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languages [20℄, and the languages de�nable in �rst-order logi (FO) are preisely the star-freelanguages [54℄. For a survey, see [65, 67℄.An alternative approah to de�nability of strings, based on lassial in�nite model theory ratherthan �nite model theory, dates bak to the 1960s [20, 19℄. One onsiders an in�nite struture Monsisting of h��;
i, where 
 is a set of funtions, prediates and onstants on ��. One an thenlook at de�nable sets, those of the form f~a j M j= '(~a)g, where ' is a �rst-order formula in thelanguage of M . A well-known result links de�nability with traditional formal language theory. Let
reg onsist of unary funtions la, a 2 �, binary prediates el(x; y) and x � y, where la(x) = x � a,el(x; y) states that x and y have the same length, and x � y states that x is a pre�x of y. Let Slenbe the model h��;
regi (we will explain the notation later). Then subsets of �� de�nable in Slenare preisely the regular languages [20, 19, 14℄; moreover, this implies deidability of the �rst-ordertheory of Slen [45, 14℄.The key advantage of the \model-theoreti approah" is that one immediately gets an extension ofthe notion of reognizability from string languages to n-ary string relations for arbitrary n. One getsan algebra of n-ary string relations for every n, and these algebras automatially have losure underprojetion and produt, in addition to the Boolean operations. In the ase of the model Slen above,this algebra is not new: in fat, the de�nable n-ary relations are exatly the ones reognizable undera natural notion of automaton running over n-tuples [19, 29℄. We will refer to these automata-de�nable relations as the regular relations: the formal de�nition is given in subsetion 3.1.1. Weshow here that by taking restritions of the model Slen, one gets new algebras of regular relationswhih behave better, in many ways, than the full algebra of reognizable relations given by Slen. Weintrodue four suh models here, and show that the de�nable sets in these models enjoy superiormodel-theoreti properties relative to the full algebra of reognizable relations assoiated with Slen.A key motivation for �nding losed algebras of string relations omes from the �eld of databases,in partiular, the study of query languages with interpreted operations [8, 10, 37, 50℄. String ma-nipulation failities have long been reognized as a ritial omponent of a realisti database querylanguage. In SQL, for example, the WHERE lause an ontain string pattern-mathing expressions,suh as FACULTY.NAME LIKE 'Nyk%nen'. These expressions an themselves be seen as queries overstring relations: the above lause, for example, an be seen as a seletion performed on a projetionof the FACULTY relation. While the Relational Calulus gives a satisfatory formal model for SQLqueries in the absene of built-in datatypes, there has been thus far no satisfatory model thatfully aounts for string queries. The lak of an adequate formal model is related to the fat thatSQL restrits the interation of string operations and relational operations in a number of ad-howays: one annot apply the LIKE operator to a subquery to build up a new query, nor an onetake the produt of two string expressions built with LIKE. The natural way to obtain a aluluson string relations where one an freely ompose string operations and relational operators is tostart with a deidable struture on strings, like those mentioned above, and extend them to querylanguages by adding free prediate symbols | in the same way that traditional Relational Calulusan be obtained from �rst-order logi over pure equality. Using this approah we see that orre-sponding to Slen and eah of the four restrited models mentioned above, we obtain �ve interestingompositional query languages on strings.The paper has two main parts. In the �rst part, we study de�nable algebras of string relations,that is, model-theoreti strutures on �� and de�nability in these strutures. We fous on �vestrutures, of whih the model Slen mentioned above is the rihest. In the seond part of thepaper, we deal with database appliations, and study the orresponding query languages for string2



databases given by eah of the �ve strutures. This an be thought of as de�nability over model-theoreti strutures and a �nite relational database. Naturally, the results of the �rst part formthe basis for reasoning about string query languages.We now summarize the developments in both parts of the paper.As mentioned above, we know that there exists a regular string algebra [20, 19, 14℄, i.e., an algebrawhih exatly aptures the regular sets when restrited to unary relations. An obvious question toask, then, is whether new algebras of string relations arise through the model-theoreti approah.In partiular, if we restrit the signature 
 to be less expressive than 
reg, do we get new relationalgebras lying within the reognizable relations?A natural starting point would be to �nd a signature that aptures properties of the star-freesets. Here again, a simple example leaps out: onsider the signature 
sf = (�; (la)a2�), and letS = h��;
sfi. One an easily show that the de�nable subsets of �� in S are exatly the star-freeones. Furthermore, we will show that the de�nable n-ary relations of this model are exatly thosede�nable by regular pre�x automata (f. [4℄) whose underlying string automata are ounter-free.Just as there is a signi�ant di�erene between the omplexity-theoreti behavior of regular lan-guages and star-free languages (the latter are in AC0 whereas the former are not), we �nd thatthe model S is muh more tratable, in terms of its model-theory and its omplexity than Slen. Inpartiular, we show that S has quanti�er-elimination in a natural relational extension, while Slendoes not.It would be tempting to think of S and Slen as anonial extensions of the notions of regularityand star-free to n-ary relations. However, we will show that in fat there are many hoies for
 that share the same one-dimensional de�nable sets (either star-free or regular). Furthermore,algebras of de�nable sets may be idential in terms of the string languages they de�ne, but di�eronsiderably in the n-ary string relations in the de�nable algebra. We thus say that an algebra ofde�nable sets based on h��;
i, with 
 � 
reg is a regular algebra of de�nable sets if the subsets of�� in it (i.e the one-dimensional de�nable sets of h��;
i) are exatly the regular sets. We likewisesay that the algebra based on de�nable sets for h��;
i is a star-free algebra of de�nable sets if thesubsets of �� in the algebra are exatly the star-free sets.We then study new examples of regular and star-free de�nable algebras. We give an example ofa star-free algebra with onsiderably more expressive power than the basi star-free algebra S.This model, whih we denote by Sleft (as it allows one to add haraters on the left of a string),shares most of the desirable properties of S: in partiular, it has quanti�er-elimination in a naturallanguage, and membership test in this algebra has low omplexity.More surprisingly, perhaps, we give examples of regular algebras (whih we denote Sreg and Sreg;left)that are stritly ontained in Slen = h��;
regi. Although the one-dimensional sets in these algebrasare still the regular sets, the algebra as a whole shares many of the attrative properties of the star-free languages. In partiular, we give quanti�er-elimination results for these algebras. In ontrast tothis, we present a result giving a partial answer to open question 0 in [55℄, whih asks whether Slenitself has quanti�er-elimination in a reasonable signature. We show that it does not have quanti�er-elimination in any relational signature of bounded arity but does have quanti�er-elimination in asignature ontaining binary funtions.We now turn to the seond part of the paper, studying the string query languages formed from3



eah of these models. What are some properties one would desire of a string query language? Oneproblem faed in any work ombining string pattern-mathing queries with relational alulus isthat pattern-mathing expressions may return an in�nite number of strings. This is the standardissue of safety. Previous proposals for ombining relational algebra with string-mathing primitivestakle this problem by identifying safe fragments of their languages, using a number of syntatirestritions | see, e.g., [39, 42, 38, 40, 59℄ | but they annot apture the safe fragment of thelanguage syntatially. A seond issue with any string query language is its expressive power. Manyquery languages designed in the prior literature turn out to be Turing omplete, a feature that inturn makes many sorts of analysis and optimization impossible. Indeed, as noted in [40℄, adding justonatenation to the relational alulus already yields a query language whih is Turing omplete.This immediately implies that there is no e�etive syntax for the orresponding safe fragment [64℄.In ontrast to the above, we would like our languages to ful�ll the following riteria:1. Query evaluation is eÆient;2. There is e�etive syntax apturing safe queries;3. There is an algebra equivalent to the language.Hene, we onsider eah of our query languages with respet to these riteria. As mentioned above,we onsider relational alulus, RC, over eah model de�ned in the �rst part, beginning withthe weakest model, S. The query language obtained by adding database relations to S apturesbasi SQL with simple LIKE pattern-mathing and lexiographi ordering. We show that thesafe fragment of this model an be e�etively aptured in a natural way, and prove omplexitybounds for queries in this language that math the known bounds for ordinary relational alulus.RC(S) however, is unable to express ertain natural queries, e.g., SELECT a � x FROM R, where ais a �xed harater. We ontrast this to the query language RC(Slen) formed over the rihestmodel. This extension has muh greater expressiveness: it enables additional operations suh astrimming/adding symbols on both left and right of a string, and the SIMILAR pattern-mathing forheking membership in a regular language [41℄. We show that this language also satis�es riteria2 and 3 above, but in RC(Slen) one an express NP-omplete and oNP-omplete problems.This leads us to the onsideration of the three intermediate languages, RC(Sleft) ,RC(Sreg), andRC(Sreg;left). We �nd that eah of these languages satis�es all three of the required riteria, whileonsiderably extending the expressive power of RC(S).Related Work: One motivation of our approah was the study of automati strutures [48, 14℄,whih are a sublass of reursive strutures [43℄, and were introdued as a generalization of auto-mati groups [30℄. In an automati struture M = h��;
i, every prediate in 
 is de�nable by a�nite automaton. More preisely, an n-ary prediate P is given by a letter-to-letter n-automaton[29, 34℄. These strutures were also studied in [45℄ in onnetion with deidability questions for�rst-order theories.It is known [19, 14℄ that a struture is automati i� it an be interpreted in the struture Slen;hene Slen is in some sense the universal automati struture. The �rst part of this paper an beseen as a study of sublasses of automati strutures de�nable within Slen that are signi�antlymore restritive, and that might have stronger model-theoreti or omputational properties than arih struture like Slen. 4



The struture Sleft, without the pre�x relation, is useful for modeling queues and it �rst appearedin the veri�ation ontext [16℄, where an algorithm for deiding existential sentenes was given.That algorithm was extended to the full theory in [60℄, but still without the pre�x relation.On the database side, several approahes toward unifying string algebras with relational algebrahave been developed in the prior literature. Most of them are based on the onatenation operator,or other operations that make logis undeidable in general. [36℄ studied the onsequenes of addingpattern-mathing features to SQL. Papers [39, 42, 38℄ proposed an extension of the relational alu-lus with alignment logis and studied their omplexity and expressive power. Without restritions,they an de�ne an arbitrary r.e. set [39℄. Another approah was proposed in [17, 18℄, whih on-sidered Datalog extended with appropriate transduers for string operations, and proved a numberof ompleteness results. In [24℄ arbitrary regions (substrings) an be queried; this, when oupledwith relational alulus, gives the power of string onatenation. Closer to our approah, [40, 59℄study the relational alulus/algebra extended with an operation for onatenating strings. [25℄studies �rst-order logi over term algebras and extends expressive bounds and omplexity resultsfrom relational alulus to this setting. But SQL-style string pattern-mathing annot be expressedin the language of [25℄ { indeed in this language one annot even query for strings beginning witha �xed symbol.The general approah to studying databases over interpreted domains is losely related to the�eld of onstraint databases [50℄. Most theory of onstraint databases was done over ontinuousdomains, typially various strutures over the reals. In ontrast, our results ould be viewed as thetheory of (�nite) onstraint databases over disrete domains, in partiular, strings.Organization: The paper is organized as follows. The next setion gives the notation that will beused in the paper. Then we deal with de�nability for models on strings, in partiular, quanti�erelimination, bounded VC dimension and expressive power. The last part ontains database applia-tions in terms of expressiveness, data omplexity and safety of the orresponding query languages.Earlier presentation of this work appeared in two onferene proeedings: [13, 12℄.2 NotationThroughout the paper, � denotes a �nite alphabet, and �� the set of all �nite strings over �. Weonsider a number of operations and prediates on ��:� x � y { onatenation of two strings x and y.� x � y { x is a pre�x of y.� la(x), a 2 �, is x � a (adds last harater).� fa(x), a 2 �, is a � x (adds f irst harater).� jx j is the length of string x.� x u y is the longest ommon pre�x of the strings x and y.� x� y { the string z suh that y � z = x, if it exists, and � otherwise.5



� x+y, whih is an alternative notation for the onatenation y�x. Note that always (x+y)�y =y.� el(x; y) is true i� jxj = jyj.We write w[i; j℄ to refer to the substring of a string w starting from position i and ending at positionj. Here, the �rst position of a string has number 1, e.g., it holds that w = w[1; jw j℄. We write w[i℄for w[i; i℄.We write x l y to express that y extends x by exatly one symbol. Let pre�x (C) stand for thepre�x-losure of C: fs j s � s0; s0 2 Cg. By #(C) we denote fs j jsj � js0j; s0 2 Cg.Given a set S of strings , we let Tree(S) be the tree (i.e. the partially-ordered struture) generatedby losing S [f�g under u. In other words, Tree(S) is the poset hfxu y j x; y 2 S [f�gg;�i. (Notethat for any set of strings s1; : : : ; sk, there are two indies i; j � k suh that s1 u : : :u sk = si u sj.)If S is a set of strings and w 2 ��, let Meet(w;S) be the longest string among fw u u j u 2Sg, let Meet�(w;S) be the element of Tree(S) whih is the longest pre�x of Meet(w;S), andlet Meet+(w;S) be the smallest element of Tree(S) for whih Meet(w;S) is a pre�x. Note thatMeet+(w;S) is well-de�ned (as are Meet(w;S) and Meet�(w;S)), sine Meet(w;S) is either a stringfrom Tree(S) or it has a unique smallest extension in Tree(S).A omplete tree-order desription of a vetor ~w of variables is the atomi diagram of Tree(~w) in thelanguage of �;�;u. In other words, it is a spei�ation of all the � relations that hold and do nothold in Tree(~w).For example, let ~w = (a; aba; abbb). Then aba u abbb = ab, and Tree(~w) is f�; a; ab; aba; abbbg. Theomplete tree-order desription of ~w onsists of all the � relations that hold among the elements off�; a; ab; aba; abbbg, as well as all the u-relations, e.g., aba u abbb = ab, a u aba = a, ab u � = �, et.We shall onsider several strutures on ��. The basi one is the struture S = h��;�; (la)a2�i.We ould equivalently use unary prediates La, where La(x) is true for strings x having a as lastsymbol. Note that in the presene of �, la and La are interde�nable, and we thus shall use both ofthem.We further onsider a number of extensions of S. In one of them haraters an be added on theleft as well as on the right. This struture is denoted by Sleft def= h��;�; (la)a2�; (fa)a2�i.Another extension, denoted by Slen, adds length omparisons via the el prediate (note that using� and el one an express various relationships between lengths of strings, e.g. jxjf=; 6=; <;>gjyj,jxj = jyj+ k for a onstant k, et.). To summarize, we mainly deal with the following strutures:� S = h��;�; (la)a2�i;� Sleft = h��;�; (la)a2�; (fa)a2�i;� Slen = h��;�; (la)a2�; eli.One we onsider regular algebras, we introdue two more strutures; however, operations in themwill be motivated by quanti�er-elimination results for S and Sleft and thus those strutures will bede�ned later. 6



There is a very lose onnetion between Slen and an extension of Presburger arithmeti. Assumethat � = f0; 1g. Let val(n), for n 2 N, be n in binary, onsidered as a string in ��. Let V2(n) be thelargest power of 2 that divides n. Then P � Nk is de�nable in hN;+; V2i i� f(val(n1); : : : ; val(nk)) j(n1; : : : ; nk) 2 Pg is de�nable in Slen [20, 19℄.De�nability over S;Sleft;Slen. We give a few simple examples of de�nability over these stru-tures.Mathing with LIKE an be expressed over S, sine de�nable subsets in S are preisely star-freelanguages. For example, the ondition x LIKE a_b%a_ | saying that the �rst symbol of x is a, thethird is b, and the last but one is a again | an be expressed by a formula '(x):9u; v; w0� u � v � w � x^ La(u) ^ Lb(v) ^ La(w)^  1(u) ^  3(v) ^  �1(w) 1A ;where  1(u);  3(v);  �1(w) say that u; v; w are pre�xes extending up to the �rst, third, and penul-timate positions in the string x.Another important operation expressible over S is the lexiographi ordering �lex. Assume that� = fa1; : : : ; ang and an ordering a1 < : : : < an is given. The lexiographi ordering x �lex y isthen expressed by:x � y _ 9z (z � x ^ z � y ^_i<j((lai(z) � x) ^ (laj (z) � y))) :The graph of the funtion fa, f(x; y) j y = fa(x)g, is de�nable in Slen byjyj = jxj+ 1 ^ (9w � y jwj = 1 ^ La(w))^ 8z � x9v � y (jvj = jzj+ 1 ^Vb2� Lb(z)$ Lb(v));where jvj = juj+ 1 is de�ned by 9w(w l u ^ el(w; v)), and w l u � w � u ^ :9t (w � t ^ t � u).Strings as strutures We shall use lassial results on de�nability of strings represented as �nite�rst-order strutures. If � = fa1; : : : ; ang, then a string s 2 �� an be represented as a strutureMsin the signature (Pa1 ; : : : ; Pan ; <). If jsj = k, then the universe of Ms is f1; : : : ; kg, < is interpretedas the usual ordering, and Paj is the set fi j 1 � i � k; and the ith position of s is ajg.If � is a sentene of some logi, it de�nes a language L(�) = fs 2 �� j Ms j= �g. Whenthe logi is MSO, monadi seond-order logi, the languages that arise this way are preisely theregular languages [20℄. When the logi is FO, �rst-order, then the languages that arise are preiselythe star-free languages (that is, those that an be obtained from ; and faig; i � n by using theoperations of union, omplement, and onatenation) [54℄.Databases and query languages A database shema SC is a olletion of relation namesR1; : : : ; Rl, Ri being of arity pi > 0. In an instane of SC over a set U , eah Ri is interpreted as a�nite subset of Upi . The ative domain of a database D, adom(D), is the set of elements from Uthat appear in D. 7



The general setting for query languages is that of a �nite database and an in�nite underlyingstruture M = hU;
i, where 
 is a set of operations (funtions and prediates) on U . As ourbasi language we onsider relational alulus, or �rst-order logi, over the shema SC and M,denoted by RC(SC;M). We often omit SC when it is understood, or irrelevant. Here we willfous exlusively on the string datatype, hene we will always have U = ��. For example, ifM = h��;�; (La)a2�i, the query9x R(x) ^ L0(x) ^ 9y(y � x ^ L1(y) ^ (:9z y � z � x))tests if there is a string in the relation R whih ends with 10. Indeed, it asks if the last symbol ofx is 0, and if there exists a pre�x y, whih is the largest proper pre�x of x (as there is no z withy � z � x) suh that the last symbol of y is 1.Given a query '(x1; : : : ; xn) in RC(SC;M) and ~a 2 Un, we write D j= '(~a) when '(~a) is true in(D;M). We write '(D) for the output of ' on D, that is, f~a 2 Un j D j= '(~a)g. We say that 'is safe on D if '(D) is �nite, and that ' is safe if it is safe on every D. The safety problem is todetermine whether a query is safe, and it is known to be undeidable even for the pure relationalalulus [1℄. The state-safety problem is to deide, for a given ' and D, if ' is safe on D.We say that safe queries in RC(M) have e�etive syntax if there exists a reursively enumerableset A, of safe queries in RC(M) suh that, for every SC, every safe RC(SC;M) query is equivalentto one in A.E�etive syntax is a �rst step towards an algebrai language expressing all safe queries. Indeed ifsuh a language exists, safe queries must have e�etive syntax.That e�etive syntax exists for safe queries in the pure relational alulus is a lassial relationaltheory result [1℄. Other results { both positive or negative { have been proved reently [11, 64℄.Collapse results These establish very strong expressivity bounds for relational aluli. To for-mulate them, we need an important restrition of queries: to quanti�ation over the ative domain.We use quanti�ers 9x2adom and 8x2adom, whose meaning is as follows: D j= 9x2adom '(x; �)if D j= '(a; �) for some a 2 adom(D) (as opposed to for some a 2 U in the ase of the usual 9xquanti�er), and similarly for the universal quanti�er. These restrited quanti�ers are de�nable inrelational alulus, but it is often helpful to have them available separately.A relational alulus formula is alled an ative-domain formula if all quanti�ers in it are of the form8x 2 adom;9x 2 adom. We say that RC(M) admits natural-ative ollapse [10℄ if every RC(M)formula is equivalent to an ative-domain formula. We say that RC(M) admits restrited quanti�erollapse if every RC(M) formula is equivalent to one in whih SC-relations appear only under thesope of quanti�ers 9x2adom and 8x2adom. Note that ifM admits quanti�er-elimination, thesetwo notions oinide.A query is generi if it ommutes with permutations on the domain. The ative-generi ollapse[10℄ states that if an RC(M) formula with quanti�ation of the form 9x 2 adom and 8x 2 adomexpresses a generi query Q, then Q must be expressible using only a linear order on the ativedomain, and no other prediates and funtions from M.Model theory bakground Let 
 be a �nite or ountably in�nite �rst-order signature, and Ma model over 
. By FO(M) we denote the set of all �rst-order formulae in the language of 
. The8



(omplete) theory of M , Th(M), is the set of all sentenes in FO(M) true in M . Two models Mand M 0 over 
 are elementary equivalent if Th(M) = Th(M 0).We say that M admits quanti�er elimination (QE) if for every formula '(~x) in FO(M) there is aquanti�er-free formula '0(~x) suh that 8~x '(~x)$ '0(~x) is true in M . In every ase where we showquanti�er-elimination for a model in this paper, the onversion to a quanti�er-free formula an bemade e�etive, although in several ases (e.g. Theorem 3.12) we will not give the details of thee�etive versions.For a tuple ~a and a modelM over 
, we let tpM(~a) be the type of ~a inM (the set of all formulae ofFO(M) satis�ed by ~a), and atpM (~a) be the atomi type inM (the set of all quanti�er-free formulaeof FO(M) satis�ed by ~a). If A is a subset of M , tpM (~a=A) is the type of ~a over A in M (the set ofall FO-formulae over 
 [A satis�ed by ~a).An !-saturated model M over 
 is a model suh that eah onsistent type (a type is onsistent ifit has a witness in at least one model of 
) over a �nite set A in FO(M) is satis�ed in M . It isknown [21℄ that every model M over 
 has an elementary equivalent !-saturated model M�.Many proofs use Ehrenfeuht-Fra��ss�e games [28, 33, 27℄. For two strutures M1 and M2 of thesame voabulary, we write M1 �k M2 if the dupliator has a winning strategy in the k-roundgame on M1 and M2 (that is, if M1 and M2 agree on all sentenes of quanti�er rank up to k).We also assume familiarity with Monadi Seond Order Logi (MSO) [27℄. Some proofs will useMSO games [27℄; we write M1 �MSOk M2 if the dupliator has a winning strategy in the k-roundMSO game, whih similarly means the two strutures an not be distinguished by MSO-sentenesof quanti�er depth k.Isolation, VC-dimension, and ollapse We review several model-theoreti onepts that proveuseful in establishing bounds on the expressive power of query languages.Let T be a theory over 
 and M be a model of T . A subset A of M is said to be pseudo-�niteif (M;A) j= F (T; P ), where P is a unary prediate, and F (T; P ) is the set of all formulae ofFO(
 [ fPg) satis�ed by all �nite sets of elements in any model of T .If p is a type over A in M , a subset q of p isolates p if p is the only type over A in M ontainingq. A omplete theory T over 
 is said to have the strong isolation property if for any model M ofT and any pseudo-�nite set A and any element a in M , there is a �nite subset A0 of A suh thattpM (a=A0) isolates tpM(a=A). We say that it has the isolation property if a ountable A0 exists asabove.Isolation is an interesting property in the database ontext beause it implies the restrited quan-ti�er ollapse [8, 32℄. Here we also use it to provide bounds on the VC-dimension of de�nablefamilies.For a family C of subsets of a set U , and a set F � U , we say that C shatters F if fF \C j C 2 Cg isthe powerset of F . The VC-dimension of C is the maximum ardinality of a �nite set shattered byC (or 1, if arbitrarily large �nite sets are shattered by C). This onept is fundamental to learningtheory, as �nite VC-dimension of a hypothesis spae is equivalent to learnability (PAC-learnability)[5, 15℄.Now onsider a struture M = h��;
i, and a FO(M) formula '(~x; ~y). For eah ~a, let '(~a;M) =9



f~b j M j= '(~a;~b)g. The family of sets '(~a;M), where ~a ranges over all tuples over M , is alleda de�nable family. We say that M has �nite VC-dimension if every de�nable family has �niteVC-dimension. In partiular, this implies learnability of FO-de�nable families over M .We shall see more onnetions between isolation, VC dimension, and ollapse results later in thepaper.Complexity lasses Some omplexity results in this paper refer to parallel omplexity lassesAC0, TC0, and NC1. AC0 is onstant parallel time; more preisely, the lass of languages aeptedby polynomial-size onstant-depth unbounded fan-in iruits. TC0 additionally has majority gatesof unbounded fan-in. In NC1, there are no majority gates, the depth is allowed to be logarithmi,but fan-in is bounded. It is known that AC0 � TC0 � NC1 (parity separates TC0 from AC0). Weonsider uniform versions of these lasses [7℄; uniform AC0 over �nite strutures an be haraterizedvia de�nability in FO(BIT; <): �rst-order logi with linear order and the BIT prediate (BIT(i; j)is true i� the jth bit in the binary representation of i is one.) To apture uniform TC0 it suÆesto add ounting quanti�ers to FO(BIT; <) [7℄.PH is the polynomial hierarhy, whih ontains, e.g., NP and oNP and is itself inluded in PSPACE[57℄.As usual, for data omplexity, one �xes a query Q and onsiders the omplexity of fen(D)#en(t) jt 2 Q(D)g, where en is an enoding of databases and tuples over some �xed alphabet, typiallyf0; 1g [1℄. Normally in pure relational alulus the enoding is suh that the ative domain isonsidered to be f1; : : : ; kg, and eah number i is represented in binary. When we deal withinterpreted elements stored in a database, suh an enoding is not appropriate, as one needs to takeinto aount operations on those interpreted elements. In partiular, in the ase of strings over a�nite alphabet, we onsider the enoding of a string to be itself (in the ase of an alphabet di�erentfrom f0; 1g we may have to ode letters in f0; 1g �rst).3 Model theory of stringsIn this setion we study logial de�nability over Slen;S;Sleft and two other strutures, de�ningregular algebras over ��. We are partiularly interested in quanti�er-elimination results, and insome model-theoreti properties (isolation, VC dimension) that will later give us results about theexpressive power of the relational aluli based on these strutures. We start with the strongestregular algebra Slen, then move to the star-free algebra S, and to a more expressive star-free algebraSleft. The quanti�er-elimination proof for the latter is tehnially the most involved result in thissetion. We then show how to expand S and Sleft to regular algebras, without losing their nieproperties.3.1 A regular algebra based on SlenIn this subsetion we will fous on the struture Slen. We will assume here that the alphabet �ontains at least two letters. For a 1-letter alphabet , it is easy to see that Slen redues to S, whihwill be dealt with in the next subsetion. 10



3.1.1 Automata and De�nabilityA letter-by-letter automaton is a usual DFA whose alphabet is (� [ f#g)n, # 62 �. An n-tuple ofstrings s1; : : : ; sn an be viewed as a word of length maxi jsij over the alphabet �[f#g, where thejth letter is the tuple (sj1; : : : ; sjn); here sjk is the jth letter of sk, if jskj � j, and # otherwise. Wesay that a prediate P � (��)n is de�nable by a letter-to-letter n-automaton A if (s1; : : : ; sn) 2 Pi� A aepts s1; : : : ; sn.As mentioned in the introdution, Slen = h��;�; (la)a2�; eli is the anonial automati struture,and relations de�nable in Slen are preisely the regular relations, that is, k-ary de�nable relationsare preisely those given by letter-to-letter k-automata [14, 19℄. In partiular, this gives a normalform for Slen-formulae. We introdue a new type of length-bounded quanti�ers of the form 9jxj � jyjand 8jxj � jyj. A formula 9jxj � jyj' is meant as an abbreviation for 9x((jxj � jyj) ^ ').Sine every �nite automaton an be simulated by a length-bounded FO(Slen) formula, we onludethat eah FO(Slen) formula is equivalent to a length-bounded FO(Slen) formula. Note that thisresult an also be shown diretly by an Ehrenfeuht-Fra��ss�e game argument.3.1.2 Quanti�er EliminationThe universal property of Slen mentioned above indiates that Slen may be \too rih" in relationsfor many appliations. We present evidene for this by addressing the open question of [22, 55℄whether Slen has quanti�er elimination in a reasonable signature. One �rst needs to de�ne what\reasonable" means here. Clearly, every struture has quanti�er elimination in a suÆiently largeexpansion of the signature: add symbols for all de�nable prediates, for example. One an thustake reasonable to mean a �nite expansion, but this is not satisfatory: for example, Presburgerarithmeti has quanti�er elimination in an in�nite signature (+; <; 0; 1; (mod k)k>1) [31℄. Notehowever that in this example, the maximum arity of the prediates and funtions is 2. In fat, itappears to be a ommon phenomenon that when one proves quanti�er elimination in an in�nitesignature, there is an upper bound on the arity of funtions and prediates in it.We thus view this ondition as neessary for a signature to be \reasonable". In general, a reasonablesignature might ontain relation symbols as well as funtion symbols. Nevertheless, we an ruleout the possibility of a signature with funtion symbols of arity at most 1 for whih Slen hasquanti�er elimination. This is in ontrast to the weaker strutures that we onsider, all of whihhave quanti�er elimination in a relational signature of bounded arity. Let S(n;m)len be the expansionof Slen with all de�nable prediates of arity at most n, and de�nable funtions of arity at most m.We show the following:3.1 Theorem (a) For any n � 0, and m = 0; 1, S(n;m)len does not have QE.(b) S(1;2)len , the expansion of Slen with all unary prediates and binary funtions, has QE.Proof. (a). We assume � = f0; 1g and �x n. Let m = 0. The de�nable property whih an notbe expressed by a quanti�er-free formula is de�ned as follows. It holds for a tuple x1; : : : ; xn+1 ofstrings, if there is a position i suh that the ith symbol in all xjs is 0.11



This is learly de�nable in Slen by '(x1; : : : ; xn+1):9y1; : : : ; yn+1 ĵ yj � xj ^ ĵ L0(yj) ^ ĵ;k el(yj; yk) :We now assume that ' is a Boolean ombination of formulae depending on n variables eah. Letthese formulae be named as �ij, i 2 f1; : : : ; n + 1g, j 2 f1; : : : ; lig, where �ij does not have xi asfree variable.By [14℄, eah �ij is given by a letter-to-letter n-automaton Aij over �n. Let m be the maximumnumber of states of the Aij .Now let p1 < p2 < : : : < pn+1 be primes with p1 > m + 1. Let �i = Qj 6=i pj, and let P = Qj pj(= �i � pi, for eah i).We now de�ne !-words wj , j = 1; : : : ; n+ 1, bywj [k℄ = � 0 k = 0(mod pj);1 otherwise;where, as for �nite strings, wj [k℄ denotes the kth position in wj .Now �x i � n + 1 and s � li, and onsider a run of Ais on (wj , j 6= i) (that is, the kth inputsymbol is (w1[k℄; : : : ; wi�1[k℄; wi+1[k℄; : : : ; wn+1[k℄)). At every position that is equal to 0 modulo�i (and only at those positions), the input symbol is ~0 = (0; : : : ; 0). Moreover, for any l � 0 andany 1; 2 > 0, the input symbols are the same at positions l + 1 � �i and l + 2 � �i.We now onsider positions equal to 0 modulo �i; sine Ais has at most m states, we an �nd twonumbers d1 < d2 � m+1 (depending on s) suh that in positions d1 � �i and d2 � �i the automatonAis is in the same state q, reading ~0. Let d = (d2 � d1) � �1. Thus, at every position d1 � �i + k � d,the automaton is in the state q, reading ~0.Then for every l � 0 and every k � 0, we have that Ais is in the same state in positions d1 � �i + land d1 � �i + l + k � d, and reads the same symbol in those states. Furthermore, notie thatd2 � �i � (m+ 1) � �i < p1 � �i � pi � �i = P .Summing up, for eah Ais, we have two onstants, ais (= d1 ��i) and bis (= d), suh that ais < P andthe state of Ais is the same in positions ais + l and ais + l + k � bis, for l; k � 0.Now let C = maxi;s ais and C 0 = C + P �Qi;s bis. We have C 0 > P > C, and all automata Ais are inthe same state in positions C and C 0. In partiular, if wj [1; k℄ denotes the �nite word that onsistsof the �rst k positions of wj , we have that every �ij agrees on(w1[1; C℄; : : : ; wi�1[1; C℄; wi+1[1; C℄; : : : ; wn+1[1; C℄)and (w1[1; C 0℄; : : : ; wi�1[1; C 0℄; wi+1[1; C 0℄; : : : ; wn+1[1; C 0℄):The assumption that ' is a Boolean ombination of �ijs now gives us that 'agrees on (w1[1; C℄; : : : ; wn+1[1; C℄) and (w1[1; C 0℄ : : : ; wn+1[1; C 0℄), whih is impossible, sine'(w1[1; C℄; : : : ; wn+1[1; C℄) is false (C < P and there is no position with all zeros in it) and'(w1[1; C 0℄; : : : ; wn+1[1; C 0℄) is true (C 0 > P , and in position P all symbols are 0).12



For the ase of m = 1, it suÆes to notie that for any n > 1, any quanti�er-free formula�(x1; : : : ; xn) in S(n;1)len is equivalent to a quanti�er-free formula in S(n;0)len . For instane R(f(x); f(y))where R is a de�nable S(2;0)len relation, is equivalent to Rf;g(x; y), where Rf;g is the S(2;0)len relationde�ned by R(f(x); f(y)).Proof of (b).Let us assume that � ontains at least the symbols 0 and 1 and let S+len be the expansion of Slenby the following de�nable funtions and prediates:� the binary funtions f^; f_ whih are the bitwise AND and OR of two 0-1 strings u andv, respetively (and � for non-0-1-inputs). When u and v do not have the same length weadd suÆiently many 0s to the right of the shorter string. Thus the length of the result ismax(juj; jvj). E.g., f^(101; 11) = 100;� the unary funtion f: whih is the bitwise NOT of a 0-1 string;� for eah � 2 �, a unary funtion Fil�, where Fil�(w) has a 1 at position i i� w[i℄ = � and a0 otherwise;� for eah j; k, j < k, a unary funtion Patj;k where Patj;k(w) has the same length as w andhas a 1 at position i i� i � j(modk) and a 0 otherwise;� unary funtions LShift, RShift, where RShift(w) is obtained from w by deleting the last(rightmost) symbol and LShift(w) is obtained from w by deleting the �rst (leftmost) symbol;� for eah j;m, j < m, the unary prediate Pm;j whih will be de�ned below.Let R be an n-ary relation over �, de�nable in Slen. Our goal is to �nd a quanti�er-free S+len-formula' suh that, for eah n-tuple ~w of strings, S+len j= '(~w) i� ~w 2 R.We know from [14, 19℄ that the relations de�nable in Slen are preisely the regular relations, thatis, preisely those given by letter-to-letter n-automata [14, 19℄.Let A be suh an automaton for R over the alphabet (�[f#g)n with state set Qm = fq0; : : : ; qm�1g,initial state q0, transition funtion Æ and set F of aepting states.An m-state behavior funtion is any funtion f : Qm ! Qm. An m-state behavior funtion an beenoded into a binary behavior string b(f) of length M := m2 as follows. For j; j0 < m, positionjm+ j0 + 1 of b(f) is 1 i� f(qj) = qj0 .Let Pm;j , j < m, be the unary prediate whih holds for all strings u = b1 � � � bl, where eah bienodes an m-state behavior funtion f i and f l(� � � (f1(q0)) � � � ) = qj. As the bloks bi are ofonstant length these prediates are regular.The idea of the proof is to map eah blok of the input of length m2 to the string whih desribesthe behavior of A on this blok. Whether A aepts the input an then be expressed by means ofthe prediates Pm;j .For a given n-tuple ~w, let l be minimal suh that lM � j~wj where j~wj = max(jw1j; : : : ; jwnj) andlet f i~w = Æ�(�; ~w[(i � 1)M + 1; iM ℄), for i < l and f l~w = Æ�(�; ~w[(l � 1)M + 1; j~wj℄). Then the stateof A after reading ~w, starting from the initial state q0, is j if and only if b(f1~w) � � � b(f l~w) 2 Pm;j .13



Hene, it is suÆient to �nd an S+len-term � suh that �(~w) = b(f1~w) � � � b(f l~w). The onstrution of� is desribed in two steps.First, let fmax(~w) be de�ned as W�2�Wni=1 Fil�(wi). Here, as in the following the Boolean operatorsare abbreviations for the respetive terms using f_, f^, f:. Note that fmax(~w) de�nes a string oflength maxfjwij j i � ng onsisting only of ones. Further let Fil�;i(~w) be the term fmax(~w)^Fil�(wi)and let Fil#;i(~w) be fmax(~w) ^ :(W�2� Fil�(wi)). Hene, for eah symbol � 2 � [ f#g, Fil�;i(~w)has a 1 at position j, if the automaton A reads a � as the j-th symbol of wi.Now we are ready to �nish the desription of �. For simpliity, we desribe � for the ase wherejfmax(~w)j is a multiple of M . The general ase is slightly more ompliated. �(~w) has to arry a 1at a position (j0 � 1)M + jm + j0 + 1, for j; j0 < m, j0 > 0, i� the tuple ~w[(j0 � 1)M + 1; j0M ℄,onsisting of n strings of length M is in the set T (j; j0) := f~s j Æ�(j; ~s) = j0g. Therefore � an beexpressed as_j;j0 _~s2T (j;j0) �Patl;M (fmax(~w)) ^ l̂i=1 n̂k=1RShift(l�i)(Filsk[i℄;k(~w)) ^ M̂i=l+1 n̂k=1LShift(i�l)(Filsk[i℄;k(~w))�;(1)where l is a shorthand for jm+ j0 + 1 and f (i) denotes the i-fold appliation of f .The formula says the following: Assume 0 < l � M and ~s 2 T (j; j0) �xed, a blok ~w[(j0 � 1)M +1; j0M ℄ of size M is viewed entered in its lth position and thus has l� 1 haraters on its left andM � l on its right. The last part of the formula heks for the bloks of size M entered in l thatequal ~s. The test is made separately for the left and right part (this orresponds to the variablei) and for eah element of ~s (this orresponds to the variable k). All the results of the tests areshifted to the right for the left part of the blok and to the left for the right part in order to alignthem on the entered position l. Thus the big bitwise V is true i� all the previous tests were trueand thus i� the blok of size M entered in l equals ~s.The �rst part of the formula �lters the bloks we are interested in by keeping only the one enteredin jm+ j0 + 1 modulo M . The seond bitwise W will hek for all possibilities for ~s 2 T (j; j0) thusthe jm + j0 + 1 modulo M positions will be equal to 1 i� the orresponding blok is a string ofT (j; j0) as desired. The �rst bitwise W ensures that we over all positions. 23.1.3 VC-DimensionOur next result shows another model-theoreti and learning-theoreti shortoming of Slen: namely,a single formula '(x; y) an de�ne a widely varying olletion of relations as we let the parameterx vary. We formalize this through the notion of VC-dimension.3.2 Proposition There are de�nable families in Slen that have in�nite VC-dimension.Proof. Let � = f0; 1g, and let '(x; y) be 9z (z � x ^ el(z; y) ^ L1(z)). Let C be the orrespondingde�nable family: S 2 C i� S = '(s;Slen) for some string s. Let An = f0i j i < ng. Then An isshattered by C: given any subset X of An, let sX be a string of length n where the ith harater14



is 1 i� 0i 2 X. Then '(sX ;Slen) \ An = X. Sine n was arbitrary, this shows that C has in�niteVC-dimension. 23.2 A star-free algebra based on SWe now turn to the most obvious analog of Slen for the star-free sets. This is the model S =h��;�; (la)a2�i, whih is the most basi model among those studied in the paper. We show that ithas remarkably nie behavior: it admits e�etive QE in a rather small extension to the signature.This immediately tells us that the de�nable subsets of �� are preisely the star-free languages. Wethen haraterize the n-dimensional de�nable relations in S by their losure properties, and by anautomaton model.Note that S is very lose to strings onsidered as term algebras, that is, to h�; �; (la)a2�i. It is well-known that the theory of arbitrary term algebras is deidable and admits QE [53, 44℄. However,adding the pre�x relation is not neessarily a trivial addition: for arbitrary term algebras withpre�x (subterm), only the existential theory is deidable, but the full theory is undeidable [68℄(similar results hold for other orderings on terms [23℄). The undeidability result of [68℄ requiresat least one binary term onstrutor; our results indiate that in the simpler ase of strings onereovers QE with the pre�x relation.3.2.1 A Normal Form for SWe start with a result that gives a normal form for formulae of FO(S).For that, we need the following prediates, introdued in [52℄. For eah L � ��, let PL be the setof pairs (x; y) of strings suh that x � y and y� x 2 L. The following lemma is obvious, sine it iswell-known that star-free sets are �rst-order de�nable on string models [54℄.3.3 Lemma For eah star free language L, there is a formula 'L(x; y) in FO(S) whih de�nes PL.We now give a normal form result for FO(S).3.4 Proposition Every formula  (~x) in FO(S) an be e�etively transformed into an equivalentformula whih is a disjuntion of formulae of the form(~x) ^ Æ(~x);where (~x) is a omplete tree-order desription over ~x and Æ(~x) is a onjuntion of formulae of theform 'L(t(~x); t0(~x)), where L is star-free, eah of t(~x) and t0(~x) is either � or a term of the formxi u xj , and (~x) implies that t0(~x) is an immediate suessor of t(~x) in the tree-order.Proof. The proof is by indution on the struture of  . The base ase of the indution is handledby noting that the atomi formulae are binary, and the basi formulae x � y and and y = x � a aresimple ases of 'L(x; y).Note that for any onjuntion �(~x) of formulae of the form t1(~x)f�;=gt2(~x) and their negations(where t1; t2 are u; �-terms), there are �nitely many omplete tree order desriptions i; i 2 I over ~x15



whih are onsistent with �, and furthermore, all suh i's an be e�etively found. Thus, any on-juntion of two formulae in the normal form, �1(~x)^�2(~x), an be put in the form Wi2I i(~x)^�(~x),where �(~x) is a onjuntion of formulae 'L(t(~x); t0(~x)). This is almost in the normal form, but imay not imply that t0(~x) is an immediate suessor of t(~x) in the tree-order. If that is the ase,hoose some term t00(~x) suh that t(~x) � t00(~x) � t0(~x). By a deomposition argument similar to theone used in the proof of Theorem 4.4 in [67℄, there exists a �nite sequene of pairs of star-free lan-guages (L0j ; L00j ) suh that 'L(t(~x); t0(~x)) is equivalent to Wj('L0j (t(~x); t00(~x)) ^ 'L00j (t00(~x); t0(~x))).We an now propagate disjuntion and repeat the proess until for all formulae of the form'L(t(~x); t0(~x)), i implies that t0(~x) is an immediate suessor of t(~x). This shows that any Booleanombination of formulae in the normal form an be put in the normal form itself.Thus, the only nontrivial ase is  = 9x �(x; ~y). By indution, we an assume that � is in therequired form. So we have  = 9x _i (i(x; ~y) ^ ĵ Æij(x; ~y));where the i are tree-order desriptions, and the Æij(x; ~y)) are of the form 'L(t(x; ~y); t0(x; ~y)). Thus,it suÆes to show how to eliminate x from �(~y) = 9x (x; ~y) ^Vj 'Lj (tj(x; ~y); t0j(x; ~y)) where  isa omplete tree-order desription, all Ljs are star-free, and eah tj; t0j is a �;u-term, suh that implies that t0j is an immediate suessor of tj in the tree-order. We an further assume without lossof generality that for every pair of terms tj; t0j , there is at most one formula of the form 'Lj (tj ; t0j)in the onjuntion (if not, one an take the intersetion of all the languages in suh formulae forthese two terms, whih will still be star-free). Furthermore, assume  sets one of the yl to � (if not,add an extra variable and set it to � in ). Let 0(~y) be the restrition of  to ~y (that is, ompletetree-order desription of Tree(~y) implied by ).We now onsider four ases, depending on the relationship between x and Tree(~y) whih is impliedby (x; ~y). First, assume that (x; ~y) implies that x is a node in Tree(~y), that is, � or yi u yj forsome i; j. In this ase every term of the form x u yk an be rewritten as a term that only uses ~yvariables, and every formula of the form 'Lj (tj(x; ~y); t0j(x; ~y)) is thus equivalent to a disjuntionof formulas 'Lj (�j(~y); � 0j(~y)), where �j; � 0j are the result of eliminating x from tj ; t0j . Thus, � isequivalent to a disjuntion of formulas of the form 0(~y) ^Vj 'Lj (�j(~y); � 0j(~y)).In the seond ase, (x; ~y) implies that x is not a pre�x of any yk from ~y, and that the meet of xand ~y is a node yi u yj in Tree(~y). In this ase we may have a formula of the form 'L(yi u yj; x) asa onjunt in �. The ase is handled just as the previous one, exept that we need to deal with theformula 'L(yi u yj; x) (whih is the only formula in this ase that mentions x). The existene of xsatisfying it is guaranteed i� there exists a string in L with a �rst symbol a suh that (yi u yj) � ais not a pre�x of any string in ~y. Hene we an replae 'L(yi u yj; x) by_a k̂ :'a��(yi u yj; yk);where the onjuntion is over all k for whih yk is an immediate suessor of yiuyj in the tree-orderand the disjuntion is over all symbols a for whih L \ a�� 6= ;.For the remaining two ases, we need the fat that star-free languages are losed under onate-nation. Hene, for star-free languages L0 and L00 there exists a star-free language L suh that the16



following is true: for any two strings s0 � s1, it is the ase that there is a string s with s0 � s � s1,s� s0 2 L0 and s1 � s 2 L00 i� s1 � s0 2 L.The proof is straightforward from the fat that star-free languages are preisely those �rst-orderde�nable in string models [54℄.Next, we onsider the ase when  implies that x is in the pre�x losure of ~y, but not a node ofTree(~y). That is, we have two nodes s0 = yi u yj; s1 = yk u yl of Tree(~y) suh that there are noother nodes of Tree(~y) between them, and s0 � x � s1. Notie that any �;u-term t in x; ~y thatinvolves x an be rewritten as an equivalent term � in variables ~y or by x. Thus, there are at mosttwo formulae of the form 'Lj where terms mention x: these are 'L0(s0; x) and 'L00(x; s1) for somestar-free L0; L00. Hene, �(~y) is equivalent to0(~y) ^ m̂ 'Lm(�m(~y); � 0m(~y)) ^ 9x ((s0 � x � s1) ^ 'L0(s0; x) ^ 'L00(x; s0));where the big onjuntion is over formulae 'Lj and terms do not mention x. By the laim, thereis a star-free language L suh that 9x ((s0 � x � s1) ^ 'L0(s0; x) ^ 'L00(x; s0)) is equivalent tos1 � s0 2 L, that is, 'L(yi u yj; yk u yl), whih shows that �(~y) an be put in the required form.The last ase is when  spei�es that x is not in the pre�x losure of ~y, and the meet of x and Tree(~y)is a string s between two nodes of Tree(~y). That is, for two onseutive nodes s0 = yiuyj; s1 = ykuylof Tree(~y) we have s0 � xu s1 � s1. In partiular, xu s1 = xu yk = xu yl. We thus have formulae'L1(s0; xuyk); 'L2(xuyk; yluyk) and 'L0(xuyk; x) as onjunts of �, for some star-free languagesL1; L2; L0. We may assume that other subformulae of the form 'L do not mention x. Let �(~y) bethe onjuntion of all those other subformulae. Then �(~y) is equivalent to_a2� 9z0(~y) ^ (s0 � z � s1) ^ �(~y) ^ 'L1(s0; z) ^ 'L2\(a��)(z; s1) ^ 9x(z � x ^ 'L0�a��(z; x))(z plays the role of xu s1, and the disjuntion ensures that the �rst letters of s1 � z and x� z aredi�erent). Let �0 = fa 2 � j L0 � a�� 6= ;g. Then we obtain that �(~y) is equivalent to_a2�0 0(~y) ^ 9z(s0 � z � s1) ^ �(~y) ^ 'L1(s0; z) ^ 'L2\(a��)(z; s1);from whih z an be eliminated just as in the previous ase. This onludes the proof. 2We now give an illustration of the normal form. Suppose we have a formula  (x; y) = 9z (z �x^ z � y ^La(z)). In other words, there is a proper pre�x of xu y whose last letter is a. Let L bethe language that onsists of strings that have suh a pre�x. It is a star-free languages, sine it isde�nable by an FO formula over string models: 9i9j (i < j ^ Pa(i)).To produe the normal form for  , we onsider four di�erent possibilities for x and y: x = y, x � y,y � x, and x 6� y; y 6� x; x 6= y, and for eah we state that the meet of x and y, in the orrespondingtree, belongs to L. That is, the formula is:�(� � x ^ x = y) ^ 'L(�; x)�_ �(� � x ^ x � y) ^ 'L(�; x)�_ ��� � y ^ y � x) ^ 'L(�; y)�_ ��� � x u y ^ :(x � y) ^ :(y � x) ^ :(x = y)) ^ 'L(�; x u y)� :17



3.2.2 Quanti�er EliminationLet S+ be the expansion of S to the signature that ontains �, u and a binary prediate PL foreah star-free language L. Note that S+ is a de�nable expansion of S, as all additional funtionsand prediates are de�nable. From the normal form we now immediately obtain:3.5 Theorem S+ admits quanti�er elimination.Remark. As mentioned above, there is no need to nest the u-operator. Therefore, S+ an beturned into a relational signature that admits quanti�er elimination as follows. For eah star-freeL, let P 0L be the set of tuples (s1; s2; s3; s4) of strings for whih PL(u(s1; s2);u(s3; s4)). Note,that u(s1; s2) � u(s3; s4) an be expressed as P��(u(s1; s2);u(s3; s4)). It is straightforward tohek that this signature admits quanti�er elimination. In the same way, the quanti�er eliminationresults in the remainder of the paper an be turned into quanti�er-elimination results in a relationalsignature.Note also that S+ ould be onsidered as an expansion of S with either funtions la or prediatesLa in the signature. In the latter ase, prediates La are not needed as La(x) i� P��a(�; x).Another orollary of the normal form is that in the language of S, it suÆes to use only boundedquanti�ation. That is, we introdue bounded quanti�ers of the form 9x � y and 8x � y (where9x � y ' means 9x x � y^'), and let FOb(S) be the restrition of FO(S) to formulae '(y1; : : : ; yk)in whih all quanti�ers are of the form Qx � yi. From the normal form and the fat that eah 'Lan be de�ned with bounded quanti�ers, we obtain:3.6 Corollary FOb(S) = FO(S).Finally, we haraterize S-de�nable subsets of �� and (��)k. Given a subset R � (��)k and apermutation � on f1; : : : ; kg, by �(R) we mean the set f(s�(1); : : : ; s�(k)) j (s1; : : : ; sk) 2 Rg.3.7 Corollarya) A language L � �� is de�nable in S i� it is star-free.b) The lass of relations de�nable over FO(S) is the minimal lass ontaining the empty set, f�g,fag, for a 2 �, �, u, and losed under Boolean operations, Cartesian produt, permutation,and the operation � de�ned by L1 � L2 = f(s1; s1 � s2) j s1 2 L1; s2 2 L2g for L1; L2 � ��.Proof. a) S+ formulae in one free variable are Boolean ombinations of PL(�; x), for L star-free,and thus they de�ne only star-free languages.b) For one diretion notie that �, fag, �, u are de�nable in FO(S), and that FO(S) is losedunder Boolean operations, permutation and Cartesian produt. The losure under � is an easyonsequene of Lemma 3.3 as L1 � L2 orresponds to f(x; y) j 'L1(�; x) ^ 'L2(x; y)g. The otherdiretion follows from the normal form. 2Note that the projetion operation is not needed in the losure result above.18



3.2.3 AutomataWe now give an automaton model haraterizing de�nability in FO(S). This automaton modelorresponds exatly to the ounter-free variant of regular pre�x automaton as de�ned in [4℄.Let us reall the de�nition of regular pre�x automata. Let A be a �nite non-deterministi automatonon strings with state set Q, transition relation Æ and initial state q0. We onstrut from A anautomaton Â = (�; Q; q0; F; Æ) aepting n-tuples ~w = (w1; � � � ; wn) of strings in the following way.F is a subset of Qn whih denotes the aepting states of Â. Let pre�x (~w) be the set of all pre�xesof all wi. A run of Â over ~w is a mapping h from pre�x (~w) to Q whih assigns to every node� 2 pre�x (~w) a state q 2 Q suh that h(�) = q0 and, � = la(�) implies h(�) 2 Æ(h(�); a). The runis aepting if (h(w1); � � � ; h(wn)) 2 F . The n-tuple ~w is aepted by Â if there is an aepting runof Â over ~w. See [4℄ for more details.For eah �nite non-deterministi automaton A a orresponding automaton Â is alled a regularpre�x automaton (RPA). The subset of (��)n, n 2 N, it de�nes is alled a regular pre�x relation(RPR).We say that Â is ounter-free (CF-PA) if A is ounter-free. The following shows that the relationsde�nable in FO(S) are exatly those reognizable by a CF-PA.3.8 Proposition A relation is de�nable in FO(S) if and only if it is de�nable by a ounter-freepre�x automaton.Proof. One diretion follows from Corollary 3.7 as it is easy to verify that ounter-free pre�xautomata an reognize the empty set, f�g, fag a 2 �, f(u; v) j u � vg, f(u; v; w) j uu v = wg, andare losed under Boolean operations, Cartesian produt, permutation, and �.For the opposite diretion let Â be a CF-PA aepting the relation R of arity n. We show that Ran be de�ned by an FO(S) formula '. Let Q be the set of states of A. If q1; q2 are two states inQ, let L(q1; q2) be the set of strings w suh that A an get from state q1 to state q2 by reading w.Beause A is ounter-free L(q1; q2) is a star-free language.The formula ' is a disjuntion over formulae (~x) ^  (~x), where  yles through all ompletetree-order desriptions. Eah formula  (~x) is a disjuntion over all possible assignments of statesto the (at most 2n) strings of Tree(~x). For eah suh assignment it heks that the vetor of statesat ~x is aepting and that the states are onsistent, i.e., that, for eah pair (y; z) of suessiveelements of Tree(~x), the path from y to z ful�lls PL(q1; q2) where q1 and q2 are the states at y andz in the assignment under onsideration, respetively. 23.2.4 VC-dimension and IsolationWe de�ned the notions of isolation and VC dimension in Setion 2; these notions are very importantfor the database part of the paper, as they provide strong bounds on the expressiveness of variousrelational aluli. The notion of �nite VC-dimension, oming originally from statistis and mahinelearning [5℄, is of independent interest, as it states that families de�nable over some strutures onstrings ould be learned e�etively. 19



We have seen that Slen has in�nite VC-dimension. It turns out that all other strutures we onsiderhere, have �nite VC-dimension. To prove this, we have to introdue some new mahinery, whih ispresented next. After that, we show that S has �nite VC-dimension.3.9 Lemma Let M be a model with the isolation property. Then its de�nable families have �niteVC-dimension.Proof. We give two proofs of this result, one is omplexity-theoreti and one is model-theoreti. Westart with the omplexity-theoreti proof. Assume that M does not have �nite VC dimension. By[51℄ it has the independene property, and by [63℄, there is a single formula '(~x; ~y) (in fat, '(~x; y))that has the independene property: that is, for every n, there is a set Fn �M of size n suh thatfor every X � Fn, there is ~xX suh that for any y0 2 Fn, '(~xX ; y0) i� y0 2 X.Next onsider an expansion of M with one unary prediate U , and one binary prediate E. Let �be 8v; w�E(v; w)! (U(v) ^ U(w))�^ :9~s1; ~s2� 8vU(v)$ ('(~s1; v) _ '(~s2; v))^ 8v; w (U(v) ^ U(w) ^ '(~s1; v) ^ '(~s2; w))! :E(v; w) � :The �rst onjunt says that E is a graph whose nodes are in the set U . The seond says that,assuming U � Fn, there annot be two subsets of U suh that there are no E-edges between them.Thus, if U is a �nite subset of Fn, � says that E is onneted.The isolation property [8, 32℄ implies that � an be expressed by a sentene 	 of the form Qz1 2U : : : Qzl 2 U�(~z) over all �nite U , where � is a Boolean ombination of E;U -atomi formulae,and formulae (~z) in the language of M .Next, for eah n, �x a 1-to-1 mapping � : f1; : : : ; ng ! Fn and for eah  appearing in 	, de�neP n (~z) on f1; : : : ; ng to ontain all the tuples ~n suh that (�(~n)) is true. Let then 	n be thesentene in the language of E and all P n of the form Qz1 : : : Qzl�0 where �0 is obtained from �by replaing eah U(�) by true, and eah (~z) by P n (~z). It then follows that for a graph E onf1; : : : ; ng, E j= 	n i� E is onneted. However, this implies that onnetivity is in non-uniformAC0, whih is false [26℄. This onludes the proof.Seond proof. We now give another, model-theoreti proof. For a formula '(~x; ~y) and set A � M ,a '-type over A is a maximal onsistent (w.r.t. Th(M)) set of formulae of the form '(~x;~a) with ~aa tuple over A. For ~ inM and A as above, we an then talk about the '-type of ~ over A, denotedtp'(~=A).Let '(~x; ~y) be a formula over M . We next show that there are integers n and K suh that for any�nite set A, there are at most KjAjn '-types over A.To prove this we �rst laim that for eah ' there is a formula '(~x; ~z) and an integer n suh thatfor every �nite set A, and any vetor ~s, there is an n-element subset X of A suh that tp'(~s=A) isisolated by tp'(~s=X).Indeed, assume that for some ' there was no suh n and . Then for eah  and eah n there existsa �nite set An and a vetor ~sn suh that for any �nite subset X of An of size < n, tp'(~sn=An ) is notisolated by tp(~sn=X). Then, by ompatness, we get a pseudo-�nite set W (the ultraprodut ofthe (An )n2N) and a vetor ~s (the ultraprodut of the (~sn )n2N) in a model of Th(M) suh that for20



any �nite set X of W , tp'(~s=W) is not isolated by tp(~s=X). Then, by ompatness again, weget another model of Th(M) with a pseudo-�nite set W and ~s, suh that for any ountable subsetX of W , tp(~s=W ) is not isolated by tp(~s=X), whih ontradits isolation.Now let K be 2nj~zj . It is easy to see that n and K work. There are at most jAjn subsets X fromA of size n. For eah �xed set X of size n, there are at most nj~zj formulae of the form (~x;~e) with~e 2 X, and hene there are at most K -types over X. Sine the '-type of a vetor ~ from M isdetermined by the hoie of the set X whose -type isolates it and the -type of ~ over X, it followsthat there are at most KjAjn types.Now let C be the family de�nable by '(~x; ~y). If a �nite set A is shattered by members of C, thenthe number of '-types over A is 2jAj. Hene, arbitrarily large �nite sets annot be shattered by C.2Next, we show the following.3.10 Proposition Th(S) has the strong isolation property.Proof. Let M be a model of Th(S), W be a pseudo-�nite set of elements of M , and a 2 M . Weexhibit a �nite subset W0 of W suh that tpM (a=W0) isolates tpM (a=W ).Note that for eah �nite set X, the elements Meet(a;X);Meet�(a;X) and Meet+(a;X) an bedesribed by means of formulae of FO(S): Meet(a;X) is the largest pre�x of a whih is in the pre�xlosure of X, and Meet�(a;X), Meet+(a;X) are the nodes of Tree(X) (meets of two elements ofX) whih are losest to Meet(a;X). Hene, suh elements exist for W , sine W is pseudo-�nite.Let w1; w2; w3; w4 2 W be suh that w1 u w2 = Meet�(a;W ) and w3 u w4 = Meet+(a;W ). TakeW0 = fw1; w2; w3; w4g.We know that any formulae of FO(S) an be put in the normal form desribed in Proposition3.4. Thus a type of a over W is entirely de�ned by the tree struture of a [W and the pathsbetween de�nable nodes of that tree. If we �x W , we onlude that the paths between Meet(a;W ),Meet�(a;W ), Meet+(a;W ) and a ompletely de�ne tpM (a=W ). Beause tpM(a=W0) already de-sribes all the paths between Meet(a;W ), Meet�(a;W ), Meet+(a;W ) and a, the result follows.2Combining Proposition 3.10 and Lemma 3.9, we onlude that the model S, unlike Slen, has learn-able de�nable families.3.11 Corollary Every de�nable family in S has �nite VC-dimension.3.3 A star-free algebra based on SleftWe now study an example of a star-free algebra, in whih the n-ary relations in the algebra aremore omplex than those de�nable over S. Reall that Sleft = h��;�; (la)a2�; (fa)a2�i; that is, inthis struture one an add haraters on the right as well as on the left.Without the pre�x relation, this struture was studied in [16, 60℄, as a model of queues. A quanti�er-elimination result was proved in [60℄, by extending quanti�er-elimination for term algebras (in fat[60℄ showed that term algebras with queues admit QE). However, as in the ase of S, whih di�ers21



from strings as terms algebras in that it has the pre�x relation, the pre�x relation ompliatesthings onsiderably.We start with the easy observation that FO(Sleft) expresses more relations that FO(S). Indeed,the graph of fa, Fa = f(x; a � x) j x 2 ��g is not expressible in FO(S), whih an be shown by asimple game argument. More preisely, given a number k of rounds, let n = 2k + 1 and onsiderthe game on the tuples (0n; 10n) and (0n+1; 10n). By Corollary 3.6 it is suÆient to play on thepre�xes of the partiipating strings. The dupliator has a trivial winning strategy on the strings10n and a well-known winning strategy on 0n versus 0n+1.3.3.1 Quanti�er EliminationLet S+left be the extension of Sleft with the same (de�nable) funtions and prediates we added toS+ (that is, a onstant � for the empty string, the binary funtion u for the longest ommon pre�x,the prediate PL(x; y) for eah star-free language L), and the unary funtion x 7! x � a, for eaha 2 � (whih is also de�nable).3.12 Theorem S+left admits quanti�er elimination.In the rest of the setion, we prove Theorem 3.12. Let 
S+ and 
S+left be the �rst-order signatureof S+ and S+left, respetively. Let M be an !-saturated model over 
S+left elementary equivalent toS+left. It suÆes to prove quanti�er elimination inM . Note that M an have both �nite and in�nitestrings.We next need the following standard result:Claim 1 If there exists a formula whih does not admit quanti�er elimination in M , then thereexist two tuples of elements in M whih have the same atomi type but not the same type.Proof of Claim 1. Let '(~x) 2 FO(S+left), and let Q enumerate all quanti�er free formulae over 
S+leftrealizable in M . Let �'(~x1; ~x2) be the type asserting V 2Q( (~x1)$  (~x2)) ^ :('(~x1)$ '(~x2)).We show that if ' is not equivalent to a quanti�er-free formula then �' is satis�ed in M . Towardsa ontradition assume �' is not satis�ed inM . SineM is !-saturated, by ompatness it followsthat there is a �nite set J � Q suh that8~x1 8~x2 [(î2J  i(~x1)$  i(~x2))! ('(~x1)$ '(~x2))℄holds in M . For K � J let �K be Vi2K  i ^Vi2J�K : i.Let G be fI � J jM j= 8~x �I(~x)! '(~x)g and � = WI2G �I . To get a ontradition we show that� is equivalent to ' in M . Let ~ be a tuple of M with M j= '(~). Let L = fi 2 J j M j=  i(~)g.If a tuple ~d from M satis�es �L then for eah i 2 J , M j=  i(~) $  i(~d). By the hoie of J wean onlude that M j= '(~) $ '(~d), hene M j= '(~d). Therefore L 2 G and M j= �(~). On theother hand, by the de�nition of G and � it follows immediately that M j= �(~) implies M j= '(~).Hene, ' and � are equivalent in M , the desired ontradition. The laim is proved. 222



Thus, to prove QE, we must show that every two tuples of elements of M that have the sameatomi type, have the same type.De�ne a nie term of 
S+left as a term of the form t(x) = x� a+ b (meaning (x� a) + b), where aand b are �nite strings.We de�ne two relations � and �1 on tuples (of the same length) of strings as follows.� ~ � ~d for n-tuples ~ and ~d i� for all sequenes i1; : : : ; ik from f1; : : : ; ng and all sequenest1; : : : ; tk of nie terms:atpS+(t1(i1); : : : ; tk(ik)) = atpS+(t1(di1); : : : ; tk(dik)) :� (0;~) �1 (d0; ~d) for n-tuples ~, ~d and strings 0; d0 i� for all sequenes i1; : : : ; ik from f1; : : : ; ngand all sequenes t1; : : : ; tk of nie terms:atpS+(0; t1(i1); : : : ; tk(ik)) = atpS+(d0; t1(di1); : : : ; tk(dik)) :Of ourse, (0;~) � (d0; ~d) implies (0;~) �1 (d0; ~d), as the identity is a nie term. We will show thatthese two relations oinide.We will show in Lemma 3.14 a stronger result than what is needed by Claim 1 in order to proveTheorem 3.12. Indeed we will show that � has the bak-and-forth property. In order to simplifythe strategy for the � game we �rst show in Lemma 3.13 that it is enough to have a strategy forthe �1 game. Lemma 3.13 is proved by rewriting rules on the atomi formulas that get rid of nieterms ontaining 0.3.13 Lemma If (0;~) �1 (d0; ~d), then also (0;~) � (d0; ~d).One the equivalene of �1 and � is established, we will show that they have the bak-and-forthproperty, from whih quanti�er-elimination will follow.Proof of Lemma 3.13. We start with a few observations. It is easy to see that for every atomiformula of FO(S+left), there is an equivalent FO(S+left) formula in whih every term is a meet of twonie terms (addition and subtration of t1 u t2 an be pushed bak into t1 and t2, while multiplemeets an be eliminated by adding disjuntions of tree-ordering formulae onsidering all possibleases). Notie also that atomi formulae of the form t � t0 where t and t0 are terms are equivalentto P��(t; t0), and t � t0 is equivalent to P�+(t; t0). Thus, we an assume that no symbols � and �our.We all a nie term t(x) = x� a+ b empty if a = b = �.The proof of Lemma 3.13 is done by rewriting atomi formulas in order to get rid of nie termsfrom one of the variables. We will proeed by a ase analysis based on the rewriting rules presentedin the next 4 laims.The �rst laim shows how to replae a single nie terms from a distinguished variable s0. The proofis straightforward.Claim 2 1. Let s; s0 be in M and let a; b be �nite strings and let L be star-free. Then PL(s; s0�a+ b) is true in M i� one of the following onditions holds.23



� s � b, and s0 � a+ (b� s) 2 L� a � s0, b � s and PL(s� b+ a; s0).Notie that in the �rst ase above s is �nite, and thus the ondition over s0 is expressiblein FO(S)).2. Let s; s0 be in M and let a; b be �nite strings and let L be star-free. Then PL(s� a+ b; s0) istrue in M i� one of the following onditions holds.� a 6� s, b � s0 and s0 � b 2 L;� a � s and PL(s; s0 � b+ a).The next laim shows how to get rid of terms of the form t(s) u s from distinguished variable s.Claim 3 Let s be an element of M , t a nie term over 
S+left. Let s0 = t(s) u s. There is aquanti�er-free FO(S+) formula 's;t(x; y) suh that 's;t(s; s0) and 8x 's;t(x; y)! y = xu t(x) holdin M .Proof of Claim 3. Let a, b �nite strings suh that t(x) = x� a+ b. If s0 = s u (s� a+ b) is �nite,then 's;t(x; y) is s0 = (x u (x � a + b)) ^ y = s0. Here, s0 = x u (x � a + b) an be expressed inFO(S) by (s0 � x) ^ (s0 � b + a � x) ^ V�2� :(s0 � � � x ^ s0 � � � b + a � x). If s0 is in�nite,then let n = jaj and m = jbj. We have b � s, a � s, and s[n + i℄ = s[m + i℄ for i 2 N. For givenn;m it is possible to de�ne an FO(S) formula  (x; y) whih is true if and only if y is maximalsuh that y � x, jyj > m, and x(n + i) = x(m + i), where i = jyj � m. Then we let 's;t(x; y)be a � x ^ b � x ^  (x; y). It is easy to verify that 's;t(s; s0) holds and that 's;t(x; y) impliesy = x u t(x). Finally, by quanti�er-elimination in FO(S+) 's;t an be made quanti�er-free. 2The following is the analog of the preeding laim for terms of the form t(s u s0).Claim 4 Let t; t0 be nie terms and L star-free. Assume that there are strings s, s0, s00 suh thatPL(t(s u s0); t0(s u s00)) holds. Then there is an FO(S) formula �(x; y; z) suh that �(s; s0; s00) holdsand suh that, for all r; r0; r00 in M , �(r; r0; r00) implies PL(t(r u r0); t0(r u r00)).Proof of Claim 4. Let t(x) = x� a+ b and t0(x) = x� a0+ b0. First of all, if PL(t(su s0); t0(su s00))holds then from Claim 2 we have either:1. t(s u s0) � b0 and (s u s00)� a0 + (b0 � t(s u s0)) 2 L, or2. a0 � s u s00, b0 � t(s u s0), and PL(t(s u s0)� b0 + a0; s u s00).Consider the �rst ase. Notie that it implies that t(s u s0) is a �nite string. Hene, the seondondition says that su s00 2 L0, for the star-free set L0 of strings z with z� a0+ (b0 � t(su s0)) 2 L.The �rst ondition holds i� (a) a is not a pre�x of s u s0 and b � b0 or (b) s u s0 is �nite in whihase t(s u s0) � b0 an be easily expressed in FO(S).Consider now the seond ase. The onditions a0 � su s00 and b0 � t(su s0) an be easily expressedin FO(S). It remains to express PL(t(s u s0) � b0 + a0; s u s00). As before, we an assume that the�rst term is nie, i.e., we only have to show how PL(t(s u s0); s u s00), where t(x) = x � a+ b, anbe expressed. 24



We distinguish two subases.If t(sus0) is �nite then the orresponding FO(S) formula is obtained similarly to the previous ase.Assume now t(s u s0) in�nite. In this ase, as s u s0 is a pre�x of s (and therefore s u s0 � s u s00or s u s00 � s u s0 holds), it is suÆient to express that the suÆx of s u s00 relative to its pre�x oflength js u s0j � jbj+ jaj is in L. This an learly be expressed in FO(S). 2Let '(x; y) be an FO(S) formula. If inM , there is at most one s0 for eah s suh that '(s; s0) holds,then we all ' funtional, as ' de�nes a partial funtion f' on M by f'(s) = s0 if '(s; s0) holds.Note that 's;t of Claim 3 is funtional. We all a term of the form f'(x) where ' is funtional a
S-funtion term, if for eah s in M , f'(s) � s. Let 
S++left be the signature obtained from 
S+leftby adding all 
S-funtion terms.The next laim shows that in attempting to eliminate terms with \�" from distinguished variabley, it suÆes to deal with terms of a partiularly simple form.Claim 5 Let s be an element of M . For every atomi FO(S+left) formula '(y; ~x) there is aquanti�er-free FO(S++left ) formula '0(y; ~x), suh that for all ~r from M , '(s; ~r) holds if and onlyif '0(s; ~r) holds. We an also ensure that y appears in '0 only in terms of the form t(y u t0(xi)),where t and t0 are nie terms, and in 
S-funtion terms t(f'(y)). Furthermore, we an arrangethat 
S-funtion terms in y are the only 
S-funtion terms in '0.Proof of Claim 5. As mentioned before, we an assume w.l.o.g. that ' only ontains terms of theform t1(v1)u t2(v2), where t1; t2 are nie and v1; v2 are from y; ~x. We �rst show, that every atomiformula  (t(y) u t0(xi); t00(y; ~x)) an be replaed by an equivalent formula 0(y; ~x) =_j  j(y; xi) ^  (tj(y u t0j(xi)); t00(y; ~x));where the  j are quanti�er-free FO(S) formulae and the tj; t0j are nie terms.Let t(y) be y � a + b and t0(xi) be xi � a0 + b0. To prove the above statement we onsider threeases.Case 1 b � b0. Then y � a+ b u xi � a0 + b0 is b if a 6� y and (y u (xi � a0 + (b0 � b) + a))� a+ b,otherwise.Case 2 b0 � b. Then y�a+buxi�a0+b0 is (y�a+(b�b0)) u xi�a0)+b0. There are two subases.Either (b� b0) � (xi� a0) and then y� a+ bu xi� a0+ b0 is ((y� a)u (xi� a0� (b� b0))) + band we proeed as in ase 1. Otherwise b 6� xi � a0 + b0 and therefore y � a+ b u xi � a0 + b0is (b u (xi � a0 + b0)).Case 3 b and b0 are inomparable. Then y � a+ b u xi � a0 + b0 is just b u b0.Next, we onsider formulae of the form  (t(y) u t0(y); t00(y; ~x)). In a ompletely analogous way, wean replae  by a formula  0 of the form  0(y; ~x) = Wj  j(y; xi) ^  (tj(y u t0j(y)); t00(y; ~x)). ByClaim 3, for eah j, there is a funtional FO(S) formula �j(y; x) suh that �j(s; su t0j(s)) holds andsuh that, for all r; r0 in M , �j(r; r0) holds only if r0 = r u t0j(r).Hene, eah subformula  (tj(y u t0j(y)); t00(y; ~x)) an be replaed by  (tj(f�j (y)); t00(y; ~x)).25



The same reasoning an of ourse be used to transform formulae  (t00(y; ~x); t(y) u t0(xi)) and (t00(y; ~x); t(y) u t0(y)). 2Now we return to the proof of Lemma 3.13. Assume (0;~) �1 (d0; ~d). Reall that by Theorem3.5, if two strings satisfy exatly the same atomi formulae of 
S+ , then they agree on all FO(S+)formulae.By Claim 5 it is enough to prove that if (0;~) �1 (d0; ~d) then (0;~) and (d0; ~d) agree on all atomi
S+left formulae that have one or two terms of the form t(y u t0(xi)) or t(f (y)), where t; t0 are nieterms.Let '(y; ~x) be an atomi S+left formula with two terms, where at least one of the terms is of theform t(yu t0(xi)) or t(f (y)). Assume that '(y; ~x) holds for (0;~) (the ase where '(y; ~x) holds for(d0; ~d) is ompletely analogous). Let t(z) = z � a+ b. We distinguish the following ases.Case 1. One term of ' is t(y u t0(xi)) or t(f (y)) and the other does not ontain y. Hene ' is ofone of the following forms:� PL(t(y u t0(xi)); t00(~x))� PL(t00(~x); t(y u t0(xi)))� PL(t(f (y)); t00(~x))� PL(t00(~x); t(f (y)))It follows from Claim 2 that in all these subases one an get rid of the t term, e.g., by adding�b+ a to the other term. It is important here that, for a nie term t1, t1(x) 2 L is an FO(S)expressible property. Then the laim follows from the assumption (0;~) �1 (d0; ~d).Case 2. ' is of the form PL(t1(yu t2(xi)); t3(yu t4(xj))). By Claim 4 there is an FO(S) formula �suh that �(0; t2(i); t4(j)) holds inM and �(r0; t2(ri); t4(rj)) implies PL(t1(r0ut2(ri)); t3(r0ut4(rj))), for all (r0; ~r) in M . By our assumption (0;~) �1 (d0; ~d) it follows that PL(t1(y ut2(xi)); t3(y u t4(xj))) holds also for (d0; ~d).Case 3. ' is of the form PL(t(y u t0(xi)); t00(f (y))) or of the form PL(t00(f (y)) u t(y; t0(xi))).Again by Claim 2 we an assume that t00 is empty. Reall that by de�nition of 
S-funtionterms f (y) � y and therefore f (y) u y = f (y). Hene, by applying Claim 4 (where wetake one term as empty and s = y) we get a FO(S) formula �(y; t0(xi)) suh that � holds for(0;~) and, whenever �(y; t0(xi)) holds for (d0; ~d), then also ' holds for (d0; ~d). Again the laimfollows from our assumption that (0;~) �1 (d0; ~d).Case 4. Both terms of ' are of the form t(f (y)). In this ase, we also get an equivalent FO(S)formula by �rst applying Claim 2 to get rid of one symbol t and then applying Claim 4.This onludes the proof of Lemma 3.13. 2Now we ome bak to the proof of Theorem 3.12. We atually prove the following whih is strongerthan what is needed for quanti�er-elimination.3.14 Lemma � has the bak-and-forth property in M .26



As mentioned at the beginning of the proof of the theorem, the statement of the theorem followsfrom the lemma, as eah type of the form atpS+(t1(i1); : : : ; tk(ik)) is also an atomi type of S+left.Let ~ and ~d suh that ~ � ~d. Our goal is to show, that for eah 0, there is d0 suh that (0;~) � (d0; ~d).By Lemma 3.13 it is enough to �nd d0 suh that (0;~) �1 (d0; ~d).By ompatness, it suÆes to show that for all �nite sequenes t1; : : : ; tk of terms and all sequenesi1; : : : ; ik there is a d0 suh thatatpS+(0; t1(i1); : : : ; tk(ik)) = atpS+(d0; t1(di1); : : : ; tk(dik)):Let therefore suh sequenes and 0 be �xed. Let T be Tree(ftj(ij ) j j � kg). Let T 0 be theorresponding tree for ~d. Let w = Meet(0; T ), N = Meet+(0; T ) and P = Meet�(0; T ).Note that both of these last two strings are given by meets of terms in + and � over ~. Let N 0be the image of N in the other model (i.e. the orresponding term in ~d), and P 0 be the image ofP . Notie that the indutive hypothesis ~ � ~d guarantees that the ordering relation between meetsof these terms in T is preserved when we look at the image terms over ~d and T 0. The indutivehypothesis also tells us that (N;P ) and (N 0; P 0) are equivalent as string models (that is, modelsin the usual string signature plus an extra prediate for the shorter string); this is beause theseterms satisfy all the same atomi formulae of S+, whih inlude all PLs.Now let w0 be between N 0 and P 0 suh that the pairs (N;w) and (N 0; w0), and (w;P ) and (w0; P 0),are elementary equivalent as string models. Suh a string w0 exists beause quanti�er eliminationover S+ (Theorem 3.5) implies that (M;N;P ) and (M;N 0; P 0) are elementary equivalent in thelanguage of S, and hene for any w there is w0 suh that the equivalene extends to (M;N;P;w)and (M;N;P;w0). It is lear that suh a w0 suÆes.Now, let d0 = w0 � (0 � w). We obviously have that (w; 0) and (w0; d0) are elementary equivalentas string models. We an now hek that d0 is what we want. We have to show that Meet(d0; T 0),Meet�(d0; T 0) and Meet+(d0; T 0) are w0, P 0 and N 0 respetively, and that for every star-free languageL we have: PL(w0; d0) i� PL(w; 0), PL(P 0; w0) i� PL(P;w), and PL(w0; N 0) i� PL(w;N). All of theseeasily follow from the de�nition of d0.This �nishes the proof of Lemma 3.14 and thus of Theorem 3.12. 2From the previous theorem we get the following orollaries. First, the bak-and-forth property of�1 gives us the following normal form for FO(S+left) formulae.3.15 Corollary For every FO(Sleft) formula �(x; ~y) there is an FO(S) formula �0(x; ~z) and a �niteset of nie S+left terms ~t suh that 8x~y (�(x; ~y)$ �0(x;~t(~y)))holds in Sleft.Then Corollary 3.15 for the empty tuple ~y and Corollary 3.7 imply:3.16 Corollary Subsets of �� de�nable over Sleft are preisely the star-free languages.27



For formulae in the language of Sleft (as opposed to S+left), we an show that bounded quanti�ationsuÆes, although the notion of bounded quanti�ation is slightly di�erent here from that used inthe previous setion. Let Np(s) be the pre�x-losure of fs� s1 + s2 j js1j; js2j � pg. Clearly Np(s)is de�nable from s over Sleft. We then de�ne FO�(Sleft) as the lass of FO(Sleft) formulae '(~x) inwhih all quanti�ation is of the form 9z 2 Np(xi) and 8z 2 Np(xi), where xi is a free variable of' and p � 0 arbitrary.3.17 Corollary FO�(Sleft) = FO(Sleft).Isolation and VC-dimension We now show that the results about isolation and VC-dimensionextend from S to Sleft.3.18 Proposition Th(Sleft) has the isolation property.Proof. Let M be a model of Th(Sleft), W be a pseudo-�nite set of elements of M , and a 2M . Letp = tpM (a=W ). We exhibit a ountable subset W0 of W suh that tpM (a=W0) isolates tpM (a=W ).Let ~e; ~f be �nite tuples of �nite strings, and let W (~e; ~f) = fw � e + f j w 2 W; e 2 ~e; f 2 ~fg.Let w1(~e; ~f); w2(~e; ~f); w3(~e; ~f); w4(~e; ~f) be elements of W suh that for some e1; e2 in ~e and somef1; f2 2 ~f , (w1(~e; ~f)� e1 + f1) u (w2(~e; ~f)� e2 + f2) = Meet�(a;W (~e; ~f))and likewise for some e3; e4; f3; f4 in ~e; ~f(w3(~e; ~f)� e3 + f3) u (w4(~e; ~f)� e4 + f4) = Meet+(a;W (~e; ~f)):Take W0 =[fw1(~e; ~f); w2(~e; ~f); w3(~e; ~f); w4(~e; ~f)g;where the union is taken over all �nite tuples of �nite strings. Clearly W0 is ountable. We laimthat tpM (a=W0) isolates tpM(a=W ).Suppose we have a0 with tpM(a0=W0) = tpM (a=W0). Note that by onstrution ofW0 and de�nitionof tpM(a=W0) this implies that a0 has the same Meet� and Meet+ over eah W (~e; ~f) that a does.This also implies that the type of a0�Meet(a0;W (~e; ~f)) is the same as for a, and similarly for the typeof Meet+(a0;W (~e; ~f))�Meet(a0;W (~e; ~f)) and the type of Meet(a0;W (~e; ~f))�Meet�(a0;W (~e; ~f)).We want to show that tpM(a0=W ) = tpM(a=W ). By quanti�er elimination (Theorem 3.12) overSleft, it suÆes to show that they have the same atomi types over S+left.From the remark above that a and a0 have the same meets and the same paths between those meetsand Meet+;Meet� and themselves it follows that whenever an atom of the form PL(t1 u t2; t3 u t4)holds for a, where the ti are either a or nie terms over ~w and where t1 u t2 is a diret predeessorof t3 u t4 in the tree de�ned by W , then it also holds for a0. By the normal form for S+ queries(Proposition 3.4) we an onlude atpS+(a; ~w � ~e + ~f) = atpS+(a0; ~w � ~e + ~f), for all �nite ~e; ~f .Hene, by Claim 3.13 we get that tpM (a0=W ) = tpM (a=W ) have the same atomi types over S+left,as required. 2By Lemma 3.9, we obtain the following.3.19 Corollary Every de�nable family in Sleft has �nite VC-dimension.28



3.4 A regular algebra extending SThe previous setions presented star-free algebras with attrative properties. We now give anexample of a regular algebra that has signi�antly less expressive power than the rih strutureSlen, and whih shares some of the nie properties (isolation, �nite VC, QE) of the star-free algebrasin the previous setions.This algebra an be obtained by onsidering two possible ways of extending FO(S): the �rst isby adding the prediates PL for all regular languages L; that is, prediates PL(x; y) whih holdfor x � y suh that y � x 2 L, where L is a regular language. The seond extension is by usingmonadi-seond order logi instead of only �rst-order logi. It turns out that these extensions de�neexatly the same algebra. We show this, and also show that the resulting regular algebra sharesthe QE and VC-dimension properties of the star-free algebras de�ned previously.Let Sreg = h��;�; (la)a2�; (PL)L regulari. Sine it de�nes arbitrary regular languages in ��, it is aproper extension of S. Every FO(Sreg)-de�nable set is de�nable over Slen, beause the prediatesPL are de�nable in Slen (the easiest way to see this is by using the haraterization of Slen de�nableproperties via letter-to-letter automata). Thus, we have:3.20 Proposition Subsets of �� de�nable over Sreg are preisely the regular languages.Let S+reg be the extension of Sreg with � and u. Most of the results about S and S+ from Setion3.2 an be straightforwardly lifted to Sreg and S+reg. For example, the normal form Proposition3.4 holds for Sreg if one replaes \star-free" with \regular": the proof given in Setion 3.2 appliesverbatim. In fat, similar normal form arguments, in a slightly di�erent form, were given in [52, 66℄.We now obtain:3.21 Theorem (see [52℄) S+reg admits quanti�er elimination.The normal form result also shows that neither the funtions fa nor the prediate el are de�nable inSreg (the latter an also be seen from the fat that Sreg has QE in a relational signature of boundedarity, and Slen does not; for inexpressibility of fa it suÆes to apply the normal form results topairs of strings of the form (1 �0k; 0k): sine 1 �0k u0k = �, it is impossible to hek if two sequenesof zeros have the same length). One an also show, as in the ase of S, that bounded quanti�ationover pre�xes is suÆient.Furthermore, there is a lose onnetion between FO-de�nability over Sreg and MSO-de�nabilityover S. It was shown in [52℄ that MSO(S) = FO(Sreg):This result was used in [52℄ to show that S2S and WS2S de�ne the same relations over the in�nitebinary tree. Here S2S refers to the monadi seond-order theory of the in�nite binary tree, andWS2S to the weak monadi theory (that is, monadi seond-order quanti�ation is restrited to�nite sets). Note that it follows from [58℄ that sets, rather than arbitrary relations, de�nable inS2S and WS2S, are the same.From the result of [52℄ it thus follows that the subsets of �� de�nable in MSO over Sreg are preiselythe regular languages. 29



3.4.1 Automata model, isolation, and VC dimensionIt was proved in [4℄ that Regular Pre�x Relations (RPR) (those de�nable by Regular Pre�x Au-tomata (RPA), introdued in Setion 3.2) are exatly those de�nable in MSO(S). Thus, the resultsof [4℄ and [52℄ give a haraterization of FO(Sreg).3.22 Corollary The relations de�nable in FO(Sreg) are exatly the RPR relations. Thus eahrelation de�nable in FO(Sreg) is reognizable by a RPA.The proof of the isolation property for S (Proposition 3.10) is una�eted by the hange fromstar-free PL to regular PL. Thus, we obtain:3.23 Corollary Th(Sreg) has the isolation property, and de�nable families of Sreg have �nite VC-dimension.3.5 A regular algebra extending SleftWe now give a �nal example of a regular algebra. Let Sreg;left be the ommon expansion of Sleftand Sreg, that is, h��;�; (la)a2�; (fa)a2�; (PL)L regulari. Sine Sreg annot express the funtionsfa, and Sleft annot de�ne arbitrary regular sets, we see that Sreg;left is a proper expansion of Sregand Sleft. Furthermore, all Sreg;left-de�nable sets are Slen-de�nable; the �niteness of VC dimensionfor Sreg;left, shown below, implies that this ontainment is proper, too.Let S+reg;left be the ommon expansion of S+left and Sreg, that is, the expansion of Sreg;left with � andu. The tehniques of the previous setions an be used to show the following:3.24 Theorem S+reg;left has quanti�er-elimination. Furthermore, Th(Sreg;left) has the isolationproperty, and de�nable families in Sreg;left have �nite VC-dimension.Proof. We sketh the proof of QE. This is done by simply mimiking the proof of Theorem 3.12,but with the role of S played now by Sreg. One again, we work in a saturated modelM , and de�nethe equivalene relations � and �1 as in the proof of Theorem 3.12, but the atomi type is withrespet to S+reg. We then show that �1 and � are the same. This is done by proving the followingmodi�ation of Claims 2, 3, 4, and 5, by substituting uniformly S+reg;left for S+left, and Sreg for S.The property of star-free languages used in eah these laims is just that if L is star-free, and aand b are strings, then the set of x suh that x� a+ b 2 L is also star-free. This learly holds withregular substituted uniformly for star-free.We then show that � has the bak-and-forth property in M , whih implies QE. The proof isthe same as before, but instead of elementary equivalene of string models in �rst-order logi, weonsider their elementary equivalene in monadi seond-order logi. 2Similarly to Sleft, we derive from the proof of Theorem 3.24 the following normal form for Sreg;leftformulae:3.25 Corollary For every FO(Sreg;left) formula �(x; ~y) there is an FO(Sreg) formula �0(x; ~z) and a�nite set of nie S+left terms ~t suh that8x~y �(x; ~y)$ �0(x;~t(~y))30



holds in Sreg;left.As we have seen earlier that MSO(S) = FO(Sreg), one might ask if a similar result holds wheninsertion on the left is allowed; that is, whether MSO(Sleft) = FO(Sreg;left). Sine the MSO-theoryof Sleft is undeidable [67℄, there is ertainly no e�etive translation. And in fat one an easilysee that the two are di�erent. Sine the funtion g : x 7! 0 � x � 1 is FO-de�nable in Sleft, one aneasily see that even weak MSO(Sleft), where set quanti�ation is restrited to �nite sets, de�nesf0n1n j n � 0g, a non-regular set.We onlude this setion with a remark showing that arithmeti properties de�nable in struturesS;Sleft;Sreg;Sreg;left are weaker than those de�nable in Slen. As we mentioned earlier, under thebinary enoding, Slen gives us an extension of Presburger arithmeti; namely, it de�nes + and V2,where V2(x) is the largest power of 2 that divides x. But even Sreg;left is muh weaker:3.26 Proposition Neither suessor, nor order, nor addition, are de�nable in Sreg;left (and henein S;Sreg;Sleft).Proof. Sine order is de�nable from addition, and suessor from order, it suÆes to show thatsuessor is not de�nable. Let xk = 10k; yk = 1k; that is, under the binary enoding, x is thesuessor of y. We show that f(xk; yk) j k > 0g is not de�nable in Sreg;left.Assume it were; by Corollary 3.25 we get a set of nie terms ti(y) = y � ai + bi and a formula�(x; ~z) over Sreg suh that �(x;~t(y)) is true i� for some k, x = xk and y = yk. For suÆiently largek, ~t(yk) onsists of strings of the form i � 1k�pi where i and pi depend on ~t only. As i � 1k�pi � 1piis i � yk, there is a formula �(x; z1; : : : ; zl) of Sreg (where l is the length of ~t) suh that �(x; ~z) istrue i� for some big enough k, x = xk and zi = i � yk.We now show that for suÆiently large k, depending on �, if �(xk; 1yk; : : : ; lyk) is true, then forsome m > k, �(xm; 1yk; : : : ; lyk) is true. Clearly this will suÆe. For this we use the normal formfor Sreg whih is analogous to Proposition 3.4 exept that L in PL ould be regular. Note that forsuÆiently large k0, and any k;m � k0, Tree(xk;~ � yk) is isomorphi (as a tree) to Tree(xm;~ � yk).In partiular, the predeessor of xk (and xm) in suh a tree is its meet with one of i �yk, say 1 �yk.Suh a meet is 1 if 1 = �, or a pre�x of 1 if 1 6= �. Thus, xk � (xk u 1yk) is either xk or a string0p for p � k � j1j, with p depending only on 1. (The same is true when one replaes k by m).Let PL be the formula desribing the segment (xu 1y; x) in the normal form for � (we may assumew.l.o.g. that there is only one suh formula; if there are several, one an ombine them into oneby taking the intersetion of the languages). Pik k1; k2 > k0 suh that xk1 � (1yk1 u xk1) is inL i� xk2 � (1yk1 u xk2) is. It follows from the desription of those meets given above that suhk1; k2 always exist. Now it is immediate from the normal form result that �(xk1 ; 1yk1 ; : : : ; lyk1)i� �(xk2 ; 1yk1 ; : : : ; lyk1), whih �nishes the proof. 2Figure 1 and Table 1 summarize the results of this setion.4 String query languagesThe goal of this setion is to study relational aluli based on the �ve strutures onsidered in theprevious setion. Note, however, that most of the previous researh on string query languages used31
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Figure 1: Relationships between S;Sleft;Sreg;Sreg;left, and Slen.

Struture Signature Expansion with Expansionquanti�er-elimination nameSlen �; (la)a2�; el all unary relations & S(1;2)lenbinary funtionsS �; (la)a2� �; (la)a2�; �;u; S+(PL)L star�freeSleft �; (la)a2�; (fa)a2� �; (la)a2�; (fa)a2�; �; S+left(x� a)a2�;u; (PL)L star�freeSreg �; (la)a2�; (PL)L regular �; (la)a2�; �;u; (PL)L regular S+regSreg;left �; (la)a2�; (fa)a2�; (PL)L regular �; (la)a2�; (fa)a2�; �; S+reg;left(x� a)a2�;u; (PL)L regularDe�nition of PL: (x; y) 2 PL i� x � y and y � x 2 L.Table 1: Summary of quanti�er-elimination results
32



onatenation as the main string operation. We give a few simple results indiating that our maingoals of getting a low omplexity language with an adequate notion of relational algebra annot beahieved if we inlude onatenation as a primitive. After that, we explain how operations used inS;Sleft;Sreg;Sreg;left;Slen are related to SQL string operations, and present properties of relationalaluli based on these strutures. Most of these are based on model-theoreti properties of the �vestrutures established in Setion 3.4.1 Problemati onatenationMost earlier papers onsidered relational alulus with onatenation RConat , that is,RC(SC; h��;
i) where 
 has the operation of onatenation, and onstant symbols for eah a 2 �.This language is extremely attrative in terms of ompositionality: given queries Q and Q0 re-turning sets of strings, one an substitute Q and Q0 within regular-expressions to form new LIKEqueries. However, as notied in [40℄, for � = f0; 1; ℄g, RConat expresses all omputable querieson databases ontaining strings from f0; 1g� (see [61℄ for a proof). In fat, it is easy to show asomewhat stronger result whih only requires two letters in �.4.1 Proposition Let � ontain at least two letters. Then RConat expresses all omputablequeries on databases over ��.Proof. We �rst show that all omputable prediates on f0; 1g� are expressible. We follow thelines of [61℄, Chapter III, Theorem 12.4, whih uses an extra symbol ℄ to enode a Turing mahineomputation in RConat . Let M be a Turing mahine. Let Q = fq2; � � � ; qmg be the set of statesof M , q2 being the initial state. At step i of the exeution of M over an input x, the on�gurationof M an be represented by a string ui℄�ivi, ui; vi 2 f0; 1g�, where ui is the tape ontent left ofthe head, vi is the ontent of the urrent position and the positions right of the urrent position,and q�i is the urrent state. Let 'M (x) be the formula of RConat whih states the existene of astring w 2 f0; 1; ℄g� whih will represent the omputation of M on x. This is done as follows:1. w = ℄�0v0℄u1℄�1v1℄ � � � ℄un℄�nvn, for some n, where ui; vi 2 f0; 1g�.2. v0 = x, �0 = 2.3. if ui℄�vi℄ui+1℄�vi+1 is a substring of w then ui+1℄�vi+1 represents the on�guration afterexeuting M , for one step, from the on�guration represented by ui℄�vi.4. q�n is an aepting state of M .All the points enumerated above an be heked in RConat [61℄. It is also easy to see that theexistene of suh a string w is equivalent to the aeptane of x by M .In order to remove the extra symbol ℄, the formula 'M (x) also states the existene of a string x℄ ofthe form 10k1, suh that none of the strings ui; vi ontains 0k as a substring. As the omputation is�nite, suh a string always exists and it an easily be distinguished from the ui and vi. The formulathen states the existene of a string w0 of the form x�0℄ v0x℄u1x�1℄ v1x℄ � � � x℄unx�n℄ vn and ondition3 is hanged analogously. 33



Sine all omputable prediates on f0; 1g� are expressible, there is a one-to-one mapping f :N ! f0; 1g� suh that the image of addition and multipliation under f is expressible in FOover h��; �; 0; 1i. It is known (see [50℄, Chapter 3), that relational alulus over hN;+; �i expressesall omputable queries over �nite databases (simply by oding �nite databases with numbers).Hene, the same oding will apply to RConat , showing that it expresses all omputable queries. 2In databases, we are austomed to relational alulus having limited expressiveness; then thequeries an be analyzed and often good optimizations an be disovered. This is ertainly not thease here; moreover, there is no hope of �nding a syntax for safe queries.4.2 Corollary Let � ontain at least two letters. Then there is no e�etive syntax for safe queriesin RConat . Furthermore, the state-safety problem is undeidable for RConat .Proof. This follows from [64℄. Indeed from Proposition 4.1, RConat is Turing-omplete and thusthe struture of [64℄ in whih there is no safe syntax for safe queries, and in whih state-safety isundeidable is de�nable. 2Note that when � has one symbol, h��; �i is essentially hN;+i, and there exists e�etive syntax forsafe queries, and state-safety is deidable [64℄.4.2 Basi string operations in SQLWhen looking at existing SQL string operations, the most often-used operation is LIKE pattern-mathing. It allows one to say, for example, that a given string is a pre�x of another string andalso that a string has a �xed string as a substring. LIKE patterns are built from alphabet letters,and haraters % (whih mathes any string, inluding �), and _ (whih mathes a single letter).For example, the pattern ab_% mathes any string whose �rst letter is a, seond is b, and fourthis . Mathing with LIKE an be expressed in �rst-order logi over S: indeed, with LIKE one anonly de�ne star-free languages, whih are FO-de�nable in S.Another important SQL string operation is the lexiographi ordering�lex, whih, as we saw earlier,is also expressible in S.SQL also allows trimming/adding symbols on both left and right of a string. We know thattrimming/adding symbols on the right (operation la and its inverse) is expressible over S, butadding/trimming on the left (operation fa and its inverse) is not. This motivated the study ofthe struture Sleft; it orresponds to LIKE pattern mathing, lexiographi ordering, and arbitrarytrimming/adding operators of SQL.The operator LIKE heks membership in a star-free language. The new SQL standard [41℄ intro-dues an arbitrary regular expression pattern-mathing by a new operator alled SIMILAR. Addingthis operator orresponds to going from S to Sreg or Sleft to Sreg;left: in both ases, the additionmeans that the one-dimensional de�nable families beome regular instead of star-free.Finally, SQL has a string-length operation alled LEN. Sine this does not return a string, we turnit into a pure string operation that ompares lengths of strings: el(x; y) is true if jxj = jyj. Thus,Slen orresponds to a set of SQL operations that inludes LIKE, lexiographi ordering and lengthomparison. Furthermore, sine Slen subsumes Sleft;Sreg and Sreg;left, the operator SIMILAR andtrimming/adding on the left are expressible over Slen.34



4.3 Expressive power and omplexityIn this setion we study expressiveness and omplexity of the �ve relational aluli. We obtain anumber of ollapse results using the isolation property shown in the �rst part of the paper, andestablish omplexity bounds, both in the ases with and without ollapse.4.3.1 Relational alulus over SOur goal here is to get bounds on the expressiveness and data omplexity for queries in RC(S).The main tool used is a ollapse result, Theorem 4.3, in the spirit of those produed for onstraintdatabases [10, 8℄. Reall that relational alulus over a domain RC(M) admits restrited quanti�erollapse if every RC(SC;M) formula '(~x) is equivalent to a formula '0(~x) in whih SC-prediatesour only within the sope of ative domain quanti�ers 9x2adom and 8x2adom. It admits thenatural-ative ollapse if every formula is equivalent to one with only ative-domain quanti�ers.We already mentioned that the isolation property implies restrited quanti�er ollapse [8, 32℄. Fromthe QE of S+ we also get4.3 Theorem RC(S) admits restrited quanti�er ollapse, and RC(S+) admits the natural-ativeollapse.Another quanti�er-restrition result is given in the following orollary. Extend RC(SC;S) withquanti�ers of the form 9x� adom and 8x� adom, whose meaning is as follows. Given a formula'(x; ~y), an interpretation ~a for ~y, and a database D, 9x� adom '(x;~a) states that there exists astring  making '(;~a) true suh that either  � ai for ai a omponent of ~a, or  � b where b is inadom(D). Sine bounded quanti�ation suÆes for S formulae (Corollary 3.6), we obtain:4.4 Corollary Every RC(SC;S) formula is equivalent to a formula that only uses quanti�ers9x�adom and 8x�adom.We note that a a straightforward orollary of Theorem 4.3 shows that the data omplexity forRC(S) mathes that of pure relational alulus.4.5 Corollary The data omplexity of RC(S) is in AC0. In partiular, neither parity nor onne-tivity test is expressible in RC(S).Proof. By Corollary 4.4 we an assume that a given query '(~x) is of the form Q~y 2adom WV�i(~x; ~y) where eah �i is either an atomi or negated atomi SC-formula, or an Sformula, in whih all quanti�ation is restrited to pre�xes of ~x; ~y. The proof then follows thestandard proof of AC0 data omplexity for the relational alulus (see, for example, [1℄), and oneonly has to prove that eah S formula an be evaluated in AC0.Suppose �(z1; : : : ; zk) is an S formula in whih all quanti�ation is restrited to pre�xes of zis.With ~z, assoiate a struture S~z of the signature onsisting of unary prediates Zi; (Pa)a2�;# anda binary prediate < as follows: the domain is f1; : : : ;Mg, where M = Pi jzij + (k � 1), and theinterpretation of < is standard. The �rst jz1j elements belong to Z1, followed by an element thatbelongs to #, followed by jz2j elements that belong to Z2 et. The membership in Pa is determined35



by the orresponding symbol in the zis. To show that � an be evaluated in AC0, it is enough toshow that there is a FO(BIT; <) sentene � suh that S j= �(~z) i� S~z j= �. This is done by astraightforward indution on the struture of �, as one an enode the pre�x relation over S~z usingthe de�nability of + and � in FO(BIT; <) (f. [47℄). 2Another orollary onerns the expressive power of generi queries. Reall that a query is generi ifit ommutes with permutations on the domain; in other words, it is independent of spei� elementsstored in a database.Every query expressible in pure relational alulus is generi. Examples of other generi queriesare parity test and graph onnetivity test; these are well known to be inexpressible in relationalalulus.Combining Theorem 4.3 with the ative generi ollapse [10℄, we obtain:4.6 Corollary Every generi query expressible inRC(S) is already expressible inRC(<), relationalalulus over ordered databases.With respet to time omplexity Corollary 4.5 only gives a polynomial upper bound. We show nextthat for unary databases we get a muh striter omplexity result. We all a database shema SCunary if it only ontains unary relation names. We next show that queries over unary databases anbe evaluated in linear time. This is beause a unary database an be transformed into a tree, anda query an be transformed into a �rst-order sentene over the tree, whih an then be evaluatedby a tree automaton. More preisely, we have:4.7 Proposition Let SC be unary. Then every Boolean RC(SC;S)-query an be evaluated inlinear time in the size of the database.Proof. Let SC be unary. We de�ne a representation of SC-databases by �nite labeled treesas follows. Let R1; : : : ; Rm be the relation names of SC. Let, for simpliity, � be f0; 1g. LetX = fx1; : : : ; xkg be a set of variables. For a �nite database D over SC and a vetor ~a = a1; : : : ; akof strings from �� the (�nite) tree t = t(D;~a) is de�ned as follows.� The set of verties of t is pre�x (D;~a).� Eah vertex v of t is labeled by a 0-1-vetor ~r(v) = (r1(v); : : : ; rm(v)), where ri(v) = 1 if andonly if v 2 Ri.� Eah vertex v is labeled by a subset X(v) of X, where xi 2 X(v) if and only if ai = v.It should be pointed out that all leaves v of t(D;~a) arry a label ~r(v) with at least one non-zeroentry or a label X(v) whih is not the empty set.It is straightforward that, for eah RC(SC;S)-formula ' (with pre�x quanti�ation) there is a �rst-order formula '0 on labeled trees (represented as �nite strutures in the usual way) suh that foreah SC-database D and eah vetor ~a = a1; : : : ; ak of strings, (D;~a) j= ' if and only if t(D;~a) j= '0.In the ase of Boolean queries, k equals 0. As it is well-known that even MSO-sentenes an beevaluated in linear time on labeled trees (e.g., via the simulation of suitable tree automata, see[67℄), we an onlude the desired omplexity bound. 236



From Lemma 4.20 below and the results of [56℄ it follows that safe unary RC(SC;S)-queries (i.e.,with one free variable) an be evaluated in linear time in the size of the database. By ombiningthis with the tehniques of [62℄ it an be shown that, in general, k-ary queries an be evaluated intime O(nk) for databases of size n.4.3.2 Relational alulus over SlenWe have seen that query evaluation for relational alulus over S has low omplexity. However,many useful queries of low omplexity, suh as the query that appends a �xed string on the leftof a given olumn, are not expressible in S. Hene we examine the addition of the equal lengthprediate, that is, relational alulus over Slen. Throughout this setion, we again assume that thealphabet has at least two symbols (as over the one-symbol alphabet, equal length is simply equalityand thus does not give us any extra power).To analyze the expressive power and omplexity of Slen, we again make use of a normal-form resultfor queries. In this ase it is no longer suÆient to quantify over pre�xes of strings in the ativedomain; however a di�erent restrited quanti�ation suÆes.We introdue quanti�ers 9 jxj � adom and 8 jxj � adom to be interpreted as follows. Given aformula '(~y), a database D and an interpretation ~a for ~y, a subformula 9 jxj � adom �(x; �) issatis�ed if there exists a string  satisfying �(; �) suh that the length of  does not exeed thelength of the longest string in adom(D) and ~a. We all these length-restrited quanti�ers. Notethat they are just a notational onveniene, as they an be expressed in RC(Slen). Moreover, theyapture the expressiveness of RC(Slen):4.8 Proposition Every RC(SC;Slen) formula is equivalent to a formula that uses only length-restrited quanti�ers.Proof. For an SC-database D and a tuple of strings ~s, we use the notation # (D;~s) for fs0 j 9s 2adom(D) [ ~s : js0j � jsjg, and S[D;~s℄ for the struture with the universe # (D;~s) in the languageof Slen plus the SC-relations, plus onstants for the elements of ~s. We write Slen(D;~s) for thestruture in the same language whose universe is ��. Let m be the maximum arity of any relationname of SC.We write (D1; ~s1) �k (D2; ~s2) if the dupliator has a winning strategy in the k-round Ehrenfeuht-Fra��ss�e game on Slen(D1; ~s1) and Slen(D2; ~s2), and (D1; ~s1) �bk (D2; ~s2) if the dupliator has awinning strategy in the k-round Ehrenfeuht-Fra��ss�e game on S[D1; ~s1℄ and S[D2; ~s2℄. We laimthat �bk+m+1 re�nes �k. By the Ehrenfeuht-Fra��ss�e theorem (f. [27, 47℄), this implies the result,as both equivalene relations are of �nite index, eah lass of �bk+m+1 is de�nable with length-restrited quanti�ers, and eah RC(Slen) query of quanti�er rank k is a union of �k-lasses.We now desribe the winning strategy for the dupliator for k moves in the game on Slen(D1; ~s1)and Slen(D2; ~s2). Let lj be the maximum length of a string in S[Dj ; ~sj℄; j = 1; 2. In response toeah move, say ai 2 Slen(D1; ~s1) by the spoiler, the dupliator produes, in addition to his responsebi 2 Slen(D2; ~s2), two extra elements a0i 2 S[D1; ~s1℄ and b0i 2 S[D2; ~s2℄. This is done as follows.Suppose the rounds 1; : : : ; i� 1 have already been played, and the spoiler plays ai 2 Slen(D1; ~s1).There are two ases. If ai 2 S[D1; ~s1℄, then a0i = ai, and the dupliator looks at the position(a01; : : : ; a0i�1; a0i); (b01; : : : ; b0i�1) in the game on S[D1; ~s1℄ and S[D2; ~s2℄, and selets b0i 2 S[D2; ~s2℄37



aording to his winning strategy. He then sets bi = b0i.In the other ase, we have ai 62 S[D1; ~s1℄, that is, jaij > l1. Let a0i be the pre�x of ai of lengthl1. As before, the dupliator now looks at the on�guration (a01; : : : ; a0i�1; a0i); (b01; : : : ; b0i�1) in thegame on S[D1; ~s1℄ and S[D2; ~s2℄, and selets b0i as the response to a0i. Note that b0i is of length l2.Indeed, sine the dupliator an play in the game on S[D1; ~s1℄ and S[D2; ~s2℄ for k+m+1 moves, forevery move up to k his response to a string of length l1 must be a string of length l2, for otherwisewith the next m+ 1 moves the spoiler would be able to hoose an extension bi+1 of bi and stringsbi+2; : : : ; bi+m+1 suh that bi+2 has the same length as bi+1 and is in ~s2 or D2. The latter mightbe witnessed by the strings bi+3; : : : ; bi+m+1. The dupliator would have no suitable response inS[D1; ~s1℄. We now set bi = b0i � x, where x = ai � a0i, that is, x is the relative suÆx of a0i in ai. Itfollows immediately that this strategy ensures the win by the dupliator in the k-round game onSlen(D1; ~s1) and Slen(D2; ~s2). 2Pre�x-restrited quanti�ation does not suÆe for RC(Slen). Indeed, onsider the following queryQ on a unary relation U : Q(U) is true i� U ontains a single element, whih is from 0� and of evenlength. This is expressible in RC(Slen) by9!x U(x) ^ 8x(U(x)! (x 2 0�) ^ 9z 2 (01)�el(z; x));where 9!xU(x) expresses that there is exatly one x with U(x). Note that the prediates x 2 0� andz 2 (01)� an be expressed even over S: reall that S an de�ne any star-free language and Slen anyregular language. However, this query Q is inexpressible with just pre�x quanti�ation: if it were,then over single-element databases ontained in 0�, the prediate el ould be replaed by equality.Hene the set of strings from 0� of even length would be de�nable over S. But this language is notstar-free, and this ontradits the fat that the languages de�nable over S are exatly the star-freelanguages (Corollary 3.7).As with Theorem 4.3, from Proposition 4.8 we get us a rough upper bound on the omplexity ofRC(Slen), whih should be ompared with Corollary 4.11 and Proposition 4.12 below:4.9 Corollary The data omplexity of RC(Slen) is in PH.Proof. To hek if D j= '(~a), it is enough to quantify over strings whose length does not exeedN , where N is the maximum length of a string in adom(D) [ ~a (see Proposition 4.8). If ' hasalternation depth k this an be done by a polynomial time alternating Turing mahine with kalternations, hene in PH. 2The result below establishes two bounds. The �rst one is for omplexity of generi queries inRC(Slen). That is, the omplexity of the language fen(D)#en(t) j D j= '(t)g for a generi '.The other omplexity bound is very useful for proving expressibility results. A relational (Boolean)query is a set of isomorphism types of SC-databases (w.r.t. the SC-relations only). A relationalquery is in AC0 if it is in AC0 under the usual relational enoding en0: elements of a k-elementative domain are enoded by 1; : : : ; k, in binary (f. [1℄). A relational query Q is expressible inRC(Slen) if there is a RC(Slen) sentene � suh that the SC-isomorphism type of D is in Q i�D j= �.4.10 Theorem The data omplexity of generi queries in RC(Slen) is in TC0. Furthermore, anyrelational query that is expressible in RC(Slen) is in AC0.38



Proof. Without loss of generality, we onsider Boolean queries and assume that � = f0; 1g. For astring s 2 ��, let N(s) be the number whih is 1 � s in binary. Let s <N s0 i� N(s) < N(s0). Notethat for strings of length k, N(s) ranges from 2k to 2k+1 � 1, and jsj < js0j implies N(s) < N(s0).We all a database nie if the set fN(s) j s 2 adom(D)g is of the form f1; : : : ; ng for some n � 1.Note that the maximum length of a string in suh a database is l(n) = dlog2(n+ 1)e � 1.Now we laim that every Boolean generi query � an be evaluated in AC0 over nie databases. ByProposition 4.8, without loss of generality, all quanti�ers in � are assumed to be length-restrited.With a nie database D, we assoiate a new database D0 of the same shema with the universef1; : : : ; ng = fN(s) j s 2 adom(D)g, suh that (t1; : : : ; tk) 2 R in D i� (N(t1); : : : ; N(tk)) 2 Rin D0. We next show that � an be expressed in FO(BIT; <) over strutures of the form D0,where D is nie. This will suÆe to prove the laim, as the enodings of D and D0 are idential,and FO(BIT; <) aptures uniform AC0 [7℄. Reall the de�nition of BIT from Setion 2. We alsoreall that the usual arithmeti prediates (+ and �, given as ternary prediates) are de�nable inFO(BIT; <), and so are many other helpful prediates, for example, a prediate for the powers of2 [47℄.There are two main problems: �rst, quanti�ation in � is restrited to the maximum lengthof a string (that is, over nie databases, quanti�ers in � range not over f1; : : : ; ng but ratherf1; : : : ; 2l(n)+1 � 1g); seond, we must show that the operations of Slen an be expressed.To deal with the �rst problem, we assume that � is in prenex form, and replae eah quanti�er 9swith two quanti�ers 9is9i0s. Eah string s of length not exeeding l(n) an be represented uniquelyby two numbers is; i0s suh that:is = � N(s) if N(s) � n;n if N(s) > n; i0s = � 2l(n) if N(s) � n;N(s)� n if N(s) > n:Note that is; i0s � n, and for N(s) > n, i0s < 2l(n), if jsj � l(n). For eah new pair of quanti�ers9is9i0s we add a formula stating that is; i0s satisfy the following onditions: either is < n andi0s = 2l(n), or is = n, and i0s < 2l(n). This an be done in FO(BIT; <), as the ondition x = 2l(n)is expressible (it says that x is the largest power of 2 that does not exeed n, whih is expressiblewith BIT).Next, we must show how to translate the atomi and negated atomi subformulae of �. Eahsubformula of the formR(s1; : : : ; sk), whereR 2 SC, is translated into R(is1 ; : : : ; isk)^Vi i0si = 2l(n).Cheking L0(s) is simply :BIT(is; 1), and L1(s) is BIT(is; 1). For el(s; u), one has to hek thatthe largest power of 2 not exeeding is + i0s and iu + i0u is the same. This happens i� either bothi0s; i0u are less than 2l(n) (in this ase jsj = juj = l(n)), or both equal 2l(n) (in whih ase both s andu are in the ative domain), and for eah p � max(is; iu) whih is a power of 2, p�is $ p�iu, where� ranges over the omparisons <, > and =. These onditions an be expressed in FO(BIT; <).We now onsider the prediate s � u. There are four ases. If both i0s; i0u < 2l(n), this is false, as s; uare not in the ative domain, and hene of the same length. Similarly if i0s < 2l(n) and i0u = 2l(n),then s � u is false.The third ase is when i0s = i0u = 2l(n). In this ase both s and u are in the ative domain, and theformula below states that s � u:9p; p0 FirstBIT(is; p) ^ FirstBIT(iu; p0) ^ p < p0^8q � p0 BIT(is; p� q)$ BIT(iu; p0 � q);39



where FirstBIT(u; p) is the formulaBIT(u; p) ^ 8q (p < q � l(n))! :BIT(u; q)expressing that u has length p.The last ase is when i0s = 2l(n) and i0u < 2l(n) (that is, s is in the ative domain, u is not). Weredue it to the previous ase as follows: s � u i� s = v or s � v, where v is the immediatepredeessor (in the � relation) of u. Note that for u of length l(n), its predeessor is in the ativedomain, so if we an state this ondition, then the previous ase applies to test if s � v. To hekthat a number m is suh that v with N(v) = m is an immediate predeessor of u, we onsider twosubases. In the �rst subase, n+ i0u is odd (this an be tested with BIT). In that ase, one shouldtest if 2m+1 = n+ i0u. Note that in FO(BIT; <) we an only quantify over numbers not exeedingn, so this test is done by 9k (k +m = n) ^ (k + i0u = m+ 1):In the subase when n+ i0u is even, one should test if 2m = n+ i0u, whih is done by 9k (k +m =n) ^ (k + i0u = m).Thus, we have shown that every Boolean query an be evaluated in AC0 over nie databases. Nowlet Q be a Boolean relational query Q, that is expressible in RC(C) by a query 	. There is a familyof iruits C that omputes 	 on nie databases. Now, for a relational database, let en0(D) bethe standard enoding under whih elements of the ative domain of size k are oded as integers1; : : : ; k in binary. Given an arbitrary relational database D, onsider en0(D) as the input to C.Let D0 be a (nie) database over strings obtained from D by replaing the ith element of the ativedomain with the string s suh that N(s) = i. Then en(D0 ) = en0(D), and thus when it is givento C, C returns 	(D0). But by generiity, we have Q(D) = Q(D0) = 	(D0), whih implies that Qis in AC0.It remains to show that the data omplexity of generi queries in RC(Slen) is in TC0. Let 	 be ageneri query de�nable in RC(Slen). For eah database D, let nie(D) be a database obtained fromD as follows: let adom(D) = fs1; : : : ; skg, where s1 �lex : : : �lex sk. Then in nie(D), eah si fromD is replaed by a string s0i with N(s0i) = i. Note that this transformation an be arried out inTC0, as �lex is in AC0 by Corollary 4.5, and ounting the number of elements satisfying a formulaan be done in TC0 [7℄. Furthermore, by generiity, D j= 	 i� nie(D) j= 	. The latter an beheked in AC0, whih gives us a TC0 upper bound on the data omplexity of generi queries. Thetheorem is proved. 2One annot draw any de�nite onlusions from the �rst statement of Theorem 4.10, as TC0 isnot yet separated from NP (although widely believed to be properly ontained in DLogSpae).However, the seond statement, and known lower bounds for AC0 [2, 35℄ give us:4.11 Corollary Parity test and onnetivity test are not de�nable in RC(Slen).We now prove lower bounds that show the omplexity of Slen queries, although within PH, may beprohibitively high. Let MSO(SC) be the lass of queries over SC expressible in monadi seond-order logi. This inludes queries of high-omplexity, namely for eah level of the polynomial hier-arhy, PH, omplete queries [3℄, in partiular, NP-omplete and oNP-omplete ones (3-olorabilityand its omplement). Suh queries annot be expressed over arbitrary databases in RC(Slen) (e.g.,not over nie ones); however, they an be expressed under some additional assumptions.40



We say that the width of the ative domain of an SC database D (over ��) is k if k is the maximalsize of a subset of adom(D) whose elements are pairwise inomparable by the pre�x relation. Itshould be noted that every database D an be transformed into a database D0 of width 1 whih isisomorphi to D with respet to the SC-prediates.4.12 Proposition For every �xed k, all MSO(SC)-expressible queries an be expressed overdatabases of width at most k in RC(SC;Slen).Proof. Assume without loss of generality that 0; 1 2 �. For a database D of width k, the set of�-maximal elements fs1; : : : ; slg of adom(D) has ardinality l � k, and thus pre�x (D) is the unionof hains pre�x (s1); : : : ; pre�x (sl), where pre�x (s) = fs0 j s0 � sg. The idea of the proof is this: asubset Z of pre�x (s) an be modeled by a string sZ 2 f0; 1g� of the same length as s, suh thats0 � s is in Z i� the pre�x of sZ of the length js0j ends on a 1.Now suppose an MSO(SC) query Q is given. We assume it is expressed by an MSO sentene � inwhih all quanti�ed seond-order variables are distint. Letm1; : : : ;mk be fresh �rst-order variables(to be interpreted as maximal elements of adom(D)). We then assoiate with eah seond-orderquanti�er 9Z new �rst-order variables s1Z ; : : : ; skZ , and de�ne the following transformation ' 7! 'Æof subformulae of �:� Every atomi subformula other than Z(x), where Z is a seond-order variable, is unhanged.� Every subformula Z(x) is replaed by (Z(x))Æ de�ned ask_i=1x �mi ^ 9y � siZ el(y; x) ^ L1(y):� ('1 �'2)Æ = 'Æ1 �'Æ2, where � is ^ or _, (:')Æ = :'Æ, (9u')Æ = 9u'Æ, where u is a �rst-ordervariable.� A subformula 9Z' is replaed by (9Z')Æ de�ned as9s1Z ; : : : ; skZ k̂i=1 el(siZ ;mi) ^ 'Æ:The result of this transformation is an open RC(Slen) query �Æ(m1; : : : ;mk). We now de�ne aBoolean RC(Slen) as9m12adom : : : 9mk2adom 8u2adom_i u � mi ^�Æ(m1; : : : ;mk);stating that m1; : : : ;mk list all (not neessarily distint) maximal elements of adom(D), and that�Æ(m1; : : : ;mk) holds. For a database of width at most k, this means that �Æ(m1; : : : ;mk) holdsfor the list of all maximal elements in adom(D), whih happens i� D j= �. 2Thus, while not omputationally omplete as RConat , RC(Slen) an express some queries thatnormally would not be expeted to be expressible in a �rst-order language.41



Reall that we had a linear time bound for the evaluation of Boolean RC(S)-queries on unarydatabases. We show next, that this might not be the ase for RC(Slen). Even worse, there mightbe even no �xed polynomial bound.We onsider ordered graphs as �nite strutures with a universe U of the form f1; : : : ; ng, the naturalorder relation < on U and a binary relation E. Let SC be the database shema with one unaryrelation name R.4.13 Lemma For every �rst-order formula ' on ordered graphs there is a RC(SC;Slen)-formula'0 and an algorithm whih omputes for eah graph G an SC-database DG suh that G j= ' if andonly if DG j= '0. Furthermore, the algorithm works in time O(n2 log n) on graphs with n vertiesand the maximum length of a string in DG is 2dlog2 ne + 1 and, onsequently, the size of DG isO(n2 log n).Proof. We give the proof for � = f0; 1g. Let an ordered graph G with n verties be given and letm := dlog2 ne. We de�ne DG as follows. Let a1; : : : ; an denote the lexiographially �rst n stringsof length m. We de�ne the set R asfa1; : : : ; ang [ fai � 0 � ai j i � ng [ fai � 1 � aj j (j; i) 2 Eg:Intuitively, the strings a1; : : : ; an represent the verties of G. There is an edge from vertex j tovertex i if and only if ai � 1 � aj 2 R. The verties ai � 0 � ai are used to get ai from aj � 1 � ai.It is straightforward to hek that DG has the desired size and an be produed in time O(n2 logn)assuming a suitable representation of G.The formula '0 is obtained from ' as follows. First, all subformulas of the form 9x (x) are replaedby 9x 2 adom(:9y y � x ^ R(y)) ^  (x). Intuitively, the quanti�ation is restrited to minimalelements of the ative domain of DG, i.e., to a1; : : : ; an. Note however that the next two steps willintrodue new unrestrited quanti�ers.Next, atomi formulas x < y are replaed by9z; z0; z1 l0(z) = z0 ^ l1(z) = z1 ^ z0 � x ^ z1 � yFinally, atomi formulas E(x; y) are replaed by9x1; x2; y1; y2 l0(x) = x1 ^ l1(y) = y1 ^ x1 � x2 ^ y1 � y2 ^R(x2) ^R(y2)^8x3; y3(x1 � x3 � x2 ^ y1 � y3 � y2 ^ el(x3; y3))! (L0(x3)$ L0(y3))whih states the existene of strings x2 and y2 of the form x0x and y1x0 and suh that, seond lineof the formula, x = x0. It is straightforward to hek that G j= ' if and only if DG j= '0. 2It follows from the lemma that a linear (or �xed polynomial) bound for the evaluation of BooleanRC(Slen)-queries on unary databases would imply a �xed polynomial bound for the data omplexityof �rst-order sentenes on ordered graphs. It would imply further a �xed polynomial bound forthe evaluation of �rst-order sentenes on BIT-strutures (f., [6℄). This, in turn, would separate�rst-order logi from least �xed point logi on suh strutures and therefore imply the validity ofthe ordered onjeture [49℄ with various onsequenes in omplexity theory (see [6℄ for a disussion).We annot onlude from this onnetion that linear time evaluation for RC(Slen) queries on unarydatabases is impossible. But we annot expet a proof as simple as that of Proposition 4.7 forRC(S). 42



4.3.3 Relational aluli over Sleft;Sreg and Sreg;leftThese aluli behave similarly to RC(S), although some omplexity bounds are slightly di�erent.From the isolation property shown for all the strutures and from QE results we onlude thefollowing:4.14 Theorem RC(Sleft), RC(Sreg), and RC(Sreg;left) admit the restrited quanti�er ollapse.Furthermore, RC(S+left), RC(S+reg), and RC(S+reg;left) admit the natural-ative ollapse.4.15 Corollary RC(Sleft) queries have AC0 data omplexity, while RC(Sreg) and RC(Sreg;left)queries have NC1 data omplexity. Furthermore, every generi query expressible in RC(Sleft) orRC(Sreg) is expressible in RC(<).Proof. The proof of the AC0 bound is the same as for Corollary 4.5 exept that we need to showthat eah �xed Sleft formula an be evaluated in AC0. By the quanti�er elimination result quotedin the proof of Theorem 4.14, it suÆes to show that every �xed quanti�er-free formula in S+left anbe evaluated in AC0. For that, we notie that every S+left term an be evaluated in AC0 (sine bothx� a and a � x operations are available), and the rest follows the proof for S.For Sreg, we again use the ollapse result and the proof that RC(S) queries with ative-domainquanti�ation an be evaluated in AC0 (and hene NC1). The only di�erene is in evaluating thePL prediates, whih an no longer be done in AC0 as L may not be star-free. However, everyregular language is in NC1 [65℄, and thus PL an be evaluated in NC1 on its inputs, showing thatthe data omplexity of RC(Sreg) is in NC1. The proof for Sreg;left ombines the proofs for Sleft andSreg.The last statement follows from the ollapse result and [10℄. 2Note the ontrast of the above with Proposition 4.12, whih implies that relational alulus overSlen ontains problems omplete for eah level of the polynomial hierarhy. Theorem 4.14 is thekey for obtaining low data omplexity. It follows from the isolation property of the underlyingstruture, whih fails for Slen as it does not have �nite VC-dimension (reall Proposition 3.2).4.4 Safe QueriesAll the relational aluli we study here ontain queries that sometimes produe in�nite output.Thus one of our goals is to syntatially apture the safe queries in these languages, and to be ableto analyze safety properties of a query { for example, given an arbitrary query and a database,to tell whether the output of the query on that database is �nite. We saw that this annot bedone if the set of operations inludes onatenation. In ontrast, for our �ve strutures, we ansyntatially desribe safe queries, give an algebra that aptures these queries, and extend themajor deidability results for query safety analysis that hold for pure relational alulus.
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4.4.1 E�etive syntax for safe queries: de�ning �nitenessThe simplest way to show that safe queries in RC(M) have e�etive syntax is to show that one antest if a given query returns a �nite result on a given database. To do so, it is enough to ensurethat �niteness is de�nable in RC(M). Formally, �niteness is de�nable in RC(M) if there exists asentene �safe in the language of M and SC expanded with a single new unary prediate symbolU suh that for any query '(x) and any database D, (D;'(D)) j= �safe i� '(D) is �nite. Forexample, �niteness is easily de�nable in RC(Slen) by9y8x(U(x)! 9z � y el(z; x)):One �niteness is de�nable, an enumeration of safe queries an easily be obtained. Given a query'(~x), let  '(x) be another relational alulus query that de�nes the ative domain of the output of'. Let �safe' be the Boolean query obtained from �safe be replaing U(�) by  '(�). Then '(~x)^�safe'lists all safe queries.For traditional relational alulus, and for its analogs over order onstraints, linear onstraints, andpolynomial onstraints, �niteness an easily be shown to be de�nable [11℄. It is thus surprising thatfor RC(S) this approah does not work:4.16 Proposition Finiteness is not de�nable in RC(S).Proof. We prove the proposition for � = f0; 1g; it is straightforward to generalize this for anyalphabet. We onsider databases with one unary prediate U . We show by an Ehrenfeuht-Fra��ss�egame argument that, for eah k, there are databases Ak and Bk suh that U is a �nite set in Akand an in�nite set in Bk but Ak and Bk an not be distinguished by a RC(S)-formula of quanti�errank k.Let k � 0 be �xed.Let Ti denote the set of strings of length at most i. Intuitively, Ti is the full binary tree of depth i(and formally it is the same as ��i).We use �k to denote equivalene in the k-round Ehrenfeuht game on strutures based on S and�sk to denote equivalene in the k-round Ehrenfeuht-Fra��ss�e game on strings.We will use the following Claim.Claim 1 There exist N and n > 0 (depending on k) suh that for eah i � N it holds that(S; Ti) �k (S; Ti+n). Without loss of generality we an hoose N as a multiple of n.Proof of the Claim: For every k, �k has �nitely many equivalene lass. Let N be this number.By the pigeon-hole priniple there exists two integers i; j suh that i � N + 1 and j � N + 1 andTi �k Tj. We show that for any two integers u; v, Tu � Tv implies Tu+1 � Tv+1, the laim willthen follow with n = j � i. To prove the latter notie that Tu+1 is simply j�j opies of Tu plus onenode. Similarly Tv+1 is simply j�j opies of Tv plus one node. The FOk strategy on Tu+1 and Tv+1mimis the strategy for Tu and Tv on eah opy separately and the root is played as soon as theother root is played. 2Let m = 2kn and M = 23kkn+N . Let Ak be (S; TM ).44



Next, we de�ne an in�nite set S suh that Ak and (S; S) an not be distinguished by a formula ofdepth k. Let h be the string homomorphism whih maps 0 to 0m and 1 to 1m. We all a string wnormal if it is of the form h((01)i), for some i � 0. We all w semi-normal if it is h(v) for somestring v. The set S is de�ned as the set of all strings of the form uv, where u is a normal stringand v is a string of length at most N + 2m. We set Bk = (S; S). Note that S is pre�x-losed andthat all maximal strings in Bk have a length whih is a multiple of n.For two strings u and w suh that u is a pre�x of w we write Ak[u;w℄ for the substruture of Ak thatonsists of all strings v suh that u is a pre�x of v but w is not a strit pre�x of v and analogouslyfor Bk. Let Modn denote a sequene Z0; : : : ; Zn�1 of unary relations over (initial segments of) thenatural numbers suh that Zi(j) holds if and only if (j mod n) = i.For later use we need the following lemma.4.17 Lemma (a) Let v; w be semi-normal strings and v0; w0 normal strings suh that v is apre�x of w and v0 is a pre�x of w0 and jwj � M � N . Let u = w � v and u0 = w0 � v0. If(u;Modn) �sk (u0;Modn) then Ak[v; w℄ �k Bk[v0; w0℄.(b) (h(0);Modn) �sk (h(00);Modn) and (h(01);Modn) �sk (h(001);Modn).() For eah i � 2k + 1 it holds that (h((01)2k+1);Modn) �sk (h((01)i);Modn).Proof of Lemma 4.17.(a) Intuitively in the tree TM , [v; w℄ onsists of the path from v to w and of trees branhing o�the strings on that path. By de�nition of Ak the tree branhing o� a string z of the path hasdepth M � jzj � 1 whih is at least N and ongruent to N � jz � vj � 1 modulo n, as M , Nand jvj are multiples of n. More preisely, we refer here to the tree that is rooted at the hildof z whih is not a pre�x of w. Analogously, if z0 is a string of the path from v0 to w0 in Bkthere is a tree of depth (2m+N)�jz0�y0j�1 branhing o� z0, where y0 is the longest normalstring whih is a pre�x of z0. Hene, the depth of this tree is at least N and it is ongruentto N � jz0 � v0j � 1 modulo n. We an onlude from Claim 1 that the branhing trees at zand z0 are k-equivalent, whenever jz � vj and jz0 � v0j are ongruent modulo n.By ombining the winning strategy of the dupliator on (u;Modn) and (u0;Modn) with thewinning strategies on the o�-branhing trees we get (a).(b) The �rst statement is shown by a standard game argument using the fat that h(0) is theonatenation of 2k strings of length n. Eah of these substrings is identially labeled byModn. In a k round game this an not be distinguished from the onatenation of 2 � 2k suhstrings. The seond statement follows diretly from the �rst one.() This an also be shown by a standard argument. 2Next, we have to show that (S; TM ) �k (S; S).Claim 2 The dupliator an play the k round Ehrenfeuht-Fra��ss�e game in a way that guaranteesthat the following holds after l rounds of the game.45



Let ~a = a1; : : : ; al denote the seleted elements of Ak and let ~b = b1; : : : ; bl denote the orrespondingelements in Bk.There is a semi-normal string pl and a normal string ql (the pivot strings) suh that1. None of the ai has pl as a pre�x and none of the bi has ql as a pre�x.2. (Ak � pl�;~a) �k (Bk � ql�;~b).3. jplj � l23kn.Here, Ak� pl� denotes the substruture of Ak in whih all strings that have pl as a strit pre�x areomitted and in whih pl is a distinguished onstant (and analogously for Bk � ql�).Proof of the laim. It should be noted that, as ql is normal, Bk � ql� only ontains a �nite part ofS. In the proof, it will always be the ase that pl is a pre�x of pl+1 and ql is a pre�x of ql+1.Beause of ondition (1) we an onlude from (2) that there is a partial S-isomorphism from ~a)to ~b) at the end of the game. Hene the laim implies the statement of the theorem.We prove the laim by indution on l. For l = 0 we hoose p0 = q0 = �. This guarantees (1)-(3).Now assume that, for some l < k, l rounds have been played and there are pl and ql suh that(1)-(3) hold. We show that the dupliator an play in a way suh that, for suitable hoies of pl+1and ql+1 (1)-(3) also holds for l + 1.We distinguish 3 ases.Case 1. The spoiler hooses a vertex in Ak � pl� or Bk � ql�. Then we simply set pl+1 = pl andql+1 = ql and (1)-(3) follow diretly.Case 2. The spoiler hooses a string al+1 whih has pl as a pre�x. Let u = al+1 � pl.� If u is of the form h(01) �v, for some v then we set pl+1 = pl �h(001) and ql+1 = ql �h(01).� Otherwise we set pl+1 = pl � h(01) and ql+1 = ql � h(01).In both subases, pl+1 is not a pre�x of al+1. As jpl+1j � jplj + 3m � M � N it followsfrom Lemma 4.17 (a) and (b) that in both subases Ak[pl; pl+1℄ �k Bk[ql; ql+1℄. Thereforethe dupliator an hoose a string bl+1 in Bk[ql; ql+1℄ that guarantees a winning strategyon Ak[pl; pl+1℄ and Bk[ql; ql+1℄ for k � 1 more rounds. By ombining this winning strategywith the winning strategy on (Ak � pl�;~a) and (Bk � ql�;~b) we obtain a k � l � 1 roundwinning strategy on (Ak � pl+1�;~a; al+1) and (Bk � ql+1�;~b; bl+1). Hene, we an onlude(2). Furthermore, of ourse, (1) and (3) hold.Case 3. The spoiler hooses a string bl+1 whih has ql as a pre�x. Let i be maximal suh that bl+1an be written as ql � h((01)i) � v, for some string v. We hoose ql+1 = ql � h((01)i+1) andpl+1 = � pl � h((01)i+1) if i � 2k,pl � h((01)2k+1) otherwise.The hoie of ql+1 guarantees that it is not a pre�x of bl+1. From Lemma 4.17 () and (a)it follows that in both subases Ak[pl; pl+1℄ �k Bk[ql; ql+1℄. This implies the existene of an46



appropriate al+1 in Ak[pl; pl+1℄ suh that (2) holds again. By the hoie of pl+1 and indutionwe also get (1) and (3). 2This ompletes the proof of the proposition. 24.4.2 E�etive syntax for safe queries: range-restritionWhile post-heking �niteness is a way to obtain e�etive syntax for safe queries, one often wishesto have a more expliit representation of safe queries. It turns out that we an get natural repre-sentations for safe queries in RC(S) and RC(Slen) and other aluli. The tehnique we use derivesfrom work on safe languages with linear or polynomial onstraints [11℄: for eah query Q, we ef-fetively onstrut another safe query Q0 that gives an upper bound on Q(D), if it is �nite. Suhexpliit onstrutions are used to prove the theorem below, as well as to provide relational algebraextensions.We follow the idea of range-restrition as presented in [11℄. A formula (x; z) over M is alledalgebrai if for every b, the set fa j M j= (a; b)g is �nite. An RC(M) query in range-restritedform is a pair Q = ((x; y); '(x1; : : : ; xn)), where ' is an arbitrary query and  is an algebraiformula over M. The semantis is given by '(~x) ^ 9~y2adom (Vi (xi; yi)). That is,Q(D) = (adom(D))n \ '(D);where (X) = fa j (a; b) for some b 2 Xg. Clearly, every query in range-restrited form is safe.4.18 Theorem Let M be S, or Sleft, or Sreg, or Sreg;left, or Slen. Then there is a reursive set � ofalgebrai formulae over M suh that, given a query '(~x) in RC(M), there is (x; y) 2 � with theproperty that the range-restrited query Q = (; ') oinides with ' on all databases over whih' is safe.Proof. The proof is based on a number of lemmas, whih show that if a query '(x) is satis�edby an element that is suÆiently far from adom(D), then ' returns an in�nite result on D. Thede�nition of \suÆiently far" depends on the partiular struture.First, we need two observations. The �rst one is a generalized version of the pumping lemma for�nite automata.4.19 Lemma For eah sequene L1; : : : ; Lm of regular languages there is a number k suh that foreah string z, jzj > k, there are strings u; v; w, with z = uvw and jvj > 0, suh that for eah stringx, eah j 2 f1; : : : ;mg and eah i > 0,xuvw 2 Lj () xuviw 2 Lj :Proof of Lemma 4.19. Let, for eah i � m, Ai be a deterministi automaton for Li with transitionfuntion Æi. Without loss of generality we assume that all automata have the same set f1; : : : ; ngof states with 1 as the initial state. Let k := nnm and z be a string with jzj > k. For eah j � m,� � n and l � jzj, let qj�l be de�ned as Æj(�; z[1; l℄), where z[1; l℄ is the pre�x of z of length l.47



I.e., qj�l is the state of Aj after reading the �rst l symbols of z starting from state �. As jzj > kthere must be l1 6= l2 suh that qj�l1 = qj�l2 , for all j � m and � � n. Let u; v; w be hosen suhthat z = uvw, u is the pre�x of z of length l1 and v is of length l2 � l1. We laim that for everyj � m, every i > 0 and every string x, xuvw 2 Lj if and only if xuviw 2 Lj . Indeed, let � be thestate Æj(1; x). Then, as qj�l1 = qj�l2 we have Æj(�; u) = Æj(�; uv) = Æj(�; uvi). Therefore xuvw isaepted by Aj if and only if xuviw is aepted by Aj. 2Using this lemma, we show:Claim. Let M = h��;
i be suh that all operations in 
 are de�nable in Slen. Then, for everyr > 0, there exists k > 0 suh that for any string s with jsj � k, there are in�nitely many stringss0 satisfying (M; s) �r (M; s0).Proof of the laim. Indeed, let �1(x); : : : ; �l(x) list formulae (of quanti�er rank r) that de�ne allthe r-types of a single string over M. Sine eah �i is de�nable over Slen, there is a DFA Ai whihaepts a string s i� M j= �i(s) [14℄. In partiular, the set of strings s whih make �i(s) true is aregular language Li. From Lemma 4.19 it follows, that there is a k suh that, for eah string s withjsj > k there are in�nitely many strings s0 that are ontained exatly in the same languages Li ass, i.e., make the same formulas �i true, whih implies (M; s) �r (M; s0). This proves the laim. 2Given C � �� and s 2 ��, let d(s; C) be jsj � jMeet(s; C)j, that is, the length of the relative suÆxof Meet(s; C) in s.Given a database D, let pre�x (D) = fs j s � s0; s0 2 adom(D)g.4.20 Lemma Let '(x) be a RC(S) query. Then there exists a number k > 0, suh that thefollowing holds. If D j= '(s) for some s with d(s; pre�x (D)) > k then there are in�nitely manystrings  suh that D j= '(). If ' only uses pre�x-restrited quanti�ation then k an be e�etivelyomputed.Proof of Lemma 4.20. By Corollary 4.4 we may assume without loss of generality that all quan-ti�ation in ' is pre�x-restrited. Let r be the quanti�er rank of '. We show that we an �nd ksuh that the following holds. Let D be a database, and s a string with d(s; pre�x (D)) > k. For astring u, let Cu = pre�x (D) [ fs0 j s0 � ug. Then there are in�nitely many strings u suh that thedupliator has a winning strategy for the r-round Ehrenfeuht game on Cs and Cu (with the partialisomorphism being with respet to the operations of S, and with s mapped to u); moreover, inthe winning strategy, the dupliator simply opies the spoiler's moves on pre�x (D). Note that thisondition implies that in the �nal position all the SC-relations are preserved, and hene D j= '(s)i� D j= '(u), thus implying the lemma.To prove the above ondition, let k > 0 be given by the laim. Consider s with d(s; pre�x (D)) > k,and let s0 be the relative suÆx of Meet(s; pre�x (D)) in s. We have js0j > k. We then have in�nitelymany strings u0 suh that (S; s0) �r (S; u0). Take any suh string u0, and form a new stringu = (Meet(s; pre�x (D))) � u0. It is lear that the required strategy exists for the dupliator on Csand Cu.To show that k an be found from ', note �rst that the onversion into a query with pre�x-boundedquanti�ation is e�etive, and the laim is e�etive too, as any Slen formula an be e�etivelyonverted into an automaton. The lemma is proved. 248



Next we de�ne #D = fs j jsj � js0j; s0 2 adom(D)g.4.21 Lemma Let '(x) be a RC(Slen) query. Then there exists a number k > 0 suh that thefollowing holds. If D j= '(s) for some s with d(s; #D) > k then there are in�nitely many strings suh that D j= '(). If ' only uses length-restrited quanti�ation then k an be e�etivelyomputed.Proof of Lemma 4.21. By Proposition 4.8 we may assume without loss of generality that in '(x)all quanti�ation is length-restrited. Let r be the quanti�er rank of '. For any string s, let Sslenbe the struture (#s;�; (La)a2�; el; s). By the Claim, we an �nd a number k suh that for anystring s of jsj > k, there exist in�nitely many strings s0 of js0j > k with Sslen �r Ss0len. Note that kan be found e�etively for a given '.Now assume that for some D and s, D j= '(s) with d(s; #D) > k. Let m be the maximum lengthof a string in adom(D), and s0 the pre�x of s of length m. Then s = s0 � s1 for a string s1 ofjs1j > k. We now show that there are in�nitely many strings s0 of length greater than m+ k suhthat the dupliator has a winning strategy in the r-round Ehrenfeuht game on Sslen and Ss0len suhthat the play is the identity funtion when restrited to strings of length not exeeding m. Clearly,this suÆes to prove the lemma, sine jxj � m for all x 2 adom(D) and thus (D; s) �r (D; s0) andD j= '(s0).Consider any string s01 suh that Ss1len �r Ss01len (we know that there are in�nitely many of them),and let s0 be s0 � s01. We prove that the dupliator wins the r-round game on Sslen and Ss0len. Thestrategy is as follows. The dupliator maintains (for his memory) a separate game on Ss1len and Ss01len.If the spoiler plays a string of length not exeeding m, the dupliator's response is the same string.Assume that the spoiler plays x of jxj > m. Let x = x0 � x1 with x0 being the length m pre�x ofx. Assume that the spoiler plays it in Sslen (if the spoiler plays in Ss0len, the proof is idential). Thedupliator then looks at the urrent position of the auxiliary game on Ss1len and Ss01len (whih is emptyuntil the spoiler makes the �rst move of length > m), and extends it by one move: spoiler's moveis x1 on Ss1len, and the response is a string x01 in Ss01len aording to the winning strategy Ss1len �r Ss01len.Having done that, the dupliator returns to the game on Sslen and Ss0len, and responds by x0 � x01 inSs0len.We now show that the dupliator wins the game. Clearly all La prediates are preserved. Assumethat in Sslen, u � v, where u and v are two moves in the game. Let u0 and v0 be the orrespondingmoves played on Ss0len. If both u and v are of length at most m, then u0 = u; v0 = v and u0 � v0.If juj � m and jvj > m, then u0 = u, and v0 is of the form v0 � v01, where v0 is the pre�x of v oflength m, and thus u0 � v0. If ju j; j v j> m then u0 � v0 by the winning strategy on Sslen and Ss0lenand the fat that u and v have the same pre�x of length m. Next, assume el(u; v) holds. The aseof the length � m is trivial. If juj; jvj > m, then u = u0 � u1; v = v0 � v1, where u0; v0 are lengthm pre�xes, and by the desription of the dupliator's strategy, u0 = u0 � u01 and v0 = v0 � v01, whereu01; v01 are moves taken from the auxiliary game on Ss1len and Ss01len. Sine the dupliator wins theauxiliary game, we have ju1j = ju01j and jv1j = jv01j, and thus el(u0; v0) holds. This ompletes theproof of the lemma. 2For any set X, let N0p (X) = fs�s1+s2 j s 2 X; js1j; js2j � pg, and let Np(X) = pre�x (N0p (X)) (thatis, the pre�x-losure of N0p (X)). Note that Np(X) = N0p (pre�x (X)), and Nk(Nm(X)) � Nk+m(X).49



4.22 Lemma Let '(x) be a RC(Sleft) query. Then there exist numbers l;m > 0 suh that thefollowing holds. If D j= '(s) for some s with d(s;Nm(pre�x (D))) > l then there are in�nitely manystrings  suh that D j= '().Proof of Lemma 4.22. This follows from the normal form for Sleft (Corollary 3.15) and Lemma4.20. 24.23 Lemma Given a RC(Sreg) query '(x), there exists k > 0 suh that whenever D j= '(s) withd(s; pre�x (D)) > k, there are in�nitely many strings  suh that D j= '().Proof of Lemma 4.23. To show this, assume by the restrited quanti�er ollapse and quanti�er-elimination for S+reg that ' is of the formQy1 2 adom : : : Qyl 2 adom _i ĵ �ij(x; ~y);where eah �ij is either an atomi or negated atomi SC-formula, or an Sreg formula not involvingthe variable x, or a formula of the form PL(t1(x; ~y); t2(x; ~y)), where ti is either � or a u-term.Let L1; : : : ; Lm be the regular languages suh that the formulae PLi appear in '. We denote thequanti�er-free part (that is WiVj �ij) by �(x; ~y).Let i > 1 and D j= '(s) with d(s; pre�x (D)) > k. We apply Lemma 4.19 to z = s �(Meet(s; pre�x (D))), and let  = (Meet(s; pre�x (D))) � uviw; i > 1. We now show that for ev-ery ~y0 2 (adom(D) [ f�g)l, it is the ase that D j= �(s; ~y0) i� D j= �(; ~y0). This will implyD j= '(s) $ '() (see [10℄) thus proving the result. To prove D j= �(s; ~y0) $ �(; ~y0), it suÆesto show that D j= PL(t1(; ~y0); t2(; ~y0)) $ PL(t1(s; ~y0); t2(s; ~y0)), where L 2 fL1; : : : ; Lmg, as forall other types of formulae �ij the equivalene is trivial.We now �x ~y0 2 (adom(D) [ f�g)l and onsider the atomi formula �(x) = PL(t1(x; ~y0); t2(x; ~y0)).If tj, j = 1; 2 involves meets of x with some of the omponents of ~y0, then the value of tj will bethe same on s and on , as Meet(s; pre�x (D)) = Meet(; pre�x (D)). Thus, if both t1 and t2 involvesuh meets, we have D j= �(s)$ �().The other ase is when t2 is simply x, and in this ase t1 is either � or x u yi10 u : : : u yip0 , for someomponents of ~y0 (we an inlude x in the u-term without loss of generality, sine its value must bea pre�x of x, by the de�nition of PL). Sine Meet(s; pre�x (D)) = Meet(; pre�x (D)), t1(s) equalst1() and belongs to pre�x (D). To prove D j= �(s)$ �(), it then suÆes to show that s� s0 2 Li� �s0 2 L, whih follows immediately from Lemma 4.19. This ompletes the proof of the lemma.2Finally, we need a lemma for Sreg;left. Its proof follows from the normal form for Sreg;left (Corollary3.25) and Lemma 4.23.4.24 Lemma Let '(x) be a RC(Sreg;left) query. Then there exist numbers l;m > 0 suh that thefollowing holds. Assume that D j= '(s) for some s with d(s;Nm(pre�x (D))) > l. Then there arein�nitely many strings  suh that D j= '().Proof of Theorem 4.18, ompleted. To prove the theorem, take an arbitrary query  (~y) and form50



'(x) that de�nes the ative domain of the output of  , that is, '(x) is9y2; : : : ; yn (x; y2; : : : ; yn) _ : : : _ 9y1; : : : ; yn�1 (y1; : : : ; yn�1; x):It then suÆes to prove the theorem for '(x), sine  is safe for D i� ' is safe for D, and thus forany  suh that (; ') is equivalent to ' on all D for whih ' is safe, the same would be true for(;  ) and  .Having redued the problem to queries on one variable, simply apply the orresponding lemmas.For RC(S), given '(x), �nd the number k as in Lemma 4.20, and let (x; y) say that x is a pre�xof the string of the form y � s with jsj � k. From Lemma 4.20 it follows that (; ') is equivalent to' on any D for whih ' is safe. Finally,  is learly algebrai, and expressible over S for any �xedk.For RC(Slen), given '(x), we get k from Lemma 4.21 and let (x; y) be an Slen formula saying thatthe length of x is at most the length of y plus k. Clearly, this is expressible for eah �xed k, and(; ') oinides with ' on any D for whih ' is safe. This ompletes the proof of the theorem.The proof for Sleft is similar: one gets l; t from Lemma 4.22, and the formula (x; y) says that xis at the distane at most l from a pre�x of a string of the form y � e + f , with jej; jf j � t. Theproofs for Sreg and Sreg;left follow the same idea. This onludes the proof of Theorem 4.18. 24.25 Corollary For eah of� RC(S),� RC(Sleft),� RC(Sreg),� RC(Sreg;left),� RC(Slen),the lasses of range-restrited and safe queries oinide, and safe queries have e�etive syntax.Note that for queries in RC(S) and RC(Slen) that use a restrited form of quanti�ation (pre�x orlength), the proof gives us a stronger result: namely, the formula  an be e�etively found for agiven '.4.4.3 Relational algebrasIt is a lassial result of relational database theory that the set of safe relational alulus queriesis preisely the set of relational algebra queries [1℄. This result extends to string aluli onsideredhere: safety theorems proved earlier an be used to show that safe queries in RC(S) and RC(Slen)an be aptured by appropriate extensions of relational algebra.Let safe RC(M) be the lass of all safe queries in RC(M). To de�ne algebras apturing safe RC(M)for the previous two strutures, we need a number of operations extending the usual relationalalgebra (that is, seletion �, projetion �, artesian produt �, di�erene �, union [):51



R�: is the onstant unary relation f�g.��: for a formula �(x1; : : : ; xn). On an n-attribute relationR, it returns the set of tuples (s1; : : : ; sn)from R suh that �(s1; : : : ; sn) holds.prefixi: On an m-attribute relation R, it returns the m + 1-attribute relation f(s1; : : : ; sm+1) j(s1; : : : ; sm) 2 R; sm+1 � sig.addlai , a 2 �: On anm-attribute relation R, it returns them+1-attribute relation f(s1; : : : ; sm+1) j(s1; : : : ; sm) 2 R; sm+1 = si � ag.#i: Given an m-attribute relation R, #i(R) returns f(s1; : : : ; sm+1) j (s1; : : : ; sm) 2 R; jsm+1j �jsijg.addfai , a 2 � : On an m-attribute relation R, it returns the m + 1-attribute relationf(s1; : : : ; sm+1) j (s1; : : : ; sm) 2 R; sm+1 = a � sig.trimai , a 2 � : On an m-attribute relation R, it returns the m + 1-attribute relationf(s1; : : : ; sm+1) j (s1; : : : ; sm) 2 R; sm+1 = si � ag.It should be pointed out that the formula � in �� does not refer to the database.We now de�ne the relational algebras:RA(S) extends relational algebra with R�, ��, where � ranges over FO(S) formulae, prefixi andaddlai .RA(Slen) extends relational algebra with R�, ��, where � ranges over FO(Slen) formulae, # i,prefixi, and addlai .RA(Sleft) is the extension of relational algebra with �� (where � ranges over Sleft formulae), prefix,addfai and trimai .RA(Sreg) extends relational algebra with R�, ��, where � ranges over FO(Sreg) formulae, prefixiand addlai .RA(Sreg;left) extends relational algebra with R�, ��, where � ranges over FO(Sreg;left) formulae,prefixi, addlai and trimai .4.26 Theorem � safe RC(S) = RA(S);� safe RC(Slen) = RA(Slen);� safe RC(Sleft) = RA(Sleft);� safe RC(Sreg) = RA(Sreg);� safe RC(Sreg;left) = RA(Sreg;left).
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Proof. We start with RA(S). Every RA(S) expression produes a �nite result, and the standardtranslation from algebra to alulus (extended with rules for addl and prefix) shows RA(S) �RC(S).For the onverse, let '(~x) be a safe RC(S) query. By Theorem 4.18, on every database D, theative domain of the output of ' on D is ontained in the set Vk[D℄ = fx j d(x; pre�x (D)) � kg forsome k � 0.We �rst note that Vk[D℄ is de�nable by an RA(S) expression. Indeed, the ative domain of D isde�nable in relational algebra. Next, for eah �xed string s and a �nite set S, there is an expressionaddls that de�nes the set f(s0; s0 � s) j s0 2 Sg simply by omposing addla operations. Thus, forS = adom(D), we de�ne S0 = Sjsj�k addls(S), and note that Vk[D℄ = �3(prefix2(S0)).Let DVk [D℄ be the extension of D by one unary prediate interpreted as Vk[D℄. Sine ' is safe, everyelement of every tuple in '(D) belongs to Vk[D℄. We know that in order to evaluate '(~x), it suÆesto restrit quanti�ation to the pre�x-losure of adom(D) and ~x. Sine Vk[D℄ is pre�x-losed, thisimplies that there is an ative-domain query '0(~x) over the shema extended with one unary symbolsuh that '0(DVk [D℄) = '(D) (here ative-domain means that all quanti�ation is restrited to theative domain, and that the output is only onsidered within the ative domain of the input). By[10℄, '0 an be expressed by relational algebra extended with ��, for � ranging over S formulae.Sine DVk [D℄ is expressible in RA(S) and '(D) = '0(DVk [D℄), we onlude that ' is expressible inRA(S).The proof for Slen is almost idential, exept that one de�nes Vk[D℄ as fx j jxj � jyj + k; y 2adom(D)g, whih is expressible in RA(Slen) using the addls operations and the operations # i.The proof for Sreg is idential to the proof of for S, as the set Vk[D℄ is expressible in RA(Sreg).For Sleft, the proof again follows the same lines: all that is needed is that the set Np(adom(D)) isexpressible in RA(Sleft) for a �xed p. But this follows from the fat that adom(D) is de�nable inrelational algebra, using prefix; addfai and trimai it is then possible to de�ne Np(adom(D)). Theproof for Sreg;left follows from the expressibility of Vk[D℄ and Np(adom(D)). 2One of the operations in RA(Slen), # i, is very expensive, as it may reate sets whose size is ex-ponential in the size of the input. This seems, however, unavoidable, as there are very expensive(e.g., NP-omplete) safe queries in RC(Slen).4.4.4 Deiding Safety Properties of QueriesAlthough query safety is undeidable for pure relational alulus (and hene for any extension),state-safety (given a query ' and a database D, is '(D) �nite?) is deidable [64℄. State safety isalso known to be deidable for various extensions of the form RC(M) (for example, for the naturalnumbers with suessor [64℄ or the real �eld [11℄). For RC(S) and RC(Slen), this deidability holdsas well:4.27 Proposition State-safety is deidable for RC(M), where M is one ofS;Sleft;Sreg;Sreg;left;Slen.Proof. Given a query '(~x) and a databaseD, we obtain a formula '0(~x) by replaing eah ourreneof a shema prediate S(~z) by a disjuntion ~z = ~t1 _ : : : _ ~z = ~tm where ft1; : : : ; tmg is the53



interpretation of S in D. Sine the formula z = s is de�nable in all the strutures for every �xed s,'0 an thus be viewed as a formula over Slen suh that Slen j= '0(~x) i� D j= '(~x). We now onsiderthe sentene � de�ned as 9~y 8~x ('0(~x)! 9~z( î zi � yi ^ el(zi; xi))):Then '(D) is �nite i� f~a j Slen j= '0(~a)g is �nite i� Slen j= �, and thus the state-safety is deidable,sine the theory of Slen is deidable. 2As query safety is undeidable, one often onsiders restritions for whih deidability an be ob-tained. Here we look at one of the most fundamental lasses of queries { onjuntive queries. Wetake their de�nition in the ontext of interpreted operations from [11, 46℄. A onjuntive query inRC(M) is a query of the form '(~x) � 9~y k̂i=1Si(~ui) ^ (~x; ~y);where k � 0, eah Si is a shema relation, ~ui is a subtuple of (~x; ~y) of the same arity as Si, and  is anM formula. A Datalog-like notation for suh a query would be '(~x) :{ S1(~u1); : : : ; Sk(~uk); (~x; ~y).In [11℄, safety of onjuntive queries was shown deidable for RC(M), for various strutures Mon the reals with numerial operations. We now show a general result from whih the deidabilityresults for string strutures S;Slen as well as those onsidered in [11℄ follow. We say that �nitenessis de�nable with parameters in M if for eah formula  (~x; ~y) in M, there exists another formula �n(~y) suh that M j=  �n(~a) i� the set f~b j M j=  (~b;~a)g is �nite. Furthermore,  �n(~y) an beomputed e�etively.4.28 Theorem Assume that M an be expanded to M0 suh that the theory of M0 is deid-able, and �niteness is de�nable with parameters in M0. Then safety of Boolean ombinations ofonjuntive queries in RC(M) is deidable.Proof. We start with a few easy observations about Boolean ombinations of onjuntive queries inRC(M). First, if �(~x) is a onjuntive query, it an be represented in the form 9~z2adomVi Si(~ui)^(~x; ~z). Indeed, given a query 9~yVi Si(~ui) ^ 0(~x; ~y), let ~z be the subtuple of ~y that onsists ofyjs appearing in the Si atoms. Then the query an be rewritten to the one with ative-domainquanti�ation only, where (~x; ~z) � 9~v0(~x; ~y) { here ~v lists those variables in ~y that do not belongto ~z. We also note that every onjuntive query is monotone.Next, every Boolean ombination of onjuntive queries is equivalent to a union of queries of theform �(~x) ^ :�1(~x) ^ : : : ^ :�k(~x), where k > 0, and �; �1; : : : ; �k are onjuntive queries. Indeed,one puts a given Boolean ombination in DNF, and observes that a onjuntion of two onjuntivequeries is a onjuntive query again, and sine true and false are by de�nition onjuntive queries,we an assume that k > 0 and that one onjuntive query is present without negation.Thus, we must show that it is deidable whether a query q(~x) of the form �(~x)^:�1(~x)^: : :^:�k(~x)is safe. Let �(~x) be 9~z2adomVli=1 Si(~ui) ^ (~x; ~z).We show the following laim: if there exists a database D suh that q(D) is in�nite, then thereexists a database D0 with at most l tuples suh q(D0) is �nite. This in turn follows from the54



Model Data omplexity Data omplexity E�etive syntax Relational Safety of CQof generi queries for safe queries algebraRC(S) AC0 FO(<) yes yes deidableRC(Slen) PH AC0 yes yes deidableRC(Sleft) AC0 FO(<) yes yes deidableRC(Sreg) NC1 FO(<) yes yes deidableRC(Sreg;left) NC1 FO(<) yes yes deidableRConat undeidable undeidable no no undeidableTable 2: Summary of results on query languagesfollowing: let Dl be the set of all databases D0 with at most l tuples suh that D0 � D. Then�(D) = [D02Dl�(D0). Indeed, the � inlusion follows from monotoniity, and the � inlusion fromthe fat that to witness ~a 2 �(D), it suÆes to �nd ~b suh that Vli=1 Si(~ui) ^ (~a;~b) holds; if suh~b exists, the l tuples Si(~ui) form a database D0 for whih ~a 2 �(D0).Now, suppose q(D) is in�nite, and D has more than l tuples. We have �(D) = SD02Dl �(D0), andthus q(D) = SD02Dl(�(D0) \Ti :�i(D)) � SD02Dl(�(D0) \Ti :�i(D0)), sine :�is are antimono-tone. Sine q(D) is in�nite, for some D0 2 Dl, q(D0) = �(D0) \Ti :�i(D0) is in�nite. This provesthe laim.Let ~t stand for ~t11; : : : ;~t1l ; : : : ;~tp1; : : : ;~tpl , where p is the number of relation symbols in SC, and ~tij isa tuple of variables of the same length as the arity of Si. For a query q of the form �(~x)^:�1(~x)^: : :^:�k(~x), let q0(~x;~t) be theM formula obtained by replaing eah Si(~u) with Wlj=1 ~u = ~tij. ThenM j= q0(~x;~t) i� D~t j= q(~x), where D~t is the database in whih Si is interpreted as f~ti1; : : : ;~tilg. Bythe assumptions on M, we know that in the expanded model we have a formula q0�n(~t) suh thatM0 j= q0�n(~t) i� the set of ~x suh that q0(~x;~t) holds is �nite. In other words, it holds i� q(D~t) is�nite. Hene, the sentene 8~tq0�n(~t) is true in M i� q(D) is �nite for every database with at mostl tuples, whih by the previous laim means that q is safe. The deidability of the theory of M0now implies the deidability of the safety of q. The theorem is proved. 2We know that Th(Slen) is deidable [14℄. Moreover, �niteness is de�nable with parameters: for (~x; ~y),  �n(~y) is 9~u(8~x (~x; ~y)! 9~zVi zi � ui el(zi; xi)). Thus:4.29 Corollary The safety of Boolean ombinations of onjuntive queries in RC(S),RC(Sleft);RC(Slen), RC(Sreg) and RC(Sreg;left) is deidable.Table 2 summarizes the results of the setion.5 ConlusionThere has been signi�ant interest in theoretial omputer siene in understanding the strutureof the regular languages, and in identifying sublasses of the regular languages that have speialproperties [67, 65℄. Our work an be seen as an extension of this program, where we onsidersublasses of the regular n-ary relations rather than the regular sets. In our approah, however, we55



do not fous on properties that hold of one partiular regular relation by itself, but rather look atsome desirable properties of a whole algebra of relations within the struture Slen.We have shown a sharp ontrast between the behavior of the full algebra of regular relations of Slen,and those of various submodels suh as S, Sleft, Sreg, and Sreg;left. We show that the latter are moretratable in many respets. Furthermore, we show that the behavior of an algebra of relations isnot at all determined by the one-dimensional sets (subsets of ��) in the algebra: for example, onean have fairly omplex binary relations de�nable, yet still maintain the property that all de�nablesubsets of �� are star-free. Figure 1 summarizes the relationships between the star-free and regularalgebras we onsidered here.We have also studied extensions of the standard relational alulus with various sets of stringoperations. We were interested in languages that were not omputationally omplete, but rathershared the attrative omplexity-theoreti and stati analysis properties of relational alulus.The language RC(S) an be seen as a nie foundation over whih other languages should be built.It overs the most rudimentary string operations, but its expressive power is quite limited. The ex-tension RC(Slen) is too powerful (but still not omputationally omplete). We therefore onsideredthe languages in between { RC(Sleft);RC(Sreg);RC(Sreg;left) { that an express some importantoperations found in RC(Slen), but still have low data omplexity. All the aluli have e�etivesyntax for safe queries, and orresponding relational algebras.A key question is how many relations one an add to the models Sleft or Sreg and still have theattrative properties like QE, �nite VC-dimension, and a niely-behaved relational alulus. Isthere a model that is somehow maximal with respet to these properties? We would very muh liketo know the answer to this question. There are also several natural andidate models that wouldseem amenable to the approah taken here, and where one would expet the same results to gothrough: for example, if one allows the operation of onatenating a �xed sequene \in the middle"of a string, rather than on the left or on the right, is the resulting model still tratable?Aknowledgments We thank Wolfgang Thomas, Sott Weinstein, Emmanuel Waller, and JanVan den Busshe for fruitful disussions on the subjet, and the anonymous referees for numeroushelpful omments.Referenes[1℄ S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.[2℄ M. Ajtai. �11 formulae on �nite strutures. Annals of Pure and Applied Logi, 24 (1983), 1{48.[3℄ M. Ajtai, R. Fagin and L. Stokmeyer. The losure of monadi NP. JCSS 60(3): 660{716(2000).[4℄ D. Angluin, D. N. Hoover. Regular pre�x relations. Mathematial Systems Theory 17(3),167{191,1984.[5℄ M. Anthony and N. Biggs. Computational Learning Theory. Cambridge Univ. Press, 1992.[6℄ A. Atserias, Ph. Kolaitis. First-order logi vs. �xed-point logi in �nite set theory. In LICS'98,pages 275{284. 56
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