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tWe investigate the problem of how to extend 
onstraint query languages with aggregate oper-ators. We deal with standard relational aggregation, and also with aggregates spe
i�
 to spatialdata, su
h as volume. We study several approa
hes, in
luding the addition of a new 
lass of ap-proximate aggregate operators whi
h allow an error toleran
e in the 
omputation. We show howte
hniques of [23, 25℄ based on VC-dimension 
an be used to give languages with approximationoperators, but also show that these languages have a number of short
omings. We then give aset of results showing that it is impossible to get 
onstraint-based languages that admit de�nableaggregation operators, both for exa
t operators and for approximate ones. These results are quiterobust, in that they show that 
losure under aggregation is problemati
 even when the 
lass offun
tions permitted in 
onstraints is expanded.This motivates a di�erent approa
h to the aggregation problem. We introdu
e a language FO+Poly+Sum, whi
h permits standard dis
rete aggregation operators to be applied to the outputs ofrange-restri
ted 
onstraint queries. We show that this language has a number of attra
tive 
losureand expressivity properties, and that it 
an 
ompute volumes of linear-
onstraint databases.1 Introdu
tionNew appli
ations of database te
hnology, su
h as Geographi
al Information Systems, have spurred a
onsiderable amount of resear
h into generalizations of the standard relational model to deal with themanipulation of geometri
 or spatial data. One 
ommon approa
h to modeling spatial databases is to
onsider input databases as given by a set of well-behaved relations in eu
lidean spa
e { for example,by a set of semi-linear or semi-algebrai
 sets. There are a number of proposed query languages thatextend 
lassi
al relational algebra to this setting, languages that allow the use of various geometri
operations in manipulating spatial databases. One of the most well-developed models for spatialqueries is the 
onstraint database model [22, 27℄. In this model, spatial databases are represented assets of linear or polynomial 
onstraints. Databases are queried using standard relational 
al
ulus withlinear (resp. polynomial) inequalities as sele
tion 
riteria, see [3, 4, 5, 19, 20, 31, 36℄. These languages,denoted by FO + Lin and FO + Poly, have be
ome the dominant ones in the 
onstraint databaseliterature. They have a very important 
losure property: the appli
ation of a FO + Lin query to alinear 
onstraint set yields a new set of linear 
onstraints; similarly FO+Poly queries on sets de�nablewith polynomial 
onstraints produ
e sets that 
an still be de�ned with polynomial 
onstraints.�Conta
t author. Resear
h aÆliation: Bell Laboratories.1



Constraint Query Languages, then, give a natural analog of relational 
al
ulus in the geometri
 
ontext.A 
ru
ial question, though, 
on
erns how to extend standard aggregation 
onstru
ts from the relationalmodel to the geometri
 setting. This question has two 
omponents. First, we would like our languagesto be able to apply standard SQL operators su
h as TOTAL and AVG to spatial queries, wheneverthese operators make sense. Sin
e the output of queries in 
onstraint query languages (and in otherspatial query languages) may be merely �nitely representable (that is, representable by some �nitemeans, e.g., a �nite set of 
onstraints) and not �nite, the aggregation operators 
annot be allowed tobe applied to any 
onstraint query output. One problem then, is to design a language that allows thesafe appli
ation of 
lassi
al aggregates.The se
ond 
omponent of the `aggregation question' 
on
erns aggregation notions that are spe
i�
to the spatial databases. Most 
ommonly, given a database and the output of a query over it, onewishes to form new queries about the volume of this output. One may also extend standard aggregatessu
h as AVG, and ask for the average value of a polynomial over a spatial obje
t. Su
h aggregatesarise both from pra
ti
al 
on
erns of GIS, and also as the natural 
ontinuous analogs of 
lassi
alaggregation queries. Thus, we would like to extend 
onstraint query languages to in
orporate theability to 
al
ulate volumes and other aggregates arising in the spatial setting.In attempting to add aggregation to 
onstraint query languages, one immediately en
ounters somedaunting obsta
les. While standard 
onstraint databases are 
losed under �rst-order operations su
has join and proje
tion, they are 
learly not 
losed under taking of volumes. This fa
t is well-knownin the literature [22, 26, 11℄, and stems from the fa
t that neither the semi-linear nor semi-algebrai
sets are 
losed under integrals. To take an example from the semi-algebrai
 setting, a query askingfor the volume of initial sli
es of the epigraph of 1=x outputs the graph of the ln fun
tion, whileiterating volume queries in this fashion would give as output trans
endental fun
tions that are noteven expressible using �eld operations, logarithms and exponents. Thus, one 
annot hope to add ageneral volume operator to existing �rst-order 
onstraint query languages su
h as FO+Poly and geta 
losed language while still remaining within the domain of polynomial 
onstraint databases.There are several approa
hes to the volume problem mentioned above. First, one 
ould weaken therequirement that volumes be 
omputed exa
tly and instead aim only to 
ompute approximate volumes.Thus a query might have a toleran
e asso
iated with ea
h instan
e of a volume operator, with outputrequired only to be 
orre
t within the given toleran
e. There are a number of pra
ti
al and theoreti
almotivations for this approa
h. While it is known that 
omputing volumes of even simple geometri
obje
ts (
onvex polytopes) is a hard problem (#P-hard, see [13℄), approximation of volumes, atleast of 
onvex sets, 
an be done in polynomial time by a randomized algorithm [14℄. Moreover, in
ontrast to the well-known fa
t that semi-algebrai
 and semi-linear sets are not 
losed under volumeoperators, the papers [23, 24, 25℄ show that volumes of sets de�nable with polynomial 
onstraints
an be approximated, for any given � > 0, by a �rst-order formula with polynomial 
onstraints. Bygiving up exa
t volume and settling for an approximation, one might hope to retain desirable 
losureproperties.A se
ond approa
h to the aggregation problem would be to expand out of the domain of polynomial
onstraints, and add new fun
tions to the signature of both the 
onstraints and the query language.This would give the possibility of retaining a 
onstraint-based representation of databases, whilegaining 
losure under volume operators. Of 
ourse, in this approa
h one should expand the 
onstraintset so that it still de�nes only topologi
ally well-behaved obje
ts.A third approa
h to the volume problem is to sear
h for languages whi
h 
an 
ompute or approximatethe volumes of important 
lasses of sets, but whi
h may not be 
losed under iterative appli
ation of2



volume operators. For example, one 
ould allow volume and other aggregation operators to be appliedonly to a sub
lass of the input queries. Restri
tions on the nesting of volume operators would thenhave to be imposed.An example of this last approa
h in the existing literature is [10℄, where it is shown that polynomial
onstraint query languages 
an express the (exa
t) volume for any set that admits a spe
ial 
ondition
alled `variable independen
e'. This 
ondition means, informally, that in the 
onstraint spe
i�
ation ofsets in, say, R2 , there is no intera
tion between x and y. Unfortunately, this 
ondition is too restri
tive:it ex
ludes many of the sets that arise most often in spatial appli
ations. As for pra
ti
al appli
ations ofaggregation in 
onstraint databases, implemented systems normally do not have aggregate operations(the Dedale system, for example). One spatial extension of SQL, proposed in [28℄, does in
ludeaggregates, but a 
areful examination of the language shows that they are severely restri
ted: theonly allowed aggregate operations are traditional relational ones applied to �nite relations, and spatialunion and interse
tion, whi
h are �rst-order de�nable.In this paper, we analyze the feasibility of ea
h of the above approa
hes in detail. For the �rstapproa
h, we show that te
hniques based on VC dimension, 
oming out of the work of [23, 24, 25℄ giveus approximate volume operators that give semi-algebrai
 output on semi-algebrai
 input. However,we show a number of short
omings of su
h an approa
h. Not only are the approximate volumeoperators obtained a

ording to the te
hnique of [23, 24, 25℄ sensitive to the input representation,but the blow-up in the size of the 
onstraint databases produ
ed in query evaluation pre
ludes anypossible use of these operators in pra
ti
e.Turning to the se
ond approa
h, we show that it is 
ompletely infeasible. No �rst-order 
onstraintlanguage based on any reasonably well-behaved 
lass of fun
tions 
an express, or even approximate,volume. In the pro
ess of showing this, we develop a new set of te
hniques for proving inexpressibilityresults, te
hniques not based on the usual method of redu
tion to generi
 queries.We then 
onsider solutions that give up full 
losure under volume, and give a number of positive results.We present a higher-order language that allows one to 
al
ulate the volume of arbitrary semi-linearsets. Spe
i�
ally, we give a language, 
alled FO+Poly+Sum, that has attra
tive 
losure properties,remains within the domain of polynomial 
onstraint databases, and allows the exa
t 
al
ulation ofvolumes for linear-
onstraint input databases. This language also has the pleasant feature that it is
losed under the 
lassi
al aggregation operators SUM and AVG. Sin
e FO+Poly+Sum in
ludes SQLaggregation, 
ontains FO+Poly, and also allows one to make use of standard aggregation evaluationte
hniques in 
al
ulating volumes, it seems to be a good 
andidate for the 
onstraint analog of 
lassi
alaggregation languages.We remark that another approa
h to the aggregation problem was 
onsidered in [11℄, whi
h gave anew aggregate operator �, under whi
h FO + Lin is 
losed. However, �(X) = 0 for any bounded setX; thus, this operator 
annot be used to deal with volumes.Organization Se
tion 2 introdu
es the notation. Approximability is studied in Se
tion 3. The methodof de�ning approximate volumes of [23, 24, 25℄ is analyzed, and the main diÆ
ulties in applying theapproximation operators 
oming from this work are outlined. Se
tion 4 shows that approximatevolume operators 
annot be de�ned in �rst-order 
onstraint languages, even when the signature isexpanded. Se
tion 5 de�nes an extension of FO +Poly with SQL-like aggregation (summation over�nite sets) and shows that this extension 
an express volumes of semi-linear databases.The extended abstra
t of this paper appeared in the Pro
eedings of the 18th ACM Symposium on3



Prin
iples of Database Systems [7℄.2 NotationStru
tures, instan
es, queries Most notations are fairly standard in the literature on 
onstraintdatabases, 
f. [4, 5, 27, 31, 19℄. Let M = hU ;
i be an in�nite stru
ture, where U is an in�nite set,
alled a universe (in the database literature often 
alled the domain), and 
 is a set of interpretedfun
tions, 
onstants, and predi
ates. In the �eld of 
onstraint databases, most examples have U = R,the set of real numbers. Examples of signatures (and 
orresponding 
lasses of 
onstraints) that havebeen 
onsidered are:Dense Order Constraints: hR; <i;Linear Constraints: Rlin = hR;+;�; 0; 1; <i;Polynomial Constraints: R = hR;+; �; 0; 1; <i;Exponential Constraints: Rexp = hR;+; �; ex ; <i.A (relational) database s
hema SC is a nonempty 
olle
tion of relation names fS1; : : : ; Slg with asso-
iated arities p1; : : : ; pl > 0. We shall 
onsider both �nite and �nitely representable instan
es. GivenM, an �nite instan
e of SC over M is a family of �nite sets, fR1; : : : ; Rlg, where Ri � Upi . Thatis, ea
h s
hema symbol Si of arity pi is interpreted as a �nite pi-ary relation over U . Given a �niteinstan
e D, adom(D) denotes its a
tive domain, that is, the set of all elements that o

ur in therelations in D.A �nitely-representable (f.r.) instan
e of SC over M is a family of sets fX1; : : : ;Xlg, with Xi � Upi ,su
h that for ea
h Xi there exists a quanti�er-free formula �i(x1; : : : ; xpi) in the language of M withXi = f~a 2 Upi j M j= �i(~a)g. Most appli
ations of 
onstraint databases 
onsider f.r. instan
es de�nedover Rlin (these are 
alled semi-linear sets) or over R (
alled semi-algebrai
 sets). For example, in thespatial setting, a f.r. instan
e interprets the s
hema predi
ates as semi-linear or semi-algebrai
 sets.As our basi
 query language, we 
onsider relational 
al
ulus, or �rst-order logi
, FO, over the un-derlying stru
ture and the database s
hema. In what follows, L(SC;
) stands for the language that
ontains all symbols of SC and 
; FO(SC ;
) is the 
lass of all �rst-order formulae built up from theatomi
 SC and 
 formulae by using Boolean 
onne
tives _;^;: and quanti�ers 8;9.Regardless of whether we are in the `
lassi
al' setting, where these queries are applied to �nitedatabases, or in the 
onstraint query setting, we will refer to the above synta
ti
 query languages asrelational 
al
ulus with 
 
onstraints. This will be denoted by FO + 
. When 
 is (+;�; 0; 1; <), or(+; �; 0; 1; <), or (+; �; ex; <), we use the standard abbreviations FO+Lin, FO+Poly and FO+Exp.In the 
ase of �nite databases, we shall also use the a
tive-domain quanti�ers: for a formula '(x; ~y),one 
an form formulae 9x 2 adom:'(x; ~y) and 8x 2 adom:'(x; ~y). For a stru
ture M and a SC-instan
e D, the notion of (M;D) j= ' is de�ned in a standard way for FO(SC;
) formulae, where(M;D) j= 9x '(x; �) means for some a 2 U we have (M;D) j= '(a; �), and (M;D) j= 9x2adom '(x; �)means that for some a 2 adom(D) we have (M;D) j= '(a; �). If M is understood, we write D j= '.Given '(~x; ~y) and ~a, we write '(~a;D) for f~b j D j= '(~a;~b)g; in the absen
e of ~x we just write '(D)for the output of ' on D.The 
lass of subformulae of FO that only use the a
tive-domain quanti�
ation is denoted by FOa
t.4



Adding aggregate operators We shall use Vol(X) to denote the volume of a set X � Rn . Morepre
isely, Vol(X) is the measure of any Lebesgue-measurable set X � Rn . We shall not worry aboutdealing with non-measurable sets, as all bounded sets de�ned with 
onstraints relevant for spatialappli
ations (those listed above, plus some extensions) are measurable.We shall 
onsider adding volume to a query language as follows. If '(~x; ~y) is a formula, then thefollowing is a formula with free variables ~x; z:[Vol ~y:'(~x; ~y)℄(~x; z)Assume that a stru
ture M = hR;
i is �xed. Let an instan
e (�nite or f.r.) D be given. ThenD j= [Vol ~y:'(~x; ~y)℄(~a; v) i� v = Vol('(~a;D)):Re
all that '(~a;D) = f~b j D j= '(~a;~b)g.The extension of any query language L with Vol will be denoted by L+Vol; for example, one 
anspeak of FO+Lin+Vol or FO+Poly+Vol. Of 
ourse we know that due to the non
losure resultsmentioned in the introdu
tion, FO + Lin $ FO+ Lin+Vol and FO+Poly $ FO +Poly+Vol.As the next step, we restri
t our attention to bounded sets. Without any loss of generality, we shalldeal with subsets of In � Rn , where I throughout this paper denotes the interval [0; 1℄. We de�neVolI ~y:'(~x; ~y) just as above, ex
ept that now we require that v = Vol('(~a;D) \ In). In parti
ular,0 � v � 1. We similarly de�ne languages L + VolI . As with Vol, languages like FO + Lin andFO + Poly are not 
losed under VolI : for example, ar
tan(x) = R x0 dyy2+1 = VolI(f(y; z) j (0 � y �x) ^ (0 � z � 1=(y2 + 1))g), for 0 � x � 1.As standard languages are not 
losed under taking volume, we address the question of whether one
an obtain 
losure by lowering one's demands. In parti
ular, we would like to see if approximating thevolume, rather than 
omputing it dire
tly, gives us a 
losed language. The hope that 
losure might beobtained in this way is motivated by the fa
t that for every formula '(~x; ~y) in R and for every � > 0,one 
an �nd a formula  �(~x; z) that gives �-approximation of volumes of sets '(~a;R) = VolI(f~b j j='(~a;~b)g), see [23, 24, 25℄.We have to explain what we mean by approximating volume in this 
ontext. Clearly, we 
annot hopeto �nd  �(~x; z) with z de�ning an �-interval around the real value of the volume { then the volumeitself would be de�nable as the 
enter of the interval! Thus, we settle for less. Similar to [23, 24, 25℄,we say for every � > 0, that an operator Vol� is an �-approximation operator if for every f.r., over M,set A 2 Rn �Rm , given by a formula '(~x; ~y), Vol� returns a f.r. set in Rn �R, given by  �(~x; z) su
hthat :1. For every ~a 2 Rn ,  �(~a; �) must be satis�able (that is, M j= 9z: �(~a; z));2. If M j=  �(~a; v), then v � 0 and jv �Vol('(~a;R)) j < �.Thus, Vol� must return a  � that is guaranteed to �nd an (absolute) �-approximation of the volume.We next say that a query language L de�nes Vol�, if there is a query in L that de�nes su
h anoperator. That is, for ea
h query '(~x; ~y) in L and � > 0 there is a L-query  �(~x; z) su
h that for anydatabase D, and any ~a, we have� D j= 9z: �(~a; z), and 5



� D j=  �(~a; v) implies v � 0 and jv �Vol('(~a;D)) j< �.Noti
e that in the last de�nition  � is independent of D. Also noti
e that to show de�nability ofapproximate operators in standard query languages, it suÆ
es to show that there is a query in thelanguage returning the �-approximate volume on every base relation of some �xed arity.We also de�ne �-approximation operators to volume in the 
ase where we restri
t to bounded sets. Asbefore, we use, w.l.o.g., In as bounding set. An �-approximation operator in the bounded setting isdenoted by Vol�I . Su
h an operator must satisfy the variant of 
ondition 2) above: jv�Vol('(~a;D)\In) j < � and 0 � v � 1.These operators, and their de�nability in query languages, are studied in Se
tions 3 and 4.O-minimality, VC dimension Many results that we prove extend beyond linear and polynomial
onstraints. To state them in greater generality, we shall use o-minimality [35℄, whi
h plays animportant role in the study of 
onstraint query languages (
f. [4, 5, 6℄).A stru
tureM = hU ;
i is o-minimal, if every de�nable set is a �nite union of points and open intervals(a; b) = fx j a < x < bg, (�1; a) = fx j x < ag, and (a;1) = fx j x > ag (we assume that < is in 
).De�nable sets are those of the form fx j M j= '(x)g, where ' is a �rst-order formula in the languageof M, possibly supplemented with symbols for 
onstants from M. All the stru
tures on the reals wementioned so far { Rlin, R, Rexp { are o-minimal (the �rst two by Tarski's quanti�er-elimination, thelast one by [37℄).If M = hR;
i, we de�ne M+;� to be hR;
;+; �i. We often require that not just M but also M+;�be o-minimal.We also 
onsider stru
tures having �nite VC dimension of de�nable families [2, 29℄ (also known asstru
tures without the independen
e property [34℄). VC dimension, introdu
ed in statisti
s to studyuniform 
onvergen
e of sto
hasti
 pro
esses, has be
ome 
entral to 
omputational learning theory[2, 9℄, and found appli
ation in other areas, e.g., 
omplexity [30℄.Suppose X is an in�nite set, and C � 2X . Let F � X be �nite; we say that C shatters F if the
olle
tion fF \ C j C 2 Cg is 2F . The Vapnik-Chervonenkis (VC) dimension of C, VCdim(C), is themaximal 
ardinality of a �nite set shattered by C. If arbitrarily large �nite sets are shattered by C,we let VCdim(C) =1.Let M = hU ;
i, and let '(~x; ~y) be a formula in the language of M with j~x j= n; j ~y j= m. For ea
h~a 2 Un, de�ne '(~a;M) = f~b 2 Um j M j= '(~a;~b)g, and let F'(M) be f'(~a;M) j ~a 2 Ung. Familiesof sets arising in su
h a way are 
alled de�nable families. We say that M is a stru
ture with �niteVC dimension if the VC dimension of ea
h de�nable family is �nite. Every o-minimal stru
ture is astru
ture with �nite VC dimension [29℄, and the latter 
lass is in fa
t mu
h larger than the 
lass ofo-minimal stru
tures.
6



3 Approximating aggregates in 
onstraint query languages3.1 The VC dimension-based implementation of approximate volume operatorsWe now start our investigation of the expressibility of approximate volume operators. The resultsof [23, 24, 25℄ do immediately give a 
losed language for 
omputing approximate volumes. From[23, 24, 25℄ we 
an easily derive:Theorem 1 Let � > 0, and let '(~x; ~y) be a FO + Poly query. Then for every semi-algebrai
 (resp.semi-linear) database instan
e D there exists a formula '�D(~x; z) over the real ordered �eld R (resp.group Rlin) su
h that '�D(~a; �) is satis�able for all ~a, and j= '�D(~a; v) implies jv �VolI('(~a;D)) j< �and 0 � v � 1. Hen
e, there is a 
olle
tion of �-approximation operators Vol�I , � > 0, for R and Rlin.Sin
e we want to examine those operators with regard to their eÆ
ien
y, we now review the ideas of[23, 24, 25℄ that lead to this theorem.Pre-requisites (see [2, 9, 23, 25℄) The idea of the approximation te
hnique 
an be tra
ed ba
k tothe simplest randomized method for 
omputing volumes. For a set S � In � Rn , take k points x1, . . . ,xk from the uniform distribution on In. Then Vol(S) 
an be approximated as vS =Pki=1 �S(xi)=k,where �S is the 
hara
teristi
 fun
tion of S: �S(x) = 1 if x 2 S and �S(x) = 0 if x 62 S. Then for� > 0, P (jvS �Vol(S) j� �)) < 2e�2k�2 ;this follows from Hoe�ding's inequality. There are two reasons why this is not suÆ
ient for getting�-approximations to volume. First, the volume operators, as we de�ned them, may depend on param-eters. Indeed, Vol ~y:'(~x; ~y) requires 
omputing the volume for every instantiation of parameters ~x.Se
ondly, the randomized method above only tells us that j vS � Vol(S) j< � with high probability,and thus the pro
edure must be derandomized to ensure a 
ertain answer.To over
ome the �rst problem, we use te
hniques from statisti
s and ma
hine learning to ensure thatone sample will suÆ
e to test multiple volumes. Let '(~x; ~y) be a �rst-order formula over the real�eld R, with j ~x j= n and j ~y j= m, and let �; Æ > 0. De�ne '(~a;R) = f~b 2 Rm j R j= '(~a;~b)g. LetM > 0 be given, and assume that an M -point sample C = f~
1; : : : ;~
Mg is randomly 
hosen in Im.For ea
h ~a, let v(~a;C) be the fra
tion of C that falls into '(~a;R) \ Im. Then one wants to a
hievejv(~a;X) �VolI('(~a;R)) j< � for all ~a 2 Rn , with probability at least 1� Æ.The 
lassi
al results of learning theory [2, 9℄ say that this is possible when the VC dimension ofthe family F'(R) = f'(~a;R) j ~a 2 Rng � 2Rm is �nite, and the size of the sample of M is thenproportional to the VC dimension. In the 
onstru
tion of approximating formulae, we shall use thefollowing 
orollary of this result, that states the existen
e of so-
alled �-nets:Fa
t 1 (�-nets) Let '(~x; ~y) be a �rst-order formula over the real �eld R, with j~y j= m, and let � > 0.Let d = VCdim(F'(R)). If M � 8d� log 13� , then there exists an M -element set C = f~
1; : : : ;~
Mg � Imsu
h that for every ~a with Vol('(~a;R) \ Im) � � it is the 
ase that '(~a;R) \ Im \C 6= ;. 2
7



Approximation method We now 
ombine the existen
e of �-nets with a derandomization pro
e-dure.Assume that we are given a FO+Poly query  (~x; ~y) and a semi-algebrai
 database D. Put thede�nition of D into  , to obtain a new formula '(~x; ~y) in the language of the real �eld, su
h thatR j= '(~a;~b) i� D j=  (~a;~b). For example, if  (x; y) � 9u (S(x; y; u) ^ x < 0) and S is de�ned asp(x; y; u) > 0, where p is a polynomial, then  (x; y) is 9u (p(x; y; u) > 0 ^ x < 0).Thus, we have to de�ne approximating formulae for a formula '(~x; ~y) over R. To simplify notations,write �(~a) for '(~a;R) \ Im. Fix a number k 2 N and �; Æ 2 I. De�ne, for ea
h ~a 2 Rn ,S(~a; �; Æ) = ((~
1; : : : ;~
k) 2 (Im)k ����� j 1k � kXi=1 ��(~a)(~
i) � � j� Æ) :That is, S(~a; �; Æ) is the set of k-samples that produ
e an approximate volume of �(~a) within Æ of �.Note that for every �xed k, this set is de�nable with parameters ~a; �; Æ.Next, de�ne an operation � : In � In ! In by x � y = (x + y) mod 1, with the mod 1 operationapplied 
omponent-wise. Let 	 be the inverse: x	 y = z i� x = y � z. These operations 
an then beextended to sets: x	 S = fx	 y j y 2 Sg.Let 
 2 (Im)k be a k-element sample of points in Im. De�ne T (
;~a; �; Æ) = 
	 S(~a; �; Æ). For a �xedk, this is de�nable if FO over the real �eld.Fix now ~
 2 Im, and de�ne the family ~
 	 �(~a). As this is a de�nable family over R, it has �niteVC dimension [15, 29℄, whi
h we denote by d. Then [23, 24, 25℄ 
al
ulate an upper bound on the VCdimension of the family T of all sets T (
;~a; �; Æ) as 4d � k log k, for ea
h �xed � and Æ.Applying Fa
t 1, we obtain that for M � 32dk log k� log 13� , there is an �-net ft1; : : : ; tMg for T . Astranslation by 	 does not 
hange the volume, we see that all elements of T have the same volume;thus, if this volume is � �, then every member of T 
ontains one of the tis. From this one derives thatthe sets ti � S(~a; �; Æ) 
over the entire (Im)k, if the volume of S(~a; �; Æ) is at least �.By 
al
ulations based on Hoe�ding's inequality, [23, 24, 25℄ show that the inequalityVol(S(~a; �; �=2)) > 2e�k�2=2 implies j � � Vol(�(~a)) j� �, and that j � � Vol(�(~a)) j� �=4 impliesVol(S(~a; �; �=2)) > 1� 2e�k�2=8. Using this, one arrives at the following.Proposition 1 (Karpinski, Ma
intyre, Koiran) Let0 < � � 1=2; k � 8 � ln 4�2 ; M � max( 12ek�2=2 ; 32dk log k� log 13� )where d is the VC dimension of the family ~
	�(~a), ~
 2 Im. Then the formula saying that M translates(by 	) of S(~a; �; �=2) 
over (Im)k de�nes � as an �-approximation of Vol(�(~a)). 2As d is �nite and depends only on ', the statement of the proposition 
an be 
onverted into a FO-de�nition, whi
h serves as an approximating de�nition of volumes '(~x;R). Note that the resultingapproximating formulae satisfy a rather strong 
ondition: every � within �=4 of the real volume isreturned by the approximating formulae. Also note that the approximating formulae have entirelysemi-linear 
hara
ter { multipli
ation is never used ex
ept in the formula ' itself. We thus obtainTheorem 1 as a 
orollary of the above results. 8



3.2 Short
omings of the approximation te
hniqueWe note here some short
omings of the te
hnique of Lemma 1 in the 
ontext of 
onstraint databases.In the te
hnique, one has to put the de�nition of a 
onstraint database D into a query ', and thenapply the method of [23, 24, 25℄ to the result. That method produ
es an output formula whose sizeis a polynomial in the input formula and 1� : theoreti
ally, a ni
e bound. In attempting to applythis te
hnique in pra
ti
e, however, we �nd that the bounds obtained are rather unpleasant, even formodest values of �, as the size of the quanti�er pre�x is quite large. In the 
onstraint database setting,those will have to be eliminated, via a quanti�er-elimination pro
edure, whi
h will be very 
ostly. Letus illustrate this by a simple example.Example: Let the s
hema 
ontain one unary predi
ate U interpreted as a subset of [0; 1℄. The query'(x1; x2; y1; y2) is given byU(x1) ^ U(x2) ^ x1 < y1 ^ y1 < x2 ^ 0 � y2 ^ y2 � y1For a; b 2 U; a < b, we have Vol('(a; b;R)) = (b2 � a2)=2.Let � = 1=10. We want to evaluate the query[Vol�I~y '(x1; x2; y1; y2)℄(x1; x2; z)saying that z is an �-approximation to the volume of '(x1; x2; U) = f(y1; y2) j U j= '(x1; x2; y1; y2)g,where Vol�I is the operator obtained through the method above. Note that VolI('(a; b; U)) =(b2 � a2)=2, for a < b in U , and 0 otherwise. To evaluate this query on a database where U 
onsistsof N elements, by applying Theorem 1, we would �rst plug U in ' to obtain a formula with > 2Natomi
 subformulae that does not mention U .We then use bounds of Proposition 1 and obtain, by simple 
al
ulations:k > 1; 109 M > 25; 206; 250 :The formula saying that there exist M translates starts with a pre�x 9~t1 � � � 9~tM where ea
h ti rangesover (I2)k; that is, this existential pre�x binds 2kM > 5:5 � 1010 variables.The formula bound by these quanti�ers must say that every element of (Im)k is one of the translates,whi
h requires at least 2Mk atomi
 formulae, and that � is indeed the average value of the 
hara
ter-isti
 fun
tion, whi
h requires at least 2kN atomi
 formulae. Thus, a 
rude lower bound for the lengthof the quanti�er-free part of the formula is 5:5 � 1010 + 2N � 103.As eliminating > 1010 quanti�ers from a formula of length at least 1011 is 
ompletely infeasible, theapproximation method has no 
han
e of being appli
able in pra
ti
e. Still, the result that one 
ana
hieve 
losure by using approximate operators is very interesting, and 
ontrasts sharply with thesituation with the exa
t volume operators, where 
losure 
annot be guaranteed.Thus, applying the method of [23, 24, 25℄ `as is' appears to be infeasible in the 
ontext of 
onstraintdatabases.The te
hnique of Lemma 1 also tells us nothing about the de�nability of the operators Vol�I , nor thepower of the language that results from adding them to a standard language, like FO + Poly, sin
ethe approximating formula '�D varies with the input database.9



4 Uniformly de�nable volume operators and expansion of the sig-natureWe saw in the last se
tion that the main short
oming of all known examples of approximate volumeoperators was the blow-up in the size of the representation. It was also left open whether some volumeapproximation operators 
an be de�ned in standard languages, like FO + Poly, uniformly for alldatabase instan
es. We now investigate whether we 
an �nd other approximation methods that 
anbe expressed in ni
ely-behaved languages and that admit low 
omplexity evaluation te
hniques. Themain result is that one 
annot 
apture approximate volume operators in a ni
e 
onstraint languagesu
h as FO+Poly. That is,Inexpressibility of Approximate Operators FO+Lin, FO+Poly and FO+Exp 
annot expressVol�I for any � < 1=2. 2In fa
t, we prove a stronger result. Theorem 3 shows that even if one extends the 
onstraint signatureto in
lude fun
tions beyond FO+Exp, as long as we stay within a well-behaved stru
ture, we 
annot
apture approximate volume. Furthermore, we show that in languages like FO + Poly, only trivialapproximations are possible. An example of a trivial approximation is returning 1=2 for every subsetof In { in this 
ase we know that the di�eren
e between the real volume and its approximation is� 1=2.Proving expressivity bounds su
h as Theorem 3 and Corollary 1 is not very simple. Almost all, if notall, existing expressivity bounds for 
onstraint query languages either involve generi
 queries (e.g., theparity test, see [4, 5, 31, 3℄) or are proved by redu
tion to generi
 queries (e.g., [20℄). However, queriesinvolving approximation de�ned as in Se
tion 2 are extremely nongeneri
. We introdu
e the mainideas for the proof in several steps. We �rst 
onsider an easier 
ase of the aggregate Avg for �niteinstan
es and prove that it 
an be neither de�ned nor approximated in languages like FO + Poly.The proof introdu
es the idea of redu
tion to what we 
all a (
1; 
2)-separating senten
e, with 
1; 
2being 
onstant real numbers. We then show how the same redu
tion easily proves that FO + Polyand the likes 
annot produ
e relative approximations of Vol. For the absolute approximation Vol�I ,the redu
tion only works under very spe
ial assumptions on the input, and to 
on
lude the proof weneed to use results from 
ir
uit 
omplexity.This se
tion gives further eviden
e that if one wants to stay within a reasonable (for spatial appli
a-tions) 
lass of 
onstraints, one must give up uniform 
losure under any nontrivial approximation tothe volume.Prerequisites: Collapse results We shall need the following two results proved in [4, 5℄, statedhere in a form most 
onvenient for the proofs below.Fa
t 2 a) Given any ordered stru
ture M = hU ;
i, an in�nite set X � U , and an a
tive-semanti
squery '(~x) in FOa
t(SC;
), there exists an in�nite set Y � X and a FOa
t(SC ; <) query  (~x) su
hthat D j= '(~a) i� D j=  (~a) whenever adom(D) [ ~a � Y .b) Let M = hU ;
i be o-minimal, and '(~x) and arbitrary natural-semanti
s FO(SC;
) query. Thenthere exists an expansion M0 = hU ;
0i and an a
tive-semanti
s query  (~x) in FOa
t(SC;
0) su
hthat for every SC-database D over U and for every ~a, D j= '(~a) i� D j=  (~a). Furthermore, ea
hrelation in 
0 � 
 is interpreted as a set de�nable over M; thus, if M admits quanti�er-elimination,10



one 
an take M0 to be M. 2Separating senten
es We shall 
onsider a relational database s
hema SC that 
onsists of twounary relations, U1 and U2. Let 
1; 
2 > 1 be two real numbers. We say that � is a (
1; 
2)-separatingsenten
e if for any �nite instan
e D of SC, it is the 
ase that 
ard (U1) > 
1 � 
ard (U2) implies D j= �and 
ard (U2) > 
2 � 
ard (U1) implies D j= :�. Note that this de�nition says nothing about the 
asewhen 1
2 � 
ard (U2) � 
ard (U1) � 
1 � 
ard (U2), and thus dire
t appli
ation of bounds on expressivenessof generi
 queries is impossible. Still, we 
an show:Proposition 2 Let M = hU ;
i be o-minimal, 
1; 
2 > 1, and SC as above. Then no (
1; 
2)-separating senten
e is de�nable in FO(SC;
).Proof. Assume that there is a (
1; 
2)-separating senten
e �. From Fa
t 2, b), we 
on
lude that thereis a FOa
t(SC;
0) (
1; 
2)-separating senten
e �0 for some extension 
0 � 
. From Fa
t 2, a), weobtain that there is an in�nite set Y � U and a FOa
t(SC; <)-senten
e 	 su
h that for every instan
eD with adom(D) � Y it holds: D j= �0 i� D j= 	. Thus, it remains to show that FOa
t(SC ; <)
annot express a (
1; 
2)-separating senten
e 	, on instan
es over an in�nite set.Assume it 
an; and let q be the quanti�er rank of 	. We now 
onsider two instan
es over Y . In bothinstan
es D1 andD2 all elements of U1 pre
ede U2 in the linear order <. InD1, 
ard (U1) = d
1(2q+1)eand 
ard (U2) = 2q + 1; in D2, 
ard (U1) = 2q + 1 and 
ard (U2) = d
2(2q + 1)e. Sin
e 	 is a (
1; 
2)-separating senten
e, we must have D1 j= 	 and D2 j= :	. We shall obtain 
ontradi
tion by showingthat D1 j= 	 i� D2 j= 	.To show the latter, we must prove that the dupli
ator 
an win in a q-move Ehrenfeu
ht-Fra��ss�e gameon D1 and D2. This follows from the fa
t for every n;m > 2q, the dupli
ator 
an win a q-move gameon two ordered sets of 
ardinalities n and m [21℄. Thus, for D1 and D2, the dupli
ator pi
ks a separatestrategy for U1 and U2, and whenever the spoiler plays in U1, the dupli
ator forgets about the movesin U2 and responds in U1 using the strategy for U1, and likewise in the 
ase when the spoiler plays inU2. Let (a1; b1); : : : ; (al; bl) be moves made in the U1 part of D1 and D2, with ais played on D1 and bisplayed in D2. Similarly, let (
1; d1); : : : ; (
k; dk) be moves made in the U2 part of D1 and D2, k+ l = q.Then both ai 7! bi, i = 1; : : : ; l and 
i 7! di, i = 1; : : : ; k, are partial isomorphisms; sin
e all elementsof U1 pre
ede all elements of U2, putting them together we get a partial isomorphism between D1 andD2. This shows that D1 j= 	 i� D2 j= 	, and thus 
on
ludes the proof. 24.1 Dealing with AVGWe assume that instan
es store elements of a numeri
al domain, for example R. Given a query'(~x; z), we de�ne Avg'(~x; y) by letting D j= Avg'(~a; v) i� 
ard ('(~a;D)) <1 and v = Avg('(~a;D)),where Avg(C) = (P
2C 
)=
ard (C). Note that the aggregate Avg is typi
ally de�ned using the bagsemanti
s; however, as we show inexpressibility results, dealing with this simpli�ed version will suÆ
e1.It 
an be easily shown (by redu
tion to equal 
ardinality) that Avg' is not de�nable in FO +Poly,even if D j= '(~a; 
) implies 0 � 
 � 1. We now de�ne �-approximation of Avg just as we did it forVol. Assume a query '(~x; z) is given, and j~x j= n. An operator Avg�I , when applied to ', produ
es1We shall 
ome ba
k to the multiset semanti
s later. 11



a query  �(~x; z) su
h that, for any instan
e D and any ~a, D j= 9z:'(~a; z), and if D j= '(~a; v), thenjv �Avg('(~a;D) \ I) j< � and 0 � v � 1. For 
onvenien
e, we let Avg(C) = 0 for C in�nite.For � � 1=2, Avg�I is de�nable in FO(SC;
) if the input is �nite or f.r. over 
, as long as the 
onstants0; 1=2 and 1 are de�nable. However,Theorem 2 Let M = hR;
i, and let M+;� be o-minimal. Let � < 1=2. Then Avg�I is not de�nablein FO +
, even over �nite instan
es. In parti
ular, Avg�I is not de�nable in FO +Poly.Proof. Assume Avg�I is de�nable. Let the s
hema SC 
onsists of two unary predi
ates, U1 and U2. Let� = (1� 2�)=16. Given two �nite sets U1 and U2, 
ontaining at least two elements ea
h, we translatethem into intervals [0;�℄ and [1��; 1℄. By translating a �nite set X with minX = 
;maxC = d > 
into an interval [a; b℄ we mean the set X 0 
ontaining exa
tly the numbers of the form a + (x�
)(b�a)d�
where x 2 X; 
learly X 0 � [a; b℄. As the next step, we de�ne U01 = U 01 [ f4� � x j x 2 U 01g andU02 = U 02 [ f2 � 4�� x j x 2 U 02g. One observes U01 � [0; 4�℄ and U02 � [1� 4�; 1℄.The pre
eding shows that U01 and U02 are FO+Poly-de�nable. Thus, the set C = U01 [U02 � [0; 1℄ isde�nable in FO +Poly. Now easy 
al
ulations show thatAvg(C) = 18 � �4 + mn+m � 3 + 2�4where n is the 
ardinality of U1 and m is the 
ardinality of U2.We now de�ne a Boolean query � by letting D j= � i� Avg�(C) = Avg�I(C) > 1=2. More pre
isely,C is de�ned by a FO +Poly query �(x), and thus under the assumption that Avg�I is de�nable, wehave a satis�able formula ��(x) su
h that D j= ��(a) implies that ja�Avg(C) j< �. We now let � be9x:��(x) ^ (x > 1=2). Under the assumption that Avg�I is de�nable in FO +
, we would obtain that� is in FO + 
 as well.Let 
0 = 1 + 16�3�6� > 1. Assume m > 
0 � n. Plugging this into the equation for Avg(C), we deriveAvg(C) > 1=2 + �; thus, in this 
ase Avg�(C) > 1=2 no matter whi
h �-approximation of the averageis pi
ked, and thus D j= �. Similarlly, if we assume n > 
0 �m, we derive Avg(C) < 1=2� �, and thusAvg�(C) < 1=2 and D j= :�. Hen
e, � is a (
0; 
0)-separating senten
e, whi
h is de�nable in FO+
.This 
ontradi
tion proves the theorem. 24.2 Dealing with volumeWe start with two easy results. First, for unbounded measures (no restri
tion to In) volume 
annotbe approximated in languages like FO +Poly.Proposition 3 Let M = hR;
i, and let hR;
;+; �i be o-minimal. Then no �-approximation operatorVol� is de�nable in FO+
.Proof. Let m > 2� + 1 be an integer. Consider a s
heme with two unary symbols U1 and U2 and let 1(x) � 9y U1(y)^ jy � x j< m and  2(x) � 9y U2(y)^ jy � x j< m. Assume that Vol� is de�nable;we then have queries �1� (x) and �2� (x) whi
h give �-approximation for the measure of outputs of  1(x)and  2(x). Now let 	 � 9x1x2 (�1� (x1) ^ �2� (x2)^ jx1 � x2 j< 2�)12



Let (�) be the following 
ondition on U = U1 [ U2: for every a; b 2 U , if j a � b j� 2M then a = b.Then under (�) it holds: D j= 	 i� 
ard (U1) = 
ard (U2). However, this is impossible: Fa
t 2, a),implies that any generi
 query de�nable in FO+
 on databases over an in�nite set must be de�nablein FOa
t(<), but it is well known that equal 
ardinality is not FOa
t(<)-de�nable (
f. [21℄). 2Thus, FO + Lin and FO + Poly 
annot de�ne �-approximations of volumes. Note that the proofabove is by redu
tion to equal 
ardinality, for sparse �nite sets. It relies on the fa
t that there is no apriori bound on the outputs of queries. Thus, a di�erent approa
h is needed to show inexpressibilityof Vol�I .For a query '(~x; ~y) and two 
onstants 0 < 
1 < 
2, we say that  (~x; z) gives a (
1; 
2)-relativeapproximation of the volume if for any ~a,  (~a; �) is satis�able, andD j=  (~a; v) ) 
1 < (v=Vol('(~a;D))) < 
2By a redu
tion to separating senten
es, we will now show:Proposition 4 Assume that hR;
i is su
h that hR;
;+; �i is o-minimal. Then for any 0 < 
1 < 
2,the (
1; 
2)-relative approximation of the volume is not de�nable in FO+
, for any dimension k > 0,even for queries restri
ted to [0; 1℄k.Proof. Let k = 1 (extension to k > 1 is trivial by taking a produ
t with [0; 1℄k�1) and let the s
hema
ontain two unary relations U1 and U2. We shall assume that their interpretations are subsets of [0; 1℄.Let n = 
ard (U1);m = 
ard (U2). Let 
0 = 
12
2 < 12 and 
00 2 (12 ; 
22
1 ). We 
laim that with a (
1; 
2)-relative approximation of the volume we 
an de�ne a senten
e � su
h that n < 
0 �m implies D j= �and n > 
00 �m implies D j= :�. This will suÆ
e, as su
h a senten
e � would be a (
00; 1=
0)-separatingsenten
e, whi
h 
annot be de�ned in FO + 
.Given a �nite set X = fx1 < : : : < xpg � [0; 1℄ and Æ > 0, de�neX(Æ) = p�1[i=1[xi; xi + Æ℄ [ [xp � Æ; xp℄Note that for a given Æ and X, this is FO + Lin-de�nable. We now letÆ = 13 � mina1;a22(U1[U2);a1 6=a2 ja1 � a2 jThen U1(Æ); U2(Æ) � [0; 1℄ and Vol(U1(Æ)) = nÆ;Vol(U2(Æ)) = mÆ. Let 
0 = 
 [ f+; �g. We nowhave two queries in FO+
0, '1(y) and '2(y) de�ning U1(Æ) and U2(Æ); assuming that (
1; 
2)-relativeapproximation of the volume is de�nable, we have two queries  1(z) and  2(z) that produ
e su
h anapproximation for U1(Æ) and U2(Æ). We next de�ne� � 9z19z2: 1(z1) ^  2(z2) ^ (z1=z2 < 1=2):Suppose  1(v1) ^  2(v2) holds. It follows then that
1n
2m < v1v2 < 
2n
1mThus n < 
0 � m implies v1=v2 < 1=2 for any v1 and v2 that satisfy  1 and  2, and hen
e D j= �.Conversely, n > 
00 �m implies v1=v2 > 1=2 for any v1 and v2 that satisfy  1 and  2, and thus in this
ase D j= :�. This 
ompletes the proof. 213



4.3 Absolute approximationWe shall now prove the strongest of the inexpressibility results: that Vol�I , for � < 1=2, 
annot bede�ned in languages like FO + Lin and FO +Poly. First note:Proposition 5 FO + Lin de�nes Vol�I for � � 1=2.Proof sket
h. If the volume is not 0 or 1, then 1=2 is the �-approximation. 2It turns out that this trivial approximation is the best one 
an hope for in languages like FO + Linand FO +Poly.Theorem 3 Let M = hR;
i, and let hR;
;+; �i be o-minimal. Assume that � < 1=2. Then Vol�I isnot de�nable in FO +
.Proof. Let SC 
onsist of two unary relations A and B. Call a �nite instan
e good if two properties aresatis�ed: A is an initial fragment of natural numbers (that is, f0; 1; 2; : : : ; kg) and B is a nonemptyproper subset of A. Let 
1 = 1� 2�3 and 
2 = 2 + 2�3We have 0 < 
1 < 
2 < 1 and 
1 + 
2 = 1.Consider a senten
e � in the language of SC and 
. We 
all it a (
1; 
2)-good senten
e is the followingtwo 
onditions hold, whenever (A;B) is a good instan
e:1. If 
ard (B) < 
1 � 
ard (A), then D j= :�;2. If 
ard (B) > 
2 � 
ard (A), then D j= �.Note that this is the same as having a separating senten
e for B and A � B; however, here we onlyrequire that the above 
onditions hold for a good instan
e. The result now follows two lemmas.Lemma 1 Assume Vol�I is de�nable in FO+
. Then for 
1; 
2 as above there exists a signature 
0extending 
 and a (
1; 
2)-good senten
e in FOa
t(SC;
0).Proof of Lemma 1. Assume that an instan
e (A;B) with B � A is given. Let n = 
ard (B) andm = 
ard (A � B); n;m > 0. We now 
onstru
t A0 and B0 by translating A and B into [0; 1℄. Thatis, ea
h element x of A is repla
ed by x=xM where xM is the maximal element of A. Note that A0; B0are FO +Poly-de�nable.P = [b2B0;a2A0;(a;b)\A0=;[b; a℄ and R = [b2A0�B0;a2A0;(a;b)\A0=;[b; a℄Note that both P and R are de�nable in FO + Poly. We now have the following: if the instan
e(A;B) is good, thenn� 1n+m� 1 � Vol(P ) � nn+m� 1 m� 1n+m� 1 � Vol(R) � mn+m� 114



If Vol�I is de�nable in FO + 
, we have a FO(SC ;
 [ f+; �g) queries  P (z) and  R(z) su
h thatD j=  P (v) implies jv �Vol(P ) j< �, and likewise for R. We now de�ne 	 as9z19z2:  P (z1) ^  R(z2) ^ z1 > z2Let 
0 = 2+2�1�2� . Assume 
ard (B) > 
2 � 
ard (A); then n > 
0m. Then simple 
al
ulations show thatn�1n+m�1 > 1=2 + � and mn+m�1 < 1=2 � � whi
h implies that no matter whi
h �-approximations v1 andv2 for Vol�(P ) and Vol�(R) we have, it is the 
ase that v1� v2 > 0. Sin
e  P and  R are satis�able,we 
on
lude that, under the assumption that the instan
e is good and 
ard (B) > 
2 � 
ard (A), D j= 	.Next we assume that 
ard (B) < 
1 � 
ard (A). Then we get m > 
0n. Again, with simple 
al
ulationswe obtain m�1n+m�1 > 1=2 + � and nn+m�1 < 1=2 � �; hen
e, for every �-approximations v1 and v2 forVol�(P ) and Vol�(R), it is the 
ase that v1 � v2 < 0, and thus D j= :	.Now the lemma follows from Fa
t 2, b). 2Lemma 2 Let � be an arbitrary signature on R. Then FOa
t(SC ;�) 
annot de�ne a (
1; 
2)-goodsenten
e.Proof of Lemma 2. Suppose for 0 < 
1 < 
2 < 1 and for some signature �, there is a FOa
t(SC ;�)senten
e � that is (
1; 
2)-good a

ording to the de�nition above. We may assume without loss ofgenerality (just by adding existential quanti�ers over the a
tive domain) that all atomi
 formulaeare either A(x) or B(x), where x is a variable, or �-atomi
 formulae. Next, make a signature ��by putting a k
-ary symbol P
 for ea
h �-atomi
 subformula 
(x1; : : : ; xk
 ) of � into it. We thende�ne a senten
e 	 in the language of �� and B by repla
ing, in �, ea
h atomi
 �-formula 
 by the
orresponding symbol P
 , and A(�) by true.Next, with ea
h n > 1 and ea
h B � f0; : : : ; n � 1g asso
iate a �� [ fUg stru
ture S(B;n) whoseuniverse is f0; : : : ; n � 1g, the unary symbol U is interpreted as B, and �� predi
ates inherit theirinterpretation from hR;�i (this is possible sin
e �� does not 
ontain any fun
tion symbols). We thenhave, by a straightforward indu
tion on the stru
ture of a formulaS(B;n) j= 	 i� (f0; : : : ; n� 1g; B) j= �where (f0; : : : ; n�1g; B) is the good instan
e with A interpreted as f0; : : : ; n�1g. Thus, for 
ard (B) <
1n we have S(B;n) j= :	 and for 
ard (B) > 
2n we have S(B;n) j= 	.It follows from [12℄ that 	 is de�nable by a family of non-uniform AC0 
ir
uits, with size bounded bysome polynomial p(n), and depth d. This is be
ause 	 
an be transformed into a Boolean formula byrepla
ing ea
h 9x2adom by a disjun
tion over f0; 1; : : : ; n� 1g and ea
h 8x2adom by a 
onjun
tionover f0; 1; : : : ; n� 1g. On
e quanti�ers are repla
ed, ea
h o

urren
e of a �� predi
ate only mentions
onstants and is repla
ed by its truth value (this is why the 
ir
uit may be non-uniform). It now followsfrom [12℄ that su
h a family of formulae is de�nable by a polynomial-size 
onstant depth family ofAC0 
ir
uits.A

ording to Lemma 5 from [12℄, for large enough inputs, 
onstant-depth 
ir
uits 
annot distinguish
ardinalities in [pn; n � pn℄. Thus, there is a number N1 2 N su
h that for all n > N1 it is the
ase that for any p; q 2 [pn; n � pn℄, p 6= q, there exists sets B1 and B2 of 
ardinalities p and qrespe
tively su
h that S(B1; n) and S(B2; n) agree on 	. We now let N be an integer that ex
eedsboth N1 and 4
21 . Let n be an arbitrary integer bigger than N . Then there are integers n1; n2 su
h15



that n1; n2 2 [pn; n �pn℄ and n1 < 
1n, n2 > 
2n. In parti
ular, for any two B1 and B2 su
h thatn1 = 
ard (B1) and n2 = 
ard (B2), we have S(B1; n) j= :	 and S(B2; n) j= 	 (sin
e 	 is equivalentto �, whi
h is a (
1; 
2)-good senten
e). However, this 
ontradi
ts the above observation that for someB1 and B2 as above, S(B1; n) and S(B2; n) must agree on 	. This 
ontradi
tion 
on
ludes the proofof the lemma and the theorem. 2Corollary 1 FO + Lin, FO+Poly and FO +Exp 
annot express Vol�I for any � < 1=2. 2Theorem 3 shows that one 
annot possibly adjust the method of [23, 24, 25℄ to get the approxi-mation operators uniformly de�nable. This is somewhat surprising, for the following reasons. It ispossible that there exists an o-minimal stru
ture whi
h is 
losed under taking integrals. That is,for every '(~x; ~y) in the language of the stru
ture, there is a formula  (~x; z) su
h that j=  (~a; v) i�v = R : : : R �'(~a;Rn)\Ind~y = Vol('(~a;Rn) \ In). The existen
e of su
h a stru
ture is 
onje
tured in[24℄. By Theorem 3, even if su
h a stru
tureM = hR;
i existed, the volume of outputs of very simplequeries on �nite instan
es 
ould not be approximated in FO + 
!Is it possible that one 
an express the approximate volume 
omputation over outputs of some par-ti
ularly simple queries? We now show that for two very simple 
lasses, this remains impossible inFO +Poly and similar languages.Corollary 2 In languages FO + Lin, FO + Poly, FO + Exp, it is impossible to express Vol�I evenrestri
ted to a) outputs of 
onjun
tive <-queries over �nite instan
es, or b) s
hema predi
ates, inter-preted as f.r. instan
es de�nable with dense-order 
onstraints.Proof. Let the s
hema 
onsist of three unary symbols A, B, C, and one binary symbol E. A �niteinstan
e D is 
alled good if B;C form a partition of A, the distan
e between any two 
onse
utiveelements of A is the same, and E is the su

essor relation on A � [0; 1℄. With this, we follow the proofof Theorem 3. We de�ne P and R as before, and note that with C and E in the signature, they 
anbe de�ned by 
onjun
tive queries. For example, for P :  P (z) � 9b2 adom9
2 adom: B(b) ^ C(
) ^E(b; 
) ^ b < z ^ z < 
. Now, assuming Vol�I is de�nable in FO(SC ;
), we obtain, as in Lemma 1,that a (
1; 
2)-good senten
e is de�nable in FO(SC;
), for a good instan
e as de�ned above. Thiseasily leads to 
ontradi
tion: if a (
1; 
2)-good senten
e is de�nable in FO(SC ;
) for instan
es withA � [0; 1℄, it is de�nable in FO(SC;
;+; �) for instan
es with A being an initial fragment of naturalnumbers. Then the proof of Lemma 2 applies, as in the translation into a family of Boolean formulaethe symbols C and E 
an be eliminated: C(x) is repla
ed by :B(x), and E(x; y) by y � x = 1. This
ompletes the proof. 2Remarks One may ask where the pro
edure of [23, 24, 25℄ fails if we try to apply it, in a uniform way,to, say, FO+Poly queries. Note that the method of [23, 24, 25℄ produ
es a formula whose quanti�erpre�x is proportional to the VC dimension of the family of sets de�ned by the input formula. However,for relational 
al
ulus queries, this may depend on the size of the database, thus making it impossibleto quantify uniformly over random samples. For a query '(~x; ~y) with and a database D, the de�nablefamily given by ' and D is F'(D) = f'(~a;D) j ~a 2 Ung where '(~a;D) = f~b j D j= '(~a;~b)g. The sizeof a �nite database D, jD j, is de�ned to be 
ard (adom(D)).Proposition 6 There exists a (quanti�er-free) relational 
al
ulus query '(x; y), and a sequen
e ofdatabases D1;D2; : : : of in
reasing size su
h that VCdim(F'(Dn)) � log jDn j.16



Proof. Let SC 
ontain a single binary symbol P . Let Dn be an instan
e with the se
ond proje
tionbeing an n-element set An, and the �rst proje
tion 
oding the powerset of An (as in [1, page 462℄).That is, for ea
h B � An there is aB su
h that (aB ; b) 2 P i� b 2 B. Let '(x; y) � P (x; y). We now
onsider the family Fn = f'(a;D) j a 2 Ug. It follows immediately from the 
onstru
tion that Fnshatters An; thus, VCdim(F'(Dn)) � n. Sin
e one needs 2n elements to 
ode the powerset of An, one
an 
hoose Dn to have the a
tive domain of 2n elements. This proves the proposition. 2We also remark that under some spe
ial assumptions on the outputs of the queries, their volumes
an be approximated. One 
an show, using L�owner-John ellipsoids [16℄, that for a FO +Poly query'(~x; ~y) with j~y j= k, under the assumption that '(~a;D) is 
onvex, a relative (
1; 
2) approximation ofits volume 
an be found with 
1 = kk+12�kk � � and 
2 = kk+12 + � for an arbitrarily small � > 0.5 FO+Poly+Sum: An aggregate language for 
onstraint databasesWe now introdu
e a language for extending FO + Poly with a summation operator. The maindiÆ
ulty is to make sure that when summation is done over all elements in some query output, weare guaranteed that the query output is �nite. To do this, we use te
hniques from [6℄ for guaranteeingthat a query is safe (that is, that a query yields �nite output).Let Q be a non-boolean query over a database s
hema SC. We say that Q is a semi-algebrai
 query ifit gives semi-algebrai
 output on semi-algebrai
 inputs. We say Q is semi-algebrai
-to-�nite and writeQ 2 SAF if Q produ
es �nite output on semi-algebrai
 input databases. If Q is expressed as '(y; ~x),we say that Q is ~x-semi-algebrai
-to-�nite if for every ~a the query '(y;~a), with one free variable y, is inSAF. In the language FO+Poly+Sum, all queries are semi-algebrai
 queries, but in the 
onstru
tionwe will have to ensure that 
ertain subqueries are in the smaller 
lass SAF.A �rst-order formula 
(x; ~w) with distinguished variable x in the language of the real �eld is said tobe deterministi
 if it produ
es at most one output x for every ve
tor of real numbers ~w. Deterministi
formulae are the building blo
ks from whi
h safe queries 
an be formed. Given a deterministi
 formula
(x; ~w) and a �nite set of tuples of reals A (having the same length as ~w), we let 
(A) refer to the bag℄~a2Af
(~a), where f
 is the 
orresponding partial fun
tion taking ~w to the unique x su
h that 
(x; ~w)holds. Note that it is de
idable if a formula is deterministi
.De�nition of FO +Poly+ Sum The query language FO +Poly+ Sum is de�ned indu
tively asfollows. Atomi
 queries are the same as for FO+Poly. The formulae of FO+Poly+Sum are 
losedunder boolean 
onne
tives and quanti�
ation 8 and 9 (over the reals).Next, we de�ne the summation term-former. Given any FO + Poly + Sum formula '(y; ~z), we letEnd[y; '(y; ~z)℄(u; ~z) be the query that holds for a tuple (b;~a) on an input databaseD i� b is an endpointof the intervals that 
ompose '(D;~a) = f
 2 R j D j= '(
;~a)g. Note that if ' is a semi-algebrai
query (whi
h is guaranteed by Theorem 4 below), then End[y; '(y; ~z)℄ is ~z-SAF.A range-restri
ted FO + Poly + Sum expression is an expression of the form �(~w; ~z) �('1(~w; ~z)jEnd[y; '2(y; ~z)℄) where '1(~w; ~z) and '2(y; ~z) are FO + Poly + Sum queries. It binds y,that is, the free variables are ~z; ~w. We have D j= �(~a;~b) for ~a = (a1; : : : ; an) i� D j= '1(~a;~b) andD j= (End[y; '2(y; ~z)℄)(ai;~b); i = 1; : : : ; n:17
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onvex polygon in FO+Poly+SumIt then follows from the 
losure property (Theorem 4) that for any D and any ~b, the set �(D;~b) = f~a jD j= �(~a;~b)g is �nite.For any deterministi
 formula 
(x; ~w) and any range-restri
ted expression �(~w; ~z) as above we nowde�ne a term t(~z) by [ X�(~w;~z) 
℄(~z)Given D and ~b, the value of t(~b) in D is the sum of all the members of the �nite bag 
(A), whereA = �(D;~b).Finally, new terms in FO+Poly+Sum 
an be built by applying 
omposition with the real fun
tions+; �. If tis are terms and ' is a formula, then t1 = t2; t1 < t2 and '(t1; : : : ; tk) are FO+Poly+ Sumformulae.Examples of FO+Poly+Sum queries Let '(w) be an FO+Poly query. Let 
(x;w) � (x = w)and �(w) = (w = w)jEnd[w;'(w)℄. Then the FO+Poly+Sum term (without free variables)P�(w) 
gives the sum of all the endpoints of the intervals that 
ompose '(D).The area of a 
onvex polygon in R2 
an be de�ned in FO + Poly + Sum. The idea of the query isillustrated in Figure 1. Suppose we triangulate the polygon as shown. Then the area of the polygonis the sum of the areas of triangles. We thus have to de�ne the triangulation and then apply thesummation term of FO+Poly+Sum to 
al
ulate the area.This is done as follows. Assume that the polygon is given by a predi
ate P (x; y) (it 
ould be an inputrelation or the output of a query). There is a FO+Poly query 'P (x; y) that 
omputes all the verti
esof P { this is be
ause ~a is vertex i� ~a 62 
onv(P � f~ag). Sin
e one 
an 
ompute the boundary of Pby a FO +Poly query, it follows that there is a FO +Poly query �P (~x; ~y) that tests if ~x; ~y are twoadja
ent verti
es of P .We now form two FO + Poly queries. The query  2(u) tests if u is a 
oordinate of a vertex ofP . The query  1(~x; ~y; ~z) tests the following 
onditions: (1) 'P (~x) ^ 'P (~y) ^ 'P (~z) holds; (2) ~x is alexi
ographi
ally minimal vertex of P ; (3) either �P (~y; ~z) holds and ~y is lexi
ographi
ally less than ~zand :�P (~x; ~y) ^ :�P (~x; ~z), or �P (~x; ~y) ^ �P (~y; ~z) ^ :�P (~x; ~z).We now let �(~x; ~y; ~z) be the range-restri
ted expression ( 1(~x; ~y; ~z)jEnd[u;  2(u)℄). It 
an be easilyseen that for P 
onvex, the output of � is �nite and produ
es a triangulation of P . That is, �(~a;~b;~
)18



holds i� ~a;~b;~
 are the verti
es of one of the triangles su
h as those shown in Figure 1.Sin
e for ea
h triangle with verti
es (a1; a2), (b1; b2), (
1; 
2), its area is 
omputable as j (a1b2�a2b1+a2
1 � a1
2 + b1
2 � 
1b2)=2 j, we obtain a deterministi
 formula 
(v; ~x; ~y; ~z) saying that v is the areaof the triangle with verti
es ~x; ~y; ~z. We then 
on
lude that the term P�(~x;~y;~z) 
 de�nes the area of P .2Note that the above method 
odes a standard 
omputation of area used in 
omputational geometry[33℄ whi
h generalizes to non
onvex polygons, and is in fa
t used in GISs for area 
omputation [38℄.Properties of FO+Poly+Sum The language FO+Poly+Sum has a number of attra
tive features.It extends both FO+Poly and the relational 
al
ulus with summation and other standard aggregates.It is also related to aggregate languages for statisti
al databases studied re
ently in [17℄. Furthermore,we have the following property.Theorem 4 FO+Poly+Sum is 
losed. That is, every FO+Poly+Sum query returns semi-algebrai
output on a semi-algebrai
 input.Proof. We show this by stru
tural indu
tion on the 
onstru
tion of the query. Suppose we knowindu
tively that '(w; ~z) is a semi-algebrai
 query, and �x a semi-algebrai
 database D. There isan integer n su
h that for any ~a, D j= End[y; '(y; ~z)℄(
;~a) for at most n distin
t values of 
 (byo-minimality of the real �eld and the uniform bounds result of [32℄). Moreover, this integer 
an bee�e
tively 
omputed given ' and D. Hen
e, for every ~z,�(~w; ~z) � '1(~w; ~z) j End[y; '(y; ~z)℄holds for at most nm tuples ~w, where m is the length of ~w. We then see that the set f(v;~a) j D j= v =P�(~w;~a) 
(x; ~w)g is semi-algebrai
, sin
e it is de�nable by the disjun
tion of v = 0 ^ 8~w :�(~w;~a) with_1�k�nm 9~w1 � � � 9~wk�k̂i=1 �(~wi;~a) ^ (8~w �(~w;~a)!_i (~w = ~wi)) ^ î6=j(~wi 6= ~wj)^ 9u1 � � � 9uk (( k̂i=1 
(ui; ~wi) _ ((8z:
(z; ~wi)) ^ ui = 0)) ^ (v = u1 + � � � + uk))� :The language is also 
losed under the standard relational aggregation.Proposition 7 � For any SAF FO+Poly+Sum query '(~z), we 
an express in FO+Poly+Sumthe 
ardinality of the output of '.� For any SAF query FO + Poly '(~z) and any deterministi
 formula �(x; ~w) we 
an express inFO + Poly + Sum the sum of the x values of � for ~w ranging over the output of ' and theaverage of the x values of � over the output of '.Proof. To see the �rst item, 
onsider an arbitrary SAF FO + Poly + Sum query '(~w). Let '0(w)be the query returning the a
tive domain of the output of '. Then '0 is 
learly SAF as well, and19



End[w;'0(w)℄ is the same as '0(w). Let �(~w) = '(~w)jEnd[w;'0(w)℄ and 
(x; ~w) be x = 1. ThenP�(~w) 
 is an FO +Poly+ Sum query returning the number of items in the output of '.To see the se
ond item, let � be as in the previous paragraph. For any deterministi
 formula �(x; ~w)we have that P�(~w) � is an FO +Poly+ Sum query returning the sum of the x-values of � over theoutput of '. The average of ' is simply the quotient of the sum of ' and the 
ardinality of '. Sin
ethe FO +Poly de�nable fun
tions are 
losed under division, we 
an de�ne average. 26 Computing the volume of Semi-linear sets in FO + Poly+ SumIn this se
tion we show how to use the aggregate language FO+Poly+Sum for volume 
omputationand approximation. Our goal is to prove that FO + Poly + Sum 
an 
ompute the volume of semi-linear sets. We start by noting that taking volumes of semi-linear sets does not take us out of thesemi-algebrai
 setting. This fa
t is easily derived from known results in the literature (and may havebeen published before, see, for example, [8℄ for a 
losely related result).Lemma 3 For any formula '(~x; ~y) over the real ordered group Rlin, the volume of ' is semi-algebrai
.That is, f~r; s j [Vol ~y:'(~x; ~y)℄(~r; s)g is a semi-algebrai
 set.Proof. By Fubini's Theorem, [Vol ~y:'(~x; ~y)℄(~x; z) holds exa
tly when z = R R : : : R �'(~x; ~y)dyn : : : dy1,where �' is the 
hara
teristi
 fun
tion of the set de�ned by '.Let F1(y1 : : : yn�1; ~x) be the innermost integral R �'(~y; ~x)dyn. We �rst show that F1(y1 : : : yn�1; ~x)is semi-algebrai
. Let li(y1 : : : yn�1; ~x) and ui(y1 : : : yn�1; ~x) be the ith lower and upper endpoint ofthe set '~x;y1:::yn�1 = fyn j '(~x; y1 : : : yn)g. We know that ui and li are semi-linear de�nable partialfun
tions. We now note that any su
h fun
tion is pie
ewise linear with the 
oeÆ
ients in the linearpolynomial being rational, 
f. [35℄. That is, for ea
h fun
tion, its domain 
an be partitioned into �nitelymany semi-linear sets on whi
h it is linear. To see this, note that on its domain Ui, ui(y1 : : : yn; ~x) isthe unique solution to a disjun
tion of 
onjun
tions of linear inequalities in y1; : : : ; yn; ~x. Ea
h disjun
tmust then have at most one solution. Let a disjun
t be a 
onjun
tion Vl2T1 Cl(y1 : : : yn; ~x)�0, where� 2 f<;>;�;�g. We know that this must have at most one solution rn for ea
h r1 : : : rn�1; ~s 2 Ui . Butthis solution must then be the solution to the 
onjun
tion of some subset of the 
orresponding equalitiesCl(y1 : : : yn; ~x) = 0 where l 2 T2 � T1. (Otherwise �x a 
ounterexample r1 : : : rn�1; ~s and let T2 bethe set of l 2 T1 su
h that the solution rn satis�es Cl(r1 : : : rn; ~s) = 0. If the 
orresponding solutionspa
e is not 0-dimensional, then the set of proper inequalities of the form Cl(y1 : : : yn; ~x)f<;>g0 withl 2 T1 � T2 satis�ed by ~r; ~s de�nes an open subset of this spa
e, whi
h would then have to be in�niteor empty, giving a 
ontradi
tion.) But by linear algebra, we know that when a set of linear equalitiesCl(y1 : : : yn; ~x) has a unique solution yn, this solution is given by a linear fun
tion with 
oeÆ
ients inthe �eld generated by y1 : : : yn�1; ~x. Hen
e pie
ewise ui is linear, and similarly for li.Hen
e we 
an �nd a de
omposition of Rm+n�1 into semilinear sets A1 : : : Ak, and �nd a fun
tionb : k ! N and linear fun
tions fij(y1 : : : yn�1; ~x) : i � k; j � b(i) su
h that8r1 : : : rn�1s1 : : : sm 2 Ai F1(r1 : : : rn�1; s1 : : : sm) = �k�b(i)fij(r1 : : : rn�1; s1 : : : sm):But now we have that [Vol ~y:'(~x; ~y)℄(~x; z) holds when z = R R : : : R F1(x1 : : : xn�1; ~y)dx1 : : : dxn�1,so we 
an partition Rm into �nitely many pie
es, on ea
h one of whi
h [Vol ~y:'(~x; ~y)℄(~x; z) is givenby the graph of a polynomial in ~x. Hen
e Vol ~y:'(~x; ~y) is semi-algebrai
. 220



We now prove that the language FO +Poly+ Sum 
an express volumes of semi-linear sets.Theorem 5 � For every s
hema predi
ate S 2 SC there is an FO + Poly+ Sum term � whi
h,for any semi-linear database D, 
omputes the volume of S in D.� For every FO+Lin query ' there is an FO+Poly+Sum term �' su
h that for any semi-lineardatabase D, �'(D) returns the volume of '(D).Proof: Note that the �rst item 
learly implies the se
ond, be
ause, given su
h a term � we 
an
ompose it with the query ' to get the ne
essary term in the se
ond item. Hen
e we only prove the�rst item here.For any semi-linear S we have Vol(S) = R R : : : R �S(~x)dxn : : : dx1, where �S is the 
hara
teristi
fun
tion. The innermost integral is [P�1(w;x1:::xn�1) 
℄(x1 : : : xn�1), where �1(w; x1 : : : xn�1) is thequery saying w is the sum of di�eren
e of 
onse
utive endpoints of the set fxn j S(x1 : : : xn�1; xn)g,and 
(w) � (w = w). Note that by o-minimality, �1 is an FO + Poly + Sum query mapping semi-algebrai
 sets to �nite sets. The proof of Proposition 7 shows that any su
h query 
an be written asa range-restri
ted expression in FO +Poly+ Sum.Let f1x1:::xn�1 = [P�1(w;x1:::xn�1) 
℄(x1 : : : xn�1). We know from the proof of Lemma 3 that for ea
h�xed r1; : : : ; rn�2, the fun
tion g1r1;:::;rn�2(xn�1) = f1(r1; : : : ; rn�2; xn�1) is pie
ewise a linear fun
tionof xn�1. Sin
e f1 is an FO+Poly+Sum de�nable fun
tion, we 
an also de�ne in FO+Poly+Sumthe set of points fr1; : : : ; rn�2; rn�1 : the fun
tion g1r1;:::;rn�2 is not smooth at rn�1g We 
an do thisbe
ause a pie
ewise linear fun
tion is smooth whenever it is di�erentiable, and the latter property 
anbe tested by an FO+Poly query.Let f2(x1; : : : ; xn�2) be the sum of all values of the fun
tion (mu2 � ml2)=2 + b(u � l), where thequadruples (u; l;m; b) vary over all quadruples of points su
h that (l; u) are 
onse
utive points ofnonsmoothness of g1x1;:::;xn�2 , and g1x1;:::;xn�2 = mx+ b on the interval (l; u).Note that sin
e g1x1;:::;xn�2 is pie
ewise linear, there are only �nitely many points where f1 is notsmooth, hen
e only �nitely many pairs of 
onse
utive points of nonsmoothness. Therefore there areonly �nitely many quadruples (u; l;m; b) as above. Also note that the formula 
(w; l; u;m; b) givenby w = (mu2 � ml2)=2 + b(u � l) is a deterministi
 formula. Hen
e, by Proposition 7, there isan FO + Poly + Sum query returning the sum of all 
 output values w as (l; u;m; b) vary. Hen
ef2(x1; : : : ; xn�2) is an FO +Poly+ Sum de�nable fun
tion.Claim 1 f2(x1 : : : xn�2) is exa
tly the volume of the �ber of S based on x1; : : : ; xn�2. That is,f2(x1 : : : xn�2) = Vol(f(xn�1; xn) j (x1; : : : ; xn�2; xn�1; xn) 2 Sg).Proof:. By Fubini's theorem, the volume is the integral of the one variable fun
tion g1x1;:::;xn�2(xn�1).Sin
e this fun
tion is pie
ewise linear, for ea
h �xed r1; : : : ; rn�2 there are �nitely many a1; : : : ; ak 2R [ f1;�1g with a1 < : : : < ak su
h that g1 is linear on (aj ; aj+1). Hen
e the integral of g1r1:::rn�2is just the sum of the integral of g1 over the intervals (aj ; aj+1). But the integral of a linear fun
tionh(x) = mx+ b over an interval l; u is just mx2=2 + bxjul , and hen
e the result follows. 2Continuing this indu
tively, we have the fun
tion fk�1(x1; : : : ; xn�k+1) giving the volume of the �berof S de�ned by x1; : : : ; xn�k+1. If we �x the �rst n � k parameters in this fun
tion, we obtain afun
tion gk�1x1;:::;xn�k(xn�k+1) whi
h is pie
ewise polynomial of degree at most k � 1. That is, R is21



partitioned into �nitely many intervals, and on ea
h of them gk�1x1;:::;xn�k(y) is give by bk�1yk+ : : :+ b0.One 
an now determine all the points of nonsmoothness ( sin
e this is the same as not being k � 1-times di�erentiable) of gk�1x1;:::;xn�k by a FO + Poly + Sum query. Furthermore, one 
an write aquery, using polynomial 
onstraints, that on every point in every interval between the points ofnonsmoothness �nds the 
oeÆ
ients of the polynomial of degree k�1 that gives gk�1x1;:::;xn�k on every su
hinterval (e.g., by 
omputing the derivatives and applying Taylor's theorem). Thus, we have a range-restri
ted FO+Poly+Sum query �k(bk�1; bk�2; : : : ; b0; u; l; x1; : : : ; xn�k) that for every x1; : : : ; xn�kprodu
es the tuples (bk�1; bk�2; : : : ; b0; u; l) su
h that on (u; l), gk�1x1;:::;xn�k is given by the polynomialbk�1yk�1+ : : :+b0, and furthermore (u; l) list all su
h intervals, whi
h 
over all R ex
ept �nitely manypoints of nonsmoothness.Now let 
k(bk�1; bk�2; : : : ; b0; u; l) be de�ned bybk�1(uk � lk)k + bk�2(uk�1 � lk�1)k � 1 + : : :+ b0(u� l)Hen
e, fk(x1 : : : xn�k) given by[ X�k(bk�1;bk�2;:::;b0;u;l;x1;:::;xn�k) 
k(bk�1; bk�2; : : : ; b0; u; l)℄ (x1; : : : ; xn�k)de�nes, for ea
h (x1; : : : ; xn�k), Z gk�1x1:::xn�k(xn�k+1)dxn�k+1;and thus by Fubini's theorem it is the volume of the �ber of S over x1 : : : xn�k.Now it immediately follows that fn is a FO+Poly+Sum fun
tion giving the volume of S. Theorem5 is proved. 27 Con
lusionsThis paper has dealt with the key question of how to add aggregation to 
onstraint query languages.The �rst fundamental question is whether there 
an be a language that is 
losed under the naturalspatial aggregation operators, and whi
h also retains the basi
 
losure property that is fundamental to a
onstraint-based approa
h: namely, that every query output 
an be again represented as a 
onstraintsolution set. Our results give indi
ation that this is impossible: these two 
losure properties arefundamentally in
ompatible. Perhaps more surprisingly, we show that the problem is not parti
ularto the polynomial or linear 
onstraint model; even going to a larger well-behaved 
onstraint set doesnot remedy the problem.The results above motivated us to look for languages that are not 
losed under volume operators, butwhi
h are 
losed under natural dis
rete aggregations and whi
h permit the 
omputation of volumesfor semi-linear sets. The language FO + Poly + Sum de�ned here gives a natural approa
h to theaddition of dis
rete aggregation operators to a 
onstraint language. The key idea is the notion ofrange-restri
ted querying: allowing aggregation to be formed only on sets that are guaranteed to be�nite. We show not only that FO+Poly+ Sum has some attra
tive 
losure properties analogous to
lassi
al aggregate languages, but it allows one to do a signi�
ant amount of spatial aggregation |e.g. volumes of semi-linear sets, averages over semi-linear sets | as well.22



The approa
h given here based on 
lassi
al summation over range-restri
ted sets is natural, and allowsone to re-use many of the evaluation strategies for 
lassi
al aggregation operators; it is 
lear, however,that the syntax given here for FO+Poly+Sum is quite awkward. We hope to �nd more streamlinedand natural syntax for FO + Poly+ Sum, and we are looking at subsets of FO + Poly+ Sum that
an be more eÆ
iently evaluated than the full language. It remains to dis
over how one 
ould bestprovide support for dire
tly expressing volumes in some language built `on top of' FO+Poly+Sum,and how to add grouping 
onstru
ts to the language.A 
hallenging issue on the theoreti
al side is how to prove expressive bounds on aggregate 
onstraintdatabase languages like FO+Poly+Sum. For example, the results of this paper give strong eviden
ethat FO+Poly+ Sum does not suÆ
e to 
al
ulate volumes of semi-algebrai
 sets, but this is at thispoint only a 
onje
ture.A
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