
Data Exchange and Schema Mappings in Open and Closed Worlds

Leonid Libkina, Cristina Sirangelob

aUniversity of Edinburgh
bLSV, ENS–Cachan, CNRS and INRIA

Abstract

In the study of data exchange one usually assumes an open-world semantics, making it possible to
extend instances of target schemas. An alternative closed-world semantics only moves ‘as much data
as needed’ from the source to the target to satisfy constraints of a schema mapping. It avoids some of
the problems exhibited by the open-world semantics, but limits the expressivity of schema mappings.
Here we propose a mixed approach: one can designate different attributes of target schemas as open
or closed, to combine the additional expressivity of the open-world semantics with the better behavior
of query answering in closed worlds.

We define such schema mappings, and show that they cover a large space of data exchange solutions
with two extremes being the known open and closed-world semantics. We investigate the problems of
query answering and schema mapping composition, and prove two trichotomy theorems, classifying
their complexity based on the number of open attributes. We find conditions under which schema
mappings compose, extending known results to a wide range of closed-world mappings. We also
provide results for restricted classes of queries and mappings guaranteeing lower complexity.

Key words: Data exchange, schema mappings, closed world assumption, open world assumption,
incomplete information

1. Introduction

Data exchange is the problem of finding an instance of a target schema, given an instance of a source
schema and a specification of a mapping between the source and the target schemas, and answering
queries over target instances in a way that is consistent with the source information. Specifications
between the source and the target are given in the form of a schema mapping. The study of both
data exchange and schema mappings (in particular, operations on schema mappings) has been actively
pursued recently (see, e.g., recent SIGMOD and PODS keynotes [18, 7]). Existing implementations
[26, 28] have been incorporated into major database products.

Theoretical foundations of data exchange were first developed in [11, 12]. For a source instance
S and a schema mapping M , a target instance T is a solution for S if S and T together satisfy the
conditions of M . Target instances often contain incomplete information as mappings are rarely fully
specified: for example, it is common for target schemas to have attributes that are not present in the
source. To account for missing information, target instances are populated with nulls.

Papers [11, 12] also developed query answering techniques for data exchange that work very well for
conjunctive (and positive relational algebra) queries, but have been shown to exhibit strange behavior
for queries involving negation. This happens even with very simple mappings, for example, mappings
specifying that each tuple from the source be copied into the target [11, 3]. There are several reasons
for such unnatural behavior, stemming from handling of incomplete information. We shall outline
them below.

A source instance S may have many different solutions under a mapping M . Thus, the standard
approach for answering a query Q over the target schema is to find certain answers certainM (Q,S).

Preprint submitted to Elsevier February 3, 2010

These were defined in [11, 18] as the intersection of Q(T)’s for all solutions T :

certainM (Q,S) =
⋂

{Q(T) | T is a solution}.

Normally, only one target instance T0 is materialized (typically a canonical solution [11] or its core
[12]). Hence, the goal of query answering in data exchange is to compute certain answers, by posing
a query against that materialized instance. That is, one needs to evaluate some query Q′ so that
certainM (Q,S) = Q′(T0).

However, solutions T ’s (including the materialized solution T0) are instances with nulls, and there
is no well-defined concept of Q(T) for databases with nulls [17, 22, 15]. Most commonly, to evaluate
Q over an instance T with nulls, one tries to find the set 2Q(T) of answers independent of the
interpretation of nulls. These are often called certain answers in the incomplete information literature,
but they should not be confused with data exchange certain answers (certainM (Q,S)). In the rest of
the paper, when we will talk about certain answers, it will be always clear from the context whether
we refer to 2Q or to data exchange certain answers.

There are several known evaluation mechanisms for computing 2Q(T). The one used in [11, 12]
is the naive evaluation Qnaive(T): it treats nulls as atomic values (i.e., two nulls are equal iff they are
syntactically the same) and only keeps null-free tuples in the output.

For conjunctive queries, and their unions, [11, 12] proved that certainM (Q,S), defined as the
intersection of Qnaive(T) over all solutions T , can be computed as Qnaive(T0), where T0 is the canonical
solution. This follows from

certainM (Q,S) = 2Q(T0) (1)

2Q(T0) = Qnaive(T0) (2)

for such queries. However, for full relational algebra, even if (1) were to remain true, relying on (2) for
finding the result of a query is impossible, as the naive evaluation no longer produces the set of certain
answers [17]. Moreover, [3] showed that there are relational calculus queries Q for which certainM (Q,S)
cannot be expressed as Q′

naive(T0), where Q′ is a relational calculus (or even an aggregate) query.
Furthermore, the notion of solutions is not unique (see, e.g., [11, 12, 21]) and neither is the notion

of 2Q in general, as both depend on assumptions about tuples in solutions and interpretation of nulls.
Papers [12, 11, 13] make the Open World Assumption, or OWA [29]. Under this assumption, tuples
can be freely added to solutions. For example, if M is a mapping stating that tuples from the source
S must be copied to the target T , then, under the OWA, every T that extends S is a solution. Hence,
if S = ∅, then every T is a solution, and computing certain answers is as hard as finite validity (which
is undecidable for relational calculus) even in such simple settings.

There is an alternative notion of solutions, proposed in [21, 16]. It is based on the Closed World
Assumption, or CWA [29]. Such solutions T have “just as much as needed” to satisfy the conditions
imposed by M . For example, if M states that every tuple in S must be in T , the only CWA-
solution for S would be a copy of S, since instances are no longer open to adding new tuples. This
approach guarantees certainM (Q,S) = 2Q(T0) for the canonical solution T0, and eliminates some of
the anomalies that have been shown to arise under the OWA approach [3]. On the other hand, under
the CWA queries may produce counterintuitive answers too, this time because of the “uniqueness of
value” constraints imposed by the CWA. For example, consider a mapping stating that for each tuple
(paper#,title) in a source S there is a tuple (paper#,author) in the target T . That is, we keep paper
number, drop the author, and assign a null value to the author attribute. Let paper# be a key for S.
Then the certain answer to a query asking whether every paper has exactly one author is true. This
is because of the minimalistic CWA: it will create just one (paper#,author) tuple, which is what is
needed to satisfy the mapping constraints, and will stop at that.

2

Fully open or fully closed mappings, being two extreme cases, are bound to have their shortcomings.
Thus, our goal is to study mappings that are not rigidly controlled by the OWA, as in [11, 13], or by
the CWA, as in [21, 16]. We adapt an old idea of [14], and permit nulls – or, more generally, attributes
in targets – to be open or closed. Open attributes can be instantiated by many values, but for closed,
only one value is permitted. In our example, we would declare paper# as closed, indicating that only
papers from the source are moved to the target, and author as open, allowing instances with multiple
authors of a given paper. Then the certain answer to the “one-author” query is false, as expected.
We now further illustrate this idea by an example.

Example Consider a source schema σ with binary relations Papers(paper#, title) and Assign-
ments(paper#, reviewer). Each instance of σ represents the list of papers submitted to a given
conference and the assignments of papers to reviewers. The target schema τ consists of two binary re-
lations Reviews(paper#, review) and Submissions(paper#, author). The mapping between the source
and the target is provided by a set of rules below:

Submissions(xcl, zop) :– Papers(x, y)
Reviews(xcl, zcl) :– Assignments(x, y)
Reviews(xcl, zop) :– Papers(x, y)∧

¬∃rAssignments(x, r)
We use the syntax that will be introduced later; essentially, we formulate mappings as in [11, 13]

(using rule-based notation as in [21]), with extra annotations op or cl (for open and closed) of variables
in the target atoms. Intuitively, the first rule says that the target instance contains exactly the
submitted papers from the source (enforced by the closed annotation of the attribute paper#). The
author attribute is populated with nulls, and its open annotation models the one-to-many relationship
between papers and their authors.

The second rule says that for each assigned paper and each of its reviewers, exactly one review
is associated to the paper in the target. Completely closed annotation here prevents the target from
having reviews of assigned papers without a corresponding reviewer in the source. The third rule deals
with papers that have not been assigned, according to the source. In this case, the attribute review
of Reviews is annotated as open, to allow several reviews to be generated for the same paper.

We remark that atoms of the same relation can be annotated differently in different rules. Indeed,
the annotation of an atom of a given target relation R in a rule describes the way the particular rule
allows data to be moved from the source to relation R in the target, and this may vary from a rule to
a rule. 2

Open/closed annotations could be an easy addition to systems that handle schema mappings
[26, 28, 8] as they essentially state whether we have a one-to-one or a one-to-many relationship for a
correspondence between attributes in the source and the target, and only require one-bit annotations
for target attributes.

Contributions Our first goal is to study data exchange based on mappings that allow annotating
target attributes as open or closed. We define their semantics via different interpretations of null
values, and show the following:

• The solutions of [11, 21] are the two extreme cases: when all attributes are open (solutions of
[11]), and when all are closed (solutions of [21]).

• For conjunctive (and positive relational algebra) queries, certain answers can be computed by
the tractable naive evaluation, regardless of annotations.

• Under the appropriate notion of certain answers with mixed open and closed nulls, we always
have (1) – that is, certainM (Q,S) = 2Q(T0), where T0 is the canonical solution. Thus, query
answering in data exchange is reduced to query answering over a particular polynomial-time
computable instance with nulls.

3

• For full relational algebra, computing certain answers depends on annotations. We prove a
trichotomy result, classifying the complexity of certain answers in terms of the maximum number
k of open attributes per atom in a rule of the mapping M : it is coNP-complete if k = 0 (under
the CWA), it is coNEXPTIME-complete if k = 1, and undecidable for k > 1. Most of the
work goes into the coNEXPTIME result: undecidability for k > 1 is an easy consequence of
Trakhtenbrot’s theorem, as already noticed in [1, 11], and coNP-completeness under CWA was
shown in [21] by an adaptation of results in [2]. We also show how lower complexity can be
achieved by putting additional restrictions on queries.

We then study schema mappings themselves. This subject too has witnessed a lot of activity
recently (see [7]). A central topic is the study of operations on mappings, with perhaps the most
common one being composition: for mappings Mστ and Mτω between schemas σ and τ , and τ and ω,
resp., how do we obtain a mapping Mσω that transforms σ-databases into ω-databases by applying
Mστ first, followed by Mτω?

Composition is crucial for understanding schema evolution, and it has been extensively studied (see,
e.g., [6, 13, 27, 23]). The idea of the standard approach of [13] is to define composition semantically,
and then capture the same notion syntactically. Semantically, a schema mappingM is a binary relation
with pairs (S, T) such that T is a solution for S. Then the composition of mappings is the composition
of binary relations. The definition of [13] does not permit instances with nulls, and interprets both
mappings and solutions under the OWA. Then, under the OWA, [13] showed how to capture the
semantic notion of composition syntactically with Skolemized constraints. But it is then natural to
ask what happens if a different interpretation, e.g. closed-world, is used.

As our second contribution, we study composition of schema mappings that mix open and closed
attributes. The notion of [13] is obtained when all attributes are interpreted under the OWA. Our
main results are:

• We classify the complexity of composition (i.e., recognizing pairs of instances that belong to the
composition of two mappings) by the maximum number k of open attributes in rules of Mστ ,
proving another trichotomy: NP-completeness for k = 0; NEXPTIME-completeness for k = 1;
and undecidability for k > 1.

• If only conjunctive queries are used in mappings (as in [11, 12, 13]), then under both CWA and
OWA the composition problem is NP-complete.

• We show that the Skolemized constraints of [13] are closed under composition not only under
the OWA but also under the CWA, and look at other conditions that make composition work
for mixed open/closed mappings.

Organization In Section 2 we review schema mappings, data exchange solutions, and the basics of
incomplete information. Section 3 introduces mappings that combine open and closed-world semantics.
Complexity of query answering under such mappings is studied in Section 4. In Section 5 we study
the complexity and syntactic characterizations of mapping composition. Concluding remarks are in
Section 6.

2. Preliminaries

We now review the notions of schema mappings, data exchange solutions (under different assump-
tions), and incomplete information. Throughout this paper, we deal with relational settings. If T is
an instance of some relational schema τ , then we denote by DT the active domain of T . Moreover for
each relation symbol R in τ , RT denotes the value of R in T , and all operators on databases instances
are intended relation-wise.

4

Schema mappings and data exchange

Let σ and τ be two relational database schemas; σ is thought of as a source schema, and τ as
a target schema. A mapping M between schemas σ and τ is a condition that states how instances
of σ and τ are related [7, 18, 19]. In data exchange, mappings are typically specified by sets of
source-to-target dependencies (STDs) of the form

ψτ (x̄, z̄) :– ϕσ(x̄, ȳ),

where ϕσ is a first-order (FO) formula over vocabulary σ, and ψτ is a conjunction of atomic τ -formulae
[11, 18]. A mapping for us is thus a triple (σ, τ,Σ), where Σ is a set of STDs. If S is a source instance,
then a target τ -instance T is called a solution for S under Σ if (S, T) |= Σ. More precisely, for every
ψτ (x̄, z̄) :– ϕσ(x̄, ȳ) in Σ, we have (S, T) |= ∀x̄∀ȳ

(

ϕσ(x̄, ȳ) → ∃z̄ψτ (x̄, z̄)
)

. That is, for every pair of
tuples ā, b̄ such that ϕ(ā, b̄) holds in S, there is a tuple c̄ such that ψ(ā, c̄) holds in T .

Target instances can be populated by two different kinds of elements: constants and nulls. Con-
stants are elements that come from the source, and nulls are new elements created in targets. We
assume two countably infinite disjoint domains Const and Null; elements of Const are denoted by low-
ercase letters, and elements of Null by ⊥ with sub/superscripts. Source instances are interpreted as
instances over Const, and targets as instances over Const ∪ Null. We assume that we can distinguish
nulls from constants (e.g., by a unary predicate testing for nulls, like IS NULL in SQL).

One particular solution plays a special role in data exchange: the canonical (universal) solution
CSolΣ(S), for a mapping (σ, τ,Σ) and a source S [11]. As in [3, 21], it is computed as follows: for
each STD ψ(x̄, z̄) :– ϕ(x̄, ȳ) in Σ and for each pair of tuples ā, b̄ such that ϕ(ā, b̄) holds in S, create
a fresh tuple of distinct nulls ⊥̄ = ⊥̄(ϕ,ψ,ā,b̄) (so that |⊥̄| = |z̄|) and put tuples in the target so that

ψ(ā, ⊥̄), which is a conjunction of atoms, holds. If the mapping is understood from the context, we
write just CSol(S). The schemas σ and τ will always be clear from the context.

For example, if σ = {E}, τ = {R}, where E and R are binary, and Σ contains R(x, z) :– E(x, y),
then for E = {(a, c1), (a, c2), (b, c3)}, the canonical solution has tuples {(a,⊥1), (a,⊥2), (b,⊥3)} in R.

Databases with incomplete information

We briefly review some standard definitions [15, 17]. A database instance with incomplete infor-
mation is an instance whose domain is a subset of Const ∪ Null. Nulls are treated as existing but
unknown values. A valuation is a partial map v : Null → Const. Given an instance T with incomplete
information, and a valuation v defined on all of its nulls, v(T) stands for the instance over Const in
which every null ⊥ in T is replaced by v(⊥). The semantics of T , denoted by Rep(T) [17], consists of
all such instances:

Rep(T) = {v(T) | v is a valuation}.

Evaluation of queries Q on databases with nulls normally means finding certain answers 2Q(T) =
⋂

{Q(R) | R ∈ Rep(T)}, i.e. tuples that belong to Q(R) for all possible R in Rep(T).
If Q is a positive relational algebra query, then 2Q(T) is obtained by the naive evaluation of Q

on T (i.e. treating nulls as values) and then discarding tuples containing nulls [17]. For full relational
algebra queries one needs a rather complicated mechanism of conditional tables [17] to represent
certain answers.

Data exchange under CWA

The definitions of solutions and query answering under the CWA were given in [21]. The main
idea is not to open the target to arbitrary new tuples, and instead put there just what is needed to
satisfy the STDs. Solutions under the CWA (called CWA-solutions in [21]) must satisfy three criteria:
(a) the presence of each null must be justified by the source instance and the STDs; (b) a justification

5

for a null should not generate multiple nulls; and (c) facts true in the target instance must be justified
by the source instance and the STDs.

These were formalized in [21]. Before showing how (a) (b) and (c) were formalized, we recall a
result from [21] which characterized CWA-solutions as the homomorphic images of CSol(S) that have
a homomorphism back into CSol(S).

We now recall how (a), (b), (c) are formalized. Let (σ, τ,Σ) be a mapping, where Σ is a set of
STDs {ψi(x̄i, z̄i) :– ϕi(x̄i, ȳi) | 1 ≤ i ≤ m}, and let S be a source instance. A justification for a null
consists of an STD ψi :– ϕi, a tuple (ā, b̄) so that ϕi(ā, b̄) holds, and a variable among the z̄’s. Note
that justifications generate nulls in the canonical solution CSol(S).

Each null in a target T must have a justification for it, but the same justification should not
justify different nulls. This means that there is a mapping h from justifications onto the set of nulls
of T , i.e. a homomorphism h : CSol(S) → T that maps nulls of CSol(S) onto the nulls of T .
Such homomorphic images of CSol(S) were called CWA-presolutions. In our previous example of
an STD R(x, z) :– E(x, y) and a source E = {(a, c1), (a, c2), (b, c3)}, the canonical solution has nulls
⊥1,⊥2,⊥3 given by justifications: ((a, c1), z), ((a, c2), z), and ((b, c3), z). If we have a homomorphism
h(⊥1) = h(⊥2) = ⊥ and h(⊥3) = ⊥′, we obtain a CWA-presolution {(a,⊥), (b,⊥′)}.

Requirement (c) closes instances to unjustified facts, i.e., it prohibits inventing facts based on
equating nulls unless they are implied by the source and the STDs. In our example, a homomorphism
h′ such that h′(⊥1) = h′(⊥3) = ⊥ gives us tuples (a,⊥), (b,⊥) in the presolution. This says that a
and b are connected to the same element, which is not implied by S and the STDs, and hence should
not be allowed under the CWA, as we close the instance to unjustified tuples and facts.

Formally, a fact is a formula f(ā) = ∃z̄ γ(ā, z̄), where ā is over Const, and γ is a conjunction of
τ -atoms; it is satisfied in a target instance T if there is a tuple of nulls ⊥̄ such that γ(ā, ⊥̄) is true.
Then CWA-solutions are defined as CWA-presolutions T so that every fact true in T is also true in
CSol(S). The presolution {(a,⊥), (b,⊥′)} is a CWA-solution.

The characterization of CWA-solutions leads to algorithms for finding certain answers, i.e. sets of
tuples that belong to Q(R) for every CWA-solution T for S and every R ∈ Rep(T). Namely, they can
be computed as 2Q(CSol(S)) [21]. If Q is a union of conjunctive queries (and therefore 2Q can be
computed by the naive evaluation) this coincides with the semantics used in [11]. As we move beyond
positive queries, the CWA semantics behaves nicer than the OWA semantics. For example, even in
copying mappings, with all STDs of the form R′(x̄) :– R(x̄), under the semantics of [11] there are
FO-queries that cannot be answered by evaluating an FO-query over the canonical, or other, solutions
[3]. Under the CWA, certain answers coincide with Q(CSol(S)) in such mappings.

3. Mixing OWA and CWA: mappings and solutions

We define mappings that need not follow the all-OWA or the all-CWA policy: in them, attributes
of target atoms of STDs can be annotated as open or closed. This results in target instances in which
different elements have different semantics, so we define an appropriate semantics RepA for them.

Annotated mappings

We shall allow each variable in the left-hand side ψ of an STD to be annotated with an element of
the set {op, cl}, referring to them as open or closed variables, respectively. So formally an annotated
STD is a usual STD

ψ(x1, . . . , xn, z1, . . . , zk) :– ϕ(x1, . . . , xn, y1, . . . , ym),

together with an annotation mapping α that assigns each occurrence of a variable in ψ either op or cl.
An annotated mapping consists of source and target schemas σ and τ , and a set of annotated STDs.
We put annotation as a superscript, writing xop or xcl when α(x) = op or α(x) = cl, resp.

6

Closed annotations specify one-to-one relationships, so closed nulls behave just as nulls in CWA-
solutions. Open annotations specify one-to-many relationships and exhibit the behavior of solutions of
[11]. In the earlier example, according to the STD Submissions(xcl, zop) :– Papers(x, y), only papers
from the source are moved to the target in the exchange of data, but the paper -author relationship is
not one-to-one, and hence multiple values are allowed in the second attribute.

Annotation in instances

Solutions under annotated mappings will be annotated instances, which we now define. A finite
relation over attributes A1, . . . , An with domain D is a finite set of tuples, and each tuple is a mapping
t : {A1, . . . , An} → D. An annotated tuple is a pair (t, α), where t is a tuple and α is a mapping
{A1, . . . , An} → {op, cl}. An annotated relation is a finite set of annotated tuples, and an annotated
instance is a set of annotated relations. Again we use superscripts for annotations, denoting, for
example, a tuple (a, b) with annotations cl and op as (acl, bop).

For purely technical reasons (to deal with empty tables) we also have empty annotated tuples,
denoted by (, α), where α is an annotation on the set of attributes.

If T is an annotated relation over Const∪Null, in the semantics RepA(T), after applying a valuation
v to T , any tuple (. . . , aop, . . .) in v(T) can be replicated arbitrarily many times with (. . . , b, . . .), for
b ∈ Const. For example, RepA({(acl,⊥op)}) contains all relations R whose projection on the first
attribute is {a}, and RepA({(acl,⊥cl)}) contains all one-tuple relations {(a, b)} with b ∈ Const.

Formally, if T = {(ti, αi) | 1 ≤ i ≤ n}, then a relation R over Const is in RepA(T) if, for some
valuation v, the relation R contains the nonempty tuples among v(t1), . . . , v(tn), and every tuple
t ∈ R coincides with some v(ti) in all positions annotated by closed by αi. Thus if α is an all-open
annotation, then the tuple (, α) allows any tuple to be added to relations in RepA(T); otherwise
such tuples do not change the semantics. The difference between a tuple of op-annotated nulls and
such (, α) is that the semantics of the latter also includes the empty table. Finally, RepA(·) extends
naturally from relations to database instances.

For each annotated relation T , we denote by reℓ(T) the pure relational part of T , i.e. if T =
{(t1, α1), . . . , (tn, αn)}, then reℓ(T) is the set of non-empty tuples in {t1, . . . , tn}.

Annotated canonical solution

Let (σ, τ,Σα) be an annotated mapping (i.e., Σα is a set of annotated STDs). Let S be a source
instance. The annotated canonical solution is defined by the same procedure as before, except that
now it is populated with annotated tuples. That is, for each STD ψ(x̄, z̄) :– ϕ(x̄, ȳ), we evaluate ϕ
over S, and for each tuple (ā, b̄) in the result, we create a fresh tuple of nulls ⊥̄, and put annotated
tuples in the solution to satisfy ψ(ā, ⊥̄), annotated as prescribed by α. If ϕ evaluates to the empty
set over S, we add empty tuples for each atom in ψ, annotated according to α. The result is the
annotated canonical solution denoted by CSolΣα

a (S), or just CSola(S), if the mapping is understood
(the subscript ‘A’ distinguishes it from an unannotated solution).

In our previous example with σ = {E}, τ = {R}, let the STD beR(xcl, zop) :– E(x, y). Then, if E =
{(a, c1), (a, c2), (b, c3)}, the canonical solution has annotated tuples {(acl,⊥op

1), (acl,⊥op
2), (bcl,⊥op

3)} in
R.

Note that the same variable can be annotated differently in different atoms. For example, if
we have an STD R(xop, zcl1) ∧ R(xcl, zop2) :– E(x, y) and a single tuple (a, c) in the source, then
CSola(S) = {(aop,⊥cl

1), (acl,⊥op
2)}.

Open (resp., closed) versions of the canonical solution capture the semantics of solutions in [11]
and [21]. For reasons to become clear soon, we call the solutions of [11] OWA-solutions: i.e., an
OWA-solution for a source S under Σ is any target instance T over Const∪Null such that (S, T) |= Σ.
We then define

[[S]]ΣOWA = {R ∈ Rep(T) | T an OWA-solution for S}
[[S]]ΣCWA = {R ∈ Rep(T) | T a CWA-solution for S}

7

These semantics produce sets of relations without nulls represented by OWA and CWA-solutions,
respectively.

If Σ is a set of unannotated STDs, let Σop (resp., Σcl) be the set of all Σ-STDs where each variable
is annotated with op (resp., cl). The following easy observations states that the canonical solutions
under these two extremes capture the semantics of the unannotated OWA- and CWA-solutions:

Lemma 1. [[S]]ΣOWA = RepA(CSol
Σop

a (S)) and [[S]]ΣCWA = RepA(CSol
Σcl
a (S)).

Proof. First observe that, by the construction of CSolΣα
a (S), we have reℓ(CSolΣα

a (S)) = CSolΣ(S).
If an instance T is all-closed annotated, then RepA(T) coincides with Rep(rel(T)) and, therefore,

RepA(CSol
Σcl
a (S)) = Rep(CSolΣ(S)). It was shown in in [21] that Rep(T) ⊆ Rep(CSolΣ(S))

for each CWA-solution T , and thus [[S]]ΣCWA = Rep(CSolΣ(S)). This proves [[S]]ΣCWA =

RepA(CSol
Σcl
a (S)).

Similarly, since CSol
Σop

a (S) has all-open annotation, RepA(CSol
Σop

a (S)) consists of all target

instances over Const that contain a valuation of reℓ(CSol
Σop

a (S)) = CSolΣ(S). On the other hand,
[[S]]ΣOWA consists of all target instances J over Const such that (S, J) |= Σ.

So it remains to prove that a target instance J over Const contains a valuation of CSolΣ(S) if
and only if (S, J) |= Σ. Indeed if J ⊇ v(CSolΣ(S)), for some valuation v, then J contains an OWA-
solution, and therefore (S, J) |= Σ. Conversely if (S, J) |= Σ, for each Σ-STD ψ(x̄, z̄) :– ϕ(x̄, ȳ) and
for each pair of tuples ā, b̄ such that ϕ(ā, b̄) holds in S, let c̄ the tuple of constants such that ψ(ā, c̄)
holds in J . Now define a valuation v of nulls of CSolΣ(S) such that v(⊥̄(ϕ,ψ,ā,b̄)) = c̄. Then clearly

v(CSolΣ(S)) ⊆ J . 2

Annotated solutions

We now define a general notion of solutions under annotated mappings using an approach sim-
ilar to the CWA-solutions in Section 2, except that now we distinguish open and closed nulls. A
homomorphism of annotated instances h : T → T ′ is a mapping from Null to Null so that for each an-
notated tuple (t, α) in a relation R in T , the tuple (h(t), α) is in R′ – that is, homomorphisms preserve
annotations (by h(t) we denote the tuple obtained from t by replacing each null ⊥ with h(⊥)).

Given an annotated mapping (σ, τ,Σα) and a source S, each null in a target solution still needs
to be justified by an STD ψ :– ϕ and a witness for ϕ. It is the annotation that will account for
differences in the semantics: while closed nulls behave as nulls in CWA-solutions, open nulls can be
instantiated by many values. Hence, we still define presolutions as homomorphic images of CSola(S),
since homomorphisms preserve annotations.

Our last requirement for CWA-solutions was that facts true in them must be implied by the source
and the STDs, and thus true in CSol(S). We still want to apply this restriction, but only to closed
nulls. For that, we use annotated facts, i.e. pairs (f(ā), α) where f(ā) = ∃z̄ γ(ā, z̄) is a fact over the
target schema, and α is an annotation over all atoms in γ. The notion of satisfaction is restricted to
closed positions of T . That is, T |=cl

(

f(ā), α
)

if there exists a tuple ⊥̄ of nulls such that for each
atom R(t) in γ(ā, ⊥̄), there is a tuple (t0, α0) in relation R of instance T which coincides with (t, α)
in all positions annotated as closed in α0.

Then a presolution T is a Σα-solution for S if each annotated fact that is true in T under |=cl is
also true, under |=cl, in the canonical solution CSola(S).

If all annotations in Σα are cl, then |=cl is the usual notion of satisfaction, and thus Σα-solutions
are precisely the CWA-solutions. If all annotations in Σα are op, then every fact is true under |=cl

which means that under the OWA arbitrary facts could be true in solutions. We shall see soon that
the semantics of all-open solutions is equivalent to the semantics of [11].

Example Consider an STD R(xop, zcl1) ∧ R(ycl, zcl2) :– S(x, y) and a source S = {(a, b)} generating
CSola(S) = {(aop,⊥cl

1), (bcl,⊥cl
2)}. Let R be the presolution obtained by equating the two nulls:

8

R = {(aop,⊥cl
1), (bcl,⊥cl

1)}. The fact ∃z R(aop, zcl)∧R(bcl, zcl), which is trivially true in R (under |=cl)
is also true in CSola(S) (under |=cl) with z = ⊥1. In fact both atoms R(aop,⊥cl

1) and R(bcl,⊥cl
1) –

obtained by assigning z the value ⊥1 in the fact – coincide with atom R(aop,⊥cl
1)) of CSola(S) over

closed positions of the latter. One similarly proves the same property for all other facts satisfied by
the presolution R. Thus R is a Σα-solution. 2

Annotated mappings: basic properties

We know that CWA-solutions have a homomorphism back into the canonical solution. A similar
result is true for Σα-solutions, except that we need to expand the canonical solution, allowing for
the open nulls to be replicated. We say that T ′ ⊇ T is an expansion of T if every annotated tuple
t′ ∈ T ′ − T coincides with some tuple t ∈ T in all closed positions of t.

Proposition 1. An annotated instance T is a Σα-solution iff it is a homomorphic image of CSola(S),
and there is a homomorphism from T to an expansion of CSola(S).

Proof. Assume that T is a Σα-solution and that ā = (a1, . . . , an) lists the constants in T . We associate
to each null ⊥ occurring in T a distinct variable z⊥, and let z̄ be the tuple of variables associated to all
nulls of T . Then with T we associate an annotated fact with f(ā) = ∃z̄ diag+

T (ā, z̄). Here diag+
T (ā) is

the positive diagram of T , i.e. the conjunction of all atoms R(t̄) from T , where R is a relation of τ and
(t̄, α) is a non-empty tuple of R in T ; furthermore, each null ⊥ is replaced with z⊥. The annotation
α just follows the annotation of tuples in T .

Clearly T |=cl (f(ā), αT) with satisfying assignment z⊥ = ⊥ for each variable z̄⊥ in z̄. Since T is a
Σα-solution, we know that (f(ā), αT) is also satisfied (under |=cl) in CSola(S), with some satisfying
assignment z⊥ = ⊥′ for each variable z⊥ in z̄.

Therefore, if we define a homomorphism h such that h(⊥) = ⊥′ then, for each non-empty tuple
(t̄, α) in a relation R of T , (h(t̄), α) coincides with some tuple (t′, α′) of R in CSola(S) on positions
annotated as cl by α′. Moreover, since T is a homomorphic image of CSola(S), each empty tuple
occurring in some relation R of T also occurs in relation R of CSola(S). In other words, h is a
homomorphism from T to an expansion of CSola(S).

Conversely assume that there exists a homomorphism h from T to an expansion C of CSola(S).
Take an arbitrary annotated fact (f(ā), α) satisfied in T under |=cl, and let f(ā) be ∃z̄ γ(ā, z̄). Let ⊥̄
be the assignment for which T satisfies f(ā).

We construct a target instance Tf from the satisfied fact as follows. For each annotated atom
(R(t̄0), α0) of (γ(ā, ⊥̄), α), add the tuple (t̄0, α0) to relation R of Tf . Let h′ be a mapping obtained
by extending arbitrarily h to nulls occurring in Tf − T . We next prove that h′ is a homomorphism
from Tf to some expansion of CSola(S). This will directly imply that CSola(S) |=cl f(ā) via the
assignment z̄ = h′(⊥̄).

Clearly, h′ is an homomorphism from Tf to h′(Tf) ∪ C. We now prove that h′(Tf) ∪ C is an
expansion of CSola(S). We know that for each annotated tuple (t̄0, α0) of some relation R in Tf :

1. (t̄0, α0) coincides with some tuple (t̄1, α1) of R in T on positions annotated as cl by α1 (since
the fact f(ā) is satisfied in T);

2. (h′(t̄1), α1) (i.e., = (h(t̄1), α1)) coincides with some tuple (t̄2, α2) of R in CSola(S) on positions
annotated as cl by α2.

By 2, for each attribute A of R such that α2(A) = cl, we have t2(A) = h′(t1(A)) and α1(A) = cl.
Therefore, by 1, h′(t1(A)) = h′(t0(A)) and α0(A) = cl. This shows that (h′(t̄0), α0) coincides with
(t̄2, α2) on closed positions of α2, implying that h′(Tf)∪C is an expansion of CSola(S). This concludes
the proof of Proposition 1. 2

9

Similarly to the semantics [[·]]CWA and [[·]]OWA, we define the semantics for arbitrary annotated
mappings:

[[S]]Σα = {R ∈ RepA(T) | T is a Σα-solution}.

If α and α′ are annotations of a set Σ of STDs, we write α � α′ if for each occurrence of a variable
in a Σ-STD, either both α and α′ annotations are cl, or α′ annotation is op (i.e., closed annotations
can be extended to open). The following states that changing closed annotations to open makes the
semantics larger, that the extreme points are the OWA and the CWA semantics of [11] and [21], and
that for every annotated mapping, [[S]]Σα is determined by the annotated canonical solution.

Theorem 1. If Σ is a set of STDs and S is a source instance, then

1. [[S]]Σcl = [[S]]ΣCWA.

2. [[S]]Σop = [[S]]ΣOWA.

3. If α � α′ then [[S]]Σα ⊆ [[S]]Σα′ .
4. [[S]]Σα = RepA(CSolΣα

a (S)).

Proof. We start by proving 4). It suffices to prove that RepA(T) ⊆ RepA(CSolΣα
a (S)) for each Σα-

solution T . For an arbitrary Σα-solution T and an arbitrary J ∈ RepA(T), let h be a homomorphism
such that h(CSolΣα

a (S)) = T , and v a valuation witnessing J ∈ RepA(T). We next prove that the
valuation v ◦ h on nulls of CSolΣα

a (S) witnesses J ∈ RepA(CSolΣα
a (S)).

We know that J ⊇ v(reℓ(T)), thus J ⊇ v ◦ h(reℓ(CSolΣα
a (S))). Moreover, for each tuple t̄ in a

relation R of J there exists an annotated tuple (t̄0, α) of R in T such that t̄ and v(t̄0) coincide on
positions annotated as closed by α, and there exists an annotated tuple (t1, α) of R in CSolΣα

a (S)
such that h(t̄1) = t̄0.

Then v ◦ h(t̄1) coincides with t̄ on positions annotated as closed by α. This shows that J ∈
RepA(CSolΣα

a (S)) via the homomorphism v ◦ h and concludes the proof of 4.
Items 1) and 2) follow directly from 4) and Lemma 1.
We now prove 3). Assume that α � α′ and J ∈ [[S]]Σα . By 4), J ∈ RepA(CSolΣα

a (S)), and
therefore there exists a valuation v such that

J ⊇ v(reℓ(CSolΣα
a (S))).

By the construction of the canonical solution, we have reℓ(CSolΣα
a (S)) = reℓ(CSol

Σα′

a (S)), and thus

J ⊇ v(reℓ(CSol
Σα′

a (S))).
Now consider an arbitrary tuple t̄ of some relation R of J , and let (t̄0, α0) be an annotated tuple of

relation R in CSolΣα
a (S) such that t̄ and v(t̄0) coincide on closed positions of α0. We know, again by

the construction of the canonical solution, that there exists a tuple (t̄0, α1) in relation R of CSol
Σα′

a (S)
with α0 � α1. Observe that positions annotated as closed by α1 are also annotated as closed by α0.

Hence, t̄ and v(t̄0) coincide on all closed positions of α1. This proves that J ∈ RepA(CSol
Σα′

a (S)),
that is by 4), J ∈ [[S]]Σα′ , thus showing 3) and concluding the proof of Theorem 1. 2

There is a natural decision problem of recognizing instances in [[S]]Σα . We next show that this
problem is in PTIME if all annotations in Σα are open, but any presence of closed annotations leads to
NP-completeness. More precisely we introduce the parameter #cl(Σα) denoting the maximum number
of closed positions per atom in an STD in a set of annotated STDs Σα. For example, for the rule
T (xcl, yop) ∧ T (xcl, zop) :– ϕ, the value of #cl(Σα) is 1.

The complexity of recognizing instances in [[S]]Σα can be classified based on the parameter #cl(Σα)
as follows.

Theorem 2. The problem of checking, for source and target instances S and T , whether T ∈ [[S]]Σα

is always in NP, and furthermore:

10

• it is in PTIME if all annotations in Σα are open (that is if #cl(Σα) = 0);

• for each k > 0, there is a mapping Σα with #cl(Σα) = k, such that the problem of checking
T ∈ [[S]]Σα is NP-complete.

Proof. If all variables are annotated as open by α, then by Theorem 1 (item 2) one can check that
T ∈ [[S]]Σα by simply checking that (S, T) |= Σ which can be done in polynomial time.

Otherwise by Theorem 1 (item 4) one can check T ∈ [[S]]Σα by first guessing a valuation v on nulls
of CSolΣα

a (S) and then checking that 1) T ⊇ v(rel(CSolΣα
a (S))) and 2) each tuple of T coincides

with some tuple of CSolΣα
a (S) on closed positions. All this can be checked in polynomial time since

CSolΣα
a (S) has size polynomial in S.

This shows that checking whether T belongs to [[S]]Σα is in NP for an arbitrary annotation α; we
now show it is NP-hard when #cl(Σα) = k, for all k > 0. We only show the reduction for the case
#cl(Σα) = 1, for all other values of k > 1, the same reduction will hold after replicating k times one
of the closed variables in Σα.

We use a reduction from the tripartite matching. The input of tripartite matching is given by three
disjoint sets B0, G0 and H0 of the same size n, and a compatibility relation C0 ⊆ B0 ×G0 ×H0. The
problem asks whether there exists a subset X0 of n triples of C0 such that all elements of B0, G0 and
H0 occur in X0.

From an input 〈B0, G0,H0, C0〉 of tripartite matching we construct a pair of source and target
instances (S, T) for the following annotated schema mapping:

• σ = {N,C ′}, where N is unary and C ′ is ternary;

• τ = {B,G,H,C}, where B,G,H are unary and C is ternary;

• Σα:

C(xop, yop, zop), B(xcl), G(ycl), H(zcl) :– N(w)
C(xop, yop, zop) :– C ′(x, y, z)

Note that the maximum number of closed-annotated attributes per atom is 1, that is #cl(Σα) = 1.
The source instance S interprets the relation N as {1, . . . , n}, and the relation C ′ as C0. The

target instance interprets the relations C, B, G and H as C0, B0, G0 and H0, respectively (i.e., the
input of the tripartite matching problem). We now prove that T ∈ [[S]]Σα iff there exists a subset of n
triples of C0 covering all elements of B0 ∪G0 ∪H0.

First, T ∈ [[S]]Σα iff T ∈ RepA(CSola(S))). We compute CSola(S), in which the values of
relations B,G,H and C are:

• B = {⊥cl
bi | i = 1, . . . , n};

• G = {⊥cl
gi | i = 1, . . . , n};

• H = {⊥cl
hi | i = 1, . . . , n};

• C = C0 ∪ {(⊥op

bi ,⊥
op
gi ,⊥

op

hi) | i = 1, . . . , n}.

Intuitively, relation N in the source instance represents the set of n choices of triples, and for
each choice i ∈ {1, . . . , n}, the tuple (⊥op

bi ,⊥
op
gi ,⊥

op
hi) in relation C of CSola(S) represents the chosen

triple; the values occurring in the three components of the chosen triples are collected, with closed
annotation, in relations B, G and H of CSola(S), respectively.

11

Assume now that the instance of tripartite matching has a solution, witnessed by a subset
{〈bi, gi, hi〉 | i = 1, . . . , n} of C0. Define a valuation v on nulls of CSola(S) such that, for i = 1, . . . , n,
we have

v(⊥bi) = bi, v(⊥gi) = gi, v(⊥hi) = hi.

Then one can easily check that v(reℓ(CSola(S))) = T , and thus T ∈ RepA(CSola(S)).
Conversely, assume that T ∈ RepA(CSola(S))), and let v a valuation witnessing this. Then we

have:
B0 = v({⊥bi | i = 1, . . . , n}),
G0 = v({⊥gi | i = 1, . . . , n}),
H0 = v({⊥hi | i = 1, . . . , n}),
C0 ⊇ C0 ∪ v({(⊥bi,⊥gi,⊥hi) | i = 1, . . . , n}).

Therefore, v({(⊥bi,⊥gi,⊥hi), i = 1, . . . , n}) is a subset of C0 whose triples cover all elements of B0,
G0 and H0, and thus it gives a solution of the tripartite matching problem. This completes the proof
of Theorem 2. 2

Notice that the reduction shown in the proof of Theorem 2 is still valid if all annotations in Σα

are turned to closed. Hence the following corollary holds:

Corollary 1. There exists a mapping Σα, having all-closed annotation, such that the problem of
checking, for source and target instances S and T , whether T ∈ [[S]]Σα is NP-complete.

Note that the complexity of recognizing instances representing tables with incomplete information
normally increases with additional constraints on nulls: for example, checking if an instance R is
in Rep(S) is in PTIME if S is a Codd table (which cannot equate nulls), but the same problem is
NP-complete for naive tables, which can equate nulls [2]. Thus, it is natural that the complexity
of this particular recognition problem increases as one allows closed variables, which introduce extra
constraints on nulls. But as we shall see soon, most of the time it suffices to work with the canonical
solution, which can be constructed in PTIME regardless of annotation, and thus the higher complexity
of [[·]]Σα with closed annotations will not affect problems such as query answering.

4. Query answering

Query answering in data exchange normally means finding certain answers. Since the notion of
Q(T), where T is a solution, is not well-defined due to T containing nulls, we must find certain answers
to Q over each solution T , and then find tuples that belong to such certain answers over all solutions
T . That is, given an annotated mapping with STDs Σα, a source instance S and a query Q, we define

certainΣα(Q,S) =
⋂

T is a Σα−solution

⋂

R∈RepA(T)

Q(R)

We compare this with two existing notions of certain answers in data exchange. The original open-
world notion certain

OWA
Σ (Q,S) of [11] and many others was defined as the set of tuples that belong

to Q(T) for every OWA-solution T , where Q is evaluated under the naive semantics. In [21, 16],
certain

CWA
Σ (Q,S) was defined as the set of tuples in all Q(R)’s where R ranges over Rep(T) for CWA-

solutions T . Using a simple observation that in the definition of [11] it suffices to look only at instances
over Const, we show:

Proposition 2. If Σ is an arbitrary set of STDs, and Σop and Σcl are its annotations that assign op
(resp., cl) to each variable, then

certain
OWA
Σ (Q,S) = certainΣop(Q,S)

certain
CWA
Σ (Q,S) = certainΣcl

(Q,S)

12

Furthermore, for an arbitrary annotation α,

certainΣop(Q,S) ⊆ certainΣα(Q,S) ⊆ certainΣcl
(Q,S).

Proof. The statement for closed annotation is a direct corollary of Theorem 1 (item 1). In the case of
open annotation, the result is based on the following claim:

Claim 1. For each OWA-solution T containing nulls there exist OWA-solutions R1 and R2 over Const

such that
Q(T) ∩Q(R1) ∩Q(R2) = Q(R1) ∩Q(R2),

where Q(T) is computed according to the naive evaluation.

Proof of Claim 1. We consider OWA-solutions v1(T) and v2(T), where v1 and v2 are valuations of
nulls of T which map distinct nulls to distinct constants not occurring in T and have disjoint ranges.
By the genericity of Q we conclude Q(v1(T)) = v1(Q(T)) and Q(v2(T)) = v2(Q(T)).

Let Q(T)↓ denote the set of tuples of Q(T) which do not contain nulls. Since v1 and v2 have
disjoint ranges, we have v1(Q(T)) ∩ v2(Q(T)) = Q(T)↓ and thus Q(T) ∩ Q(v1(T)) ∩ Q(v2(T)) =
Q(T)↓= Q(v1(T)) ∩ Q(v2(T)), as claimed. 2

From Claim 1 it follows that
⋂

T is an OWA-solution

Q(T) =
⋂

T is an OWA-solution over Const

Q(T)

and thus
certain

OWA
Σ (Q,S) =

⋂

T∈[[S]]Σ
OWA

Q(T) = certainΣop(Q,S)

(the last equation follows from Theorem 1, item 2), which proves Proposition 2. 2

Hence the semantics of [11] and [21] are indeed the two extreme semantics. For one class of
queries, which was the focus of several papers on data exchange [11, 12, 3], the semantics coincide,
regardless of annotations (we recall that positive relational algebra refers to the fragment of relational
algebra allowing only projection, union, product and selection with positive Boolean combinations of
equalities).

Proposition 3. Let (σ, τ,Σ) be a mapping, Σα an arbitrary annotation of Σ, and Q a positive rela-
tional algebra query. Then

certainΣα(Q,S) = 2Q(CSolΣ(S)).

Proof. We prove the statement in the more general case that Q is a monotone query. By Theorem 1
(item 4), each R ∈ [[S]]Σα contains a valuation v(reℓ(CSola(S))); as reℓ(CSola(S)) = CSol(S), each
R ∈ [[S]]Σα contains an instance of Rep(CSol(S)). Therefore, by monotonicity of Q

⋂

R∈[[S]]Σα

Q(R) ⊇
⋂

R∈Rep(CSol(S))

Q(R),

which implies certainΣα(Q,S) ⊇ 2Q(CSol(S)).
On the other hand, each instance in Rep(CSol(S)) is also in RepA(CSola(S)), thus in [[S]]Σα .

This proves the reverse inclusion, and hence 2Q(CSol(S)) = certainΣα(Q,S). 2

Thus, to compute certain answers for positive queries, one can simply construct the canonical
solution and apply the standard naive evaluation [17] to compute 2Q over it, as was done in [11].

We now study the general case. Our goal is to find certainΣα(Q,S) using one materialized target.
We can use the annotated canonical solution as this target. Indeed, under the natural notion of certain
answers in annotated instances defined as 2Q(T) =

⋂

{Q(R) | R ∈ RepA(T)}, we conclude, from
Theorem 1:

13

Corollary 2. certainΣα(Q,S) = 2Q(CSolΣα
a (S)).

We know that CSolΣα
a (S) can be constructed in polynomial time. Thus, to describe the complexity

of query answering in data exchange, we need to determine the complexity of finding 2Q. We do this
for relational algebra (i.e., FO) queries. Consider the problem DEQA(Σα, Q) of data exchange query
answering for an annotated mapping (σ, τ,Σα) and a query Q:

Problem DEQA(Σα, Q)
Input: a source database S, a tuple t
Question: is t ∈ certainΣα(Q,S).

Some partial answers under CWA or OWA are known [1, 4, 11, 21]. We now classify the complexity
of DEQA(Σα, Q) for FO queries Q using, as the main parameter, the maximum number of open
positions per atom in an STD in a set of annotated STDs Σα. It is denoted by #op(Σα).

In a CWA mapping, #op(Σα) = 0 (since there are no open positions), and in an all-open mapping,
it is the maximum arity of a relation. Note that we measure the number of open annotations per atom
and not per rule. For example, for the rule T (xcl, yop) ∧ T (xcl, zop) :– ϕ, the value of #op(Σα) is 1,
even though two variables occur with an open annotation.

We prove the following trichotomy result – the complexity of DEQA(Σα, Q) for FO queries is:

• coNP-complete if #op(Σα) = 0;

• coNEXPTIME-complete if #op(Σα) = 1;

• undecidable if #op(Σα) > 1.

Theorem 3. The complexity of DEQA(Σα, Q) for FO queries is as follows:

1. if #op(Σα) = 0, then DEQA(Σα, Q) ∈ coNP, and there exists a mapping with #op(Σα) = 0 and
an FO query Q so that DEQA(Σα, Q) is coNP-hard;

2. if #op(Σα) = 1, then DEQA(Σα, Q) is in coNEXPTIME, and there exists a mapping with
#op(Σα) = 1 and an FO query Q so that DEQA(Σα, Q) is coNEXPTIME-hard;

3. if k > 1, then there is a mapping with #op(Σα) = k and an FO query Q so that DEQA(Σα, Q)
is undecidable.

The main result is the decidable case 2 (others are easy adaptations of known techniques [1, 2, 11,
21]). Below presenting the proof, we give a sketch of a simpler result showing that for #op(Σα) = 1,
the query answering problem could be hard for an arbitrary level of the polynomial hierarchy (PH).
This indicates the main source of complexity (and a more detailed proof tightens it to coNEXPTIME-
completeness).

Suppose the source database is a graph with vertices V (·) and edges E(·, ·), the target schema has
two binary relations, and the STDs are

E′(xcl, ycl) :– E(x, y)
P (xcl, zop) :– V (x)

That is, E′ is a copy of the graph, and P assigns open nulls to vertices: the semantics of P is any
relation whose first projection is V .

We next consider a sentence Φp saying that P encodes the powerset of the set of vertices (i.e.,
for each value a of the first attribute of P , there is a c so that P (a, c) holds, and no other P (·, c)
holds; and, for any c1, c2, there is a c so that {a | P (a, c)} = {a | P (a, c1)} ∪ {a | P (a, c2)} – all these
are easily stated in FO). Let Ψ be an arbitrary monadic second-order sentence over E. If P encodes

14

the powerset on V , we can easily restate Ψ as an FO sentence ψ over the schema {E′, P}. Thus,
the certain answer of Φp → ψ is true iff the original graph satisfies Ψ. But it is well-known that in
monadic second-order logic one can encode problems complete for all levels of PH [25] – hence query
answering is hard for every level of PH.

Proof of Theorem 3. We start with the easy cases of #op(Σα) = 0 and #op(Σα) > 1.
For #op(Σα) = 0, the statement follows directly from results of [21]: in fact if #op(Σα) = 0 then, by

Proposition 2, certainΣα(Q,S) = certain
CWA
Σ (Q,S), and the problem of checking t̄ ∈ certain

CWA
Σ (Q,S),

for any fixed first order query Q and mapping Σ, is in coNP [21]. Moreover in [21] a mapping Σ̄ and
an FO query Q̄ are constructed, such that checking t̄ ∈ certain

CWA
Σ̄

(Q̄, S) is coNP-hard.
The undecidability for #op(Σα) > 1 can be proved by reduction from finite validity of first order

sentences, similarly to [1]. More precisely, for a fixed first order sentence ϕ of relational vocabulary τ
with at least one symbol of arity 2 of greater, we consider the following problem which we denote by
Val(ϕ): given an input finite structure M0 of vocabulary τ , it is to decide whether all finite structures
M ⊇ M0 are models of ϕ. It follows easily from the proof of Trakhtenbrot’s theorem that for each
k > 1, there exists a relational vocabulary τ , whose maximum arity of relations is k, and a first order
sentence ϕk of vocabulary τ for which Val(ϕk) is undecidable.

Now from each first order sentence ϕ of relational vocabulary τ we show how to construct a set
of annotated STDs Σα(ϕ) and a first order query Qϕ so that #opΣα(ϕ) coincides with the maximum
arity in τ , and Val(ϕ) has a reduction to DEQA(Σα(ϕ), Qϕ).

The target schema of Σα(ϕ) is τ ∪ {U}, with U unary, and source schema is τ ′ ∪ {U ′}, where τ ′

has a relation R′ for each R in τ , with the same arity as R. The mapping given by Σα(ϕ) is a copying
schema mapping from each relation V ′ in the source schema to the corresponding relation V in the
target schema, and α annotates each position as open. The query Qϕ is a unary query U(x) ∧ ϕ.

The problem Val(ϕ) can be reduced to DEQA(Σα, Q), for Σα = Σα(ϕ) and Q = Q(ϕ), as follows:
for each input structure M0 of universe U0 we construct a source instance S having U ′ = U0, R

′ = RM0

for each relational symbol R of τ . Of course, instances J ∈ RepA(CSola(S)) represent all possible
finite structures containing M0, where UJ represents the universe of the structure and RJ , R ∈ τ ,
the interpretation of relations. Moreover for each J ∈ RepA(CSola(S)), we have Q(J) = UJ ⊇ U0

if J |= ϕ, and Q(J) is empty otherwise. Therefore if we let t be an arbitrary value in U0, then
t ∈ certainΣα(Q,S) if and only if ϕ holds in all J ∈ RepA(CSola(S)), that is if and only if ϕ holds in
all structures containing M0. This completes the reduction and proves that for all k > 1 the problem
DEQA(Σα(ϕk), Qϕk

), where #opΣα(ϕk) = k, is undecidable.

We now move to the main case of the theorem – the proof for #op(Σα) = 1. We first use a games
argument to establish an exponential bound on the number of replicated open nulls in a possible
witness for t 6∈ certainΣα(Q,S), and then code a version of the tiling problem.

Membership. We need to show that the problem of checking whether t̄ ∈ certainΣα(Q,S) is in
coNEXPTIME. If Q is expressed by an FO formula ϕ, let Q̄ be the query expressed by ¬ϕ. Given
an input instance S and a tuple t̄, the complexity of checking t̄ /∈ certainΣα(Q,S) coincides with the
complexity of checking whether there exists an instance I ∈ RepA(CSola(S)) such that t̄ ∈ Q̄(I).
This is proved to be in NEXPTIME in Lemma 2 below (with X empty). The case of nonempty X
will be used when we apply this lemma in the proof of Theorem 4.

Lemma 2. For a fixed first order query Q over schema τ and a subset X of attributes of Q, given an
input consisting of:

1. an annotated instance T of schema τ whose tuples have at most one position annotated as open;

2. a relation W over Const of the same arity as Q;

the problem of checking whether there exists an instance I ∈ RepA(T) such that

15

• W ⊆ Q(I) and

• πX(W) = πX(Q(I))

is in NEXPTIME.

Proof. Let Q be expressed by an FO formula ϕ(x̄, ȳ), where the variables x̄ correspond to attributes
X of Q. In the rest of the proof we denote by qr(ψ) the quantifier rank of an FO formula ψ, and
we let k be qr(ϕ(x̄, ȳ)) + |ȳ|. We let Cϕ be the set of constants occurring in ϕ(x) and n and m the
number of tuples in T and W , respectively.

We first prove that if there exists I ∈ RepA(T) satisfying the properties required by the lemma,
then there exists also I ′ ∈ RepA(T) with ‖I ′‖ exponential in the size of the input, still satisfying the
same properties. This will prove that there exists a NEXPTIME algorithm that guesses I ′ and checks
W ⊆ Q(I ′) and πX(W) = πX(Q(I ′)).

We now give the intuition for the existence of I ′ (at least in the case that X is empty), before
proving it formally. If I ∈ RepA(T), this is witnessed by some valuation v of nulls of T . Then tuples
of I are of the form (v(t̄1), a, v(t̄2)), where (t̄cl1 , s

op, t̄cl2) is a tuple of T for some constant or null s. The
subset of I where a is a “known” constant (that is occurring in either v(rel(T)) or W or ϕ) is clearly
of polynomial size. Now consider tuples of I where a is an external (that is not “known”) constant;
in principle there is no bound on the size of this subset of I. Nevertheless we show that some of these
tuples can be safely removed, to get an instance I ′ which is clearly still in RepA(T), and still satisfies
ϕ(t̄) for all t̄ in W . The idea is that each external constant in I is “connected” (that is occurs together)
with some subset of tuples of the form (v(t̄1), v(t̄2)). To each subset S of such tuples we can then
associate the set of external constants connected precisely to S. Intuitively, these external constants
are all “equivalent” in the sense that the substructures of I where they occur are isomorphic. It is then
natural to expect – as we will prove formally later – that if the set of constants connected precisely
to S is “very large”, then one can bound its size to a constant depending on the quantifier rank of ϕ,
by removing tuples from I. It will then be possible to play qr(ϕ) rounds of the Ehrenfeucht-Fräıssé
game with I and its reduced version. In fact when the spoiler plays an external constant a connected
to S in I, the duplicator will always be able to reply with another external constant connected to S.

If the restriction of I is done for every subset S of tuples of the form (v(t̄1), v(t̄2)), one then gets
an instance I ′ that ϕ cannot distinguish from I. The instance I ′ has exponential size since there are
exponentially many subsets of tuples of the form (v(t̄1), v(t̄2)), and each of them is possibly connected
only to a constant number of external values in I ′.

Now we formalize this and prove the existence of I ′. Assume that I ∈ RepA(T), that W ⊆ Q(I)
and πX(W) = πX(Q(I)). Let v be a valuation of nulls of T witnessing I ∈ RepA(T). We denote by
K the union of the following two sets of triples:

• the set of triples 〈R; v(t̄1); v(t̄2)〉 such that R is a relation symbol in τ and the non-empty
annotated tuple (t̄cl1 , a

op, t̄cl2) is in RT , for some a ∈ Const ∪ Null (with t̄1 and/or t̄2 possibly
empty);

• the set of triples 〈R; ; 〉 such that R is a unary relation symbol in τ and (, op) ∈ RT .

Moreover let V stand for v(reℓ(T)) and let C stand for DV ∪DW ∪Cϕ (recall that DJ denotes the
active domain of instance J). Note that |K| ≤ n and constants occurring in triples of K are all in DV

thus in C.
Given a subset U of Const and X ⊆ K, we denote by X × U the following target instance. For

each relation symbol R ∈ τ , its interpretation in X × U is defined as

RX×U := {(c̄1, c, c̄2) | 〈R; c̄1; c̄2〉 ∈ X and c ∈ U}.

The following claim shows how I and K are related.

16

Claim 2. There exist E0 ⊆ K ×C and E ⊆ K × (DI −C), with E0, E and V pairwise disjoint, such
that I = V ∪ E0 ∪ E.

Proof of Claim 2. Since I is in RepA(T) via the valuation v, then I ⊇ V . Moreover each tuple t̄ of some
relation R in I − V has to coincide with the valuation of some tuple of RT , on positions annotated
as closed. We know that this tuple of RT cannot be empty, unless it has an all-open annotation,
and it cannot have an all-closed annotation, otherwise t̄ would be in V . Then t̄ is either of the form
(v(t̄1), c, v(t̄2)), where c ∈ DI and (t̄cl1 , a

op, t̄cl2) is a non-empty tuple of RT , or of the form (c) where
c ∈ DI and RT is a unary relation containing (, op). In both cases t̄ ∈ K × DI . As a consequence
I − V can be partitioned into two sub-instances: E0, whose tuples are in K ×C, and E whose tuples
are in K × (DI − C). This completes the proof of the claim. 2

Now we give more details about the structure of E. For each element d ∈ DI −C, let X(d) be the
maximal subset of K such that X(d) × {d} ⊆ E. Then E =

⋃

d∈DI−C
X(d) × {d}.

For each X ⊆ K, we define a set CX as {d ∈ DI − C | X(d) = X}. Note that these sets form
a partition of DI − C. Now for each set CX such that |CX | > k + arity(Q) we choose arbitrarily a
subset C ′

X ⊆ CX such that |C ′
X | = k + arity(Q). For all sets CX such that |CX | ≤ k + arity(Q), we

let C ′
X = CX . Let I ′ be the instance obtained from I by removing all tuples containing constants in

⋃

X⊆K CX −C ′
X . Observe that DI′ = (DI ∩C)∪

⋃

X⊆K C
′
X . Moreover, since constants removed from

I are not in C, we have
I ′ = V ∪ E0 ∪ E

′,

where
E′ =

⋃

d∈DI′−C

X(d) × {d}

If we measure the size of an instance as the number of tuples in it, then ‖I ′‖ = ‖V ‖ + ‖E0‖ + ‖E′‖,
where:

• ‖V ‖ = n;

• ‖E0‖ ≤ |K| × |C| = O(n(n+m));

• ‖E′‖ ≤ (k + arity(Q)) · n · 2n.

To see the last point, note that ‖E′‖ =
∑

d∈DI′−C
|X(d)| ≤ |DI′ − C| · n. Since sets C ′

X are pairwise

disjoint and of size at most k+ arity(Q), we have |DI′ −C| =
∑

X⊆K |C ′
X | ≤ (k+ arity(Q)) · 2n, from

which the bound follows.
The instance I ′ is still in RepA(T), as it contains V = v(reℓ(T)) and is contained in I. Its size, as

shown above, is at most exponential in n.
In what follows we prove that, if ψ(z̄) stands either for ϕ(x̄, ȳ) or for ∃ȳϕ(x̄, ȳ), then I ′ |= ψ(t̄) if

and only if I |= ψ(t̄), for each tuple t̄ over DI′ ∪ Cϕ.
First note that the set of constants occurring in ψ(z̄) is Cϕ; the quantifier rank qr(ψ) is at most

k and the arity |z̄| is at most arity(Q). Now fix an arbitrary tuple t̄ over DI′ ∪ Cϕ. Let β = ψ(t̄)
and let c̄β be the sequence of constants occurring in β (that is the sequence of all constants occurring
either in Cϕ or in t̄). We view I and I ′ as first-order structures over vocabulary 〈τ, c̄β〉 and with
universes DI ∪ Cϕ and DI′ ∪ Cϕ, respectively. We prove that the duplicator has a winning strategy
in the k-round Ehrenfeucht-Fräıssé game on I and I ′. Since qr(β) ≤ k, this will prove that I and I ′

agree on β.
Observe that the universe of I is DI ∪ Cϕ = C ∪

⋃

X⊆K CX and the universe of I ′ is DI′ ∪ Cϕ =
C ∪

⋃

X⊆K C
′
X . Therefore, given an arbitrary value c in the universe of I or I ′, exactly one of the

following holds:

17

• either c ∈ C;

• or c ∈ CX , for some class CX with |CX | ≤ k + arity(Q);

• or c ∈ CX , for some class CX with |CX | > k + arity(Q).

The strategy of the duplicator is as follows. Assume that i < k rounds have been played and
assume that at round i+ 1 the spoiler picks a structure A (either I or I ′). Assume that the sequence
of moves played in structure A in former rounds is (a1, . . . , ai). Let B be the other structure (either I ′

or I), and (b1, . . . , bi) the values played on B in previous rounds. At round i+ 1, if the spoiler picks a
value ai+1 in the universe of A such that ai+1 = aj for some j ≤ i, then the duplicator responds with
bi+1 = bj . Otherwise, if ai+1 has never been played on A in former rounds:

• if either ai+1 occurs in c̄β, or ai+1 ∈ C, or ai+1 ∈ CX , with |CX | ≤ k + arity(Q), then the
duplicator responds with bi+1 = ai+1;

• otherwise (if ai+1 ∈ CX , with |CX | > k+arity(Q), and ai+1 does not occur in c̄β), the duplicator
responds with an arbitrary value bi+1 ∈ C ′

X which does not occur in c̄β and has not been played
on B yet. We are guaranteed that such a value exists because because cardinalities of the sets
C ′
X are sufficiently large. That is, there are at most arity(Q) constants from c̄β occurring in

C ′
X , and fewer than k rounds have been played, so with |C ′

X | = k+arity(Q) there is an element
to choose from.

If (qI1 , . . . q
I
k) and (qI

′

1 , . . . , q
I′

k) are the sequences of values played after k rounds of the game, on I and
I ′ respectively, we define the sequences c̄I = (c̄β , q

I
1 , . . . , q

I
k) and c̄I

′

= (c̄β , q
I′

1 , . . . , q
I′

k) of size |c̄β | + k.
We prove that if the duplicator adopts the above strategy, after k rounds of the game, the following

holds:

Claim 3. For each l = 1, . . . , |c̄β | + k

• if the pair (cIl , c
I′

l) contains a value occurring either in c̄β or in C or in a class CX , with
|CX | ≤ k + arity(Q), then cIl = cI

′

l ;

• if the pair (cIl , c
I′

l) contains a value of a class CX , then both cIl and cI
′

l are in CX .

Proof of Claim 3. We prove the statement by induction on l: it is trivially true for each l ≤ |c̄β |; we
now assume that the claim holds for each l ≤ i − 1 and prove it for l = i (with |c̄β | < i ≤ |c̄β| + k).
Since i > |c̄β |, the pair (cIi , c

I′

i) represents the values played at round i− |c̄β |. As usual we denote by
A the structure picked by the spoiler in this round and B the other structure. There are two cases:

1. If cAi = cAj for some |c̄β| < j < i then, by the strategy of the duplicator, cBi = cBj . The statement

for cAi and cBi follows by the induction hypothesis on cAj and cBj .

2. Otherwise, if cAi has never been played on A in previous rounds, then directly by the strategy
of the duplicator:
(a) if either cAi occurs in c̄β or cAi ∈ C or cAi ∈ CX with |CX | ≤ k + arity(Q), then cBi = cAi ;
(b) if cAi belongs to some class CX then both cAi and cBi are in CX .

It remains to prove 2a and 2b also for cBi . Assume that either cBi occurs in c̄β or cBi ∈ C or cBi
is in a class of cardinality at most k+ arity(Q). Assume, by contradiction, that cBi 6= cAi . Then,
by 2a, cAi is in a class CX with |CX | > k + arity(Q) and cAi does not occur in c̄β . Therefore,
by the strategy of the duplicator, cBi ∈ CX and cBi does not occur in c̄β. This contradicts the
initial assumption on cBi , and proves 2a also for cBi .
Now assume cBi belongs to some class CX and, by contradiction, that cAi /∈ CX . Then either
cAi ∈ C or cAi ∈ CX0

, for some CX0
6= CX . In the first case, by 2a, cBi = cAi ; thus cBi ∈ C. In the

other case, by 2b, cBi ∈ CX0
, thus cBi /∈ CX . In both cases we reach contradiction, thus 2b holds

also for cBi .

18

This ends the proof of Claim 3. 2

Claim 4. The pair 〈c̄I , c̄I
′

〉 forms a partial isomorphism between I and I ′ (that is, the duplicator has
a winning k-round strategy).

Proof of Claim 4. We split the proof into two parts.

1. We prove that for each j, l ∈ [1, . . . , |c̄β | + k], we have cIj = cIl if and only if cI
′

j = cI
′

l . This
holds trivially if j, l ≤ |c̄β |. Now assume that the statement holds for j, l ∈ [1, . . . , i − 1] (with
|c̄β | < i ≤ |c̄β| + k), the we prove that it also holds for j, l ∈ [1, . . . , i]. We only need to prove
that for an arbitrary j in [1, . . . , i− 1], cIi = cIj if and only if cI

′

i = cI
′

j . There are two cases:

(a) If cAi has already been played on A in some previous round, then there exists |c̄β | < l < i
such that cAi = cAl . In this case the choice of the duplicator is cBi = cBl . By the induction
hypothesis, cAl = cAj if and only if cBl = cBj ; thus cAi = cAj if and only if cBi = cBj .

(b) Assume now that cAi has never been played on A in previous rounds. If cAi = cAj , then it

must be the case that j ≤ |c̄β| and cAj = cBj = c, for some constant c in c̄β . Therefore the

duplicator chooses cBi = c, then cBi = cBj .

Conversely if cAi 6= cAj , there are two cases:

• If either cAi occurs in c̄β or cAi ∈ C or cAi ∈ CX , with |CX | ≤ k+arity(Q), the duplicator
chooses cBi = cAi . If by contradiction cBi = cBj , then cAj 6= cBj . Therefore by Claim 3,

cBj (= cAi) must be in a class of size greater than k + arity(Q) and must not occur in

c̄β. This contradicts the original hypothesis about cAi .

• Otherwise, if cAi ∈ CX with |CX | > k + arity(Q) and cAi does not occur in c̄β then,
directly by the strategy of the duplicator, cBi does not occur in c̄β and it has never
been played before on B. Thus cBi 6= cBj .

2. Next we prove that, if ū = (cIi1 , . . . , c
I
il
) with i1, . . . , il ∈ [1, . . . , |c̄β |+ k], if ū′ = (cI

′

i1
, . . . , cI

′

il
) and

R is a relation symbol of τ , then ū ∈ RI if and only if ū′ ∈ RI
′

. Assume that ū ∈ RI , then there
are two cases: either ū is a tuple of R in the sub-instance V ∪E0, or ū ∈ RE. In the first case, all
constants in ū are in C thus, by Claim 3, ū′ = ū. Therefore ū′ is a tuple of R in the sub-instance
V ∪ E0 ⊆ I ′. In the case that ū ∈ RE, it is of the form ū = (k̄1, d, k̄2) with 〈R; k̄1; k̄2〉 ∈ X(d)
and d ∈ CX(d). By Claim 3, as k̄1 and k̄2 are tuples over C, we have that ū′ = (k̄1, d

′, k̄2) with
d′ ∈ CX(d) (that is X(d′) = X(d)). Now, the value d′ is of course in the universe of I ′, that is
DI′ ∪ Cϕ. Moreover, since d′ belongs to CX(d), we have d′ /∈ C. Therefore d′ ∈ DI′ − C (due to
the fact that Cϕ ⊆ C). This implies, by the definition of E′, that X(d′) × {d′} ⊆ E′ and thus
(k̄1, d

′, k̄2) ∈ RE
′

, that is ū′ ∈ RE
′

.
If we start with ū′ ∈ RI

′

, the proof that ū ∈ RI is symmetric.

This concludes the proof of Claim 4. 2

Claim 4 proves that the duplicator has a winning strategy for the k-round game. Therefore, since
qr(β) ≤ k, I and I ′ agree on β = ψ(t̄).

For an arbitrary tuple t̄ over DI′ ∪ Cϕ, we proved that I |= ψ(t̄) iff I ′ |= ψ(t̄). The proof holds
both for ψ = ϕ(x̄, ȳ) (representing the query Q) and ψ = ∃ȳϕ(x̄, ȳ) (representing the query πXQ).
Based on this result, we now show that W ⊆ Q(I ′) and πX(W) = πX(Q(I ′)).

By the construction of I ′, the domain DW is included in DI′ ∪Cϕ. Therefore, for each tuple t̄ ∈W ,
since I |= ϕ(t̄), also I ′ |= ϕ(t̄). As a consequence W ⊆ Q(I ′).

Furthermore each tuple t̄ ∈ πX(W) is a tuple over DI′ ∪ Cϕ and is such that I |= ∃ȳϕ(t̄, ȳ).
Therefore also I ′ |= ∃ȳϕ(t̄, ȳ) and thus t̄ ∈ πX(Q(I ′)). Conversely, if t̄ ∈ πX(Q(I ′)) then t̄ is is a tuple
over DI′ ∪ Cϕ and I ′ |= ∃ȳϕ(t̄, ȳ). Then also I |= ∃ȳϕ(t̄, ȳ) and thus t̄ ∈ πX(Q(I ′)).

A NEXPTIME algorithm guesses I ′ by guessing:

19

1. a valuation v of reℓ(T), from which the target instance V and the sets C and K can be computed
as described above;

2. a target instance E0 ⊆ K × C;

3. disjoint sets C ′
X ⊆ Const − C with |C ′

X | ≤ k + arity(Q), for each X ⊆ K, giving
E′ =

⋃

X⊆K

⋃

d∈C′

X
X × {d}.

Then I ′ = V ∪ E0 ∪ E
′ is computed and W ⊆ Q(I) and πX(W) = πX(Q(I)) are checked. Given the

exponential bound on ‖I ′‖ shown earlier, we have membership in NEXPTIME. This concludes the
proof of Lemma 2. 2

Hardness. We reduce an NEXPTIME-complete version of the TILING problem to the complement
of DEQA(Σα, Q) for a particular first order query Q and a mapping Σα with #op(Σα) = 1. We are
given an input instance of the tiling problem, that is

• a set of tile types T = {t0, . . . , tk},

• horizontal and vertical compatibility relations among tiles H,V ⊆ T × T

• an integer n in unary

The tiling problem is the problem of telling whether there exists a tiling of the 2n × 2n grid, that is a
mapping f : {0, . . . , 2n − 1} × {0, . . . , 2n − 1} → T which associates a tile to each position of the grid,
in such a way that horizontally consecutive tiles respect H, vertically consecutive tiles respect V , and
f(0, 0) = t0.

We fix the following annotated schema mapping:

• the source schema consists of binary relations Hs and Vs (intended to represent horizontal and
vertical constraints), a unary relation Ns (representing n in unary), a unary relation T (the set of
tiles), a unary relation Emptys representing a constant for the empty set, and a binary relation
<s (linear order over elements of Ns);

• the target schema consists of relations H, V , N , Empty and <, having the same arity and
intended meaning of Hs, Vs, Ns, Emptys and <s respectively; a binary relation F (the tiling
function), whose intended semantics is to associate to each tile a subset of positions of the grid;
two binary relations Gh and Gv, intended to represent horizontal and vertical coordinates of grid
positions – as we will explain later in more detail.

• the STDs Σα are as follows:

H(xcl, ycl) :– Hs(x, y)
V (xcl, ycl) :– Vs(x, y)

N(xcl) :– Ns(x)
Gh(x

cl, yop) :– Ns(x)
Gv(x

cl, yop) :– Ns(x)
F (xcl, yop) :– T (x)
Empty(xcl) :– Emptys(x)

xcl < ycl :– x <s y

The input instance for the tiling problem can be translated directly into a source instance S for
Σα by interpreting: Hs and Vs as H and V respectively, Ns as the unary relation {1, . . . , n}, T as
{t0, · · · , tk}, Emptys as the singleton containing only the symbol ‘∅’, and <s as {(i, j)|1 ≤ i < j ≤ n}.

20

In CSola(S), relationsH, V , N , Empty and < are copies ofHs, Vs, Ns, Emptys and <s, annotated
as closed on each position, while Gh consists of tuples {(icl,⊥op

hi)|1 ≤ i ≤ n}, Gv is {(icl,⊥op
vi)|1 ≤ i ≤

n}, and F is interpreted as {(tcli ,⊥
op
i)|0 ≤ i ≤ k}.

In the rest of the proof we construct a query Q, represented by a FO formula ϕ(x̄) over the target
schema, and an input tuple t̄ such that there exists a tiling if and only if t̄ /∈ certainΣα(Q,S) – that is
if and only if there exists an instance I ∈ RepA(CSola(S)) such that I |= ¬ϕ(t̄). This will complete
the reduction.

We first construct a sentence β over the target schema such that there exists a tiling if and only
if there exists an instance I ∈ RepA(CSola(S)) satisfying β. Then we let ϕ(x) = ¬(β ∧ Empty(x))
and t̄ = ‘∅’. As all instances in RepA(CSola(S)) satisfy Empty(∅), there exists I ∈ RepA(CSola(S))
such that I |= ¬ϕ(∅) if and only if there exists a tiling.

We now write β as a sentence – to be interpreted over instances in RepA(CSola(S)) – which
forces the intended semantics of relations F , Gh and Gv, and forces F to represent a tiling of a 2n×2n

grid. This intended semantics is as follows. The idea is that open nulls introduced in rules as second
attributes of relations define subsets of values of the first attributes, that is, {1, . . . , n}. Thus, they
are in one-to-one correspondence with the values of the axes of the grid. The relations Gh and Gv
code pairs of coordinates, and the relation F gives the assignment of tiles. The sentence checks if the
coding is correct, and the assignment is indeed a tiling.

More precisely, in what follows, for a given instance in RepA(CSola(S)), for each value c of its
active domain, we let Xh(c) be the set of all i ∈ {1, . . . , n} such that (i, c) ∈ Gh. If we interpret this
subset as the set of 1-positions in a vector of n bits, Xh(c) represents an integer between 0 to 2n − 1.
Similarly we define Xv(c). Then each domain value c represents the pair of integers (Xh(c),Xv(c)),
that is, some grid position. We shall use the notation R.x for {y | (x, y) ∈ R} for a binary relation R.
Observe that each value c which does not occur in Gh.y ∪Gv .y represents position (0, 0).

β is the conjunction of the following sentences:

• a sentence β1 checking that F associates to each tile either only the value ∅ or a set of values
different from ∅:

β1 = ¬∃t, y1, y2(F (t, y1) ∧ F (t, y2) ∧ Empty(y1) ∧ ¬Empty(y2))

• a sentence β2 checking that F represents a function mapping each distinct value of F.y different
from ∅ to exactly one tile.

β2 = ∀x, t, t′
(

¬Empty(x) ∧ F (t, x) ∧ F (t′, x) → t = t′
)

• a sentence β3 forcing a one-to-one mapping between distinct values of F.y−{∅} and grid positions
{0, . . . , 2n − 1} × {0, . . . , 2n − 1}. In particular β3 checks that all grid positions are represented
by exactly one value of F.y − {∅}, and is given by β3 = β31 ∧ β32, where:

- β31 checks that position (2n − 1, 2n − 1) is represented by exactly one value of F.y − {∅},

- β32 checks that, if position (i, j) is represented then: if i > 0, then also position (i − 1, j)
is represented by exactly one value of F.y − {∅}, and if j > 0, then also position (i, j − 1)
is represented by exactly one value of F.y − {∅}.

Let Pos(y) = ¬Empty(y) ∧ ∃tF (t, y), then:

β31 = ∃!y (Pos(y) ∧ ∀i(N(i) → Gh(i, y) ∧Gv(i, y)))

21

β32 = ∀y (Pos(y) → (Predh(y) ∧ Predv(y)))

where for a = h, v:

Preda(y) = (∃iGa(i, y)) → (∃!z(Pos(z) ∧ a-succ(z, y))

and h-succ(z, y) and v-succ(z, y) check that y represents a position of the grid which is the
successor, in horizontal and vertical direction respectively, of the position represented by z. For
a = h, ā = v or a = v, ā = h, a-succ(z, y) first checks that Xā(y) = Xā(z) and then compares
Xa(y) and Xa(z) viewed as bit vectors, to verify that one is the successor of the other in the
usual way:

a-succ(z, y) = ∀i (Gā(i, z) ↔ Gā(i, y)) ∧
∃i (Ga(i, y) ∧ ¬Ga(i, z)∧

∀j(j < i→ (Ga(j, z) ∧ ¬Ga(j, y)))∧
∀j(i < j → (Ga(j, z) ↔ Ga(j, y))))

• a sentence β4 requiring that F is a tiling. We write β4 as β41 ∧ β42, where β41 checks that F
associates tile t0 to position (0, 0), and β42 verifies horizontal and vertical constraints.

β41 = ∃y(F (‘t0’, y) ∧ ¬Empty(y) ∧ ¬∃i(Gh(i, y) ∨Gv(i, y)))

β42 = ∀x, y, t, t′((F (t, x) ∧ F (t′, y) ∧ ¬Empty(x) ∧ ¬Empty(y)) →
((h-succ(x, y) → H(t, t′))∧

(v-succ(x, y) → V (t, t′))))

It is straightforward to verify that there exists an instance in RepA(CSola(S)) satisfying β if and
only if there exists a tiling. This concludes the proof of coNEXPTIME-hardness and thus the proof
of Theorem 3. 2

We now look at some special cases when we can guarantee better complexity of query answering.
The hardness results for #op(Σα) = 1 are achieved in simple mappings with all STDs either copying,
i.e. R′(x̄cl) :– R(x̄), or the simplest open null introductions U ′(xcl, zop) :– U(x). Combining several
relations into one, we can also see that hardness is witnessed by a two-rule mapping of the form
R′

1(x̄
cl) :– R1(x̄), R

′
2(x̄

cl, zop) :– R2(x̄). Thus, to achieve better complexity we should look at subclasses
of queries rather than mappings.

We start with positive relational algebra queries. From Proposition 3, we obtain

Corollary 3. If Q is a positive relational algebra query, then DEQA(Σα, Q) is in PTIME.

But adding inequalities even to conjunctive queries takes us to a larger class. Combining results of
[24, 21] with properties of annotated solutions, we derive:

Proposition 4. Let Σ be a set of STDs, α an arbitrary annotation, and Q a monotone polynomial-
time query. Then DEQA(Σα, Q) is in coNP. Moreover, there exists a set Σ of STDs and a conjunctive
query with two inequalities Q so that DEQA(Σα, Q) is coNP-complete for every annotation α.

22

Proof. Membership. First observe that the proof of Proposition 3 is based only on the assumption of
monotonicity of Q. Therefore, for an arbitrary monotone query Q,

certainΣα(Q,S) = 2Q(CSol(S)) = certain
CWA
Σ (Q,S).

As a consequence the complexity of DEQA(Σα, Q) coincides with the complexity of checking t̄ ∈
certain

CWA
Σ (Q,S) which was shown to be in coNP for each mapping Σ and arbitrary query Q with

polynomial data complexity [21].
Hardness. It was shown in [24] that there exists a set of dependencies Σ, forming a LAV

setting (cf. [11]) and a boolean conjunctive query with two inequalities Q, such that checking
certain

OWA
Σ (Q,S) = true, for an input S, is coNP-hard.

Now notice that, by Proposition 2, certain
OWA
Σ (Q,S) = certainΣop(Q,S) and, since Q is monotone,

certainΣop(Q,S) = certain
CWA
Σ (Q,S) = certainΣα(Q,S)

for an arbitrary α. Since LAV settings are special cases of schema mappings considered here, this proves
that for every α the problem DEQA(Σα, Q) is coNP-hard and completes the proof of Proposition 4.
2

Finally, we describe the complexity of universal or ∀∗∃∗ queries. It can also be viewed as the
complexity of validating constraints in data exchange, since most commonly used integrity constraints,
equality- or tuple-generating, are expressed as ∀∗ or ∀∗∃∗ sentences.

Proposition 5. If Q is a ∀∗∃∗ query, and Σα is an arbitrary annotated set of STDs, then
DEQA(Σα, Q) is in coNP.

Proof. Let Q be expressed by a ∀∗∃∗ formula ϕ(x̄). Given an input consisting of a source instance S
for Σα and a constant tuple t̄, we next prove that it is in NP to check whether t̄ /∈ certainΣα(Q,S),
that is to check whether there exists a target instance I ∈ RepA(CSola(S)) such that I |= ¬ϕ(t̄). In
the rest of the proof β will denote the sentence ¬ϕ(t̄); in particular we let:

β = ∃x1, . . . , xl∀y1, . . . , ymγ(x1, . . . , xl, y1, . . . , ym)

where γ is a boolean combination of atomic formulae. Moreover we let Cβ be the set of constants
occurring in β and, for any target instance J over Const, we let UJ stand for DJ ∪ Cβ.

Assume that I ∈ RepA(CSola(S)) and I |= β. Next we show that there exists an instance
I ′ ∈ RepA(CSola(S)) of size polynomial in ‖S‖ such that I ′ |= β. Let v be a valuation witnessing
I ∈ RepA(CSola(S)), and V = v(reℓ(CSola(S))). As I |= β, there exists a tuple k̄ = (k1, . . . , kl)
over UI such that, for all tuples (c1, . . . , cm) ∈ UmI , the formula γ(k1, . . . , kl, c1, . . . , cm) holds in
I. Observe that γ(k1, . . . , kl, c1, . . . , cm) is a boolean combination of atoms with terms over the set
Dk̄,c̄ = {k1, . . . , kl, c1, . . . , cm} ∪ Cβ. Moreover, as {k1, . . . , kl} ⊆ UI , there exists an instance I0 ⊆ I,
with at most l tuples, such that DI0 ∪ Cβ ⊇ {k1, . . . , kl}.

Now let I ′ be the target instance obtained by restricting I to the domain UV ∪ DI0. As UI′ ⊆
UI , for each tuple c̄ = (c1, . . . , cm) over UI′ , the formula γ(k1, . . . , kl, c1, . . . , cm) holds in I. Since
γ(k1, . . . , kl, c1, . . . , cm) is a boolean combination of atoms over Dk̄,c̄ and Dk̄,c̄ ⊆ UV ∪ DI0, we see
that γ(k1, . . . , kl, c1, . . . , cm) also holds in I ′. Furthermore k1, . . . , kl are values occurring in UI′ , thus
I ′ |= β.

The instance I ′ is still in RepA(CSola(S)) (via the valuation v), as it has been obtained from I by
removing no tuple of V = v(reℓ(CSola(S))) (since it includes all tuples over the domain UV), and I ′

is polynomial in ‖CSola(S)‖ (thus in ‖S‖), since the domain UV ∪DI0 has linear size. In particular
DI0 is of fixed size |DI0 | ≤ l × arity(τ), where arity(τ) is the maximum arity of relations of τ .

An NP algorithm can check whether there exists an instance in RepA(CSola(S)) satisfying β by
guessing:

23

• a valuation v on nulls of CSola(S), generating V = v(reℓ(CSola(S)));

• a set DI0 of at most l × arity(τ) constants;

• a target instance E as follows: for each relation symbol R of τ and each annotated tuple
(t̄, α) ∈ RCSola(S), a set of tuples is guessed such that for each tuple t̄0 in the set:

– t̄0 and v(t̄) coincide on closed positions of α and

– for each open attribute A of R annotated as open by α, t0(A) ∈ UV ∪DI0 .

Finally the algorithm checks that I ′ = V ∪ E satisfies β. This proves the NP bound for t̄ /∈
certainΣα(Q,S) and hence coNP membership for t̄ ∈ certainΣα(Q,S), and completes the proof of
Proposition 5. 2

5. Composing mappings

Composition and incomplete information

We now move to handling schema mappings themselves, and see how they behave under open,
closed, or mixed open/closed annotations. We shall look in particular at composition of schema
mappings, which is a key operation in schema evolution and model management in general [6, 7, 13,
27, 23].

We shall be dealing with schema mappings used in data exchange, i.e. triples (σ, τ,Σ). Since
semantically a mapping is a binary relation consisting of pairs (S, T), where S and T are source and
target instances satisfying Σ, [13] made a very natural proposal to use the composition of such relations
to define the composition of mappings. One more condition, however, is required. Note that a pair
(S,W) is in the composition of the binary relations given by the mappings (σ, τ,Σ) and (τ, ω,∆) iff
there is an instance T such that T is a solution for S (under Σ) and W is a solution for T (under
∆). But while solutions as defined in [11, 21] and here are instances over Const∪Null, we do not have
a definition of a solution for a source instance with nulls. Indeed, doing so would require evaluating
universal constraints over instances with nulls, something that has long been known to be problematic
[5, 17, 20].

So the definition of composition of [13] and others is restricted to instances over Const: a pair
(S,W) of instances over Const belongs to the composition iff there is a solution T for S over Const,
and W is a solution for T . But recall that, under the definition of a solution of [11], T that only
uses elements of Const is a solution for S iff T ∈ Rep(T ′) for some OWA-solution T ′ – equivalently, iff
T ∈ [[S]]ΣOWA. Thus, the semantics of a schema mapping used in [13] is

(

|Σ|
)OWA

σ,τ
= {(S, T) | T ∈ [[S]]ΣOWA},

where S and T range over σ- and τ -instances. Hence, their notion of composition is
(

|Σ|
)OWA

σ,τ
◦
(

|∆|
)OWA

τ,ω
.

(We use slightly different brackets to denote the semantics of a schema mapping as opposed to the
semantics of solutions.) So it is natural to ask how schema mappings and their compositions behave
in settings where different assumptions about the semantics of incompleteness are made. In general,
for an annotated mapping (σ, τ,Σα), we define its semantics as

(

|Σα|
)

σ,τ
= {(S, T) | T ∈ [[S]]Σα},

and the composition of two annotated mappings (σ, τ,Σα) and (τ, ω,∆α′) as

Σα ◦ ∆α′

def
=

(

|Σα|
)

σ,τ
◦

(

|∆α′ |
)

τ,ω
.

24

We omit the schemas from our notation Σα ◦ ∆α′ as they will always be clear from the context.
Notice that if both α and α′ are all-open annotations, then this is the definition of composition of

[13].
We now deal with two basic problems related to schema mappings and their composition: their

complexity, and syntactic representations (i.e., what is a class of constraints that captures Σα ◦∆α′?).
For several results, the class of queries used as source formulae ϕσ in STDs will be important. In

[12, 11, 13] only conjunctive queries are allowed in STDs; so far, as in [3, 21], we allowed arbitrary FO
queries. We refer to STDs ψτ (x̄, z̄) :– ϕσ(x̄, ȳ) as CQ-STDs or monotone STDs if ϕσ is a conjunctive
(resp., monotone) query. Otherwise it is assumed to be an FO query, as before.

Complexity of composition

Let (σ, τ,Σα) and (τ, ω,∆α′) be two annotated mappings. We consider the following composition
problem:

Problem Comp(Σα,∆α′)
Input: a σ-database S, a ω-database W
Question: is (S,W) in Σα ◦ ∆α′?

The all-open version Comp(Σop,∆op) with CQ-STDs was shown to be NP-complete in [13]. We
first extend this to more general annotations.

Lemma 3. If ∆ contains only monotone STDs, Σ is arbitrary, and α is any annotation of Σ, then

Σα ◦ ∆op = Σop ◦ ∆op.

Proof. Fix arbitrary instances S of schema σ and T of schema ω. Assume first that (S, T) ∈ Σα ◦∆op.
Then there exists J ∈ [[S]]Σα such that T ∈ [[J]]∆op . By Theorem 1, [[S]]Σα ⊆ [[S]]Σop , and thus J is also
in [[S]]Σop , implying that (S, T) ∈ Σop ◦ ∆op.

Conversely assume (S, T) ∈ Σop ◦ ∆op. Then there exists J ∈ [[S]]Σop such that T ∈ [[J]]∆op . Since

J is in [[S]]Σop , it contains an instance J0 = v(reℓ(CSol
Σop

a (S))) for some valuation v. Moreover, since
STDs in ∆ are monotone and (J, T) |= ∆, also (J0, T) |= ∆, that is T ∈ [[J0]]

∆
OWA. By Theorem 1,

T ∈ [[J0]]
∆op . Now note that J0 is also in [[S]]Σα : since

reℓ(CSol
Σop

a (S)) = CSolΣ(S) = reℓ(CSolΣα
a (S))

we see that J0 ∈ RepA(CSolΣα
a (S)). As a consequence, T ∈ Σα ◦ ∆op. 2

Corollary 4. If ∆ contains only monotone STDs, then Comp(Σα,∆op) is in NP for every Σα. More-
over, there exist mappings with CQ-STDs Σ and ∆ so that for an arbitrary annotation α of Σ, the
problem Comp(Σα,∆op) is NP-complete.

We now look at arbitrary FO-STDs. The complexity of the composition problem, as the complexity
of query answering, is classified by the parameter #op(Σα), the maximum number of open positions per
atom in an STD in Σα. The classification is another trichotomy. The complexity of Comp(Σα,∆α′)
is:

• NP-complete if #op(Σα) = 0;

• NEXPTIME-complete if #op(Σα) = 1;

• undecidable if #op(Σα) > 1.

25

Theorem 4. If (σ, τ,Σ) and (τ, ω,∆) are two schema mappings with arbitrary FO-STDs, and α and
α′ are annotations of Σ and ∆, then:

• If #op(Σα) = 0 (i.e., α is the all-closed annotation), then Comp(Σα,∆α′) is in NP. More-
over, there exist Σ and ∆, using only CQ-STDs, so that Comp(Σcl,∆α′) is NP-hard for every
annotation α′.

• If #op(Σα) = 1, then Comp(Σα,∆α′) is in NEXPTIME. Moreover, there exist Σα with
#op(Σα) = 1 and ∆ so that Comp(Σα,∆α′) is NEXPTIME-hard for every annotation α′.

• For each k > 1, there exist Σα with #op(Σα) = k and ∆ so that Comp(Σα,∆α′) is undecidable
for every annotation α′.

Proof. Membership for #op(Σα) = 0.
For arbitrary instances S and T of schemas σ and ω, respectively, the canonical solution CSolΣα

a (S)
can be computed in time polynomial in ‖S‖. Then a solution J in RepA(CSolΣα

a (S)) can be guessed
by simply guessing a valuation of nulls of CSolΣα

a (S). Finally T ∈ [[J]]∆α′ can be checked in non-
deterministic polynomial time by Theorem 2.

Membership for #op(Σα) = 1.
Let ∆ = {ψi(x̄i, z̄i) :– ϕi(x̄i, ȳi) | i = 1, . . . , k}, and let Qi be the query over schema τ expressed

by the first-order formula ϕi(x̄i, ȳi). Assume, without loss of generality, that variables in x̄i, ȳi are
disjoint from variables in x̄j, ȳj , for i 6= j. Also let R1, . . . , Rk be new distinct relation symbols, not
occurring in σ ∪ τ ∪ ω, such that Ri has arity |x̄i| + |ȳi|. Define a set of STDs

Γ = {ψi(x̄i, z̄i) :– Ri(x̄i, ȳi) | i = 1, . . . , k},

and let Γα′ the annotation of Γ with α′.
Given an input (S, T) for the problem Comp(Σα,∆α′), the following holds:

Claim 5. A pair of instances (S, T) belongs to the composition Σα ◦∆α′ if and only if there exists an
instance K of schema {R1, . . . , Rk} and an instance J ∈ [[S]]Σα such that:

1. ‖K‖ = O
(

‖T‖c
)

, for a constant c that depends only on the mappings Σ and ∆;

2. T ∈ RepA(CSol
Γα′

a (K));

3. RKi ⊆ Qi(J), for i = 1, . . . , k;

4. πx̄i
(Ri

K) = πx̄i
(Qi(J)), for i = 1, . . . , k.

Note that by πx̄i
we mean projection on attributes corresponding to the variables in x̄i.

Proof of Claim 5. If (S, T) ∈ Σα ◦ ∆α′ , then there exists an instance J such that (S, J) ∈
(

|Σα|
)

and

(J, T) ∈
(

|∆α′ |
)

. Let v be a valuation that witnesses T ∈ RepA(CSol
∆α′

a (J)). That is, v is a valuation

of nulls of CSol
∆α′

a (J) so that T is in RepA(v(CSol
∆α′

a (J))).
We define K as an instance of schema {R1, . . . , Rk} obtained as follows:

• for each non-empty tuple (t̄0, α0) in a relation R of v(CSol
∆α′

a (J)):

– choose arbitrarily a tuple (t̄, α0) in relation R of CSol
∆α′

a (J) such that t̄0 = v(t̄);

– if (ϕj , ψj , ā, b̄) is the justification for nulls of t̄, put (ā, b̄) in relation RKj (note that when

(ā, b̄) is put in RKj , we have (ā, b̄) ∈ Qj(J));

• for each i ∈ {1, . . . , k} and for each tuple ā ∈ πx̄i
(Qi(J)), add exactly one tuple (ā, b̄) from Qi(J)

to RKi .

26

Clearly ‖K‖ ≤ ‖v(CSol
∆α′

a (J))‖ + ‖πx̄i
(Qi(J))‖. Observe that, for each i, the size of πx̄i

(Qi(J))
is polynomial in ‖T‖. In fact the active domain of πx̄i

(Qi(J)) is contained in the active domain of

CSol
∆α′

a (J), and thus in the active domain of T .

Moreover also ‖v(CSol
∆α′

a (J))‖ is polynomial in ‖T‖. Indeed T ⊇ reℓ(v(CSol
∆α′

a (J))) therefore

‖reℓ(v(CSol
∆α′

a (J)))‖ ≤ ‖T‖. Although v(CSol
∆α′

a (J)) may contain empty tuples and may replicate

tuples of reℓ(v(CSol
∆α′

a (J))) with different annotations, the number of empty tuples is bounded by the

size of ∆α′ , and for each tuple in reℓ(v(CSol
∆α′

a (J))) the number of its replications with different anno-

tations is also bounded by the size of ∆α′ . Therefore ‖v(CSol
∆α′

a (J))‖ ≤ c1·‖rel(v(CSol
∆α′

a (J)))‖+c2
for some constants c1 and c2 that depend on ∆α′ . Then ‖v(CSol

∆α′

a (J))‖ ≤ c1 · ‖T‖ + c2.
We can conclude that the size of K is polynomial in ‖T‖, with a polynomial dependent only on

the mappings; this proves 1. Furthermore, 3 and 4 hold directly by construction of K.

We next show 2. We define a valuation v′ on CSol
Γα′

a (K) and show that that T is in

RepA(v′(CSol
Γα′

a (K))). We let EΓ and E∆ be the sub-instances containing all the empty tuples

of CSol
Γα′

a (K) and CSol
∆α′

a (J), respectively. Notice that, since RKi ⊆ Qi(J) and left-hand sides of
∆α′ and Γα′ are the same, the following hold:

• E∆ ⊆ EΓ. Indeed if an empty tuple (, α0) is in some relation R of E∆, then there exists an STD
ψi :– ϕi in ∆α′ such that Qi(J) is the empty set and ψi contains an atom R(t̄) with annotation

α0. Therefore also RKi is the empty relation, and thus CSol
Γα′

a (K) contains (, α0) in relation
R.

• With a similar argument it can be easily verified that the restriction of CSol
Γα′

a (K) to non-empty

tuples (that is, the instance CSol
Γα′

a (K)−EΓ), is isomorphic to a sub-instance of CSol
∆α′

a (J):
precisely the sub-instance CJ generated by the set of justifications J = {(ϕi, ψi, ā, b̄) | (ā, b̄) ∈
RKi , i = 1, . . . , k} (where, for each relation symbol R, the sub-instance generated by the justifi-
cation (ϕi, ψi, ā, b̄) is precisely the set of annotated tuples occurring in the atoms of R contained
in ψi(ā, ⊥̄(ϕi,ψi,ā,b̄)

)). This isomorphism simply maps nulls given by justifications (ϕi, ψi, ā, b̄) to

nulls given by justifications (Ri, ψi, ā, b̄).

Now, given nulls ⊥ in CJ and ⊥′ in CSol
Γα′

a (K) − EΓ mapped into each other by the isomorphism

we just established, we define v′(⊥′) as v(⊥), so that v′(CSol
Γα′

a (K) − EΓ) = v(CJ). We now prove

that v(CJ) = v(CSol
∆α′

a (J) − E∆).

Since CJ ⊆ CSol
∆α′

a (J) − E∆, we have that v(CJ) ⊆ v(CSol
∆α′

a (J) − E∆). Moreover, by the

construction of K, for each non-empty tuple (t̄0, α0) in some relation R of v(CSol
∆α′

a (J)), there exists
a justification (ϕj , ψj , ā, b̄) ∈ J and a tuple (t̄, α0) in the instance of R generated by (ϕj , ψj , ā, b̄), such
that v(t̄) = t̄0. Since (t̄, α0) is generated by a justification of J , then (t̄, α0) is a tuple of R in CJ ,

therefore v(CJ) ⊇ v(CSol
∆α′

a (J)−E∆). This proves the reverse inclusion, thus v(CSol
∆α′

a (J)−E∆) =

v(CJ) = v′(CSol
Γα′

a (K) − EΓ). As a consequence

reℓ(v(CSol
∆α′

a (J))) = reℓ(v′(CSol
Γα′

a (K))) (3)

Furthermore since E∆ ⊆ EΓ, we have

v(CSol
∆α′

a (J)) = v(CSol
∆α′

a (J) − E∆) ∪ E∆ ⊆ v′(CSol
Γα′

a (K) − EΓ) ∪ EΓ = v′(CSol
Γα′

a (K))

and thus
v(CSol

∆α′

a (J)) ⊆ v′(CSol
Γα′

a (K)). (4)

27

Now recall that v is the valuation witnessing T ∈ RepA(CSol
∆α′

a (J)). Therefore T is in

RepA(v(CSol
∆α′

a (J))). Then T contains reℓ(v(CSol
∆α′

a (J))) and thus, by (3), the instance T con-

tains reℓ(v′(CSol
Γα′

a (K))). Moreover each tuple t̄ in a relation R of T coincides with some tuple

of v(CSol
∆α′

a (J)) on closed positions; then, by (4), t̄ coincides with some tuple of v′(CSol
Γα′

a (K)).

Therefore T is in RepA(v′(CSol
Γα′

a (K))), and then T ∈ RepA(CSol
Γα′

a (K)). This proves item 2 and
completes the proof of one direction of the claim.

Conversely, assume that there exists an instance K of schema {R1, . . . , Rk} and an instance J ∈
[[S]]Σα satisfying 1, 2, 3 and 4 of the claim. We prove that (J, T) ∈

(

|∆α′ |
)

, implying that (S, T) ∈
(

|Σα|
)

◦
(

|∆α′ |
)

. From 2 we know that there exists a valuation v′ of CSol
Γα′

a (K) such that T is in

RepA(v′(CSol
Γα′

a (K))). We now define a valuation v on nulls of CSol
∆α′

a (J) such that T is in

RepA(v(CSol
∆α′

a (J))).

Again we let EΓ and E∆ the sub-instances containing all the empty tuples of CSol
Γα′

a (K) and

CSol
∆α′

a (J), respectively. Moreover, if we let C(ϕ,ψ,ā,b̄) denote the instance generated by the justifi-

cation (ϕ,ψ, ā, b̄), then CSol
∆α′

a (J) can be partitioned into the following disjoint sub-instances:

i. the sub-instance E∆ containing all the empty tuples;

ii. the sub-instance CJ generated by the set of justifications J = {(ϕi, ψi, ā, b̄) | (ā, b̄) ∈ RKi , i =
1, . . . , k};

iii. sub-instances C(ϕi,ψi,ā,b̄)
, for all justifications (ϕi, ψi, ā, b̄) of nulls of CSol

∆α′

a (J) such that

(ϕi, ψi, ā, b̄) /∈ J .

Notice that the valuation v can be defined independently on each of these sub-instances partitioning

CSol
∆α′

a (J), since their sets of nulls are pairwise disjoint.
Definition of v on CJ . As observed already, by 3 and the fact that left-hand sides of ∆α′ and Γα′

coincide, CSol
Γα′

a (K)−EΓ is isomorphic to CJ . So for each pair of nulls ⊥′ in CSol
Γα′

a (K)−EΓ, and

⊥ in CJ related by this isomorphism, we define v(⊥) as v′(⊥′). Hence v′(CSol
Γα′

a (K)−EΓ) = v(CJ),
then

v′(CSol
Γα′

a (K)) = v(CJ) ∪ EΓ (5)

Definition of v on instances C(ϕi,ψi,ā,b̄)
. For each such sub-instance C(ϕi,ψi,ā,b̄)

defined as in iii, we

know that (ā, b̄) /∈ RKi . However, (ā, b̄) ∈ Qi(J) and, by 4, we can find a tuple (ā, c̄) in RKi , and then a
justification (ϕi, ψi, ā, c̄) in J . A key observation is that C(ϕi,ψi,ā,b̄)

is isomorphic to C(ϕi,ψi,ā,c̄) ⊆ CJ

(since they consist of the tuples occurring in ψi(ā, ⊥̄(ϕi,ψi,ā,b̄)
) and ψi(ā, ⊥̄(ϕi,ψi,ā,c̄)), respectively).

Then, for each pair of nulls ⊥ in C(ϕi,ψi,ā,b̄)
and ⊥′ in C(ϕi,ψi,ā,c̄) mapped into each other by this

isomorphism, we define v(⊥) = v(⊥′). Observe that, since C(ϕi,ψi,ā,c̄) ⊆ CJ , the valuation v has
already been defined on its nulls. As a consequence v(C(ϕi,ψi,ā,b̄)

) = v(C(ϕi,ψi,ā,c̄)) ⊆ v(CJ). Since this

holds for all sub-instances C(ϕi,ψi,ā,b̄)
defined in iii, we conclude that v(CSol

∆α′

a (J) − E∆) = v(CJ)
that is

v(CSol
∆α′

a (J)) = v(CJ) ∪ E∆ (6)

Now recall that T is in RepA(v′(CSol
Γα′

a (K))), and then T ⊇ reℓ(v′(CSol
Γα′

a (K))). By

comparing (5) and (6) one derives reℓ(v′(CSol
Γα′

a (K))) = reℓ(v(CSol
∆α′

a (J))), therefore T ⊇

reℓ(v(CSol
∆α′

a (J))). Moreover each tuple t̄ in a relation R of T coincides with some tuple t̄′ of

relation R in v′(CSol
Γα′

a (K)) on positions annotated as closed. Then there are two cases.

• Case 1. If t̄′ is in v(CJ), then t̄′ is also in v(CSol
∆α′

a (J)).

• Case 2. If t̄′ is in EΓ, then t̄′ is an empty tuple and must be annotated all-open. We now show

that there exists some all-open annotated tuple also in v(CSol
∆α′

a (J)).

28

Indeed t̄′ is also a tuple of R in CSol
Γα′

a (K), therefore there exists an STD ψi :– Ri of Γα′ such
that ψi contains an atom of relation R with annotation all-open. Consequently the STD ψi :– ϕi
is in ∆α′ , and thus CSol

∆α′

a (J) contains some (possibly empty) tuple of R annotated all-open.

Thus also v(CSol
∆α′

a (J)), contains a tuple annotated all-open in relation R.

In both cases there exists some tuple of relation R in v(CSol
∆α′

a (J)) coinciding with t̄ on
closed positions. Since this holds for all tuples t̄ in all relations R of T , we conclude that T is in

RepA(v(CSol
∆α′

a (J))).

This proves that T ∈ RepA(CSol
∆α′

a (J)), that is (J, T) ∈
(

|∆α′ |
)

, and concludes the proof of Claim
5. 2

Now consider the query Q over schema τ expressed by the first order formula

β(x̄1, ȳ1 . . . , x̄k, ȳk) = ϕ1(x̄1, ȳ1) ∧ · · · ∧ ϕk(x̄k, ȳk).

Clearly, for each instance K of schema {R1, . . . Rk}, and each instance J of schema τ , we have

RK1 × · · · ×RKk ⊆ Q(J) ⇔ RKi ⊆ Qi(J) for each i ∈ {1 . . . k}

and

πx̄1,...,x̄k
(Q(J)) = πx̄1,...,x̄k

(RK1 × · · · ×RKk) ⇔ πx̄i
(RKi) = πx̄i

(Qi(J)) for each i ∈ {1 . . . k}.

A non-deterministic exponential time algorithm for the composition problem can be obtained as
follows:

• an instance K of schema {R1, . . . Rk} and of size polynomial in ‖T‖ is guessed;

• it is checked that T ∈ RepA(CSol
Γα′

a (K)) in non-deterministic polynomial time, as stated in
Theorem 2;

• finally it is checked in non-deterministic exponential time, as stated in Lemma 2, that there exists
J ∈ RepA(CSolΣα

a (S)) such that RK1 × · · · × RKk ⊆ Q(J) and πx̄1,...,x̄k
(Q(J)) = πx̄1,...,x̄k

(RK1 ×
· · · ×RKk).

By Claim 5, this verifies precisely whether (S, T) ∈
(

|Σα|
)

◦
(

|∆α′ |
)

, thus proving that Comp(Σα,∆α′)
is in NEXPTIME.

Hardness and undecidability.
We now prove the hardness results for #opΣα = 0, 1, and the undecidability of the composition

problem for #opΣα > 1, by means of a reduction from the complement of the query answering
problem. Let (σ, τ,Γγ) be an annotated schema mapping and Q an arbitrary FO query over the target
represented by an FO formula ϕ(x̄). We reduce the complement of the problem DEQA(Γγ , Q) to the
problem Comp(Σα,∆α′), where Σα and ∆α′ are constructed from Γγ and ϕ as follows:

• A source schema for Σ is σ ∪ {R′}, a target schema is τ ∪ {R}, where R and R′ are relation
symbols distinct from all symbols of σ ∪ τ and have the same arity as Q, and:

Σα = Γγ ∪ {R(x̄cl) :– R′(x̄)}

where x̄ is a tuple of distinct variables.

29

• A source schema for ∆ is τ ∪ {R}, its target schema is {C}, with C of the same arity as Q, and
the only STD is

C(x̄) :– adom(x̄) ∧ ϕ(x̄) ∧R(x̄)

where x̄ is a tuple of distinct variables, and adom(x̄) is a first-order formula of vocabulary
τ checking that each element of x̄ either belongs the the active domain of τ -relations or is a
constant occurring in ϕ(x̄).

• Let finally ∆α′ be an arbitrary annotation of ∆.

Given an instance I of schema σ and a tuple t̄ with |t̄| = |x̄|, we construct an input (S, T) for
Comp(Σα,∆α′) as follows. The source instance S is a copy of I on relations of σ, and the interpretation
of R′ in S is {t̄}. The target T is the empty instance of relation C.

We now prove that (S, T) ∈ Σα ◦ ∆α′ if and only if t̄ /∈ certainΓγ (Q, I). Assume first that t̄ /∈

certainΓγ (Q, I). Then there exists an instance Jτ ∈ RepA(CSol
Γγ

a (I)) such that t̄ /∈ Q(Jτ), that is
Jτ 2 adom(t̄)∧ϕ(t̄). Let J the instance of schema τ ∪{R} obtained by extending Jτ with instance {t̄}
for R. The instance J is in RepA(CSolΣα

a (S)) (that is, (S, J) ∈
(

|Σα|
)

), since CSolΣα
a (S) coincides

with CSol
Γγ

a (I) on relations of τ , and interprets R as {t̄cl}.
The only possible satisfying assignment for the right-hand side of ∆α′ in J is x̄ = t̄, since t̄ is the

only tuple in RJ . Indeed, since Jτ 2 adom(t̄)∧ϕ(t̄), we also have J 2 adom(t̄)∧ϕ(t̄). Therefore there

is no satisfying assignment for the right-hand side of ∆α′ in J , and thus CSol
∆α′

a (J) interprets C

as the empty tuple {(, α′)}. Then RepA(CSol
∆α′

a (J)) (i.e. [[J]]∆α′) contains the empty instance T .
Consequently (J, T) ∈

(

|∆α′ |
)

and thus (S, T) ∈ Σα ◦ ∆α′ .

Conversely, assume that t̄ ∈ certainΓγ (Q, I). For an arbitrary instance J ∈ RepA(CSolΣα
a (S)), let

Jτ the restriction of J to vocabulary τ . Clearly Jτ ∈ RepA(CSol
Γγ

a (I)), and thus t̄ ∈ Q(Jτ), that
is Jτ |= adom(t̄) ∧ ϕ(t̄). Then also J |= adom(t̄) ∧ ϕ(t̄), and so t̄ is a satisfying assignment for the

right-hand side of ∆α′ in J . As there are no other satisfying assignments, reℓ(CSol
∆α′

a (J)) interprets

C as {t̄}. This implies that, for each instance T ′ in RepA(CSol
∆α′

a (J)) (regardless of the annotation
α′), the tuple t̄ is in CT

′

. As a consequence, the empty instance T does not belong to [[J]]∆α′ and,
because this holds for all J ∈ [[S]]Σα , we have that (S, T) /∈ Σα ◦ ∆α′ .

This completes the reduction. Now observe that #op(Σα) = #op(Γγ), therefore from Theorem 3
it follows that:

• there exist mappings Σα and ∆, with #op(Σα) = 0, such that Comp(Σα,∆α′) is NP-complete
for each annotation α′ on ∆;

• there exist mappings Σα and ∆ with #op(Σα) = 1 such that Comp(Σα,∆α′) is NEXPTIME-
complete for each annotation α′ on ∆;

• for each k > 1 there exist mappings Σα and ∆ with #op(Σα) = k such that Comp(Σα,∆α′) is
undecidable for each annotation α′ on ∆.

This proves the complexity bounds, but there is still one statement claimed above that is not yet
proved. Namely, for the case of #op(Σα) = 0 (i.e., under the CWA) we claimed that Σ and ∆ can
be found that only used CQ-STDs such that Comp(Σcl,∆α′) is NP-complete for every annotation α′.
We now give a direct proof of this special case, adapting the proof of NP-hardness of the composition
problem under OWA from [13].

30

We reduce 3-colorability to the composition problem Comp(Σcl,∆α′) where Σ is the following set
of STDs over source schema σ = {V,E,D} and target schema τ = {C,E′,D′}:

Σ :
C(x, z) :– V (x)
E′(x, y) :– E(x, y)
D′(x, y) :– D(x, y)

∆ is the following set of STDs over source schema τ and target schema ω = {D̄}:

∆ :
D̄(u, v) :– E′(x, y) ∧ C(x, u) ∧ C(y, v)
D̄(u, v) :– D′(u, v)

Finally, α′ is an arbitrary fixed annotation on ∆.
An input graph G for the 3-colorability problem can be translated into the following instances S

and T of schema σ and ω, respectively:

• V S is interpreted as the set of nodes of G;

• ES as the set of edges of G;

• DS and D̄T are interpreted as the relation 6= between colors {r, g, b}.

We now prove that (S, T) ∈
(

|Σcl|
)

◦
(

|∆α′ |
)

if and only if G is 3-colorable. Let {ν1, . . . , νn} be the

set of vertices of G, observe that CSol
Σcl
a (S) interprets relations E′ and D′ as (all-closed annotated)

copies of ES and DS respectively, and relation C as {(νcl
i ,⊥

cl
i) | i = 1, . . . , n}. For each valuation v of

nulls ⊥i, i = 1, . . . , n, let Jv = v(rel(CSol
Σcl
a (S))) and consider Jv as an input to ∆α′ . Observe that

CSol
∆α′

a (Jv) is an annotated instance without nulls, and therefore reℓ(CSol
∆α′

a (Jv)) is in [[Jv]]
∆α′ ,

no matter what the annotation α′ is. Moreover, reℓ(CSol
∆α′

a (Jv)) interprets relation D̄ as

DS ∪ {(v(⊥i), v(⊥j)) | (νi, νj) is an edge of G}. (7)

Now assume that G is 3-colorable, and let ci be the color associated to νi in an {r, g, b}-coloring
of G. Define a valuation v̄ on CSol

Σcl
a (S) as v̄(⊥i) := ci. Then, for each edge (νi, νj) of G, the

pair (v̄(⊥i), v̄(⊥j)) is in DS . This implies that reℓ(CSol
∆α′

a (Jv̄)) interprets relation D̄ as DS. That

is, reℓ(CSol
∆α′

a (Jv̄)) = T , and therefore T ∈ [[Jv̄]]
∆α′ . Clearly Jv̄ ∈ [[S]]Σcl , and therefore (S, T) ∈

(

|Σcl|
)

◦
(

|∆α′ |
)

.
Conversely, assume (S, T) ∈

(

|Σcl|
)

◦
(

|∆α′ |
)

. Then there exists J ∈ [[S]]Σcl such that T ∈ [[J]]∆α′ .

Let ṽ be the valuation of CSol
Σcl
a (S) such that J = Jṽ. As T ∈ [[J]]∆α′ , we see that T con-

tains reℓ(CSol
∆α′

a (J)), no matter what the annotation α′ is. Moreover, as mentioned already,

reℓ(CSol
∆α′

a (J)) interprets relation D̄ as in (7), while T interprets D̄ as DS. This implies that,
for each (νi, νj) edge of G, the tuple (ṽ(⊥i), ṽ(⊥j)) is in DS . Consequently the mapping which assigns
to each vertex νi of G the color ṽ(⊥i) is an {r, g, b}-coloring of G. This concludes the proof of Theorem
4. 2

By Corollary 4 and Theorem 4, if both Σ and ∆ contain only CQ-STDs, the composition problem
is in NP if Σ has an all-closed annotation, or ∆ has an all-open annotation. Moreover, composing Σcl

with any ∆α′ (even if both have FO-STDs) matches the complexity of OWA-composition achieved only
for CQ-STDs. For more open nulls, our results suggest that one needs to restrict STDs to monotone
to keep the complexity reasonable.

The results on the complexity of the composition problem Comp(Σα,∆α′) presented in this section
are summarized in the table in Figure 1.

31

Σα

∆α′

arbitrary
α′ = op and

monotone STDs

#op = 0 NP-complete

#op = 1 NEXPTIME-complete NP-complete

#op > 1 undecidable

Figure 1: Complexity of Comp(Σα,∆α′)

Syntactic descriptions of composition

As was noticed in [13], under the OWA, schema mapping composition cannot be captured syn-
tactically without increasing the class of STDs: there exist Σ and ∆ (with CQ-STDs only) such that

one cannot find Γ with FO-STDs satisfying
(

|Γ|
)OWA

=
(

|Σ|
)OWA

◦
(

|∆|
)OWA

. One can see this by a
complexity gap argument: OWA-schema mappings have low (AC0) complexity, but their composition
could be NP-hard [13]. Arbitrarily annotated mappings could be of higher complexity, but we can still
show the following strong failure of closure under composition without any additional assumptions.

Proposition 6. There exist schema mappings with CQ-STDs Σ and ∆ such that, given their arbitrary
annotations α and α′, there is no annotated mapping Γα′′ with FO-STDs that satisfies

(

|Γα′′ |
)

=
Σα ◦ ∆α′.

Proof. Consider the following set of STDs Σ with a source schema σ = {R,P} and a target schema
τ = {N,C}, where all relations are unary:

Σ :

{

N(y) :– R(x)
C(x) :– P (x)

and a set of STDs ∆, whose source schema is τ and a target schema ω, containing a single binary
relation D:

∆ : D(x, y) :– C(x) ∧N(y)

Fix an arbitrary annotation α on Σ, and α′ on ∆, and assume by contradiction, that there exists a set of
annotated STDs Γγ , over the source schema σ and the target schema ω, satisfying

(

|Γγ |
)

=
(

|Σα|
)

◦
(

|∆α′ |
)

.
Let k be the maximum number of atoms in the left-hand side of any dependency in Γγ ; then choose

n > k and let S0 be an instance of schema σ having R = {0} and P = {1, . . . , n}. The following claim
describes properties of instances related to S0 in

(

|Σα|
)

◦
(

|∆α′ |
)

.

Claim 6. Let T0 be an instance {(i,⊥), i = 1, . . . , n} of relation D. Then

1. For each valuation v on T0, we have (S0, v(T0)) ∈
(

|Σα|
)

◦
(

|∆α′ |
)

; and

2. For each instance T such that (S0, T) ∈
(

|Σα|
)

◦
(

|∆α′ |
)

, we have T ⊇ v(T0), for some valuation
v.

Proof of Claim 6. Observe that reℓ(CSolΣα
a (S0)) interprets relation N as a singleton {⊥0}, and C

as {1, . . . , n}. Thus, regardless of the annotation α, for each solution J such that (S0, J) ∈
(

|Σα|
)

,
the relation NJ contains {v0(⊥0)}, for some valuation v0, and CJ contains {1, . . . , n}. Therefore

reℓ(CSol
∆α′

a (J)) contains {1, . . . , n}×{v0(⊥0)}, which belongs to Rep(T0). Clearly, also each instance

in RepA(CSol
∆α′

a (J)) (that is, each instance T such that (J, T) ∈
(

|∆α′ |
)

) contains {1, . . . , n} ×

32

{v0(⊥0)}, regardless of α′. As a consequence, each instance T of schema ω such that (S0, T) ∈
(

|Σα|
)

◦
(

|∆α′ |
)

contains some valuation of T0. This proves 2).
Moreover, for each valuation v of ⊥, if we take the instance J0 of schema τ such that NJ0 = {v(⊥)}

and CJ0 = {1, . . . , n}, then (S0, J0) ∈
(

|Σα|
)

and (J0, v(T0)) ∈
(

|∆α′ |
)

. This proves 1) and concludes
the proof of the claim. 2

Now we distinguish two cases.

• Case 1. There is a tuple (a, c), with c ∈ Const, in reℓ(CSol
Γγ

a (S0)). Then any instance

of RepA(CSol
Γγ

a (S0)) contains a tuple (b, c), for some b. Now take any valuation v on T0

such that v(⊥) 6= c, then each tuple of v(T0) is of the form (i, d) with d 6= c, thus v(T0) /∈

RepA(CSol
Γγ

a (S0)). In other words (S0, v(T0)) /∈
(

|Γγ |
)

and thus (S0, v(T0)) /∈
(

|Σα|
)

◦
(

|∆α′ |
)

.
But this contradicts Claim 6.

• Case 2. Only nulls occur in the second column of reℓ(CSol
Γγ

a (S0)). By construction of the

canonical solution, k is the maximum number of tuples in reℓ(CSol
Γγ

a (S0)) that can have a null
in common. Therefore, by assigning distinct constants to distinct nulls, one obtains a valuation
T̄ of reℓ(CSol

Γγ

a (S0)) where the same constant occurs at most k times in the second column.

On the other hand, no matter what the annotation γ is, T̄ is in RepA(CSol
Γγ

a (S0)). Thus
(S0, T̄) ∈

(

|Γγ |
)

and then (S0, T̄) ∈
(

|Σα|
)

◦
(

|∆α′ |
)

. This implies, by Claim 6, that T̄ contains a
valuation of T0, and therefore it contains n > k occurrences of the same constant in the second
column, which contradicts the previous conclusion.

In both cases contradiction is reached, thus there exists no annotated mapping Γγ such that
(

|Γγ |
)

=
(

|Σα|
)

◦
(

|∆α′ |
)

. This completes the proof of Proposition 6. 2

So we need to extend the class of mappings to make it closed under composition. We say that

a class of mappings C with a semantics
(

| · |
)C

is closed under composition if for every two mappings
(σ, τ,Mστ) and (τ, ω,Mτω) from C, there exists another mapping (σ, ω,Mσω) from C so that

(

|Mσω |
)C

=
(

|Mστ |
)C

◦
(

|Mτω|
)C
.

In [13], such a class was found under the OWA: it was based on Skolemized CQ-STDs1. We now define
such Skolemized STDs in an annotated setting, and prove a composition lemma for them that gives
us two classes of annotated mappings closed under composition: the class of [13] and its closed-world
analog.

Assume that we have a countable collection F of function symbols. Given two schemas σ and τ ,
an annotated Skolemized STD, or an annotated SkSTD, over them is an expression of the form:

ψτ (u1, . . . , uk) :– ϕσ(x1, . . . , xn),

together with an annotation α of ψτ where

• ϕσ is an FO formula over σ∪F whose atomic subformulae are either R(z̄), where z̄ are variables,
or y = f(z̄), where y is a variable;

• ψτ is a conjunction of atomic τ formulae; and

• each ui is either one of the xj ’s, or f(z̄), for some f ∈ F and |arity(f)| variables z̄ among x̄.

1Such STDs were called second-order in [13] because their semantics was defined by existentially quantifying over
the Skolem functions. We prefer to call them Skolemized STDs, and use CQ, FO, etc in STDs to restrict the class of
formulae ϕ in ψ :– ϕ.

33

Annotations are defined as before, i.e. by assigning op or cl to each position in each atom in ψτ .
For example, if our source has tuples (em,proj) of employee names and projects and we want

to create a target with tuples (empl id,em,phone) that invents ids and phones of employees, we can
capture this by an annotated SkSTD

T (f(em)cl, emcl, g(em,proj)op) :– S(em,proj) (8)

indicating that one id is created for each name, with f being the function from names to ids. Using
a null instead of f(em) would have generated a new null for each (em,proj) pair, rather than just the
name. The phone attribute is open, allowing employees to have multiple phones.

Next, we extend the definition of the semantics to annotated mappings (σ, τ,Σα) with SkSTDs.
Let S be a source instance. Let F = {f1, . . . , fr} be the set of function symbols used in Σα, and for
each m-ary fi, let f ′i be a function from Const

m to Const. For this set F ′ = {f ′1, . . . , f
′
r}, we construct

a solution SolΣα

F ′ (S) as follows: compute the result of ϕσ in S, with functions interpreted as F ′, and
for each tuple ā in it, put annotated tuples in the target to satisfy ψτ (ū

′), where, if ui = xj , then
u′i = aj , and if ui = f(x̄) then u′i = f ′(ā). The annotation is the same as in Σα. If ϕσ evaluates to
the empty set, then, as before, empty annotated tuples are added.

In our example (8), if S = {(John,P1)} and f ′(John) = 001 and g′(John,P1) = 1234, then
Sol{f ′,g′}(S) has one tuple (001cl, Johncl, 1234op).

For Σα with SkSTDs, the semantics of S is given by

[[S]]Σα =
⋃

F ′

RepA

(

SolF ′(S)
)

,

as F ′ ranges over functions from Const to Const that match the arity of functions in F . Note that as
SolF ′(S) has no nulls, the only effect of applying RepA to it is adding tuples that coincide with some
tuple t in SolF ′(S) on all attributes annotated cl. For example, [[S]]Σα for the SkSTD (8) and the
above source will contain a relation {(001, John, 1234), (001, John, 5678)}.

Then, finally, we define
(

|Σα|
)

= {(S, T) | T ∈ [[S]]Σα}.

First observe that if Σ is a set of un-annotated SkSTDs, then
(

|Σop|
)

is precisely the semantics of [13]
— that is, [13] used the open-world semantics. A formal proof is given below.

Proposition 7. If Σ is a set of unannotated SkSTDs that use function symbols F = {f1, . . . , fr}, and
ΨΣ stands for the corresponding second-order sentence

ΨΣ = ∃f1 . . . ∃fr
∧

ψ:−ϕ(x̄) ∈ Σ

∀x̄
(

ϕ(x̄) → ψ
)

then
(

|Σop|
)

is precisely the set of pairs (S, T) such that (S, T) |= ΨΣ.

Note that the set of pairs (S, T) such that (S, T) |= ΨΣ represents the semantics of the mapping
Σ according to [13].
Proof. Let γΣ the first order sentence

∧

ψ:−ϕ(x̄) ∈ Σ

∀x̄(ϕ(x̄) → ψ).

It follows from the definition of RepA for all-open annotated instances that, for given actual

functions F ′, an instance T is in RepA(Sol
Σop

F ′ (S)) if and only if reℓ(Sol
Σop

F ′ (S)) ⊆ T .

34

On the other hand, a tuple t̄ is in a relation R of reℓ(Sol
Σop

F ′ (S)) if and only if there exists an
SkSTD ψ :– ϕ(x̄) in Σ and a constant tuple ā such that ϕ(ā) holds in S, with F interpreted as F ′,
and R(w̄) is an atom of ψ with w̄[x̄→ ā, F̄ → F̄ ′] = t̄.

Consequently, T is in RepA(Sol
Σop

F ′ (S)) if and only if whenever for some SkSTD ψ(ū) :– ϕ(x̄) of
Σ the formula ϕ(ā) holds in S with F interpreted as F ′, and R(w̄) is an atom of ψ(ū), then we have

that the tuple w̄[x̄→ ā, F̄ → F̄ ′] is in RT . That is, T is in RepA(Sol
Σop

F ′ (S)) if and only if T satisfies
γΣ with F interpreted as F ′.

It follows that (S, T) ∈
(

|Σop|
)

(that is, there exist actual functions F ′ such that T is in

RepA(Sol
Σop

F ′ (S))) if and only if (S, T) |= ΨΣ, as claimed. 2

Even though mappings with SkSTDs do not explicitly allow null values, semantically they extend
the usual STD-based mappings:

Lemma 4. For every annotated mapping (σ, τ,Σα) based on STDs there exists an equivalent mapping
(σ, τ,Γα) with the same annotations based on SkSTDs, i.e.

(

|Σα|
)

=
(

|Γα|
)

. Furthermore, the right-hand
sides of STDs in Σ and in Γ are the same.

Proof. For each STD ψ(x̄, z̄) :– ϕ(x̄, ȳ) in Σ, and for each variable z in z̄, we create a fresh function
symbol f(ϕ,ψ,z) of arity |x̄| + |ȳ|, then we replace each occurrence of z in ψ with f(ϕ,ψ,z)(x̄, ȳ). The
same annotation α is maintained on atoms of ψ. Γα is the set of SkSTDs thus obtained from Σα.

It was already observed in [13] that Γ and Σ are logically equivalent, therefore they are equivalent
under the semantics of [13]. This implies that, if α is all-open,

(

|Σα|
)

=
(

|Γα|
)

; we now prove that the
equality holds also for an arbitrary α.

In what follows we omit the superscripts Σα and Γα, as they will be always understood. Fix an
arbitrary source instance S; recall that in CSola(S) there is exactly one distinct null for each tuple
(ϕ,ψ, ā, b̄, z) where ϕ and ψ identify a STD in Σα, (ā, b̄) is a satisfying assignment for ϕ(x̄, ȳ) in S
and z is a variable among z̄ in ψ(x̄, z̄).

Given actual functions F ′ interpreting function symbols of Γα such that f ′(ϕ,ψ,z) interprets f(ϕ,ψ,z),

and given a valuation v of nulls of CSola(S), we write F ′ ∼ v if for each null ⊥(ϕ,ψ,ā,b̄,z) of CSola(S),

we have v(⊥(ϕ,ψ,ā,b̄,z)) = f ′(ϕ,ψ,z)(ā, b̄). Note that if F ′ ∼ v then v(CSola(S)) = SolF ′(S).

Now assume that a target instance T is in [[S]]Σα . Then there exists a valuation v on CSola(S)
such that T is in RepA(v(CSola(S))). From this v one can always construct actual functions F ′ for
Γα such that v ∼ F ′. Therefore SolF ′(S) = v(CSola(S)), and thus T , being in RepA(SolF ′(S)), is
in [[S]]Γα .

Conversely assume that T ∈ [[S]]Γα . Then T is in RepA(SolF ′(S)), for some actual functions F ′.
Similarly one can construct a valuation v such that v ∼ F ′, and then T ∈ RepA(v(CSola(S))) and
thus, T ∈ [[S]]Σα . This concludes the proof of Lemma 4. 2

We now state the main technical lemma which shows when two annotated mappings can be com-
posed.

Lemma 5. Let Σα and ∆α′ be two schema mappings with annotated SkSTDs such that either

• the annotation of ∆α′ is all-open, and it only has monotone queries in its SkSTDs; or

• the annotation of Σα is all-closed.

Then one can construct a composition mapping Γα′ (i.e.
(

|Γα′ |
)

=
(

|Σα|
)

◦
(

|∆α′ |
)

) with annotated
SkSTDs such that

• the left-hand sides and annotations of SkSTDs in Γα′ and ∆α′ are the same;

• the right-hand sides of SkSTDs in Γα′ are CQs if the same is true for Σα and ∆α′ .

35

Proof. We construct a mapping Γα′ , with annotated SkSTDs, from Σα and ∆α′ using an adaptation
of the composition algorithm defined in [13].

We proceed according to the following steps:

1. Variables and function symbols are renamed, so that no variable, as well as no function symbol,
occurs both in Σα and ∆α′ .

2. Constraints in Σα are put in the following normal form. Each SkSTD R1(ū1) ∧ · · · ∧
Rm(ūm) :– ϕ(x̄) in Σ is replaced with the set of dependencies Rj(ūj) :– ϕ(x̄), for j = 1, . . . ,m,
and annotations are inherited from α. Observe that the transformation preserves

(

|Σα|
)

.

3. For each SkSTD ψ :– η with annotation αψ in ∆α′ we put a SkSTD ψ :– η′ with annotation αψ
in Γα′ . The formula η′ is obtained from η by replacing each relational atom R(ȳ) occurring in η
with the sub-formula βR(ȳ) constructed as follows. Let

R(ū1) :– ϕ1(z̄1)
...

R(ūk) :– ϕk(z̄k)

be precisely the set of SkSTDs in the normal form of Σ having an atom of relation R in the
left-hand side. Then βR(ȳ) is the following formula over the vocabulary that includes σ and
function symbols used in SkSTDs in Σ:

βR(ȳ)
def
=

k
∨

j=1

∃z̄j(ϕj(z̄j) ∧ ȳ = ūj)

It can be easily verified that Γα′ is a set of SkSTDS over source schema σ and target schema ω.
Furthermore, by construction, each SkSTD in Γα′ is obtained from a SkSTD in ∆α′ by preserving
left-hand side and annotation, therefore Γα′ and ∆α′ have the same annotated left-hand sides.

In the case that Σα and ∆α′ contain only CQ-SkSTDs, we now show that Γα′ is equivalent (in
terms of

(

| · |
)

) to another mapping with only CQ-SkSTDs, which still preserves left-hand sides of ∆α′ .
Let ψ :– η be an arbitrary SkSTD in ∆, and let η = θ∧R1(x̄1)∧· · ·∧Rn(x̄n), where θ is a conjunction
of equality atoms. We know that the corresponding SkSTD in Γα′ is ψ :– η′ where η′ is of the form
η′ = θ∧

∧n
i=1

∨ki

j=1 γij , with γij = ∃z̄ijδij , and δij a conjunction of atomic sub-formulae of free variables
x̄i, z̄ij . Clearly η′ can be rewritten as

k1
∨

j1=1

. . .

kn
∨

jn=1

n
∧

i=1

(

γiji ∧ θ
)

,

and thus the SkSTD ψ :– η′ is equivalent to the collection of SkSTDs {ψ :–
∧n
i=1(γiji ∧ θ), ji ∈

1, . . . , ki for i = 1, . . . , n}.
Now assume without loss of generality that variables z̄ij are all distinct from variables z̄hk for i 6= h

or j 6= k. Then ψ :– η′ is equivalent to the collection of SkSTDs

Π = {ψ :– ∃z̄1j1 . . . z̄njn

n
∧

i=1

(δiji ∧ θ), for ji ∈ 1, . . . , ki for i = 1, . . . , n},

with annotations the same as in α′.
In each SkSTD of Π, existential quantifiers can be dropped without changing the semantics

(

|Π|
)

.
Indeed terms of ψ are not based on variables ziji , therefore for each source instance S and actual
function H ′, the computation of SolΠ

H′(S) is not affected by the presence of the quantifiers. (Note
that it is important that we work here with SkSTDs, and new values invented in targets are applications

36

of function terms; hence, variables that are not used in those terms or among target variables can be
quantified out without changing the semantics.)

To sum up, if ∆α′ and Σα contain only CQ-SkSTD, each SkSTD ψ :– η′ in Γα′ can be replaced with
the set of CQ-SkSTDs {ψ :–

∧n
i=1(δiji ∧ θ), ji ∈ 1, . . . , ki for i = 1, . . . , n}, without affecting

(

|Γα′ |
)

.
Hence Γα′ is equivalent to a mapping with only CQ-SkSTDs which has the same left-hand sides of
∆α′ .

We now show that, if α is the all-closed annotation, then
(

|Γα′ |
)

=
(

|Σα|
)

◦
(

|∆α′ |
)

. Let F and G and
H the sets of function symbols used in Σα, ∆α′ and Γα′ , respectively. Clearly H is a subset of F ∪G.

For each sub-formula ϕ occurring in the right-hand side of an SkSTD of ∆α′ (i.e., a formula over
τ and G), we let ϕ′ the formula obtained from ϕ by replacing each relational atom R(ȳ) with βR(ȳ),
as defined above. Note that ϕ′ is a formula over σ and function symbols in H.

We start by proving the following claim.

Claim 7. If S is an instance of schema σ, and F ′ and G′ are functions interpreting function symbols
F and G respectively, and H ′ is the set of functions interpreting each function symbol of H ∩ F as in
F ′ and each function symbol of H ∩G as in G′, then the following hold:

a) For each SkSTD ψ :– η of ∆, each sub-formula ϕ(x̄) of η, and each tuple of constants ā, the
formula ϕ(ā) holds in reℓ(SolΣα

F ′ (S)), with functions G interpreted as G′, if and only if ϕ′(ā)
holds in S, with functions from H interpreted as H ′.

b) Sol
Γα′

H′ (S) = Sol
∆α′

G′ ◦ reℓ ◦ SolΣα

F ′ (S).

Proof of Claim 7. Throughout the proof of the claim we let J stand for reℓ(SolΣα

F ′ (S)).
Proof of a). The proof is by induction on the structure of ϕ:

• If ϕ(x̄) consists of a relational atom R(z̄) (where z̄ is a tuple of variables and x̄ represents the
distinct variables occurring in z̄) then ϕ′(x̄) = βR(z̄). In particular, ϕ′ can only mention functions
from F .

Therefore ϕ(ā) holds in J under interpretation of functions G′:

iff the tuple z̄[x̄→ ā] is in RJ ; that is

iff (by definition of J as SolΣα

F ′ (S)) there exists a SkSTD R(ūj) :– ϕj(z̄j) in Σ (in normal form),
and a tuple b̄ over Const such that ϕj(b̄) holds in S, under interpretation F ′ of F , and
ūj [z̄j → b̄, F → F ′] = z̄[x̄→ ā];

iff (by construction of βR(z̄)) there exists a disjunct γ(x̄) in βR(z̄) (γ(x̄) = ∃z̄j(ϕj(z̄j) ∧ z̄ = ūj))
such that γ(ā) holds in S under interpretation F ′ of F ;

iff ϕ′(ā) holds in S under interpretation F ′ of F .

iff ϕ′(ā) holds in S under interpretation H ′ of H (since H ′ interprets functions of F as in F ′,
and only functions of F occur in ϕ′(x̄)).

• If ϕ(x̄) consists of an equality atom y = g(ȳ) where y and ȳ are variables in x̄ and g ∈ G, then
ϕ′(x̄) = ϕ(x̄). Then the statement holds trivially since G′ and H ′ interpret G with the same
actual functions;

• if ϕ(x̄) = γ(ϕ1(x̄1), . . . , ϕk(x̄k)), where γ is an arbitrary boolean combination of formulas
ϕ1(x̄1), . . . , ϕk(x̄k), then ϕ′(x̄) = γ(ϕ′

1(x̄1), . . . , ϕ
′
k(x̄k)). Similarly if ϕ(x̄) = Qȳϕ1(x̄, ȳ), where Q

is either ∀ or ∃, then ϕ′(x̄) = Qȳϕ′
1(x̄, ȳ). Therefore, as we know from the induction hypothesis

that a) holds for sub-formulas ϕ1, . . . , ϕk, we see that it holds for ϕ as well. This proves a).

Proof of b). By construction of Γα′ , a non empty annotated tuple (t̄0, α0) is in relation R of Sol
Γα′

H′ (S)
if and only if there exists an SkSTD ψ :– η(x̄) in ∆α′ , and a tuple ā over Const such that:

37

1. η′(ā) holds in S under the interpretation H ′ of H (i.e., under the interpretation F ′ of symbols
in F),

2. ψ contains an atom R(ū) with annotation α0 and

3. t̄0 = ū[x̄→ ā,H → H ′].

By item a) proved above, in 1), we have that η′(ā) holds in S under interpretation H ′ of H if
and only if η(ā) holds in J under interpretation G′ of G. Moreover, in 3), terms of ū contain only
function symbols of G, therefore ū[x̄ → ā,H → H ′] = ū[x̄ → ā, G → G′]. We can conclude that the

non empty annotated tuple (t̄0, α0) is in relation R of Sol
Γα′

H′ (S), if and only if (t̄0, α0) is a tuple of R

in Sol
∆α′

G′ (J).

Similarly, an empty annotated tuple (, α0) is in relation R of Sol
Γα′

H′ (S) if and only if there exists
a SkSTD ψ :– η(x̄) in ∆α′ , and a tuple ā over Const such that:

1. η′(ā) evaluates to the empty set over S under interpretation H ′ of H and

2. ψ contains an atom R(ū) with annotation α0.

Again by a), the formula η′(x̄) evaluates to the empty set over S under interpretation H ′ of H if and
only if η(ā) evaluates to the empty set over J with G interpreted as G′. As a consequence, (, α0) is

a tuple of relation R in Sol
Γα′

H′ (S), if and only if (, α0) is a tuple of R in Sol
∆α′

G′ (J).

This proves Sol
Γα′

H′ (S) = Sol
∆α′

G′ (reℓ(SolΣα

F ′ (S))) and concludes the proof of Claim 7. 2

Now fix arbitrary instances S of schema σ and T of schema ω. We have that (S, T) ∈
(

|Σα|
)

◦
(

|∆α′ |
)

if and only if there exist actual functions F ′ and G′ interpreting F and G, respectively, and an instance

J in RepA(SolΣα

F ′ (S)) such that T is in RepA(Sol
∆α′

G′ (J)). Since annotation on Σα is all-closed, J

belongs to RepA(SolΣα

F ′ (S)) if and only if J = reℓ(SolΣα

F ′ (S)). Therefore (S, T) ∈
(

|Σα|
)

◦
(

|∆α′ |
)

if and

only if there exist functions F ′ and G′ such that T is in RepA(Sol
∆α′

G′ ◦ reℓ ◦ SolΣα

F ′ (S)), which by

Claim 7 coincides with Sol
Γα′

H′ (S), since H ′ is the restriction of F ′ ∪G′ to function symbols of H.

This shows that (S, T) ∈
(

|Σα|
)

◦
(

|∆α′ |
)

if and only if T ∈ RepA(Sol
Γα′

H′ (S)) for some H ′; that is if
and only if (S, T) ∈

(

|Γα′ |
)

. The conclusion is that Γα′ captures the composition of Σα and ∆α′ in the
case that annotation on Σα is all-closed.

In the case that annotation on ∆α′ is all-open and ∆α′ contains only monotone SkSTDs the
following claim shows that

(

|Σα|
)

◦
(

|∆α′ |
)

=
(

|Σcl|
)

◦
(

|∆α′ |
)

. Therefore the mapping Γα′ constructed as
shown above from ∆α′ and Σcl represents also a composition mapping for ∆α′ and Σα.

Claim 8. If ∆ is a mapping containing only monotone SkSTDs, Σ is an arbitrary mapping with
SkSTDs, and α is an arbitrary annotation on Σ, then

(

|Σα|
)

◦
(

|∆op|
)

=
(

|Σcl|
)

◦
(

|∆op|
)

Proof of Claim 8. Fix arbitrary instances S of schema σ and T of schema ω. Assume first that
(S, T) ∈

(

|Σcl|
)

◦
(

|∆op|
)

. Then there exists an instance J ∈ [[S]]Σcl such that T ∈ [[J]]∆op . Since

J ∈ [[S]]Σcl , we have J = reℓ(Sol
Σcl

F ′), for some actual functions F ′ interpreting function symbols

of Σ. But since reℓ(Sol
Σcl

F ′) = reℓ(SolΣα

F ′), we conclude that J is also in [[S]]Σα . Consequently
(S, T) ∈

(

|Σα|
)

◦
(

|∆op|
)

.
Conversely assume (S, T) ∈

(

|Σα|
)

◦
(

|∆op|
)

. Then there exists an instance J ∈ [[S]]Σα such that

T ∈ [[J]]∆op . Since J ∈ [[S]]Σα , it contains an subinstance J0 = reℓ(SolΣα

F ′ (S)), for some actual functions

F ′ interpreting functions in Σ. Since reℓ(SolΣα

F ′ (S)) = reℓ(Sol
Σcl

F ′ (S)), we have J0 ∈ [[S]]Σcl .

We now prove that T is also in [[J0]]
∆op . We know T is in RepA(Sol

∆op

G′ (J)) for some actual
functions G′ interpreting functions in ∆. Furthermore, due to the monotonicity of the SkSTDs of ∆,

38

we have reℓ(Sol
∆op

G′ (J)) ⊇ reℓ(Sol
∆op

G′ (J0)). Therefore, since T contains reℓ(Sol
∆op

G′ (J)), we see that

T also contains reℓ(Sol
∆op

G′ (J0)). Moreover, all tuples of Sol
∆op

G′ (J0) have open annotations; hence T

belongs to RepA(Sol
∆op

G′ (J0)) and thus T ∈ [[J0]]
∆op . Together with the fact that J0 ∈ [[S]]Σcl , this

proves (S, T) ∈
(

|Σcl|
)

◦
(

|∆op|
)

, and concludes the proof of Claim 8 and Lemma 5. 2

As a corollary of Lemma 5, we have our main composition result:

Theorem 5. The following two classes of schema mappings given by annotated SkSTDs are closed
under composition:

1. mappings with all-open annotations in which only conjunctive queries are used in SkSTDs; and
2. mappings with all-closed annotations in which arbitrary FO queries are used in SkSTDs.

Proof. Given two schema mappings Σα and ∆α′ with all-open annotated CQ-SkSTDs, by Lemma 5,
there exists a composition mapping Γα′ , whose SkSTDs have the same annotation as ∆α′ , and whose
right-hand sides are CQ. Therefore Γα′ contains only all-open annotated CQ-SkSTDs.

On the other hand if annotations of both Σα and ∆α′ are all-closed, again by Lemma 5, there exists
a composition mapping Γα′ whose SkSTDs have the same annotation as ∆α′ , therefore annotation on
Γα′ is all-closed. 2

In Theorem 5, the first case of course is that of [13]. Theorem 5 says that we can also achieve
compositionality under the CWA with more general queries used in mappings.

6. Conclusions

Two previous approaches to data exchange have been based either on the OWA, or on the CWA,
and both had their limitations. We have shown that, using an old idea of allowing both open and
closed null values, we obtain mappings that can mix OWA and CWA in an arbitrary manner. We
looked at query evaluation and composition of mappings, proved two classification results for their
complexity, established criteria for schema compositionality, and showed particularly nice behaviour
of positive queries in mixed contexts.

Several extensions of our results can be obtained. We mention three. The first trichotomy theorem
is true for any query language of PTIME data complexity that contains FO. Second, if we allow 1-to-m
relationships in place of 1-to-many relationships and define such limited open nulls (i.e. each such null
can be replicated at most m times), then all the complexity results about CWA mappings apply to
this case. Third, if a mapping ∆ has only existential queries, then every composition Σα ◦ ∆α′ is in
NP, regardless of annotations.

A few open problems remain. First of all we would like to see whether Theorem 5 can be extended
to other classes of annotated mappings. The next step is extending results to cover mappings with
target constraints, as was done in [16]. It is likely that adding weakly acyclic constraints [11, 10] would
lead to a terminating chase as in both open-world [11] and closed-world [16] cases. We also would like
to see if the mixed open/closed mappings are applicable in more general frameworks that try to unify
data exchange, integration, and peer-to-peer scenarios, such as in [9].

Acknowledgments The authors were supported by the EPSRC grants E005039 and F028288 and
by the FET-Open grant agreement FOX, number FP7-ICT-233599; the first author also by the EU
grant MEXC-CT-2005-024502.

References

[1] S. Abiteboul, O. Duschka. Complexity of answering queries using materialized views. In PODS
1998, pages 254–263.

39

[2] S. Abiteboul, P. Kanellakis, G. Grahne. On the representation and querying of sets of possible
worlds. TCS 78 (1991), 158–187.

[3] M. Arenas, P. Barceló, R. Fagin, L. Libkin. Locally consistent transformations and query an-
swering in data exchange. In PODS 2004, pages 229–240.

[4] M. Arenas, P. Barceló, J. Reutter. Query Languages for Data Exchange: Beyond Unions of
Conjunctive Queries. In ICDT 2009, pages 73–83.

[5] P. Atzeni, N. Morfuni. Functional dependencies and constraints on null values in database rela-
tions. Information and Control 70(1): 1–31 (1986).

[6] P. Bernstein, T.Green, S. Melnik, A. Nash. Implementing mapping composition. VLDB’06, pages
55–66.

[7] P. Bernstein, S. Melnik. Model management 2.0: manipulating richer mappings. SIGMOD’07,
pages 1–12.

[8] L. Chiticariu, W.-C. Tan. Debugging schema mappings with routes. In VLDB’06, pages 79–90.

[9] G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati. On reconciling data exchange, data integra-
tion, and peer data management. In PODS’07, pages 133–142.

[10] A. Deutsch, V. Tannen. Reformulation of XML queries and constraints. In ICDT’03, pages
225–241.

[11] R. Fagin, Ph. Kolaitis, R. Miller, L. Popa. Data exchange: semantics and query answering. Theor.
Comput. Sci. 336(1): 89–124 (2005).

[12] R. Fagin, Ph. Kolaitis, L. Popa. Data exchange: getting to the core. ACM TODS 30(1): 174–210
(2005).

[13] R. Fagin, Ph. Kolaitis, L. Popa, W.C. Tan. Composing schema mappings: second-order depen-
dencies to the rescue. ACM TODS 30(4) 994–1055 (2005).

[14] G. Gottlob, R. Zicari. Closed world databases opened through null values. In VLDB’88, pages
50–61.

[15] G. Grahne. The Problem of Incomplete Information in Relational Databases. Springer, 1991.

[16] A. Hernich, N. Schweikardt. CWA-solutions for data exchange settings with target dependencies.
In PODS’07, pages 113–122.

[17] T. Imielinski, W. Lipski. Incomplete information in relational databases. J. ACM 31 (1984),
761–791.

[18] Ph. Kolaitis. Schema mappings, data exchange, and metadata management. In PODS 2005.

[19] M. Lenzerini. Data integration: a theoretical perspective. In PODS’02, pages 233–246.

[20] M. Levene, G. Loizou. Axiomatisation of functional dependencies in incomplete relations. Theo-
retical Computer Science 206 (1998), 283–300.

[21] L. Libkin. Data exchange and incomplete information. In PODS’06, pages 60–69.

40

[22] W. Lipski. On semantic issues connected with incomplete information in databases. ACM
Trans. Database Systems 4 (1979), 262–296.

[23] J. Madhavan, A. Halevy. Composing mappings among data sources. In VLDB’03, pages 572–583.

[24] A. Madry. Data exchange: on the complexity of answering queries with inequalities. IPL 94
(2005) 253–257.

[25] J. Makowsky and Y. Pnueli. Arity and alternation in second-order logic. Annals of Pure and
Applied Logic, 78 (1996), 189–202.

[26] R. Miller, M. Hernandez, L. Haas, L. Yan, C. Ho, R. Fagin, L. Popa. The Clio project: managing
heterogeneity. SIGMOD Record 30 (2001), 78–83.

[27] A. Nash, P. Bernstein, S. Melnik. Composition of mappings given by embedded dependencies.
ACM TODS 32(1): 4 (2007).

[28] L. Popa, Y. Velegrakis, R. Miller, M. Hernández, R. Fagin. Translating web data. In VLDB 2002,
pages 598–609.

[29] R. Reiter. On closed world databases. In “Logic and Databases”, H. Gallaire and J. Minker eds,
Plenum Press, 1978, pages 55–76.

41

