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THEOREM 6. Let Qqopmin be an o-minimal signature on U. Then NFO"S(Quomin, <) =
AFO(<).

Proof. Note that the AFO(<) € NFOYS(Q, ppin, <) inclusion is trivial. For the reverse
inclusion, we first give a simple proof for the case when U = R, and then outline the general

proof. We have:
NFOYS (1, Q4 min, <)

= NFOY6(r, <) by Theorem 4
C AFO'S(r,+,—,0,1,<) by Fact 2
= AFO(R, <) by Theorem 1

When U is arbitrary, let @ be in NFOYS(U, Qy_pin, <). By Theorem 4 it is in NFOYS (U, <).
Since (U, <) is o-minimal, we can find a definitional expansion to (U, <, ©) that admits quantifier
elimination. By [8; 9], we obtain Q € AFOS (U, <,0), and then Q is in AFO(U, <) by
Theorem 1. O

COROLLARY 6. Let Q_min be an o-minimal signature. Then NFO(Q o min, <) cannot ea-
press transitive closure, deterministic transitive closure, parity test, and connectivity test. In
particular, none of the above is expressible under the natural interpretation of the relational cal-
culus with constraints of the form f(¥)0g(¥) where 6 € {=,<} and f, g are functions definable
in the signature (+,—,*,¢e”,0). O

In conclusion, we have settled the open problem of whether parity and connectivity can be
expressed in the relational calculus with arithmetic constraints. We have shown that the addi-
tion of arithmetics does not give us more power to define generic queries, for both the active
domain semantics and the natural semantics. In fact, we have proved that the two semantics
often coincide when limited to generic queries. Thus, we have given a clear picture of the
expressiveness of the relational calculus with arithmetic constraints, where generic queries are
concerned.

The diagram shown in Figure 1 summarizes our expressiveness results for databases over the
reals. By Q,_p;n we mean any o-minimal signature and by ;.. We mean any sparse sig-
nature. The = edge means equality and the — arrow means proper embedding. That
AFOTG (4, = %,0,1) — NFOTG(+ «,0,1) follows from the fact that there are TG-queries that
are not expressible in relational calculus without order. The embedding NFOTG(4,%,0,1) —
NFOLG(4,%,0,1) follows from the following observation. Let the schema contain two unary
relation symbols Ry and Ry and let () be VaVy.(Ri(x) A Ry(y)) — @ < y. Since @) is LG but not
TG, it separates NFOLG (4 «,0,1) from NFOTG(4,%,0,1). Other embeddings and equations
follow from the results of this paper.
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AFOTE(Q0rse) © NFOYS(Q, in, <) =—= AFOLE(Q, <)
AFOTG (4, = %,0,1) —— NFOTCG (+,%,0,1) - NFOLG (4,4,0,1) =——= AFOLG(+, —,%,0,1,<)
TG TG LG [30] LG
AFO 5 (+,-,0,1) —— NFO % (+,—,0,1,<) = NFO*> (+,—,0,1,<) =——= AFO0*%(+,—-,0,1,<)
[20] TG [1] LG
AFO NFOTG 1 | NFOLG(<) AFO(<)

Fig. 1. Summary of the expressiveness results for databases over the reals

Thus, the query given by ¢ can be expressed by a formula in the language of SC,,, © and
equality. The proof is complete. a

Now we immediately obtain the following collapse results for nonboolean queries.

COROLLARY 5. 1) Under the active semantics, for any signature Q on ordered U, every locally
generic constraint query is equivalent to a <-relational query.
2) Under the active semantics, for any sparse signature Q) on R, every totally generic constraint
query is equivalent to a relational query.
3) Under the natural semantics, for any o-minimal signature € on ordered U, every locally
generic constraint query is equivalent to a <-relational query. O

7. PUTTING IT ALL TOGETHER

In this section, we first tie together our results on the active semantics and the natural semantics
of generic queries. Then we provide a summary of this paper followed by some concluding
remarks.
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Q(eDB) = Q(¢'DB) = ¢'(Q(DB)), which in turn is equivalent to (a1,...,a,) € Q(DB) or
DB E ¢(ay, ..., a,). We also see that (1) is equivalent to

(1) In DB, for every i = 1,...,n, S; is a singleton {a;}.

Since (1') and DB = ¢(aq,...,a,) hold iff DB = @4, we conclude the proof of F-genericity
of Q4. Note that this proof works for both active and natural interpretations. (In fact, all
quantification in ()4 other than that inside ¢ is bounded to the active domain.)

Now we prove 1. Since Qy is in AFO” (U, Q), we can find a query Q' in AFO” (U, ©) equivalent
to 4. That is, Q' is a sentence in the language of SC' and © such that Q,(DB) = Q'(DB) for
any DB € Inst(U,SC). Assume that yq,...,y, are variables not mentioned by @’. We then
define a formula ¥ (y1,...,y,) in the language of SC;, and © by replacing each subformula of

Q' of the form S;(z) by z = y,.

We now claim that for every ¢ = (¢1,...,¢,) € U" and any SC,;, database DB, DB | ¢(¢) iff
DB = 9(¢) (under the natural interpretation); this clearly implies 1. To see this, we define
DBIc] as a SC database in which all SC;, relations are interpreted as in DB, and each S; is
interpreted as {¢;}. Then we obtain the following equivalences, since ¢ and ¢ do not mention
any symbols 5;:
DB E (@
& DBl £ 6(d

[
& DB = Q'
& DB E Q,
& DBIA = 4(7)
& DB E 6(d

To prove 2, we define ¢ as before and observe that the proof above shows that DB |= ¢(¢) iff
DB | ¢(¢) for any ¢ € adom(DB)". Indeed, to prove the first and the last equivalences, observe
that for formulae not mentioning any of the S;s, the only difference in terms of satisfaction on
DB and DB|c] is the range of quantification. For ¢ € adom(DB)", adom(DB]¢c]) = adom(DB),

so all quantified variables range over the same set.

Let adom[SC;,](z) be a formula in the language of SC;, such that DB |= adom[SC,,](c) iff
¢ € adom(DB); such a formula exists, see [1]. Then, using the fact that F is adom-preserving,
we finish the proof of 2 as follows. For any ¢ € U,

ce Q(DB)

¢ € adom(DB)" and ¢ € Q(DB)

¢ € adom(DB)" and DB | ¢(¢)

¢ € adom(DB)" and DB = ()

DB = (¢) Aadom[SC,](e1) A ... Aadom[SCy,] (¢, ).

toee
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Now for any ¢,7: m(Q(DB)) = Q(7:(DB)) = Q(7;(DB)) = 7;(Q(DB)); hence 71(X) = ... =
7.(X). In particular, every m;(x) € m1(X), whence card(w1(X)) > card(X). This contradiction
proves the case. a

If Q@ and © are two signatures on U, we say that there is a (€2, ©) Boolean collapse of F-generic
natural queries if NFOT (U,Q) = NFO?(U,0) holds for any schema SC. We say that there
is a (Q,0) complete collapse of F-generic natural queries it NFOF[SC;,— SC,,,](U,Q) =
NJ-"Of[SCmeSCm](U, 0) holds for any input schema SC;, and output schema SC,,;. We
similarly define the collapse of the active queries, replacing N'FO with AFO.

THEOREM 5. Let F be an extensible class of partial endomaps on U, and Q and © two
signatures on U. Then:

1) If there is a (£, 0) Boolean collapse of F-generic natural gueries, then there is a (1,0
) P g q s )
complete collapse of F-generic natural queries.
2) If F is adom-preserving and there is a (£),0) Boolean collapse of F-generic active
P g ) P g
queries, then there is a (2, 0) complete collapse of F-generic active queries.

Proof. It is enough to prove the theorem for just one n-ary relation in the output schema.
Assume that a F-generic query @) is given by a formula ¢(x1,...,2,); that is, (¢1,...,¢,) €
Q(DB) iff DB = é(c1,...,¢,). Now we extend SC;, to a new schema SC by adding n unary
relational symbols Sy, ..., .5, that are not present in SC,;, USC,,;. Define a boolean constraint
query (), as follows:

n

AN (Fz.Si(2)) A (FaVy (S2)ASi(y) = @ = y) DMTer. Ve (Si(@)A. ASu(20)) = é(a,. .. 20))

=1

That is, ()4 says that in a SC database all S;s are singletons and ¢ is satisfied on their elements.

Next, we claim that ()4 is F-generic. The proof given below works for both active and natural
cases. Let DB be a SC-database and ¢ a map in F defined on adom(DB). We must show that
DB E Q,iff oDB | Q. It follows from the definition of Q4 that ¢ DB = Q4 iff the following

conditions hold:

(1) For every ¢t = 1,...,n, ©S5; is a singleton {b;}.
(2) ¢DB E ¢(b1,...,b,).

Using extensibility, we find a map ¢’ € F that extends ¢ to adom(DB) U adom(Q(DB)).
Now every b; is in the image of ¢ (and ¢'); we let a; be the element of adom(DB) that is
mapped to b;. Such an element is unique by injectivity. Now (2) is equivalent to (by,...,b,) €
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such that DB |= ¢;(c1,...,c,)'. When we use the active-domain (natural) interpretation for
the sentence ¢;(cq,...,¢,), we obtain the class of queries definable under the active-domain

(natural) interpretation. These classes will be denoted by AFO[SC;,— SC,,.](U,Q) and
NFO[SC,;,—5C,.4](U, Q) respectively.

The notions of genericity are generalized for nonboolean queries straightforwardly. Instead
of saying Q(¢DB) = Q(DB), as we did for boolean queries, we define generic queries as
those satisfying Q(¢DB) = ¢(Q(DB)) for a given class of maps. More precisely, for a class
F of partial injective endofunctions on U, we say that ) is F-generic if, for any database
DB and any ¢ € F defined on adom(DB) U adom(Q(DB)), it is the case that Q(pDB) =
©(Q(DB)). Total genericity and local genericity are examples of F-genericity for the classes
of injective partial maps and monotone partial maps. We denote classes of F-generic queries
in AFO[SC;,—SC (U, Q) and NFO[SC;—SC . )(U, Q) by AFOT[SC;,—SC (U, Q) and
NFOF[SCMHSCOM(U, Q) respectively.

Now we are ready to prove the main result of this section saying that a collapse result for boolean
queries implies a similar result for arbitrary queries. We say that F is adom-preserving if
for any F-generic query @) and any database DB, adom(Q(DB)) C adom(DB). We say that
F is extensible if for any F-generic (), any database DB and any function ¢ in F whose
domain is adom(DB), we can find an extension of ¢ to ¢’ € F whose domain is adom(DB) U
adom(Q(DB)). These two notions impose very mild restrictions on the classes of generic queries.
The class of all partial maps is extensible on any infinite set, and the class of all monotone
partial maps is extensible on any ordered set without endpoints. Also, any adom-preserving F
is extensible. Furthermore,

ProprosITION 13. Totally generic and locally generic queries do not extend active domains
of their inputs.

Proof. We prove the local genericity case; the simpler proof for TG queries is omitted. We
use the notation adom(DB, Q) for adom(DB) U adom(Q(DB)). First, observe the following.
For any finite set Y C U and any € Y, and any number n, we can find maps #y,..., 7, in F
such that for all ¢, j: 7;(Y) = #;(Y), but all 71(x),...,7,(x) are distinct. This is true since U
is infinite, and hence it either has a dense subset or does not have either right or left endpoint;
in both situations we easily construct the 7;s.

Now fix a counterexample: @ € adom(Q(DB)) — adom(DB) for a LG query Q. Let X =
adom(Q(DB)). Let Y = adom(DB) and let n = card(X) + 1. Construct =y,..., 7, as above.

"'We only consider queries that produce finite results. For the natural semantics case our results generalize easily
for infinite outputs.
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Also, theorem 4 implies collapse results for domains other than the real numbers. For example,
since (Q, 4, <) is elementary equivalent to (R, +, <), we obtain the following result of [36] as a
corollary.

COROLLARY 3. NFOY6 (0, +,<) = NFO (0, <). O

The proof technique given here is not restricted to continuous domains, or to o-minimal struc-
tures. In fact, we can notice that the result applies to any domain such that Claim 5 holds for
any internally presented structure. This was used in [5] to give the following result about the
integers.

COROLLARY 4. (see [5]) NFOYS(, +, <) = NFOM (1, <). O

This result is in contrast to [17] which proved that any computable query is definable in
NFO(N, +, %, <,0,1).

6. EXPRESSIVENESS OF NONBOOLEAN QUERIES

So far we have only considered boolean queries given by first-order sentences. This was enough
to prove some of the desired inexpressibility results. For example, inexpressibility of transitive
closure follows from inexpressibility of connectivity test. But how far can we go using our
results for the boolean case? In this section we present a simple technique that lifts the results
about boolean queries to cover arbitrary queries as well.

To speak about nonboolean queries, we need two schemas: the input schema SC;, =
(Ri,...,Rg), k& > 0, with relation names for the input database, and the output schema
SCoue = (Th,...,T7), I > 0, with the names of the output relations. Now nonboolean queries
are maps from instances of SC';, to SC,,;. Boolean queries can be viewed as queries with the
output schema that consists of a single 0-ary relation.

A relational query is given by a first-order formula ¢(z1,. .., x,) with n free variables for each
n-ary relation symbol in SC,,;; this formula is in the language of SC;, and equality. Again,
we speak of <-relational queries if ¢ is in the language of SC;, and the order relation <. For a
signature ), constraint queries are given by first-order formulae ¢(x1, ..., z,) in the language
that contains SC;, and all the symbols in 2.

Similarly to the boolean case, queries have both active-domain and natural interpretation.
A query (relational or constraint) (¢1,...,¢;), applied to a SC;,-database DB, results in
SC,ui-database DB’ whose ith relation, of arity n, consists of all tuples (¢1,...,¢,) € U"
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We now briefly trace out the proof of Claim 6 to complete the proof of proposition 11. For each
formula x(Z,y) in the language of © with parameters from ¢/, let

—

ap, = max{u | there is d from dy,...dg such that u is an endpoint of y(d/Z,y) and v < w}

—

ar = min{u | there is d from dy,...dg such that u is an endpoint of y(d/Z,y) and w < u}

Note that the max and min above exist by transfer, since these are both hyperfinite sets.

Case 1. It a;, = w or a,, = w for some Y, then w is definable from parameters coming from
the d;’s and i by a formula 7 in the language of Q. By replacing the parameter d; with the
constant symbol kj, where f(cy) = kj, we get that w is definable in L™ by a single formula
Y'(y). This clearly proves the claim since we can take 7 (y) = ¢'(y).

Case 2. Suppose a;, < w < a,, for each y. Now let ¢, (y) be the formula
3232 01, (2) A b (Z)V N 2 <y <2

where ¢1, and ¢y, are the formulas defining a;, and a,,. Let ¢, (y) be the formula of L"
formed by replacing each parameters d; by the constant symbol k; as before (i.e. kj such that
fley) =dp). Then each ), is a formula of L".

We now let 7 (y) = (¢, (y)) as before, and check that this works. This completes the proof of
Proposition 11. a

5.4 Some Corollaries of Theorem 4

There are three corollaries of Theorem 4 that we would like to mention here. First, looking at
the proof of Theorem 4, we can observe the following sufficient condition for verifying when two
hyperfinite databases satisfy the same natural semantics queries over the nonstandard universe.

COROLLARY 2. Suppose that M is an o-minimal structure, SC' a schema, and Dy, Dy two
*database instances of the schema SC. Assume that there exists a mapping [ from adom(Dy)
onto adom(Dsy) such that [ preserves the SC relations and for each formula (%) in the language
of M and each vector ¢ of elements of adom (D), *M = (&) if and only if *M = (f()).

O

Then Dy and Dy agree on all natural semantics queries over *M.

This observation is made use of in [8] where the coincidence of the active and natural semantics
is established in certain o-minimal structures.
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formula ¢ (y) has only finitely many endpoints. Also, if we have two endpoints xo < @1 for the
formula ¢ (y), and there is no other endpoint for ¢ (y) lying between these two, then the truth
value of 1 (y) is constant on the open interval (zq,21).

For each formula y(Z,y) in the language of  with parameters from &, let
ap, = max{u | there is ¢ from ¢y, ...cy such that v is an endpoint of y(¢/Z,y) and v < w}

ar = min{u | there is ¢ from ¢y, ...y such that u is an endpoint of y(¢/Z,y) and w < u}

Note that max and min above exist by transfer, since these are both hyperfinite sets, and
transfer tells us that every hyperfinite linear order has a maximal element.

Then a;, < w < a,, and there is a vector ¢ from ¢1,...,cy such that both a,, and a;, are
definable from ¢ U Z. Since there are only finitely endpoints for x(¢/Z,y), and we have a linear
ordering to distinguish these endpoints, each endpoint is definable from the parameters in the
formula y. We can then concatenate the parameters needed to define these endpoints together
in order to get c.

Case 1. It a;, = w or a,, = w for some x, then w is definable from parameters in ¢y,...,cy by
a formula % in the language of (). By replacing the parameter ¢; by the constant symbol from
ki, we get that w is definable in L™ by a single formula ¢ (y). This clearly proves the claim as
we can take 7 (y) to be ¢ (y).

Case 2. Suppose a;, < w < a,, for each y. Now let ¢, (y) be the formula
232" h1(2) A Gy () ANz <y < 2

where ¢1, and ¢q, are the formulas defining a;, and a,,. Let ¢, (y) be the formula of L" formed
by replacing each parameter ¢; by the constant symbol £;. Then each 1, is a formula of L".

Now let ?(y) = (¢ (y)), where y varies over the countable set of formulas in the variables Z
and y with parameters from #. Then we show that ? (y) works.

If B(y) is a formula in L" satisfied by w, then there is a formula 5’(Z,y) in the language of Q2
with parameters from # such that 3 is obtained from 3’ by replacing variables in Z by constant
symbols from (kj);<p. But then the definitions imply that 3(y) does not change truth value
between a;g and a,g, hence 3 is of constant truth value strictly between these two elements.

We claim that (N1, Z) = ¢g(y) — B(y). Indeed, if ' satisfies ¢g/(y), then both w and w' lie
strictly between a3 and a,g. Therefore, 3(w) < B(w'), and hence 3(w') holds. This finishes
the proot of Claim 5.
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contradicts the assumption on (). This concludes the proof of the theorem.

Proof of Proposition 11. Let ¥ and ¢ with ¥ = ¢ be given, and let w in *U be arbitrary. Let
L™ be the language with symbols for the operations in €2, and a constant symbol k; for each
I < H, and n extra constants where n is the length of .

CLAM 5. There is a countable set of formulas 7(z) in L™ with the property that 1) every
formula in 7(z) is satisfied by w in (N1, %) and 2) for every formula B(z) satisfied by w in
(Ny1,), there is a formula 7(z) in 7(2) such that (N1, %) satisfies Vz.7(z) — ((z).

Assuming Claim 5, the first part of Proposition 11 can be argued as follows. First, we show
that 7(z) is satisfied in (Ng, 7). That is, with the constants interpreted by f(¢;) instead of
¢; and the finitely many extra constants interpreted by ¢ instead of Z. By Proposition 8, it
suffices to show that 7 (z) is finitely satisfied in (Na, ). But this follows from the fact that 7 (z)
is finitely satisfiable in (N7, ¥) and the fact that ¥ = 7.

So we have a w’ that satisfies 7(z) in (Ns, 7). We now show that this w’ satisfies all the same
formulae of L™ that w does in (N, ). Let ¢(z) be a formula of L™ satisfied by w in (Ny, ¥).
By Claim 5, there is a formula 7(z) of 7 (z) such that

(N1,%) EVz.1(2) = é(2)

Since ¥ = § we have
(Vo) |5 Vz.7(2) = o(2)

Since w' satisfies 7 in (Na,9), it satisfies 7 in (Na, 7). Therefore, w’ satisfies ¢ in (Ns, ) as
desired.

The second part of Proposition 11 is proved similarly by assuming the analogous claim below

on (Na, 7).

CLAM 6. There is a countable set of formulas 7(z) in L™ with the property that 1) every
formula in 7(z) is satisfied by w in (Na,y) and 2) for every formula 3(z) satisfied by w in
(N2, 7)), there is a formula 7(z) in 7 (z) such that (N, y) satisfies Vz.7(z) — [(z).

Next, we prove Claim 5. For any one-variable formula ¢(y) in the language of €2, possibly
including parameters from *U, an endpoint of ¥(y) means an endpoint of some maximal
interval contained in the subset of *U defined by . Since the model (*U,*?) is elementary
equivalent to (U, ) [11], and o-minimality is preserved under elementary equivalence [24; 32],
we see that the nonstandard structure is also o-minimal. By o-minimality of (*TU, *(2), each such
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PROPOSITION 10. ) = 0

Proof. Let ¢(kj,...,k;,) be any sentence in L’ satisfied by N;. That is, (*U,*Q)
&' (¢jys-.,¢i,), where ¢' is the formula mentioning only the symbols in the language of
(1 that is obtained from ¢ by replacing each k; by a free variable. By indiscernibility,
("U,*Q) = ¢ (¢myy---yCm,) Whenever the m,’s are ordered the same as the j;’s.  Since
the mapping f is order-preserving, and since it maps each ¢; to some d;, we get that

(U,*Q) E ¢'(f(cjy), .-, f(c;,)). But this means Ny satisfies ¢. O

PROPOSITION 11. The relation ¥ = i has the back and forth property. That is, if ¥ = ¥,
then

<g7 Z>} and
(y

—For each w in *U there is z in *U such that (Z,w)
z

=
—For each w in *U there is z in *U such that (Z,z) = (i, w).

Before we prove Proposition 11, let us show how the theorem follows from it. Let the language
L7 contain symbols for the database relations in the schema, and also the operations in 2. Let
Py and P, be the expansions of (*U,*2) to LT obtained by interpreting the schema relations as
in M{ for Py, and as in M, for P,. Then we have

PROPOSITION 12. P; is elementary equivalent to Ps.

Proof. We show how to win the Ehrenfeucht game for L™ (equivalently, we show P; is partially
isomorphic to P,). If our opponent plays ¢; in Py, then we play f(cr) in P, and if our opponent
plays dy in P, then we play f~'(d;) in P;. If our opponent plays a w in P, , then we apply
Proposition 11 to get our response in F;, and similarly when our opponent plays in P,. The
fact that this strategy works follows from Proposition 11 , and the fact that the mapping f is
an isomorphism of the schema relations, as shown below.

It is clear from Proposition 11 that at any point in the game if the two structures P and
Py are pebbled as (e1,...,e,) and {(g1,...,9n), respectively, then (e1,...,e,) = (g1,...,qn)-
This implies immediately that the operations in ) are duplicated correctly at each stage of the
game, since L’ contains €. If one of the ¢;’s for 7 < n is one of the ¢;’s, then the definition
of the arrow relation ensures that the corresponding g¢; is f(cy). Conversely, if g; is d; then e;
must be f~!(d;). Since f preserves the schema relations, we have that the schema relations are
preserved at each stage of the game. O

Now we have two models P, and P, that agree on every Q-query, but disagree about ) (since
they are expansions of M| and Mj). Hence ) cannot be expressible in the language of 2, which
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. < ¢y and the models (*U,*Q, s1) and (*U,*Q2, s3) are elementary equivalent for any two
finite sequences of ¢;s that have the same length and whose elements are ordered similarly.
To see that such a sequence exists, we note that for any n,m € N, there exists a sequence
a1 < ... < a, € Uindiscernible over the first n formulae ¢4, ... ¢, of the first-order language
of 2. Indeed, this condition can be expressed by a first order sentence ¢. By [11], there is an
elementary extension of (IU,€2) that has an infinite set of indiscernibles. Since this elementary
extension satisfies ¢, ¢ must hold in (U, Q) as well.

Now the sequence ¢i,...,ch exists by applying saturation to the family of formulae ?;(C),
where ?7,(C') is the formula saying that C' is a sequence of length > ¢ such that all elements in
C' are indiscernible for ¢4, ... ¢,.

Let dy,...,dxg be an internal subsequence of the ¢;’s of length K.

There is an (internal) order-preserving bijection from the active domain of M; to ¢1,...,cp.
This is true by transfer, since the nonstandard universe believes that for any two subsets of U
with the same cardinality, there is an order-preserving map from one to the other. Let M be
the image of M; under this mapping — the active domain of M7 is now ¢y, ..., cy. Similarly, we
can get a *-database M with active domain dy,...,dx by applying a different order-preserving
mapping to M. Since the mappings preserve order, we still have that M{ and M) also agree
on every <-query whose quantifiers are restricted to the active domains. By the genericity of

Q), and transfer, M{ and M, still disagree about Q).

Consider M| and M) as models for the first-order language containing the schema predicates
and <, with the respective active domains as the domains of both models (that is, the union
of the ¢;’s for M7, and the union of the d;’s for M}). The fact that M] and M) agree on
all <-queries with restricted quantification says exactly that these two models are elementary
equivalent.

Applying the Isomorphism Property to these models, we get that there is an injective mapping
ffrom ey, ... ey ontod,...,dx that is an isomorphism (in the language of < plus the schema
relations) of M| onto M}. Note that f is not necessarily internal.

Now we consider a new language L' with symbols for the elements of @ and <, plus constant
symbols ky for I < H. Let N; be the model for L’ with domain *U, the elements of {2 and order
interpreted in the usual way, and with k; interpreted by ¢; for I < H. Let N; be the same,
except ky is interpreted by f(cr). Note that the model N, is not internal.

We define the relation ¥ = i on vectors of the same length from *IU to mean that the model
(N, @) is L'-elementary equivalent to (N3, ¥/).
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the following s true. @) is expressible over © if and only if, every two *-databases My and
M, that agree on all standard queries over ©, also agree on ().

b) In a nonstandard universe satisfying Isomorphism Property, Q) is expressible over © if
and only if, every two *-databases My and My that are isomorphic in the language of O,
agree on ().

Proof. a) The if direction is trivial. We now prove the contrapositive of the only if direction:
that is, we show that if ) is not expressible over O, then there are two *-databases that agree
on all @ queries but disagree on ().

Let ¢1, ¢, ... enumerate the O-queries. Let =, be the equivalence relation on databases given

by Dy =, Dy iff Dy and D, agree on the first n ¢;s.

By saturation, it suffices to show that, for every standard natural number n, there are two
models that agree on ¢; for each ¢+ < n but disagree on (). Therefore, fix a natural number n,
and assume there are no two models that agree on each ¢; for each ¢ < n but disagree on Q).
Then the models of ) are composed of finitely many =,, equivalence classes. But since each
equivalence class is definable by a ©-cbhq, this would make () definable as a ©-cbq as well, since
it would be the disjunction of the finitely many sentences defining the =, classes contained in
it, contrary to the assumption on Q).

Part b) follows easily from a) and the definition of Isomorphism Property. a

5.3 Proof of Theorem 4

Note that it suffices to prove the theorem for ) finite, since any counterexample to collapse
would involve a single constraint boolean query, which would involve only finitely many symbols
from the language of Q. So henceforth we will assume 2 to be finite.

Let @ be a counterexample query over our schema SC = {Ry,..., R,}. That is, @) is expressible
in ) and is locally generic, but is not expressible only with order.

*

We now apply Proposition 9 to our counterexample ), with © being <. This gives us *-
databases M; and M, that agree on each <-query but disagree on ().

Now consider the active domains of M; and M;. Since these are hyperfinite sets, they have
cardinalities H and K respectively, where H, K € *N. Without loss of generality, we will assume

K < H.

Let ¢1,...,cg be an (internal) sequence of elements of *U indiscernible over . That is, ¢; <
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truth and the transfer principle.

PROPOSITION 7. Let L be a finite language, and let M be an internal L-structure. Let ¢(T)
be a formula of L that has standard finite cardinality (i.e. number of symbols). Then the
internal satisfaction predicate *|= agrees with the external satisfaction predicate = on ¢. That

is, if ¢ is a finite sequence of parameters from M, then M *= ¢(¢) iff M |= ¢(¢).

Thus, we will not distinguish the two kinds of satisfaction predicates when we are dealing with
first-order ¢’s.

We now require that our nonstandard universe satisfy the following additional axiom:

4. (Isomorphism Property) For any first-order language L, and any two L-structures M; and
M, that are internal, if My and M, are L-elementary equivalent (i.e., agree on all sentences
of L), then there is an (not necessarily internal) L-isomorphism between M; and M,.

For example, the isomorphism property above guarantees that any two hyperfinite sets have the
same external cardinality (it is easy to show that for any hyperintegers K and H the structures
[1, K] and [1, H] are elementary equivalent in the language of equality). For basic facts about
the isomorphism property, and a proof that saturated models with the isomorphism property
exist, the reader is referred to [19].

We state another proposition that will be usetul.

PROPOSITION 8. Let L be a first-order language. Let M be an internally presented L-
structure, and let 7(y) be a countable collection of L-formulae, possibly with parameters from

M. Then, if 7 is finitely satisfiable in M, then 7 is satisfied in M.

Proof. For each formula ¢(y) in 7, let My be the reduct of M to the (finite, hence internal)
language of ¢, and let ¢'(y) be the formula (in the language of set theory) that says (My,y)
satisfies ¢(y). Then each ¢'(y) is a bounded-quantifier formula satisfied in the nonstandard
universe, so by countable saturation, there is a y satisfying each ¢'(y). a

The starting point for the use of nonstandard methods is the following proposition. Recall that
by a *-database we mean an element of the image under * of the set of databases.

PROPOSITION 9. Let SC' be our schema, and © be a finite signature, and () be any query:

a) In a nonstandard universe that does not necessarily satisfy the Isomorphism Property,
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objects in V/(5).

For what follows, we fix a schema SC. The set Inst(SC, S) belongs to V(5). Hence, we can talk
about *SC-databases, or, for short *-databases, namely the elements of the set *Inst(.S, SC)

for our fixed schema. Given a *-query ) and *-database D, we can (by transfer) apply *@ to
D. We will often refer to Q(DB) rather than *Q(DB).

Although it is not necessary to formalize logic within the nonstandard universe, we will do so
here for completeness of exposition. Uninterpreted logical formulae over SC' can be coded by
Godel numbers. Occasionally, we will have a language that is indexed by a set of elements
in the nonstandard universe. That is, we will have some internal set I and we will want to
talk about a language with constant or relation symbols b; for each ¢ € I. In order to talk
about this within the model, we assume a standard convention in V(.9) for making an element
of V(9) into a symbol: a formula ¢(b;) that uses the symbol will be coded as, say, the pair
consisting of a code for ¢(b) and the element ¢. With this convention, for any sets A and [ in
V(S), the satisfaction predicate |= for formulae built over (b;,¢ € I}, and for structures with
interpretation functions from the b; into A, lies inside of V(.5). Hence D *|= ¢ is well defined
whenever A and [ are internal sets, ¢ is a (valid code for) a formula over b;,¢ € I, and D is a
structure with an internal interpretation function from b; into A. If the interpretation function
for D mapping each b; to a subset of A is external but maps each b; to an internal set, we can
still evaluate D *|= ¢, since ¢ only makes use of finitely many b;, and the restriction of the
interpretation to this set is internal (since it is a finite sequence of internal pairings). If the
interpretation function for D maps each b; to an internal set, then we say that D is internally
presented. If the interpretation function is itself an internal mapping, then we say that D is
internal.

The preceding details of coding may give the impression that A *|= ¢ is a very difficult notion.
However, we will show soon that one can make sense of satisfaction in the nonstandard model
without referring to coding at all.

For the rest of this section, all languages L will always be assumed to be built on an internal set
I in the nonstandard universe. If a coding for symbols in L is not given explicitly, we assume
the nth symbol is coded by the integer n. An L-formula will always mean a finitary first-order
formula.

We now have two satisfaction relations for a *-structure M in the nonstandard universe: either
by using the standard definition of satisfaction (since M is a structure in the usual sense) or by
looking at the satisfaction predicate as an element of the superstructure V(.5) and considering
its *-image. The proposition below establishes the equivalence of these two notions. It can
be proved by straightforward induction on logical complexity, using the Tarskian definition of
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An element of V(Y) is standard if it is in the image of the *-map. An element of V(Y)
is internal if it is contained in a standard set. Elements of V(Y') that are not internal are
called external. An internal map is a map whose graph is an internal set. We now explain the
significance of a set being internal. Intuitively, properties of all sets in the smaller universe V (.5)
will hold of all internal sets in the larger universe. Specifically, if we have a bounded-quantifier
property that holds for all elements of some set A in V(.5) (for example, a property that holds
of the set A of all sequences of graphs), we know by transfer that it applies to all elements of *A
(that is, to all internal sequences of *-graphs). Hence this gives us that if a bounded-quantifier
property P holds for all sequences from B, then the property P holds for all internal sequences
from the set *B. Similarly, a property that holds for all subsets of natural numbers, will hold
for all internal subsets of *IN.

We want our universe to be sufficiently “rich”: to contain many nonstandard integers, for
example. We will therefore assume that our universe also satisfies the following axiom (also
standard in the literature):

3. (Countable Saturation Principle) For every standard A, and every countable collection
Y(x,v) of bounded-quantifier formulas, and for every vector ¢ of internal sets, if every finite

subset of ¥(x,¢/v) is satisfied in V(Y) by some element of A, then X(x, /) is satisfied by
an element of A.

We will work with a superstructure whose base set S includes both the domain U of our
databases and the integers N. Now all objects such as pairs, tuples, predicates and functions
from Q “live” in the superstructure V(5). For example, a pair (a,b), where a,b € V,(5), can
be encoded as {{a},{a,b}} € V,12(5). We similarly encode tuples. Then relations are in the
superstructure as sets of tuples, and so are functions since they can be associated with their
graphs. Since N C 5, we define nonstandard integers as elements of *N. Then a hyperfinite set
(a set whose cardinality is a nonstandard integer) is a set A for which there exists H € *IN and
an internal bijection from {K | K € *N, K*< H} onto A. We can then talk about hyperfinite
databases, hyperfinite sequences, etc.

We will often omit the * when convenient: for example, if < is an ordering on S, x; and x5 are
elements of *S5, then we will write x1 < x5 + 3 rather than x1*< x5" +*3.

5.2 Logic in Nonstandard Universes

We will consider the logical symbols as being coded by integers, and assume a countable set of
variable symbols 1, ... and relational symbols Ry,... as being coded by their integer indices,
so that all relational schemas SC and all strings of formulae built from these schemas are now
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There are many other interesting examples of o-minimal structures, see [26; 38; 39].

For the rest of this section, we restrict our attention to signatures {2 that are o-minimal. Our
main result is

THEOREM 4. If Q s an o-minimal signature on U, then for every LG cbq there exists an
n-equivalent <-rbq. That is

NFO¥E(Q,<) = NFO'6(<).

We choose to make use of the technique of nonstandard universes. This will be of use in
simplifying some of the bookkeeping involved in Ehrenfeucht-Fraissé games. It also allows us
to construct a proof that follows this basic intuition: constraint boolean queries over the real
field cannot distinguish “large” instances which agree on “all” relational boolean queries.

5.1 Preliminaries on Nonstandard Universes

We start with some definitions of nonstandard universes. For more information, consult [11].
An overview of using techniques of nonstandard universes for proving expressivity bounds is
given in [6].

For any set S, the superstructure V(S5) over S is defined as V(S5) = U,«, Vn(S5) where
Vi(S) =5, and V,41(9) = Vo (S)U{X | X C V.(9)}. The set S is called the base set of the

superstructure.

We will work with the structure (V(.5), €) considered as a structure for the first-order language
for the membership relation. A bounded-quantifier formula in this language is a formula
built up from atomic formulas by the logical connectives and the quantification: VX € Y,

1X €Y, where X and Y are variables.

A nonstandard universe consists of a pair of superstructures V(5) and V(Y') over infinite
sets S and Y and a mapping * : V(5) — V(Y') which is the identity when restricted to S (i.e.
*# = x for each x in 5) and which satisfies

(1) SCcY =*5.

(2) (Transfer Principle) For any bounded-quantifier formula ¢(vy, ..., v,) and any list a4, ..., a,
of elements from V(.9), é(ay,...,a,) is true in V() if and only if ¢(*ay, ..., a,) is true in
V(Y).
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Define ¢ = max;(|¢;|) - card(I) and then it suffices to set

ro = maX(g,nA) +1

Ck

To see this, suppose r > rq. If I = {k}, we are done. If not, using Claim 4, we obtain for any
vector ¥ € DI satisfying x1 > x9... > x,:

p(E) = e T = 3 ] 2N
itk
M
> Ck'ka — Z|Cz| .
ik r
M M
> o gMe )
> ¢ T > max(|e]) - —
£k
M
> ¢ - M — mlax(|cl|) ~card(T) -
-
G
= ka(Ck— —) > 0
r

Thus, p(Z) > 0, which proves the case ¢, > 0. To prove the case ¢, < 0, just apply the above
proof to —p. Lemma 5, and Proposition 6 are proved. O

5. RELATIONAL EXPRESSIVE POWER: NATURAL SEMANTICS

In this section we prove the collapse theorem for the natural interpretation of queries. That
is, we prove that for certain signatures 2, any LG-query in NFO(Q, <) can also be defined in
NFO(<).

Throughout this section we assume that the domain U is linearly ordered by <, and that queries
are evaluated under the natural interpretation. We say that €2 is o-minimal (see [31]) if every
subset of U that is definable with parameters in the model (U, ) is composed of a finite union of
(possibly degenerate) intervals. By intervals we mean sets of the form {x | tRa} or {z | aRx}
or {x | aRxR'b}, where each binary relation R or R’ is either < or <.

It U =R, then examples of o-minimal signatures include:

—(+,*,<,0,1) — this follows from Tarski’s quantifier elimination theorem [37].
—(+, *,€",0) — this follows from [40; 39].
—(+,*,¢e",7(x),0) — this was proved in [35].
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are of the form p(¥){=,#, <, £}0, we have to find an infinite set on which a finite number of
such constraints are simultaneously validated or invalidated, provided the polynomials are all
nontrivial.

Let p be a polynomial in n variables given by (P1). Consider an arbitrary ordering 1 > i3 >
. > 1, of {1,...,n}. Order the multiindices M;s lexicographically with respect to >, i.e.
M; = M if m], > m! or m! = m! and m], > m! etc. Let My be the maximal one of M;,

J € I, with respect to . Notice that M} is uniquely defined. The following is the key lemma.

LEMMA 5. For p and My (as constructed above) there exists ro € R (which can be effectively
constructed) such that for every r > ro and for every & = (x1,...,x,) € D, x...x D, satisfying
Ty > Xy, >0 > x,, it s the case that

sign(p(¥)) = sign(ck)

It is easy to see that Lemma 5 implies the proposition. For the ordered case, we can construc-
tively rewrite ) to the form (2). This lemma gives us the sign and the corresponding rq of each
polynomial in the rewritten formula. Hence it allows us to replace each inequality constraint
by true or by false and each equality constraint by false. We can then take r to be any natural
number above all of these ry.

For the unordered case, we can rewrite () to the form (3). Then for each polynomial in the
rewritten formula and for each possible order of its variables, we determine a ry using Lemma
5. Then r can be taken as any number in N above these rg. Then all equations in the rewritten
formula can be replaced by false and all inequations by true — the nonconstructive steps
described in Lemma 3 can thus be skipped.

It remains now to prove Lemma 5. To make the notation bearable, assume without loss of
generality that 1 = 2 = ... = n. Let ¢, > 0. We use the notation # for [T", =7 for
M = (my,...,my). Let

A = max max m

7
i€l j=1,...,n J

Then a simple chain of calculations shows the following.

Cram 4. If r > nA + 1, then for any & € D} satisfying ©1 > x9... > x, and for any two
multiindices M; # M}, we have

—»Mk

x
T > — O
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where dj, 1s the ith component of M;, . Doing this operation for all p;s and all equivalence
classes of ~;, we obtain a finite number of equations that must hold if some of the polynomials

p
have finitely many roots. Thus, if we choose s outside of S such that s does not coincide with

7,8

are identically zero. Since all the coefficients in equations (4) are nonzero, they may only

any root of the polynomials (4), then none of p“* is identically zero by Claim 2.

Now we can conclude the proof of Lemma 4 (and thus of Proposition 5) in exactly the same
way as we did for Proposition 4. a

4.4 Example

It is difficult from the previous proofs to give concrete constructions for finding the Ramsey
sets Ug. Although we make no claim to have deeply considered the algorithmic aspects of
such transformations, we will now show how such transformations can be done for some of the
standard arithmetic structures (see also [36]).

We start with an example. Consider a schema with one binary predicate S, and a query saying
that for any pair in S, none of its components is the square of the other. That is, the query

Q = Vavy.S(x,y) = (—(x =y*) A~y = 2?))

which is expressible in any language that contains multiplication. The underlying domain can
be R, or Q, or Z.

We claim that the Ramsey set Ug can be chosen to be {33i | + > 0}, and the equivalent query is
just T. Indeed, the constraint = y? cannot be satisfied if ¥,y € Ug: if we assume 3% = (3% )2,
then 3" = 237 which is impossible for any 7, j > 0. Since on such Ug the constraint part of the
query () is always true, so is the whole query.

The above example generalizes straightforwardly to show that sparsely distributed sets neces-
sarily give Ramsey sets for the active-semantics queries that use polynomial constraints.

Let D, denote the set {r" |7 € 1 }.

PROPOSITION 6. Assume that U is either R or Q or Z, and let Q be (4,%,0,1,<) or
(4+,%,0,1). Then for any cbq Q there exists a number r in N, and a <-rbqg Q" (or rbq Q'
if Q0 does not contain order) that is D,-equivalent to ). Moreover, r and the corresponding Q'
can be effectively constructed from ().

Proof. The proofs of all Ramsey propositions in this section were based on the fact that we can
simultaneously invalidate all nontrivial constraints. Since in the given signature all constraints
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LEMMA 4. For any system of equations p1(Z) = 0,...,pp(Z¥) = 0 where p; € K[xy, ..., x,] are
polynomials that are not identically zero, there exists an infinite set K C K such that assigning
distinct values of K to variables xq,...,x, simultancously invalidates all the equations.

We first need this
CrLam 2. If p € Klxq,...,2,] is written in (P1), then p is identically zero iff 1 = 0.

We prove this claim by induction on n. For the base case n =1 (i.e. p € K[z]) we use induction
on card(l). If I is empty, we are done. If [ is a singleton, p cannot be identically zero because
there are no divisors of zero. Assume card(l) > 1 and p(z) = > ;c;ca™. If m; = 0 for some
i € I, then from p(0) = 0 we obtain ¢; = 0, contradiction. Otherwise, let m = minm,, and
apply the argument above to p/(x) where p(x) = a™ - p'(x).

For the induction case n > 1, consider a polynomial p represented by (P1). Let I # §. Two
cases arise. Case 1: for every ¢ € [ and every j between 1 and n it is the case that m; # 0.
Case 2: one can find i € [ and j € 1,...,n such that m} = 0. In Case 1, let y; = min;e;m?.
Then g; > 0 and we obtain p = z{* - ...z - p’ where p' is a polynomial which satisfies the
condition of Case 2. By cancellation p’ is identically zero. Hence, it is enough to prove Case 2
only. Assume that pis given by (P1) and assume without loss of generality that m] = 0. Define
pr(2, ... x,) as p(0,22,...,2,). Represent p; in the form (P1). Then ¢; remains one of the
coefficients in this representation. But p; is a polynomial in n — 1 variables, and is identically
zero. Hence, it cannot be represented in form (P1) with nonempty set of coefficients. This
contradiction finishes the proof of Claim 2.

Let p € K[xq,...,x,] be a polynomial in n variables. For any index ¢ and any s € K we denote
the polynomial in n — 1 variables, obtained by substituting s for z; in p, by p"°.

Next, we claim the following.

CrLaM 3. For any finite collection of polynomials py,...,p, € Klay,...,x,] that are not
identically zero, and for any finite set S C K, there exisls s € K — S such that none of the
polynomials p?°, j = 1,...,m, 1 =1,...,n, is identically zero.

To prove this claim, assume that all p;s are represented in the form (P1) with 7 # (. Fix a
polynomial p given by (P1), and define the equivalence relation ~; on multiindices by M; ~; M,
iff Vj # 4 :m! = ml. By Claim 2, p* is identically zero iff for every equivalence class

{M;,,..., M} of ~; we have
(4) iy st 4+ cilsdl =0



18 . M. Benedikt, G. Dong, L. Libkin, L. Wong

CraiMm 1. For any at most countable collection of Qg-functions G = g1,¢2,... that are not
identically zero and any at most countable set S C R, there exists s € R — S such that none of
the functions g%, where g € G, is identically zero.

To prove this claim, consider a Qg-function g(x1,...,x,) which is not identically zero and
assume without loss of generality that ¢ = n. First notice that there exists a (n — 1)-vector
¢ such that gz(x) = ¢(¢, x) is not identically zero. Indeed, if gz is identically zero for every ¢,
then ¢ is identically zero. Now pick such a ¢ and, by applying the fact that € is sparse, find a
countable set S, ; of roots of gz. Note that for every s € S, ; we obtain that ¢* is not identically
zZero.

Now consider the countable set

Sg =5 U UUS,.

geg 1

It follows from our construction that for any s € R — Sg none of the functions ¢** is identically
zero. This finishes the proof of the claim.

To conclude the proof of the lemma, we start with our original set Fo = {f1,..., fi} of functions
and S = (), and use the claim to find so such that none of the functions in 7} = FoU {g"*® | ¢ €
Fo} is identically zero. Continuing, at the mth step we have a finite set S = {s¢,...,8,_1} CR
and a set F,,_; of functions none of which is identically zero. We find s,, € R — S such that
none of the functions in F,,, = F,_1 U {gi’s’" | g € Foo_1} is identically zero. Now consider the

infinite set R = {sg, 81, 52,...}. It follows immediately from our construction that assigning
distinct s;s to distinct variables simultaneously invalidates all equations f(¥) =0, f € Fy. This
finishes the proof of the lemma and the proposition. a

We now turn to the integral domain case.

Proof of Proposition 5. We use an argument that is very similar to the proof of Proposition

4. Let p € K[aq,...,2,] be a polynomial in n variables over K. We can represent it as
(P1) p:Zci-x?i-...-xﬁl
el
where [ is a finite set of indices, M; = (mi,...,m!) is a multiindex (i.e., n-tuple of natural

numbers), M; # M; for ¢ # j and ¢; € K — {0} for all . (The zero polynomial is represented
by I = (.) From now on assume that all polynomials are represented by (P1). Note that all
conditions used in ) can be assumed to be of the form p(7)00, where p is a polynomial over K.
Hence, according to the proof of Proposition 4, all that is required to conclude the proof is the
following:
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where W is in DNF, and its literals are of form R;(z1,...,z;) where all z;s are variables, or
they are condition literals hq(Z)0ho(%) where hy and hy are Q-terms and 6 € {=,+#}; see the
proof of Proposition 3. Further assume without loss of generality that no condition literal is
negated.

Let B be the nth Bell number; that is, B is the number of partitions of an n-element set. Let
&; represent the ¢th partition on an n-element set of variables, 2 = 1,..., B. For example, for
the partition {{1,2},{3,4}} of {1,2,3,4} we would get £ as (x1 = x2) A (13 = x4) A (21 # X3).
Since V2, & = T, we have U = V2 (& A W).

Consider each & A W. Let & specity the partition Xy,..., X, and let y; be a representative
of X;. For each condition hy(Z)0hs(Z) in U, we replace h; by A% in which only ,...,ys are
used. Furthermore, if A} is identically A}, we replace the corresponding condition by T or F
respectively. Thus, () is equivalent to a query of form

B

=1

where W, is a formula in s variables (provided ¢; specifies a partition with s classes) and each
condition is of form R} (Z)0hL(Z), where B} and h} are not identical. Moreover, b} and R use
variables for which &; implies that their values are distinct. Next, we need the following lemma.

LEMMA 3. Given a system of equations fi(¥) = 0,..., fi(¥) = 0 where the functions f;s
are Q-terms in at most n variables xq,...,x,. If no f; is identically zero, then there exists an
infinite set R C R such that assigning distinct values of R to variables x+, ..., x, simultaneously
invalidates all the equations.

This lemma immediately implies Proposition 4. Define a system of equations F as follows:
go through all the disjuncts in () — assumed to be in the form (3) — and for each condition
RY(Z)ORY(7) add B (Z) — hY(Z) = 0 to F. Note that A} (&) — h%(Z) is not identically zero by
construction. By the lemma, find an infinite # C R such that assigning distinct values from
R to variables in equations in F simultaneously invalidates all of them. Then rewrite () to ()’
by replacing each A} (%) = h4(#) by F and each A{(Z) # h4(¥) by T. Then, for any DB with
adom(DB) C R it is the case that Q(DB) = Q'(DB), and ()’ does not mention any symbols

from €2, which concludes the proof.

To prove the lemma, we define Qp-functions as those given by a term in the signature €2
extended with constants for all elements of B. Let f(xy,...,2,) be a function in n vari-
ables and 1 < ¢ < n. For s € B, we let f"* be the function in n — 1 variables defined as
flary ooy @im1, 8,241, - .., ). We need the following
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To prove the lemma, pick an element ¢y € I arbitrarily. Let (;, specify an ordered partition
with s classes Xi,..., X; C {zq,...,2,} ordered by X; < ... < X,. Let y; € X;; then we may
rewrite Wol(c; A Gy )/¢ili<m to Walch/eili<m Ay where ¢ is a condition of form #,0, that only
uses {y1,...,ys} and v states that all y;s are different and that y; < ... < ys.

Since there are m conditions ¢, there are at most 2™ possible truth values for the system
... . Let A; be the set of s-tuples (dq,...,ds) of distinct elements of D ordered by

ym:*
dy < ... < ds such that the truth values of ¢i(dy,...,ds) form the binary representation of the
number [, 0 < [ < 27 — 1. Then the family of nonempty sets among Ay,..., Aym_y forms a

partition of the set of s-tuples of distinct elements of D.

By Ramsey’s theorem [15], we can find an infinite D’ C D such that all s-tuples of distinct
elements of D’ are in the same class of the partition, say A;, where A; # (). Let [ correspond to
the truth values of /s being #;s. Let

o = (Woltj/cilicm A ) and W)=y v T

That is, W% is obtained from W, by replacing each condition literal ¢; by the corresponding
truth value ¢;. Then, for any n-tuples of elements of D', the values of

Uy v\ Wal(e; A G)/elicm and WiV N Wal(e; A G)/¢jli<m

el €l—{ig}

coincide. Indeed, if (dy,...,d,) does not satisfy (;,, this is immediate (because the disjuncts
that make the difference between the formulae evaluate to F), and if it does satisfy ¢,,, it follows
from the fact that W and Ws[(¢; A (i, )/¢;]j<m coincide on such tuples.

Now observe the following. Assume that ®;(xy,...,2,), ¢ = 1,2, are formulae in n variables,
and let CI)l(cf) and CI)Q(CZ} be equivalent for any d € D" for some set D. Then, for any quantifier
prefix, the sentences Qi1 € D...Qux, € D.®1(¥) and Qa1 € D...Qux, € D.®y(Z) are
equivalent.

Applying this observation, we see that for Q' defined by (2”) where ¥/ = U, vV Wi it is the
case that () coincides with @’ on all databases with active domain in D’. Since ¥ does not
mention any symbols in €2, this proves the lemma and the proposition. a

We now turn to the Ramsey result for sparse sets.

Proof of Proposition 4. We start by getting a normal form analogous to (2) for the unordered
case. First, assume that () is given by

Qur... Qe V(ay,...,1,)
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into the desired prenex normal form, whose quantifier-free part is in disjunctive normal form.
We may also assume that no literal of the form (b) is negated, since the symbols for # and <
are added to the language.

Now subdivide the disjuncts into two classes. The first one consists of those which are conjunc-
tions of (possibly negated) literals of the form (a). The second class consists of those which
are conjunctions of literals, at least one of them being of the form (b). Let Wy and W, be the
disjunctions of the conjuncts from the first and the second class respectively. Then ¥ = ¥, VU,
and Wy is a formula in the language (R, ..., Ry,=,<).

Let P be the number of ordered partitions of an n-element set. (An ordered partition of X is a
partition Xy, ..., X, with a linear order X;, < ... < X;, on its elements.) Let ¢; be the formula
that specifies that indices of 1, ..., x,, form the ith ordered partition. For example, if n = 3,
for the partition {{1,2}, {3}} with {1,2} < {3}, the corresponding ( is (x; = x2) A (21 < x3).
Note that \/'_, ¢; = T. Hence, ¥, can be replaced by Vi, (¢ A Wy).

Let ¢1,..., ¢y denote all the constraints of the form (b) present in Wy. By Wyl(¢; A G)/¢jli<m
we denote the formula obtained from W, as follows. For every disjunct in Wy (recall that ¥y is
in DNF) find all conjuncts in it which are of the form ¢;, and replace them by (¢; A (;). Now
it can be readily seen that () is equivalent to

p
(2) lel----ann-qll \ \/ qj?[(c] /\CZ)/CJ]JSW

=1
The equivalence follows from the fact that in Wy in every disjunct at least one literal is a
condition, and no condition literal is negated. Now we need the following lemma.

LEMMA 2. Suppose that a query Q) is given by (2'), where
(2") Qi1 Qun. U1V \ Wal(ej A G)/¢ilicm
el
I is a nonempty subset of {1,...,P} and WUy does not mention any symbol from Q. Then, for

any infinite D C U, there exists an infinite D' C D, a formula V) that does not mention any
symbol in Q, and an 19 € I such that for ()" defined by

(27) Qurr . Quu WiV Wal(ej A G eiligm
tel—{io}
it is the case that Q) and Q' coincide for any database DB with adom(DB) C D'.
Before we prove this lemma, let us observe that the proposition follows straightforwardly from

it. We just apply the lemma inductively to (2) until all formulae that mention symbols in
disappear.
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Proof of Theorem 1. Consider a locally generic chq @ and find a set Ug and a <-rbq @’
as in Proposition 3. Now we claim that () and @)’ are equivalent. Indeed, take any database
DB and let D = adom(DB). Find any partial monotone injective map n defined on D such
that #(D) C Ug. This is possible because U is infinite. Since @ is locally generic, Q(DB) =
Q(7wDB). By Proposition 3, Q(x DB) = Q'(x DB) since adom(w DB) C Ug. Since " is a <-rbq,
it is locally generic, and hence Q'(#DB) = Q'(DB). Thus, Q(DB) = Q'(DB), proving that ¢

and )" are equivalent as desired.

Proof of Theorems 2 and 3. Consider a totally generic chq () and find an infinite set
Ug and a rbq @' as in Proposition 4 or 5. We claim that () and @' are equivalent. For a
database DB let D = adom(DB). Find any permutation = of R such that x(D) C Ug. Since
@ is totally generic, Q(DB) = Q(xDB). By Proposition 4 or 5, Q(#DB) = Q'(7DB) since
adom(rDB) C Ug. Since @' is a rbq, it is totally generic, and thus Q'(#DB) = Q'(DB).
Therefore, Q(DB) = Q'(DB), proving that @) and Q' are equivalent as desired.

Proof of Corollary 1, part a, is almost the same as the proof of Theorem 1. Note that
if U is weakly homogeneous, then there is a monotone injective map such that (D) C Ug.

Furthermore, Q(DB) = Q(x DB) because () is MG. Then the proof follows.

4.3 Proofs of Ramsey Theorems for Constraint Databases

We begin with the ordered case.
Proof of Proposition 3.

Since an arbitrary first-order sentence can be converted into prenex normal form, from now on
we assume that () is given by (1). For convenience, we extend the language with the symbols
# and < with the obvious interpretations. Without loss of generality, we can assume that W is
a formula in disjunctive normal form whose literals are of form:

(a). Ri(z1,..., %), where all z;s are variables.

b). 11(1)0t5(7Z), where 11 and 1, are terms in the signature 0, 0 € {=, < and v/, 7 contain
( y 2 g 2 2 2 2 2 y7
variables from xq,..., x,.

Any formula ) can be rewritten to the form described above. Indeed, if the arguments
of the predicate R; are terms rather than variables, then we replace each occurrence of
Ri(t1(1), ... tr(yr)) by Fz1. . Tz (21 =1 (H1) A oo A (2, = 10(Un)) A Ri(z1,. .0, 25). Tt
is easy to see that such a replacement does not change the truth value of the formula for every
assignment of values in the domain to the variables. Then we can convert the resulting formula
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Theorem 2 does not easily generalize for Q or Z because the fact that R is uncountable is crucial
for the proof. But if we are only interested in the ring structure, there is a generalization.
Recall that an integral domain K is a commutative ring without divisors of zero.

THEOREM 3. Let K be an infinite integral domain. Then every TG-query in
AFO(K, 4+, —,*,0,1) is a-equivalent to some rbg. That is,

AFOTS (kK 4, —,%,0,1) = AFO
4.2 Ramsey Theorems for Constraint Databases and Proofs of Main Theorems
The following propositions are the basis for the proofs of the theorems in this section. They

state that any cbq coincides with some rbq on databases whose active domain is a subset of a
certain infinite subset of 1.

Given U C U, we call two queries () and )’ U-equivalent if, for any database DB,
adom(DB) C U implies Q(DB) = Q'(DB).

Recall that we assume the active-domain interpretation of queries. We start with the ordered
case.

PROPOSITION 3. Let Q be an arbitrary interpreted signature on the linearly ordered domain
(U,<). Then for any cbqg Q) there exists an infinite subset Ug C U and a <-rbqg Q' which is
Ug-equivalent to (). O

Next, we prove a similar result for sparse signatures.

PROPOSITION 4. Let Q be a sparse signature. Then for any cbq () there exists an infinite
subset Ug C U and a rbq Q' which is Ug-equivalent to (). O

A similar result to Proposition 4 can be shown for integral domains.

PROPOSITION 5. Let K be an infinite integral domain, i.e. Q = (4, —,%,0,1). Then for any
cbq Q) there exists an infinite subset Ug C K and a rbq Q' which is Ug-equivalent to (). O

Now, using these propositions, we can present the straightforward proofs of the main results of
this section.
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f:5 — Ssuch that f(X) C Y. It is not hard to see that any doubly transitive order is weakly
homogeneous and so is any discrete linear order without endpoints (in particular, (Z, <)).

COROLLARY 1. —Let (U, <) be weakly homogeneous and let Q be an arbitrary signature.
Then AFOMSE(Q, <) = AFO(<).
—([28]) For an ordered domain (U, <), and any signature Q, AFOTS(Q, <) = AFOTS(<).

—Transitive closure, parity test, and connectivity test are not first-order definable over or-
dered databases under the active-domain interpretation, even in the presence of an arbitrary
interpreted signature on the domain. a

There is no analog of the theorem for the unordered case, because one of the interpreted
operations can define a linear order, and it is known that AFO(<) # AFO; see [1, page
462]. Therefore, collapse results in the unordered case can only exist for a restricted class of
signatures. Although we are far from having a good characterization of the class of signatures
for which this holds, we will show a few collapse results for particular classes of signatures
below.

Let the domain be &, and Q= (hy, hy, . ..) be a signature that consists of functions R () —
We call © sparse if the subtraction function is in ©Q and for every Q-term h(xy,...,2,) and
any constants ¢i,...,¢i—1,Ciq1,. .., ¢, € B, the function h;(x) = h(er, ..., ¢im1, Ty Cig1y .oy ) 18
either identical to zero or has at most countably many zeros.

There is a simple way to obtain a large number of sparse signatures over the reals, using the
fact that any analytic function is either identical to zero or has at most countably many zeros,
and composition of analytic functions is analytic again [27].

PROPOSITION 2. Let (Hy, Ha,...) be any collection of analytic functions such that the value
of each H; is in R if all its arguments are in R. Let h; be the restriction of H; to the real
arguments. If one of the H;s is subtraction, then Q = (hy, ha,...) is sparse. a

Some examples of sparse signatures are (4, —,*,¢e",0), (+,—,0,1), and (+, —,*,0,1).
THEOREM 2. Let Q be a sparse signature. Then for every TG ¢bg in AFO(R, Q) there exists
an a-equivalent rbq. That is,

AFOTS(R,Q) = AFO.

Note that Theorems 1 and 2 are of a very different nature from complexity-based results such

as [18].
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y) V (x = y)), where R is a unary schema predicate and < interprets the usual order on
the natural numbers. This is equivalent to true (for nonempty databases) under the active
domain interpretation (hence generic), but it is nongeneric under natural semantics. Let ) =
(FaTFy. R(x) AN R(y) N R(x +y)) A (FaVy.x < y), where + and < interpret the addition and the
order over the reals. This () is equivalent to false under the natural interpretation, but it is
non-generic under the active interpretation.

4. RELATIONAL EXPRESSIVE POWER: ACTIVE SEMANTICS

In this section we prove a number of collapse results for the active-domain semantics. Thus
throughout this section we assume that queries are interpreted under the active-domain seman-
tics.

We start this section by stating the main results below. We then introduce the main technical
tool that we call Ramsey theorems for constraint databases. These results establish the exis-
tence of an infinite subset of the domain on which a given chq is equivalent to some query that
does not use constraints. In subsection 4.2, we state these Ramsey Theorems and show how
the main collapse results follow from them. In subsection 4.3 we prove the Ramsey Theorems.
The final subsection 4.4 steps through an example.

4.1 Statement of Main Results

First, we show a very general collapse result for ordered databases.

THEOREM 1. Let Q be an arbitrary interpreted signature on the linearly ordered domain
(U,<). Then for every LG cbq there exists an equivalent <-rbq. In other words,

AFOY6(Q, <) = AFO(<).

We will state a number of corollaries of this result. Several of these were independently proved
by Van den Bussche and Otto [28], who used the Ehrenfeucht-Mostowski theorem about the
existence of indiscernibles [11].

Another corollary of this theorem is that the class of MG-queries in AFO(S, <) is exactly the
class of AFO(<) queries when the domain is doubly transitive. While this covers domains such
as Q and R, it excludes Z which is not doubly transitive. To cover the case of Z, we prove a more
powerful corollary. We call a linearly-ordered set (S, <) without endpoints weakly homogeneous
if S is infinite and for every finite X C S and infinite ¥ C S there exists a monotone injection
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For example, AF(’)TG(<) is the class of TG-queries definable in relational calculus with order,
while NfOLG(}R, +,%,0,1) is the class of LG-queries definable under the natural interpretation
with polynomial constraints over the reals. Since queries definable in AFO and AFO(<) are
TG and LG (MG) respectively, we have the equations AFOTE = AFO and AFOS(<) =
AFOME (<) = AFO(<).

When U is ordered, TG is the strongest notion because it implies both LG and MG. Also, LG
implies MG. Under certain mild restrictions on the order, we also have MG implies LG. We do
not need the local notion of genericity for unordered sets because it is equivalent to TG for any
infinite U.

We call a linearly ordered set (S5, <) doubly transitive [34] if for every a < b and = < y there
exists an automorphism f: S — S such that f(a) =« and f(b) = y.

PROPOSITION 1. With respect to any infinite ordered universe U, it is the case that every
TG-query ts also a LG-query and every LG-query is also a MG-query. With respect to any
infinite ordered universe U that is doubly transitive, it is the case that every MG-query is also
a LG-query.

Proof. To prove that TG implies LG, consider a database DB with D = adom(DB). Let
7p : U — U be a partial monotone injective map defined on . Since both U — D and
U — 7p( D) have the same cardinality, there exists a permutation = on U that extends 7p. Using
TG for @) we obtain Q(7pDB) = Q(rDB) = Q(DB), which implies that @) is LG. If @) is LG,
consider any monotone injection ¢ : U — U. Given a database with D = adom(DB). Let ¢p
be the restriction of ¢ on D. Then Q(¢DB) = Q(epDB) = Q(DB). Hence @ is MG. The
proof that MG implies LG for doubly transitive orders is similar to that of TG implies LG,
because double transitivity provides the needed extension of a partial map, see [34]. O

To see that most of the examples of ordered domains used in the theory of constraint databases
are doubly transitive, we state the following lemma.

LeMMA 1. ([34]) (Q,<) and (R, <) are doubly transitive. Also, any dense linear ordering
without endpoints is doubly transitive.

Thus, when we prove the collapse results for classes of generic queries over ordered databases,
we shall aim to prove the result for LG-queries. Then they will automatically imply the corre-
sponding results for TG-queries and, if U is doubly transitive, for MG-queries as well.

Finally, we note that the same query ) may be generic under the active interpretation and
nongeneric under the natural, and vice versa. For example, consider @) = JaVy.R(x) A ((x <
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Fact 2. [30] AFOR,+,—,0,1,<)=NFOR,+,—,0,1,<)

DEFINITION 1. Two queries ()1 and (), are said to be a-equivalent iff for any database DB,
under the active-domain interpretation we have Q1(DB) = Q2(DB). They are n-equivalent
iff for any database DB, under the natural interpretation we have Q1(DB) = Q2(DB). When

it is clear from the context how (), and (), are interpreted, we speak of equivalent queries. O

3. NOTIONS OF GENERICITY

Given a constraint language, one may ask queries that are specific to that language. For
example, one may ask if a database contains a root of a given polynomial. However, purely
relational queries must conform to the data independence principle which says that the internal
structure of data has no effect on the answers to queries. This is usually captured by a notion
of genericity. Intuitively, a query is generic if it returns the same answer for “isomorphic”
databases. Typically, what is meant by “isomorphic” databases DBy and DB, is that applying
some permutation # on U to DBy yields DB;. In other words, a generic query is then a query
that is invariant under arbitrary permutations of the domain [1].

Sometimes this notion must be relaxed. Suppose that database elements are ordered, and a
query may refer to the ordering. In this case the right notion of genericity is invariance under
maps that preserve the order relation. For constraint databases, even more complex notions of
genericity have been considered [29].

In this paper we use three notions of genericity for Boolean queries. Let ¢ : U — U be a mapping
on the domain. Then ¢ can be extended to databases over U: ¢ DB denotes a database obtained
from DB by replacing each occurrence of © € adom(DB) by ¢(x).

DEFINITION 2. —A Boolean query ) is totally generic (TG) with respect to a domain U
if for any database DB and any permutation = of U, it is the case that Q(# DB) = Q(DB).

—A Boolean query () is monotone generic (MG) with respect to an ordered domain U
if for any database DB and any monotone injective map ¢ : U — U, it is the case that
QeDB) = Q(DB).

—A Boolean query @ is locally generic (LG) with respect to an ordered domain U if for any
database DB and any partial injective monotone function ¢ : U+ U defined on adom(DB),

it is the case that Q(¢DB) = Q(DB).

For any language £, we let LTS, LYG and £LME stand respectively for the class of TG-, LG-,
and MG-queries expressible in L. O
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Let © be an interpreted signature on U; that is, a family of operations w : U*"#«) — 7. For
example, if U = R, then © may be (+,—,*,+,¢”). A constraint boolean query (cbhq) is a
sentence built up from atomic formulae ¢ by connectives and quantifiers such that ¢ is in the
language that consists of predicate symbols Ry, ..., Ry, equality, and symbols for operations in
Q. For example, if U =R, then a chq may ask if for two reals in a database, their sum is also in
the database. Again, each cbq can be transformed into an equivalent one in the prenex normal

form (1).

There are two possible interpretations of each of these classes of sentences. Under the active-
domain semantics (or just active semantics), all quantified variables range over the active
domain of a database. That is, a sentence given by (1) defines, under active semantics, the
query () such that the value of ) on a database DB is the value of

Qrx1 € adom(DB) . ..Qux, € adom(DB).V(xy,...,x,)

Under the natural semantics, all quantified variables range over U. That is, the sentence
defines the query () whose value on DB equals to

Qi1 €U....Qua, € UV (2y,...,2,)

The notion of satisfaction is thus defined straightforwardly for both semantics. Since it will
always be clear from the context which semantics is being used, we shall write DB | @ if @)
evaluates to T, true, on DB.

We shall also write Q(DB) for the value of @) on DB. That is, Q(DB) is either T or F. Thus,
each query defines a semantic object, that is, a map from Inst(U, SC) to {T,F}.

The classes of first-order Boolean queries (maps from Inst(U, SC) to {T, F}) definable under the
active and natural semantics will be denoted by AFQO(-) and N FO(-) respectively, where we list
the domain U (if it is not understood) and the operations from € in parentheses. For example,
AFO is just the relational calculus, AFO(R, 4+, —, *,0, 1, <) is the class of Boolean queries with
polynomial inequality constraints definable under active semantics, and N FO(R, +,*,0,1) is
the same class of queries interpreted under natural semantics. Note that in the last case we do
not have to list the order relation as it is definable under natural semantics: @ < y < Jz.(z #
0)A(y —a = z+*2z), since z ranges over the reals. We also do not need minus, since it is definable
using + and natural quantification.

There are a number of results showing that the natural semantics does not add expressiveness
over the active semantics. In particular, we shall use the following two.

Fact 1. [20] AFO =NFO
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Section 5 considers the expressibility of generic queries, but using the relational calculus under
the natural semantics. We prove an analogous collapse theorem saying that the expressibility
of these queries is independent of the presence of a large class of arithmetic and other operators
in this more powerful framework. This result is proved via an excursion through nonstandard
models. The main conjecture follows as a corollary.

Section 6 extends the results of sections 4 and 5 to arbitrary (nonboolean) queries. We prove
that every collapse result for boolean queries implies the corresponding collapse result for
nonboolean queries.

Section 7 concludes the paper by relating the “active” and the “natural” results of this paper.
For some signatures, it is known that the two semantics of relational calculus coincide. Using
this and our collapse theorems, we extend the coincidence of the active and natural semantics,
with respect to generic queries, to a larger number of additional primitives.

An extended abstract of this paper appeared in the Proceedings of the 15th Symposium on
Principles of Database Systems [7].

2. NOTATIONS

A database schema is a nonempty collection of relation names, (Ry, ..., Ry), where each name
R; is assigned an arity 7;. We fix a database schema SC' for now, and we also fix a database
domain, which is an infinite set U. All values that occur in databases are drawn from this
domain.

A database (or database instance) DB is given by an interpretation of each relational symbol
R; as a finite 7;-ary relation over U. We denote the set of all database instances of SC' with the
domain U by Inst(U,SC). Given a database DB, its active domain adom(DB) is the set of
all elements in U that appear in the database.

A relational boolean query (rbq) is a first-order sentence built up from atomic formulae
in the language containing (Ri,..., Ry) and equality via the usual logical connectives and
quantifiers of the form Va and Jz. If we allow our atomic formulae to also mention a symbol <,
interpreted as a linear order on U, then we speak of a <-rbq. For each of the semantics we will
give for these sentences, it will be the case that an arbitrary rbq can be effectively transformed
into a semantically equivalent one of the form

(1) Q1. ... Qnay V(... x,)

where each ); is either V or 3 and U(+) is a quantifier-free formula with free variables among
T1yewey Ty,
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finitary methods. However, the use of nonstandard models has another distinct advantage: it
allows one to make use of techniques from infinitary model theory to help in the construction of
“counterexample” models with desired properties. Since hyperfinite models are in fact infinite
structures, many classical model-theoretic constructions and proof techniques become available.
An example of a classical model-theoretic technique that is powerful when linked to hyperfinite
structure is the use of indiscernibles. To relieve the amount of analysis necessary in analyzing
elementary equivalence, we will often want to restrict our attention to models whose algebraic
structure is “as simple as possible”. Indiscernibility is a method for capturing the intuition
that the domain of our structures should have no unnecessary algebraic dependencies among
its elements.

An indiscernible sequence is a sequence A = (a;);e; indexed by some ordered set ([, <), where
the elements come from an infinite structure M. Being indiscernible means that for each formula
#(Z), ¢ is satisfied in M by either every increasing (in the order on ) subsequence of A or
by no such sequence. Although indiscernible sequences do not necessarily exist in an arbitrary
infinite structure, it is a happy fact that they always exist in hyperfinite structures.

Within an indiscernible set, the logical structure of the model reduces to a simple ordering.
For example, if we have two hyperfinite cycles living in the real plane and a single hyperfinite
cycle living in the plane, we might be able to distinguish them with a query in the language of
the real field. However, if we move these two cycles so that they both live on an indiscernible
set, we expect (and we prove) that they are indistinguishable by any polynomial constraint
query. Similarly, the natural counterexample used to show the inexpressibility of parity in
the polynomial constraint model is the following: take an indiscernible sequence {ay,a; ...},
consider two hyperfinite unary predicates:{ay,...,ay} and {a;,..., a1}, and prove that they
induce elementary equivalent models.

We will present formalizations of these techniques in Sections 4 and 5.

Organization. Section 2 presents the notations that are used throughout the paper. We
also explain the active and natural semantics of relational calculus and state two previous
results relating them. Section 3 describes three notions of genericity of queries. We also briefly
investigate their relationship.

Section 4 studies the expressibility of various classes of generic queries using the relational
calculus under the active semantics. We prove powerful collapse theorems saying that the
expressibility of these queries is independent of the presence of arithmetic and other operators.
These results are proved via several Ramsey-like results. Moreover, for the special cases of real,
rational, and integer arithmetic, our proofs are constructive.
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Informal introduction into proof techniques. Since expressibility results for constraint
databases deal with both finite and infinite structures, it is natural to look for proof techniques
that involve mixing the finite with the infinite. The techniques we introduce in this paper for
doing this mixing are new to the field, and may be of independent value. Since the specific uses
of them in this paper are a bit involved, we give an informal introduction to them here.

To prove the results about the active semantics, we use the following technique. For each
constraint found in the query (for example,  + y > 5) and for each ordering on the variables
(for example, © < y), we use Ramsey’s theorem [15] to find an infinite subset of the real field
on which this constraint is either always true or always false — then, intuitively, the constraint
can be replaced just by an order constraint on this set. We show that for any query ¢ this
procedure can be carried out in such a manner that at the end we have an infinite subset
X of the domain, and a query that only uses order comparisons, that is equivalent to () on
all databases whose elements belong to the set X. If a query is generic, then its behavior
is completely determined by its behavior on an infinite set, and thus we obtain that generic
queries under the active semantics can be written with only order constraints.

For dealing with the natural semantics results, we need a different set of techniques. The first of
these involves a generalization of the Ehrenfeucht-Fraissé game method. The naive approach to
showing that a property (Boolean query) @ is not expressible in some language £ would be to
get two models that agree on all sentences of £, but disagree on (). The problem immediately
encountered in applying this technique in finite-model theory is the following. Any two finite
models which satisfy the same sentences of a first-order language L are isomorphic, and thus
satisfy the same sentences of any reasonable logic. The standard technique for circumventing
this problem is via Ehrenfeucht-Fraisse games (cf. [12]). One decomposes the sentences of the
logic into countably many fragments £,,, and then constructs for each n two finite models M,
and M/ agreeing on the fragment £, but disagreeing on ).

Here, we give an alternative to this construction, using nonstandard universes. Inexpressibil-
ity bounds are obtained by finding two hyperfinite (meaning, informally for now, “infinitely
large finite”) models M and M’ agreeing on all queries in £, but disagreeing on (). The first
virtue of this technique is as a way of abstracting away from the bookkeeping involved in
Ehrenfeucht-Fraisse constructions. For example, if one is interested in showing the inexpress-
ibility of connectivity within pure first-order logic, one need only look at the two hyperfinite
graphs (7 and (G, where (51 is a single hyperfinite cycle, while (5, is the union of two hyperfinite
cycles. A single game argument shows these two to be elementarily equivalent in first-order
logic, but only one is connected, hence connectivity is not first-order definable.

The above example may appear to make technique of nonstandard models useful more as a
convenience than as an essential tool, and there are cases where their use can be subsumed by
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database, that is, the set of all elements that occur in the database. Under the natural seman-
tics, quantification variables are assumed to range over the whole universe (for example, the
real line in the case of polynomial constraints over the reals).

We prove the following main results.

(1) The addition of constraints to the relational calculus does not add more power beyond
ordering when interpreted under the active domain semantics. We establish these results
by proving several Ramsey-style theorems.

(2) We show similar results for the natural semantics. We establish these results using tech-
niques from nonstandard analysis and some results in the model theory of ordered struc-
tures.

(3) As a consequence, the conjecture mentioned above is confirmed. It also follows that the
relational calculus plus polynomial inequality constraints expresses the same generic boolean
queries under the two different semantics.

The coincidence of the two semantics was established for the special cases of the relational
calculus by Hull and Su [20] and of the relational calculus with linear constraints by Paredaens,
Van den Bussche, and Van Gucht [30]. These two results, [20] and [30], are not limited to generic
queries. Thus we have generalized these two results to polynomial constraints, when queries are
restricted to generic ones. Similar techniques can be used to show the coincidence of the two
semantics for arbitrary polynomial constraints, as is shown in [8; 9]. It was also shown in [30]
that linear constraints do not add pure expressive power beyond <. Our results generalize this
to a wider class of signatures, including polynomial constraints and exponentiation. Another
generalization of this kind that is similar to ours but uses a slightly different setting was found
independently by Otto and Van den Bussche [28].

In contrast to our results, Grumbach and Su [17] showed that, with an integer test function in
the signature, one can define parity of cardinality of finite relations over the reals under the
natural interpretation. It is necessary therefore, to put some sort of restriction on the signature
to get a collapse result for the natural semantics. Our most general natural-semantics result
uses signatures that are o-minimal [31] — these signatures can define only a certain kind of
subsets of the real line. This restriction is sufficiently general to confirm the main conjecture
for polynomial constraints.

In this paper we concentrate on expressiveness of constraint query languages on ordinary re-
lational databases. It is possible to use such results to find some expressivity bounds for
constraint databases, that is, sets of generalized tuples. General techniques for such extensions
are discussed in [17; 36].
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Codd’s relational model. In this new paradigm, instead of tuples, queries act on “generalized
tuples” expressed as quantifier-free first-order constraints. For example, a generalized tuple
x +y > b represents the infinite set of tuples (x,y) satisfying the constraint  +y > 5.

A generalized relation is a finite set of generalized tuples. Interesting constraint query languages
are then obtained by coupling traditional relational query languages, such as the relational cal-
culus, with various classes of arithmetic constraints. Examples of queries that are inexpressible
in the pure relational calculus but are expressible with such an extension include the test of
whether all points in a binary relation R lie on some common circle or whether R contains four
vertices of some diamond.

Thus, the coupling of relational calculus with arithmetic constraints enhances power. A natural
question arises, attracting much attention recently: How much more power can we gain from
this coupling? The following conjecture, discussed extensively in the literature [25; 23; 22; 33;
17; 29], has been open for several years.

Conjecture. Queries such as transitive closure, connectivity test, and parily test are not
definable in the relational calculus plus polynomial inequality constraints over the reals.

These three queries are singled out because they involve two basic primitives, recursion and
counting, and because it is known that they cannot be expressed by the relational calculus. It
was noted in [16] that useful properties for proving the inexpressibility of these queries in the
relational calculus, such as locality [14] and 0/1-law [13], do not carry over to constraint query
languages. Nevertheless, a number of inexpressibility results were established recently. In [18]
it is shown, via an AC® data complexity result, that the parity query cannot be expressed
if only linear constraints are added to the relational calculus. In [2] it is shown that testing
whether a constraint database is contained in a line is not definable with linear constraints. In
[3] it is shown that testing whether a constraint database represents a line is not definable in
first-order logic with order.

Transitive closure, parity test, and connectivity test are examples of generic queries [10; 21].
Generic queries cannot distinguish between “isomorphic” databases. Formally, their answer
does not change when a bijective map on the domain is applied to a database. It is therefore
natural to pose the more general question below.

Question. Do constraints add pure relational expressive power? More specifically, when limited
to relational inputs and outputs, do the extended query languages express more generic queries
than the relational calculus?

We answer this question under two different semantics of the relational calculus. Under the
active semantics, quantification variables are assumed to range over the active domain of the
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The expressive power of first-order query languages with several classes of equality and inequality constraints is
studied in this paper. We settle the conjecture that recursive queries such as parity test and transitive closure
cannot be expressed in the relational calculus augmented with polynomial inequality constraints over the reals.
Furthermore, noting that relational queries exhibit several forms of genericity, we establish a number of collapse
results of the following form: The class of generic boolean queries expressible in the relational calculus augmented
with a given class of constraints coincides with the class of queries expressible in the relational calculus (with
or without an order relation). We prove such results for both the natural and active-domain semantics. As
a consequence, the relational calculus augmented with polynomial inequalities expresses the same classes of
generic boolean queries under both the natural and active-domain semantics.

In the course of proving these results for the active-domain semantics, we establish Ramsey-type theorems
saying that any query involving certain kinds of constraints coincides with a constraint-free query on databases
whose elements come from a certain infinite subset of the domain. To prove the collapse results for the natural
semantics, we make use of techniques from nonstandard analysis and from the model theory of ordered structures.

Categories and Subject Descriptors: H.2.3 [Database management]: Query languages; F.4.1 [Mathematical
logic and formal languages|: Model theory

Additional Key Words and Phrases: Database, Relational calculus, Constraints, Constraint query language,
Expressive power

1. INTRODUCTION

Much of the work in the foundation of relational databases revolves around using techniques
from logic to formalize the data model and to analyze the expressive power of query languages.
A database relation is formalized as a finite collection of tuples, and a database is modeled as
a finite structure, which is a collection of relations. Database queries can then be modeled as
formulae on these structures. The first fundamental result is that classical query languages,
such as relational algebra and calculus, have precisely the power of first-order logic. From
there, we can use logical techniques to derive important bounds on the expressiveness of these
relational languages, such as the inexpressibility of parity and graph connectivity [4; 10].

In new database applications involving spatial data (as in geographical databases) and temporal
data, it is necessary to move beyond the relational model of data, and to store in databases
infinite collections of items and to evaluate queries on such infinite collections. The constraint
database model, introduced by Kanellakis, Kuper, and Revesz in their seminal paper [23], is
designed to meet the requirements of such applications and is a powerful generalization of
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