries is omitted. Weuse the notation adom(DB ; Q) for adom(DB) [ adom(Q(DB)). First, observe the following.For any �nite set Y � U and any x 62 Y , and any number n, we can �nd maps �1; : : : ; �n in Fsuch that for all i; j: �i(Y ) = �j(Y ), but all �1(x); : : : ; �n(x) are distinct. This is true since Uis in�nite, and hence it either has a dense subset or does not have either right or left endpoint;in both situations we easily construct the �is.Now �x a counterexample: x 2 adom(Q(DB)) � adom(DB) for a LG query Q. Let X =adom(Q(DB)). Let Y = adom(DB ) and let n = card(X) + 1. Construct �1; : : : ; �n as above.1We only consider queries that produce �nite results. For the natural semantics case our results generalize easilyfor in�nite outputs.



Expressive Power of Constraint Languages � 33Also, theorem 4 implies collapse results for domains other than the real numbers. For example,since (Q;+;<) is elementary equivalent to (R;+; <), we obtain the following result of [36] as acorollary.Corollary 3. NFOLG(Q;+;<) = NFOLG(Q;<). 2The proof technique given here is not restricted to continuous domains, or to o-minimal struc-tures. In fact, we can notice that the result applies to any domain such that Claim 5 holds forany internally presented structure. This was used in [5] to give the following result about theintegers.Corollary 4. (see [5]) NFOLG(N;+; <) = NFOLG(N; <). 2This result is in contrast to [17] which proved that any computable query is de�nable inNFO(N;+; �; <;0; 1).6. EXPRESSIVENESS OF NONBOOLEAN QUERIESSo far we have only considered boolean queries given by �rst-order sentences. This was enoughto prove some of the desired inexpressibility results. For example, inexpressibility of transitiveclosure follows from inexpressibility of connectivity test. But how far can we go using ourresults for the boolean case? In this section we present a simple technique that lifts the resultsabout boolean queries to cover arbitrary queries as well.To speak about nonboolean queries, we need two schemas: the input schema SC in =hR1; : : : ; Rki, k > 0, with relation names for the input database, and the output schemaSCout = hT1; : : : ; Tli, l > 0, with the names of the output relations. Now nonboolean queriesare maps from instances of SC in to SCout . Boolean queries can be viewed as queries with theoutput schema that consists of a single 0-ary relation.A relational query is given by a �rst-order formula �(x1; : : : ; xn) with n free variables for eachn-ary relation symbol in SCout ; this formula is in the language of SC in and equality. Again,we speak of <-relational queries if � is in the language of SC in and the order relation <. For asignature 
, constraint queries are given by �rst-order formulae �(x1; : : : ; xn) in the languagethat contains SC in and all the symbols in 
.Similarly to the boolean case, queries have both active-domain and natural interpretation.A query (relational or constraint) (�1; : : : ; �l), applied to a SC in -database DB , results inSCout -database DB 0 whose ith relation, of arity n, consists of all tuples (c1; : : : ; cn) 2 Un



32 � M. Benedikt, G. Dong, L. Libkin, L. WongWe now brie
y trace out the proof of Claim 6 to complete the proof of proposition 11. For eachformula �(~z; y) in the language of 
 with parameters from ~y, letal� = maxfu j there is ~d from d1; : : : dK such that u is an endpoint of �(~d=~z; y) and u � wgar� = minfu j there is ~d from d1; : : : dK such that u is an endpoint of �(~d=~z; y) and w � ugNote that the max and min above exist by transfer, since these are both hyper�nite sets.Case 1. If al� = w or ar� = w for some �, then w is de�nable from parameters coming fromthe dI 's and ~y by a formula  in the language of 
. By replacing the parameter dI with theconstant symbol kJ , where f(cJ ) = kI , we get that w is de�nable in Ln by a single formula 0(y). This clearly proves the claim since we can take �(y) =  0(y).Case 2. Suppose al� < w < ar� for each �. Now let ��(y) be the formula9z9z0:�1�(z) ^ �2�(z0) ^ z � y � z0where �1� and �2� are the formulas de�ning al� and ar�. Let  �(y) be the formula of Lnformed by replacing each parameters dI by the constant symbol kJ as before (i.e. kJ such thatf(cJ) = dI). Then each  � is a formula of Ln.We now let �(y) = h �(y)i as before, and check that this works. This completes the proof ofProposition 11. 25.4 Some Corollaries of Theorem 4There are three corollaries of Theorem 4 that we would like to mention here. First, looking atthe proof of Theorem 4, we can observe the following su�cient condition for verifying when twohyper�nite databases satisfy the same natural semantics queries over the nonstandard universe.Corollary 2. Suppose that M is an o-minimal structure, SC a schema, and D1, D2 two�database instances of the schema SC . Assume that there exists a mapping f from adom(D1)onto adom(D2) such that f preserves the SC relations and for each formula  (~x) in the languageof M and each vector ~c of elements of adom(D), �M j=  (~c) if and only if �M j=  (f(~c)).Then D1 and D2 agree on all natural semantics queries over �M . 2This observation is made use of in [8] where the coincidence of the active and natural semanticsis established in certain o-minimal structures.



Expressive Power of Constraint Languages � 31formula  (y) has only �nitely many endpoints. Also, if we have two endpoints x0 < x1 for theformula  (y), and there is no other endpoint for  (y) lying between these two, then the truthvalue of  (y) is constant on the open interval (x0; x1).For each formula �(~z; y) in the language of 
 with parameters from ~x, letal� = maxfu j there is ~c from c1; : : : cH such that u is an endpoint of �(~c=~z; y) and u � wgar� = minfu j there is ~c from c1; : : : cH such that u is an endpoint of �(~c=~z; y) and w � ugNote that max and min above exist by transfer, since these are both hyper�nite sets, andtransfer tells us that every hyper�nite linear order has a maximal element.Then al� � w � ar� and there is a vector ~c0 from c1; : : : ; cH such that both ar� and al� arede�nable from ~c0 [ ~x. Since there are only �nitely endpoints for �(~c=~z; y), and we have a linearordering to distinguish these endpoints, each endpoint is de�nable from the parameters in theformula �. We can then concatenate the parameters needed to de�ne these endpoints togetherin order to get ~c0.Case 1. If al� = w or ar� = w for some �, then w is de�nable from parameters in c1; : : : ; cH bya formula  in the language of 
. By replacing the parameter ci by the constant symbol fromki, we get that w is de�nable in Ln by a single formula  (y). This clearly proves the claim aswe can take �(y) to be  (y).Case 2. Suppose al� < w < ar� for each �. Now let ��(y) be the formula9z9z0:�1�(z) ^ �2�(z0) ^ z < y < z0where �1� and �2� are the formulas de�ning al� and ar�. Let  �(y) be the formula of Ln formedby replacing each parameter cI by the constant symbol kI . Then each  � is a formula of Ln.Now let �(y) = h �(y)i, where � varies over the countable set of formulas in the variables ~zand y with parameters from ~x. Then we show that �(y) works.If �(y) is a formula in Ln satis�ed by w, then there is a formula � 0(~z; y) in the language of 
with parameters from ~x such that � is obtained from � 0 by replacing variables in ~z by constantsymbols from hkI iI<H . But then the de�nitions imply that �(y) does not change truth valuebetween al�0 and ar�0, hence � is of constant truth value strictly between these two elements.We claim that hN1; ~xi j=  �0(y) ! �(y). Indeed, if w0 satis�es  �0(y), then both w and w0 liestrictly between al�0 and ar�0. Therefore, �(w)$ �(w0), and hence �(w0) holds. This �nishesthe proof of Claim 5.



30 � M. Benedikt, G. Dong, L. Libkin, L. Wongcontradicts the assumption on Q. This concludes the proof of the theorem.Proof of Proposition 11. Let ~x and ~y with ~x) ~y be given, and let w in �Ube arbitrary. LetLn be the language with symbols for the operations in 
, and a constant symbol kI for eachI � H, and n extra constants where n is the length of ~x.Claim 5. There is a countable set of formulas �(z) in Ln with the property that 1) everyformula in �(z) is satis�ed by w in hN1; ~xi and 2) for every formula �(z) satis�ed by w inhN1; ~xi, there is a formula � (z) in �(z) such that hN1; ~xi satis�es 8z:� (z)! �(z).Assuming Claim 5, the �rst part of Proposition 11 can be argued as follows. First, we showthat �(z) is satis�ed in hN2; ~yi. That is, with the constants interpreted by f(ci) instead ofci and the �nitely many extra constants interpreted by ~y instead of ~x. By Proposition 8, itsu�ces to show that �(z) is �nitely satis�ed in hN2; ~yi. But this follows from the fact that �(z)is �nitely satis�able in hN1; ~xi and the fact that ~x) ~y.So we have a w0 that satis�es �(z) in hN2; ~yi. We now show that this w0 satis�es all the sameformulae of Ln that w does in hN1; ~xi. Let �(z) be a formula of Ln satis�ed by w in hN1; ~xi.By Claim 5, there is a formula � (z) of �(z) such thathN1; ~xi j= 8z:� (z)! �(z)Since ~x) ~y we have hN2; ~yi j= 8z:� (z)! �(z)Since w0 satis�es � in hN2; ~yi, it satis�es � in hN2; ~yi. Therefore, w0 satis�es � in hN2; ~yi asdesired.The second part of Proposition 11 is proved similarly by assuming the analogous claim belowon hN2; ~yi.Claim 6. There is a countable set of formulas �(z) in Ln with the property that 1) everyformula in �(z) is satis�ed by w in hN2; ~yi and 2) for every formula �(z) satis�ed by w inhN2; ~yi, there is a formula � (z) in �(z) such that hN2; ~yi satis�es 8z:� (z)! �(z).Next, we prove Claim 5. For any one-variable formula  (y) in the language of 
, possiblyincluding parameters from �U, an endpoint of  (y) means an endpoint of some maximalinterval contained in the subset of �U de�ned by  . Since the model (�U; �
) is elementaryequivalent to (U;
) [11], and o-minimality is preserved under elementary equivalence [24; 32],we see that the nonstandard structure is also o-minimal. By o-minimality of (�U; �
), each such



Expressive Power of Constraint Languages � 29Proposition 10. ; ) ;Proof. Let �(kj1 ; : : : ; kjn) be any sentence in L0 satis�ed by N1. That is, (�U; �
) j=�0(cj1 ; : : : ; cjn), where �0 is the formula mentioning only the symbols in the language of
 that is obtained from � by replacing each kj by a free variable. By indiscernibility,(�U; �
) j= �0(cm1; : : : ; cmn) whenever the mi's are ordered the same as the ji's. Sincethe mapping f is order-preserving, and since it maps each ci to some dj, we get that(�U; �
) j= �0(f(cj1); : : : ; f(cjn)). But this means N2 satis�es �. 2Proposition 11. The relation ~x ) ~y has the back and forth property. That is, if ~x ) ~y,then|For each w in �U there is z in �U such that h~x;wi ) h~y; zi, and|For each w in �U there is z in �U such that h~x; zi ) h~y;wi.Before we prove Proposition 11, let us show how the theorem follows from it. Let the languageL+ contain symbols for the database relations in the schema, and also the operations in 
. LetP1 and P2 be the expansions of (�U; �
) to L+ obtained by interpreting the schema relations asin M 01 for P1, and as in M 02 for P2. Then we haveProposition 12. P1 is elementary equivalent to P2.Proof. We show how to win the Ehrenfeucht game for L+ (equivalently, we show P1 is partiallyisomorphic to P2). If our opponent plays cI in P1, then we play f(cI) in P2, and if our opponentplays dI in P2, then we play f�1(dI) in P1. If our opponent plays a w in P1 , then we applyProposition 11 to get our response in P2, and similarly when our opponent plays in P2. Thefact that this strategy works follows from Proposition 11 , and the fact that the mapping f isan isomorphism of the schema relations, as shown below.It is clear from Proposition 11 that at any point in the game if the two structures P1 andP2 are pebbled as he1; : : : ; eni and hg1; : : : ; gni, respectively, then he1; : : : ; eni ) hg1; : : : ; gni.This implies immediately that the operations in 
 are duplicated correctly at each stage of thegame, since L0 contains 
. If one of the ej's for j � n is one of the cI 's, then the de�nitionof the arrow relation ensures that the corresponding gi is f(cI ). Conversely, if gj is dI then ejmust be f�1(dI ). Since f preserves the schema relations, we have that the schema relations arepreserved at each stage of the game. 2Now we have two models P1 and P2 that agree on every 
-query, but disagree about Q (sincethey are expansions ofM 01 andM 02). Hence Q cannot be expressible in the language of 
, which



28 � M. Benedikt, G. Dong, L. Libkin, L. Wong: : : < cH and the models (�U; �
; s1) and (�U; �
; s2) are elementary equivalent for any two�nite sequences of cis that have the same length and whose elements are ordered similarly.To see that such a sequence exists, we note that for any n;m 2 N, there exists a sequencea1 < : : : < am 2 U indiscernible over the �rst n formulae �1; : : : �n of the �rst-order languageof 
. Indeed, this condition can be expressed by a �rst order sentence �. By [11], there is anelementary extension of (U;
) that has an in�nite set of indiscernibles. Since this elementaryextension satis�es �, � must hold in (U;
) as well.Now the sequence c1; : : : ; cH exists by applying saturation to the family of formulae �i(C),where �i(C) is the formula saying that C is a sequence of length > i such that all elements inC are indiscernible for �1; : : : �n.Let d1; : : : ; dK be an internal subsequence of the ci's of length K.There is an (internal) order-preserving bijection from the active domain of M1 to c1; : : : ; cH.This is true by transfer, since the nonstandard universe believes that for any two subsets of Uwith the same cardinality, there is an order-preserving map from one to the other. Let M 01 bethe image ofM1 under this mapping | the active domain ofM 01 is now c1; : : : ; cH . Similarly, wecan get a �-database M 02 with active domain d1; : : : ; dK by applying a di�erent order-preservingmapping to M2. Since the mappings preserve order, we still have that M 01 and M 02 also agreeon every <-query whose quanti�ers are restricted to the active domains. By the genericity ofQ, and transfer, M 01 and M 02 still disagree about Q.Consider M 01 and M 02 as models for the �rst-order language containing the schema predicatesand <, with the respective active domains as the domains of both models (that is, the unionof the ci's for M 01, and the union of the di's for M 02). The fact that M 01 and M 02 agree onall <-queries with restricted quanti�cation says exactly that these two models are elementaryequivalent.Applying the Isomorphism Property to these models, we get that there is an injective mappingf from c1; : : : ; cH onto d1; : : : ; dK that is an isomorphism (in the language of < plus the schemarelations) of M 01 onto M 02. Note that f is not necessarily internal.Now we consider a new language L0 with symbols for the elements of 
 and <, plus constantsymbols kI for I � H. Let N1 be the model for L0 with domain �U, the elements of 
 and orderinterpreted in the usual way, and with kI interpreted by cI for I � H. Let N2 be the same,except kI is interpreted by f(cI). Note that the model N2 is not internal.We de�ne the relation ~x ) ~y on vectors of the same length from �U to mean that the modelhN1; ~xi is L0-elementary equivalent to hN2; ~yi.



Expressive Power of Constraint Languages � 27the following is true. Q is expressible over � if and only if, every two �-databases M1 andM2 that agree on all standard queries over �, also agree on Q.b) In a nonstandard universe satisfying Isomorphism Property, Q is expressible over � ifand only if, every two �-databases M1 and M2 that are isomorphic in the language of �,agree on Q.Proof. a) The if direction is trivial. We now prove the contrapositive of the only if direction:that is, we show that if Q is not expressible over �, then there are two �-databases that agreeon all � queries but disagree on Q.Let �1; �2; : : : enumerate the �-queries. Let =n be the equivalence relation on databases givenby D1 =n D2 i� D1 and D2 agree on the �rst n �is.By saturation, it su�ces to show that, for every standard natural number n, there are twomodels that agree on �i for each i � n but disagree on Q. Therefore, �x a natural number n,and assume there are no two models that agree on each �i for each i � n but disagree on Q.Then the models of Q are composed of �nitely many =n equivalence classes. But since eachequivalence class is de�nable by a �-cbq, this would make Q de�nable as a �-cbq as well, sinceit would be the disjunction of the �nitely many sentences de�ning the =n classes contained init, contrary to the assumption on Q.Part b) follows easily from a) and the de�nition of Isomorphism Property. 25.3 Proof of Theorem 4Note that it su�ces to prove the theorem for 
 �nite, since any counterexample to collapsewould involve a single constraint boolean query, which would involve only �nitely many symbolsfrom the language of 
. So henceforth we will assume 
 to be �nite.Let Q be a counterexample query over our schema SC = fR1; : : : ; Rng. That is, Q is expressiblein 
 and is locally generic, but is not expressible only with order.We now apply Proposition 9 to our counterexample Q, with � being <. This gives us �-databases M1 and M2 that agree on each <-query but disagree on Q.Now consider the active domains of M1 and M2. Since these are hyper�nite sets, they havecardinalitiesH and K respectively, whereH;K 2 �N. Without loss of generality, we will assumeK � H.Let c1; : : : ; cH be an (internal) sequence of elements of �U indiscernible over 
. That is, c1 <



26 � M. Benedikt, G. Dong, L. Libkin, L. Wongtruth and the transfer principle.Proposition 7. Let L be a �nite language, and let M be an internal L-structure. Let �(~x)be a formula of L that has standard �nite cardinality (i.e. number of symbols). Then theinternal satisfaction predicate �j= agrees with the external satisfaction predicate j= on �. Thatis, if ~c is a �nite sequence of parameters from M , then M �j= �(~c) i� M j= �(~c).Thus, we will not distinguish the two kinds of satisfaction predicates when we are dealing with�rst-order �'s.We now require that our nonstandard universe satisfy the following additional axiom:4. (Isomorphism Property) For any �rst-order language L, and any two L-structures M1 andM2 that are internal, ifM1 andM2 are L-elementary equivalent (i.e., agree on all sentencesof L), then there is an (not necessarily internal) L-isomorphism between M1 and M2.For example, the isomorphism property above guarantees that any two hyper�nite sets have thesame external cardinality (it is easy to show that for any hyperintegers K and H the structures[1;K] and [1;H] are elementary equivalent in the language of equality). For basic facts aboutthe isomorphism property, and a proof that saturated models with the isomorphism propertyexist, the reader is referred to [19].We state another proposition that will be useful.Proposition 8. Let L be a �rst-order language. Let M be an internally presented L-structure, and let �(y) be a countable collection of L-formulae, possibly with parameters fromM . Then, if � is �nitely satis�able in M , then � is satis�ed in M .Proof. For each formula �(y) in �, let M� be the reduct of M to the (�nite, hence internal)language of �, and let �0(y) be the formula (in the language of set theory) that says hM�; yisatis�es �(y). Then each �0(y) is a bounded-quanti�er formula satis�ed in the nonstandarduniverse, so by countable saturation, there is a y satisfying each �0(y). 2The starting point for the use of nonstandard methods is the following proposition. Recall thatby a �-database we mean an element of the image under � of the set of databases.Proposition 9. Let SC be our schema, and � be a �nite signature, and Q be any query:a) In a nonstandard universe that does not necessarily satisfy the Isomorphism Property,



Expressive Power of Constraint Languages � 25objects in V (S).For what follows, we �x a schema SC. The set Inst(SC ; S) belongs to V (S). Hence, we can talkabout �SC-databases, or, for short �-databases, namely the elements of the set �Inst(S;SC)for our �xed schema. Given a �-query Q and �-database D, we can (by transfer) apply �Q toD. We will often refer to Q(DB) rather than �Q(DB).Although it is not necessary to formalize logic within the nonstandard universe, we will do sohere for completeness of exposition. Uninterpreted logical formulae over SC can be coded byG�odel numbers. Occasionally, we will have a language that is indexed by a set of elementsin the nonstandard universe. That is, we will have some internal set I and we will want totalk about a language with constant or relation symbols bi for each i 2 I. In order to talkabout this within the model, we assume a standard convention in V (S) for making an elementof V (S) into a symbol: a formula �(bi) that uses the symbol will be coded as, say, the pairconsisting of a code for �(b) and the element i. With this convention, for any sets A and I inV (S), the satisfaction predicate j= for formulae built over hbi; i 2 Ii, and for structures withinterpretation functions from the bi into A, lies inside of V (S). Hence D �j= � is well de�nedwhenever A and I are internal sets, � is a (valid code for) a formula over bi; i 2 I, and D is astructure with an internal interpretation function from bi into A. If the interpretation functionfor D mapping each bi to a subset of A is external but maps each bi to an internal set, we canstill evaluate D � j= �, since � only makes use of �nitely many bi, and the restriction of theinterpretation to this set is internal (since it is a �nite sequence of internal pairings). If theinterpretation function for D maps each bi to an internal set, then we say that D is internallypresented. If the interpretation function is itself an internal mapping, then we say that D isinternal.The preceding details of coding may give the impression that A �j= � is a very di�cult notion.However, we will show soon that one can make sense of satisfaction in the nonstandard modelwithout referring to coding at all.For the rest of this section, all languages L will always be assumed to be built on an internal setI in the nonstandard universe. If a coding for symbols in L is not given explicitly, we assumethe nth symbol is coded by the integer n. An L-formula will always mean a �nitary �rst-orderformula.We now have two satisfaction relations for a �-structure M in the nonstandard universe: eitherby using the standard de�nition of satisfaction (sinceM is a structure in the usual sense) or bylooking at the satisfaction predicate as an element of the superstructure V (S) and consideringits �-image. The proposition below establishes the equivalence of these two notions. It canbe proved by straightforward induction on logical complexity, using the Tarskian de�nition of



24 � M. Benedikt, G. Dong, L. Libkin, L. WongAn element of V (Y ) is standard if it is in the image of the �-map. An element of V (Y )is internal if it is contained in a standard set. Elements of V (Y ) that are not internal arecalled external. An internal map is a map whose graph is an internal set. We now explain thesigni�cance of a set being internal. Intuitively, properties of all sets in the smaller universe V (S)will hold of all internal sets in the larger universe. Speci�cally, if we have a bounded-quanti�erproperty that holds for all elements of some set A in V (S) (for example, a property that holdsof the set A of all sequences of graphs), we know by transfer that it applies to all elements of �A(that is, to all internal sequences of �-graphs). Hence this gives us that if a bounded-quanti�erproperty P holds for all sequences from B, then the property P holds for all internal sequencesfrom the set �B. Similarly, a property that holds for all subsets of natural numbers, will holdfor all internal subsets of �N.We want our universe to be su�ciently \rich": to contain many nonstandard integers, forexample. We will therefore assume that our universe also satis�es the following axiom (alsostandard in the literature):3. (Countable Saturation Principle) For every standard A, and every countable collection�(x;~v) of bounded-quanti�er formulas, and for every vector ~c of internal sets, if every �nitesubset of �(x;~c=~v) is satis�ed in V (Y ) by some element of A, then �(x;~c=~v) is satis�ed byan element of A.We will work with a superstructure whose base set S includes both the domain U of ourdatabases and the integers N. Now all objects such as pairs, tuples, predicates and functionsfrom 
 \live" in the superstructure V (S). For example, a pair (a; b), where a; b 2 Vn(S), canbe encoded as ffag; fa; bgg 2 Vn+2(S). We similarly encode tuples. Then relations are in thesuperstructure as sets of tuples, and so are functions since they can be associated with theirgraphs. Since N � S, we de�ne nonstandard integers as elements of �N. Then a hyper�nite set(a set whose cardinality is a nonstandard integer) is a set A for which there exists H 2 �N andan internal bijection from fK j K 2 �N;K�< Hg onto A. We can then talk about hyper�nitedatabases, hyper�nite sequences, etc.We will often omit the � when convenient: for example, if < is an ordering on S, x1 and x2 areelements of �S, then we will write x1 < x2 + 3 rather than x1�< x2� +�3.5.2 Logic in Nonstandard UniversesWe will consider the logical symbols as being coded by integers, and assume a countable set ofvariable symbols x1; : : : and relational symbols R1; : : : as being coded by their integer indices,so that all relational schemas SC and all strings of formulae built from these schemas are now



Expressive Power of Constraint Languages � 23There are many other interesting examples of o-minimal structures, see [26; 38; 39].For the rest of this section, we restrict our attention to signatures 
 that are o-minimal. Ourmain result isTheorem 4. If 
 is an o-minimal signature on U, then for every LG cbq there exists ann-equivalent <-rbq. That is NFOLG(
; <) = NFOLG(<):We choose to make use of the technique of nonstandard universes. This will be of use insimplifying some of the bookkeeping involved in Ehrenfeucht-Fra��ss�e games. It also allows usto construct a proof that follows this basic intuition: constraint boolean queries over the real�eld cannot distinguish \large" instances which agree on \all" relational boolean queries.5.1 Preliminaries on Nonstandard UniversesWe start with some de�nitions of nonstandard universes. For more information, consult [11].An overview of using techniques of nonstandard universes for proving expressivity bounds isgiven in [6].For any set S, the superstructure V (S) over S is de�ned as V (S) = Sn<! Vn(S) whereV1(S) = S, and Vn+1(S) = Vn(S) [ fX j X � Vn(S)g. The set S is called the base set of thesuperstructure.We will work with the structure hV (S);2i considered as a structure for the �rst-order languagefor the membership relation. A bounded-quanti�er formula in this language is a formulabuilt up from atomic formulas by the logical connectives and the quanti�cation: 8X 2 Y ,9X 2 Y , where X and Y are variables.A nonstandard universe consists of a pair of superstructures V (S) and V (Y ) over in�nitesets S and Y and a mapping � : V (S)! V (Y ) which is the identity when restricted to S (i.e.�x = x for each x in S) and which satis�es(1) S � Y = �S.(2) (Transfer Principle) For any bounded-quanti�er formula �(v1; : : : ; vn) and any list a1; : : : ; anof elements from V (S), �(a1; : : : ; an) is true in V (S) if and only if �(�a1; : : : ; �an) is true inV (Y ).



22 � M. Benedikt, G. Dong, L. Libkin, L. WongDe�ne G = maxi(jci j) � card(I) and then it su�ces to setr0 = max(Gck ; n�) + 1To see this, suppose r � r0. If I = fkg, we are done. If not, using Claim 4, we obtain for anyvector ~x 2 Dnr satisfying x1 > x2 : : : > xn:p(~x) � ck � ~xMk � Xi6=k jci j �~xMi> ck � ~xMk � Xi6=k jci j �~xMkr� ck � ~xMk � Xi6=kmaxl (jcl j) � ~xMkr> ck � ~xMk � maxl (jcl j) � card(I) � ~xMkr= ~xMk(ck � Gr ) > 0Thus, p(~x) > 0, which proves the case ck > 0. To prove the case ck < 0, just apply the aboveproof to �p. Lemma 5, and Proposition 6 are proved. 25. RELATIONAL EXPRESSIVE POWER: NATURAL SEMANTICSIn this section we prove the collapse theorem for the natural interpretation of queries. Thatis, we prove that for certain signatures 
, any LG-query in NFO(
; <) can also be de�ned inNFO(<).Throughout this section we assume that the domain Uis linearly ordered by <, and that queriesare evaluated under the natural interpretation. We say that 
 is o-minimal (see [31]) if everysubset of Uthat is de�nable with parameters in the model hU;
i is composed of a �nite union of(possibly degenerate) intervals. By intervals we mean sets of the form fx j xRag or fx j aRxgor fx j aRxR0bg, where each binary relation R or R0 is either < or �.If U= R, then examples of o-minimal signatures include:|(+; �; <; 0; 1) | this follows from Tarski's quanti�er elimination theorem [37].|(+; �; ex; 0) | this follows from [40; 39].|(+; �; ex;�(x); 0) | this was proved in [35].



Expressive Power of Constraint Languages � 21are of the form p(~x)f=; 6=; <; 6<g0, we have to �nd an in�nite set on which a �nite number ofsuch constraints are simultaneously validated or invalidated, provided the polynomials are allnontrivial.Let p be a polynomial in n variables given by (P1). Consider an arbitrary ordering i1 � i2 �: : : � in of f1; : : : ; ng. Order the multiindices Mjs lexicographically with respect to �, i.e.Mj � Ml if mji1 > mli1 or mji1 = mli1 and mji2 > mli2 etc. Let Mk be the maximal one of Mj,j 2 I, with respect to �. Notice that Mk is uniquely de�ned. The following is the key lemma.Lemma 5. For p and Mk (as constructed above) there exists r0 2 R (which can be e�ectivelyconstructed) such that for every r � r0 and for every ~x = (x1; : : : ; xn) 2 Dr� : : :�Dr satisfyingxi1 > xi2 > : : : > xin, it is the case thatsign(p(~x)) = sign(ck)It is easy to see that Lemma 5 implies the proposition. For the ordered case, we can construc-tively rewrite Q to the form (2). This lemma gives us the sign and the corresponding r0 of eachpolynomial in the rewritten formula. Hence it allows us to replace each inequality constraintby true or by false and each equality constraint by false. We can then take r to be any naturalnumber above all of these r0.For the unordered case, we can rewrite Q to the form (3). Then for each polynomial in therewritten formula and for each possible order of its variables, we determine a r0 using Lemma5. Then r can be taken as any number in N above these r0. Then all equations in the rewrittenformula can be replaced by false and all inequations by true | the nonconstructive stepsdescribed in Lemma 3 can thus be skipped.It remains now to prove Lemma 5. To make the notation bearable, assume without loss ofgenerality that 1 � 2 � : : : � n. Let ck > 0. We use the notation ~xM for Qni=1 xmii forM = (m1; : : : ;mn). Let � = maxi2I maxj=1;:::;nmijThen a simple chain of calculations shows the following.Claim 4. If r > n�+ 1, then for any ~x 2 Dnr satisfying x1 > x2 : : : > xn and for any twomultiindices Mi 6=Mk, we have ~xMk > ~xMir 2



20 � M. Benedikt, G. Dong, L. Libkin, L. Wongwhere dk is the ith component of Mik . Doing this operation for all pjs and all equivalenceclasses of �i, we obtain a �nite number of equations that must hold if some of the polynomialspi;s are identically zero. Since all the coe�cients in equations (4) are nonzero, they may onlyhave �nitely many roots. Thus, if we choose s outside of S such that s does not coincide withany root of the polynomials (4), then none of pi;s is identically zero by Claim 2.Now we can conclude the proof of Lemma 4 (and thus of Proposition 5) in exactly the sameway as we did for Proposition 4. 24.4 ExampleIt is di�cult from the previous proofs to give concrete constructions for �nding the Ramseysets UQ. Although we make no claim to have deeply considered the algorithmic aspects ofsuch transformations, we will now show how such transformations can be done for some of thestandard arithmetic structures (see also [36]).We start with an example. Consider a schema with one binary predicate S, and a query sayingthat for any pair in S, none of its components is the square of the other. That is, the queryQ � 8x8y:S(x; y)! (:(x = y2) ^ :(y = x2))which is expressible in any language that contains multiplication. The underlying domain canbe R, or Q, or Z.We claim that the Ramsey set UQ can be chosen to be f33i j i > 0g, and the equivalent query isjust T. Indeed, the constraint x = y2 cannot be satis�ed if x; y 2 UQ: if we assume 33i = (33j)2,then 3i = 2 � 3j which is impossible for any i; j > 0. Since on such UQ the constraint part of thequery Q is always true, so is the whole query.The above example generalizes straightforwardly to show that sparsely distributed sets neces-sarily give Ramsey sets for the active-semantics queries that use polynomial constraints.Let Dr denote the set frri j i 2 N+g.Proposition 6. Assume that U is either R or Q or Z, and let 
 be (+; �; 0; 1; <) or(+; �; 0; 1). Then for any cbq Q there exists a number r in N, and a �-rbq Q0 (or rbq Q0if 
 does not contain order) that is Dr-equivalent to Q. Moreover, r and the corresponding Q0can be e�ectively constructed from Q.Proof. The proofs of all Ramsey propositions in this section were based on the fact that we cansimultaneously invalidate all nontrivial constraints. Since in the given signature all constraints



Expressive Power of Constraint Languages � 19Lemma 4. For any system of equations p1(~x) = 0; : : : ; pk(~x) = 0 where pi 2 K[x1; : : : ; xn] arepolynomials that are not identically zero, there exists an in�nite set K � K such that assigningdistinct values of K to variables x1; : : : ; xn simultaneously invalidates all the equations.We �rst need thisClaim 2. If p 2 K[x1; : : : ; xn] is written in (P1), then p is identically zero i� I = ;.We prove this claim by induction on n. For the base case n = 1 (i.e. p 2 K[x]) we use inductionon card(I). If I is empty, we are done. If I is a singleton, p cannot be identically zero becausethere are no divisors of zero. Assume card(I) > 1 and p(x) = Pi2I cixmi. If mi = 0 for somei 2 I, then from p(0) = 0 we obtain ci = 0, contradiction. Otherwise, let m = minmi, andapply the argument above to p0(x) where p(x) = xm � p0(x).For the induction case n > 1, consider a polynomial p represented by (P1). Let I 6= ;. Twocases arise. Case 1: for every i 2 I and every j between 1 and n it is the case that mij 6= 0.Case 2: one can �nd i 2 I and j 2 1; : : : ; n such that mij = 0. In Case 1, let �j = mini2I mij.Then �j > 0 and we obtain p = x�11 � : : : � x�nn � p0 where p0 is a polynomial which satis�es thecondition of Case 2. By cancellation p0 is identically zero. Hence, it is enough to prove Case 2only. Assume that p is given by (P1) and assume without loss of generality that m11 = 0. De�nep1(x2; : : : ; xn) as p(0; x2; : : : ; xn). Represent p1 in the form (P1). Then c1 remains one of thecoe�cients in this representation. But p1 is a polynomial in n� 1 variables, and is identicallyzero. Hence, it cannot be represented in form (P1) with nonempty set of coe�cients. Thiscontradiction �nishes the proof of Claim 2.Let p 2 K[x1; : : : ; xn] be a polynomial in n variables. For any index i and any s 2 K we denotethe polynomial in n� 1 variables, obtained by substituting s for xi in p, by pi;s.Next, we claim the following.Claim 3. For any �nite collection of polynomials p1; : : : ; pm 2 K[x1; : : : ; xn] that are notidentically zero, and for any �nite set S � K, there exists s 2 K � S such that none of thepolynomials pi;sj , j = 1; : : : ;m, i = 1; : : : ; n, is identically zero.To prove this claim, assume that all pjs are represented in the form (P1) with I 6= ;. Fix apolynomial p given by (P1), and de�ne the equivalence relation �i on multiindices byMt �i Mri� 8j 6= i : mtj = mrj . By Claim 2, pi;s is identically zero i� for every equivalence classfMi1; : : : ;Milg of �i we have(4) ci1sd1 + � � �+ cilsdl = 0



18 � M. Benedikt, G. Dong, L. Libkin, L. WongClaim 1. For any at most countable collection of 
IR-functions G = g1; g2; : : : that are notidentically zero and any at most countable set S � R, there exists s 2 R� S such that none ofthe functions gi;s, where g 2 G, is identically zero.To prove this claim, consider a 
IR-function g(x1; : : : ; xn) which is not identically zero andassume without loss of generality that i = n. First notice that there exists a (n � 1)-vector~c such that g~c(x) = g(~c; x) is not identically zero. Indeed, if g~c is identically zero for every ~c,then g is identically zero. Now pick such a ~c and, by applying the fact that 
 is sparse, �nd acountable set Sg;i of roots of g~c. Note that for every s 62 Sg;i we obtain that gi;s is not identicallyzero.Now consider the countable set SG = S [ [g2G[i Sg;iIt follows from our construction that for any s 2 R�SG none of the functions gi;s is identicallyzero. This �nishes the proof of the claim.To conclude the proof of the lemma, we start with our original set F0 = ff1; : : : ; fkg of functionsand S = ;, and use the claim to �nd s0 such that none of the functions in F1 = F0[fgi;s0 j g 2F0g is identically zero. Continuing, at the mth step we have a �nite set S = fs0; : : : ; sm�1g � Rand a set Fm�1 of functions none of which is identically zero. We �nd sm 2 R� S such thatnone of the functions in Fm = Fm�1 [ fgi;sm j g 2 Fm�1g is identically zero. Now consider thein�nite set R = fs0; s1; s2; : : :g. It follows immediately from our construction that assigningdistinct sis to distinct variables simultaneously invalidates all equations f(~x) = 0, f 2 F0. This�nishes the proof of the lemma and the proposition. 2We now turn to the integral domain case.Proof of Proposition 5. We use an argument that is very similar to the proof of Proposition4. Let p 2 K[x1; : : : ; xn] be a polynomial in n variables over K. We can represent it as(P1) p = Xi2I ci � xmi11 � : : : � xminnwhere I is a �nite set of indices, Mi = (mi1; : : : ;min) is a multiindex (i.e., n-tuple of naturalnumbers), Mi 6= Mj for i 6= j and ci 2 K � f0g for all i. (The zero polynomial is representedby I = ;.) From now on assume that all polynomials are represented by (P1). Note that allconditions used in Q can be assumed to be of the form p(~x)�0, where p is a polynomial over K.Hence, according to the proof of Proposition 4, all that is required to conclude the proof is thefollowing:



Expressive Power of Constraint Languages � 17where 	 is in DNF, and its literals are of form Ri(z1; : : : ; z�i) where all zjs are variables, orthey are condition literals h1(~x)�h2(~x) where h1 and h2 are 
-terms and � 2 f=; 6=g; see theproof of Proposition 3. Further assume without loss of generality that no condition literal isnegated.Let B be the nth Bell number; that is, B is the number of partitions of an n-element set. Let�i represent the ith partition on an n-element set of variables, i = 1; : : : ; B. For example, forthe partition ff1; 2g; f3; 4gg of f1; 2; 3; 4g we would get � as (x1 = x2) ^ (x3 = x4) ^ (x1 6= x3).Since WBi=1 �i = T, we have 	 = WBi=1(�i ^	).Consider each �i ^ 	. Let �i specify the partition X1; : : : ;Xs and let yi be a representativeof Xi. For each condition h1(~x)�h2(~x) in 	, we replace hi by h0i in which only y1; : : : ; ys areused. Furthermore, if h01 is identically h02, we replace the corresponding condition by T or Frespectively. Thus, Q is equivalent to a query of form(3) Qx1 : : : Qxn: B_i=1(�i ^	i)where 	i is a formula in s variables (provided �i speci�es a partition with s classes) and eachcondition is of form h01(~x)�h02(~x), where h01 and h02 are not identical. Moreover, h01 and h02 usevariables for which �i implies that their values are distinct. Next, we need the following lemma.Lemma 3. Given a system of equations f1(~x) = 0; : : : ; fk(~x) = 0 where the functions fisare 
-terms in at most n variables x1; : : : ; xn. If no fi is identically zero, then there exists anin�nite set R � R such that assigning distinct values of R to variables x1; : : : ; xn simultaneouslyinvalidates all the equations.This lemma immediately implies Proposition 4. De�ne a system of equations F as follows:go through all the disjuncts in Q | assumed to be in the form (3) | and for each conditionh01(~x)�h02(~x) add h01(~x) � h02(~x) = 0 to F . Note that h01(~x) � h02(~x) is not identically zero byconstruction. By the lemma, �nd an in�nite R � R such that assigning distinct values fromR to variables in equations in F simultaneously invalidates all of them. Then rewrite Q to Q0by replacing each h01(~x) = h02(~x) by F and each h01(~x) 6= h02(~x) by T. Then, for any DB withadom(DB) � R it is the case that Q(DB) = Q0(DB ), and Q0 does not mention any symbolsfrom 
, which concludes the proof.To prove the lemma, we de�ne 
IR-functions as those given by a term in the signature 
extended with constants for all elements of R. Let f(x1; : : : ; xn) be a function in n vari-ables and 1 � i � n. For s 2 R, we let f i;s be the function in n � 1 variables de�ned asf(x1; : : : ; xi�1; s; xi+1; : : : ; xn). We need the following



16 � M. Benedikt, G. Dong, L. Libkin, L. WongTo prove the lemma, pick an element i0 2 I arbitrarily. Let �i0 specify an ordered partitionwith s classes X1; : : : ;Xs � fx1; : : : ; xng ordered by X1 < : : : < Xs. Let yi 2 Xi; then we mayrewrite 	2[(cj ^ �i0)=cj]j�m to 	2[c0j=cj ]j�m ^ 
 where c0j is a condition of form t1�t2 that onlyuses fy1; : : : ; ysg and 
 states that all yis are di�erent and that y1 < : : : < ys.Since there are m conditions c0j, there are at most 2m possible truth values for the systemc01; : : : ; c0m. Let Al be the set of s-tuples (d1; : : : ; ds) of distinct elements of D ordered byd1 < : : : < ds such that the truth values of c0i(d1; : : : ; ds) form the binary representation of thenumber l, 0 � l � 2m � 1. Then the family of nonempty sets among A0; : : : ; A2m�1 forms apartition of the set of s-tuples of distinct elements of D.By Ramsey's theorem [15], we can �nd an in�nite D0 � D such that all s-tuples of distinctelements of D0 are in the same class of the partition, say Al, where Al 6= ;. Let l correspond tothe truth values of c0js being tjs. Let	i0 = (	2[tj=cj ]j�m ^ 
) and 	01 = 	1 _	i0 :That is, 	i0 is obtained from 	2 by replacing each condition literal cj by the correspondingtruth value tj. Then, for any n-tuples of elements of D0, the values of	1 _ _i2I	2[(cj ^ �i)=cj]j�m and 	01 _ _i2I�fi0g	2[(cj ^ �i)=cj ]j�mcoincide. Indeed, if (d1; : : : ; dn) does not satisfy �i0 , this is immediate (because the disjunctsthat make the di�erence between the formulae evaluate to F), and if it does satisfy �i0 , it followsfrom the fact that 	i0 and 	2[(cj ^ �i0)=cj]j�m coincide on such tuples.Now observe the following. Assume that �i(x1; : : : ; xn), i = 1; 2, are formulae in n variables,and let �1(~d) and �2(~d) be equivalent for any ~d 2 Dn for some set D. Then, for any quanti�erpre�x, the sentences Q1x1 2 D : : :Qnxn 2 D:�1(~x) and Q1x1 2 D : : :Qnxn 2 D:�2(~x) areequivalent.Applying this observation, we see that for Q0 de�ned by (200) where 	01 = 	1 _ 	i0, it is thecase that Q coincides with Q0 on all databases with active domain in D0. Since 	i0 does notmention any symbols in 
, this proves the lemma and the proposition. 2We now turn to the Ramsey result for sparse sets.Proof of Proposition 4. We start by getting a normal form analogous to (2) for the unorderedcase. First, assume that Q is given byQx1 : : : Qxn:	(x1; : : : ; xn)



Expressive Power of Constraint Languages � 15into the desired prenex normal form, whose quanti�er-free part is in disjunctive normal form.We may also assume that no literal of the form (b) is negated, since the symbols for 6= and 6<are added to the language.Now subdivide the disjuncts into two classes. The �rst one consists of those which are conjunc-tions of (possibly negated) literals of the form (a). The second class consists of those whichare conjunctions of literals, at least one of them being of the form (b). Let 	1 and 	2 be thedisjunctions of the conjuncts from the �rst and the second class respectively. Then 	 = 	1_	2and 	1 is a formula in the language hR1; : : : ; Rk;=;�i.Let P be the number of ordered partitions of an n-element set. (An ordered partition of X is apartition X1, ..., Xs with a linear order Xi1 < : : : < Xis on its elements.) Let �i be the formulathat speci�es that indices of x1, ..., xn form the ith ordered partition. For example, if n = 3,for the partition ff1; 2g; f3gg with f1; 2g < f3g, the corresponding � is (x1 = x2) ^ (x1 < x3).Note that WPi=1 �i = T. Hence, 	2 can be replaced by WPi=1(�i ^	2).Let c1; : : : ; cm denote all the constraints of the form (b) present in 	2. By 	2[(cj ^ �i)=cj ]j�mwe denote the formula obtained from 	2 as follows. For every disjunct in 	2 (recall that 	2 isin DNF) �nd all conjuncts in it which are of the form cj, and replace them by (cj ^ �i). Nowit can be readily seen that Q is equivalent to(2) Q1x1: : : :Qnxn:	1 _ P_i=1	2[(cj ^ �i)=cj ]j�mThe equivalence follows from the fact that in 	2 in every disjunct at least one literal is acondition, and no condition literal is negated. Now we need the following lemma.Lemma 2. Suppose that a query Q is given by (20), where(20) Q1x1: : : : Qnxn:	1 _ _i2I	2[(cj ^ �i)=cj]j�mI is a nonempty subset of f1; : : : ;Pg and 	1 does not mention any symbol from 
. Then, forany in�nite D � U, there exists an in�nite D0 � D, a formula 	01 that does not mention anysymbol in 
, and an i0 2 I such that for Q0 de�ned by(200) Q1x1: : : : Qnxn:	01 _ _i2I�fi0g	2[(cj ^ �i)=cj]j�mit is the case that Q and Q0 coincide for any database DB with adom(DB) � D0.Before we prove this lemma, let us observe that the proposition follows straightforwardly fromit. We just apply the lemma inductively to (2) until all formulae that mention symbols in 
disappear.



14 � M. Benedikt, G. Dong, L. Libkin, L. WongProof of Theorem 1. Consider a locally generic cbq Q and �nd a set UQ and a <-rbq Q0as in Proposition 3. Now we claim that Q and Q0 are equivalent. Indeed, take any databaseDB and let D = adom(DB). Find any partial monotone injective map � de�ned on D suchthat �(D) � UQ. This is possible because UQ is in�nite. Since Q is locally generic, Q(DB) =Q(�DB). By Proposition 3, Q(�DB) = Q0(�DB) since adom(�DB) � UQ. Since Q0 is a <-rbq,it is locally generic, and hence Q0(�DB) = Q0(DB). Thus, Q(DB) = Q0(DB ), proving that Qand Q0 are equivalent as desired.Proof of Theorems 2 and 3. Consider a totally generic cbq Q and �nd an in�nite setUQ and a rbq Q0 as in Proposition 4 or 5. We claim that Q and Q0 are equivalent. For adatabase DB let D = adom(DB). Find any permutation � of R such that �(D) � UQ. SinceQ is totally generic, Q(DB) = Q(�DB). By Proposition 4 or 5, Q(�DB) = Q0(�DB) sinceadom(�DB) � UQ. Since Q0 is a rbq, it is totally generic, and thus Q0(�DB) = Q0(DB).Therefore, Q(DB) = Q0(DB), proving that Q and Q0 are equivalent as desired.Proof of Corollary 1, part a, is almost the same as the proof of Theorem 1. Note thatif U is weakly homogeneous, then there is a monotone injective map such that �(D) � UQ.Furthermore, Q(DB) = Q(�DB) because Q is MG. Then the proof follows.4.3 Proofs of Ramsey Theorems for Constraint DatabasesWe begin with the ordered case.Proof of Proposition 3.Since an arbitrary �rst-order sentence can be converted into prenex normal form, from now onwe assume that Q is given by (1). For convenience, we extend the language with the symbols6= and 6< with the obvious interpretations. Without loss of generality, we can assume that 	 isa formula in disjunctive normal form whose literals are of form:(a). Ri(z1; : : : ; z�i), where all zjs are variables.(b). t1(~y)�t2(~z), where t1 and t2 are terms in the signature 
, � 2 f=; <; 6=; 6<g, and ~y, ~z containvariables from x1; : : : ; xn.Any formula Q can be rewritten to the form described above. Indeed, if the argumentsof the predicate Ri are terms rather than variables, then we replace each occurrence ofRi(t1(~y1); : : : ; t�i(~y�i)) by 9z1 : : :9z�i:(z1 = t1(~y1)) ^ : : : ^ (z�i = t�i(~y�i)) ^ Ri(z1; : : : ; z�i). Itis easy to see that such a replacement does not change the truth value of the formula for everyassignment of values in the domain to the variables. Then we can convert the resulting formula



Expressive Power of Constraint Languages � 13Theorem 2 does not easily generalize for Q or Zbecause the fact that R is uncountable is crucialfor the proof. But if we are only interested in the ring structure, there is a generalization.Recall that an integral domain K is a commutative ring without divisors of zero.Theorem 3. Let K be an in�nite integral domain. Then every TG-query inAFO(K;+;�; �; 0; 1) is a-equivalent to some rbq. That is,AFOTG(K;+;�; �; 0; 1) = AFO4.2 Ramsey Theorems for Constraint Databases and Proofs of Main TheoremsThe following propositions are the basis for the proofs of the theorems in this section. Theystate that any cbq coincides with some rbq on databases whose active domain is a subset of acertain in�nite subset of U.Given U � U, we call two queries Q and Q0 U-equivalent if, for any database DB,adom(DB) � U implies Q(DB) = Q0(DB).Recall that we assume the active-domain interpretation of queries. We start with the orderedcase.Proposition 3. Let 
 be an arbitrary interpreted signature on the linearly ordered domainhU; <i. Then for any cbq Q there exists an in�nite subset UQ � U and a <-rbq Q0 which isUQ-equivalent to Q. 2Next, we prove a similar result for sparse signatures.Proposition 4. Let 
 be a sparse signature. Then for any cbq Q there exists an in�nitesubset UQ � U and a rbq Q0 which is UQ-equivalent to Q. 2A similar result to Proposition 4 can be shown for integral domains.Proposition 5. Let K be an in�nite integral domain, i.e. 
 = (+;�; �; 0; 1). Then for anycbq Q there exists an in�nite subset UQ � K and a rbq Q0 which is UQ-equivalent to Q. 2Now, using these propositions, we can present the straightforward proofs of the main results ofthis section.



12 � M. Benedikt, G. Dong, L. Libkin, L. Wongf : S ! S such that f(X) � Y . It is not hard to see that any doubly transitive order is weaklyhomogeneous and so is any discrete linear order without endpoints (in particular, hZ; <i).Corollary 1. |Let hU; <i be weakly homogeneous and let 
 be an arbitrary signature.Then AFOMG(
; <) = AFO(<).|([28]) For an ordered domain hU;<i, and any signature 
, AFOTG(
; <) = AFOTG(<).|Transitive closure, parity test, and connectivity test are not �rst-order de�nable over or-dered databases under the active-domain interpretation, even in the presence of an arbitraryinterpreted signature on the domain. 2There is no analog of the theorem for the unordered case, because one of the interpretedoperations can de�ne a linear order, and it is known that AFO(<) 6= AFO; see [1, page462]. Therefore, collapse results in the unordered case can only exist for a restricted class ofsignatures. Although we are far from having a good characterization of the class of signaturesfor which this holds, we will show a few collapse results for particular classes of signaturesbelow.Let the domain be R, and 
=(h1; h2; : : :) be a signature that consists of functions Rarity(hi) ! R.We call 
 sparse if the subtraction function is in 
 and for every 
-term h(x1; : : : ; xn) andany constants c1; : : : ; ci�1; ci+1; : : : ; cn 2 R, the function hi(x) = h(c1; : : : ; ci�1; x; ci+1; : : : ; cn) iseither identical to zero or has at most countably many zeros.There is a simple way to obtain a large number of sparse signatures over the reals, using thefact that any analytic function is either identical to zero or has at most countably many zeros,and composition of analytic functions is analytic again [27].Proposition 2. Let (H1;H2; : : :) be any collection of analytic functions such that the valueof each Hi is in R if all its arguments are in R. Let hi be the restriction of Hi to the realarguments. If one of the His is subtraction, then 
 = (h1; h2; : : :) is sparse. 2Some examples of sparse signatures are (+;�; �; ex; 0), (+;�; 0; 1), and (+;�; �; 0; 1).Theorem 2. Let 
 be a sparse signature. Then for every TG cbq in AFO(R;
) there existsan a-equivalent rbq. That is, AFOTG(R;
) = AFO:Note that Theorems 1 and 2 are of a very di�erent nature from complexity-based results suchas [18].



Expressive Power of Constraint Languages � 11y) _ (x = y)), where R is a unary schema predicate and < interprets the usual order onthe natural numbers. This is equivalent to true (for nonempty databases) under the activedomain interpretation (hence generic), but it is nongeneric under natural semantics. Let Q �(9x9y:R(x)^R(y) ^R(x+ y)) ^ (9x8y:x� y), where + and � interpret the addition and theorder over the reals. This Q is equivalent to false under the natural interpretation, but it isnon-generic under the active interpretation.4. RELATIONAL EXPRESSIVE POWER: ACTIVE SEMANTICSIn this section we prove a number of collapse results for the active-domain semantics. Thusthroughout this section we assume that queries are interpreted under the active-domain seman-tics.We start this section by stating the main results below. We then introduce the main technicaltool that we call Ramsey theorems for constraint databases. These results establish the exis-tence of an in�nite subset of the domain on which a given cbq is equivalent to some query thatdoes not use constraints. In subsection 4.2, we state these Ramsey Theorems and show howthe main collapse results follow from them. In subsection 4.3 we prove the Ramsey Theorems.The �nal subsection 4.4 steps through an example.4.1 Statement of Main ResultsFirst, we show a very general collapse result for ordered databases.Theorem 1. Let 
 be an arbitrary interpreted signature on the linearly ordered domainhU; <i. Then for every LG cbq there exists an equivalent <-rbq. In other words,AFOLG(
; <) = AFO(<):We will state a number of corollaries of this result. Several of these were independently provedby Van den Bussche and Otto [28], who used the Ehrenfeucht-Mostowski theorem about theexistence of indiscernibles [11].Another corollary of this theorem is that the class of MG-queries in AFO(
; <) is exactly theclass of AFO(<) queries when the domain is doubly transitive. While this covers domains suchas Q and R, it excludesZwhich is not doubly transitive. To cover the case ofZ, we prove a morepowerful corollary. We call a linearly-ordered set hS;<i without endpoints weakly homogeneousif S is in�nite and for every �nite X � S and in�nite Y � S there exists a monotone injection



10 � M. Benedikt, G. Dong, L. Libkin, L. WongFor example,AFOTG(<) is the class of TG-queries de�nable in relational calculus with order,whileNFOLG(R;+;�; 0; 1) is the class of LG-queries de�nable under the natural interpretationwith polynomial constraints over the reals. Since queries de�nable in AFO and AFO(<) areTG and LG (MG) respectively, we have the equations AFOTG = AFO and AFOLG(<) =AFOMG(<) = AFO(<).When U is ordered, TG is the strongest notion because it implies both LG and MG. Also, LGimplies MG. Under certain mild restrictions on the order, we also have MG implies LG. We donot need the local notion of genericity for unordered sets because it is equivalent to TG for anyin�nite U.We call a linearly ordered set hS;<i doubly transitive [34] if for every a < b and x < y thereexists an automorphism f : S ! S such that f(a) = x and f(b) = y.Proposition 1. With respect to any in�nite ordered universe U, it is the case that everyTG-query is also a LG-query and every LG-query is also a MG-query. With respect to anyin�nite ordered universe U that is doubly transitive, it is the case that every MG-query is alsoa LG-query.Proof. To prove that TG implies LG, consider a database DB with D = adom(DB). Let�D : U ! U be a partial monotone injective map de�ned on D. Since both U� D andU��D(D) have the same cardinality, there exists a permutation � on Uthat extends �D. UsingTG for Q we obtain Q(�DDB) = Q(�DB) = Q(DB), which implies that Q is LG. If Q is LG,consider any monotone injection ' : U! U. Given a database with D = adom(DB). Let 'Dbe the restriction of ' on D. Then Q('DB) = Q('DDB) = Q(DB). Hence Q is MG. Theproof that MG implies LG for doubly transitive orders is similar to that of TG implies LG,because double transitivity provides the needed extension of a partial map, see [34]. 2To see that most of the examples of ordered domains used in the theory of constraint databasesare doubly transitive, we state the following lemma.Lemma 1. ([34]) hQ; <i and hR;<i are doubly transitive. Also, any dense linear orderingwithout endpoints is doubly transitive.Thus, when we prove the collapse results for classes of generic queries over ordered databases,we shall aim to prove the result for LG-queries. Then they will automatically imply the corre-sponding results for TG-queries and, if U is doubly transitive, for MG-queries as well.Finally, we note that the same query Q may be generic under the active interpretation andnongeneric under the natural, and vice versa. For example, consider Q � 9x8y:R(x)^ ((x <



Expressive Power of Constraint Languages � 9Fact 2. [30] AFO(R;+;�;0;1; <) = NFO(R;+;�; 0;1; <)Definition 1. Two queries Q1 and Q2 are said to be a-equivalent i� for any database DB ,under the active-domain interpretation we have Q1(DB) = Q2(DB). They are n-equivalenti� for any database DB , under the natural interpretation we have Q1(DB) = Q2(DB). Whenit is clear from the context how Q1 and Q2 are interpreted, we speak of equivalent queries. 23. NOTIONS OF GENERICITYGiven a constraint language, one may ask queries that are speci�c to that language. Forexample, one may ask if a database contains a root of a given polynomial. However, purelyrelational queries must conform to the data independence principle which says that the internalstructure of data has no e�ect on the answers to queries. This is usually captured by a notionof genericity. Intuitively, a query is generic if it returns the same answer for \isomorphic"databases. Typically, what is meant by \isomorphic" databases DB1 and DB2, is that applyingsome permutation � on U to DB 1 yields DB2. In other words, a generic query is then a querythat is invariant under arbitrary permutations of the domain [1].Sometimes this notion must be relaxed. Suppose that database elements are ordered, and aquery may refer to the ordering. In this case the right notion of genericity is invariance undermaps that preserve the order relation. For constraint databases, even more complex notions ofgenericity have been considered [29].In this paper we use three notions of genericity for Boolean queries. Let ' : U! Ube a mappingon the domain. Then ' can be extended to databases overU: 'DB denotes a database obtainedfrom DB by replacing each occurrence of x 2 adom(DB ) by '(x).Definition 2. |A Boolean query Q is totally generic (TG) with respect to a domain Uif for any database DB and any permutation � of U, it is the case that Q(�DB) = Q(DB).|A Boolean query Q is monotone generic (MG) with respect to an ordered domain Uif for any database DB and any monotone injective map ' : U! U, it is the case thatQ('DB) = Q(DB).|A Boolean query Q is locally generic (LG) with respect to an ordered domain U if for anydatabase DB and any partial injective monotone function ' : U 7! Ude�ned on adom(DB),it is the case that Q('DB) = Q(DB).For any language L, we let LTG, LLG, and LMG stand respectively for the class of TG-, LG-,and MG-queries expressible in L. 2



8 � M. Benedikt, G. Dong, L. Libkin, L. WongLet 
 be an interpreted signature on U; that is, a family of operations ! : Uarity(!) ! U. Forexample, if U= R, then 
 may be h+;�; �;�; exi. A constraint boolean query (cbq) is asentence built up from atomic formulae  by connectives and quanti�ers such that  is in thelanguage that consists of predicate symbols R1; : : : ; Rk, equality, and symbols for operations in
. For example, if U= R, then a cbq may ask if for two reals in a database, their sum is also inthe database. Again, each cbq can be transformed into an equivalent one in the prenex normalform (1).There are two possible interpretations of each of these classes of sentences. Under the active-domain semantics (or just active semantics), all quanti�ed variables range over the activedomain of a database. That is, a sentence given by (1) de�nes, under active semantics, thequery Q such that the value of Q on a database DB is the value ofQ1x12adom(DB) : : : Qnxn2adom(DB):	(x1; : : : ; xn)Under the natural semantics, all quanti�ed variables range over U. That is, the sentencede�nes the query Q whose value on DB equals toQ1x1 2 U: : : :Qnxn 2 U:	(x1; : : : ; xn)The notion of satisfaction is thus de�ned straightforwardly for both semantics. Since it willalways be clear from the context which semantics is being used, we shall write DB j= Q if Qevaluates to T, true, on DB .We shall also write Q(DB) for the value of Q on DB . That is, Q(DB) is either T or F. Thus,each query de�nes a semantic object, that is, a map from Inst(U;SC) to fT;Fg.The classes of �rst-order Boolean queries (maps from Inst(U;SC) to fT;Fg) de�nable under theactive and natural semantics will be denoted byAFO(�) andNFO(�) respectively, where we listthe domain U (if it is not understood) and the operations from 
 in parentheses. For example,AFO is just the relational calculus,AFO(R;+;�; �; 0; 1; <) is the class of Boolean queries withpolynomial inequality constraints de�nable under active semantics, and NFO(R;+; �;0; 1) isthe same class of queries interpreted under natural semantics. Note that in the last case we donot have to list the order relation as it is de�nable under natural semantics: x < y , 9z:(z 6=0)^(y�x = z�z), since z ranges over the reals. We also do not need minus, since it is de�nableusing + and natural quanti�cation.There are a number of results showing that the natural semantics does not add expressivenessover the active semantics. In particular, we shall use the following two.Fact 1. [20] AFO = NFO



Expressive Power of Constraint Languages � 7Section 5 considers the expressibility of generic queries, but using the relational calculus underthe natural semantics. We prove an analogous collapse theorem saying that the expressibilityof these queries is independent of the presence of a large class of arithmetic and other operatorsin this more powerful framework. This result is proved via an excursion through nonstandardmodels. The main conjecture follows as a corollary.Section 6 extends the results of sections 4 and 5 to arbitrary (nonboolean) queries. We provethat every collapse result for boolean queries implies the corresponding collapse result fornonboolean queries.Section 7 concludes the paper by relating the \active" and the \natural" results of this paper.For some signatures, it is known that the two semantics of relational calculus coincide. Usingthis and our collapse theorems, we extend the coincidence of the active and natural semantics,with respect to generic queries, to a larger number of additional primitives.An extended abstract of this paper appeared in the Proceedings of the 15th Symposium onPrinciples of Database Systems [7].2. NOTATIONSA database schema is a nonempty collection of relation names, hR1; : : : ; Rki, where each nameRi is assigned an arity �i. We �x a database schema SC for now, and we also �x a databasedomain, which is an in�nite set U. All values that occur in databases are drawn from thisdomain.A database (or database instance) DB is given by an interpretation of each relational symbolRi as a �nite �i-ary relation over U. We denote the set of all database instances of SC with thedomain Uby Inst(U;SC). Given a database DB , its active domain adom(DB ) is the set ofall elements in U that appear in the database.A relational boolean query (rbq) is a �rst-order sentence built up from atomic formulaein the language containing hR1; : : : ; Rki and equality via the usual logical connectives andquanti�ers of the form 8x and 9x. If we allow our atomic formulae to also mention a symbol <,interpreted as a linear order on U, then we speak of a <-rbq. For each of the semantics we willgive for these sentences, it will be the case that an arbitrary rbq can be e�ectively transformedinto a semantically equivalent one of the form(1) Q1x1: : : : Qnxn:	(x1; : : : ; xn)where each Qi is either 8 or 9 and 	(�) is a quanti�er-free formula with free variables amongx1; : : : ; xn.



6 � M. Benedikt, G. Dong, L. Libkin, L. Wong�nitary methods. However, the use of nonstandard models has another distinct advantage: itallows one to make use of techniques from in�nitary model theory to help in the construction of\counterexample" models with desired properties. Since hyper�nite models are in fact in�nitestructures, many classical model-theoretic constructions and proof techniques become available.An example of a classical model-theoretic technique that is powerful when linked to hyper�nitestructure is the use of indiscernibles. To relieve the amount of analysis necessary in analyzingelementary equivalence, we will often want to restrict our attention to models whose algebraicstructure is \as simple as possible". Indiscernibility is a method for capturing the intuitionthat the domain of our structures should have no unnecessary algebraic dependencies amongits elements.An indiscernible sequence is a sequence A = haiii2I indexed by some ordered set hI;<i, wherethe elements come from an in�nite structureM . Being indiscerniblemeans that for each formula�(~x), � is satis�ed in M by either every increasing (in the order on I) subsequence of A orby no such sequence. Although indiscernible sequences do not necessarily exist in an arbitraryin�nite structure, it is a happy fact that they always exist in hyper�nite structures.Within an indiscernible set, the logical structure of the model reduces to a simple ordering.For example, if we have two hyper�nite cycles living in the real plane and a single hyper�nitecycle living in the plane, we might be able to distinguish them with a query in the language ofthe real �eld. However, if we move these two cycles so that they both live on an indiscernibleset, we expect (and we prove) that they are indistinguishable by any polynomial constraintquery. Similarly, the natural counterexample used to show the inexpressibility of parity inthe polynomial constraint model is the following: take an indiscernible sequence fa1; a2 : : :g,consider two hyper�nite unary predicates:fa1; : : : ; aHg and fa1; : : : ; aH+1g, and prove that theyinduce elementary equivalent models.We will present formalizations of these techniques in Sections 4 and 5.Organization. Section 2 presents the notations that are used throughout the paper. Wealso explain the active and natural semantics of relational calculus and state two previousresults relating them. Section 3 describes three notions of genericity of queries. We also brie
yinvestigate their relationship.Section 4 studies the expressibility of various classes of generic queries using the relationalcalculus under the active semantics. We prove powerful collapse theorems saying that theexpressibility of these queries is independent of the presence of arithmetic and other operators.These results are proved via several Ramsey-like results. Moreover, for the special cases of real,rational, and integer arithmetic, our proofs are constructive.



Expressive Power of Constraint Languages � 5Informal introduction into proof techniques. Since expressibility results for constraintdatabases deal with both �nite and in�nite structures, it is natural to look for proof techniquesthat involve mixing the �nite with the in�nite. The techniques we introduce in this paper fordoing this mixing are new to the �eld, and may be of independent value. Since the speci�c usesof them in this paper are a bit involved, we give an informal introduction to them here.To prove the results about the active semantics, we use the following technique. For eachconstraint found in the query (for example, x+ y > 5) and for each ordering on the variables(for example, x < y), we use Ramsey's theorem [15] to �nd an in�nite subset of the real �eldon which this constraint is either always true or always false | then, intuitively, the constraintcan be replaced just by an order constraint on this set. We show that for any query Q thisprocedure can be carried out in such a manner that at the end we have an in�nite subsetX of the domain, and a query that only uses order comparisons, that is equivalent to Q onall databases whose elements belong to the set X. If a query is generic, then its behavioris completely determined by its behavior on an in�nite set, and thus we obtain that genericqueries under the active semantics can be written with only order constraints.For dealing with the natural semantics results, we need a di�erent set of techniques. The �rst ofthese involves a generalization of the Ehrenfeucht-Fra��ss�e game method. The naive approach toshowing that a property (Boolean query) Q is not expressible in some language L would be toget two models that agree on all sentences of L, but disagree on Q. The problem immediatelyencountered in applying this technique in �nite-model theory is the following. Any two �nitemodels which satisfy the same sentences of a �rst-order language L are isomorphic, and thussatisfy the same sentences of any reasonable logic. The standard technique for circumventingthis problem is via Ehrenfeucht-Fraisse games (cf. [12]). One decomposes the sentences of thelogic into countably many fragments Ln, and then constructs for each n two �nite models Mnand M 0n agreeing on the fragment Ln but disagreeing on Q.Here, we give an alternative to this construction, using nonstandard universes. Inexpressibil-ity bounds are obtained by �nding two hyper�nite (meaning, informally for now, \in�nitelylarge �nite") models M and M 0 agreeing on all queries in L, but disagreeing on Q. The �rstvirtue of this technique is as a way of abstracting away from the bookkeeping involved inEhrenfeucht-Fraisse constructions. For example, if one is interested in showing the inexpress-ibility of connectivity within pure �rst-order logic, one need only look at the two hyper�nitegraphs G1 and G2, where G1 is a single hyper�nite cycle, whileG2 is the union of two hyper�nitecycles. A single game argument shows these two to be elementarily equivalent in �rst-orderlogic, but only one is connected, hence connectivity is not �rst-order de�nable.The above example may appear to make technique of nonstandard models useful more as aconvenience than as an essential tool, and there are cases where their use can be subsumed by



4 � M. Benedikt, G. Dong, L. Libkin, L. Wongdatabase, that is, the set of all elements that occur in the database. Under the natural seman-tics, quanti�cation variables are assumed to range over the whole universe (for example, thereal line in the case of polynomial constraints over the reals).We prove the following main results.(1) The addition of constraints to the relational calculus does not add more power beyondordering when interpreted under the active domain semantics. We establish these resultsby proving several Ramsey-style theorems.(2) We show similar results for the natural semantics. We establish these results using tech-niques from nonstandard analysis and some results in the model theory of ordered struc-tures.(3) As a consequence, the conjecture mentioned above is con�rmed. It also follows that therelational calculus plus polynomial inequality constraints expresses the same generic booleanqueries under the two di�erent semantics.The coincidence of the two semantics was established for the special cases of the relationalcalculus by Hull and Su [20] and of the relational calculus with linear constraints by Paredaens,Van den Bussche, and Van Gucht [30]. These two results, [20] and [30], are not limited to genericqueries. Thus we have generalized these two results to polynomial constraints, when queries arerestricted to generic ones. Similar techniques can be used to show the coincidence of the twosemantics for arbitrary polynomial constraints, as is shown in [8; 9]. It was also shown in [30]that linear constraints do not add pure expressive power beyond <. Our results generalize thisto a wider class of signatures, including polynomial constraints and exponentiation. Anothergeneralization of this kind that is similar to ours but uses a slightly di�erent setting was foundindependently by Otto and Van den Bussche [28].In contrast to our results, Grumbach and Su [17] showed that, with an integer test function inthe signature, one can de�ne parity of cardinality of �nite relations over the reals under thenatural interpretation. It is necessary therefore, to put some sort of restriction on the signatureto get a collapse result for the natural semantics. Our most general natural-semantics resultuses signatures that are o-minimal [31] | these signatures can de�ne only a certain kind ofsubsets of the real line. This restriction is su�ciently general to con�rm the main conjecturefor polynomial constraints.In this paper we concentrate on expressiveness of constraint query languages on ordinary re-lational databases. It is possible to use such results to �nd some expressivity bounds forconstraint databases, that is, sets of generalized tuples. General techniques for such extensionsare discussed in [17; 36].



Expressive Power of Constraint Languages � 3Codd's relational model. In this new paradigm, instead of tuples, queries act on \generalizedtuples" expressed as quanti�er-free �rst-order constraints. For example, a generalized tuplex+ y > 5 represents the in�nite set of tuples (x; y) satisfying the constraint x+ y > 5.A generalized relation is a �nite set of generalized tuples. Interesting constraint query languagesare then obtained by coupling traditional relational query languages, such as the relational cal-culus, with various classes of arithmetic constraints. Examples of queries that are inexpressiblein the pure relational calculus but are expressible with such an extension include the test ofwhether all points in a binary relation R lie on some common circle or whether R contains fourvertices of some diamond.Thus, the coupling of relational calculus with arithmetic constraints enhances power. A naturalquestion arises, attracting much attention recently: How much more power can we gain fromthis coupling? The following conjecture, discussed extensively in the literature [25; 23; 22; 33;17; 29], has been open for several years.Conjecture. Queries such as transitive closure, connectivity test, and parity test are notde�nable in the relational calculus plus polynomial inequality constraints over the reals.These three queries are singled out because they involve two basic primitives, recursion andcounting, and because it is known that they cannot be expressed by the relational calculus. Itwas noted in [16] that useful properties for proving the inexpressibility of these queries in therelational calculus, such as locality [14] and 0/1-law [13], do not carry over to constraint querylanguages. Nevertheless, a number of inexpressibility results were established recently. In [18]it is shown, via an AC0 data complexity result, that the parity query cannot be expressedif only linear constraints are added to the relational calculus. In [2] it is shown that testingwhether a constraint database is contained in a line is not de�nable with linear constraints. In[3] it is shown that testing whether a constraint database represents a line is not de�nable in�rst-order logic with order.Transitive closure, parity test, and connectivity test are examples of generic queries [10; 21].Generic queries cannot distinguish between \isomorphic" databases. Formally, their answerdoes not change when a bijective map on the domain is applied to a database. It is thereforenatural to pose the more general question below.Question. Do constraints add pure relational expressive power? More speci�cally, when limitedto relational inputs and outputs, do the extended query languages express more generic queriesthan the relational calculus?We answer this question under two di�erent semantics of the relational calculus. Under theactive semantics, quanti�cation variables are assumed to range over the active domain of the



2 � M. Benedikt, G. Dong, L. Libkin, L. WongThe expressive power of �rst-order query languages with several classes of equality and inequality constraints isstudied in this paper. We settle the conjecture that recursive queries such as parity test and transitive closurecannot be expressed in the relational calculus augmented with polynomial inequality constraints over the reals.Furthermore, noting that relational queries exhibit several forms of genericity, we establish a number of collapseresults of the following form: The class of generic boolean queries expressible in the relational calculus augmentedwith a given class of constraints coincides with the class of queries expressible in the relational calculus (withor without an order relation). We prove such results for both the natural and active-domain semantics. Asa consequence, the relational calculus augmented with polynomial inequalities expresses the same classes ofgeneric boolean queries under both the natural and active-domain semantics.In the course of proving these results for the active-domain semantics, we establish Ramsey-type theoremssaying that any query involving certain kinds of constraints coincides with a constraint-free query on databaseswhose elements come from a certain in�nite subset of the domain. To prove the collapse results for the naturalsemantics, we make use of techniques fromnonstandard analysis and from the model theory of ordered structures.Categories and Subject Descriptors: H.2.3 [Database management]: Query languages; F.4.1 [Mathematicallogic and formal languages]: Model theoryAdditional Key Words and Phrases: Database, Relational calculus, Constraints, Constraint query language,Expressive power1. INTRODUCTIONMuch of the work in the foundation of relational databases revolves around using techniquesfrom logic to formalize the data model and to analyze the expressive power of query languages.A database relation is formalized as a �nite collection of tuples, and a database is modeled asa �nite structure, which is a collection of relations. Database queries can then be modeled asformulae on these structures. The �rst fundamental result is that classical query languages,such as relational algebra and calculus, have precisely the power of �rst-order logic. Fromthere, we can use logical techniques to derive important bounds on the expressiveness of theserelational languages, such as the inexpressibility of parity and graph connectivity [4; 10].In new database applications involving spatial data (as in geographical databases) and temporaldata, it is necessary to move beyond the relational model of data, and to store in databasesin�nite collections of items and to evaluate queries on such in�nite collections. The constraintdatabase model, introduced by Kanellakis, Kuper, and Revesz in their seminal paper [23], isdesigned to meet the requirements of such applications and is a powerful generalization of
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