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AbstratIt is known that standard query languages for onstraint databases lak the power to expressonnetivity properties. Suh properties are important in the ontext of geographial databases,where one naturally wishes to ask queries about onnetivity (what are the onneted ompo-nents of a given set?) or reahability (is there a path from A to B that lies entirely in a givenregion?). No existing onstraint query languages that allow losed form evaluation an expressthese properties.In the �rst part of the paper, we show that in priniple there is no obstale to gettinglosed languages that an express onnetivity and reahability queries. In fat, we show thatadding any topologial property to standard languages like FO+Lin and FO+Poly results ina losed language. In the seond part of the paper, we look for tratable losed languagesfor expressing reahability and onnetivity queries. We introdue path logi, whih allowsone to state properties of paths with respet to given regions. We show that it is losed, haspolynomial time data omplexity for linear and polynomial onstraints, and an express a largenumber of reahability properties beyond simple onnetivity. Query evaluation in the logiinvolves obtaining a disrete abstration of a ontinuous path, and model-heking of temporalformulae on the disrete struture.1 IntrodutionSeveral reent data models generalize the relational model by allowing diret modeling of strutureddatabase objets beyond the traditional at tuple. Examples of the additional struture that anbe modeled inlude nesting of tuples within other tuples, and the modeling of pointers and otherdatatypes in the objet-oriented database model. We will deal in this paper with another suhextension, the onstraint database model [20, 25℄, in whih database relations need not be simple�nite olletions of tuples, but an instead be onstraint-de�nable olletions, �nite or in�nite. Theonstraint model is appropriate for a variety of domains in whih appliation data is naturallyrepresented as solutions to onstraints, suh as geographi data and temporal data. Constraint�Part of this work was done while M. Benedikt, M. Grohe and L. Libkin visited INRIA-Roquenourt.yBell Laboratories, 2701 Luent Lane, Lisle, IL 60532, USA. E-mail: benedikt�researh.bell-labs.om.zDivision of Informatis, University of Edinburgh, Edinburgh EH9 3JZ, Sotland, UK. Email: grohe�ds.ed.a.ukxDepartment of Computer Siene, University of Toronto, Toronto, Ontario M5S 3H5, Canada. E-mail:libkin�s.toronto.edu. Researh aÆliation: Bell Laboratories.{INRIA-Roquenourt, B.P. 105, Le Chesnay Cedex 78153, Frane. E-mail: Lu.Segou�n�inria.fr.1



databases allow queries to symbolially manipulate in�nite olletions of data, using both relationaloperators and the algebrai operations appropriate to the appliation domain.We refer to the onstraint model as the polynomial onstraint model or the linear onstraint model,depending on whether database objets are represented using general polynomial onstraints oronly linear onstraints over the reals. More generally, we an parameterize the onstraint model byany �rst-order struture M admitting a quanti�er-elimination algorithm. In this general settingthe `onstraint sets' that de�ne database relations are simply the quanti�er-free de�nable sets ofM. In this paper we onsider only strutures over the real �eld R.Relational Calulus generalizes in an elegant and simple way to the onstraint model. The analogousquery languages use �rst-order logi (FO) over the voabulary onsisting of the shema relationssupplemented with the operations ofM (e.g., addition, multipliation). The implementation of thealulus redues to onstraint-solving, or in the general ase, quanti�er-elimination. Many of theresults and tehniques of lassial relational alulus, inluding omplexity and expressivity bounds,arry over to these �rst-order onstraint query languages [25℄. However, �rst-order onstraintqueries are limited in muh the same way as that Relational Calulus is limited. Natural reursivequeries, suh as the transitive losure of a graph, remain inexpressible in �rst-order onstraint querylanguages. Even more importantly, geometri analogs of these queries that are ruial for spatialdatabase appliations are inexpressible as well. The queryCONNECTED(S)that tells whether a database relation S is topologially onneted, is inexpressible. The queryCONNECTS-TO(x; y; S)that tells whether there is a path from point x to point y within relation S is also inexpressible.Both of these results follow from [4℄. The inability to express onnetedness is a ruial obstalein applying these languages to geographi databases. Although onnetivity is perhaps the mostnatural geometri property that is absent from �rst-order onstraint query languages, there aremany other geometri properties whih are oneptually (and even algorithmially) simple that areinexpressible as well: the query asking whether a planar region is simply onneted, to take justone example. In fat, results of [22, 24℄ show, roughly, that the only purely topologial fats ofa single region expressible in �rst-order queries are `loal' { they merely assert the existene ornonexistene of points with a given topologial type.In this paper, we onsider extensions of �rst-order onstraint query languages that an express thereahability queries mentioned above, as well as other important non-loal topologial properties.Of ourse, in the ontext of the relational model, it is fairly well-understood how to add graphreahability as well as other tratable reursive queries to a �rst-order language; there are numerousresults mapping out the query languages that result from suh extensions, f. [1℄. What are thediÆulties in extending beyond �rst-order logi in the onstraint ontext?When designing a query language one faes two major diÆulties: ahieving losure and tratability.A key idea behind onstraint query languages is losed-form evaluation: if we start with databasesde�nable over some strutureM and apply an FO query, the result is again de�nable overM. Inother words, the solution of a set of inequalities an be represented again as a set of inequalities.This losure property enables the use of a variety of indutive query-evaluation algorithms. We alsowant languages that are omputationally tratable. The usual �rst-order onstraint query languages2



have polynomial data omplexity, as do standard languages for reursive querying of traditionalrelational databases.Adding a traditional relational reursion mehanisms suh as �xed points or while loops to �rst-order onstraint query languages does not give this losure property, see [20℄. In fat, the interationof arithmeti with reursion an produe output databases that are not even omputable, muhless de�nable with onstraints. In fat, queries for topologial onnetivity have been handled onlythrough query languages that are both non-losed and omputationally intratable [23, 12, 13℄.In ontrast, our �rst main result shows that there is a way to add reahability and a vast number ofother topologial queries while retaining losure. In fat, for any set T of topologial properties, wepresent a language, FO+T that an de�ne T, and that is still losed. Moreover for the polynomialand linear onstraint model we an prove that the omplexity of evaluating queries in FO + T ispolynomial in the omplexity of heking the properties from T. This implies a PTIME omplexityfor the extension of CONNECTED. The language FO + T demonstrates that the losure problem byitself is no obstale to admitting spatial reahability queries into onstraint query languages.Our seond main result identi�es a powerful logi, Path Logi { denoted LPATH { whih ande�ne CONNECTED, CONNECTS-TO and other reahability queries, and whih also admits e�etive,tratable query evaluation over linear and polynomial onstraint databases. Path Logi has syntaxand semantis that are reminisent of traditional temporal logis used in the veri�ation of reativeprograms. Not only an query evaluation be done in polynomial data omplexity, but we showthat query evaluation redues to a ombination of ell-deomposition algorithms from real analytigeometry, followed by model-heking of a disrete system. In the model-heking phase, tehniquesfrom veri�ation of disrete transition systems an be applied.We will show positive results about both the tratability and expressivity of Path Logi, makingthe ase that it is suÆiently expressive to apture the reursive queries that are most important tospatial database appliations. Path Logi an thus be seen as a onstraint database language thatgeneralizes many reursive extensions of �rst-order logi, as well as a spatial analog of temporallogis suh as CTL and CTL�.Related work Most work on Datalog extensions for the onstraint model deal with highly re-stritive lasses of onstraints over integers [31℄, as over linear and polynomial onstraints Datalogis not losed. Topologial onnetivity for 2-dimensional polynomial onstraint databases of de-gree 2 was shown to be de�nable in a language alled Spatial Datalog [23℄; later [12℄ extendedthis to arbitrary polynomial onstraint databases. However, it is likely that Spatial Datalog isomputationally omplete, and thus does not admit eÆient evaluation [13℄. Results in ompu-tational algebrai geometry show that many onnetivity and reahability queries (e.g., �nd theonneted omponents of a set) are in PTIME if the dimension is �xed (see, e.g., [17℄). However,languages apturing omplexity lasses over onstraint databases are sare (natural languages ex-ist for databases de�nable with order onstraints only [15℄; also, rather ompliated languages weregiven for linear onstraints [16, 21℄). Besides, this approah an only work for those queries appliedas top level operators (i.e., outputs annot be reused by other queries). There exists extensiveliterature on �rst-order de�nable topologial properties of onstraint databases [28, 22, 24, 33℄ andit is well known that onnetivity and reahability are not �rst-order [4℄. Our results on appliationto hybrid systems are diretly inspired by [26, 27℄.3



Organization We introdue notations in Setion 2. In Setion 3, we deal with losure undertopologial properties. We �rst prove a number of general deomposition results for sets de�nablein various strutures. We then use them to show losure of FO+Lin and FO+Poly under addingtests for topologial properties, and tratability, assuming topologial properties an be tested inpolynomial time. We also study the speial ase of �nding onneted omponents.In Setion 4, we introdue Path Logi LPATH for expressing reahability and onnetivity queriesin a uni�ed framework. We give examples, analyze expressive power, and prove losure. For linearand polynomial onstraints we show tratability as well. We onlude in Setion 5 by giving anappliation to veri�ation of hybrid systems.2 NotationsStrutures, databases, queries Most notations are fairly standard in the literature on on-straint databases, f. [4, 5, 25, 29℄. LetM = hU ;
i be an in�nite struture, where U is an in�niteset, alled a universe (in the database literature often alled the domain), and 
 is a set of inter-preted funtions, onstants, and prediates. A set X � Un is de�nable inM if there is a formula�(x1; : : : ; xn) in the language ofM suh that X = f~a 2 Un j M j= �(~a)g.In this paper, we will always have U = R, the set of real numbers.Examples of signatures (and orresponding lasses of onstraints) that have been onsidered are:Dense Order Constraints: hR; <i;Linear Constraints: Rlin = hR;+;�; 0; 1; <i;Polynomial Constraints: R = hR;+; �; 0; 1; <i.A (relational) database shema SC is a nonempty olletion of relation names fS1; : : : ; Slg withassoiated arities p1; : : : ; pl > 0. We shall onsider �nitely representable, or de�nable instanes. Ade�nable database instane of SC overM is a family of de�nable sets fX1; : : : ;Xlg, with Xi � Upi ,suh that for eah Xi there exists a formula �i(x1; : : : ; xpi) in the language ofM with Xi = f~a 2Upi j M j= �i(~a)g. Most appliations of onstraint databases onsider de�nable instanes over Rlin(alled semi-linear sets) or over R (alled semi-algebrai sets). These are sets de�nable by Booleanombinations of linear (resp., polynomial) inequalities.As our basi query language, we onsider relational alulus, or �rst-order logi, FO, over theunderlying struture and the database shema. We use the notation FO+
 to denote the lass ofall �rst-order formulae built up from the atomi SC and 
 formulae by using Boolean onnetives_;^;: and quanti�ers 8;9. When 
 is (+;�; 0; 1; <), we use the notation FO+Lin (�rst-order withlinear onstraints), and when 
 is (+; �; 0; 1; <), we denote the language by FO+Poly (�rst-orderwith polynomial onstraints).Given '(~x; ~y) and ~a, we write '(~a;D) for f~b j D j= '(~a;~b)g; in the absene of ~x we just write '(D)for the output of ' on D. We say that a language FO + 
 is losed, if for any shema SC, anyde�nable SC-database (over hR;
i) and every FO + 
 query '(~y) on SC-databases, the output'(D) is a de�nable set.Languages FO+Lin, FO+Poly, as well as FO with dense order onstraints are losed; this is a4



onsequene of quanti�er-elimination for Rlin, R and hR; <i [25℄.O-minimality, ell deomposition Many results that we prove extend beyond linear and poly-nomial onstraints. To state them in greater generality, we use o-minimality [35℄, whih plays animportant role in the study of onstraint query languages (f. [4, 5, 25℄).A strutureM = hR;
i is o-minimal, if every de�nable subset of R is a �nite union of points andopen intervals (a; b) = fx j a < x < bg, (�1; a) = fx j x < ag, and (a;1) = fx j x > ag (weassume that < is in 
). All the strutures on the reals we mentioned so far { Rlin, R, hR; <i {are o-minimal (this is implied by quanti�er elimination and the fundamental theorem of algebra,for the ase of R.) There are a number of known o-minimal expansions of R, most notably, theexponential �eld hR;+; �; exi [37℄.A key property of o-minimal strutures is ell deomposition. A ell in Rk is a subset homeomorphito Rk0 , k0 � k (by onvention, R0 is a point). We now �x a strutureM = hR;
i and de�neM-ellsby indution on dimension. AnM-ell in R0 is just R0 . M-ells in R are singletons fag, or openintervals (a; b); (�1; a); (a;1), where a; b are de�nable onstants. Assume that C � Rn�1 is a ell,and f; g : C ! R are ontinuous de�nable funtion on C, with f(~x) < g(~x) for all ~x 2 C. Then thesets f(~x; f(~x)) j ~x 2 Cg and f(~x; r) j ~x 2 C; f(~x) < r < g(~x)g are ells in Rn . In the latter ase, weallow f to be �1 and/or g to be 1.A ell deomposition of Rn (with respet to M) is a partition of Rn into a �nite union of M-ells. Again, it is de�ned indutively on n. A deomposition of R is the olletion of M-ellsof the form f(�1; a1); fa1g; (a1; a2); fa2g; : : : ; fakg; (ak;1)g. A deomposition of Rn is a familyC = fC1; : : : ; Clg ofM-ells that partition Rn suh that for the natural projetion � : Rn ! Rn�1given by �(~x; t) = ~x for ~x 2 Rn ; t 2 R, the olletion �(C) = f�(C1); : : : ; �(Cl)g is a deompositionof Rn�1 .In partiular, if C is a deomposition of Rn+m and � : Rn+m ! Rn is the projetion on the �rstn oordinates, then �(C) is a deomposition of Rn , and for every ell C 2 C there exists a uniqueell C0 2 �(C) suh that C � C0 � Rm . This property, espeially in the ontext of the real �eld, isreferred to as being a ylindri deomposition.Fat 1 [35℄ LetM = hR;
i be o-minimal. Assume that S1; : : : ; Sm are de�nable sets in Rn . Thenthere exists a ell deomposition C of Rn suh that eah Si is a union of some ells of C. 2Let X � Rn+m and ~a 2 Rn . Then X~a denotes the �ber f~b 2 Rm j (~a;~b) 2 Xg. Let C bea deomposition of Rn+m and ~a 2 Rn . By C~a we denote the olletion of all nonempty setsfC~a j C 2 Cg. It is known [35℄ that C~a is a ell deomposition of Rm .In the ase whenM is Rlin or R, we an get more information about ell deompositions. Namely,given any �nite olletion f1(~x); : : : ; fk(~x) of polynomials (resp., linear funtions) in n variableswith oeÆients from Q , one an �nd a ell deomposition C of Rn suh that on eah ell Ci,none of the funtions fj hanges its sign. Furthermore, this deomposition an be found in timeO((kd)h(n)), where d is the maximal degree of a polynomial among fjs, and h is some funtion(typially, h(n) = O(2n)) [10, 8℄. It is important to notie that for a �xed dimension, the elldeomposition algorithm is thus in PTIME (in fat, in NC [6℄).5



We will need stronger notions of deomposition into ells. A deomposition C of Rn+m is alledtrivial over Rn if it is ylindri over Rn and for any ell C 0 of the indued deomposition �(C) ofRn , and for any ~a;~b 2 C 0, there exists a homeomorphism h : Rm ! Rm suh that h(C~a) = C~b forevery ell C 2 C.Let l(�) denote the losure of a set (in the usual topology of R). A deomposition C is alled adja-eny preserving over Rn if it is ylindri over Rn and for any ell C 0 of the indued deomposition�(C), for any ~a;~b 2 C 0, and for all ells A1; A2; A3 2 C, l(A1~a) \ A2~a 6= ; i� l(A1~b) \ A2~b 6= ; andl(A1~a)\ l(A2~a)\A3~a 6= ; i� l(A1~b)\ l(A2~b)\A3~b 6= ;. Note that a trivial deomposition is adjaenypreserving.3 Topologial properties and losureThe goal of this setion is to show that adding topologial properties to languages like FO + Linand FO+Poly results in losed query languages. In partiular, one an add the onnetivity test,or an operator omputing onneted omponents of a set, and still remain within semi-linear orsemi-algebrai databases.In Subsetion 3.1, we prove a general deomposition result for de�nable sets that is key to thelosure theorems of this setion and next. Our starting point is the Loal Triviality Theorem inreal algebrai geometry, whih implies, for example, that for a semi-algebrai set S � Rn+m , thenumber of topologial types of sets S~a � Rm is �nite, as ~a ranges over Rn [3, 7℄. For R, the knownLoal Triviality theorem gives the deompositions neessary for our results. In Rlin, however, theLoal Triviality Theorem fails, so we prove a weakening of it that is suÆient for the needs of thepaper.One the deomposition lemma is proved, the general losure result for adding tests of topologialproperties follows easily. We treat it in Subsetion 3.2, and then in Subsetion 3.3 analyze moregeneral topologial operators, in partiular, one for omputing onneted omponents of a set. Wederive losure for FO+Poly and FO+Lin, although in very di�erent ways: for FO+Poly it is aneasy onsequene of Loal Triviality for semi-algebrai funtions, while for FO+Lin the proof relieson the speial form of deompositions. Notie that the Loal Triviality Theorem does not hold inthe semi-linear ase as the homeomorphisms de�ned by this theorem ould be non semi-linear.3.1 Deomposition LemmaThe key lemma for our results is the following :Lemma 2 a) Let S1; : : : ; Sk be a olletion of semi-linear sets in Rn+m and let f1; : : : ; fp beall the (degree 1) polynomials used in the representation of S1; : : : ; Sk. Then there exists adeomposition C of Rn+m into semi-linear sets whih is trivial over Rn , and suh that thesign of eah fi is onstant on every ell of C. In partiular, every Sj is a union of ells of C.Moreover, for n and m �xed, C an be found in time polynomial in the size of the desriptionsof f1; : : : ; fp.b) The statement a) holds if one replaes semi-linear with semi-algebrai.6



) Let M = hR;
i be o-minimal, and let S1; : : : ; Sk be a olletion of de�nable sets in Rn+m .Then there exists a deomposition C of Rn+m whih is adjaeny preserving over Rn suh thateah set Si is a union of ells of C. Moreover, if M is deidable, then C an be e�etivelyomputed.d) If M = hR;
i is an o-minimal expansion of the real �eld R, and S1; : : : ; Sk is a olletionof de�nable sets in Rn+m , then there exists a deomposition C of Rn+m whih is trivial andsuh that eah set Si is a union of ells of C.Proof: In the proofs of a) and b) and d), we will use the de�nition of strati�ation [3, 7℄. Astrati�ation of Rn is a deomposition fA1; : : : ; Akg of Rn suh that Ai \ l(Aj) = ; i� Ai � l(Aj)for all i 6= j, and the following property holds. There exist a family of polynomials (of degree 1, forthe linear ase) fp1(~x); : : : ; pm(~x)g in n variables suh that A1; : : : ; Ak are exatly the nonemptysets among m\i=1f~a 2 Rn j pi(~a) �(i) 0gwhere � ranges over the funtions from f1; : : : ;mg to f<;=; >g, and the losure of eah Aj isobtained by relaxing the inequalities involved in the above representation; that is, hanging < to� and > to �. Notie that a strati�ation is not neessarily a ylindrial deomposition.We start the proof with b), as it is an easy onsequene of the Loal Triviality Theorem in algebraigeometry [3, 7℄. Let f1; : : : ; fp be all the polynomials used in a given representation of the Sis, andlet X1; : : : ;Xs be a ylindri deomposition of Rn+m with respet to f1; : : : ; fp. That is, for eah i,Xi is a semi-algebrai set homeomorphi to Rk0 for some k0 � n+m, and the polynomials fjs donot hange sign on Xi. Let � : Rn+m ! Rn be the natural projetion on the �rst n oordinates.The Loal Triviality Theorem, applied to � and X1; : : : ;Xs states that there exists a strati�ationZ1; : : : ; Z� of Rn and, for eah 1 � i � �, a semi-algebrai set Fi � Rm , a semi-algebrai partitionfFi1; : : : ; Fisg of Fi and a semi-algebrai homeomorphism hi : Zi � Rm ! Zi � Fi suh that� � = � Æ hi on Zi � Rm , and� hi((Zi � Rm) \Xj) = Zi � Fij .In partiular, for any ~a 2 Zi and any ~y 2 Rm , we have hi(~a; ~y) = (~a; ~z) for some ~z 2 Fi. Thus, forevery ~a 2 Zi, h~ai : Rm ! Fi that sends ~y to ~z is a homeomorphism, and is onto (sine Xjs partitionRn+m and Fijs partition Fi).We now �x ~a;~b in Zi. Our goal is to �nd a homeomorphism h~a;~b : Rm ! Rm suh that h~a;~b((Xj)~a) =(Xj)~b for eah Xj . First, de�ne id~a;~b : f~ag � Fi ! f~bg � Fi to be the natural mapping that is theidentity on Fi. Then we let h~a;~b : Rm ! Rm be de�ned as� Æ h�1i Æ id~a;~b Æ hi Æ (f~ag � id):Here � is the projetion the last m oordinates. That is, given ~y1 2 Rm , apply hi to (~a; ~y1)to obtain (~a; ~z) 2 Zi � Fi. Then h~a;~b(~y1) = ~y2 suh that hi(~b; ~y2) = (~b; ~z). It is lear thath~a;~b is a homeomorphism. We next note that hi((f~ag � Rm ) \ Xj) = f(~a; ~z) j ~z 2 Fijg andhi((f~bg � Rm ) \Xj) = f(~b; ~z) j ~z 2 Fijg, whih therefore implies h~a;~b((Xj)~a) = (Xj)~b.7



We now look at the deomposition of Rn given by the nonempty sets among �(X1); : : : ;�(Xs) and�nd a deomposition V1; : : : ; Vl suh that eah Vi is a subset of a unique �(Xk) and a unique Zr.Given suh a deomposition, we onstrut a deomposition C onsisting of nonempty sets among(Vi � Rm ) \Xj . Sine we took Xjs to be a ylindri deomposition, and eah Vi is ontained in aprojetion of some ell from that deomposition, we obtain that C itself is a ylindri deompositionover Rn . Furthermore, sine eah Vi is subset of some Zl, we obtain from the paragraph above thatC is trivial over Rn .It remains to show polynomial time omplexity, assuming that n andm are �xed. First, the ylindrideomposition X1; : : : ;Xs an be found in polynomial time [8, 10℄. To see that the strati�ationZ1; : : : ; Z� an be found in polynomial time, one analyzes the proof of the Loal Triviality Theoremin [3, 7℄ to see that it is essentially onstruting a deomposition exept that at eah indutive step,one may have to make a linear hange of oordinates. Again, this an be done in polynomial time ifthe dimension is �xed. Finally, to �nd the Vis, one omputes all possible intersetions Zl \�(Xj),and this is again polynomial for a �xed dimension. This ompletes the proof of b).The proof of d) is idential, exept for the last step, as the Loal Triviality Theorem is knownto hold in any o-minimal expansion of the real �eld [35℄; learly, nothing an be said about theomplexity in this ase.We now move to the proof of a). First note that we annot apply the proof above as the LoalTriviality Theorem does not hold over Rlin (see, for example, in [35℄). However, we an reoverenough of it to prove a).Let f1(~x; ~y); : : : ; fp(~x; ~y) be all the linear funtions involved in the representation of S1; : : : ; Sk. Weassume that inluded in this olletion are the n+m funtions xi (for eah variable xi; this is doneto ensure that none of the ells ontains a line). Let us use the standard ylindri ell deompositionalgorithm for linear funtions, thus obtaining a ell deomposition C of Rn+m suh that on everyell of C, the sign of eah fi remains onstant. In partiular, eah Sj is then a union of ells. Welaim that C satis�es the ondition of the theorem.First, the fat that it an be omputed in time polynomial in the representation of all the fis (forn and m �xed) is derived from the standard bounds on ell deomposition [10℄. Seond, analyzingthe proof of the existene of strati�ations for semi-algebrai sets (see, for example, [3, 7℄), oneobtains that C is atually a strati�ation. This is beause the only step in the proof of the existeneof strati�ations in the semi-algebrai ase that deviates from the standard ell deompositionis a linear hange of oordinates to ensure that ertain produts of variables do not appear inpolynomials. However, sine we deal with linear funtions, and multipliation is not allowed, nolinear hange of variables is neessary.We now �x a ell C 0 2 �(C) and ~a;~b 2 C 0 � Rn . Let C 2 C be a ell in C 0�Rm . We �rst note thatsine dim(C) = dim(C 0)+dim(C~) for an arbitrary ~ 2 C 0 [35℄, we obtain that dim(C~a) = dim(C~b).We next �x two ells B;C 2 C in C 0�Rm and show that the following four onditions are equivalent:1. C~a \ l(B~a) 6= ;;2. C \ l(B) 6= ;;3. C � l(B); 8



4. C~a � l(B~a).Note that 4 ! 1 is immediate, and 2 ! 3 follows from the fat that C is a strati�ation. Both1 ! 2 and 3 ! 4 follow from the fat that for any ell C in C 0 � Rm , and any ~a 2 C 0, we havef~ag � l(C~a) = l(C) \ (f~ag � Rm ). To prove this, assume that C 6= ; is given by a onjuntionof strit inequalities g1(~x; ~y) > 0; : : : ; gp(~x; ~y) > 0 and equalities v1(~x; ~y) = 0; : : : ; vs(~x; ~y) = 0,where either s or p an be zero, and gis and vis are linear funtions. The ase of p = 0 isimmediate, so we assume p 6= 0. Sine C de�nes a strati�ation of Rn+m , we obtain that l(C)is given by the onjuntion of gi(~x; ~y) � 0, i = 1; : : : ; p, and vj(~x; ~y) = 0, j = 1; : : : ; s. LetG~ai = f~ j gi(~a;~) > 0g, G~ai = f~ j gi(~a;~) � 0g, and V ~aj = f~ j vj(~a;~) = 0g. We havel(G~ai ) = G~ai and ri(G~ai ) = G~ai , where ri(�) is the relative interior. Sine TiG~ai 6= ;, we havel(TiG~ai ) = l(Ti ri(G~ai )) = Ti l(ri(G~ai )) = TiG~ai (see, e.g., [32℄). Let V ~a = Tj V ~aj . ThenV ~a is a losed set, and it intersets the open set TiG~ai . Hene, ri(V ~a) \ TiG~ai 6= ;, and thusl(V ~a \TiG~ai ) = l(V ~a)\ l(TiG~ai ) = V ~a \TiG~ai . Thus, l(C~a) = f~ j gi(~a;~) � 0; vj(~a;~) = 0; i =1; : : : ; p; j = 1; : : : ; sg, whih proves f~ag� l(C~a) = l(C)\ (f~ag�Rm ), and hene the equivalenesabove.The equivalenes above show that the adjaeny strutures of C~a and C~b are the same for any ~aand ~b in C 0, and, moreover, the boundary of C~a in Rm is the union of ells of the form B~a, B 2 C,and likewise for ~b. Furthermore, the proof shows that l(C~a) is a onvex polyhedron, whih doesnot ontain a line in Rm (sine all variables have the same sign in every ell, by inlusion of allthe funtions xis before omputing the deomposition). Furthermore, sine l(C~a) = l(C)~a, weobtain from onvex analysis (see [32℄) that eah fae of l(C~a) is a union of ells of the form B~a,B 2 C. Thus, eah vertex of l(C~a) is a ell of the above form, eah segment fae is a union of abounded one-dimensional ell of the form B~a and two verties, and eah ray fae is a union of anunbounded one-dimensional ell and a vertex. The same statements hold for l(C~b) in view of theabove equivalenes.We next show that for any ell B 2 C, B~a is bounded i� B~b is bounded. Indeed, B~a is bounded i�l(B~a) is bounded. By a simple indution on dimension, l(B~a) of dimension > 0 is bounded i� allits one dimensional faes are segments, whih in turn happens i� every one dimensional ell of theform A~a ontained in l(B~a) is adjaent to two verties (0-dimensional ells). Sine the adjaenystrutures of C~a and C~b are the same, we obtain from here that in l(B~b) every 1-dimensional faeis bounded, and thus B~b is bounded.Next, we need the following observation. Let P1 and P2 be two onvex polyhedra in Rk , withdim(P1) = dim(P2). Assume that P1 and P2 are homeomorphi, and none ontains a line. Sineboundary is a topologial invariant of a onvex set [34℄, this in partiular implies that bd(P1) ishomeomorphi to bd(P2). Fix any homeomorphism g : bd(P1)! bd(P2). We laim that g an beextended to a homeomorphism G : P1 ! P2.To prove this laim, assume without loss of generality that dim(P1) = k (if not, one works inits aÆne hull). It also suÆes to show that the statement above is true for some onvex set Xsuh that both P1 and P2 are homeomorphi to X. Indeed, let h1 : P1 ! X and h2 : P2 ! Xbe homeomorphisms (in partiular, bd(X) = h1(bd(P1)) = h2(bd(P2))). Consider a map v frombd(X) to itself given by h2 Æ g Æ h�11 . Clearly, it is a homeomorphism, so by assumption we anextend it to a homeomorphism V : X ! X. But now G = h�12 Æ V Æ h1 is a homeomorphism9



P1 ! P2 that extends g.Now the laim about the extension of a homeomorphism from the boundary to the whole polyhedronfollows from the fat that a polyhedron not ontaining a line in Rk is homeomorphi to either theunit ball Bk = f~x j k ~x k� 1g (if it is bounded) or to Dk = [0; 1)k (if it unbounded), see [34℄. In the�rst ase, a homeomorphism g : bd(Bk)! bd(Bk) is extended as follows. The origin is mapped toitself. Given ~x 2 Bk, let the ray from the origin in the diretion of ~x interset bd(Bk) at ~y. ThenG(~x) is the point ~x0 on the segment between the origin and g(~y) suh that k ~x k=k ~x0 k. In theseond ase, onsider any ~x in the interior of Dk. Let 1 stand for (1; : : : ; 1). Let the ray originatingin 1 and passing through ~x interset bd(Dk) at ~y. Consider a point ~x0 on the segment between 1and g(~y) suh that d(~x0;1)d(g(~y);1) = d(~x;1)d(~y;1)(where d(�; �) is the usual Eulidean distane), and let G(~x) = x0. It is routine to verify that inboth ases G is a homeomorphism extending g.Let now Ck~a be the union of ells C~a whose dimension is at most k, and likewise for Ck~b . Sine foreah ell C~a, l(C~a) is the union of lower-dimensional ells in C~a, we obtain that Ck~a and Ck~b arelosed. We now onlude the proof of a) by indution, by showing that for every k, there is ahomeomorphism hk : Ck~a ! Ck~b suh that hk(B~a) = B~b for any ell B with dim(B~a) � k. For k = 0,the statement follows from the fat that dim(B~a) = dim(B~b) for every B 2 C; thus, h0 maps every0-dimensional ell (point) of the form B~a to the point B~b.For the indution step, assume we have already onstruted hk. Consider any ell B 2 C suh thatdim(B~a) = dim(B~b) = k + 1. Consider l(B~a) = B~a [ bd(B~a). We know that bd(B~a) is a subsetof Ck~a and moreover a union of ells. We thus have a mapping gB whih is a restrition of hk onbd(B~a) and therefore a homeomorphism bd(B~a)! bd(B~b) (beause bd(B~b) is a union of ells too,and the adjaeny strutures of C~a and C~b are the same). Note that l(B~a) and l(B~b) are bothk + 1-dimensional polyhedra, none ontaining a line, and l(B~a) is bounded i� l(B~b) is. Applyingthe laim above, we extend gB to a homeomorphism GB : l(B~a)! l(B~b); note that GB(B~a) = B~bas GB(bd(B~a)) = bd(B~b).Let B1; : : : ; Bs be all the ells with dim(Bi~a) = k+1. Then Ck+1~a = Si l(Bi~a) and Ck+1~b = Si l(Bi~b).We have homeomorphisms GBi : l(Bi~a) ! l(Bi~b) for eah i. Note that Bis are pairwise disjoint,and for any x 2 l(Bi~a) \ l(Bj~a) it is the ase that x 2 Ck~a and GBi(x) = GBj (x) = hk(x). Wethus an de�ne hk+1 as the union of all GBi . Clearly, it extends hk and hk+1(Bi~a) = Bi~b for all i.Elementary topology shows that if one has a 1-1 funtion f : X ! Y on two topologial spaes suhthat X = X1[: : :[Xt and Y = Y1[: : :[Yt, where all Xis and Yis are losed and the restrition of fto eah Xi is a homeomorphism between Xi and Yi, then f is a homeomorphism between X and Y(ontinuity of f follows sine if a sequene haji in X onverges, then a subsequene ajk lying withinone Xi onverges, and hene f(ajk) onverges by ontinuity of the restrition. Applying the sameargument to f�1 gives that f is a homeomorphism). This implies that hk+1 is a homeomorphismCk+1~a ! Ck+1~b , thus ompleting the indution ase.We now �nally take h to be hm; it is a homeomorphism Rm ! Rm (sine every element is in someell) with the property that h(C~a) = C~b for every ell C 2 C. This ompletes the proof of a).We �nally prove ). Start with a ell deomposition C of Rn+m suh that eah Si is a union of ells,10



and �(C) is a ell deomposition of Rn (reall that � here is the natural projetion onto the �rst noordinates). It is known that eah ell is de�nable in the struture hR; <; S1 ; : : : ; Ski [35℄. To seewhat is needed in order to obtain formulae de�ning eah ell, one an hek all the steps in the proofof ell deomposition for o-minimal strutures (see, e.g., [30, 35℄) and observe that the only stepthat is needed to ensure e�etiveness is the alulation of uniform bounds. That is, for a formula�(x; ~y), one should be able to alulate a number K suh that for eah ~a, the set f j M j= �(;~a)gis omposed of fewer than K intervals. This an be done using the deidability of M. For eahnumber i, we an write a sentene �i� stating that the set f j M j= �(;~a)g is omposed of fewerthan i intervals for all i, and then hek ifM j= �i�. The uniform bounds theorem [30℄ says thatthere is a number K suh thatM j= �K� , and thus it an be found sineM is deidable.Now we have a deomposition of Rn+m into, say, s ells. We onsider a ell C 0 2 �(C) (note that thedeomposition �(C) is also omputable). Let t � s be the number of ells in the ylinder C 0 � Rm ;denote them by A1; : : : ; At. For two mappings� : f1; : : : ; tg � f1; : : : ; tg ! f=; 6=g;� : f1; : : : ; tg � f1; : : : ; tg � f1; : : : ; tg ! f=; 6=g;let C 0�;� be the set of all ~a 2 C 0 suh that for every 1 � i; j; k � t,(Ai~a \ l(Aj~a)) �(i; j) ;and (Ai~a \ l(Aj~a) \ l(Ak~a)) �(i; j; k) ;:Sine the losure of a de�nable set is de�nable in any o-minimal struture on R [35℄, we obtain thatC 0�;� is de�nable by a formula ��;�(~x). We now onsider the olletion F of all the 2t2+t3 formulae��;�, as � and � range over the maps as above. Note that F an be e�etively found from therepresentation of S1; : : : ; Sk. We next do a ell deomposition Ĉ of Rn so that every ell in �(C) andevery set de�nable by ��;� is a union of ells. By the same argument as in the previous paragraph,ifM is deidable we an e�etively onstrut formulae de�ning the ells of Ĉ.Let ~C be the olletion of all nonempty subsets of Rn+m of the form C \ (A�Rm) where C rangesover C and A ranges over Ĉ. Clearly, ~C is a deomposition of Rn+m whih is ylindri over Rn .Furthermore, every ell in the projetion �( ~C) is a ell of Ĉ. Next, �x a ell A in �( ~C). Let ~a;~b 2 A.Assume that for two ells C1; C2 of ~C, we have C1~a \ l(C2~a) 6= ;. Sine Ci = Ci0\ (A�Rm) for someell Ci0 of C in the same ylinder over Rn , we have C1~b \ l(C2~b ) 6= ; as ~a and ~b satisfy all the sameformulae ��;�. Thus, C1~a \ l(C2~a) 6= ; i� C1~b \ l(C2~b ) 6= ;. The proof that C1~a \ l(C2~a) \ l(C3~a) 6= ;i� C1~b \ l(C2~b ) \ l(C3~b ) 6= ; for any C1; C2; C3 2 ~C is idential. This shows that ~C is adjaenypreserving over Rn . It is immediate from its de�nition and the previous paragraph that �rst-orderdesriptions of its ells an be e�etively found as soon asM is deidable. This ompletes the proofof d), and the lemma. 23.2 Closure theoremWe now prove the losure result for topologial properties. Formally, a topologial property Topis a olletion fT1; : : : ;Tn; : : :g where Tn is a family of sets in Rn suh that if X 2 Tn, then for11



eah homeomorphism h of Rn , h(X) 2 Tn. For example, Top ould express the property of beingonneted, being losed, being of dimension n � 1, ontaining exatly one hole, et. When thedimension n is lear from the ontext, we write X 2 Top instead of X 2 Tn.For a set T of topologial properties, we de�ne the language FO(
)+T by extending the de�nitionof FO(
) with the following rule: if '(~x; ~y) is a query, then  (~x) � Top ~y: '(~x; ~y) is a query. Thesemanti is as follows: D j=  (~a) i� '(~a;D) 2 Top. Reall that '(~a;D) = f~b j D j= '(~a;~b)g. For
 being (+;�; 0; 1; <) or (+; �; 0; 1; <) we use the notation FO + Lin+ T and FO +Poly+ T.For instane, the query \is the intersetion of regions R and S onneted" ould be written asC~x: R(~x) ^ S(~x) (where we denote the property of being onneted by C). To illustrate the use offree variables, onsider a set S � R3 . Then the query '(x) � C(y; z): S(x; y; z) returns the set ofall  2 R for whih the intersetion of S with the plane x =  is a onneted set.We say that the data omplexity of FO(
) + T is PTIMET if FO(
) + T queries an be evaluatedin polynomial time in the size of the database, assuming an orale that an test eah Top 2 T inonstant time.Theorem 3 Let T be any set of topologial properties. Then FO + Lin + T;FO + Poly+ T andFO(
) + T are losed, for hR;
i an o-minimal expansion of the real �eld. Furthermore, the dataomplexity of FO + Lin+ T and FO +Poly+ T is PTIMET.Proof. The result is by a simple indution on the formulae. The only ase to prove is  (~x) �Top ~y: '(~x; ~y) for Top 2 T. Let ~x and ~y be of length n and m, resp. On a de�nable database D, byindution, '(~x; ~y) gives us a de�nable set S � Rn �Rm . By Lemma 2, there exists a deompositionC of Rn+m into �nitely many de�nable ells whih is trivial over Rn and suh that S is a unionof ells of C. Let C0 be the projetion of C onto Rn , and C a ell in C0. By triviality, for every~a;~b 2 C, it is the ase that S~a and S~b are homeomorphi, and thus they agree on Top. Therefore,the output of  on D is a union of (�nitely) many ells in C0; sine eah ell is de�nable, the outputis de�nable, too.To get the omplexity bound for FO + Lin + T and FO + Poly + T, we show by indution thatfor eah query ', there exists a number k suh that the omplexity of evaluating ' on D is O(Nk),where N is the size of a given representation of D (assuming Top an tested in onstant time).Again, the only ase to onsider is that of  (~x) � Top ~y: '(~x; ~y), as others follow from the standardbounds on quanti�er-elimination. Given S = '(D) omputed in O(Nk), we an �nd, by Lemma 2,a trivial deomposition C in time polynomial in Nk. Sine the projetion operation is polynomialfor a �xed dimension, we get that for some k1 that depends only on ', we an onstrut both C andC0 in time O(Nk1). We next selet a point ~a in eah ell of C0 and onstrut the �ber S~a. This anbe done in polynomial time, too (indeed, ell deomposition algorithms already return a point fromeah ell when they produe a deomposition [10, 8℄, and then one substitutes those representativepoints for ~x in the de�nition of S). Finally, for eah ell we test in onstant time if the �ber S~a isin Top. Thus, the total omplexity is polynomial in N , with the exponent depending on  only.This ompletes the proof. 2Now onsider the ase when T onsists of just the property C (being a onneted set). As onne-tivity of semi-algebrai sets an be tested in polynomial time (for a �xed dimension) [17℄, the proofof the omplexity bounds in Theorem 3 implies the following.12



Corollary 4 FO+Lin+C and FO+Poly+C are losed, and the queries they de�ne have PTIMEdata omplexity. 23.3 Topologial queries and onneted omponentsSo far we have seen losure and tratability for languages whih add the CONNECTED operator men-tioned in the introdution. We now deal with the CONNECTS-TO operator; that is, with omputingonneted omponents. In fat, we treat a more general ase of non-boolean topologial queries inthe ontext of polynomial onstraints.Let T be a map from subsets of Rm to subsets of in Rmk . We all T topologial if for any home-omorphism h : Rm ! Rm and any (~x1; : : : ; ~xk) 2 T (S), for S � Rm , we have (h(~x1); : : : ; h(~xk)) 2T (h(S)). For example, the mapping Conn : 2Rm ! 2Rm�Rm suh that (~x1; ~x2) 2 Conn(S) i� ~x1; ~x2are in the same onneted omponent of S, is topologial. We say that T is de�nable if T (S) is ade�nable set for every de�nable set S. As onneted omponents of a set de�nable in an o-minimalstruture on R are de�nable [35℄, the topologial query Conn is de�nable over suh strutures.Let T : 2Rm ! 2Rmk be a topologial query. We de�ne the language FO(
) + T by extending thede�nition of FO(
) with the following rule: if '(~x; ~y) is a query with ~y having length m, then weget a new query  (~x; ~y1; : : : ; ~yk) � T~y: '(~x; ~y), with all ~yis having length m. The semanti is asfollows: D j=  (~a;~b1; : : : ;~bk) i� (~b1; : : : ;~bk) 2 T ('(~a;D)):For example, if '(D), for '(~x; ~y), is a set S � Rn+m , and  (~x; ~y1; ~y2) � Conn~y: ', then D j= (~a;~b1;~b2) i� ~b1 and ~b2 are in the same onneted omponent of S~a.In the semi-algebrai ase or in any o-minimal expansion, the Loal Triviality Theorem used in theproof of Lemma 2 an also be used to prove the following:Theorem 5 For every de�nable topologial map T , FO+Poly+T is losed. Moreover, FO(
)+Tis losed, whenever hR;
i is an o-minimal expansion of the real �eld.Proof. As usual this is proved by indution on the struture of the formulae. We only need toprove the ase of  (~x; ~y1; : : : ; ~yk) � T~y: '(~x; ~y). Assume ' de�nes S � Rn �Rm : S = f(~a;~b) j D j='(~a;~b)g. By Lemma 2, there exists a deomposition C trivial over Rn . Let C1; : : : ; Cp be all theells in the projetion of C onto Rn . The proof of b) in Lemma 2 (whih is just an appliation ofLoal Triviality) shows that for every i, and every ~a;~b 2 Ci, there is a de�nable homeomorphismhi~a;~b : Rm ! Rm suh that hi~a;~b(S~a) = S~b. Sine T is topologial, it implies that (~e1; : : : ; ~ek) 2 T (S~a)if and only if (hi~a;~b(~e1); : : : ; hi~a;~b(~ek)) 2 T (S~b).Sine eah ell Ci is a de�nable set, it has a de�nable representative ~i 2 Ci [35℄. Thus, a tuple(~a;~b1; : : : ;~bk) is in  (D) i� for i 2 1; : : : ; p suh that ~a is in Ci, the following holds:9(~e1; : : : ; ~ek) 2 T (S~i) k̂j=1~bj = hi~i;~a(~ej)Sine S~i is de�nable, and hi~i;~a is a de�nable homeomorphism, T (S~i) is de�nable, whih impliesthat  (D) is a de�nable set, and proves losure. 213



We note in passing that the fat that T produes a de�nable output on a de�nable input by nomeans implies losure. For example, the onvex hull operator preserves semi-linearity, but whenadded to FO+Lin, gives it the full power of FO+Poly [2℄. One an �nd de�nable operators that,when added to FO+Poly, de�ne non-semi-algebrai sets (e.g., given two sets X and Y in Rn ,return the one with the larger volume).Sine Conn is de�nable and topologial (over the real �eld and its o-minimal expansions), weonlude from Theorem 5 that FO + Poly + Conn is losed. However, the proof above annotpossibly be extended to FO + Lin. Indeed, we used not only the triviality of the partition whihis guaranteed by Lemma 2, but also the fat that homeomorphisms between �bers are de�nable.This latter ondition fails over hR;+;�; 0; 1; <i. Nevertheless, we an show that FO +Lin+ Connis losed.Proposition 6 FO+Lin+Conn is losed; that is, it de�nes a semi-linear output on a semi-linearinput. Furthermore, FO + Lin+ Conn queries have PTIME data omplexity.Proof. The proof is by indution on the formulae, with only the ase of applying the Conn operatorbeing nontrivial. Suppose we are given '(~x; ~y) whih de�nes, on a semi-linear database D, a semi-linear set S � Rn � Rm . We must show that the set S0 � Rn � Rm � Rm of triples (~a;~b2;~b2) suhthat ~b1 and ~b2 are in the same onneted omponent of S~a, is semi-linear, and an be omputed intime polynomial in the size of a given representation of S (assuming n and m �xed). For this, weuse Lemma 2. We ompute in PTIME a deomposition C of Rn+m , whih is trivial over Rn , suhthat the signs of all the funtions used in the representation of S remain onstant on eah ell.Let C be a ell in �(C), where � : Rn+m ! Rn is the natural projetion. Let C1; : : : ; Ck be all theells in the ylinder C � Rm . We know from the proof of Lemma 2 that for any ~a;~b, Ci~a adj Cj~a i�Ci~b adj Cj~b i� Ci adj Cj where X adj Y means X \ l(Y ) 6= ; or Y \ l(X) 6= ;. We let GC be agraph with the set of nodes being the indies of the ells among C1; : : : ; Ck that belong to S, andedges (i; j) for every Ci adj Cj. Let K1; : : : ;Kp be the onneted omponents of GC . De�ne PC~a asp[l=1(([i2Kl Ci~a)� ([i2KlCi~a)) � Rm � Rmfor ~a 2 C, and let S0 = [C2�(C) [~a2Cf~ag � PC~a � Rn � Rm � Rm :It is known [35℄ that the sets of the form (Si2Kl Ci) are exatly the onneted omponents ofS \ (C � Rm ). It thus follows from the above that the sets of the form (Si2Kl Ci~a) are exatly theonneted omponents of S~a, and hene S0 is the result of Conn~x: '. By onverting the above intoa FO de�nition, we obtain PTIME data omplexity as the number of quanti�ers only depends onn and m. 2We note that the results on losure under topologial operators and Conn leave something to bedesired. First, the proof of Theorem 5 does not produe a omplexity bound, as it is not immediatelylear how hard it is to ompute de�nable homeomorphisms between �bers. We will see in the next14



setion that the data omplexity is PTIME (Corollary 15). The proof for FO+Lin, although givingus tratability, is rather ad-ho, and slight modi�ation of a query may require an entirely di�erentproof of losure.We now want to �nd a single language that aptures the properties that are of interest for applia-tions, whih has a small number of onstrutors, and whih has a uniform evaluation method overall queries. Suh a language is presented in the next setion.4 Path LogiOur goal is to present a unifying query language for expressing reahability and onnetivity queries.The language is based on the onept of a path and allows to express properties of paths with respetto given sets in the Eulidean spae Rn . For now, let us think of a path as a ontinuous urve inRn . For example, to express that a set S � Rn is onneted we would say \for all ~x; ~y 2 S thereexists a path suh that for all points p on this path whih appear between ~x and ~y we have p 2 S".Formally, we would write this in the form8~x8~y��S(~x) ^ S(~y)� �!EP 9p9q�p = ~x ^ q = ~y ^ 8r((p < r ^ r < q)! S(r))��:Let us try to deode this formula: The �rst line is just �rst-order, its obvious meaning is \for alltuples ~x; ~y 2 Rn whih are both ontained in S we have." Then EP in the seond line says \thereexists a path," i.e. a ontinuous urve in Rn . We shall assume that all paths have a starting point;that is, they are ontinuous maps f : R+ ! Rn where R+ = fr 2 R j r � 0g. Next we quantifyover a new type of variables, path variables p; q; r, whih range over the points of the path. We saythat \there exist points p; q on the path suh that p equals ~x and q equals ~y (if we onsider them aspoints of Rn), and all points r between p and q are ontained in S." Here the order in \between"is just the natural order on R. So formally the meaning of the seond line of our formula is9t; u 2 R+�f(t) = ~x ^ f(u) = ~y ^ 8v 2 (t; u) f(v) 2 S�:Similarly, we an formulate statements \for all paths" by using a universal quanti�er AP insteadof EP .Before we give the formal de�nition of the syntax and semantis of our logi, let us give one moreintuitive example. The following query de�nes the set of all ~y 2 R2 suh that if one wants to gofrom a point in Portugal (P � R2) to ~y on land (L) then one has to go through Spain (S) and thenFrane (F ): 8~x�P (~x) �!AP��8pL(p) ^ 9p9q(p < q ^ p = ~x ^ q = ~y)�!9r9s�p < r < s < q ^ S(r) ^ F (s)��:Thus the query returns, for example, all points ~y in Frane, Germany, and Italy, but no points inSpain or England.In Subsetion 4.1, we formally de�ne the path logi LPATH. In Subsetion 4.2, we give moreexamples and analyze the expressive power. In Subsetion 4.3, we show that LPATH is losed and15



tratable over polynomial and linear onstraints (more generally, the losure is shown for o-minimalstrutures). In the subsequent setion, 5, we give an appliation of path logi to hybrid systems.4.1 De�nition of the path logiFormulas in the logi may have two sorts of variables, element variables x; y; : : : and path variablesp; q; : : : There are also two kinds of formulae: state formulae and path formulae. Assoiated witheah path formula is an arity n � 1. (An n-ary path formula speaks about a path in Rn .)Syntax Given a database shema SC and a struture M = hR;
i, formulae of LPATH(
) arede�ned indutively as follows:1. Every FO + 
 formula ' is a state formula.2. State formulae are losed under the Boolean onnetives _;^;:, and quanti�ation 9;8.3. If ' is a state formula, ~x = (x1; : : : ; xn) is an n-tuple of element variables, and p is a pathvariable, then '[p ~x℄ is a path formula of arity n.4. If n � 1 and p; q are path variables, then p = q, p < q, and p > q are path formulas of arityn. (To be formally orret, we should write p =n q, p <n q, or p >n q for the n-ary versionsof these formulae, but we an safely omit this.)5. Path formulae of the same arity are losed under the Boolean onnetives _;^;:.6. If ' is a path formula and p a path variable, then 9p ' and 8p ' are path formulae of thesame arity as '.7. If ' is a path formula without free path variables, then EP' and AP' are state formulae.To make the last point of the de�nition preise, we have to de�ne the set FVp( ) of free pathvariables of a formula  : If  � '[p  ~x℄ then FVp( ) = fpg. For the other types of pathformulas, FVp is de�ned in the usual way, for example FVp(p < q) = fp; qg, FVp('1 _ '2) =FVp('1) [ FVp('2), and FVp(9p') = FVp(') n fpg. If  is a state formula, then FVp( ) = ;.This ompletes the de�nition of the syntax of LPATH(
). When 
 = (+;�; 0; 1; <), we use thenotation LPATH(Lin) for LPATH(
); for 
 = (+; �; 0; 1; <), we use the notation LPATH(Poly).We shall usually write p = ~y instead of (~x = ~y)[p ~x℄. Similarly, if R is a relation name, then weshall write R(p) instead of R(~x)[p ~x℄. (We have already used these onventions in the examplesat the beginning of this setion.)To be able to de�ne the semantis, we also have to de�ne the set FVe( ) of free element variables of aformula  : If  is an FO+
-formula, then FVe( ) is the set of free variables of  de�ned in the usualway. Similarly, if  is a Boolean ombination of two state or path formulas, then we apply the usualrules to de�ne FVe( ). If  2 f9x';8x'g (for an element variable x) then FVe( ) = FVe(')nfxg.If  2 f9p';8p'g (for a state variable p) then FVe( ) = FVe('). If  2 fEP';AP'g thenFVe( ) = FVe('). Finally, if  � '[p (x1; : : : ; xn)℄ then FVe( ) = FVe(') n fx1; : : : ; xng.16



Semantis In our informal disussion starting this setion we de�ned a path in Rn to be anarbitrary ontinuous mapping P : R+ ! Rn . However, ontinuous funtions an osillate verywildly, and inluding pathologial urves may lead to ounterintuitive truth values for sentenes.Therefore, we de�ne our semantis with respet to the set of non-zeno paths, whih are reasonablysmooth and an only osillate mildly. Formally, given an o-minimal struture M, we say that apath P : R+ ! Rn is non-zeno with respet toM if for any set X � Rn de�nable in any o-minimalexpansion of M, the set P�1(X) = ft j P (t) 2 Xg is a union (not neessarily �nite) of intervals,and the set of endpoints of those intervals is disrete.For example, every semi-algebrai path is non-zeno with respet to Rlin and R. Another typiallass of non-zeno paths an be obtained as follows: Let R be partitioned into intervals I1; I2; : : :(whih ould be open or losed on eah side) suh that for some � > 0, the length of eah Ij is atleast �. Let P : R+ ! Rn be piee-wise semi-algebrai with respet to this partition; that is, Pis ontinuous and its restrition to eah Ij is semi-algebrai. Then P is non-zeno with respet toRlin and R. An example is given by P : R+ ! R2 de�ned as P (x) = (x; x � bx) if bx is even,and P (x) = (x; dxe � x) if bx is odd. An example of a path that is non-zeno with respet to Rlinand R, but not pieewise semi-algebrai, is the path s : R ! R2 de�ned by s(x) := (x; sin(x)).An example of a path whih is not non-zeno with respet Rlin and R is the path de�ned bys(x) := (x; x sin(1=x)).We now give the formal de�nition of the semantis of LPATH(
). Whereas for state formulasthe satisfation relation is de�ned with respet to databases D in the usual way, the satisfationrelation for path formulas is de�ned with respet to pairs (D;P ) onsisting of a database D and anon-zeno path P .The ases of FO + 
 formulae, as well as �rst-order quanti�ation and Boolean onnetives arestandard.For an n-ary path formula  (p; ~y) � '(~x; ~y)[p ~x℄, a database D, a non-zeno path P : R+ ! Rn ,a t 2 R+ , and a tuple ~a 2 Rm with m = j~yj, we have (D;P ) j=  (t;~a) i� D j= '(P (t);~a). For'(p; q) � (p�q), with � 2 f<;=; >g, we de�ne (D;P ) j= '(t; t0) i� t�t0. Finally, D j= EP'(~a) i�there exists a non-zeno path P suh that (D;P ) j= '(~a).This ompletes the de�nition of the semantis of LPATH.We lose this setion with an example that shows why we have to be very areful in de�ning apath logi that is losed and deidable. Note that in formulae '[p ~x℄, only one path variable anget instantiated. Intuitively, this orresponds to oloring a path with previously de�ned regions.The following example shows why one annot bind two path variables at the same time, i.e. admitformulas of the form '[p ~x; q  ~y℄ (with the obvious meaning).Example 7 Let �(x1; x2) � (x2 = 0). Then the path formula�(p; q) � � �[p ~x℄ ^ �[q  ~x℄ ^ p < q^:9r��[r  ~x℄ ^ p < r ^ r < q��says that p and q are two onseutive intersetions of a path with the x1-axis. Now let(x1; x2; y1; y2) � (x2 = 0) ^ (y2 = 0) ^ (y1 = x1 + 1)17



and onsider the formula'(z) � EP� 9p9q�p = (0; 0) ^ q = (0; z) ^ p < q�^8p8q��(p; q)! [p ~x; q  ~y℄��:It says that there is a path from (0; 0) to (z; 0) in R2 suh that two onseutive points of the form(x1; 0); (x2; 0) on this path must satisfy x2 = x1 + 1. Hene, '(z) holds i� z is a positive integer,while N is not a semi-algebrai set.4.2 Expressive powerIn this setion we ollet a few fats we know about the expressive power of LPATH. We haveindiated that CONNECTED and CONNECTS-TO an be expressed: for example, to test that ~x; ~y arein the same onneted omponent of R, one writes �R(~x) ^ R(~y)� ^ EP �8p R(p) ^ 9p1(p1 =~x) ^ 9p2(p2 = ~y)�.As another example, we show how to test if a region R � R2 is simply onneted . Intuitively, Rbeing simply onneted means there are no holes in it (formally, a onneted region R is simplyonneted if every losed urve in it is homotopi to a single point). Note that it is easy to hekif a onneted region R has a hole: either R2 n R is bounded, or this is not the ase, and there arepoints ~x; ~y suh that every path from ~x to ~y intersets R. Clearly, this an be expressed in LPATH.The example above is an instane of a general result, saying that the language LPATH is quiteexpressive when it omes to topologial queries in 2-dimensional spae. Proposition 8 below anbe used to express many more 2-dimensional topologial queries. Note that this is partiularlyrelevant in geographial information systems, whih most often deal with 2-dimensional data.With every 2-dimensional spatial database instane D, one an assoiate a �nite struture I(D), itstopologial invariant [28℄. I(D) aptures the topologial information about D, whih means thattwo instanes D and D0 are homeomorphi if, and only if, I(D) and I(D0) are isomorphi. We nowshow the de�nability of I(D) in LPATH.Proposition 8 The topologial invariant of semi-linear or semi-algebrai 2-dimensional spatialdatabase instanes is de�nable in LPATH. More preisely, the topologial invariant of semi-linearinstanes is de�nable in LPATH(Lin), and the topologial invariant of semi-algebrai instanes isde�nable in LPATH(Poly).Proof : We briey reall the de�nition of topologial invariant. The reader is referred to [28, 33℄for a more preise desription. Given a spatial instane D over a database shema Reg ontainingonly binary relations, a ell partition of D is a partition of R2 into �nitely many onneted subsetsalled ells suh that eah relation of D is a (�nite) union of ells. The topologial invariant I(D)is roughly a �nite desription of the maximal ell partition of D. It is a �nite struture onsistingof the following relations (their meaning is explained intuitively):1. A unary relation C, providing the ells of dimension 0, 1, 2, and a distinguished ell ofdimension 0 alled the exterior-ell.2. A unary funtion Dim, whih assoiates a dimension to eah ell.18



3. A binary relation Adjaent providing the topologial adjaeny relationship between the ells.4. For eah region name p 2 Reg, a unary relation p providing the set of ells ontained in regionp.5. Orientation is a 5-ary relation providing the lokwise and ounterlokwise orientation ofedges inident to eah ell of dimension 0. More preisely, (+; v; e1; e2; e3) 2 Orientation i�v is a ell of dimension 0, e1; e2; e3 are ells of dimension 1 inident to v, and e2 lies betweene1 and e3 in the lokwise order on the inident ells of v, and (�; v; e1; e2; e3) 2 Orientationi� v is a ell of dimension 0, e1; e2; e3 are ells inident to v, and e2 lies between e1 and e3 inthe ounterlokwise order on the inident ells of v (one an use 0 and 1 to ode + and �).Let inv(Reg) denote the above shema. We want to prove that, given a semi-algebrai or semi-linearinstane D over Reg, there exists a formula in LPATH that gives I(D), the topologial invariantover D.We start by giving the de�nition of ells as an equivalene relation E over points of R2 : two pointsp and p0 are in E i� they are in the same ell of the topologial invariant. (Cells themselves an bede�ned from E, as any semi-linear or semi-algebrai equivalene relation has a FO-de�nable set ofrepresentatives [35℄.)The ells of dimension 0 are non-regular points and an be de�ned in FO(<).A ell of dimension 1 is a onneted set of points with the same boundary one type (onetype as de�ned in [22, 33℄, a boundary one type is the one type of a point that lies on theommon boundary of several region of Reg). The fat that two points p and p0 have the sameboundary one type is expressible in FO(<); this follows from [22, 24, 33℄. From the de�nitionof topologial invariant we know that, two points p and p0 are in the same 1-dimensional elli� they have the same boundary one type  and if there exists a path P from p to p0 suhthat all the points q in P have the same boundary one type  (in partiular, there is nonon-regular point in P ). This an be expressed in LPATH.A 2-dimensional ell is a onneted set of points having the same trivial full one type. Theset of points having the same full one type is de�nable in FO(<) and therefore its onnetedomponents are de�nable in LPATH.The funtion Dim whih assoiates to eah point the dimension of the ell it belongs to is easilyderived from the one type of eah ell (non-regular, boundary or full) and this is de�nable inFO(<).The adjaeny relationship is given as a binary relationship A over points in R2 : A(p; p0) i� theell of p is topologially adjaent to the ell of p0. As we have seen before, the ells of p and p0 arede�nable in LPATH (the ell of p is the set of points q suh that E(p; q)), and testing for adjaenyis FO(<). Therefore A is LPATH de�nable.We now show how to de�ne the relation Orientation in LPATH. From the above we know how tohek in LPATH that v is a ell of dimension 0, e1; e2; e3 are ells of dimension 1 and that e1; e2; e3are adjaent to v. If this is the ase, it an be heked in LPATH whether e2 lies between e1 and19



e3 in the lokwise (ounterlokwise) order on the inidents ells of v in the following way. Foreah suÆiently small square S with enter v, let v1; v2; v3 be the intersetion of the edges e1; e2; e3with S. It suÆes to hek that, in S, v2 lies between v1 and v3 in the lokwise (ounterlokwise)order. This an be done in FO(<) by onsidering all the possible ases orresponding to whihsides of S vis lie on. 2In the following setion, we will see that every LPATH-query is omputable in polynomial time.We do not believe that the onverse is true, although proving this remains open. LPATH seems tobe loser to NL (non-deterministi logarithmi spae) than to PTIME. The following propositionmay illustrate this:Proposition 9 Every query on �nite onstraint databases that is omputable in NL is expressiblein LPATH.Proof : Direted reahability is the following query: given a direted graph G, ompute the set ofall pairs (v; w) of verties of G suh that there is a path from v to w. It was proved in [19℄ thatdireted reahability is omplete for NL under �rst-order redutions. Sine it an easily be seenthat the lass of �nite database queries de�nable in LPATH is losed under �rst-order redutions,it suÆes to prove that direted reahability is expressible in LPATH.Finite direted graphs are represented by a �nite subset V � R and a �nite set E � V 2 � R2 . Note�rst that the following formula, intuitively saying that there exists a path from x to y suh thatfor all suessive z1; z2 2 V appearing on this path we have E(z1; z2) is not an LPATH-formula:EP� 9p19p2(p1 = x ^ p2 = y) ^8q18q2�(V (q1) ^ V (q2) ^ :9q3(V (q3) ^ q1 < q3 ^ q3 < q2))! E(z1; z2)[z1  q1; z2  q2℄��:(The reason that this is not an LPATH-formula is that we are not allowed to substitute both z1and z2 in E(z1; z2) by path variables.)To �nd an LPATH-formula expressing direted reahability, we �rst de�ne a topologial represen-tation of the input graph in R3 . Then undireted reahability an be de�ned in the same way astopologial onnetivity. In a seond step, we use two additional prediates to enode the diretionof the edges.For a 2 R we let �a := (a; 0; 0). For a pair (a; b) 2 R2 we let (a; b) be the urve in R3 onnetingthe following points by straight line segments: �a, (a; b; 0), (a; b; a), (b; b; a), (b; 0; a), �b. It is easy tode�ne a formula (x; y; ~z) 2 FO(<) suh that for all a; b 2 R, ~ 2 R3 we have hR; <i j= (a; b;~) if,and only if, ~ appears on the urve (a; b). Observe that for all a; b; a0; b0 2 R the urves (a; b) and(a0; b0) interset if, and only if, either a = a0 or b = b0.For a direted graph G = (V;E) with V � R we let �V := f�a j a 2 V g and �E := S(a;b)2E (a; b).Clearly, there are formulae 'V (~z); 'E(~z) in FO over < and E; V de�ning the sets �V ; �E, respetively.Note that for all a; b 2 V there is an path from a to b in the undireted graph underlying G if, andonly if, there is a path in R3 from �a to �b that is ontained in �E.20



To enode the diretion of the edges we de�ne two new sets Tail := f(a; b; 0) 2 R3 j (a; b) 2 Eg andHead := f(b; 0; a) 2 R3 j (a; b) 2 Eg. Let 'Tail(~z); 'Head(~z) in FO over <;E; V be formulas de�ningthese sets.To express that there is a direted path from a to b we say that there is a path in R3 suh that aours before b on this path, and every point of �V on this path that is not the �nal point is followedby a point in Tail, every point in Tail is followed by a point in Head, and every point in Head isfollowed by a point in �V . To formalize this in LPATH, we let'Empty(q1; q2) = 8q3��q1 < q3 ^ q3 < q2)�! :�'V (q3) _ 'Tail(q3) _ 'Head(q3)��:Then the following LPATH-formula de�nes direted reahability:V (x) ^ V (y) ^EP�9p19p2 �p1 = (x; 0; 0) ^ p2 = (y; 0; 0) ^ p1 � p2�^8q1�('V (q1) ^ 9q2 q1 < q2)! 9q2('Tail(q2) ^ 'Empty(q1; q2))�^8q1('Tail(q1)! 9q2('Head(q2) ^ 'Empty(q1; q2))�^8q1('Head(q1)! 9q2('V (q2) ^ 'Empty(q1; q2))��: 2Of ourse this proposition is only a small step towards an understanding of the expressive power ofLPATH. We would like to prove the onverse statement that every LPATH-query on �nite instanesis omputable in NL. Unfortunately, this seems to be quite diÆult. One approah would be toprove a ollapse result saying that generi LPATH-queries on �nite strutures are all expressiblein some �nitary path logi, and then use results from �nite model theory. It is not lear how toextend �rst-order ollapse results to LPATH, however.Another diÆult problem is to ompare the expressive power of LPATH with that of the variousextensions of FO by the onnetivity quanti�ers. We believe that direted reahability in �nitegraphs is not expressible in FO + Poly + Conn, but this appears to be very hard to prove, evenunder the omplexity theoreti assumption that undireted reahability is not NL-omplete.4.3 Query evaluation: Closure and omplexityWhile LPATH an express a great deal of reahability queries in onstraint databases, it is notimmediately lear whether it is either losed or tratable. Indeed, we saw in Example 7 that ifone extends LPATH by allowing new binary prediates on path variables, the resulting logi isneither losed nor deidable. We now show that LPATH has very desirable losure and tratabilityproperties for domains relevant in spatial appliations. More preisely, we say that LPATH(
)� is deidable if for every de�nable (in hR;
i) database D, and every state sentene �, it isdeidable whether D j= �;� is losed if for every de�nable database and every state formula '(~x), the set f~a j D j= '(~a)gis de�nable; 21



� admits e�etive query evaluation (of data omplexity C) if in addition a formula de�ningthe set f~a j D j= '(~a)g an be e�etively obtained (and the omplexity of obtaining suh aformula is C in terms of the size of the database D).Our goal is to prove the following result.Theorem 10 Let M = hR;
i be o-minimal and deidable. Then LPATH(
) is losed and deid-able. Furthermore, if M admits e�etive quanti�er-elimination, then LPATH(
) admits e�etivequery evaluation, and for LPATH(Lin) and LPATH(Poly) the data omplexity is PTIME.Proof. We prove the theorem in two steps: we �rst show that an LPATH query an be transformedinto a \disrete path query" in whih instead of quantifying over any point in a path P , we quantifyonly over omponents of the path with respet to some disretization of the path. In the seondstep we show that these disrete path queries an be evaluated on a database by model-hekingthe adjaeny struture of the appropriate ell-deomposition.We start by making the �rst step more preise, by introduing a restrited logi that will be usedas a normal form.Let A = fA1 : : : Akg be some �nite olletion of 
-de�nable sets in Rn . Fix a non-zeno pathP : R+ ! Rn . For r; s 2 R+ , we say that r and s agree on A if P (r) 2 Ai , P (s) 2 Ai for alli = 1; : : : ; k. We say that r; s 2 R+ are A-equivalent (and write r =A s) if there is an open intervalI suh that r; s 2 I, and all r0; s0 2 I agree on A. We write r <A s if r < s and r 6=A s. Note thatthe equivalene lasses of =A are either open intervals or single points.Now suppose we have a �nite olletion of LPATH(
) state formulae A = fA1(~x; ~y) : : : Ak(~x; ~y)g,eah of arity n+m.We now introdue a new path formula p <A(~y) q with free path variables p; q and free elementvariables ~y = (y1; : : : ; ym), whih holds in a database interpreting the prediates in A by 
-de�nablesets X1 : : : Xk, for a non-zeno path P in Rn , path elements p0; q0 and ~ 2 Rm exatly when p0 <X q0where X = fXi~g. Reall that Xi~ = f~b j (~b;~) 2 Xig � Rn . Similarly we introdue the formula=A(~y) saying two path variables are in the same equivalene lass modulo A(~y). Clearly, this anbe expressed as queries in LPATH(
) as well.We onsider a language L�PATH(
) that is built up as follows. For a �nite olletion A = fAi(~x; ~y)gof �rst-order formulae (over 
 and the shema prediates) we have new atomi formulae:� For every path variable p of arity the same as that of ~x, Ai(~y)([p℄A) is an atomi formula withp and ~y free, with meaning the same as Ai(p ~x; ~y).� For every path variable p with arity the same as that of ~x, we have a formula O(p;A(~x; ~y); ~y),with free variables p and ~y meaning that the equivalene lass of p under =A(~y) is an openinterval. If free element variables are lear from the ontext, we use the abbreviation O([p℄A).Similarly, we have formulae C([p℄A);CO([p℄A);OC([p℄A), meaning that the equivalene lassof p under =A(~y) is losed, open on right and losed on left, losed on right open on left,respetively.We also have a formula S(p;A(~x; ~y); ~y) (abbreviated as S([p℄A) if ~y is understood), meaningthat the equivalene lass of p under =A(~y) onsists of a single element.22



� For path variables p and q of the appropriate arity, we have formulae [p℄A <A(~y) [q℄A withp; q and ~y free, and with the meaning the same as p <A(~y) q. We also have the formula[p℄A =A(~y) [q℄A.We hoose the abbreviations to underline the key point about these new atomi formulae, whih isthat they all talk only about the equivalene lass of a path variable p.As onstrutors of L�PATH(
), we have only boolean operators (where the set A must be the samein eah operand) and path-variable quanti�ation. Neither path quanti�ation EP nor elementquanti�ation is present.It is lear that every query in L�PATH(
) an be expressed in LPATH(
). We now redue theexpressivity of LPATH to that of L�PATH.With A(~x; ~y) a olletion of �rst-order formulae as above, and p a path variable, let FirstA(p) bea new formula that says p is the �rst element in the path in its A equivalene lass. Similarly letLastA(p) mean that p is the last element in the path in the A equivalene lass of p. The nextlemma explains exatly what an open formula of LPATH an say about a set of path variables.Lemma 11 Suppose '(~p; ~w) is an LPATH(
) path formula (where ~p are path variables and ~w areelement variables) that has no ourrenes of EP . Then from ' we an e�etively �nd a olletionA of �rst-order formulae and a formula '0 that is equivalent to ' (on every database and everynon-zeno path), and suh that '0 is a boolean ombination of formulae of L�PATH and atomiformulae pi <A pj, FirstA(pi), and LastA(pi). In partiular, if ' has no free path-variables, thenit is equivalent to a formula of L�PATH(
).Proof of Lemma 11. We show this by indution on formula omplexity. For atomi formulae ofthe form p1 < p2, this is lear. We onsider the indution step. The steps for onjuntion anddisjuntion simply involves ombining statements about A and B equivalene lasses for formulasets A and B to statements about equivalene lasses modulo AB = A [ B. For example theindution step for onjuntion redues to taking a formula '(p1; : : : pn; ~y) that is a boolean ombi-nation of 'i([p1℄A; : : : [pk℄A), FirstA(pi), LastA(pi), and a formula  that is a boolean ombinationof i([p1℄B; : : : [pk℄B), FirstB(pi), LastB(pi), and writing it in terms of formulae mentioning onlyequivalene modulo AB. Here A and B are olletions of formulae with free variables ~x; ~y, and theformulae 'i may have path variable quanti�ations in them.We an do this simply by transforming the atomi formulae. For example, p =A q is transformedto 8r ([p℄ �AB [r℄ �AB [q℄ _ [q℄ �AB [r℄ �AB [p℄)! ViAi([r℄AB)$ Ai([q℄AB) ^ Ai([r℄AB)$ Ai([p℄AB):Here we use abbreviation [p℄ �AB [r℄ for [p℄ <AB [r℄ _ [p℄ =AB [r℄. The transformations for [p℄ <A [q℄and Ai([p℄) are also straightforward.The formula O([p℄A) is equivalent to 23



9q; r 0BBBB� (O([q℄AB) _OC([q℄AB))^ (O([r℄AB) _CO([r℄AB))^ (q =A p =A r)^ 8q0 (q0 <AB q ! (:(q0 =A p)))^ 8r0 (r0 >AB r ! (:(r0 =A p)))
1CCCCA ;whih an then be onverted to the proper form, sine we have seen above how to onvert formulaeusing the relation =A on path variables. The other interval types are similar, as are FirstA andLastA.For path variable substitution, suppose we have �(p; ~y) � '(p  ~x; ~y), where '(~x; ~y) is a stateformula. Sine we assume ' to have no quanti�ations of the form EP , ' must be �rst-order, andhene � is ertainly in L�PATH, sine it is �([p℄A), where A onsists of only �(~x; ~y).The last step is existential path variable quanti�ation. Suppose we have a formula9p1'(p1; p2; : : : pk; ~y). By indution, ' is a Boolean ombination of L�PATH formulae, inequali-ties among the pi, and FirstA(pi) and LastA(pi) statements. By ombining sets, we an assumethat these last statements all refer to the same set of formulas Ai(~x; ~y). Without loss of generality,' is _i ('i([p1℄A; : : : ; [pk℄A) ^ ti(p1; : : : ; pk);where A = fAi(~x; ~y)g is a olletion of �rst-order formulae, 'i is a statement about the ordering andinterval types of equivalene lasses, and the Ai labels of equivalene lasses, while ti is a simpleordering statement about ~p, giving inequalities between them and whih ones are �rst in theirequivalene lasses. We may assume w.l.o.g. that 'i ompletely spei�es the ordering relations <Athat hold among the (equivalene lasses of) pj 's. Note that sine < re�nes <A, we an assumethat the < ordering given in ti is onsistent with the ordering <A given in 'i (otherwise, we aneliminate this disjunt).Let S be the olletion of i suh that 'i spei�es p1 to be equivalent to some other pj with j > 1.For i 2 S, let Æ(i) be any 1 < j � k suh that p1 is spei�ed to be equivalent to pj .For i 62 S, the formula 9p1'i([p1℄A; : : : ; [pk℄A) ^ ti(p1; : : : ; pk) is equivalent to9p1'i([p1℄A; : : : ; [pk℄A) ^ t0i(p2; : : : ; pk), where t0i is obtained from ti by eliminating all in-equalities involving p1. This is true beause the <A inequalities involving p1 in 'i already implythe inequalities involving p1 in ti.For i in S, the formula 9p1'i([p1℄A; : : : ; [pk℄A) ^ ti(p1; : : : ; pk) is equivalent to'i([pÆ(i)℄A; : : : ; [pk℄A) ^ 9p1 (p1 =A pÆ(i) ^ ti(p1; : : : pk)):Furthermore, 9p1 (p1 =A pÆ(i) ^ ti(p1; : : : pk)) an be onverted into an atomi formula t0i(p2 : : : pn),due to the fat that 'i spei�es the interval type (losed, open, et.) of [pÆ(i)℄A, and eah intervaltype has quanti�er elimination in the language <;First ;Last (although for some of the intervaltypes, First or Last may be equivalent to false). This is true beause Dense Linear Order withoutendpoints is known to have e�etive quanti�er elimination in the language of order, and Dense24



Linear Order with endpoints has quanti�er elimination in the language of order with onstants forendpoints [9℄.Thus, 9p1'(p1; : : : ; pk) is a disjunt of formulae, eah of whih is equivalent to a boolean ombina-tion of L�PATH formulae and inequalities of the form pi < pj. This omplete the proof of Lemma11. 2Our next lemma shows that L�PATH formulae an be evaluated e�etively.Lemma 12 For every L�PATH(
) query '(~x), where the ~x are free element variables, and thereare no free path variables, and for every 
-de�nable database D, there is a �rst-order 
-formula'D(~x) suh that for every ~a, D j= EP'(~a) i�M j= 'D(~a).If M is deidable, then 'D an be found e�etively from ' and D, and if M is either Rlin or R,then for every �xed ', 'D an be found in polynomial time in the representation of D.Proof of Lemma 12. Let A = fAi(~x; ~y) j i � Kg be the set of formulae over 
 (unioned withthe shema) whih are used in '. For any 
-de�nable database D, we onstrut a family of �nitedisrete strutures parameterized by ~y.We do it as follows. Let ADi be f(~a;~b) j D j= Ai(~a;~b)g. Applying Lemma 2, we �nd an adjaeny-preserving ell-deomposition B = fB1; : : : ; BNg, whih is ylindri over the ~y oordinates, suhthat eah ADi is a union of ells. De�ne an equivalene relation � on Rj~yj by letting ~b � ~ i� ~b and~ are in the same ell of the projetion of B onto the ~y oordinates. It follows from the de�nitionof adjaeny preservation that the following are true for ~b � ~.� For all i � N , Bi~b 6= ; i� Bi~ 6= ;.� For all i; j � N , Bi~b Adj Bj~b i� Bi~ Adj Bj~ , where E Adj F means l(E) \ F 6= ;.� For all i; j; k � N , we have T (Bi~b; Bj~b ; Bk~b ) i� T (Bi~; Bj~ ; Bk~ ), where T (E;F;G) means E \l(F ) \ l(G) 6= ;.For every ~b, we form the adjaeny struture of ~b, whih is a labeled multi-graph whose nodes are allof the nonempty sets of the form Bi~b, with two binary relations, C and O, where C is the adjaenyrelation Adj de�ned above, and O is the inverse of the adjaeny relation, and one ternary relationT , where T is the ternary adjaeny relation de�ned above. Nodes are labeled aording to whihAi(~x;~b) are satis�ed in the node (neessarily by all elements of the node or by none).Note that the equivalene relation above partitions the ~y plane aording to the isomorphism typeof the adjaeny struture. Hene the set of ~ys orresponding to any olletion of isomorphismtypes is de�nable.Given an adjaeny struture, an adjaeny path is a sequene of pairs hhN(i); E(i)i j i 2 Ni, whereN(i) is a node and E(i) is an edge (either an O edge or a C edge) out of node N(i). We �rst showthe following.Claim 13 If ~ � ~d, then they agree on EP'; that is, EP'(~) holds i� EP'(~d) holds.25



Proof of Claim 13. Suppose we have ~ � ~d. Then the adjaeny strutures of ~ and ~d are isomorphi(with the natural isomorphism that sends Bi~ to Bi~d). Suppose we are given a non-zeno path Pthat witnesses that EP'(~). Then (by non-zeno-ness) P is the union of Pi on intervals Ii, whereIi is a maximal subinterval on whih P is ontained in a partiular omponent M(i) of the elldeomposition. P maps into a path P 0 running through the adjaeny graph of ~, by taking M(i)sto be the sequene of omponents hit by P , and with the edge assoiated to M(i) being an O if Iiis losed on the right and C if Ii is open on the right. Sine the adjaeny graph of ~d is isomorphito that of ~, there is a orresponding path Q0 = hhN(i);X(i)i j i 2 Ni through the adjaeny graphof ~d with the same edges X(i) = O or C as in P 0 and the same node labels, and also suh that forevery i; j; k, T (M(i);M(j);M(k)) holds i� T (N(i); N(j); N(k)) holds.We now have to build a non-zeno path Q in Eulidean spae orresponding to Q0. We will de�neQ as SnQn where the partial funtions Qn with domain Jn will be de�ned indutively below. Wewill preserve the following properties in the onstrution:� If P 0n = hM(n);Xi, where X = C or O, then Qn takes all its values in N(n).� If P 0n = hM(n); Oi, then the domain Jn of Qn is losed on the right and the value of Qn atthe right endpoint is in the losure of N(n+ 1).� If P 0n = hM(n); Ci, then the domain Jn is open on the right and the limit of the path Qn aswe approah the right endpoint is in N(n+ 1).� In, the domain of the n-th omponent of the path P , is a singleton, i� Jn, the domain of Qn,is a singleton.� Suppose In is open on the right, and the right-hand limit of Pn is the same as the left-handlimit of Pn+2 (that is, In+1 is a singleton). Then Jn is open on the right, and the righthand-limit of Qn is in N(n+ 2).Indutive onstrution. Suppose we have onstruted Q1 : : : Qn�1, and now want to onstrut Jnand Qn. There are several ases to onsider, depending on whether the edge from Q0n�1 to Q0n wasO or C, and depending on whether In and In+1 are singletons or not.Case 1. Suppose we have P 0n�1 = hM(n� 1); Ci, P 0n = hM(n); Oi, In is not a singleton, and In+1is not a singleton.Then by onstrution Jn�1 is open on the right with some right endpoint l, and the path Qn�1onverges to some point x in N(n) as the domain element goes to l. Sine there is an O edge fromN(n) to N(n+ 1) (whih follows sine this is preserved from P 0 to Q0 by assumption), there mustbe some point y in N(n) that is in the losure of N(n + 1). Let Qn be any smooth path on anondegenerate losed interval going from x to y that remains in N(n). Suh a path exists sineN(n) is onneted. In fat, by the urve seletion lemma [35℄, it an be hosen to be de�nable inM. The domain an be made nondegenerate even if x = y, by making the path onstant.Case 2. Suppose we have P 0n�1 = hM(n � 1); Ci, Q0n = hM(n); Oi, In is a singleton, and (hene)In+1 is not a singleton.Then by onstrution Jn�1 is open on the right with some right endpoint l, and the path Qn�1onverges to some point x in N(n) as the domain element goes to l. Sine In is a singleton it26



must further be true (by the indutive assumption on this onstrution) that x is in the losure ofN(n+ 1). Let Qn map the single point l to x.Case 3. Suppose we have P 0n�1 = hM(n� 1); Ci, P 0n = hM(n); Ci, and In+1 is a singleton.Then by onstrution Jn�1 is open on the right with some right endpoint l, and the path Qn�1onverges to some point x in N(n) as the domain element goes to l. Sine there is a C edge fromM(n) toM(n+1), the same must be true for N(n) and N(n+1). Sine In+1 is a singleton, it mustbe that the value of Pn+1 on In+1 is in M(n+ 1) and in the losure of both M(n) and M(n+ 2).Hene there must be a point y in N(n+1) that is in the losure of both N(n) and N(n+2) (sinethe paths P 0 and Q0 had the same type with respet to the ternary relation T ). Let Qn be anypath in N(n) from a half-open interval that begins at x and onverges toward y. Suh a path existssine N(n) is onneted and y is in the losure of N(n) (and again an be taken to be de�nable).Case 4. Suppose we have P 0n�1 = hM(n� 1); Ci, P 0n = hM(n); Ci, and In+1 is not a singleton.This is similar to Case 3, but simpler, sine we do not have to ensure that Qn onverges to a pointin the losure of N(n+ 2).Case 5. Suppose we have P 0n�1 = hM(n� 1); Oi, P 0n = hM(n); Ci, and In+1 is a singleton.We have that Jn�1 is losed on the right, and the value x of Q(n�1) at the right endpoint is in thelosure of N(n). Sine In+1 is a singleton, we must have T holding of M(n);M(n + 1);M(n + 2),hene also of N(n); N(n+ 1); N(n+ 2), so there is a point y in N(n+ 1) whih is in N(n) losureand N(n+ 2) losure. Let Qn be a path onverging to x on the left and to y on the right.Case 6. Suppose we have P 0n�1 = hM(n� 1); Oi, P 0n = hM(n); Ci, and In+1 is not a singleton.This is similar to Case 5, but simpler, sine we have no obligations to ful�ll on the right endpointy.Case 7. Suppose we have P 0n�1 = hM(n � 1); Oi, P 0n = hM(n); Oi (hene In is not a singleton),and In+1 is a singleton.In this ase we know indutively that the domain of Qn�1 is losed on the right, and that the valueof Qn�1 at the right endpoint is in the losure of N(n). Furthermore, we know, as in the previousarguments, that there is some point y in N(n+1) that is in the losure of both N(n) and N(n+2).Take Qn to be a path that onverges to x on the right and y on the left.Case 8. Suppose we have P 0n�1 = hM(n � 1); Oi, P 0n = hM(n); Oi (hene In is not a singleton),and In+1 is not a singleton.This is similar to Case 7.In the above, it is lear that by making the intervals appropriately wide, and making eah pathomponent Qn de�nable (whih an be done, sine onneted de�nable sets are de�nable onneted[35℄), the resulting path Q an be made to be non-zeno. We now want to verify that Q also witnessesthat EP'(~d), using that P witnesses EP'(~). This follows easily from the fat that L�PATH anonly desribe properties of equivalene lasses of elements (Lemma 11). This ompletes the proofof the laim. 2Given Claim 13, and the fat that eah adjaeny type is desribed by a �rst-order formula, we27



onlude that that on D, the formula EP' is equivalent to a �rst-order formula. Hene we haveompleted the proof of the �rst part of Lemma 12.It remains to show how we an �nd out e�etively (in polynomial time in the linear and polynomialonstraint ases) whih adjaeny strutures orrespond to vetors ~y realizing EP' on D. Sinein the linear or polynomial ases the adjaeny strutures are of polynomial size in the omplexityof D (see Lemma 2), and an be produed from D in polynomial time, the problem redues to thefollowing. Given ' and an adjaeny struture AS , determine eÆiently in the size of AS whetherEP' holds on all ~y with adjaeny type AS or none of the ~y with that type.We now show how to do this. From AS , we will form a Kripke struture K(AS) omposed of all�ve-tuples (B;X;E;X 0; F ) where B;E; F are ells in AS and X;X 0 are transitions (O or C) fromAS where (B;E) 2 X and (E;F ) 2 X 0. The binary relation G of the Kripke struture relates anytwo tuples (B;X;E;X 0; F ) and (E;X 0; F;X 00;H). We add to this an extra opy � 0 of eah tuple �of the form (B;C;E;O; F ) where E \ l(B) \ l(F ) 6= ;. This tuple � 0 has the same transitions inand out of it as � does. We also add nodes of the form (START ;H;X; I), where H and I are ellsand X is a transition in AS . For nodes � of the form (START ;H;O; I), we add a opy � 0. Both �and � 0 transition to those nodes of the form (I;X 0; J; Y 0;K), and have no nodes transitioning intothem.We next de�ne a �nite alphabet � that onsists of symbols Lij , with i 2 f1; 2; 3g and 1 � j � K =jA j, LCO ; LOC ; LCC ; LOO , Lsng ; Lnsng ; LSTART ; LSTART ;O and LSTART ;C .We now show how to label nodes in K(AS ) by symbols in �. In a tuple (B;X;E;X 0; F ), we referto B as the �rst, E as the seond, and F as the third ell in it. We start by labeling a tupledepending on what elements of the original partition are satis�ed by its ells. That is, label a tuplewith Lij, i � 3; j � K exatly when the ith ell in the tuple is in Aj . Label elements of the form(START ;H;O; I) with L2j exatly when H is in Aj and with L3j when I is in Aj . We have alabel LCO for eah tuple of the form (B;C;E;O; F ), and similarly for labels LOC , LCC , and LOO .For eah tuple � of the form (B;C;E;O; F ) where E \ l(B) \ l(F ) 6= ;, we label � 0 with Lsngand � with Lnsng . For eah tuple � of the form (START ;H;O; I), we label � 0 with Lsng and �with Lnsng . Finally, we label eah tuple of the form (START ;H;X; I) with LSTART . We label(START ;H;O; I) with LSTART ;O and (START ;H;C; I) with LSTART ;C .We onvert ' into a �rst-order formula '0 over !-words in �� with the language < unioned with thelabel alphabet �. We an assume that there are no ourrenes of =A, sine they an be reduedto <A. We translate atomi formulae [p℄ <A [p0℄ as(p < p0) ^ _i (:L2i(p)$ L2i(p0)):We translate the formula OC([p℄A) by9p09p00� p0 < p < p00 ^ (LOC (p0) _ LOO(p0)) ^ (LOC (p00) _ LCC (p00))^8q (p0 � q � p00 ! Vi(L2i(q)$ L2i(p)))�and similarly for other interval types (analogously to the proof of the onjuntion step in Lemma28



11).We translate the formula S([p℄A) into the disjuntion of the formulaLsng(p) ^_j :(L1j(p)$ L2j(p)) ^ _j :(L3j(p)$ L2j(p))with LSTART (p) ^ _j :(L2j(p)$ L3j(p)):Finally, we translate statements Aj([p℄A) by the orresponding labels L2j(p). Now a straightforwardmodi�ation of the proof of Claim 13 shows the following.Claim 14 For every vetor ~, if AS is the adjaeny struture formed from ~, then there is apath through K(AS) from some initial point of the form (START ; B;X;E), suh that the !-wordorresponding to the path satis�es '0 i� EP'(~) is satis�ed.Proof of Claim 14. Given a path P that witnesses EP'(~), take the quotient path through AS .Then form a path P 0 through K(AS ) as follows: take the sequene of tuples hit on the quotientpath through AS , with the aveat that if an A-equivalene lass E in the quotient is a singleton,we hoose the tuple (B;C;E;O; F ) that is labeled with Lsng . Otherwise we always hoose thepath through tuples not labeled with Lsng . We then modify this path by taking the initial tuple(B;X;E; Y; F ) enountered on the path through AS and adding before it one of the two tuplesin K(AS) orresponding to (START ; B;X;E): we take � 0 if the initial equivalene lass in thequotient path though AS is a singleton (in whih ase, that singleton must have been ontained inell B), and take � otherwise.For t 2 R+, let Æ(t) be the element in P 0 orresponding to P (t). More preisely, Æ(t) is theappropriate element (B;X;E; Y; F ), where E is the ell ontaining the P (t), or the appropriateelement (START ; E;X; F ) in the ase that P (t) is in the initial omponent E. Using the de�nitionof the translation above, we see that atomi formulae on path elements P (t) are satis�ed exatlywhen the translation of those formulae holds of Æ(t), whih proves one diretion of the laim.Now suppose onversely that we have a path P 0 through K(AS) that begins with an element ofthe required form. Clearly, this path orresponds to a path through AS . Now, from this path weonstrut a non-zeno path P just as in the proof of Claim 13. The only modi�ation is this: wedeide whether or not to make a partiular path element Pn a singleton based on whether in theoriginal path through K(AS ), the orresponding element was labeled with Lsng . This ompletesthe proof of Claim 14.The formula '0 an now be translated into a B�uhi Automata BA, and one now needs to hekwhether the produt of K(AS) and BA has an aepting path, whih an be done in polynomialtime (see, e.g. [36℄) in the size of K(AS ) with the size of BA being �xed. Sine the size of K(AS ) ispolynomial in the size of the ell deomposition that gives rise to AS , Lemma 2 implies deidabilityfor deidable o-minimal strutures, and polynomial time data omplexity for Rlin and R. Thisompletes the proof of Lemma 12. 29



Proof of Theorem 10. We �nally prove losure and e�etive query evaluation by indution on theomplexity of the formula '. Clearly, atomi state formulae an be evaluated e�etively if 
 isdeidable, and in polynomial time in the polynomial and linear onstraint ases. The indutionstep for boolean onnetives is lear. In the indutive step for existential element quanti�ation,losure and e�etivity are immediate, and polynomial time data omplexity follows from knownresults in onstraint databases [25℄. The interesting ase is where we have a query of the formEP (~y). By the indution hypothesis, we an assume that every proper state subformula  i of  an be evaluated (e�etively, ifM is deidable, and in polynomial time, in the polynomial or linearase). By replaing all maximal proper state subformulae with prediate symbols, we an onsider as a query over the outputs of these subformulae and thus an assume that  has no existentialpath quanti�ers within it. By Lemma 11,  an be transformed into an L�PATH query  0 overthese prediates, and by Lemma 12, EP 0 an be onverted into a �rst-order formula (e�etively,for deidableM, and in polynomial time, for polynomial and linear onstraints). This ompletesthe indutive proof. 2Remark. The proof an be simpli�ed in the semi-linear ase, where one does not need to onsiderthe T relation among ells. Indeed, the proof of Lemma 2, a), implies that for �bers of three ells,C1~a ; C2~a ; C3~a , one has C1~a \ l(C2~a) \ l(C3~a) 6= ; i� C1~a \ l(C2~a) 6= ; and C1~a \ l(C3~a) 6= ;. Thus, T anbe reonstruted from C and O edges of the adjaeny struture, whih simpli�es the onstrutionof the Kripke struture K(AS ). 2Note that the proofs in Subsetion 3.3 established tratability of FO + Lin + Conn but not FO +Poly+ Conn. Sine onneted omponents are de�nable in LPATH(Poly), we onlude now:Corollary 15 FO +Poly+ Conn queries have PTIME data omplexity. 25 Model-heking for hybrid systemsWe mentioned that our logi LPATH has been inspired by temporal logis used in the model-heking approah to automated veri�ation of �nite-state reative systems. Reent work on real-time and hybrid systems inludes a number of formalisms for expressing reahability propertiesof in�nite state systems de�ned from real parameters [18℄. We now show that our results anbe applied in this area. More preisely, we show that the model-heking problem for linear timetemporal logi LTL for one lass of hybrid systems, the o-minimal hybrid systems of [26, 27℄is deidable and, furthermore, tratable, if the dimension of the hybrid systems is �xed. It isstraightforward to extend our approah to the branhing time temporal logis CTL and CTL�.A hybrid system (f. [18, 26℄) of dimension n is a tuple H = (S; S0; SF ; F;E; I;G;R), where� S = Q� Rn , where Q is a �nite set, is the state spae,� S0 � S is the set of initial states,� SF � S is the set of �nal states, 30



� F : S ! Rn assigns to eah q 2 Q a vetor �eld F (q; �),� E � Q�Q is a set of disrete transitions,� I : Q! 2Rn assigns to eah q 2 Q a set I(q) alled the invariant of q,� G : E ! 2Rn assigns to eah disrete transition e = (q1; q2) 2 E a set G(e) � I(q1) alled theguard of e,� R : E ! 2Rn assigns to eah disrete transition e = (q1; q2) 2 E a set R(e) � I(q2) alled thereset of e.Assoiated with the hybrid system H is a ternary transition relation !� S� (E [fg)�S, where is a new symbol not ontained in E. We write s e! s0 instead of (s; e; s0) 2!. We have two kindsof transitions:� Disrete Transitions: (q; ~x) e! (q0; ~x0) i� e = (q; q0) 2 E and ~x 2 G(e), ~x0 2 R(e).� Continuous Transitions: (q; ~x) ! (q0; ~x0) i� q = q0 and there exists a Æ � 0 and a urvex : [0; Æ℄! Rn suh that x(0) = ~x, x(Æ) = ~x0 and for every t 2 [0; Æ℄ it satis�es _x(t) = F (q; x(t))and x(t) 2 I(q).We assume that our hybrid systems are non-bloking, that is, for every state s 2 S there is ane 2 E [ fg and a state s0 suh that s e! s0.A trajetory of H is a sequene s1e1s2e2 : : : suh that for all i � 1 we have si ei! si+1.An interpreted hybrid system of signature � = f�1; : : : ; �mg onsists of a hybrid system H and amapping � that assigns to eah state s 2 S a subset of �. Then � assoiates with eah trajetory� = s1e1s2e2 : : : of H an !-word �(�) := �(s1)�(s2) : : : over the alphabet 2�. We assume that thereader is familiar with the linear time temporal logi LTL (interpreted over !-words), see [11℄. TheLTL-model heking problem for hybrid systems is de�ned as follows:Input: An interpreted hybrid system (H;�)and an LTL-formula '.Problem: Deide if for every trajetory � of Hthe word �(�) satis�es '.LetM be an o-minimal struture over the reals. A hybrid system H = (S; S0; SF ; F;E; I;G;R) isM-de�nable if Q � R is a de�nable set1 and the sets S0; SF , the mappings I;G;R, and the relationT := f(q; ~x; ~y) j (q; ~x) ! (q; ~y)g are de�nable inM. A hybrid system is o-minimal if it is de�nablein some o-minimal struture over R. An interpreted hybrid system (H;�) is M-de�nable if H isM-de�nable, and for every � in the signature, the set ��1(�) is de�nable.1We assume that there exists a �nite set of ard(Q) de�nable onstants. This is ertainly true for all strutures ofpratial interest like Rlin and R; otherwise one an restate the de�nition by talking about de�nability of the �bersof S; SF ; T; et. over q for eah q 2 Q. 31



Theorem 16 Let M = hR;
i be suh that its expansion with +; �; 0; 1 is a deidable o-minimalstruture. Then the restrition of the LTL-model-heking problem for hybrid systems to M-de�nable interpreted hybrid systems is deidable.Furthermore, if M = Rlin or R, for every �xed LTL-formula ' and n � 1, the restrition of theLTL-model-heking problem problem toM-de�nable interpreted hybrid systems of dimension n anbe solved in PTIME.Proof. Without loss of generality we an assume that M is an expansion of the real �eld. We �xa dimension n and a signature � := f�1; : : : ; �mg. Let � := f<;P1; : : : ; Pmg, where P1; : : : ; Pm areunary relation symbols. When we speak of a hybrid system in the following, we always assume itto beM-de�nable and n-dimensional. When we speak of an interpreted hybrid system (H;�), wealso assume it to beM-de�nable and of signature �.We onsider interpreted hybrid systems as database instanes over the shema SC :=fQ;S0; SF ; T; E; I;G;R;R1; : : : ; Rmg, where Q is unary, S0; SF are (n + 1)-ary, T is (2n + 1)-ary,E is binary, I is (n+ 1)-ary, G;R are (n+ 2)-ary, and R1; : : : ; Rm are (n+ 1)-ary.We shall prove that for every LTL-formula ' there is an LPATH-formula '� suh that for everyinterpreted hybrid system (H;�) we have (H;�) j= '� if, and only if, for every trajetory � of Hthe !-word �(�) satis�es '. Furthermore, the translation ' 7! '� is e�etive, uniformly over all nand all voabularies.It is well-known that every LTL-formula ' of signature � an e�etively be transformed into anequivalent FO[�℄-sentene '0. What we atually show in the following is how to translate an FO[�℄-sentene ' into an LPATH-formula '� suh that for every interpreted hybrid system (H;�) wehave (H;�) j= ' if, and only if, there exists a trajetory � of H suh that the word �(�) satis�es'(x). Clearly, this is suÆient.At �rst sight it seems very simple: We just let '� be a formula of the form EP'0, where '0 is moreor less the same as our original '. The path whose existene we state by EP is supposed to be thestate-sequene of a \run" of the hybrid system. Of ourse this simple-minded approah does notwork, mainly for the following reasons:1. Beause of the disrete transitions, a run of a hybrid system is not a ontinuous urve.2. In a ontinuous transition the hybrid system moves along an integral urve of some vetor�eld F (q; �) that originated at some point ~x 2 Rn . However, in a path-formula we annot saythat our path is on suh a urve (unless we treat ~x as a parameter).3. A trajetory is only a disrete abstration of a run of the hybrid system.Despite these problems, we will follow the basi idea.We start by formally de�ning a run of a hybrid system H = (S; S0; SF ; F;E; I;G;R): It is asequene (ri; xi; r0i)i�1 of triples suh that for all i � 1 either xi = ; and ri = r0i or ri = (q; ~x),r0i = (q; ~x0) and xi : [0; Æ℄ ! Rn is a urve suh that xi(0) = ~x, xi(Æ) = ~x0 and for every t 2 [0; Æ℄ itsatis�es _xi(t) = F (q; xi(t)) and xi(t) 2 I(q). Furthermore, for all i � 1 there is a disrete transitionr0i e! ri+1 (for an e 2 E). 32



Let us forget about hybrid systems for a moment and just talk about arbitrary runs and trajetories.Let a run be a sequene (ri; xi; r0i)i�1, where ri; r0i 2 Rn+1 and either xi = ; and ri = ri0 or ri = (q; ~x),r0i = (q; ~x0) and xi : [0; Æ℄ ! Rn for some Æ > 0 and xi(0) = ~x, xi(Æ) = ~x0. Similarly, let a trajetorybe a sequene (si; ei)i�1 where si 2 Rn+1 and ei 2 fe; g.We say that a trajetory (si; ei)i�1 is onsistent with a run (ri; xi; r0i)i�1 if there is a mappingf : N ! N suh that f(1) = 1, s1 = r1, and for all i � 1 we have:� If ei = e then f(i+ 1) = f(i) + 1, si = r0f(i) and si+1 = rf(i+1).� If ei =  then f(i + 1) = f(i) and, assuming that rf(i) = (q; ~x) for some q 2 R, ~x 2 Rn andxf(i) : [0; Æ℄ ! R, there are t < t0 2 [0; Æ℄ suh that si = (q; xf(i)(t)) and s0i = (q; xf(i)(t0)).Let r � 1; r is going to be the quanti�er rank of the input-formula '(x). In the following, letwords be strutures W of some voabulary � onsisting of the binary relation symbol < that isalways interpreted as a linear order of the universe and �nitely many unary relation symbols. Inpartiular, let an !-word be a word whose universe is N. A subword of a word W is a substrutureV of W suh that if W has a �rst-element then V has the same �rst element and if W has a lastelement then V has the same last element.The r-type of a word W of voabulary � is the set of all FO[�℄-sentenes of quanti�er-rank at mostr it satis�es. Note that there are only �nitely many r-types of a �xed voabulary.Lemma 17 There is a omputable funtion f : N ! N suh that the following holds: Let r � 1and W;W 0 be words of voabulary � whose universes are losed intervals in R suh that W and W 0have the same f(r)-type. Then for every �nite subword V of W there is a �nite subword V 0 of W 0suh that V and V 0 have the same r-type (and vie versa).Moreover, every FO[�℄-sentene  of quanti�er-rank at most r an be e�etively transformed intoa set �( ) of f(r)-types suh that for every word W whose universe is a losed interval in R wehave: The f(r)-type of W is ontained in �( ) if, and only if, there is a �nite subword V of Wthat satis�es  .Proof Sketh: Choose f(r) suh that every �nite word V of length greater than f(r) has a subwordV � of length at most f(r) suh that V and V � have the same r-type. The existene of suh an ffollows from the fat that �rst-order de�nable languages are regular. The rest is easy.Now suppose we are given a mapping � : Rn+1 ! 2�. For a triple (r; x; r0), where r = (q; ~x), r0 =(q; ~x0) with q 2 R, ~x; ~x0 2 Rn and x : [0; Æ℄! Rn we letW (r; xi; r0) be the word of voabulary � withuniverse [0; Æ℄ and Pi := ft 2 [0; Æ℄ j �i 2 �(q; x(t))g. The r-abstration of a run � = (ri; xi; r0i)i�1is the sequene �r = (ri;�i; r0i)i�1, where for all i � 1 we have:� If xi = ; then �i = ;.� If xi : [0; Æ℄ ! Rn , then �i is the f(r)-type of the word W (ri; xi; r0i). Here f is taken fromLemma 17. 33



Let �+ be the extension of the voabulary � that ontains a new unary relation symbol P� for everyf(r)-type � of voabulary �. We let �(�r) be the !-word W with PWi := fj j �i 2 �(rj) and �j =;g (for 1 � i � m) and P� := fj j �j = �g (for every f(r)-type �). For a trajetory � = (si; ei)i�1we let �(�) be the !-word (�(si))i�1.The following lemma is a generalization of Lemma 17 that is proved using \Feferman-Vaught"-typearguments (See hapter 6 of [9℄) and the fat that for every f(r)-type � there is a FO-sentene �of quanti�er-rank f(r) suh that a word satis�es � if, and only if, its r-type is �.Lemma 18 Let f be as in Lemma 17. Let �; �0 be runs suh that �(�r) and �(�0r) have the samer-type. Then for every trajetory � onsistent with � there is a trajetory � 0 onsistent with �0 suhthat �(�) and �(� 0) have the same r-type.Moreover, every FO[�℄-sentene  of quanti�er-rank at most r an be e�etively transformed intoan FO[�+℄-sentene  + suh that for every run � we have: The word �(�r) satis�es  + if, andonly if, there is a trajetory � onsistent with � suh that �(�) satis�es  .We now return to hybrid systems. Remember that we wanted to translate a given FO[�℄-sentene 'to an LPATH-sentene '� suh that for every interpreted hybrid system (H;�) we have (H;�) j= '�if, and only if, there is a trajetory � of H suh that �(�) satis�es '.Applying Lemma 18, we �rst translate ' to a sentene '+. In the remaining proof we show howto translate '+ to an LPATH-sentene '� suh that for every interpreted hybrid system (H;�) wehave (H;�) j= '� if, and only if, there is a run � of H suh that �(�r) satis�es '+. What we havegained is that we have \�ltered out" the ontinuous transitions and now only have to deal with asequene of disrete transitions.Let �1; : : : ;�l be an enumeration of all f(r)-types of voabulary �. We an interpret the r-abstration of a run as a sequene of tuples (s; t; s0) 2 R2n+3 , where we replae the � either byt := 0 if � = ; or by t := i if � = �i. How an we express that suh a sequene is the r-abstrationof a run?We all a tuple (s; t; s0) 2 R2n+3 good (with respet to an interpreted hybrid system (H;�)) ifs; s0 2 S and either t = 0 and s = s0 or s ! s0 via a urve x : [0; Æ℄ ! Rn suh that the f(r)-typeof the word W (s; x; s0) is �t. The �rst thing we do is de�ne an LPATH-formula � suh that forevery interpreted hybrid system (H;�) and ~z 2 R2n+3 we have (H;�) j= �(~z) if, and only if, ~z isgood. Let �t be an FO[�℄-formula de�ning the type �t. Reall that T := f(q; ~x; ~y) j (q; ~x) ! (q; ~y)gis de�nable. Then the following formula says that (q; ~x) ! (q0; ~x0) via a urve x : [0; Æ℄ ! Rn suhthat the f(r)-type of W ((q; ~x); x; (q0; ~x0)) is �t:�(q; ~x; q0~x0) := (q = q0) ^EP �9p(p = ~x ^ 8p00 p � p00)^9p0(p0 = ~x0 ^ 8p00 p00 � p0)^8p00 �T (q; ~x; ~y) ^ I(q; ~y)�[p00  ~y℄^ �0t�;where �0t is the formula obtained from �t by replaing all variables by path variables and everyatomi subformula Pi(p) by Ri(q; ~y)[p ~y℄. Given the formula �, it is easy to de�ne the desired �de�ning the good tuples. 34



It will be onvenient to make the following assumption for every hybrid system H:(*) All e; e0 2 E � R2 are linearly independent (i.e. we do not have �e = e0 for any� 2 R).(If this assumption does not hold, we an ode the disrete transitions by elements of R3 in suha way that the additional omponent guarantees that they are pairwise linearly independent. Thisauses the dimension of our path to be R2n+7 , but otherwise the proof goes through.)Let H be a hybrid system. We model r-abstrations of runs of H by paths in R2n+6 .For s1; s01; s2; s02 2 S, t; t0 2 R, and e 2 E we write (s1; t; s01) e! (s2; t; ~s02) if (s1; t; s01), (s2; t0; ~s02) aregood and s01 e! s2 in H.For all ~z; ~z0 2 R2n+3 and e 2 E suh that ~z e! ~z0 we let (e; ~z; ~z0) be the urve onneting thefollowing points in R2n+6 by straight-line segments:(0; 0; ~z); (e; 1; ~z); (e; 2; ~z); (e; 2; ~z0); (e; 3; ~z0); (0; 0; ~z0):(Reall that E � R2 , so these points are indeed (2n+6)-tuples. The third plae in these tuples willbe used to enode the diretion of the transitions). Let Æ(e; ~z; ~z0) denote the interior of (e; ~z; ~z0),i.e. the urve obtained from (e; ~z; ~z0) by removing its endpoints.For every transition e 2 E we let �Æ(e) := [~z e!~z0 Æ(e; ~z; ~z0);and we let �Æ := Se2E �Æ(e). By our assumption (*), for e 6= f 2 E we have �Æ(e)\�Æ(f) = ;, andevery path from a point in �Æ(e) to a point in �Æ(f) intersets R2n+6 n (�Æ(e) [ �Æ(f)). (In otherwords, there is no onneted omponent C of �Æ suh that there are e 6= f 2 E with C \�Æ(e) 6= ;and C \ �Æ(f) 6= ;.)Note that �Æ = �Æ(H;�) is de�nable in LPATH, that is, there is an LPATH-formula � suh thatfor every interpreted hybrid system (H;�) and ~v 2 R2n+6 we have (H;�) j= �(~v) if, an only if,~v 2 �Æ.Suppose for a moment that e! is symmetri and reexive for all e 2 E. Then for all ~z; ~z0 2 T wehave ~z e! ~z0 if, and only if, there is a path � from (0; 0; 0; ~z) to (0; 0; 0; ~z0) suh that the interior �Æof � is ontained in �Æ(e). (To prove this we use that fat that there is no oupling between theinitial and �nal state of a disrete transition, that is, that (q; ~x1) e! (q0; ~x01) and (q; ~x2) e! (q0; ~x02)implies (q; ~x1) e! (q0; ~x02).) It follows that there exists an e 2 E suh that ~z e! ~z0 i� there is a path� from (0; 0; ~z) to (0; 0; ~z0) suh that �Æ � �Æ.Sine in general e! is not symmetri and reexive, we have to enode the diretion of the transitions.To do this, we de�ne three setsGOOD := f0g � f0g � f0g � f~z 2 R2n+3 j ~z goodg;TAIL := (R2 � f1g � R2n+3) \ �Æ;HEAD := (R2 � f3g � R2n+3) \ �Æ;REST := �Æ n (TAIL [HEAD):35



Sine the good tuples and the set �Æ are de�nable in LPATH, these sets are also de�nable.To say that there is a run � suh that �(�r) satis�es '+ we say that there exists a path � � R2n+6with the following properties:� � starts in a point in GOOD.� Whenever a point in GOOD appears on �, it is followed by an interval in REST and then bya point in TAIL.� Whenever a point in TAIL appears on �, it is followed by an interval in REST and then bya point in HEAD.� Whenever a point in HEAD appears on �, it is followed by an interval in REST and then bya point in GOOD.� The !-word of voabulary �+ with universe � \GOOD andPi := f(0; 0; 0; s; t; s0) 2 GOOD j t = 0 and �i 2 �(s)g (for 1 � i � m);P�i := f(0; 0; 0; s; t; s0) 2 GOOD j t = ig (for 1 � i � l)satis�es '+.The existene of suh a path an be expressed in LPATH.There is one ase that we have missed so far: It ould be that after some point a trajetory doesno more disrete transitions. Then the orresponding run would be a �nite sequene. But this asean easily be inluded, using an analogue of Lemma 17 for !-words. We omit the details. 26 ConlusionReahability between points in a region is a fundamental notion in spatial reasoning. From previouswork it appeared that inorporating reahability into a spatial language might be fundamentallyinompatible with the use of onstraint-based representations. Our �rst results here showed thatthis is not the ase. Instead of attempting to approah onnetivity through the use of somedisrete reursion mehanism, we added reahability and other topologial operators diretly, andshowed that this leads to losed languages. We then takled the question of getting tratable,losed languages that an express the reahability queries of interest. The language LPATH hasa lot of what one wants in a spatial query language. In addition to the positive results on thedata omplexity, expressiveness, and losure, we think LPATH is interesting as a synthesis of thetemporal languages for veri�ation of disrete systems with �rst-order onstraint query languages.Although we approahed LPATH from the point of view of spatial databases, it ould also be seenas a general language for stating path properties of systems that are de�ned from semi-algebraior semi-linear objets. Beause of this, it is possible to ompare it with languages for speifyingproperties of real-time or hybrid systems. We gave an example of how to model one spei�ationformalism for hybrid systems within LPATH. 36
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