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Abstra
tIt is known that standard query languages for 
onstraint databases la
k the power to express
onne
tivity properties. Su
h properties are important in the 
ontext of geographi
al databases,where one naturally wishes to ask queries about 
onne
tivity (what are the 
onne
ted 
ompo-nents of a given set?) or rea
hability (is there a path from A to B that lies entirely in a givenregion?). No existing 
onstraint query languages that allow 
losed form evaluation 
an expressthese properties.In the �rst part of the paper, we show that in prin
iple there is no obsta
le to getting
losed languages that 
an express 
onne
tivity and rea
hability queries. In fa
t, we show thatadding any topologi
al property to standard languages like FO+Lin and FO+Poly results ina 
losed language. In the se
ond part of the paper, we look for tra
table 
losed languagesfor expressing rea
hability and 
onne
tivity queries. We introdu
e path logi
, whi
h allowsone to state properties of paths with respe
t to given regions. We show that it is 
losed, haspolynomial time data 
omplexity for linear and polynomial 
onstraints, and 
an express a largenumber of rea
hability properties beyond simple 
onne
tivity. Query evaluation in the logi
involves obtaining a dis
rete abstra
tion of a 
ontinuous path, and model-
he
king of temporalformulae on the dis
rete stru
ture.1 Introdu
tionSeveral re
ent data models generalize the relational model by allowing dire
t modeling of stru
tureddatabase obje
ts beyond the traditional 
at tuple. Examples of the additional stru
ture that 
anbe modeled in
lude nesting of tuples within other tuples, and the modeling of pointers and otherdatatypes in the obje
t-oriented database model. We will deal in this paper with another su
hextension, the 
onstraint database model [20, 25℄, in whi
h database relations need not be simple�nite 
olle
tions of tuples, but 
an instead be 
onstraint-de�nable 
olle
tions, �nite or in�nite. The
onstraint model is appropriate for a variety of domains in whi
h appli
ation data is naturallyrepresented as solutions to 
onstraints, su
h as geographi
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databases allow queries to symboli
ally manipulate in�nite 
olle
tions of data, using both relationaloperators and the algebrai
 operations appropriate to the appli
ation domain.We refer to the 
onstraint model as the polynomial 
onstraint model or the linear 
onstraint model,depending on whether database obje
ts are represented using general polynomial 
onstraints oronly linear 
onstraints over the reals. More generally, we 
an parameterize the 
onstraint model byany �rst-order stru
ture M admitting a quanti�er-elimination algorithm. In this general settingthe `
onstraint sets' that de�ne database relations are simply the quanti�er-free de�nable sets ofM. In this paper we 
onsider only stru
tures over the real �eld R.Relational Cal
ulus generalizes in an elegant and simple way to the 
onstraint model. The analogousquery languages use �rst-order logi
 (FO) over the vo
abulary 
onsisting of the s
hema relationssupplemented with the operations ofM (e.g., addition, multipli
ation). The implementation of the
al
ulus redu
es to 
onstraint-solving, or in the general 
ase, quanti�er-elimination. Many of theresults and te
hniques of 
lassi
al relational 
al
ulus, in
luding 
omplexity and expressivity bounds,
arry over to these �rst-order 
onstraint query languages [25℄. However, �rst-order 
onstraintqueries are limited in mu
h the same way as that Relational Cal
ulus is limited. Natural re
ursivequeries, su
h as the transitive 
losure of a graph, remain inexpressible in �rst-order 
onstraint querylanguages. Even more importantly, geometri
 analogs of these queries that are 
ru
ial for spatialdatabase appli
ations are inexpressible as well. The queryCONNECTED(S)that tells whether a database relation S is topologi
ally 
onne
ted, is inexpressible. The queryCONNECTS-TO(x; y; S)that tells whether there is a path from point x to point y within relation S is also inexpressible.Both of these results follow from [4℄. The inability to express 
onne
tedness is a 
ru
ial obsta
lein applying these languages to geographi
 databases. Although 
onne
tivity is perhaps the mostnatural geometri
 property that is absent from �rst-order 
onstraint query languages, there aremany other geometri
 properties whi
h are 
on
eptually (and even algorithmi
ally) simple that areinexpressible as well: the query asking whether a planar region is simply 
onne
ted, to take justone example. In fa
t, results of [22, 24℄ show, roughly, that the only purely topologi
al fa
ts ofa single region expressible in �rst-order queries are `lo
al' { they merely assert the existen
e ornonexisten
e of points with a given topologi
al type.In this paper, we 
onsider extensions of �rst-order 
onstraint query languages that 
an express therea
hability queries mentioned above, as well as other important non-lo
al topologi
al properties.Of 
ourse, in the 
ontext of the relational model, it is fairly well-understood how to add graphrea
hability as well as other tra
table re
ursive queries to a �rst-order language; there are numerousresults mapping out the query languages that result from su
h extensions, 
f. [1℄. What are thediÆ
ulties in extending beyond �rst-order logi
 in the 
onstraint 
ontext?When designing a query language one fa
es two major diÆ
ulties: a
hieving 
losure and tra
tability.A key idea behind 
onstraint query languages is 
losed-form evaluation: if we start with databasesde�nable over some stru
tureM and apply an FO query, the result is again de�nable overM. Inother words, the solution of a set of inequalities 
an be represented again as a set of inequalities.This 
losure property enables the use of a variety of indu
tive query-evaluation algorithms. We alsowant languages that are 
omputationally tra
table. The usual �rst-order 
onstraint query languages2



have polynomial data 
omplexity, as do standard languages for re
ursive querying of traditionalrelational databases.Adding a traditional relational re
ursion me
hanisms su
h as �xed points or while loops to �rst-order 
onstraint query languages does not give this 
losure property, see [20℄. In fa
t, the intera
tionof arithmeti
 with re
ursion 
an produ
e output databases that are not even 
omputable, mu
hless de�nable with 
onstraints. In fa
t, queries for topologi
al 
onne
tivity have been handled onlythrough query languages that are both non-
losed and 
omputationally intra
table [23, 12, 13℄.In 
ontrast, our �rst main result shows that there is a way to add rea
hability and a vast number ofother topologi
al queries while retaining 
losure. In fa
t, for any set T of topologi
al properties, wepresent a language, FO+T that 
an de�ne T, and that is still 
losed. Moreover for the polynomialand linear 
onstraint model we 
an prove that the 
omplexity of evaluating queries in FO + T ispolynomial in the 
omplexity of 
he
king the properties from T. This implies a PTIME 
omplexityfor the extension of CONNECTED. The language FO + T demonstrates that the 
losure problem byitself is no obsta
le to admitting spatial rea
hability queries into 
onstraint query languages.Our se
ond main result identi�es a powerful logi
, Path Logi
 { denoted LPATH { whi
h 
ande�ne CONNECTED, CONNECTS-TO and other rea
hability queries, and whi
h also admits e�e
tive,tra
table query evaluation over linear and polynomial 
onstraint databases. Path Logi
 has syntaxand semanti
s that are reminis
ent of traditional temporal logi
s used in the veri�
ation of rea
tiveprograms. Not only 
an query evaluation be done in polynomial data 
omplexity, but we showthat query evaluation redu
es to a 
ombination of 
ell-de
omposition algorithms from real analyti
geometry, followed by model-
he
king of a dis
rete system. In the model-
he
king phase, te
hniquesfrom veri�
ation of dis
rete transition systems 
an be applied.We will show positive results about both the tra
tability and expressivity of Path Logi
, makingthe 
ase that it is suÆ
iently expressive to 
apture the re
ursive queries that are most important tospatial database appli
ations. Path Logi
 
an thus be seen as a 
onstraint database language thatgeneralizes many re
ursive extensions of �rst-order logi
, as well as a spatial analog of temporallogi
s su
h as CTL and CTL�.Related work Most work on Datalog extensions for the 
onstraint model deal with highly re-stri
tive 
lasses of 
onstraints over integers [31℄, as over linear and polynomial 
onstraints Datalogis not 
losed. Topologi
al 
onne
tivity for 2-dimensional polynomial 
onstraint databases of de-gree 2 was shown to be de�nable in a language 
alled Spatial Datalog [23℄; later [12℄ extendedthis to arbitrary polynomial 
onstraint databases. However, it is likely that Spatial Datalog is
omputationally 
omplete, and thus does not admit eÆ
ient evaluation [13℄. Results in 
ompu-tational algebrai
 geometry show that many 
onne
tivity and rea
hability queries (e.g., �nd the
onne
ted 
omponents of a set) are in PTIME if the dimension is �xed (see, e.g., [17℄). However,languages 
apturing 
omplexity 
lasses over 
onstraint databases are s
ar
e (natural languages ex-ist for databases de�nable with order 
onstraints only [15℄; also, rather 
ompli
ated languages weregiven for linear 
onstraints [16, 21℄). Besides, this approa
h 
an only work for those queries appliedas top level operators (i.e., outputs 
annot be reused by other queries). There exists extensiveliterature on �rst-order de�nable topologi
al properties of 
onstraint databases [28, 22, 24, 33℄ andit is well known that 
onne
tivity and rea
hability are not �rst-order [4℄. Our results on appli
ationto hybrid systems are dire
tly inspired by [26, 27℄.3



Organization We introdu
e notations in Se
tion 2. In Se
tion 3, we deal with 
losure undertopologi
al properties. We �rst prove a number of general de
omposition results for sets de�nablein various stru
tures. We then use them to show 
losure of FO+Lin and FO+Poly under addingtests for topologi
al properties, and tra
tability, assuming topologi
al properties 
an be tested inpolynomial time. We also study the spe
ial 
ase of �nding 
onne
ted 
omponents.In Se
tion 4, we introdu
e Path Logi
 LPATH for expressing rea
hability and 
onne
tivity queriesin a uni�ed framework. We give examples, analyze expressive power, and prove 
losure. For linearand polynomial 
onstraints we show tra
tability as well. We 
on
lude in Se
tion 5 by giving anappli
ation to veri�
ation of hybrid systems.2 NotationsStru
tures, databases, queries Most notations are fairly standard in the literature on 
on-straint databases, 
f. [4, 5, 25, 29℄. LetM = hU ;
i be an in�nite stru
ture, where U is an in�niteset, 
alled a universe (in the database literature often 
alled the domain), and 
 is a set of inter-preted fun
tions, 
onstants, and predi
ates. A set X � Un is de�nable inM if there is a formula�(x1; : : : ; xn) in the language ofM su
h that X = f~a 2 Un j M j= �(~a)g.In this paper, we will always have U = R, the set of real numbers.Examples of signatures (and 
orresponding 
lasses of 
onstraints) that have been 
onsidered are:Dense Order Constraints: hR; <i;Linear Constraints: Rlin = hR;+;�; 0; 1; <i;Polynomial Constraints: R = hR;+; �; 0; 1; <i.A (relational) database s
hema SC is a nonempty 
olle
tion of relation names fS1; : : : ; Slg withasso
iated arities p1; : : : ; pl > 0. We shall 
onsider �nitely representable, or de�nable instan
es. Ade�nable database instan
e of SC overM is a family of de�nable sets fX1; : : : ;Xlg, with Xi � Upi ,su
h that for ea
h Xi there exists a formula �i(x1; : : : ; xpi) in the language ofM with Xi = f~a 2Upi j M j= �i(~a)g. Most appli
ations of 
onstraint databases 
onsider de�nable instan
es over Rlin(
alled semi-linear sets) or over R (
alled semi-algebrai
 sets). These are sets de�nable by Boolean
ombinations of linear (resp., polynomial) inequalities.As our basi
 query language, we 
onsider relational 
al
ulus, or �rst-order logi
, FO, over theunderlying stru
ture and the database s
hema. We use the notation FO+
 to denote the 
lass ofall �rst-order formulae built up from the atomi
 SC and 
 formulae by using Boolean 
onne
tives_;^;: and quanti�ers 8;9. When 
 is (+;�; 0; 1; <), we use the notation FO+Lin (�rst-order withlinear 
onstraints), and when 
 is (+; �; 0; 1; <), we denote the language by FO+Poly (�rst-orderwith polynomial 
onstraints).Given '(~x; ~y) and ~a, we write '(~a;D) for f~b j D j= '(~a;~b)g; in the absen
e of ~x we just write '(D)for the output of ' on D. We say that a language FO + 
 is 
losed, if for any s
hema SC, anyde�nable SC-database (over hR;
i) and every FO + 
 query '(~y) on SC-databases, the output'(D) is a de�nable set.Languages FO+Lin, FO+Poly, as well as FO with dense order 
onstraints are 
losed; this is a4




onsequen
e of quanti�er-elimination for Rlin, R and hR; <i [25℄.O-minimality, 
ell de
omposition Many results that we prove extend beyond linear and poly-nomial 
onstraints. To state them in greater generality, we use o-minimality [35℄, whi
h plays animportant role in the study of 
onstraint query languages (
f. [4, 5, 25℄).A stru
tureM = hR;
i is o-minimal, if every de�nable subset of R is a �nite union of points andopen intervals (a; b) = fx j a < x < bg, (�1; a) = fx j x < ag, and (a;1) = fx j x > ag (weassume that < is in 
). All the stru
tures on the reals we mentioned so far { Rlin, R, hR; <i {are o-minimal (this is implied by quanti�er elimination and the fundamental theorem of algebra,for the 
ase of R.) There are a number of known o-minimal expansions of R, most notably, theexponential �eld hR;+; �; exi [37℄.A key property of o-minimal stru
tures is 
ell de
omposition. A 
ell in Rk is a subset homeomorphi
to Rk0 , k0 � k (by 
onvention, R0 is a point). We now �x a stru
tureM = hR;
i and de�neM-
ellsby indu
tion on dimension. AnM-
ell in R0 is just R0 . M-
ells in R are singletons fag, or openintervals (a; b); (�1; a); (a;1), where a; b are de�nable 
onstants. Assume that C � Rn�1 is a 
ell,and f; g : C ! R are 
ontinuous de�nable fun
tion on C, with f(~x) < g(~x) for all ~x 2 C. Then thesets f(~x; f(~x)) j ~x 2 Cg and f(~x; r) j ~x 2 C; f(~x) < r < g(~x)g are 
ells in Rn . In the latter 
ase, weallow f to be �1 and/or g to be 1.A 
ell de
omposition of Rn (with respe
t to M) is a partition of Rn into a �nite union of M-
ells. Again, it is de�ned indu
tively on n. A de
omposition of R is the 
olle
tion of M-
ellsof the form f(�1; a1); fa1g; (a1; a2); fa2g; : : : ; fakg; (ak;1)g. A de
omposition of Rn is a familyC = fC1; : : : ; Clg ofM-
ells that partition Rn su
h that for the natural proje
tion � : Rn ! Rn�1given by �(~x; t) = ~x for ~x 2 Rn ; t 2 R, the 
olle
tion �(C) = f�(C1); : : : ; �(Cl)g is a de
ompositionof Rn�1 .In parti
ular, if C is a de
omposition of Rn+m and � : Rn+m ! Rn is the proje
tion on the �rstn 
oordinates, then �(C) is a de
omposition of Rn , and for every 
ell C 2 C there exists a unique
ell C0 2 �(C) su
h that C � C0 � Rm . This property, espe
ially in the 
ontext of the real �eld, isreferred to as being a 
ylindri
 de
omposition.Fa
t 1 [35℄ LetM = hR;
i be o-minimal. Assume that S1; : : : ; Sm are de�nable sets in Rn . Thenthere exists a 
ell de
omposition C of Rn su
h that ea
h Si is a union of some 
ells of C. 2Let X � Rn+m and ~a 2 Rn . Then X~a denotes the �ber f~b 2 Rm j (~a;~b) 2 Xg. Let C bea de
omposition of Rn+m and ~a 2 Rn . By C~a we denote the 
olle
tion of all nonempty setsfC~a j C 2 Cg. It is known [35℄ that C~a is a 
ell de
omposition of Rm .In the 
ase whenM is Rlin or R, we 
an get more information about 
ell de
ompositions. Namely,given any �nite 
olle
tion f1(~x); : : : ; fk(~x) of polynomials (resp., linear fun
tions) in n variableswith 
oeÆ
ients from Q , one 
an �nd a 
ell de
omposition C of Rn su
h that on ea
h 
ell Ci,none of the fun
tions fj 
hanges its sign. Furthermore, this de
omposition 
an be found in timeO((kd)h(n)), where d is the maximal degree of a polynomial among fjs, and h is some fun
tion(typi
ally, h(n) = O(2n)) [10, 8℄. It is important to noti
e that for a �xed dimension, the 
ellde
omposition algorithm is thus in PTIME (in fa
t, in NC [6℄).5



We will need stronger notions of de
omposition into 
ells. A de
omposition C of Rn+m is 
alledtrivial over Rn if it is 
ylindri
 over Rn and for any 
ell C 0 of the indu
ed de
omposition �(C) ofRn , and for any ~a;~b 2 C 0, there exists a homeomorphism h : Rm ! Rm su
h that h(C~a) = C~b forevery 
ell C 2 C.Let 
l(�) denote the 
losure of a set (in the usual topology of R). A de
omposition C is 
alled adja-
en
y preserving over Rn if it is 
ylindri
 over Rn and for any 
ell C 0 of the indu
ed de
omposition�(C), for any ~a;~b 2 C 0, and for all 
ells A1; A2; A3 2 C, 
l(A1~a) \ A2~a 6= ; i� 
l(A1~b) \ A2~b 6= ; and
l(A1~a)\ 
l(A2~a)\A3~a 6= ; i� 
l(A1~b)\ 
l(A2~b)\A3~b 6= ;. Note that a trivial de
omposition is adja
en
ypreserving.3 Topologi
al properties and 
losureThe goal of this se
tion is to show that adding topologi
al properties to languages like FO + Linand FO+Poly results in 
losed query languages. In parti
ular, one 
an add the 
onne
tivity test,or an operator 
omputing 
onne
ted 
omponents of a set, and still remain within semi-linear orsemi-algebrai
 databases.In Subse
tion 3.1, we prove a general de
omposition result for de�nable sets that is key to the
losure theorems of this se
tion and next. Our starting point is the Lo
al Triviality Theorem inreal algebrai
 geometry, whi
h implies, for example, that for a semi-algebrai
 set S � Rn+m , thenumber of topologi
al types of sets S~a � Rm is �nite, as ~a ranges over Rn [3, 7℄. For R, the knownLo
al Triviality theorem gives the de
ompositions ne
essary for our results. In Rlin, however, theLo
al Triviality Theorem fails, so we prove a weakening of it that is suÆ
ient for the needs of thepaper.On
e the de
omposition lemma is proved, the general 
losure result for adding tests of topologi
alproperties follows easily. We treat it in Subse
tion 3.2, and then in Subse
tion 3.3 analyze moregeneral topologi
al operators, in parti
ular, one for 
omputing 
onne
ted 
omponents of a set. Wederive 
losure for FO+Poly and FO+Lin, although in very di�erent ways: for FO+Poly it is aneasy 
onsequen
e of Lo
al Triviality for semi-algebrai
 fun
tions, while for FO+Lin the proof relieson the spe
ial form of de
ompositions. Noti
e that the Lo
al Triviality Theorem does not hold inthe semi-linear 
ase as the homeomorphisms de�ned by this theorem 
ould be non semi-linear.3.1 De
omposition LemmaThe key lemma for our results is the following :Lemma 2 a) Let S1; : : : ; Sk be a 
olle
tion of semi-linear sets in Rn+m and let f1; : : : ; fp beall the (degree 1) polynomials used in the representation of S1; : : : ; Sk. Then there exists ade
omposition C of Rn+m into semi-linear sets whi
h is trivial over Rn , and su
h that thesign of ea
h fi is 
onstant on every 
ell of C. In parti
ular, every Sj is a union of 
ells of C.Moreover, for n and m �xed, C 
an be found in time polynomial in the size of the des
riptionsof f1; : : : ; fp.b) The statement a) holds if one repla
es semi-linear with semi-algebrai
.6




) Let M = hR;
i be o-minimal, and let S1; : : : ; Sk be a 
olle
tion of de�nable sets in Rn+m .Then there exists a de
omposition C of Rn+m whi
h is adja
en
y preserving over Rn su
h thatea
h set Si is a union of 
ells of C. Moreover, if M is de
idable, then C 
an be e�e
tively
omputed.d) If M = hR;
i is an o-minimal expansion of the real �eld R, and S1; : : : ; Sk is a 
olle
tionof de�nable sets in Rn+m , then there exists a de
omposition C of Rn+m whi
h is trivial andsu
h that ea
h set Si is a union of 
ells of C.Proof: In the proofs of a) and b) and d), we will use the de�nition of strati�
ation [3, 7℄. Astrati�
ation of Rn is a de
omposition fA1; : : : ; Akg of Rn su
h that Ai \ 
l(Aj) = ; i� Ai � 
l(Aj)for all i 6= j, and the following property holds. There exist a family of polynomials (of degree 1, forthe linear 
ase) fp1(~x); : : : ; pm(~x)g in n variables su
h that A1; : : : ; Ak are exa
tly the nonemptysets among m\i=1f~a 2 Rn j pi(~a) �(i) 0gwhere � ranges over the fun
tions from f1; : : : ;mg to f<;=; >g, and the 
losure of ea
h Aj isobtained by relaxing the inequalities involved in the above representation; that is, 
hanging < to� and > to �. Noti
e that a strati�
ation is not ne
essarily a 
ylindri
al de
omposition.We start the proof with b), as it is an easy 
onsequen
e of the Lo
al Triviality Theorem in algebrai
geometry [3, 7℄. Let f1; : : : ; fp be all the polynomials used in a given representation of the Sis, andlet X1; : : : ;Xs be a 
ylindri
 de
omposition of Rn+m with respe
t to f1; : : : ; fp. That is, for ea
h i,Xi is a semi-algebrai
 set homeomorphi
 to Rk0 for some k0 � n+m, and the polynomials fjs donot 
hange sign on Xi. Let � : Rn+m ! Rn be the natural proje
tion on the �rst n 
oordinates.The Lo
al Triviality Theorem, applied to � and X1; : : : ;Xs states that there exists a strati�
ationZ1; : : : ; Z� of Rn and, for ea
h 1 � i � �, a semi-algebrai
 set Fi � Rm , a semi-algebrai
 partitionfFi1; : : : ; Fisg of Fi and a semi-algebrai
 homeomorphism hi : Zi � Rm ! Zi � Fi su
h that� � = � Æ hi on Zi � Rm , and� hi((Zi � Rm) \Xj) = Zi � Fij .In parti
ular, for any ~a 2 Zi and any ~y 2 Rm , we have hi(~a; ~y) = (~a; ~z) for some ~z 2 Fi. Thus, forevery ~a 2 Zi, h~ai : Rm ! Fi that sends ~y to ~z is a homeomorphism, and is onto (sin
e Xjs partitionRn+m and Fijs partition Fi).We now �x ~a;~b in Zi. Our goal is to �nd a homeomorphism h~a;~b : Rm ! Rm su
h that h~a;~b((Xj)~a) =(Xj)~b for ea
h Xj . First, de�ne id~a;~b : f~ag � Fi ! f~bg � Fi to be the natural mapping that is theidentity on Fi. Then we let h~a;~b : Rm ! Rm be de�ned as� Æ h�1i Æ id~a;~b Æ hi Æ (f~ag � id):Here � is the proje
tion the last m 
oordinates. That is, given ~y1 2 Rm , apply hi to (~a; ~y1)to obtain (~a; ~z) 2 Zi � Fi. Then h~a;~b(~y1) = ~y2 su
h that hi(~b; ~y2) = (~b; ~z). It is 
lear thath~a;~b is a homeomorphism. We next note that hi((f~ag � Rm ) \ Xj) = f(~a; ~z) j ~z 2 Fijg andhi((f~bg � Rm ) \Xj) = f(~b; ~z) j ~z 2 Fijg, whi
h therefore implies h~a;~b((Xj)~a) = (Xj)~b.7



We now look at the de
omposition of Rn given by the nonempty sets among �(X1); : : : ;�(Xs) and�nd a de
omposition V1; : : : ; Vl su
h that ea
h Vi is a subset of a unique �(Xk) and a unique Zr.Given su
h a de
omposition, we 
onstru
t a de
omposition C 
onsisting of nonempty sets among(Vi � Rm ) \Xj . Sin
e we took Xjs to be a 
ylindri
 de
omposition, and ea
h Vi is 
ontained in aproje
tion of some 
ell from that de
omposition, we obtain that C itself is a 
ylindri
 de
ompositionover Rn . Furthermore, sin
e ea
h Vi is subset of some Zl, we obtain from the paragraph above thatC is trivial over Rn .It remains to show polynomial time 
omplexity, assuming that n andm are �xed. First, the 
ylindri
de
omposition X1; : : : ;Xs 
an be found in polynomial time [8, 10℄. To see that the strati�
ationZ1; : : : ; Z� 
an be found in polynomial time, one analyzes the proof of the Lo
al Triviality Theoremin [3, 7℄ to see that it is essentially 
onstru
ting a de
omposition ex
ept that at ea
h indu
tive step,one may have to make a linear 
hange of 
oordinates. Again, this 
an be done in polynomial time ifthe dimension is �xed. Finally, to �nd the Vis, one 
omputes all possible interse
tions Zl \�(Xj),and this is again polynomial for a �xed dimension. This 
ompletes the proof of b).The proof of d) is identi
al, ex
ept for the last step, as the Lo
al Triviality Theorem is knownto hold in any o-minimal expansion of the real �eld [35℄; 
learly, nothing 
an be said about the
omplexity in this 
ase.We now move to the proof of a). First note that we 
annot apply the proof above as the Lo
alTriviality Theorem does not hold over Rlin (see, for example, in [35℄). However, we 
an re
overenough of it to prove a).Let f1(~x; ~y); : : : ; fp(~x; ~y) be all the linear fun
tions involved in the representation of S1; : : : ; Sk. Weassume that in
luded in this 
olle
tion are the n+m fun
tions xi (for ea
h variable xi; this is doneto ensure that none of the 
ells 
ontains a line). Let us use the standard 
ylindri
 
ell de
ompositionalgorithm for linear fun
tions, thus obtaining a 
ell de
omposition C of Rn+m su
h that on every
ell of C, the sign of ea
h fi remains 
onstant. In parti
ular, ea
h Sj is then a union of 
ells. We
laim that C satis�es the 
ondition of the theorem.First, the fa
t that it 
an be 
omputed in time polynomial in the representation of all the fis (forn and m �xed) is derived from the standard bounds on 
ell de
omposition [10℄. Se
ond, analyzingthe proof of the existen
e of strati�
ations for semi-algebrai
 sets (see, for example, [3, 7℄), oneobtains that C is a
tually a strati�
ation. This is be
ause the only step in the proof of the existen
eof strati�
ations in the semi-algebrai
 
ase that deviates from the standard 
ell de
ompositionis a linear 
hange of 
oordinates to ensure that 
ertain produ
ts of variables do not appear inpolynomials. However, sin
e we deal with linear fun
tions, and multipli
ation is not allowed, nolinear 
hange of variables is ne
essary.We now �x a 
ell C 0 2 �(C) and ~a;~b 2 C 0 � Rn . Let C 2 C be a 
ell in C 0�Rm . We �rst note thatsin
e dim(C) = dim(C 0)+dim(C~
) for an arbitrary ~
 2 C 0 [35℄, we obtain that dim(C~a) = dim(C~b).We next �x two 
ells B;C 2 C in C 0�Rm and show that the following four 
onditions are equivalent:1. C~a \ 
l(B~a) 6= ;;2. C \ 
l(B) 6= ;;3. C � 
l(B); 8



4. C~a � 
l(B~a).Note that 4 ! 1 is immediate, and 2 ! 3 follows from the fa
t that C is a strati�
ation. Both1 ! 2 and 3 ! 4 follow from the fa
t that for any 
ell C in C 0 � Rm , and any ~a 2 C 0, we havef~ag � 
l(C~a) = 
l(C) \ (f~ag � Rm ). To prove this, assume that C 6= ; is given by a 
onjun
tionof stri
t inequalities g1(~x; ~y) > 0; : : : ; gp(~x; ~y) > 0 and equalities v1(~x; ~y) = 0; : : : ; vs(~x; ~y) = 0,where either s or p 
an be zero, and gis and vis are linear fun
tions. The 
ase of p = 0 isimmediate, so we assume p 6= 0. Sin
e C de�nes a strati�
ation of Rn+m , we obtain that 
l(C)is given by the 
onjun
tion of gi(~x; ~y) � 0, i = 1; : : : ; p, and vj(~x; ~y) = 0, j = 1; : : : ; s. LetG~ai = f~
 j gi(~a;~
) > 0g, G~ai = f~
 j gi(~a;~
) � 0g, and V ~aj = f~
 j vj(~a;~
) = 0g. We have
l(G~ai ) = G~ai and ri(G~ai ) = G~ai , where ri(�) is the relative interior. Sin
e TiG~ai 6= ;, we have
l(TiG~ai ) = 
l(Ti ri(G~ai )) = Ti 
l(ri(G~ai )) = TiG~ai (see, e.g., [32℄). Let V ~a = Tj V ~aj . ThenV ~a is a 
losed set, and it interse
ts the open set TiG~ai . Hen
e, ri(V ~a) \ TiG~ai 6= ;, and thus
l(V ~a \TiG~ai ) = 
l(V ~a)\ 
l(TiG~ai ) = V ~a \TiG~ai . Thus, 
l(C~a) = f~
 j gi(~a;~
) � 0; vj(~a;~
) = 0; i =1; : : : ; p; j = 1; : : : ; sg, whi
h proves f~ag� 
l(C~a) = 
l(C)\ (f~ag�Rm ), and hen
e the equivalen
esabove.The equivalen
es above show that the adja
en
y stru
tures of C~a and C~b are the same for any ~aand ~b in C 0, and, moreover, the boundary of C~a in Rm is the union of 
ells of the form B~a, B 2 C,and likewise for ~b. Furthermore, the proof shows that 
l(C~a) is a 
onvex polyhedron, whi
h doesnot 
ontain a line in Rm (sin
e all variables have the same sign in every 
ell, by in
lusion of allthe fun
tions xis before 
omputing the de
omposition). Furthermore, sin
e 
l(C~a) = 
l(C)~a, weobtain from 
onvex analysis (see [32℄) that ea
h fa
e of 
l(C~a) is a union of 
ells of the form B~a,B 2 C. Thus, ea
h vertex of 
l(C~a) is a 
ell of the above form, ea
h segment fa
e is a union of abounded one-dimensional 
ell of the form B~a and two verti
es, and ea
h ray fa
e is a union of anunbounded one-dimensional 
ell and a vertex. The same statements hold for 
l(C~b) in view of theabove equivalen
es.We next show that for any 
ell B 2 C, B~a is bounded i� B~b is bounded. Indeed, B~a is bounded i�
l(B~a) is bounded. By a simple indu
tion on dimension, 
l(B~a) of dimension > 0 is bounded i� allits one dimensional fa
es are segments, whi
h in turn happens i� every one dimensional 
ell of theform A~a 
ontained in 
l(B~a) is adja
ent to two verti
es (0-dimensional 
ells). Sin
e the adja
en
ystru
tures of C~a and C~b are the same, we obtain from here that in 
l(B~b) every 1-dimensional fa
eis bounded, and thus B~b is bounded.Next, we need the following observation. Let P1 and P2 be two 
onvex polyhedra in Rk , withdim(P1) = dim(P2). Assume that P1 and P2 are homeomorphi
, and none 
ontains a line. Sin
eboundary is a topologi
al invariant of a 
onvex set [34℄, this in parti
ular implies that bd(P1) ishomeomorphi
 to bd(P2). Fix any homeomorphism g : bd(P1)! bd(P2). We 
laim that g 
an beextended to a homeomorphism G : P1 ! P2.To prove this 
laim, assume without loss of generality that dim(P1) = k (if not, one works inits aÆne hull). It also suÆ
es to show that the statement above is true for some 
onvex set Xsu
h that both P1 and P2 are homeomorphi
 to X. Indeed, let h1 : P1 ! X and h2 : P2 ! Xbe homeomorphisms (in parti
ular, bd(X) = h1(bd(P1)) = h2(bd(P2))). Consider a map v frombd(X) to itself given by h2 Æ g Æ h�11 . Clearly, it is a homeomorphism, so by assumption we 
anextend it to a homeomorphism V : X ! X. But now G = h�12 Æ V Æ h1 is a homeomorphism9



P1 ! P2 that extends g.Now the 
laim about the extension of a homeomorphism from the boundary to the whole polyhedronfollows from the fa
t that a polyhedron not 
ontaining a line in Rk is homeomorphi
 to either theunit ball Bk = f~x j k ~x k� 1g (if it is bounded) or to Dk = [0; 1)k (if it unbounded), see [34℄. In the�rst 
ase, a homeomorphism g : bd(Bk)! bd(Bk) is extended as follows. The origin is mapped toitself. Given ~x 2 Bk, let the ray from the origin in the dire
tion of ~x interse
t bd(Bk) at ~y. ThenG(~x) is the point ~x0 on the segment between the origin and g(~y) su
h that k ~x k=k ~x0 k. In these
ond 
ase, 
onsider any ~x in the interior of Dk. Let 1 stand for (1; : : : ; 1). Let the ray originatingin 1 and passing through ~x interse
t bd(Dk) at ~y. Consider a point ~x0 on the segment between 1and g(~y) su
h that d(~x0;1)d(g(~y);1) = d(~x;1)d(~y;1)(where d(�; �) is the usual Eu
lidean distan
e), and let G(~x) = x0. It is routine to verify that inboth 
ases G is a homeomorphism extending g.Let now Ck~a be the union of 
ells C~a whose dimension is at most k, and likewise for Ck~b . Sin
e forea
h 
ell C~a, 
l(C~a) is the union of lower-dimensional 
ells in C~a, we obtain that Ck~a and Ck~b are
losed. We now 
on
lude the proof of a) by indu
tion, by showing that for every k, there is ahomeomorphism hk : Ck~a ! Ck~b su
h that hk(B~a) = B~b for any 
ell B with dim(B~a) � k. For k = 0,the statement follows from the fa
t that dim(B~a) = dim(B~b) for every B 2 C; thus, h0 maps every0-dimensional 
ell (point) of the form B~a to the point B~b.For the indu
tion step, assume we have already 
onstru
ted hk. Consider any 
ell B 2 C su
h thatdim(B~a) = dim(B~b) = k + 1. Consider 
l(B~a) = B~a [ bd(B~a). We know that bd(B~a) is a subsetof Ck~a and moreover a union of 
ells. We thus have a mapping gB whi
h is a restri
tion of hk onbd(B~a) and therefore a homeomorphism bd(B~a)! bd(B~b) (be
ause bd(B~b) is a union of 
ells too,and the adja
en
y stru
tures of C~a and C~b are the same). Note that 
l(B~a) and 
l(B~b) are bothk + 1-dimensional polyhedra, none 
ontaining a line, and 
l(B~a) is bounded i� 
l(B~b) is. Applyingthe 
laim above, we extend gB to a homeomorphism GB : 
l(B~a)! 
l(B~b); note that GB(B~a) = B~bas GB(bd(B~a)) = bd(B~b).Let B1; : : : ; Bs be all the 
ells with dim(Bi~a) = k+1. Then Ck+1~a = Si 
l(Bi~a) and Ck+1~b = Si 
l(Bi~b).We have homeomorphisms GBi : 
l(Bi~a) ! 
l(Bi~b) for ea
h i. Note that Bis are pairwise disjoint,and for any x 2 
l(Bi~a) \ 
l(Bj~a) it is the 
ase that x 2 Ck~a and GBi(x) = GBj (x) = hk(x). Wethus 
an de�ne hk+1 as the union of all GBi . Clearly, it extends hk and hk+1(Bi~a) = Bi~b for all i.Elementary topology shows that if one has a 1-1 fun
tion f : X ! Y on two topologi
al spa
es su
hthat X = X1[: : :[Xt and Y = Y1[: : :[Yt, where all Xis and Yis are 
losed and the restri
tion of fto ea
h Xi is a homeomorphism between Xi and Yi, then f is a homeomorphism between X and Y(
ontinuity of f follows sin
e if a sequen
e haji in X 
onverges, then a subsequen
e ajk lying withinone Xi 
onverges, and hen
e f(ajk) 
onverges by 
ontinuity of the restri
tion. Applying the sameargument to f�1 gives that f is a homeomorphism). This implies that hk+1 is a homeomorphismCk+1~a ! Ck+1~b , thus 
ompleting the indu
tion 
ase.We now �nally take h to be hm; it is a homeomorphism Rm ! Rm (sin
e every element is in some
ell) with the property that h(C~a) = C~b for every 
ell C 2 C. This 
ompletes the proof of a).We �nally prove 
). Start with a 
ell de
omposition C of Rn+m su
h that ea
h Si is a union of 
ells,10



and �(C) is a 
ell de
omposition of Rn (re
all that � here is the natural proje
tion onto the �rst n
oordinates). It is known that ea
h 
ell is de�nable in the stru
ture hR; <; S1 ; : : : ; Ski [35℄. To seewhat is needed in order to obtain formulae de�ning ea
h 
ell, one 
an 
he
k all the steps in the proofof 
ell de
omposition for o-minimal stru
tures (see, e.g., [30, 35℄) and observe that the only stepthat is needed to ensure e�e
tiveness is the 
al
ulation of uniform bounds. That is, for a formula�(x; ~y), one should be able to 
al
ulate a number K su
h that for ea
h ~a, the set f
 j M j= �(
;~a)gis 
omposed of fewer than K intervals. This 
an be done using the de
idability of M. For ea
hnumber i, we 
an write a senten
e �i� stating that the set f
 j M j= �(
;~a)g is 
omposed of fewerthan i intervals for all i, and then 
he
k ifM j= �i�. The uniform bounds theorem [30℄ says thatthere is a number K su
h thatM j= �K� , and thus it 
an be found sin
eM is de
idable.Now we have a de
omposition of Rn+m into, say, s 
ells. We 
onsider a 
ell C 0 2 �(C) (note that thede
omposition �(C) is also 
omputable). Let t � s be the number of 
ells in the 
ylinder C 0 � Rm ;denote them by A1; : : : ; At. For two mappings� : f1; : : : ; tg � f1; : : : ; tg ! f=; 6=g;� : f1; : : : ; tg � f1; : : : ; tg � f1; : : : ; tg ! f=; 6=g;let C 0�;� be the set of all ~a 2 C 0 su
h that for every 1 � i; j; k � t,(Ai~a \ 
l(Aj~a)) �(i; j) ;and (Ai~a \ 
l(Aj~a) \ 
l(Ak~a)) �(i; j; k) ;:Sin
e the 
losure of a de�nable set is de�nable in any o-minimal stru
ture on R [35℄, we obtain thatC 0�;� is de�nable by a formula ��;�(~x). We now 
onsider the 
olle
tion F of all the 2t2+t3 formulae��;�, as � and � range over the maps as above. Note that F 
an be e�e
tively found from therepresentation of S1; : : : ; Sk. We next do a 
ell de
omposition Ĉ of Rn so that every 
ell in �(C) andevery set de�nable by ��;� is a union of 
ells. By the same argument as in the previous paragraph,ifM is de
idable we 
an e�e
tively 
onstru
t formulae de�ning the 
ells of Ĉ.Let ~C be the 
olle
tion of all nonempty subsets of Rn+m of the form C \ (A�Rm) where C rangesover C and A ranges over Ĉ. Clearly, ~C is a de
omposition of Rn+m whi
h is 
ylindri
 over Rn .Furthermore, every 
ell in the proje
tion �( ~C) is a 
ell of Ĉ. Next, �x a 
ell A in �( ~C). Let ~a;~b 2 A.Assume that for two 
ells C1; C2 of ~C, we have C1~a \ 
l(C2~a) 6= ;. Sin
e Ci = Ci0\ (A�Rm) for some
ell Ci0 of C in the same 
ylinder over Rn , we have C1~b \ 
l(C2~b ) 6= ; as ~a and ~b satisfy all the sameformulae ��;�. Thus, C1~a \ 
l(C2~a) 6= ; i� C1~b \ 
l(C2~b ) 6= ;. The proof that C1~a \ 
l(C2~a) \ 
l(C3~a) 6= ;i� C1~b \ 
l(C2~b ) \ 
l(C3~b ) 6= ; for any C1; C2; C3 2 ~C is identi
al. This shows that ~C is adja
en
ypreserving over Rn . It is immediate from its de�nition and the previous paragraph that �rst-orderdes
riptions of its 
ells 
an be e�e
tively found as soon asM is de
idable. This 
ompletes the proofof d), and the lemma. 23.2 Closure theoremWe now prove the 
losure result for topologi
al properties. Formally, a topologi
al property Topis a 
olle
tion fT1; : : : ;Tn; : : :g where Tn is a family of sets in Rn su
h that if X 2 Tn, then for11



ea
h homeomorphism h of Rn , h(X) 2 Tn. For example, Top 
ould express the property of being
onne
ted, being 
losed, being of dimension n � 1, 
ontaining exa
tly one hole, et
. When thedimension n is 
lear from the 
ontext, we write X 2 Top instead of X 2 Tn.For a set T of topologi
al properties, we de�ne the language FO(
)+T by extending the de�nitionof FO(
) with the following rule: if '(~x; ~y) is a query, then  (~x) � Top ~y: '(~x; ~y) is a query. Thesemanti
 is as follows: D j=  (~a) i� '(~a;D) 2 Top. Re
all that '(~a;D) = f~b j D j= '(~a;~b)g. For
 being (+;�; 0; 1; <) or (+; �; 0; 1; <) we use the notation FO + Lin+ T and FO +Poly+ T.For instan
e, the query \is the interse
tion of regions R and S 
onne
ted" 
ould be written asC~x: R(~x) ^ S(~x) (where we denote the property of being 
onne
ted by C). To illustrate the use offree variables, 
onsider a set S � R3 . Then the query '(x) � C(y; z): S(x; y; z) returns the set ofall 
 2 R for whi
h the interse
tion of S with the plane x = 
 is a 
onne
ted set.We say that the data 
omplexity of FO(
) + T is PTIMET if FO(
) + T queries 
an be evaluatedin polynomial time in the size of the database, assuming an ora
le that 
an test ea
h Top 2 T in
onstant time.Theorem 3 Let T be any set of topologi
al properties. Then FO + Lin + T;FO + Poly+ T andFO(
) + T are 
losed, for hR;
i an o-minimal expansion of the real �eld. Furthermore, the data
omplexity of FO + Lin+ T and FO +Poly+ T is PTIMET.Proof. The result is by a simple indu
tion on the formulae. The only 
ase to prove is  (~x) �Top ~y: '(~x; ~y) for Top 2 T. Let ~x and ~y be of length n and m, resp. On a de�nable database D, byindu
tion, '(~x; ~y) gives us a de�nable set S � Rn �Rm . By Lemma 2, there exists a de
ompositionC of Rn+m into �nitely many de�nable 
ells whi
h is trivial over Rn and su
h that S is a unionof 
ells of C. Let C0 be the proje
tion of C onto Rn , and C a 
ell in C0. By triviality, for every~a;~b 2 C, it is the 
ase that S~a and S~b are homeomorphi
, and thus they agree on Top. Therefore,the output of  on D is a union of (�nitely) many 
ells in C0; sin
e ea
h 
ell is de�nable, the outputis de�nable, too.To get the 
omplexity bound for FO + Lin + T and FO + Poly + T, we show by indu
tion thatfor ea
h query ', there exists a number k su
h that the 
omplexity of evaluating ' on D is O(Nk),where N is the size of a given representation of D (assuming Top 
an tested in 
onstant time).Again, the only 
ase to 
onsider is that of  (~x) � Top ~y: '(~x; ~y), as others follow from the standardbounds on quanti�er-elimination. Given S = '(D) 
omputed in O(Nk), we 
an �nd, by Lemma 2,a trivial de
omposition C in time polynomial in Nk. Sin
e the proje
tion operation is polynomialfor a �xed dimension, we get that for some k1 that depends only on ', we 
an 
onstru
t both C andC0 in time O(Nk1). We next sele
t a point ~a in ea
h 
ell of C0 and 
onstru
t the �ber S~a. This 
anbe done in polynomial time, too (indeed, 
ell de
omposition algorithms already return a point fromea
h 
ell when they produ
e a de
omposition [10, 8℄, and then one substitutes those representativepoints for ~x in the de�nition of S). Finally, for ea
h 
ell we test in 
onstant time if the �ber S~a isin Top. Thus, the total 
omplexity is polynomial in N , with the exponent depending on  only.This 
ompletes the proof. 2Now 
onsider the 
ase when T 
onsists of just the property C (being a 
onne
ted set). As 
onne
-tivity of semi-algebrai
 sets 
an be tested in polynomial time (for a �xed dimension) [17℄, the proofof the 
omplexity bounds in Theorem 3 implies the following.12



Corollary 4 FO+Lin+C and FO+Poly+C are 
losed, and the queries they de�ne have PTIMEdata 
omplexity. 23.3 Topologi
al queries and 
onne
ted 
omponentsSo far we have seen 
losure and tra
tability for languages whi
h add the CONNECTED operator men-tioned in the introdu
tion. We now deal with the CONNECTS-TO operator; that is, with 
omputing
onne
ted 
omponents. In fa
t, we treat a more general 
ase of non-boolean topologi
al queries inthe 
ontext of polynomial 
onstraints.Let T be a map from subsets of Rm to subsets of in Rmk . We 
all T topologi
al if for any home-omorphism h : Rm ! Rm and any (~x1; : : : ; ~xk) 2 T (S), for S � Rm , we have (h(~x1); : : : ; h(~xk)) 2T (h(S)). For example, the mapping Conn : 2Rm ! 2Rm�Rm su
h that (~x1; ~x2) 2 Conn(S) i� ~x1; ~x2are in the same 
onne
ted 
omponent of S, is topologi
al. We say that T is de�nable if T (S) is ade�nable set for every de�nable set S. As 
onne
ted 
omponents of a set de�nable in an o-minimalstru
ture on R are de�nable [35℄, the topologi
al query Conn is de�nable over su
h stru
tures.Let T : 2Rm ! 2Rmk be a topologi
al query. We de�ne the language FO(
) + T by extending thede�nition of FO(
) with the following rule: if '(~x; ~y) is a query with ~y having length m, then weget a new query  (~x; ~y1; : : : ; ~yk) � T~y: '(~x; ~y), with all ~yis having length m. The semanti
 is asfollows: D j=  (~a;~b1; : : : ;~bk) i� (~b1; : : : ;~bk) 2 T ('(~a;D)):For example, if '(D), for '(~x; ~y), is a set S � Rn+m , and  (~x; ~y1; ~y2) � Conn~y: ', then D j= (~a;~b1;~b2) i� ~b1 and ~b2 are in the same 
onne
ted 
omponent of S~a.In the semi-algebrai
 
ase or in any o-minimal expansion, the Lo
al Triviality Theorem used in theproof of Lemma 2 
an also be used to prove the following:Theorem 5 For every de�nable topologi
al map T , FO+Poly+T is 
losed. Moreover, FO(
)+Tis 
losed, whenever hR;
i is an o-minimal expansion of the real �eld.Proof. As usual this is proved by indu
tion on the stru
ture of the formulae. We only need toprove the 
ase of  (~x; ~y1; : : : ; ~yk) � T~y: '(~x; ~y). Assume ' de�nes S � Rn �Rm : S = f(~a;~b) j D j='(~a;~b)g. By Lemma 2, there exists a de
omposition C trivial over Rn . Let C1; : : : ; Cp be all the
ells in the proje
tion of C onto Rn . The proof of b) in Lemma 2 (whi
h is just an appli
ation ofLo
al Triviality) shows that for every i, and every ~a;~b 2 Ci, there is a de�nable homeomorphismhi~a;~b : Rm ! Rm su
h that hi~a;~b(S~a) = S~b. Sin
e T is topologi
al, it implies that (~e1; : : : ; ~ek) 2 T (S~a)if and only if (hi~a;~b(~e1); : : : ; hi~a;~b(~ek)) 2 T (S~b).Sin
e ea
h 
ell Ci is a de�nable set, it has a de�nable representative ~
i 2 Ci [35℄. Thus, a tuple(~a;~b1; : : : ;~bk) is in  (D) i� for i 2 1; : : : ; p su
h that ~a is in Ci, the following holds:9(~e1; : : : ; ~ek) 2 T (S~
i) k̂j=1~bj = hi~
i;~a(~ej)Sin
e S~
i is de�nable, and hi~
i;~a is a de�nable homeomorphism, T (S~
i) is de�nable, whi
h impliesthat  (D) is a de�nable set, and proves 
losure. 213



We note in passing that the fa
t that T produ
es a de�nable output on a de�nable input by nomeans implies 
losure. For example, the 
onvex hull operator preserves semi-linearity, but whenadded to FO+Lin, gives it the full power of FO+Poly [2℄. One 
an �nd de�nable operators that,when added to FO+Poly, de�ne non-semi-algebrai
 sets (e.g., given two sets X and Y in Rn ,return the one with the larger volume).Sin
e Conn is de�nable and topologi
al (over the real �eld and its o-minimal expansions), we
on
lude from Theorem 5 that FO + Poly + Conn is 
losed. However, the proof above 
annotpossibly be extended to FO + Lin. Indeed, we used not only the triviality of the partition whi
his guaranteed by Lemma 2, but also the fa
t that homeomorphisms between �bers are de�nable.This latter 
ondition fails over hR;+;�; 0; 1; <i. Nevertheless, we 
an show that FO +Lin+ Connis 
losed.Proposition 6 FO+Lin+Conn is 
losed; that is, it de�nes a semi-linear output on a semi-linearinput. Furthermore, FO + Lin+ Conn queries have PTIME data 
omplexity.Proof. The proof is by indu
tion on the formulae, with only the 
ase of applying the Conn operatorbeing nontrivial. Suppose we are given '(~x; ~y) whi
h de�nes, on a semi-linear database D, a semi-linear set S � Rn � Rm . We must show that the set S0 � Rn � Rm � Rm of triples (~a;~b2;~b2) su
hthat ~b1 and ~b2 are in the same 
onne
ted 
omponent of S~a, is semi-linear, and 
an be 
omputed intime polynomial in the size of a given representation of S (assuming n and m �xed). For this, weuse Lemma 2. We 
ompute in PTIME a de
omposition C of Rn+m , whi
h is trivial over Rn , su
hthat the signs of all the fun
tions used in the representation of S remain 
onstant on ea
h 
ell.Let C be a 
ell in �(C), where � : Rn+m ! Rn is the natural proje
tion. Let C1; : : : ; Ck be all the
ells in the 
ylinder C � Rm . We know from the proof of Lemma 2 that for any ~a;~b, Ci~a adj Cj~a i�Ci~b adj Cj~b i� Ci adj Cj where X adj Y means X \ 
l(Y ) 6= ; or Y \ 
l(X) 6= ;. We let GC be agraph with the set of nodes being the indi
es of the 
ells among C1; : : : ; Ck that belong to S, andedges (i; j) for every Ci adj Cj. Let K1; : : : ;Kp be the 
onne
ted 
omponents of GC . De�ne PC~a asp[l=1(([i2Kl Ci~a)� ([i2KlCi~a)) � Rm � Rmfor ~a 2 C, and let S0 = [C2�(C) [~a2Cf~ag � PC~a � Rn � Rm � Rm :It is known [35℄ that the sets of the form (Si2Kl Ci) are exa
tly the 
onne
ted 
omponents ofS \ (C � Rm ). It thus follows from the above that the sets of the form (Si2Kl Ci~a) are exa
tly the
onne
ted 
omponents of S~a, and hen
e S0 is the result of Conn~x: '. By 
onverting the above intoa FO de�nition, we obtain PTIME data 
omplexity as the number of quanti�ers only depends onn and m. 2We note that the results on 
losure under topologi
al operators and Conn leave something to bedesired. First, the proof of Theorem 5 does not produ
e a 
omplexity bound, as it is not immediately
lear how hard it is to 
ompute de�nable homeomorphisms between �bers. We will see in the next14



se
tion that the data 
omplexity is PTIME (Corollary 15). The proof for FO+Lin, although givingus tra
tability, is rather ad-ho
, and slight modi�
ation of a query may require an entirely di�erentproof of 
losure.We now want to �nd a single language that 
aptures the properties that are of interest for appli
a-tions, whi
h has a small number of 
onstru
tors, and whi
h has a uniform evaluation method overall queries. Su
h a language is presented in the next se
tion.4 Path Logi
Our goal is to present a unifying query language for expressing rea
hability and 
onne
tivity queries.The language is based on the 
on
ept of a path and allows to express properties of paths with respe
tto given sets in the Eu
lidean spa
e Rn . For now, let us think of a path as a 
ontinuous 
urve inRn . For example, to express that a set S � Rn is 
onne
ted we would say \for all ~x; ~y 2 S thereexists a path su
h that for all points p on this path whi
h appear between ~x and ~y we have p 2 S".Formally, we would write this in the form8~x8~y��S(~x) ^ S(~y)� �!EP 9p9q�p = ~x ^ q = ~y ^ 8r((p < r ^ r < q)! S(r))��:Let us try to de
ode this formula: The �rst line is just �rst-order, its obvious meaning is \for alltuples ~x; ~y 2 Rn whi
h are both 
ontained in S we have." Then EP in the se
ond line says \thereexists a path," i.e. a 
ontinuous 
urve in Rn . We shall assume that all paths have a starting point;that is, they are 
ontinuous maps f : R+ ! Rn where R+ = fr 2 R j r � 0g. Next we quantifyover a new type of variables, path variables p; q; r, whi
h range over the points of the path. We saythat \there exist points p; q on the path su
h that p equals ~x and q equals ~y (if we 
onsider them aspoints of Rn), and all points r between p and q are 
ontained in S." Here the order in \between"is just the natural order on R. So formally the meaning of the se
ond line of our formula is9t; u 2 R+�f(t) = ~x ^ f(u) = ~y ^ 8v 2 (t; u) f(v) 2 S�:Similarly, we 
an formulate statements \for all paths" by using a universal quanti�er AP insteadof EP .Before we give the formal de�nition of the syntax and semanti
s of our logi
, let us give one moreintuitive example. The following query de�nes the set of all ~y 2 R2 su
h that if one wants to gofrom a point in Portugal (P � R2) to ~y on land (L) then one has to go through Spain (S) and thenFran
e (F ): 8~x�P (~x) �!AP��8pL(p) ^ 9p9q(p < q ^ p = ~x ^ q = ~y)�!9r9s�p < r < s < q ^ S(r) ^ F (s)��:Thus the query returns, for example, all points ~y in Fran
e, Germany, and Italy, but no points inSpain or England.In Subse
tion 4.1, we formally de�ne the path logi
 LPATH. In Subse
tion 4.2, we give moreexamples and analyze the expressive power. In Subse
tion 4.3, we show that LPATH is 
losed and15



tra
table over polynomial and linear 
onstraints (more generally, the 
losure is shown for o-minimalstru
tures). In the subsequent se
tion, 5, we give an appli
ation of path logi
 to hybrid systems.4.1 De�nition of the path logi
Formulas in the logi
 may have two sorts of variables, element variables x; y; : : : and path variablesp; q; : : : There are also two kinds of formulae: state formulae and path formulae. Asso
iated withea
h path formula is an arity n � 1. (An n-ary path formula speaks about a path in Rn .)Syntax Given a database s
hema SC and a stru
ture M = hR;
i, formulae of LPATH(
) arede�ned indu
tively as follows:1. Every FO + 
 formula ' is a state formula.2. State formulae are 
losed under the Boolean 
onne
tives _;^;:, and quanti�
ation 9;8.3. If ' is a state formula, ~x = (x1; : : : ; xn) is an n-tuple of element variables, and p is a pathvariable, then '[p ~x℄ is a path formula of arity n.4. If n � 1 and p; q are path variables, then p = q, p < q, and p > q are path formulas of arityn. (To be formally 
orre
t, we should write p =n q, p <n q, or p >n q for the n-ary versionsof these formulae, but we 
an safely omit this.)5. Path formulae of the same arity are 
losed under the Boolean 
onne
tives _;^;:.6. If ' is a path formula and p a path variable, then 9p ' and 8p ' are path formulae of thesame arity as '.7. If ' is a path formula without free path variables, then EP' and AP' are state formulae.To make the last point of the de�nition pre
ise, we have to de�ne the set FVp( ) of free pathvariables of a formula  : If  � '[p  ~x℄ then FVp( ) = fpg. For the other types of pathformulas, FVp is de�ned in the usual way, for example FVp(p < q) = fp; qg, FVp('1 _ '2) =FVp('1) [ FVp('2), and FVp(9p') = FVp(') n fpg. If  is a state formula, then FVp( ) = ;.This 
ompletes the de�nition of the syntax of LPATH(
). When 
 = (+;�; 0; 1; <), we use thenotation LPATH(Lin) for LPATH(
); for 
 = (+; �; 0; 1; <), we use the notation LPATH(Poly).We shall usually write p = ~y instead of (~x = ~y)[p ~x℄. Similarly, if R is a relation name, then weshall write R(p) instead of R(~x)[p ~x℄. (We have already used these 
onventions in the examplesat the beginning of this se
tion.)To be able to de�ne the semanti
s, we also have to de�ne the set FVe( ) of free element variables of aformula  : If  is an FO+
-formula, then FVe( ) is the set of free variables of  de�ned in the usualway. Similarly, if  is a Boolean 
ombination of two state or path formulas, then we apply the usualrules to de�ne FVe( ). If  2 f9x';8x'g (for an element variable x) then FVe( ) = FVe(')nfxg.If  2 f9p';8p'g (for a state variable p) then FVe( ) = FVe('). If  2 fEP';AP'g thenFVe( ) = FVe('). Finally, if  � '[p (x1; : : : ; xn)℄ then FVe( ) = FVe(') n fx1; : : : ; xng.16



Semanti
s In our informal dis
ussion starting this se
tion we de�ned a path in Rn to be anarbitrary 
ontinuous mapping P : R+ ! Rn . However, 
ontinuous fun
tions 
an os
illate verywildly, and in
luding pathologi
al 
urves may lead to 
ounterintuitive truth values for senten
es.Therefore, we de�ne our semanti
s with respe
t to the set of non-zeno paths, whi
h are reasonablysmooth and 
an only os
illate mildly. Formally, given an o-minimal stru
ture M, we say that apath P : R+ ! Rn is non-zeno with respe
t toM if for any set X � Rn de�nable in any o-minimalexpansion of M, the set P�1(X) = ft j P (t) 2 Xg is a union (not ne
essarily �nite) of intervals,and the set of endpoints of those intervals is dis
rete.For example, every semi-algebrai
 path is non-zeno with respe
t to Rlin and R. Another typi
al
lass of non-zeno paths 
an be obtained as follows: Let R be partitioned into intervals I1; I2; : : :(whi
h 
ould be open or 
losed on ea
h side) su
h that for some � > 0, the length of ea
h Ij is atleast �. Let P : R+ ! Rn be pie
e-wise semi-algebrai
 with respe
t to this partition; that is, Pis 
ontinuous and its restri
tion to ea
h Ij is semi-algebrai
. Then P is non-zeno with respe
t toRlin and R. An example is given by P : R+ ! R2 de�ned as P (x) = (x; x � bx
) if bx
 is even,and P (x) = (x; dxe � x) if bx
 is odd. An example of a path that is non-zeno with respe
t to Rlinand R, but not pie
ewise semi-algebrai
, is the path s : R ! R2 de�ned by s(x) := (x; sin(x)).An example of a path whi
h is not non-zeno with respe
t Rlin and R is the path de�ned bys(x) := (x; x sin(1=x)).We now give the formal de�nition of the semanti
s of LPATH(
). Whereas for state formulasthe satisfa
tion relation is de�ned with respe
t to databases D in the usual way, the satisfa
tionrelation for path formulas is de�ned with respe
t to pairs (D;P ) 
onsisting of a database D and anon-zeno path P .The 
ases of FO + 
 formulae, as well as �rst-order quanti�
ation and Boolean 
onne
tives arestandard.For an n-ary path formula  (p; ~y) � '(~x; ~y)[p ~x℄, a database D, a non-zeno path P : R+ ! Rn ,a t 2 R+ , and a tuple ~a 2 Rm with m = j~yj, we have (D;P ) j=  (t;~a) i� D j= '(P (t);~a). For'(p; q) � (p�q), with � 2 f<;=; >g, we de�ne (D;P ) j= '(t; t0) i� t�t0. Finally, D j= EP'(~a) i�there exists a non-zeno path P su
h that (D;P ) j= '(~a).This 
ompletes the de�nition of the semanti
s of LPATH.We 
lose this se
tion with an example that shows why we have to be very 
areful in de�ning apath logi
 that is 
losed and de
idable. Note that in formulae '[p ~x℄, only one path variable 
anget instantiated. Intuitively, this 
orresponds to 
oloring a path with previously de�ned regions.The following example shows why one 
annot bind two path variables at the same time, i.e. admitformulas of the form '[p ~x; q  ~y℄ (with the obvious meaning).Example 7 Let �(x1; x2) � (x2 = 0). Then the path formula�(p; q) � � �[p ~x℄ ^ �[q  ~x℄ ^ p < q^:9r��[r  ~x℄ ^ p < r ^ r < q��says that p and q are two 
onse
utive interse
tions of a path with the x1-axis. Now let
(x1; x2; y1; y2) � (x2 = 0) ^ (y2 = 0) ^ (y1 = x1 + 1)17



and 
onsider the formula'(z) � EP� 9p9q�p = (0; 0) ^ q = (0; z) ^ p < q�^8p8q��(p; q)! 
[p ~x; q  ~y℄��:It says that there is a path from (0; 0) to (z; 0) in R2 su
h that two 
onse
utive points of the form(x1; 0); (x2; 0) on this path must satisfy x2 = x1 + 1. Hen
e, '(z) holds i� z is a positive integer,while N is not a semi-algebrai
 set.4.2 Expressive powerIn this se
tion we 
olle
t a few fa
ts we know about the expressive power of LPATH. We haveindi
ated that CONNECTED and CONNECTS-TO 
an be expressed: for example, to test that ~x; ~y arein the same 
onne
ted 
omponent of R, one writes �R(~x) ^ R(~y)� ^ EP �8p R(p) ^ 9p1(p1 =~x) ^ 9p2(p2 = ~y)�.As another example, we show how to test if a region R � R2 is simply 
onne
ted . Intuitively, Rbeing simply 
onne
ted means there are no holes in it (formally, a 
onne
ted region R is simply
onne
ted if every 
losed 
urve in it is homotopi
 to a single point). Note that it is easy to 
he
kif a 
onne
ted region R has a hole: either R2 n R is bounded, or this is not the 
ase, and there arepoints ~x; ~y su
h that every path from ~x to ~y interse
ts R. Clearly, this 
an be expressed in LPATH.The example above is an instan
e of a general result, saying that the language LPATH is quiteexpressive when it 
omes to topologi
al queries in 2-dimensional spa
e. Proposition 8 below 
anbe used to express many more 2-dimensional topologi
al queries. Note that this is parti
ularlyrelevant in geographi
al information systems, whi
h most often deal with 2-dimensional data.With every 2-dimensional spatial database instan
e D, one 
an asso
iate a �nite stru
ture I(D), itstopologi
al invariant [28℄. I(D) 
aptures the topologi
al information about D, whi
h means thattwo instan
es D and D0 are homeomorphi
 if, and only if, I(D) and I(D0) are isomorphi
. We nowshow the de�nability of I(D) in LPATH.Proposition 8 The topologi
al invariant of semi-linear or semi-algebrai
 2-dimensional spatialdatabase instan
es is de�nable in LPATH. More pre
isely, the topologi
al invariant of semi-linearinstan
es is de�nable in LPATH(Lin), and the topologi
al invariant of semi-algebrai
 instan
es isde�nable in LPATH(Poly).Proof : We brie
y re
all the de�nition of topologi
al invariant. The reader is referred to [28, 33℄for a more pre
ise des
ription. Given a spatial instan
e D over a database s
hema Reg 
ontainingonly binary relations, a 
ell partition of D is a partition of R2 into �nitely many 
onne
ted subsets
alled 
ells su
h that ea
h relation of D is a (�nite) union of 
ells. The topologi
al invariant I(D)is roughly a �nite des
ription of the maximal 
ell partition of D. It is a �nite stru
ture 
onsistingof the following relations (their meaning is explained intuitively):1. A unary relation C, providing the 
ells of dimension 0, 1, 2, and a distinguished 
ell ofdimension 0 
alled the exterior-
ell.2. A unary fun
tion Dim, whi
h asso
iates a dimension to ea
h 
ell.18



3. A binary relation Adja
ent providing the topologi
al adja
en
y relationship between the 
ells.4. For ea
h region name p 2 Reg, a unary relation p providing the set of 
ells 
ontained in regionp.5. Orientation is a 5-ary relation providing the 
lo
kwise and 
ounter
lo
kwise orientation ofedges in
ident to ea
h 
ell of dimension 0. More pre
isely, (+; v; e1; e2; e3) 2 Orientation i�v is a 
ell of dimension 0, e1; e2; e3 are 
ells of dimension 1 in
ident to v, and e2 lies betweene1 and e3 in the 
lo
kwise order on the in
ident 
ells of v, and (�; v; e1; e2; e3) 2 Orientationi� v is a 
ell of dimension 0, e1; e2; e3 are 
ells in
ident to v, and e2 lies between e1 and e3 inthe 
ounter
lo
kwise order on the in
ident 
ells of v (one 
an use 0 and 1 to 
ode + and �).Let inv(Reg) denote the above s
hema. We want to prove that, given a semi-algebrai
 or semi-linearinstan
e D over Reg, there exists a formula in LPATH that gives I(D), the topologi
al invariantover D.We start by giving the de�nition of 
ells as an equivalen
e relation E over points of R2 : two pointsp and p0 are in E i� they are in the same 
ell of the topologi
al invariant. (Cells themselves 
an bede�ned from E, as any semi-linear or semi-algebrai
 equivalen
e relation has a FO-de�nable set ofrepresentatives [35℄.)The 
ells of dimension 0 are non-regular points and 
an be de�ned in FO(<).A 
ell of dimension 1 is a 
onne
ted set of points with the same boundary 
one type (
onetype as de�ned in [22, 33℄, a boundary 
one type is the 
one type of a point that lies on the
ommon boundary of several region of Reg). The fa
t that two points p and p0 have the sameboundary 
one type is expressible in FO(<); this follows from [22, 24, 33℄. From the de�nitionof topologi
al invariant we know that, two points p and p0 are in the same 1-dimensional 
elli� they have the same boundary 
one type 
 and if there exists a path P from p to p0 su
hthat all the points q in P have the same boundary 
one type 
 (in parti
ular, there is nonon-regular point in P ). This 
an be expressed in LPATH.A 2-dimensional 
ell is a 
onne
ted set of points having the same trivial full 
one type. Theset of points having the same full 
one type is de�nable in FO(<) and therefore its 
onne
ted
omponents are de�nable in LPATH.The fun
tion Dim whi
h asso
iates to ea
h point the dimension of the 
ell it belongs to is easilyderived from the 
one type of ea
h 
ell (non-regular, boundary or full) and this is de�nable inFO(<).The adja
en
y relationship is given as a binary relationship A over points in R2 : A(p; p0) i� the
ell of p is topologi
ally adja
ent to the 
ell of p0. As we have seen before, the 
ells of p and p0 arede�nable in LPATH (the 
ell of p is the set of points q su
h that E(p; q)), and testing for adja
en
yis FO(<). Therefore A is LPATH de�nable.We now show how to de�ne the relation Orientation in LPATH. From the above we know how to
he
k in LPATH that v is a 
ell of dimension 0, e1; e2; e3 are 
ells of dimension 1 and that e1; e2; e3are adja
ent to v. If this is the 
ase, it 
an be 
he
ked in LPATH whether e2 lies between e1 and19



e3 in the 
lo
kwise (
ounter
lo
kwise) order on the in
idents 
ells of v in the following way. Forea
h suÆ
iently small square S with 
enter v, let v1; v2; v3 be the interse
tion of the edges e1; e2; e3with S. It suÆ
es to 
he
k that, in S, v2 lies between v1 and v3 in the 
lo
kwise (
ounter
lo
kwise)order. This 
an be done in FO(<) by 
onsidering all the possible 
ases 
orresponding to whi
hsides of S vis lie on. 2In the following se
tion, we will see that every LPATH-query is 
omputable in polynomial time.We do not believe that the 
onverse is true, although proving this remains open. LPATH seems tobe 
loser to NL (non-deterministi
 logarithmi
 spa
e) than to PTIME. The following propositionmay illustrate this:Proposition 9 Every query on �nite 
onstraint databases that is 
omputable in NL is expressiblein LPATH.Proof : Dire
ted rea
hability is the following query: given a dire
ted graph G, 
ompute the set ofall pairs (v; w) of verti
es of G su
h that there is a path from v to w. It was proved in [19℄ thatdire
ted rea
hability is 
omplete for NL under �rst-order redu
tions. Sin
e it 
an easily be seenthat the 
lass of �nite database queries de�nable in LPATH is 
losed under �rst-order redu
tions,it suÆ
es to prove that dire
ted rea
hability is expressible in LPATH.Finite dire
ted graphs are represented by a �nite subset V � R and a �nite set E � V 2 � R2 . Note�rst that the following formula, intuitively saying that there exists a path from x to y su
h thatfor all su

essive z1; z2 2 V appearing on this path we have E(z1; z2) is not an LPATH-formula:EP� 9p19p2(p1 = x ^ p2 = y) ^8q18q2�(V (q1) ^ V (q2) ^ :9q3(V (q3) ^ q1 < q3 ^ q3 < q2))! E(z1; z2)[z1  q1; z2  q2℄��:(The reason that this is not an LPATH-formula is that we are not allowed to substitute both z1and z2 in E(z1; z2) by path variables.)To �nd an LPATH-formula expressing dire
ted rea
hability, we �rst de�ne a topologi
al represen-tation of the input graph in R3 . Then undire
ted rea
hability 
an be de�ned in the same way astopologi
al 
onne
tivity. In a se
ond step, we use two additional predi
ates to en
ode the dire
tionof the edges.For a 2 R we let �a := (a; 0; 0). For a pair (a; b) 2 R2 we let (a; b) be the 
urve in R3 
onne
tingthe following points by straight line segments: �a, (a; b; 0), (a; b; a), (b; b; a), (b; 0; a), �b. It is easy tode�ne a formula 
(x; y; ~z) 2 FO(<) su
h that for all a; b 2 R, ~
 2 R3 we have hR; <i j= 
(a; b;~
) if,and only if, ~
 appears on the 
urve (a; b). Observe that for all a; b; a0; b0 2 R the 
urves (a; b) and(a0; b0) interse
t if, and only if, either a = a0 or b = b0.For a dire
ted graph G = (V;E) with V � R we let �V := f�a j a 2 V g and �E := S(a;b)2E (a; b).Clearly, there are formulae 'V (~z); 'E(~z) in FO over < and E; V de�ning the sets �V ; �E, respe
tively.Note that for all a; b 2 V there is an path from a to b in the undire
ted graph underlying G if, andonly if, there is a path in R3 from �a to �b that is 
ontained in �E.20



To en
ode the dire
tion of the edges we de�ne two new sets Tail := f(a; b; 0) 2 R3 j (a; b) 2 Eg andHead := f(b; 0; a) 2 R3 j (a; b) 2 Eg. Let 'Tail(~z); 'Head(~z) in FO over <;E; V be formulas de�ningthese sets.To express that there is a dire
ted path from a to b we say that there is a path in R3 su
h that ao

urs before b on this path, and every point of �V on this path that is not the �nal point is followedby a point in Tail, every point in Tail is followed by a point in Head, and every point in Head isfollowed by a point in �V . To formalize this in LPATH, we let'Empty(q1; q2) = 8q3��q1 < q3 ^ q3 < q2)�! :�'V (q3) _ 'Tail(q3) _ 'Head(q3)��:Then the following LPATH-formula de�nes dire
ted rea
hability:V (x) ^ V (y) ^EP�9p19p2 �p1 = (x; 0; 0) ^ p2 = (y; 0; 0) ^ p1 � p2�^8q1�('V (q1) ^ 9q2 q1 < q2)! 9q2('Tail(q2) ^ 'Empty(q1; q2))�^8q1('Tail(q1)! 9q2('Head(q2) ^ 'Empty(q1; q2))�^8q1('Head(q1)! 9q2('V (q2) ^ 'Empty(q1; q2))��: 2Of 
ourse this proposition is only a small step towards an understanding of the expressive power ofLPATH. We would like to prove the 
onverse statement that every LPATH-query on �nite instan
esis 
omputable in NL. Unfortunately, this seems to be quite diÆ
ult. One approa
h would be toprove a 
ollapse result saying that generi
 LPATH-queries on �nite stru
tures are all expressiblein some �nitary path logi
, and then use results from �nite model theory. It is not 
lear how toextend �rst-order 
ollapse results to LPATH, however.Another diÆ
ult problem is to 
ompare the expressive power of LPATH with that of the variousextensions of FO by the 
onne
tivity quanti�ers. We believe that dire
ted rea
hability in �nitegraphs is not expressible in FO + Poly + Conn, but this appears to be very hard to prove, evenunder the 
omplexity theoreti
 assumption that undire
ted rea
hability is not NL-
omplete.4.3 Query evaluation: Closure and 
omplexityWhile LPATH 
an express a great deal of rea
hability queries in 
onstraint databases, it is notimmediately 
lear whether it is either 
losed or tra
table. Indeed, we saw in Example 7 that ifone extends LPATH by allowing new binary predi
ates on path variables, the resulting logi
 isneither 
losed nor de
idable. We now show that LPATH has very desirable 
losure and tra
tabilityproperties for domains relevant in spatial appli
ations. More pre
isely, we say that LPATH(
)� is de
idable if for every de�nable (in hR;
i) database D, and every state senten
e �, it isde
idable whether D j= �;� is 
losed if for every de�nable database and every state formula '(~x), the set f~a j D j= '(~a)gis de�nable; 21



� admits e�e
tive query evaluation (of data 
omplexity C) if in addition a formula de�ningthe set f~a j D j= '(~a)g 
an be e�e
tively obtained (and the 
omplexity of obtaining su
h aformula is C in terms of the size of the database D).Our goal is to prove the following result.Theorem 10 Let M = hR;
i be o-minimal and de
idable. Then LPATH(
) is 
losed and de
id-able. Furthermore, if M admits e�e
tive quanti�er-elimination, then LPATH(
) admits e�e
tivequery evaluation, and for LPATH(Lin) and LPATH(Poly) the data 
omplexity is PTIME.Proof. We prove the theorem in two steps: we �rst show that an LPATH query 
an be transformedinto a \dis
rete path query" in whi
h instead of quantifying over any point in a path P , we quantifyonly over 
omponents of the path with respe
t to some dis
retization of the path. In the se
ondstep we show that these dis
rete path queries 
an be evaluated on a database by model-
he
kingthe adja
en
y stru
ture of the appropriate 
ell-de
omposition.We start by making the �rst step more pre
ise, by introdu
ing a restri
ted logi
 that will be usedas a normal form.Let A = fA1 : : : Akg be some �nite 
olle
tion of 
-de�nable sets in Rn . Fix a non-zeno pathP : R+ ! Rn . For r; s 2 R+ , we say that r and s agree on A if P (r) 2 Ai , P (s) 2 Ai for alli = 1; : : : ; k. We say that r; s 2 R+ are A-equivalent (and write r =A s) if there is an open intervalI su
h that r; s 2 I, and all r0; s0 2 I agree on A. We write r <A s if r < s and r 6=A s. Note thatthe equivalen
e 
lasses of =A are either open intervals or single points.Now suppose we have a �nite 
olle
tion of LPATH(
) state formulae A = fA1(~x; ~y) : : : Ak(~x; ~y)g,ea
h of arity n+m.We now introdu
e a new path formula p <A(~y) q with free path variables p; q and free elementvariables ~y = (y1; : : : ; ym), whi
h holds in a database interpreting the predi
ates in A by 
-de�nablesets X1 : : : Xk, for a non-zeno path P in Rn , path elements p0; q0 and ~
 2 Rm exa
tly when p0 <X q0where X = fXi~
g. Re
all that Xi~
 = f~b j (~b;~
) 2 Xig � Rn . Similarly we introdu
e the formula=A(~y) saying two path variables are in the same equivalen
e 
lass modulo A(~y). Clearly, this 
anbe expressed as queries in LPATH(
) as well.We 
onsider a language L�PATH(
) that is built up as follows. For a �nite 
olle
tion A = fAi(~x; ~y)gof �rst-order formulae (over 
 and the s
hema predi
ates) we have new atomi
 formulae:� For every path variable p of arity the same as that of ~x, Ai(~y)([p℄A) is an atomi
 formula withp and ~y free, with meaning the same as Ai(p ~x; ~y).� For every path variable p with arity the same as that of ~x, we have a formula O(p;A(~x; ~y); ~y),with free variables p and ~y meaning that the equivalen
e 
lass of p under =A(~y) is an openinterval. If free element variables are 
lear from the 
ontext, we use the abbreviation O([p℄A).Similarly, we have formulae C([p℄A);CO([p℄A);OC([p℄A), meaning that the equivalen
e 
lassof p under =A(~y) is 
losed, open on right and 
losed on left, 
losed on right open on left,respe
tively.We also have a formula S(p;A(~x; ~y); ~y) (abbreviated as S([p℄A) if ~y is understood), meaningthat the equivalen
e 
lass of p under =A(~y) 
onsists of a single element.22



� For path variables p and q of the appropriate arity, we have formulae [p℄A <A(~y) [q℄A withp; q and ~y free, and with the meaning the same as p <A(~y) q. We also have the formula[p℄A =A(~y) [q℄A.We 
hoose the abbreviations to underline the key point about these new atomi
 formulae, whi
h isthat they all talk only about the equivalen
e 
lass of a path variable p.As 
onstru
tors of L�PATH(
), we have only boolean operators (where the set A must be the samein ea
h operand) and path-variable quanti�
ation. Neither path quanti�
ation EP nor elementquanti�
ation is present.It is 
lear that every query in L�PATH(
) 
an be expressed in LPATH(
). We now redu
e theexpressivity of LPATH to that of L�PATH.With A(~x; ~y) a 
olle
tion of �rst-order formulae as above, and p a path variable, let FirstA(p) bea new formula that says p is the �rst element in the path in its A equivalen
e 
lass. Similarly letLastA(p) mean that p is the last element in the path in the A equivalen
e 
lass of p. The nextlemma explains exa
tly what an open formula of LPATH 
an say about a set of path variables.Lemma 11 Suppose '(~p; ~w) is an LPATH(
) path formula (where ~p are path variables and ~w areelement variables) that has no o

urren
es of EP . Then from ' we 
an e�e
tively �nd a 
olle
tionA of �rst-order formulae and a formula '0 that is equivalent to ' (on every database and everynon-zeno path), and su
h that '0 is a boolean 
ombination of formulae of L�PATH and atomi
formulae pi <A pj, FirstA(pi), and LastA(pi). In parti
ular, if ' has no free path-variables, thenit is equivalent to a formula of L�PATH(
).Proof of Lemma 11. We show this by indu
tion on formula 
omplexity. For atomi
 formulae ofthe form p1 < p2, this is 
lear. We 
onsider the indu
tion step. The steps for 
onjun
tion anddisjun
tion simply involves 
ombining statements about A and B equivalen
e 
lasses for formulasets A and B to statements about equivalen
e 
lasses modulo AB = A [ B. For example theindu
tion step for 
onjun
tion redu
es to taking a formula '(p1; : : : pn; ~y) that is a boolean 
ombi-nation of 'i([p1℄A; : : : [pk℄A), FirstA(pi), LastA(pi), and a formula 
 that is a boolean 
ombinationof 
i([p1℄B; : : : [pk℄B), FirstB(pi), LastB(pi), and writing it in terms of formulae mentioning onlyequivalen
e modulo AB. Here A and B are 
olle
tions of formulae with free variables ~x; ~y, and theformulae 'i may have path variable quanti�
ations in them.We 
an do this simply by transforming the atomi
 formulae. For example, p =A q is transformedto 8r ([p℄ �AB [r℄ �AB [q℄ _ [q℄ �AB [r℄ �AB [p℄)! ViAi([r℄AB)$ Ai([q℄AB) ^ Ai([r℄AB)$ Ai([p℄AB):Here we use abbreviation [p℄ �AB [r℄ for [p℄ <AB [r℄ _ [p℄ =AB [r℄. The transformations for [p℄ <A [q℄and Ai([p℄) are also straightforward.The formula O([p℄A) is equivalent to 23



9q; r 0BBBB� (O([q℄AB) _OC([q℄AB))^ (O([r℄AB) _CO([r℄AB))^ (q =A p =A r)^ 8q0 (q0 <AB q ! (:(q0 =A p)))^ 8r0 (r0 >AB r ! (:(r0 =A p)))
1CCCCA ;whi
h 
an then be 
onverted to the proper form, sin
e we have seen above how to 
onvert formulaeusing the relation =A on path variables. The other interval types are similar, as are FirstA andLastA.For path variable substitution, suppose we have �(p; ~y) � '(p  ~x; ~y), where '(~x; ~y) is a stateformula. Sin
e we assume ' to have no quanti�
ations of the form EP , ' must be �rst-order, andhen
e � is 
ertainly in L�PATH, sin
e it is �([p℄A), where A 
onsists of only �(~x; ~y).The last step is existential path variable quanti�
ation. Suppose we have a formula9p1'(p1; p2; : : : pk; ~y). By indu
tion, ' is a Boolean 
ombination of L�PATH formulae, inequali-ties among the pi, and FirstA(pi) and LastA(pi) statements. By 
ombining sets, we 
an assumethat these last statements all refer to the same set of formulas Ai(~x; ~y). Without loss of generality,' is _i ('i([p1℄A; : : : ; [pk℄A) ^ ti(p1; : : : ; pk);where A = fAi(~x; ~y)g is a 
olle
tion of �rst-order formulae, 'i is a statement about the ordering andinterval types of equivalen
e 
lasses, and the Ai labels of equivalen
e 
lasses, while ti is a simpleordering statement about ~p, giving inequalities between them and whi
h ones are �rst in theirequivalen
e 
lasses. We may assume w.l.o.g. that 'i 
ompletely spe
i�es the ordering relations <Athat hold among the (equivalen
e 
lasses of) pj 's. Note that sin
e < re�nes <A, we 
an assumethat the < ordering given in ti is 
onsistent with the ordering <A given in 'i (otherwise, we 
aneliminate this disjun
t).Let S be the 
olle
tion of i su
h that 'i spe
i�es p1 to be equivalent to some other pj with j > 1.For i 2 S, let Æ(i) be any 1 < j � k su
h that p1 is spe
i�ed to be equivalent to pj .For i 62 S, the formula 9p1'i([p1℄A; : : : ; [pk℄A) ^ ti(p1; : : : ; pk) is equivalent to9p1'i([p1℄A; : : : ; [pk℄A) ^ t0i(p2; : : : ; pk), where t0i is obtained from ti by eliminating all in-equalities involving p1. This is true be
ause the <A inequalities involving p1 in 'i already implythe inequalities involving p1 in ti.For i in S, the formula 9p1'i([p1℄A; : : : ; [pk℄A) ^ ti(p1; : : : ; pk) is equivalent to'i([pÆ(i)℄A; : : : ; [pk℄A) ^ 9p1 (p1 =A pÆ(i) ^ ti(p1; : : : pk)):Furthermore, 9p1 (p1 =A pÆ(i) ^ ti(p1; : : : pk)) 
an be 
onverted into an atomi
 formula t0i(p2 : : : pn),due to the fa
t that 'i spe
i�es the interval type (
losed, open, et
.) of [pÆ(i)℄A, and ea
h intervaltype has quanti�er elimination in the language <;First ;Last (although for some of the intervaltypes, First or Last may be equivalent to false). This is true be
ause Dense Linear Order withoutendpoints is known to have e�e
tive quanti�er elimination in the language of order, and Dense24



Linear Order with endpoints has quanti�er elimination in the language of order with 
onstants forendpoints [9℄.Thus, 9p1'(p1; : : : ; pk) is a disjun
t of formulae, ea
h of whi
h is equivalent to a boolean 
ombina-tion of L�PATH formulae and inequalities of the form pi < pj. This 
omplete the proof of Lemma11. 2Our next lemma shows that L�PATH formulae 
an be evaluated e�e
tively.Lemma 12 For every L�PATH(
) query '(~x), where the ~x are free element variables, and thereare no free path variables, and for every 
-de�nable database D, there is a �rst-order 
-formula'D(~x) su
h that for every ~a, D j= EP'(~a) i�M j= 'D(~a).If M is de
idable, then 'D 
an be found e�e
tively from ' and D, and if M is either Rlin or R,then for every �xed ', 'D 
an be found in polynomial time in the representation of D.Proof of Lemma 12. Let A = fAi(~x; ~y) j i � Kg be the set of formulae over 
 (unioned withthe s
hema) whi
h are used in '. For any 
-de�nable database D, we 
onstru
t a family of �nitedis
rete stru
tures parameterized by ~y.We do it as follows. Let ADi be f(~a;~b) j D j= Ai(~a;~b)g. Applying Lemma 2, we �nd an adja
en
y-preserving 
ell-de
omposition B = fB1; : : : ; BNg, whi
h is 
ylindri
 over the ~y 
oordinates, su
hthat ea
h ADi is a union of 
ells. De�ne an equivalen
e relation � on Rj~yj by letting ~b � ~
 i� ~b and~
 are in the same 
ell of the proje
tion of B onto the ~y 
oordinates. It follows from the de�nitionof adja
en
y preservation that the following are true for ~b � ~
.� For all i � N , Bi~b 6= ; i� Bi~
 6= ;.� For all i; j � N , Bi~b Adj Bj~b i� Bi~
 Adj Bj~
 , where E Adj F means 
l(E) \ F 6= ;.� For all i; j; k � N , we have T (Bi~b; Bj~b ; Bk~b ) i� T (Bi~
; Bj~
 ; Bk~
 ), where T (E;F;G) means E \
l(F ) \ 
l(G) 6= ;.For every ~b, we form the adja
en
y stru
ture of ~b, whi
h is a labeled multi-graph whose nodes are allof the nonempty sets of the form Bi~b, with two binary relations, C and O, where C is the adja
en
yrelation Adj de�ned above, and O is the inverse of the adja
en
y relation, and one ternary relationT , where T is the ternary adja
en
y relation de�ned above. Nodes are labeled a

ording to whi
hAi(~x;~b) are satis�ed in the node (ne
essarily by all elements of the node or by none).Note that the equivalen
e relation above partitions the ~y plane a

ording to the isomorphism typeof the adja
en
y stru
ture. Hen
e the set of ~ys 
orresponding to any 
olle
tion of isomorphismtypes is de�nable.Given an adja
en
y stru
ture, an adja
en
y path is a sequen
e of pairs hhN(i); E(i)i j i 2 Ni, whereN(i) is a node and E(i) is an edge (either an O edge or a C edge) out of node N(i). We �rst showthe following.Claim 13 If ~
 � ~d, then they agree on EP'; that is, EP'(~
) holds i� EP'(~d) holds.25



Proof of Claim 13. Suppose we have ~
 � ~d. Then the adja
en
y stru
tures of ~
 and ~d are isomorphi
(with the natural isomorphism that sends Bi~
 to Bi~d). Suppose we are given a non-zeno path Pthat witnesses that EP'(~
). Then (by non-zeno-ness) P is the union of Pi on intervals Ii, whereIi is a maximal subinterval on whi
h P is 
ontained in a parti
ular 
omponent M(i) of the 
ellde
omposition. P maps into a path P 0 running through the adja
en
y graph of ~
, by taking M(i)sto be the sequen
e of 
omponents hit by P , and with the edge asso
iated to M(i) being an O if Iiis 
losed on the right and C if Ii is open on the right. Sin
e the adja
en
y graph of ~d is isomorphi
to that of ~
, there is a 
orresponding path Q0 = hhN(i);X(i)i j i 2 Ni through the adja
en
y graphof ~d with the same edges X(i) = O or C as in P 0 and the same node labels, and also su
h that forevery i; j; k, T (M(i);M(j);M(k)) holds i� T (N(i); N(j); N(k)) holds.We now have to build a non-zeno path Q in Eu
lidean spa
e 
orresponding to Q0. We will de�neQ as SnQn where the partial fun
tions Qn with domain Jn will be de�ned indu
tively below. Wewill preserve the following properties in the 
onstru
tion:� If P 0n = hM(n);Xi, where X = C or O, then Qn takes all its values in N(n).� If P 0n = hM(n); Oi, then the domain Jn of Qn is 
losed on the right and the value of Qn atthe right endpoint is in the 
losure of N(n+ 1).� If P 0n = hM(n); Ci, then the domain Jn is open on the right and the limit of the path Qn aswe approa
h the right endpoint is in N(n+ 1).� In, the domain of the n-th 
omponent of the path P , is a singleton, i� Jn, the domain of Qn,is a singleton.� Suppose In is open on the right, and the right-hand limit of Pn is the same as the left-handlimit of Pn+2 (that is, In+1 is a singleton). Then Jn is open on the right, and the righthand-limit of Qn is in N(n+ 2).Indu
tive 
onstru
tion. Suppose we have 
onstru
ted Q1 : : : Qn�1, and now want to 
onstru
t Jnand Qn. There are several 
ases to 
onsider, depending on whether the edge from Q0n�1 to Q0n wasO or C, and depending on whether In and In+1 are singletons or not.Case 1. Suppose we have P 0n�1 = hM(n� 1); Ci, P 0n = hM(n); Oi, In is not a singleton, and In+1is not a singleton.Then by 
onstru
tion Jn�1 is open on the right with some right endpoint l, and the path Qn�1
onverges to some point x in N(n) as the domain element goes to l. Sin
e there is an O edge fromN(n) to N(n+ 1) (whi
h follows sin
e this is preserved from P 0 to Q0 by assumption), there mustbe some point y in N(n) that is in the 
losure of N(n + 1). Let Qn be any smooth path on anondegenerate 
losed interval going from x to y that remains in N(n). Su
h a path exists sin
eN(n) is 
onne
ted. In fa
t, by the 
urve sele
tion lemma [35℄, it 
an be 
hosen to be de�nable inM. The domain 
an be made nondegenerate even if x = y, by making the path 
onstant.Case 2. Suppose we have P 0n�1 = hM(n � 1); Ci, Q0n = hM(n); Oi, In is a singleton, and (hen
e)In+1 is not a singleton.Then by 
onstru
tion Jn�1 is open on the right with some right endpoint l, and the path Qn�1
onverges to some point x in N(n) as the domain element goes to l. Sin
e In is a singleton it26



must further be true (by the indu
tive assumption on this 
onstru
tion) that x is in the 
losure ofN(n+ 1). Let Qn map the single point l to x.Case 3. Suppose we have P 0n�1 = hM(n� 1); Ci, P 0n = hM(n); Ci, and In+1 is a singleton.Then by 
onstru
tion Jn�1 is open on the right with some right endpoint l, and the path Qn�1
onverges to some point x in N(n) as the domain element goes to l. Sin
e there is a C edge fromM(n) toM(n+1), the same must be true for N(n) and N(n+1). Sin
e In+1 is a singleton, it mustbe that the value of Pn+1 on In+1 is in M(n+ 1) and in the 
losure of both M(n) and M(n+ 2).Hen
e there must be a point y in N(n+1) that is in the 
losure of both N(n) and N(n+2) (sin
ethe paths P 0 and Q0 had the same type with respe
t to the ternary relation T ). Let Qn be anypath in N(n) from a half-open interval that begins at x and 
onverges toward y. Su
h a path existssin
e N(n) is 
onne
ted and y is in the 
losure of N(n) (and again 
an be taken to be de�nable).Case 4. Suppose we have P 0n�1 = hM(n� 1); Ci, P 0n = hM(n); Ci, and In+1 is not a singleton.This is similar to Case 3, but simpler, sin
e we do not have to ensure that Qn 
onverges to a pointin the 
losure of N(n+ 2).Case 5. Suppose we have P 0n�1 = hM(n� 1); Oi, P 0n = hM(n); Ci, and In+1 is a singleton.We have that Jn�1 is 
losed on the right, and the value x of Q(n�1) at the right endpoint is in the
losure of N(n). Sin
e In+1 is a singleton, we must have T holding of M(n);M(n + 1);M(n + 2),hen
e also of N(n); N(n+ 1); N(n+ 2), so there is a point y in N(n+ 1) whi
h is in N(n) 
losureand N(n+ 2) 
losure. Let Qn be a path 
onverging to x on the left and to y on the right.Case 6. Suppose we have P 0n�1 = hM(n� 1); Oi, P 0n = hM(n); Ci, and In+1 is not a singleton.This is similar to Case 5, but simpler, sin
e we have no obligations to ful�ll on the right endpointy.Case 7. Suppose we have P 0n�1 = hM(n � 1); Oi, P 0n = hM(n); Oi (hen
e In is not a singleton),and In+1 is a singleton.In this 
ase we know indu
tively that the domain of Qn�1 is 
losed on the right, and that the valueof Qn�1 at the right endpoint is in the 
losure of N(n). Furthermore, we know, as in the previousarguments, that there is some point y in N(n+1) that is in the 
losure of both N(n) and N(n+2).Take Qn to be a path that 
onverges to x on the right and y on the left.Case 8. Suppose we have P 0n�1 = hM(n � 1); Oi, P 0n = hM(n); Oi (hen
e In is not a singleton),and In+1 is not a singleton.This is similar to Case 7.In the above, it is 
lear that by making the intervals appropriately wide, and making ea
h path
omponent Qn de�nable (whi
h 
an be done, sin
e 
onne
ted de�nable sets are de�nable 
onne
ted[35℄), the resulting path Q 
an be made to be non-zeno. We now want to verify that Q also witnessesthat EP'(~d), using that P witnesses EP'(~
). This follows easily from the fa
t that L�PATH 
anonly des
ribe properties of equivalen
e 
lasses of elements (Lemma 11). This 
ompletes the proofof the 
laim. 2Given Claim 13, and the fa
t that ea
h adja
en
y type is des
ribed by a �rst-order formula, we27




on
lude that that on D, the formula EP' is equivalent to a �rst-order formula. Hen
e we have
ompleted the proof of the �rst part of Lemma 12.It remains to show how we 
an �nd out e�e
tively (in polynomial time in the linear and polynomial
onstraint 
ases) whi
h adja
en
y stru
tures 
orrespond to ve
tors ~y realizing EP' on D. Sin
ein the linear or polynomial 
ases the adja
en
y stru
tures are of polynomial size in the 
omplexityof D (see Lemma 2), and 
an be produ
ed from D in polynomial time, the problem redu
es to thefollowing. Given ' and an adja
en
y stru
ture AS , determine eÆ
iently in the size of AS whetherEP' holds on all ~y with adja
en
y type AS or none of the ~y with that type.We now show how to do this. From AS , we will form a Kripke stru
ture K(AS) 
omposed of all�ve-tuples (B;X;E;X 0; F ) where B;E; F are 
ells in AS and X;X 0 are transitions (O or C) fromAS where (B;E) 2 X and (E;F ) 2 X 0. The binary relation G of the Kripke stru
ture relates anytwo tuples (B;X;E;X 0; F ) and (E;X 0; F;X 00;H). We add to this an extra 
opy � 0 of ea
h tuple �of the form (B;C;E;O; F ) where E \ 
l(B) \ 
l(F ) 6= ;. This tuple � 0 has the same transitions inand out of it as � does. We also add nodes of the form (START ;H;X; I), where H and I are 
ellsand X is a transition in AS . For nodes � of the form (START ;H;O; I), we add a 
opy � 0. Both �and � 0 transition to those nodes of the form (I;X 0; J; Y 0;K), and have no nodes transitioning intothem.We next de�ne a �nite alphabet � that 
onsists of symbols Lij , with i 2 f1; 2; 3g and 1 � j � K =jA j, LCO ; LOC ; LCC ; LOO , Lsng ; Lnsng ; LSTART ; LSTART ;O and LSTART ;C .We now show how to label nodes in K(AS ) by symbols in �. In a tuple (B;X;E;X 0; F ), we referto B as the �rst, E as the se
ond, and F as the third 
ell in it. We start by labeling a tupledepending on what elements of the original partition are satis�ed by its 
ells. That is, label a tuplewith Lij, i � 3; j � K exa
tly when the ith 
ell in the tuple is in Aj . Label elements of the form(START ;H;O; I) with L2j exa
tly when H is in Aj and with L3j when I is in Aj . We have alabel LCO for ea
h tuple of the form (B;C;E;O; F ), and similarly for labels LOC , LCC , and LOO .For ea
h tuple � of the form (B;C;E;O; F ) where E \ 
l(B) \ 
l(F ) 6= ;, we label � 0 with Lsngand � with Lnsng . For ea
h tuple � of the form (START ;H;O; I), we label � 0 with Lsng and �with Lnsng . Finally, we label ea
h tuple of the form (START ;H;X; I) with LSTART . We label(START ;H;O; I) with LSTART ;O and (START ;H;C; I) with LSTART ;C .We 
onvert ' into a �rst-order formula '0 over !-words in �� with the language < unioned with thelabel alphabet �. We 
an assume that there are no o

urren
es of =A, sin
e they 
an be redu
edto <A. We translate atomi
 formulae [p℄ <A [p0℄ as(p < p0) ^ _i (:L2i(p)$ L2i(p0)):We translate the formula OC([p℄A) by9p09p00� p0 < p < p00 ^ (LOC (p0) _ LOO(p0)) ^ (LOC (p00) _ LCC (p00))^8q (p0 � q � p00 ! Vi(L2i(q)$ L2i(p)))�and similarly for other interval types (analogously to the proof of the 
onjun
tion step in Lemma28



11).We translate the formula S([p℄A) into the disjun
tion of the formulaLsng(p) ^_j :(L1j(p)$ L2j(p)) ^ _j :(L3j(p)$ L2j(p))with LSTART (p) ^ _j :(L2j(p)$ L3j(p)):Finally, we translate statements Aj([p℄A) by the 
orresponding labels L2j(p). Now a straightforwardmodi�
ation of the proof of Claim 13 shows the following.Claim 14 For every ve
tor ~
, if AS is the adja
en
y stru
ture formed from ~
, then there is apath through K(AS) from some initial point of the form (START ; B;X;E), su
h that the !-word
orresponding to the path satis�es '0 i� EP'(~
) is satis�ed.Proof of Claim 14. Given a path P that witnesses EP'(~
), take the quotient path through AS .Then form a path P 0 through K(AS ) as follows: take the sequen
e of tuples hit on the quotientpath through AS , with the 
aveat that if an A-equivalen
e 
lass E in the quotient is a singleton,we 
hoose the tuple (B;C;E;O; F ) that is labeled with Lsng . Otherwise we always 
hoose thepath through tuples not labeled with Lsng . We then modify this path by taking the initial tuple(B;X;E; Y; F ) en
ountered on the path through AS and adding before it one of the two tuplesin K(AS) 
orresponding to (START ; B;X;E): we take � 0 if the initial equivalen
e 
lass in thequotient path though AS is a singleton (in whi
h 
ase, that singleton must have been 
ontained in
ell B), and take � otherwise.For t 2 R+, let Æ(t) be the element in P 0 
orresponding to P (t). More pre
isely, Æ(t) is theappropriate element (B;X;E; Y; F ), where E is the 
ell 
ontaining the P (t), or the appropriateelement (START ; E;X; F ) in the 
ase that P (t) is in the initial 
omponent E. Using the de�nitionof the translation above, we see that atomi
 formulae on path elements P (t) are satis�ed exa
tlywhen the translation of those formulae holds of Æ(t), whi
h proves one dire
tion of the 
laim.Now suppose 
onversely that we have a path P 0 through K(AS) that begins with an element ofthe required form. Clearly, this path 
orresponds to a path through AS . Now, from this path we
onstru
t a non-zeno path P just as in the proof of Claim 13. The only modi�
ation is this: wede
ide whether or not to make a parti
ular path element Pn a singleton based on whether in theoriginal path through K(AS ), the 
orresponding element was labeled with Lsng . This 
ompletesthe proof of Claim 14.The formula '0 
an now be translated into a B�u
hi Automata BA, and one now needs to 
he
kwhether the produ
t of K(AS) and BA has an a

epting path, whi
h 
an be done in polynomialtime (see, e.g. [36℄) in the size of K(AS ) with the size of BA being �xed. Sin
e the size of K(AS ) ispolynomial in the size of the 
ell de
omposition that gives rise to AS , Lemma 2 implies de
idabilityfor de
idable o-minimal stru
tures, and polynomial time data 
omplexity for Rlin and R. This
ompletes the proof of Lemma 12. 29



Proof of Theorem 10. We �nally prove 
losure and e�e
tive query evaluation by indu
tion on the
omplexity of the formula '. Clearly, atomi
 state formulae 
an be evaluated e�e
tively if 
 isde
idable, and in polynomial time in the polynomial and linear 
onstraint 
ases. The indu
tionstep for boolean 
onne
tives is 
lear. In the indu
tive step for existential element quanti�
ation,
losure and e�e
tivity are immediate, and polynomial time data 
omplexity follows from knownresults in 
onstraint databases [25℄. The interesting 
ase is where we have a query of the formEP (~y). By the indu
tion hypothesis, we 
an assume that every proper state subformula  i of  
an be evaluated (e�e
tively, ifM is de
idable, and in polynomial time, in the polynomial or linear
ase). By repla
ing all maximal proper state subformulae with predi
ate symbols, we 
an 
onsider as a query over the outputs of these subformulae and thus 
an assume that  has no existentialpath quanti�ers within it. By Lemma 11,  
an be transformed into an L�PATH query  0 overthese predi
ates, and by Lemma 12, EP 0 
an be 
onverted into a �rst-order formula (e�e
tively,for de
idableM, and in polynomial time, for polynomial and linear 
onstraints). This 
ompletesthe indu
tive proof. 2Remark. The proof 
an be simpli�ed in the semi-linear 
ase, where one does not need to 
onsiderthe T relation among 
ells. Indeed, the proof of Lemma 2, a), implies that for �bers of three 
ells,C1~a ; C2~a ; C3~a , one has C1~a \ 
l(C2~a) \ 
l(C3~a) 6= ; i� C1~a \ 
l(C2~a) 6= ; and C1~a \ 
l(C3~a) 6= ;. Thus, T 
anbe re
onstru
ted from C and O edges of the adja
en
y stru
ture, whi
h simpli�es the 
onstru
tionof the Kripke stru
ture K(AS ). 2Note that the proofs in Subse
tion 3.3 established tra
tability of FO + Lin + Conn but not FO +Poly+ Conn. Sin
e 
onne
ted 
omponents are de�nable in LPATH(Poly), we 
on
lude now:Corollary 15 FO +Poly+ Conn queries have PTIME data 
omplexity. 25 Model-
he
king for hybrid systemsWe mentioned that our logi
 LPATH has been inspired by temporal logi
s used in the model-
he
king approa
h to automated veri�
ation of �nite-state rea
tive systems. Re
ent work on real-time and hybrid systems in
ludes a number of formalisms for expressing rea
hability propertiesof in�nite state systems de�ned from real parameters [18℄. We now show that our results 
anbe applied in this area. More pre
isely, we show that the model-
he
king problem for linear timetemporal logi
 LTL for one 
lass of hybrid systems, the o-minimal hybrid systems of [26, 27℄is de
idable and, furthermore, tra
table, if the dimension of the hybrid systems is �xed. It isstraightforward to extend our approa
h to the bran
hing time temporal logi
s CTL and CTL�.A hybrid system (
f. [18, 26℄) of dimension n is a tuple H = (S; S0; SF ; F;E; I;G;R), where� S = Q� Rn , where Q is a �nite set, is the state spa
e,� S0 � S is the set of initial states,� SF � S is the set of �nal states, 30



� F : S ! Rn assigns to ea
h q 2 Q a ve
tor �eld F (q; �),� E � Q�Q is a set of dis
rete transitions,� I : Q! 2Rn assigns to ea
h q 2 Q a set I(q) 
alled the invariant of q,� G : E ! 2Rn assigns to ea
h dis
rete transition e = (q1; q2) 2 E a set G(e) � I(q1) 
alled theguard of e,� R : E ! 2Rn assigns to ea
h dis
rete transition e = (q1; q2) 2 E a set R(e) � I(q2) 
alled thereset of e.Asso
iated with the hybrid system H is a ternary transition relation !� S� (E [f
g)�S, where
 is a new symbol not 
ontained in E. We write s e! s0 instead of (s; e; s0) 2!. We have two kindsof transitions:� Dis
rete Transitions: (q; ~x) e! (q0; ~x0) i� e = (q; q0) 2 E and ~x 2 G(e), ~x0 2 R(e).� Continuous Transitions: (q; ~x) 
! (q0; ~x0) i� q = q0 and there exists a Æ � 0 and a 
urvex : [0; Æ℄! Rn su
h that x(0) = ~x, x(Æ) = ~x0 and for every t 2 [0; Æ℄ it satis�es _x(t) = F (q; x(t))and x(t) 2 I(q).We assume that our hybrid systems are non-blo
king, that is, for every state s 2 S there is ane 2 E [ f
g and a state s0 su
h that s e! s0.A traje
tory of H is a sequen
e s1e1s2e2 : : : su
h that for all i � 1 we have si ei! si+1.An interpreted hybrid system of signature � = f�1; : : : ; �mg 
onsists of a hybrid system H and amapping � that assigns to ea
h state s 2 S a subset of �. Then � asso
iates with ea
h traje
tory� = s1e1s2e2 : : : of H an !-word �(�) := �(s1)�(s2) : : : over the alphabet 2�. We assume that thereader is familiar with the linear time temporal logi
 LTL (interpreted over !-words), see [11℄. TheLTL-model 
he
king problem for hybrid systems is de�ned as follows:Input: An interpreted hybrid system (H;�)and an LTL-formula '.Problem: De
ide if for every traje
tory � of Hthe word �(�) satis�es '.LetM be an o-minimal stru
ture over the reals. A hybrid system H = (S; S0; SF ; F;E; I;G;R) isM-de�nable if Q � R is a de�nable set1 and the sets S0; SF , the mappings I;G;R, and the relationT := f(q; ~x; ~y) j (q; ~x) 
! (q; ~y)g are de�nable inM. A hybrid system is o-minimal if it is de�nablein some o-minimal stru
ture over R. An interpreted hybrid system (H;�) is M-de�nable if H isM-de�nable, and for every � in the signature, the set ��1(�) is de�nable.1We assume that there exists a �nite set of 
ard(Q) de�nable 
onstants. This is 
ertainly true for all stru
tures ofpra
ti
al interest like Rlin and R; otherwise one 
an restate the de�nition by talking about de�nability of the �bersof S; SF ; T; et
. over q for ea
h q 2 Q. 31



Theorem 16 Let M = hR;
i be su
h that its expansion with +; �; 0; 1 is a de
idable o-minimalstru
ture. Then the restri
tion of the LTL-model-
he
king problem for hybrid systems to M-de�nable interpreted hybrid systems is de
idable.Furthermore, if M = Rlin or R, for every �xed LTL-formula ' and n � 1, the restri
tion of theLTL-model-
he
king problem problem toM-de�nable interpreted hybrid systems of dimension n 
anbe solved in PTIME.Proof. Without loss of generality we 
an assume that M is an expansion of the real �eld. We �xa dimension n and a signature � := f�1; : : : ; �mg. Let � := f<;P1; : : : ; Pmg, where P1; : : : ; Pm areunary relation symbols. When we speak of a hybrid system in the following, we always assume itto beM-de�nable and n-dimensional. When we speak of an interpreted hybrid system (H;�), wealso assume it to beM-de�nable and of signature �.We 
onsider interpreted hybrid systems as database instan
es over the s
hema SC :=fQ;S0; SF ; T; E; I;G;R;R1; : : : ; Rmg, where Q is unary, S0; SF are (n + 1)-ary, T is (2n + 1)-ary,E is binary, I is (n+ 1)-ary, G;R are (n+ 2)-ary, and R1; : : : ; Rm are (n+ 1)-ary.We shall prove that for every LTL-formula ' there is an LPATH-formula '� su
h that for everyinterpreted hybrid system (H;�) we have (H;�) j= '� if, and only if, for every traje
tory � of Hthe !-word �(�) satis�es '. Furthermore, the translation ' 7! '� is e�e
tive, uniformly over all nand all vo
abularies.It is well-known that every LTL-formula ' of signature � 
an e�e
tively be transformed into anequivalent FO[�℄-senten
e '0. What we a
tually show in the following is how to translate an FO[�℄-senten
e ' into an LPATH-formula '� su
h that for every interpreted hybrid system (H;�) wehave (H;�) j= ' if, and only if, there exists a traje
tory � of H su
h that the word �(�) satis�es'(x). Clearly, this is suÆ
ient.At �rst sight it seems very simple: We just let '� be a formula of the form EP'0, where '0 is moreor less the same as our original '. The path whose existen
e we state by EP is supposed to be thestate-sequen
e of a \run" of the hybrid system. Of 
ourse this simple-minded approa
h does notwork, mainly for the following reasons:1. Be
ause of the dis
rete transitions, a run of a hybrid system is not a 
ontinuous 
urve.2. In a 
ontinuous transition the hybrid system moves along an integral 
urve of some ve
tor�eld F (q; �) that originated at some point ~x 2 Rn . However, in a path-formula we 
annot saythat our path is on su
h a 
urve (unless we treat ~x as a parameter).3. A traje
tory is only a dis
rete abstra
tion of a run of the hybrid system.Despite these problems, we will follow the basi
 idea.We start by formally de�ning a run of a hybrid system H = (S; S0; SF ; F;E; I;G;R): It is asequen
e (ri; xi; r0i)i�1 of triples su
h that for all i � 1 either xi = ; and ri = r0i or ri = (q; ~x),r0i = (q; ~x0) and xi : [0; Æ℄ ! Rn is a 
urve su
h that xi(0) = ~x, xi(Æ) = ~x0 and for every t 2 [0; Æ℄ itsatis�es _xi(t) = F (q; xi(t)) and xi(t) 2 I(q). Furthermore, for all i � 1 there is a dis
rete transitionr0i e! ri+1 (for an e 2 E). 32



Let us forget about hybrid systems for a moment and just talk about arbitrary runs and traje
tories.Let a run be a sequen
e (ri; xi; r0i)i�1, where ri; r0i 2 Rn+1 and either xi = ; and ri = ri0 or ri = (q; ~x),r0i = (q; ~x0) and xi : [0; Æ℄ ! Rn for some Æ > 0 and xi(0) = ~x, xi(Æ) = ~x0. Similarly, let a traje
torybe a sequen
e (si; ei)i�1 where si 2 Rn+1 and ei 2 fe; 
g.We say that a traje
tory (si; ei)i�1 is 
onsistent with a run (ri; xi; r0i)i�1 if there is a mappingf : N ! N su
h that f(1) = 1, s1 = r1, and for all i � 1 we have:� If ei = e then f(i+ 1) = f(i) + 1, si = r0f(i) and si+1 = rf(i+1).� If ei = 
 then f(i + 1) = f(i) and, assuming that rf(i) = (q; ~x) for some q 2 R, ~x 2 Rn andxf(i) : [0; Æ℄ ! R, there are t < t0 2 [0; Æ℄ su
h that si = (q; xf(i)(t)) and s0i = (q; xf(i)(t0)).Let r � 1; r is going to be the quanti�er rank of the input-formula '(x). In the following, letwords be stru
tures W of some vo
abulary � 
onsisting of the binary relation symbol < that isalways interpreted as a linear order of the universe and �nitely many unary relation symbols. Inparti
ular, let an !-word be a word whose universe is N. A subword of a word W is a substru
tureV of W su
h that if W has a �rst-element then V has the same �rst element and if W has a lastelement then V has the same last element.The r-type of a word W of vo
abulary � is the set of all FO[�℄-senten
es of quanti�er-rank at mostr it satis�es. Note that there are only �nitely many r-types of a �xed vo
abulary.Lemma 17 There is a 
omputable fun
tion f : N ! N su
h that the following holds: Let r � 1and W;W 0 be words of vo
abulary � whose universes are 
losed intervals in R su
h that W and W 0have the same f(r)-type. Then for every �nite subword V of W there is a �nite subword V 0 of W 0su
h that V and V 0 have the same r-type (and vi
e versa).Moreover, every FO[�℄-senten
e  of quanti�er-rank at most r 
an be e�e
tively transformed intoa set �( ) of f(r)-types su
h that for every word W whose universe is a 
losed interval in R wehave: The f(r)-type of W is 
ontained in �( ) if, and only if, there is a �nite subword V of Wthat satis�es  .Proof Sket
h: Choose f(r) su
h that every �nite word V of length greater than f(r) has a subwordV � of length at most f(r) su
h that V and V � have the same r-type. The existen
e of su
h an ffollows from the fa
t that �rst-order de�nable languages are regular. The rest is easy.Now suppose we are given a mapping � : Rn+1 ! 2�. For a triple (r; x; r0), where r = (q; ~x), r0 =(q; ~x0) with q 2 R, ~x; ~x0 2 Rn and x : [0; Æ℄! Rn we letW (r; xi; r0) be the word of vo
abulary � withuniverse [0; Æ℄ and Pi := ft 2 [0; Æ℄ j �i 2 �(q; x(t))g. The r-abstra
tion of a run � = (ri; xi; r0i)i�1is the sequen
e �r = (ri;�i; r0i)i�1, where for all i � 1 we have:� If xi = ; then �i = ;.� If xi : [0; Æ℄ ! Rn , then �i is the f(r)-type of the word W (ri; xi; r0i). Here f is taken fromLemma 17. 33



Let �+ be the extension of the vo
abulary � that 
ontains a new unary relation symbol P� for everyf(r)-type � of vo
abulary �. We let �(�r) be the !-word W with PWi := fj j �i 2 �(rj) and �j =;g (for 1 � i � m) and P� := fj j �j = �g (for every f(r)-type �). For a traje
tory � = (si; ei)i�1we let �(�) be the !-word (�(si))i�1.The following lemma is a generalization of Lemma 17 that is proved using \Feferman-Vaught"-typearguments (See 
hapter 6 of [9℄) and the fa
t that for every f(r)-type � there is a FO-senten
e �of quanti�er-rank f(r) su
h that a word satis�es � if, and only if, its r-type is �.Lemma 18 Let f be as in Lemma 17. Let �; �0 be runs su
h that �(�r) and �(�0r) have the samer-type. Then for every traje
tory � 
onsistent with � there is a traje
tory � 0 
onsistent with �0 su
hthat �(�) and �(� 0) have the same r-type.Moreover, every FO[�℄-senten
e  of quanti�er-rank at most r 
an be e�e
tively transformed intoan FO[�+℄-senten
e  + su
h that for every run � we have: The word �(�r) satis�es  + if, andonly if, there is a traje
tory � 
onsistent with � su
h that �(�) satis�es  .We now return to hybrid systems. Remember that we wanted to translate a given FO[�℄-senten
e 'to an LPATH-senten
e '� su
h that for every interpreted hybrid system (H;�) we have (H;�) j= '�if, and only if, there is a traje
tory � of H su
h that �(�) satis�es '.Applying Lemma 18, we �rst translate ' to a senten
e '+. In the remaining proof we show howto translate '+ to an LPATH-senten
e '� su
h that for every interpreted hybrid system (H;�) wehave (H;�) j= '� if, and only if, there is a run � of H su
h that �(�r) satis�es '+. What we havegained is that we have \�ltered out" the 
ontinuous transitions and now only have to deal with asequen
e of dis
rete transitions.Let �1; : : : ;�l be an enumeration of all f(r)-types of vo
abulary �. We 
an interpret the r-abstra
tion of a run as a sequen
e of tuples (s; t; s0) 2 R2n+3 , where we repla
e the � either byt := 0 if � = ; or by t := i if � = �i. How 
an we express that su
h a sequen
e is the r-abstra
tionof a run?We 
all a tuple (s; t; s0) 2 R2n+3 good (with respe
t to an interpreted hybrid system (H;�)) ifs; s0 2 S and either t = 0 and s = s0 or s 
! s0 via a 
urve x : [0; Æ℄ ! Rn su
h that the f(r)-typeof the word W (s; x; s0) is �t. The �rst thing we do is de�ne an LPATH-formula � su
h that forevery interpreted hybrid system (H;�) and ~z 2 R2n+3 we have (H;�) j= �(~z) if, and only if, ~z isgood. Let �t be an FO[�℄-formula de�ning the type �t. Re
all that T := f(q; ~x; ~y) j (q; ~x) 
! (q; ~y)gis de�nable. Then the following formula says that (q; ~x) 
! (q0; ~x0) via a 
urve x : [0; Æ℄ ! Rn su
hthat the f(r)-type of W ((q; ~x); x; (q0; ~x0)) is �t:�(q; ~x; q0~x0) := (q = q0) ^EP �9p(p = ~x ^ 8p00 p � p00)^9p0(p0 = ~x0 ^ 8p00 p00 � p0)^8p00 �T (q; ~x; ~y) ^ I(q; ~y)�[p00  ~y℄^ �0t�;where �0t is the formula obtained from �t by repla
ing all variables by path variables and everyatomi
 subformula Pi(p) by Ri(q; ~y)[p ~y℄. Given the formula �, it is easy to de�ne the desired �de�ning the good tuples. 34



It will be 
onvenient to make the following assumption for every hybrid system H:(*) All e; e0 2 E � R2 are linearly independent (i.e. we do not have �e = e0 for any� 2 R).(If this assumption does not hold, we 
an 
ode the dis
rete transitions by elements of R3 in su
ha way that the additional 
omponent guarantees that they are pairwise linearly independent. This
auses the dimension of our path to be R2n+7 , but otherwise the proof goes through.)Let H be a hybrid system. We model r-abstra
tions of runs of H by paths in R2n+6 .For s1; s01; s2; s02 2 S, t; t0 2 R, and e 2 E we write (s1; t; s01) e! (s2; t; ~s02) if (s1; t; s01), (s2; t0; ~s02) aregood and s01 e! s2 in H.For all ~z; ~z0 2 R2n+3 and e 2 E su
h that ~z e! ~z0 we let 
(e; ~z; ~z0) be the 
urve 
onne
ting thefollowing points in R2n+6 by straight-line segments:(0; 0; ~z); (e; 1; ~z); (e; 2; ~z); (e; 2; ~z0); (e; 3; ~z0); (0; 0; ~z0):(Re
all that E � R2 , so these points are indeed (2n+6)-tuples. The third pla
e in these tuples willbe used to en
ode the dire
tion of the transitions). Let 
Æ(e; ~z; ~z0) denote the interior of 
(e; ~z; ~z0),i.e. the 
urve obtained from 
(e; ~z; ~z0) by removing its endpoints.For every transition e 2 E we let �Æ(e) := [~z e!~z0 
Æ(e; ~z; ~z0);and we let �Æ := Se2E �Æ(e). By our assumption (*), for e 6= f 2 E we have �Æ(e)\�Æ(f) = ;, andevery path from a point in �Æ(e) to a point in �Æ(f) interse
ts R2n+6 n (�Æ(e) [ �Æ(f)). (In otherwords, there is no 
onne
ted 
omponent C of �Æ su
h that there are e 6= f 2 E with C \�Æ(e) 6= ;and C \ �Æ(f) 6= ;.)Note that �Æ = �Æ(H;�) is de�nable in LPATH, that is, there is an LPATH-formula � su
h thatfor every interpreted hybrid system (H;�) and ~v 2 R2n+6 we have (H;�) j= �(~v) if, an only if,~v 2 �Æ.Suppose for a moment that e! is symmetri
 and re
exive for all e 2 E. Then for all ~z; ~z0 2 T wehave ~z e! ~z0 if, and only if, there is a path � from (0; 0; 0; ~z) to (0; 0; 0; ~z0) su
h that the interior �Æof � is 
ontained in �Æ(e). (To prove this we use that fa
t that there is no 
oupling between theinitial and �nal state of a dis
rete transition, that is, that (q; ~x1) e! (q0; ~x01) and (q; ~x2) e! (q0; ~x02)implies (q; ~x1) e! (q0; ~x02).) It follows that there exists an e 2 E su
h that ~z e! ~z0 i� there is a path� from (0; 0; ~z) to (0; 0; ~z0) su
h that �Æ � �Æ.Sin
e in general e! is not symmetri
 and re
exive, we have to en
ode the dire
tion of the transitions.To do this, we de�ne three setsGOOD := f0g � f0g � f0g � f~z 2 R2n+3 j ~z goodg;TAIL := (R2 � f1g � R2n+3) \ �Æ;HEAD := (R2 � f3g � R2n+3) \ �Æ;REST := �Æ n (TAIL [HEAD):35



Sin
e the good tuples and the set �Æ are de�nable in LPATH, these sets are also de�nable.To say that there is a run � su
h that �(�r) satis�es '+ we say that there exists a path � � R2n+6with the following properties:� � starts in a point in GOOD.� Whenever a point in GOOD appears on �, it is followed by an interval in REST and then bya point in TAIL.� Whenever a point in TAIL appears on �, it is followed by an interval in REST and then bya point in HEAD.� Whenever a point in HEAD appears on �, it is followed by an interval in REST and then bya point in GOOD.� The !-word of vo
abulary �+ with universe � \GOOD andPi := f(0; 0; 0; s; t; s0) 2 GOOD j t = 0 and �i 2 �(s)g (for 1 � i � m);P�i := f(0; 0; 0; s; t; s0) 2 GOOD j t = ig (for 1 � i � l)satis�es '+.The existen
e of su
h a path 
an be expressed in LPATH.There is one 
ase that we have missed so far: It 
ould be that after some point a traje
tory doesno more dis
rete transitions. Then the 
orresponding run would be a �nite sequen
e. But this 
ase
an easily be in
luded, using an analogue of Lemma 17 for !-words. We omit the details. 26 Con
lusionRea
hability between points in a region is a fundamental notion in spatial reasoning. From previouswork it appeared that in
orporating rea
hability into a spatial language might be fundamentallyin
ompatible with the use of 
onstraint-based representations. Our �rst results here showed thatthis is not the 
ase. Instead of attempting to approa
h 
onne
tivity through the use of somedis
rete re
ursion me
hanism, we added rea
hability and other topologi
al operators dire
tly, andshowed that this leads to 
losed languages. We then ta
kled the question of getting tra
table,
losed languages that 
an express the rea
hability queries of interest. The language LPATH hasa lot of what one wants in a spatial query language. In addition to the positive results on thedata 
omplexity, expressiveness, and 
losure, we think LPATH is interesting as a synthesis of thetemporal languages for veri�
ation of dis
rete systems with �rst-order 
onstraint query languages.Although we approa
hed LPATH from the point of view of spatial databases, it 
ould also be seenas a general language for stating path properties of systems that are de�ned from semi-algebrai
or semi-linear obje
ts. Be
ause of this, it is possible to 
ompare it with languages for spe
ifyingproperties of real-time or hybrid systems. We gave an example of how to model one spe
i�
ationformalism for hybrid systems within LPATH. 36



We do not 
laim that LPATH is a pra
ti
al query language for 
onne
tivity queries in spatialdatabases { it still remains to �nd a more natural syntax, and to get query evaluation algorithmsthat run tra
tably on real appli
ations. In addition, we do not have many results on the expressivityof LPATH (beyond the PTIME 
omplexity bound), and we know even less about languages FO+T.We 
onje
ture that FO + C  FO + Conn  LPATH, but we know of no te
hniques for provingseparation results of this kind.Remark C. Giannella and D. Van Gu
ht independently dis
overed the 
losure of FO + Lin andFO + Poly under 
onne
tivity operators C and Conn [14℄ (our Corollary 4, Proposition 6, and aremark pre
eding that Proposition). Their proof uses 
ylindri
al algebrai
 de
omposition insteadof Lo
al Triviality, and 
onsequently 
annot show the 
losure under all topologi
al properties as wedo here.A
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