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Constraint Query Languages, then, give a natural analog of relational alulus in the geometri ontext.A ruial question, though, onerns how to extend standard aggregation onstruts from the relationalmodel to the geometri setting. This question has two omponents. First, we would like our languagesto be able to apply standard SQL operators suh as TOTAL and AVG to spatial queries, wheneverthese operators make sense. Sine the output of queries in onstraint query languages (and in otherspatial query languages) may be merely �nitely representable (that is, representable by some �nitemeans, e.g., a �nite set of onstraints) and not �nite, the aggregation operators annot be allowed tobe applied to any onstraint query output. One problem then, is to design a language that allows thesafe appliation of lassial aggregates.The seond omponent of the `aggregation question' onerns aggregation notions that are spei�to the spatial databases. Most ommonly, given a database and the output of a query over it, onewishes to form new queries about the volume of this output. One may also extend standard aggregatessuh as AVG, and ask for the average value of a polynomial over a spatial objet. Suh aggregatesarise both from pratial onerns of GIS, and also as the natural ontinuous analogs of lassialaggregation queries. Thus, we would like to extend onstraint query languages to inorporate theability to alulate volumes and other aggregates arising in the spatial setting.In attempting to add aggregation to onstraint query languages, one immediately enounters somedaunting obstales. While standard onstraint databases are losed under �rst-order operations suhas join and projetion, they are learly not losed under taking of volumes. This fat is well-knownin the literature [22, 26, 11℄, and stems from the fat that neither the semi-linear nor semi-algebraisets are losed under integrals. To take an example from the semi-algebrai setting, a query askingfor the volume of initial slies of the epigraph of 1=x outputs the graph of the ln funtion, whileiterating volume queries in this fashion would give as output transendental funtions that are noteven expressible using �eld operations, logarithms and exponents. Thus, one annot hope to add ageneral volume operator to existing �rst-order onstraint query languages suh as FO+Poly and geta losed language while still remaining within the domain of polynomial onstraint databases.There are several approahes to the volume problem mentioned above. First, one ould weaken therequirement that volumes be omputed exatly and instead aim only to ompute approximate volumes.Thus a query might have a tolerane assoiated with eah instane of a volume operator, with outputrequired only to be orret within the given tolerane. There are a number of pratial and theoretialmotivations for this approah. While it is known that omputing volumes of even simple geometriobjets (onvex polytopes) is a hard problem (#P-hard, see [13℄), approximation of volumes, atleast of onvex sets, an be done in polynomial time by a randomized algorithm [14℄. Moreover, inontrast to the well-known fat that semi-algebrai and semi-linear sets are not losed under volumeoperators, the papers [23, 24, 25℄ show that volumes of sets de�nable with polynomial onstraintsan be approximated, for any given � > 0, by a �rst-order formula with polynomial onstraints. Bygiving up exat volume and settling for an approximation, one might hope to retain desirable losureproperties.A seond approah to the aggregation problem would be to expand out of the domain of polynomialonstraints, and add new funtions to the signature of both the onstraints and the query language.This would give the possibility of retaining a onstraint-based representation of databases, whilegaining losure under volume operators. Of ourse, in this approah one should expand the onstraintset so that it still de�nes only topologially well-behaved objets.A third approah to the volume problem is to searh for languages whih an ompute or approximatethe volumes of important lasses of sets, but whih may not be losed under iterative appliation of2



volume operators. For example, one ould allow volume and other aggregation operators to be appliedonly to a sublass of the input queries. Restritions on the nesting of volume operators would thenhave to be imposed.An example of this last approah in the existing literature is [10℄, where it is shown that polynomialonstraint query languages an express the (exat) volume for any set that admits a speial onditionalled `variable independene'. This ondition means, informally, that in the onstraint spei�ation ofsets in, say, R2 , there is no interation between x and y. Unfortunately, this ondition is too restritive:it exludes many of the sets that arise most often in spatial appliations. As for pratial appliations ofaggregation in onstraint databases, implemented systems normally do not have aggregate operations(the Dedale system, for example). One spatial extension of SQL, proposed in [28℄, does inludeaggregates, but a areful examination of the language shows that they are severely restrited: theonly allowed aggregate operations are traditional relational ones applied to �nite relations, and spatialunion and intersetion, whih are �rst-order de�nable.In this paper, we analyze the feasibility of eah of the above approahes in detail. For the �rstapproah, we show that tehniques based on VC dimension, oming out of the work of [23, 24, 25℄ giveus approximate volume operators that give semi-algebrai output on semi-algebrai input. However,we show a number of shortomings of suh an approah. Not only are the approximate volumeoperators obtained aording to the tehnique of [23, 24, 25℄ sensitive to the input representation,but the blow-up in the size of the onstraint databases produed in query evaluation preludes anypossible use of these operators in pratie.Turning to the seond approah, we show that it is ompletely infeasible. No �rst-order onstraintlanguage based on any reasonably well-behaved lass of funtions an express, or even approximate,volume. In the proess of showing this, we develop a new set of tehniques for proving inexpressibilityresults, tehniques not based on the usual method of redution to generi queries.We then onsider solutions that give up full losure under volume, and give a number of positive results.We present a higher-order language that allows one to alulate the volume of arbitrary semi-linearsets. Spei�ally, we give a language, alled FO+Poly+Sum, that has attrative losure properties,remains within the domain of polynomial onstraint databases, and allows the exat alulation ofvolumes for linear-onstraint input databases. This language also has the pleasant feature that it islosed under the lassial aggregation operators SUM and AVG. Sine FO+Poly+Sum inludes SQLaggregation, ontains FO+Poly, and also allows one to make use of standard aggregation evaluationtehniques in alulating volumes, it seems to be a good andidate for the onstraint analog of lassialaggregation languages.We remark that another approah to the aggregation problem was onsidered in [11℄, whih gave anew aggregate operator �, under whih FO + Lin is losed. However, �(X) = 0 for any bounded setX; thus, this operator annot be used to deal with volumes.Organization Setion 2 introdues the notation. Approximability is studied in Setion 3. The methodof de�ning approximate volumes of [23, 24, 25℄ is analyzed, and the main diÆulties in applying theapproximation operators oming from this work are outlined. Setion 4 shows that approximatevolume operators annot be de�ned in �rst-order onstraint languages, even when the signature isexpanded. Setion 5 de�nes an extension of FO +Poly with SQL-like aggregation (summation over�nite sets) and shows that this extension an express volumes of semi-linear databases.The extended abstrat of this paper appeared in the Proeedings of the 18th ACM Symposium on3



Priniples of Database Systems [7℄.2 NotationStrutures, instanes, queries Most notations are fairly standard in the literature on onstraintdatabases, f. [4, 5, 27, 31, 19℄. Let M = hU ;
i be an in�nite struture, where U is an in�nite set,alled a universe (in the database literature often alled the domain), and 
 is a set of interpretedfuntions, onstants, and prediates. In the �eld of onstraint databases, most examples have U = R,the set of real numbers. Examples of signatures (and orresponding lasses of onstraints) that havebeen onsidered are:Dense Order Constraints: hR; <i;Linear Constraints: Rlin = hR;+;�; 0; 1; <i;Polynomial Constraints: R = hR;+; �; 0; 1; <i;Exponential Constraints: Rexp = hR;+; �; ex ; <i.A (relational) database shema SC is a nonempty olletion of relation names fS1; : : : ; Slg with asso-iated arities p1; : : : ; pl > 0. We shall onsider both �nite and �nitely representable instanes. GivenM, an �nite instane of SC over M is a family of �nite sets, fR1; : : : ; Rlg, where Ri � Upi . Thatis, eah shema symbol Si of arity pi is interpreted as a �nite pi-ary relation over U . Given a �niteinstane D, adom(D) denotes its ative domain, that is, the set of all elements that our in therelations in D.A �nitely-representable (f.r.) instane of SC over M is a family of sets fX1; : : : ;Xlg, with Xi � Upi ,suh that for eah Xi there exists a quanti�er-free formula �i(x1; : : : ; xpi) in the language of M withXi = f~a 2 Upi j M j= �i(~a)g. Most appliations of onstraint databases onsider f.r. instanes de�nedover Rlin (these are alled semi-linear sets) or over R (alled semi-algebrai sets). For example, in thespatial setting, a f.r. instane interprets the shema prediates as semi-linear or semi-algebrai sets.As our basi query language, we onsider relational alulus, or �rst-order logi, FO, over the un-derlying struture and the database shema. In what follows, L(SC;
) stands for the language thatontains all symbols of SC and 
; FO(SC ;
) is the lass of all �rst-order formulae built up from theatomi SC and 
 formulae by using Boolean onnetives _;^;: and quanti�ers 8;9.Regardless of whether we are in the `lassial' setting, where these queries are applied to �nitedatabases, or in the onstraint query setting, we will refer to the above syntati query languages asrelational alulus with 
 onstraints. This will be denoted by FO + 
. When 
 is (+;�; 0; 1; <), or(+; �; 0; 1; <), or (+; �; ex; <), we use the standard abbreviations FO+Lin, FO+Poly and FO+Exp.In the ase of �nite databases, we shall also use the ative-domain quanti�ers: for a formula '(x; ~y),one an form formulae 9x 2 adom:'(x; ~y) and 8x 2 adom:'(x; ~y). For a struture M and a SC-instane D, the notion of (M;D) j= ' is de�ned in a standard way for FO(SC;
) formulae, where(M;D) j= 9x '(x; �) means for some a 2 U we have (M;D) j= '(a; �), and (M;D) j= 9x2adom '(x; �)means that for some a 2 adom(D) we have (M;D) j= '(a; �). If M is understood, we write D j= '.Given '(~x; ~y) and ~a, we write '(~a;D) for f~b j D j= '(~a;~b)g; in the absene of ~x we just write '(D)for the output of ' on D.The lass of subformulae of FO that only use the ative-domain quanti�ation is denoted by FOat.4



Adding aggregate operators We shall use Vol(X) to denote the volume of a set X � Rn . Morepreisely, Vol(X) is the measure of any Lebesgue-measurable set X � Rn . We shall not worry aboutdealing with non-measurable sets, as all bounded sets de�ned with onstraints relevant for spatialappliations (those listed above, plus some extensions) are measurable.We shall onsider adding volume to a query language as follows. If '(~x; ~y) is a formula, then thefollowing is a formula with free variables ~x; z:[Vol ~y:'(~x; ~y)℄(~x; z)Assume that a struture M = hR;
i is �xed. Let an instane (�nite or f.r.) D be given. ThenD j= [Vol ~y:'(~x; ~y)℄(~a; v) i� v = Vol('(~a;D)):Reall that '(~a;D) = f~b j D j= '(~a;~b)g.The extension of any query language L with Vol will be denoted by L+Vol; for example, one anspeak of FO+Lin+Vol or FO+Poly+Vol. Of ourse we know that due to the nonlosure resultsmentioned in the introdution, FO + Lin $ FO+ Lin+Vol and FO+Poly $ FO +Poly+Vol.As the next step, we restrit our attention to bounded sets. Without any loss of generality, we shalldeal with subsets of In � Rn , where I throughout this paper denotes the interval [0; 1℄. We de�neVolI ~y:'(~x; ~y) just as above, exept that now we require that v = Vol('(~a;D) \ In). In partiular,0 � v � 1. We similarly de�ne languages L + VolI . As with Vol, languages like FO + Lin andFO + Poly are not losed under VolI : for example, artan(x) = R x0 dyy2+1 = VolI(f(y; z) j (0 � y �x) ^ (0 � z � 1=(y2 + 1))g), for 0 � x � 1.As standard languages are not losed under taking volume, we address the question of whether onean obtain losure by lowering one's demands. In partiular, we would like to see if approximating thevolume, rather than omputing it diretly, gives us a losed language. The hope that losure might beobtained in this way is motivated by the fat that for every formula '(~x; ~y) in R and for every � > 0,one an �nd a formula  �(~x; z) that gives �-approximation of volumes of sets '(~a;R) = VolI(f~b j j='(~a;~b)g), see [23, 24, 25℄.We have to explain what we mean by approximating volume in this ontext. Clearly, we annot hopeto �nd  �(~x; z) with z de�ning an �-interval around the real value of the volume { then the volumeitself would be de�nable as the enter of the interval! Thus, we settle for less. Similar to [23, 24, 25℄,we say for every � > 0, that an operator Vol� is an �-approximation operator if for every f.r., over M,set A 2 Rn �Rm , given by a formula '(~x; ~y), Vol� returns a f.r. set in Rn �R, given by  �(~x; z) suhthat :1. For every ~a 2 Rn ,  �(~a; �) must be satis�able (that is, M j= 9z: �(~a; z));2. If M j=  �(~a; v), then v � 0 and jv �Vol('(~a;R)) j < �.Thus, Vol� must return a  � that is guaranteed to �nd an (absolute) �-approximation of the volume.We next say that a query language L de�nes Vol�, if there is a query in L that de�nes suh anoperator. That is, for eah query '(~x; ~y) in L and � > 0 there is a L-query  �(~x; z) suh that for anydatabase D, and any ~a, we have� D j= 9z: �(~a; z), and 5



� D j=  �(~a; v) implies v � 0 and jv �Vol('(~a;D)) j< �.Notie that in the last de�nition  � is independent of D. Also notie that to show de�nability ofapproximate operators in standard query languages, it suÆes to show that there is a query in thelanguage returning the �-approximate volume on every base relation of some �xed arity.We also de�ne �-approximation operators to volume in the ase where we restrit to bounded sets. Asbefore, we use, w.l.o.g., In as bounding set. An �-approximation operator in the bounded setting isdenoted by Vol�I . Suh an operator must satisfy the variant of ondition 2) above: jv�Vol('(~a;D)\In) j < � and 0 � v � 1.These operators, and their de�nability in query languages, are studied in Setions 3 and 4.O-minimality, VC dimension Many results that we prove extend beyond linear and polynomialonstraints. To state them in greater generality, we shall use o-minimality [35℄, whih plays animportant role in the study of onstraint query languages (f. [4, 5, 6℄).A strutureM = hU ;
i is o-minimal, if every de�nable set is a �nite union of points and open intervals(a; b) = fx j a < x < bg, (�1; a) = fx j x < ag, and (a;1) = fx j x > ag (we assume that < is in 
).De�nable sets are those of the form fx j M j= '(x)g, where ' is a �rst-order formula in the languageof M, possibly supplemented with symbols for onstants from M. All the strutures on the reals wementioned so far { Rlin, R, Rexp { are o-minimal (the �rst two by Tarski's quanti�er-elimination, thelast one by [37℄).If M = hR;
i, we de�ne M+;� to be hR;
;+; �i. We often require that not just M but also M+;�be o-minimal.We also onsider strutures having �nite VC dimension of de�nable families [2, 29℄ (also known asstrutures without the independene property [34℄). VC dimension, introdued in statistis to studyuniform onvergene of stohasti proesses, has beome entral to omputational learning theory[2, 9℄, and found appliation in other areas, e.g., omplexity [30℄.Suppose X is an in�nite set, and C � 2X . Let F � X be �nite; we say that C shatters F if theolletion fF \ C j C 2 Cg is 2F . The Vapnik-Chervonenkis (VC) dimension of C, VCdim(C), is themaximal ardinality of a �nite set shattered by C. If arbitrarily large �nite sets are shattered by C,we let VCdim(C) =1.Let M = hU ;
i, and let '(~x; ~y) be a formula in the language of M with j~x j= n; j ~y j= m. For eah~a 2 Un, de�ne '(~a;M) = f~b 2 Um j M j= '(~a;~b)g, and let F'(M) be f'(~a;M) j ~a 2 Ung. Familiesof sets arising in suh a way are alled de�nable families. We say that M is a struture with �niteVC dimension if the VC dimension of eah de�nable family is �nite. Every o-minimal struture is astruture with �nite VC dimension [29℄, and the latter lass is in fat muh larger than the lass ofo-minimal strutures.
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3 Approximating aggregates in onstraint query languages3.1 The VC dimension-based implementation of approximate volume operatorsWe now start our investigation of the expressibility of approximate volume operators. The resultsof [23, 24, 25℄ do immediately give a losed language for omputing approximate volumes. From[23, 24, 25℄ we an easily derive:Theorem 1 Let � > 0, and let '(~x; ~y) be a FO + Poly query. Then for every semi-algebrai (resp.semi-linear) database instane D there exists a formula '�D(~x; z) over the real ordered �eld R (resp.group Rlin) suh that '�D(~a; �) is satis�able for all ~a, and j= '�D(~a; v) implies jv �VolI('(~a;D)) j< �and 0 � v � 1. Hene, there is a olletion of �-approximation operators Vol�I , � > 0, for R and Rlin.Sine we want to examine those operators with regard to their eÆieny, we now review the ideas of[23, 24, 25℄ that lead to this theorem.Pre-requisites (see [2, 9, 23, 25℄) The idea of the approximation tehnique an be traed bak tothe simplest randomized method for omputing volumes. For a set S � In � Rn , take k points x1, . . . ,xk from the uniform distribution on In. Then Vol(S) an be approximated as vS =Pki=1 �S(xi)=k,where �S is the harateristi funtion of S: �S(x) = 1 if x 2 S and �S(x) = 0 if x 62 S. Then for� > 0, P (jvS �Vol(S) j� �)) < 2e�2k�2 ;this follows from Hoe�ding's inequality. There are two reasons why this is not suÆient for getting�-approximations to volume. First, the volume operators, as we de�ned them, may depend on param-eters. Indeed, Vol ~y:'(~x; ~y) requires omputing the volume for every instantiation of parameters ~x.Seondly, the randomized method above only tells us that j vS � Vol(S) j< � with high probability,and thus the proedure must be derandomized to ensure a ertain answer.To overome the �rst problem, we use tehniques from statistis and mahine learning to ensure thatone sample will suÆe to test multiple volumes. Let '(~x; ~y) be a �rst-order formula over the real�eld R, with j ~x j= n and j ~y j= m, and let �; Æ > 0. De�ne '(~a;R) = f~b 2 Rm j R j= '(~a;~b)g. LetM > 0 be given, and assume that an M -point sample C = f~1; : : : ;~Mg is randomly hosen in Im.For eah ~a, let v(~a;C) be the fration of C that falls into '(~a;R) \ Im. Then one wants to ahievejv(~a;X) �VolI('(~a;R)) j< � for all ~a 2 Rn , with probability at least 1� Æ.The lassial results of learning theory [2, 9℄ say that this is possible when the VC dimension ofthe family F'(R) = f'(~a;R) j ~a 2 Rng � 2Rm is �nite, and the size of the sample of M is thenproportional to the VC dimension. In the onstrution of approximating formulae, we shall use thefollowing orollary of this result, that states the existene of so-alled �-nets:Fat 1 (�-nets) Let '(~x; ~y) be a �rst-order formula over the real �eld R, with j~y j= m, and let � > 0.Let d = VCdim(F'(R)). If M � 8d� log 13� , then there exists an M -element set C = f~1; : : : ;~Mg � Imsuh that for every ~a with Vol('(~a;R) \ Im) � � it is the ase that '(~a;R) \ Im \C 6= ;. 2
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Approximation method We now ombine the existene of �-nets with a derandomization proe-dure.Assume that we are given a FO+Poly query  (~x; ~y) and a semi-algebrai database D. Put thede�nition of D into  , to obtain a new formula '(~x; ~y) in the language of the real �eld, suh thatR j= '(~a;~b) i� D j=  (~a;~b). For example, if  (x; y) � 9u (S(x; y; u) ^ x < 0) and S is de�ned asp(x; y; u) > 0, where p is a polynomial, then  (x; y) is 9u (p(x; y; u) > 0 ^ x < 0).Thus, we have to de�ne approximating formulae for a formula '(~x; ~y) over R. To simplify notations,write �(~a) for '(~a;R) \ Im. Fix a number k 2 N and �; Æ 2 I. De�ne, for eah ~a 2 Rn ,S(~a; �; Æ) = ((~1; : : : ;~k) 2 (Im)k ����� j 1k � kXi=1 ��(~a)(~i) � � j� Æ) :That is, S(~a; �; Æ) is the set of k-samples that produe an approximate volume of �(~a) within Æ of �.Note that for every �xed k, this set is de�nable with parameters ~a; �; Æ.Next, de�ne an operation � : In � In ! In by x � y = (x + y) mod 1, with the mod 1 operationapplied omponent-wise. Let 	 be the inverse: x	 y = z i� x = y � z. These operations an then beextended to sets: x	 S = fx	 y j y 2 Sg.Let  2 (Im)k be a k-element sample of points in Im. De�ne T (;~a; �; Æ) = 	 S(~a; �; Æ). For a �xedk, this is de�nable if FO over the real �eld.Fix now ~ 2 Im, and de�ne the family ~ 	 �(~a). As this is a de�nable family over R, it has �niteVC dimension [15, 29℄, whih we denote by d. Then [23, 24, 25℄ alulate an upper bound on the VCdimension of the family T of all sets T (;~a; �; Æ) as 4d � k log k, for eah �xed � and Æ.Applying Fat 1, we obtain that for M � 32dk log k� log 13� , there is an �-net ft1; : : : ; tMg for T . Astranslation by 	 does not hange the volume, we see that all elements of T have the same volume;thus, if this volume is � �, then every member of T ontains one of the tis. From this one derives thatthe sets ti � S(~a; �; Æ) over the entire (Im)k, if the volume of S(~a; �; Æ) is at least �.By alulations based on Hoe�ding's inequality, [23, 24, 25℄ show that the inequalityVol(S(~a; �; �=2)) > 2e�k�2=2 implies j � � Vol(�(~a)) j� �, and that j � � Vol(�(~a)) j� �=4 impliesVol(S(~a; �; �=2)) > 1� 2e�k�2=8. Using this, one arrives at the following.Proposition 1 (Karpinski, Maintyre, Koiran) Let0 < � � 1=2; k � 8 � ln 4�2 ; M � max( 12ek�2=2 ; 32dk log k� log 13� )where d is the VC dimension of the family ~	�(~a), ~ 2 Im. Then the formula saying that M translates(by 	) of S(~a; �; �=2) over (Im)k de�nes � as an �-approximation of Vol(�(~a)). 2As d is �nite and depends only on ', the statement of the proposition an be onverted into a FO-de�nition, whih serves as an approximating de�nition of volumes '(~x;R). Note that the resultingapproximating formulae satisfy a rather strong ondition: every � within �=4 of the real volume isreturned by the approximating formulae. Also note that the approximating formulae have entirelysemi-linear harater { multipliation is never used exept in the formula ' itself. We thus obtainTheorem 1 as a orollary of the above results. 8



3.2 Shortomings of the approximation tehniqueWe note here some shortomings of the tehnique of Lemma 1 in the ontext of onstraint databases.In the tehnique, one has to put the de�nition of a onstraint database D into a query ', and thenapply the method of [23, 24, 25℄ to the result. That method produes an output formula whose sizeis a polynomial in the input formula and 1� : theoretially, a nie bound. In attempting to applythis tehnique in pratie, however, we �nd that the bounds obtained are rather unpleasant, even formodest values of �, as the size of the quanti�er pre�x is quite large. In the onstraint database setting,those will have to be eliminated, via a quanti�er-elimination proedure, whih will be very ostly. Letus illustrate this by a simple example.Example: Let the shema ontain one unary prediate U interpreted as a subset of [0; 1℄. The query'(x1; x2; y1; y2) is given byU(x1) ^ U(x2) ^ x1 < y1 ^ y1 < x2 ^ 0 � y2 ^ y2 � y1For a; b 2 U; a < b, we have Vol('(a; b;R)) = (b2 � a2)=2.Let � = 1=10. We want to evaluate the query[Vol�I~y '(x1; x2; y1; y2)℄(x1; x2; z)saying that z is an �-approximation to the volume of '(x1; x2; U) = f(y1; y2) j U j= '(x1; x2; y1; y2)g,where Vol�I is the operator obtained through the method above. Note that VolI('(a; b; U)) =(b2 � a2)=2, for a < b in U , and 0 otherwise. To evaluate this query on a database where U onsistsof N elements, by applying Theorem 1, we would �rst plug U in ' to obtain a formula with > 2Natomi subformulae that does not mention U .We then use bounds of Proposition 1 and obtain, by simple alulations:k > 1; 109 M > 25; 206; 250 :The formula saying that there exist M translates starts with a pre�x 9~t1 � � � 9~tM where eah ti rangesover (I2)k; that is, this existential pre�x binds 2kM > 5:5 � 1010 variables.The formula bound by these quanti�ers must say that every element of (Im)k is one of the translates,whih requires at least 2Mk atomi formulae, and that � is indeed the average value of the harater-isti funtion, whih requires at least 2kN atomi formulae. Thus, a rude lower bound for the lengthof the quanti�er-free part of the formula is 5:5 � 1010 + 2N � 103.As eliminating > 1010 quanti�ers from a formula of length at least 1011 is ompletely infeasible, theapproximation method has no hane of being appliable in pratie. Still, the result that one anahieve losure by using approximate operators is very interesting, and ontrasts sharply with thesituation with the exat volume operators, where losure annot be guaranteed.Thus, applying the method of [23, 24, 25℄ `as is' appears to be infeasible in the ontext of onstraintdatabases.The tehnique of Lemma 1 also tells us nothing about the de�nability of the operators Vol�I , nor thepower of the language that results from adding them to a standard language, like FO + Poly, sinethe approximating formula '�D varies with the input database.9



4 Uniformly de�nable volume operators and expansion of the sig-natureWe saw in the last setion that the main shortoming of all known examples of approximate volumeoperators was the blow-up in the size of the representation. It was also left open whether some volumeapproximation operators an be de�ned in standard languages, like FO + Poly, uniformly for alldatabase instanes. We now investigate whether we an �nd other approximation methods that anbe expressed in niely-behaved languages and that admit low omplexity evaluation tehniques. Themain result is that one annot apture approximate volume operators in a nie onstraint languagesuh as FO+Poly. That is,Inexpressibility of Approximate Operators FO+Lin, FO+Poly and FO+Exp annot expressVol�I for any � < 1=2. 2In fat, we prove a stronger result. Theorem 3 shows that even if one extends the onstraint signatureto inlude funtions beyond FO+Exp, as long as we stay within a well-behaved struture, we annotapture approximate volume. Furthermore, we show that in languages like FO + Poly, only trivialapproximations are possible. An example of a trivial approximation is returning 1=2 for every subsetof In { in this ase we know that the di�erene between the real volume and its approximation is� 1=2.Proving expressivity bounds suh as Theorem 3 and Corollary 1 is not very simple. Almost all, if notall, existing expressivity bounds for onstraint query languages either involve generi queries (e.g., theparity test, see [4, 5, 31, 3℄) or are proved by redution to generi queries (e.g., [20℄). However, queriesinvolving approximation de�ned as in Setion 2 are extremely nongeneri. We introdue the mainideas for the proof in several steps. We �rst onsider an easier ase of the aggregate Avg for �niteinstanes and prove that it an be neither de�ned nor approximated in languages like FO + Poly.The proof introdues the idea of redution to what we all a (1; 2)-separating sentene, with 1; 2being onstant real numbers. We then show how the same redution easily proves that FO + Polyand the likes annot produe relative approximations of Vol. For the absolute approximation Vol�I ,the redution only works under very speial assumptions on the input, and to onlude the proof weneed to use results from iruit omplexity.This setion gives further evidene that if one wants to stay within a reasonable (for spatial applia-tions) lass of onstraints, one must give up uniform losure under any nontrivial approximation tothe volume.Prerequisites: Collapse results We shall need the following two results proved in [4, 5℄, statedhere in a form most onvenient for the proofs below.Fat 2 a) Given any ordered struture M = hU ;
i, an in�nite set X � U , and an ative-semantisquery '(~x) in FOat(SC;
), there exists an in�nite set Y � X and a FOat(SC ; <) query  (~x) suhthat D j= '(~a) i� D j=  (~a) whenever adom(D) [ ~a � Y .b) Let M = hU ;
i be o-minimal, and '(~x) and arbitrary natural-semantis FO(SC;
) query. Thenthere exists an expansion M0 = hU ;
0i and an ative-semantis query  (~x) in FOat(SC;
0) suhthat for every SC-database D over U and for every ~a, D j= '(~a) i� D j=  (~a). Furthermore, eahrelation in 
0 � 
 is interpreted as a set de�nable over M; thus, if M admits quanti�er-elimination,10



one an take M0 to be M. 2Separating sentenes We shall onsider a relational database shema SC that onsists of twounary relations, U1 and U2. Let 1; 2 > 1 be two real numbers. We say that � is a (1; 2)-separatingsentene if for any �nite instane D of SC, it is the ase that ard (U1) > 1 � ard (U2) implies D j= �and ard (U2) > 2 � ard (U1) implies D j= :�. Note that this de�nition says nothing about the asewhen 12 � ard (U2) � ard (U1) � 1 � ard (U2), and thus diret appliation of bounds on expressivenessof generi queries is impossible. Still, we an show:Proposition 2 Let M = hU ;
i be o-minimal, 1; 2 > 1, and SC as above. Then no (1; 2)-separating sentene is de�nable in FO(SC;
).Proof. Assume that there is a (1; 2)-separating sentene �. From Fat 2, b), we onlude that thereis a FOat(SC;
0) (1; 2)-separating sentene �0 for some extension 
0 � 
. From Fat 2, a), weobtain that there is an in�nite set Y � U and a FOat(SC; <)-sentene 	 suh that for every instaneD with adom(D) � Y it holds: D j= �0 i� D j= 	. Thus, it remains to show that FOat(SC ; <)annot express a (1; 2)-separating sentene 	, on instanes over an in�nite set.Assume it an; and let q be the quanti�er rank of 	. We now onsider two instanes over Y . In bothinstanes D1 andD2 all elements of U1 preede U2 in the linear order <. InD1, ard (U1) = d1(2q+1)eand ard (U2) = 2q + 1; in D2, ard (U1) = 2q + 1 and ard (U2) = d2(2q + 1)e. Sine 	 is a (1; 2)-separating sentene, we must have D1 j= 	 and D2 j= :	. We shall obtain ontradition by showingthat D1 j= 	 i� D2 j= 	.To show the latter, we must prove that the dupliator an win in a q-move Ehrenfeuht-Fra��ss�e gameon D1 and D2. This follows from the fat for every n;m > 2q, the dupliator an win a q-move gameon two ordered sets of ardinalities n and m [21℄. Thus, for D1 and D2, the dupliator piks a separatestrategy for U1 and U2, and whenever the spoiler plays in U1, the dupliator forgets about the movesin U2 and responds in U1 using the strategy for U1, and likewise in the ase when the spoiler plays inU2. Let (a1; b1); : : : ; (al; bl) be moves made in the U1 part of D1 and D2, with ais played on D1 and bisplayed in D2. Similarly, let (1; d1); : : : ; (k; dk) be moves made in the U2 part of D1 and D2, k+ l = q.Then both ai 7! bi, i = 1; : : : ; l and i 7! di, i = 1; : : : ; k, are partial isomorphisms; sine all elementsof U1 preede all elements of U2, putting them together we get a partial isomorphism between D1 andD2. This shows that D1 j= 	 i� D2 j= 	, and thus onludes the proof. 24.1 Dealing with AVGWe assume that instanes store elements of a numerial domain, for example R. Given a query'(~x; z), we de�ne Avg'(~x; y) by letting D j= Avg'(~a; v) i� ard ('(~a;D)) <1 and v = Avg('(~a;D)),where Avg(C) = (P2C )=ard (C). Note that the aggregate Avg is typially de�ned using the bagsemantis; however, as we show inexpressibility results, dealing with this simpli�ed version will suÆe1.It an be easily shown (by redution to equal ardinality) that Avg' is not de�nable in FO +Poly,even if D j= '(~a; ) implies 0 �  � 1. We now de�ne �-approximation of Avg just as we did it forVol. Assume a query '(~x; z) is given, and j~x j= n. An operator Avg�I , when applied to ', produes1We shall ome bak to the multiset semantis later. 11



a query  �(~x; z) suh that, for any instane D and any ~a, D j= 9z:'(~a; z), and if D j= '(~a; v), thenjv �Avg('(~a;D) \ I) j< � and 0 � v � 1. For onveniene, we let Avg(C) = 0 for C in�nite.For � � 1=2, Avg�I is de�nable in FO(SC;
) if the input is �nite or f.r. over 
, as long as the onstants0; 1=2 and 1 are de�nable. However,Theorem 2 Let M = hR;
i, and let M+;� be o-minimal. Let � < 1=2. Then Avg�I is not de�nablein FO +
, even over �nite instanes. In partiular, Avg�I is not de�nable in FO +Poly.Proof. Assume Avg�I is de�nable. Let the shema SC onsists of two unary prediates, U1 and U2. Let� = (1� 2�)=16. Given two �nite sets U1 and U2, ontaining at least two elements eah, we translatethem into intervals [0;�℄ and [1��; 1℄. By translating a �nite set X with minX = ;maxC = d > into an interval [a; b℄ we mean the set X 0 ontaining exatly the numbers of the form a + (x�)(b�a)d�where x 2 X; learly X 0 � [a; b℄. As the next step, we de�ne U01 = U 01 [ f4� � x j x 2 U 01g andU02 = U 02 [ f2 � 4�� x j x 2 U 02g. One observes U01 � [0; 4�℄ and U02 � [1� 4�; 1℄.The preeding shows that U01 and U02 are FO+Poly-de�nable. Thus, the set C = U01 [U02 � [0; 1℄ isde�nable in FO +Poly. Now easy alulations show thatAvg(C) = 18 � �4 + mn+m � 3 + 2�4where n is the ardinality of U1 and m is the ardinality of U2.We now de�ne a Boolean query � by letting D j= � i� Avg�(C) = Avg�I(C) > 1=2. More preisely,C is de�ned by a FO +Poly query �(x), and thus under the assumption that Avg�I is de�nable, wehave a satis�able formula ��(x) suh that D j= ��(a) implies that ja�Avg(C) j< �. We now let � be9x:��(x) ^ (x > 1=2). Under the assumption that Avg�I is de�nable in FO +
, we would obtain that� is in FO + 
 as well.Let 0 = 1 + 16�3�6� > 1. Assume m > 0 � n. Plugging this into the equation for Avg(C), we deriveAvg(C) > 1=2 + �; thus, in this ase Avg�(C) > 1=2 no matter whih �-approximation of the averageis piked, and thus D j= �. Similarlly, if we assume n > 0 �m, we derive Avg(C) < 1=2� �, and thusAvg�(C) < 1=2 and D j= :�. Hene, � is a (0; 0)-separating sentene, whih is de�nable in FO+
.This ontradition proves the theorem. 24.2 Dealing with volumeWe start with two easy results. First, for unbounded measures (no restrition to In) volume annotbe approximated in languages like FO +Poly.Proposition 3 Let M = hR;
i, and let hR;
;+; �i be o-minimal. Then no �-approximation operatorVol� is de�nable in FO+
.Proof. Let m > 2� + 1 be an integer. Consider a sheme with two unary symbols U1 and U2 and let 1(x) � 9y U1(y)^ jy � x j< m and  2(x) � 9y U2(y)^ jy � x j< m. Assume that Vol� is de�nable;we then have queries �1� (x) and �2� (x) whih give �-approximation for the measure of outputs of  1(x)and  2(x). Now let 	 � 9x1x2 (�1� (x1) ^ �2� (x2)^ jx1 � x2 j< 2�)12



Let (�) be the following ondition on U = U1 [ U2: for every a; b 2 U , if j a � b j� 2M then a = b.Then under (�) it holds: D j= 	 i� ard (U1) = ard (U2). However, this is impossible: Fat 2, a),implies that any generi query de�nable in FO+
 on databases over an in�nite set must be de�nablein FOat(<), but it is well known that equal ardinality is not FOat(<)-de�nable (f. [21℄). 2Thus, FO + Lin and FO + Poly annot de�ne �-approximations of volumes. Note that the proofabove is by redution to equal ardinality, for sparse �nite sets. It relies on the fat that there is no apriori bound on the outputs of queries. Thus, a di�erent approah is needed to show inexpressibilityof Vol�I .For a query '(~x; ~y) and two onstants 0 < 1 < 2, we say that  (~x; z) gives a (1; 2)-relativeapproximation of the volume if for any ~a,  (~a; �) is satis�able, andD j=  (~a; v) ) 1 < (v=Vol('(~a;D))) < 2By a redution to separating sentenes, we will now show:Proposition 4 Assume that hR;
i is suh that hR;
;+; �i is o-minimal. Then for any 0 < 1 < 2,the (1; 2)-relative approximation of the volume is not de�nable in FO+
, for any dimension k > 0,even for queries restrited to [0; 1℄k.Proof. Let k = 1 (extension to k > 1 is trivial by taking a produt with [0; 1℄k�1) and let the shemaontain two unary relations U1 and U2. We shall assume that their interpretations are subsets of [0; 1℄.Let n = ard (U1);m = ard (U2). Let 0 = 122 < 12 and 00 2 (12 ; 221 ). We laim that with a (1; 2)-relative approximation of the volume we an de�ne a sentene � suh that n < 0 �m implies D j= �and n > 00 �m implies D j= :�. This will suÆe, as suh a sentene � would be a (00; 1=0)-separatingsentene, whih annot be de�ned in FO + 
.Given a �nite set X = fx1 < : : : < xpg � [0; 1℄ and Æ > 0, de�neX(Æ) = p�1[i=1[xi; xi + Æ℄ [ [xp � Æ; xp℄Note that for a given Æ and X, this is FO + Lin-de�nable. We now letÆ = 13 � mina1;a22(U1[U2);a1 6=a2 ja1 � a2 jThen U1(Æ); U2(Æ) � [0; 1℄ and Vol(U1(Æ)) = nÆ;Vol(U2(Æ)) = mÆ. Let 
0 = 
 [ f+; �g. We nowhave two queries in FO+
0, '1(y) and '2(y) de�ning U1(Æ) and U2(Æ); assuming that (1; 2)-relativeapproximation of the volume is de�nable, we have two queries  1(z) and  2(z) that produe suh anapproximation for U1(Æ) and U2(Æ). We next de�ne� � 9z19z2: 1(z1) ^  2(z2) ^ (z1=z2 < 1=2):Suppose  1(v1) ^  2(v2) holds. It follows then that1n2m < v1v2 < 2n1mThus n < 0 � m implies v1=v2 < 1=2 for any v1 and v2 that satisfy  1 and  2, and hene D j= �.Conversely, n > 00 �m implies v1=v2 > 1=2 for any v1 and v2 that satisfy  1 and  2, and thus in thisase D j= :�. This ompletes the proof. 213



4.3 Absolute approximationWe shall now prove the strongest of the inexpressibility results: that Vol�I , for � < 1=2, annot bede�ned in languages like FO + Lin and FO +Poly. First note:Proposition 5 FO + Lin de�nes Vol�I for � � 1=2.Proof sketh. If the volume is not 0 or 1, then 1=2 is the �-approximation. 2It turns out that this trivial approximation is the best one an hope for in languages like FO + Linand FO +Poly.Theorem 3 Let M = hR;
i, and let hR;
;+; �i be o-minimal. Assume that � < 1=2. Then Vol�I isnot de�nable in FO +
.Proof. Let SC onsist of two unary relations A and B. Call a �nite instane good if two properties aresatis�ed: A is an initial fragment of natural numbers (that is, f0; 1; 2; : : : ; kg) and B is a nonemptyproper subset of A. Let 1 = 1� 2�3 and 2 = 2 + 2�3We have 0 < 1 < 2 < 1 and 1 + 2 = 1.Consider a sentene � in the language of SC and 
. We all it a (1; 2)-good sentene is the followingtwo onditions hold, whenever (A;B) is a good instane:1. If ard (B) < 1 � ard (A), then D j= :�;2. If ard (B) > 2 � ard (A), then D j= �.Note that this is the same as having a separating sentene for B and A � B; however, here we onlyrequire that the above onditions hold for a good instane. The result now follows two lemmas.Lemma 1 Assume Vol�I is de�nable in FO+
. Then for 1; 2 as above there exists a signature 
0extending 
 and a (1; 2)-good sentene in FOat(SC;
0).Proof of Lemma 1. Assume that an instane (A;B) with B � A is given. Let n = ard (B) andm = ard (A � B); n;m > 0. We now onstrut A0 and B0 by translating A and B into [0; 1℄. Thatis, eah element x of A is replaed by x=xM where xM is the maximal element of A. Note that A0; B0are FO +Poly-de�nable.P = [b2B0;a2A0;(a;b)\A0=;[b; a℄ and R = [b2A0�B0;a2A0;(a;b)\A0=;[b; a℄Note that both P and R are de�nable in FO + Poly. We now have the following: if the instane(A;B) is good, thenn� 1n+m� 1 � Vol(P ) � nn+m� 1 m� 1n+m� 1 � Vol(R) � mn+m� 114



If Vol�I is de�nable in FO + 
, we have a FO(SC ;
 [ f+; �g) queries  P (z) and  R(z) suh thatD j=  P (v) implies jv �Vol(P ) j< �, and likewise for R. We now de�ne 	 as9z19z2:  P (z1) ^  R(z2) ^ z1 > z2Let 0 = 2+2�1�2� . Assume ard (B) > 2 � ard (A); then n > 0m. Then simple alulations show thatn�1n+m�1 > 1=2 + � and mn+m�1 < 1=2 � � whih implies that no matter whih �-approximations v1 andv2 for Vol�(P ) and Vol�(R) we have, it is the ase that v1� v2 > 0. Sine  P and  R are satis�able,we onlude that, under the assumption that the instane is good and ard (B) > 2 � ard (A), D j= 	.Next we assume that ard (B) < 1 � ard (A). Then we get m > 0n. Again, with simple alulationswe obtain m�1n+m�1 > 1=2 + � and nn+m�1 < 1=2 � �; hene, for every �-approximations v1 and v2 forVol�(P ) and Vol�(R), it is the ase that v1 � v2 < 0, and thus D j= :	.Now the lemma follows from Fat 2, b). 2Lemma 2 Let � be an arbitrary signature on R. Then FOat(SC ;�) annot de�ne a (1; 2)-goodsentene.Proof of Lemma 2. Suppose for 0 < 1 < 2 < 1 and for some signature �, there is a FOat(SC ;�)sentene � that is (1; 2)-good aording to the de�nition above. We may assume without loss ofgenerality (just by adding existential quanti�ers over the ative domain) that all atomi formulaeare either A(x) or B(x), where x is a variable, or �-atomi formulae. Next, make a signature ��by putting a k-ary symbol P for eah �-atomi subformula (x1; : : : ; xk ) of � into it. We thende�ne a sentene 	 in the language of �� and B by replaing, in �, eah atomi �-formula  by theorresponding symbol P , and A(�) by true.Next, with eah n > 1 and eah B � f0; : : : ; n � 1g assoiate a �� [ fUg struture S(B;n) whoseuniverse is f0; : : : ; n � 1g, the unary symbol U is interpreted as B, and �� prediates inherit theirinterpretation from hR;�i (this is possible sine �� does not ontain any funtion symbols). We thenhave, by a straightforward indution on the struture of a formulaS(B;n) j= 	 i� (f0; : : : ; n� 1g; B) j= �where (f0; : : : ; n�1g; B) is the good instane with A interpreted as f0; : : : ; n�1g. Thus, for ard (B) <1n we have S(B;n) j= :	 and for ard (B) > 2n we have S(B;n) j= 	.It follows from [12℄ that 	 is de�nable by a family of non-uniform AC0 iruits, with size bounded bysome polynomial p(n), and depth d. This is beause 	 an be transformed into a Boolean formula byreplaing eah 9x2adom by a disjuntion over f0; 1; : : : ; n� 1g and eah 8x2adom by a onjuntionover f0; 1; : : : ; n� 1g. One quanti�ers are replaed, eah ourrene of a �� prediate only mentionsonstants and is replaed by its truth value (this is why the iruit may be non-uniform). It now followsfrom [12℄ that suh a family of formulae is de�nable by a polynomial-size onstant depth family ofAC0 iruits.Aording to Lemma 5 from [12℄, for large enough inputs, onstant-depth iruits annot distinguishardinalities in [pn; n � pn℄. Thus, there is a number N1 2 N suh that for all n > N1 it is thease that for any p; q 2 [pn; n � pn℄, p 6= q, there exists sets B1 and B2 of ardinalities p and qrespetively suh that S(B1; n) and S(B2; n) agree on 	. We now let N be an integer that exeedsboth N1 and 421 . Let n be an arbitrary integer bigger than N . Then there are integers n1; n2 suh15



that n1; n2 2 [pn; n �pn℄ and n1 < 1n, n2 > 2n. In partiular, for any two B1 and B2 suh thatn1 = ard (B1) and n2 = ard (B2), we have S(B1; n) j= :	 and S(B2; n) j= 	 (sine 	 is equivalentto �, whih is a (1; 2)-good sentene). However, this ontradits the above observation that for someB1 and B2 as above, S(B1; n) and S(B2; n) must agree on 	. This ontradition onludes the proofof the lemma and the theorem. 2Corollary 1 FO + Lin, FO+Poly and FO +Exp annot express Vol�I for any � < 1=2. 2Theorem 3 shows that one annot possibly adjust the method of [23, 24, 25℄ to get the approxi-mation operators uniformly de�nable. This is somewhat surprising, for the following reasons. It ispossible that there exists an o-minimal struture whih is losed under taking integrals. That is,for every '(~x; ~y) in the language of the struture, there is a formula  (~x; z) suh that j=  (~a; v) i�v = R : : : R �'(~a;Rn)\Ind~y = Vol('(~a;Rn) \ In). The existene of suh a struture is onjetured in[24℄. By Theorem 3, even if suh a strutureM = hR;
i existed, the volume of outputs of very simplequeries on �nite instanes ould not be approximated in FO + 
!Is it possible that one an express the approximate volume omputation over outputs of some par-tiularly simple queries? We now show that for two very simple lasses, this remains impossible inFO +Poly and similar languages.Corollary 2 In languages FO + Lin, FO + Poly, FO + Exp, it is impossible to express Vol�I evenrestrited to a) outputs of onjuntive <-queries over �nite instanes, or b) shema prediates, inter-preted as f.r. instanes de�nable with dense-order onstraints.Proof. Let the shema onsist of three unary symbols A, B, C, and one binary symbol E. A �niteinstane D is alled good if B;C form a partition of A, the distane between any two onseutiveelements of A is the same, and E is the suessor relation on A � [0; 1℄. With this, we follow the proofof Theorem 3. We de�ne P and R as before, and note that with C and E in the signature, they anbe de�ned by onjuntive queries. For example, for P :  P (z) � 9b2 adom92 adom: B(b) ^ C() ^E(b; ) ^ b < z ^ z < . Now, assuming Vol�I is de�nable in FO(SC ;
), we obtain, as in Lemma 1,that a (1; 2)-good sentene is de�nable in FO(SC;
), for a good instane as de�ned above. Thiseasily leads to ontradition: if a (1; 2)-good sentene is de�nable in FO(SC ;
) for instanes withA � [0; 1℄, it is de�nable in FO(SC;
;+; �) for instanes with A being an initial fragment of naturalnumbers. Then the proof of Lemma 2 applies, as in the translation into a family of Boolean formulaethe symbols C and E an be eliminated: C(x) is replaed by :B(x), and E(x; y) by y � x = 1. Thisompletes the proof. 2Remarks One may ask where the proedure of [23, 24, 25℄ fails if we try to apply it, in a uniform way,to, say, FO+Poly queries. Note that the method of [23, 24, 25℄ produes a formula whose quanti�erpre�x is proportional to the VC dimension of the family of sets de�ned by the input formula. However,for relational alulus queries, this may depend on the size of the database, thus making it impossibleto quantify uniformly over random samples. For a query '(~x; ~y) with and a database D, the de�nablefamily given by ' and D is F'(D) = f'(~a;D) j ~a 2 Ung where '(~a;D) = f~b j D j= '(~a;~b)g. The sizeof a �nite database D, jD j, is de�ned to be ard (adom(D)).Proposition 6 There exists a (quanti�er-free) relational alulus query '(x; y), and a sequene ofdatabases D1;D2; : : : of inreasing size suh that VCdim(F'(Dn)) � log jDn j.16



Proof. Let SC ontain a single binary symbol P . Let Dn be an instane with the seond projetionbeing an n-element set An, and the �rst projetion oding the powerset of An (as in [1, page 462℄).That is, for eah B � An there is aB suh that (aB ; b) 2 P i� b 2 B. Let '(x; y) � P (x; y). We nowonsider the family Fn = f'(a;D) j a 2 Ug. It follows immediately from the onstrution that Fnshatters An; thus, VCdim(F'(Dn)) � n. Sine one needs 2n elements to ode the powerset of An, onean hoose Dn to have the ative domain of 2n elements. This proves the proposition. 2We also remark that under some speial assumptions on the outputs of the queries, their volumesan be approximated. One an show, using L�owner-John ellipsoids [16℄, that for a FO +Poly query'(~x; ~y) with j~y j= k, under the assumption that '(~a;D) is onvex, a relative (1; 2) approximation ofits volume an be found with 1 = kk+12�kk � � and 2 = kk+12 + � for an arbitrarily small � > 0.5 FO+Poly+Sum: An aggregate language for onstraint databasesWe now introdue a language for extending FO + Poly with a summation operator. The maindiÆulty is to make sure that when summation is done over all elements in some query output, weare guaranteed that the query output is �nite. To do this, we use tehniques from [6℄ for guaranteeingthat a query is safe (that is, that a query yields �nite output).Let Q be a non-boolean query over a database shema SC. We say that Q is a semi-algebrai query ifit gives semi-algebrai output on semi-algebrai inputs. We say Q is semi-algebrai-to-�nite and writeQ 2 SAF if Q produes �nite output on semi-algebrai input databases. If Q is expressed as '(y; ~x),we say that Q is ~x-semi-algebrai-to-�nite if for every ~a the query '(y;~a), with one free variable y, is inSAF. In the language FO+Poly+Sum, all queries are semi-algebrai queries, but in the onstrutionwe will have to ensure that ertain subqueries are in the smaller lass SAF.A �rst-order formula (x; ~w) with distinguished variable x in the language of the real �eld is said tobe deterministi if it produes at most one output x for every vetor of real numbers ~w. Deterministiformulae are the building bloks from whih safe queries an be formed. Given a deterministi formula(x; ~w) and a �nite set of tuples of reals A (having the same length as ~w), we let (A) refer to the bag℄~a2Af(~a), where f is the orresponding partial funtion taking ~w to the unique x suh that (x; ~w)holds. Note that it is deidable if a formula is deterministi.De�nition of FO +Poly+ Sum The query language FO +Poly+ Sum is de�ned indutively asfollows. Atomi queries are the same as for FO+Poly. The formulae of FO+Poly+Sum are losedunder boolean onnetives and quanti�ation 8 and 9 (over the reals).Next, we de�ne the summation term-former. Given any FO + Poly + Sum formula '(y; ~z), we letEnd[y; '(y; ~z)℄(u; ~z) be the query that holds for a tuple (b;~a) on an input databaseD i� b is an endpointof the intervals that ompose '(D;~a) = f 2 R j D j= '(;~a)g. Note that if ' is a semi-algebraiquery (whih is guaranteed by Theorem 4 below), then End[y; '(y; ~z)℄ is ~z-SAF.A range-restrited FO + Poly + Sum expression is an expression of the form �(~w; ~z) �('1(~w; ~z)jEnd[y; '2(y; ~z)℄) where '1(~w; ~z) and '2(y; ~z) are FO + Poly + Sum queries. It binds y,that is, the free variables are ~z; ~w. We have D j= �(~a;~b) for ~a = (a1; : : : ; an) i� D j= '1(~a;~b) andD j= (End[y; '2(y; ~z)℄)(ai;~b); i = 1; : : : ; n:17







�����PPPPPPPP����������HHHHHHHH̀```````````̀(((((((((((((((��������x1 x2 x3 x4x5x6Figure 1: Area of onvex polygon in FO+Poly+SumIt then follows from the losure property (Theorem 4) that for any D and any ~b, the set �(D;~b) = f~a jD j= �(~a;~b)g is �nite.For any deterministi formula (x; ~w) and any range-restrited expression �(~w; ~z) as above we nowde�ne a term t(~z) by [ X�(~w;~z) ℄(~z)Given D and ~b, the value of t(~b) in D is the sum of all the members of the �nite bag (A), whereA = �(D;~b).Finally, new terms in FO+Poly+Sum an be built by applying omposition with the real funtions+; �. If tis are terms and ' is a formula, then t1 = t2; t1 < t2 and '(t1; : : : ; tk) are FO+Poly+ Sumformulae.Examples of FO+Poly+Sum queries Let '(w) be an FO+Poly query. Let (x;w) � (x = w)and �(w) = (w = w)jEnd[w;'(w)℄. Then the FO+Poly+Sum term (without free variables)P�(w) gives the sum of all the endpoints of the intervals that ompose '(D).The area of a onvex polygon in R2 an be de�ned in FO + Poly + Sum. The idea of the query isillustrated in Figure 1. Suppose we triangulate the polygon as shown. Then the area of the polygonis the sum of the areas of triangles. We thus have to de�ne the triangulation and then apply thesummation term of FO+Poly+Sum to alulate the area.This is done as follows. Assume that the polygon is given by a prediate P (x; y) (it ould be an inputrelation or the output of a query). There is a FO+Poly query 'P (x; y) that omputes all the vertiesof P { this is beause ~a is vertex i� ~a 62 onv(P � f~ag). Sine one an ompute the boundary of Pby a FO +Poly query, it follows that there is a FO +Poly query �P (~x; ~y) that tests if ~x; ~y are twoadjaent verties of P .We now form two FO + Poly queries. The query  2(u) tests if u is a oordinate of a vertex ofP . The query  1(~x; ~y; ~z) tests the following onditions: (1) 'P (~x) ^ 'P (~y) ^ 'P (~z) holds; (2) ~x is alexiographially minimal vertex of P ; (3) either �P (~y; ~z) holds and ~y is lexiographially less than ~zand :�P (~x; ~y) ^ :�P (~x; ~z), or �P (~x; ~y) ^ �P (~y; ~z) ^ :�P (~x; ~z).We now let �(~x; ~y; ~z) be the range-restrited expression ( 1(~x; ~y; ~z)jEnd[u;  2(u)℄). It an be easilyseen that for P onvex, the output of � is �nite and produes a triangulation of P . That is, �(~a;~b;~)18



holds i� ~a;~b;~ are the verties of one of the triangles suh as those shown in Figure 1.Sine for eah triangle with verties (a1; a2), (b1; b2), (1; 2), its area is omputable as j (a1b2�a2b1+a21 � a12 + b12 � 1b2)=2 j, we obtain a deterministi formula (v; ~x; ~y; ~z) saying that v is the areaof the triangle with verties ~x; ~y; ~z. We then onlude that the term P�(~x;~y;~z)  de�nes the area of P .2Note that the above method odes a standard omputation of area used in omputational geometry[33℄ whih generalizes to nononvex polygons, and is in fat used in GISs for area omputation [38℄.Properties of FO+Poly+Sum The language FO+Poly+Sum has a number of attrative features.It extends both FO+Poly and the relational alulus with summation and other standard aggregates.It is also related to aggregate languages for statistial databases studied reently in [17℄. Furthermore,we have the following property.Theorem 4 FO+Poly+Sum is losed. That is, every FO+Poly+Sum query returns semi-algebraioutput on a semi-algebrai input.Proof. We show this by strutural indution on the onstrution of the query. Suppose we knowindutively that '(w; ~z) is a semi-algebrai query, and �x a semi-algebrai database D. There isan integer n suh that for any ~a, D j= End[y; '(y; ~z)℄(;~a) for at most n distint values of  (byo-minimality of the real �eld and the uniform bounds result of [32℄). Moreover, this integer an bee�etively omputed given ' and D. Hene, for every ~z,�(~w; ~z) � '1(~w; ~z) j End[y; '(y; ~z)℄holds for at most nm tuples ~w, where m is the length of ~w. We then see that the set f(v;~a) j D j= v =P�(~w;~a) (x; ~w)g is semi-algebrai, sine it is de�nable by the disjuntion of v = 0 ^ 8~w :�(~w;~a) with_1�k�nm 9~w1 � � � 9~wk�k̂i=1 �(~wi;~a) ^ (8~w �(~w;~a)!_i (~w = ~wi)) ^ î6=j(~wi 6= ~wj)^ 9u1 � � � 9uk (( k̂i=1 (ui; ~wi) _ ((8z:(z; ~wi)) ^ ui = 0)) ^ (v = u1 + � � � + uk))� :The language is also losed under the standard relational aggregation.Proposition 7 � For any SAF FO+Poly+Sum query '(~z), we an express in FO+Poly+Sumthe ardinality of the output of '.� For any SAF query FO + Poly '(~z) and any deterministi formula �(x; ~w) we an express inFO + Poly + Sum the sum of the x values of � for ~w ranging over the output of ' and theaverage of the x values of � over the output of '.Proof. To see the �rst item, onsider an arbitrary SAF FO + Poly + Sum query '(~w). Let '0(w)be the query returning the ative domain of the output of '. Then '0 is learly SAF as well, and19



End[w;'0(w)℄ is the same as '0(w). Let �(~w) = '(~w)jEnd[w;'0(w)℄ and (x; ~w) be x = 1. ThenP�(~w)  is an FO +Poly+ Sum query returning the number of items in the output of '.To see the seond item, let � be as in the previous paragraph. For any deterministi formula �(x; ~w)we have that P�(~w) � is an FO +Poly+ Sum query returning the sum of the x-values of � over theoutput of '. The average of ' is simply the quotient of the sum of ' and the ardinality of '. Sinethe FO +Poly de�nable funtions are losed under division, we an de�ne average. 26 Computing the volume of Semi-linear sets in FO + Poly+ SumIn this setion we show how to use the aggregate language FO+Poly+Sum for volume omputationand approximation. Our goal is to prove that FO + Poly + Sum an ompute the volume of semi-linear sets. We start by noting that taking volumes of semi-linear sets does not take us out of thesemi-algebrai setting. This fat is easily derived from known results in the literature (and may havebeen published before, see, for example, [8℄ for a losely related result).Lemma 3 For any formula '(~x; ~y) over the real ordered group Rlin, the volume of ' is semi-algebrai.That is, f~r; s j [Vol ~y:'(~x; ~y)℄(~r; s)g is a semi-algebrai set.Proof. By Fubini's Theorem, [Vol ~y:'(~x; ~y)℄(~x; z) holds exatly when z = R R : : : R �'(~x; ~y)dyn : : : dy1,where �' is the harateristi funtion of the set de�ned by '.Let F1(y1 : : : yn�1; ~x) be the innermost integral R �'(~y; ~x)dyn. We �rst show that F1(y1 : : : yn�1; ~x)is semi-algebrai. Let li(y1 : : : yn�1; ~x) and ui(y1 : : : yn�1; ~x) be the ith lower and upper endpoint ofthe set '~x;y1:::yn�1 = fyn j '(~x; y1 : : : yn)g. We know that ui and li are semi-linear de�nable partialfuntions. We now note that any suh funtion is pieewise linear with the oeÆients in the linearpolynomial being rational, f. [35℄. That is, for eah funtion, its domain an be partitioned into �nitelymany semi-linear sets on whih it is linear. To see this, note that on its domain Ui, ui(y1 : : : yn; ~x) isthe unique solution to a disjuntion of onjuntions of linear inequalities in y1; : : : ; yn; ~x. Eah disjuntmust then have at most one solution. Let a disjunt be a onjuntion Vl2T1 Cl(y1 : : : yn; ~x)�0, where� 2 f<;>;�;�g. We know that this must have at most one solution rn for eah r1 : : : rn�1; ~s 2 Ui . Butthis solution must then be the solution to the onjuntion of some subset of the orresponding equalitiesCl(y1 : : : yn; ~x) = 0 where l 2 T2 � T1. (Otherwise �x a ounterexample r1 : : : rn�1; ~s and let T2 bethe set of l 2 T1 suh that the solution rn satis�es Cl(r1 : : : rn; ~s) = 0. If the orresponding solutionspae is not 0-dimensional, then the set of proper inequalities of the form Cl(y1 : : : yn; ~x)f<;>g0 withl 2 T1 � T2 satis�ed by ~r; ~s de�nes an open subset of this spae, whih would then have to be in�niteor empty, giving a ontradition.) But by linear algebra, we know that when a set of linear equalitiesCl(y1 : : : yn; ~x) has a unique solution yn, this solution is given by a linear funtion with oeÆients inthe �eld generated by y1 : : : yn�1; ~x. Hene pieewise ui is linear, and similarly for li.Hene we an �nd a deomposition of Rm+n�1 into semilinear sets A1 : : : Ak, and �nd a funtionb : k ! N and linear funtions fij(y1 : : : yn�1; ~x) : i � k; j � b(i) suh that8r1 : : : rn�1s1 : : : sm 2 Ai F1(r1 : : : rn�1; s1 : : : sm) = �k�b(i)fij(r1 : : : rn�1; s1 : : : sm):But now we have that [Vol ~y:'(~x; ~y)℄(~x; z) holds when z = R R : : : R F1(x1 : : : xn�1; ~y)dx1 : : : dxn�1,so we an partition Rm into �nitely many piees, on eah one of whih [Vol ~y:'(~x; ~y)℄(~x; z) is givenby the graph of a polynomial in ~x. Hene Vol ~y:'(~x; ~y) is semi-algebrai. 220



We now prove that the language FO +Poly+ Sum an express volumes of semi-linear sets.Theorem 5 � For every shema prediate S 2 SC there is an FO + Poly+ Sum term � whih,for any semi-linear database D, omputes the volume of S in D.� For every FO+Lin query ' there is an FO+Poly+Sum term �' suh that for any semi-lineardatabase D, �'(D) returns the volume of '(D).Proof: Note that the �rst item learly implies the seond, beause, given suh a term � we anompose it with the query ' to get the neessary term in the seond item. Hene we only prove the�rst item here.For any semi-linear S we have Vol(S) = R R : : : R �S(~x)dxn : : : dx1, where �S is the harateristifuntion. The innermost integral is [P�1(w;x1:::xn�1) ℄(x1 : : : xn�1), where �1(w; x1 : : : xn�1) is thequery saying w is the sum of di�erene of onseutive endpoints of the set fxn j S(x1 : : : xn�1; xn)g,and (w) � (w = w). Note that by o-minimality, �1 is an FO + Poly + Sum query mapping semi-algebrai sets to �nite sets. The proof of Proposition 7 shows that any suh query an be written asa range-restrited expression in FO +Poly+ Sum.Let f1x1:::xn�1 = [P�1(w;x1:::xn�1) ℄(x1 : : : xn�1). We know from the proof of Lemma 3 that for eah�xed r1; : : : ; rn�2, the funtion g1r1;:::;rn�2(xn�1) = f1(r1; : : : ; rn�2; xn�1) is pieewise a linear funtionof xn�1. Sine f1 is an FO+Poly+Sum de�nable funtion, we an also de�ne in FO+Poly+Sumthe set of points fr1; : : : ; rn�2; rn�1 : the funtion g1r1;:::;rn�2 is not smooth at rn�1g We an do thisbeause a pieewise linear funtion is smooth whenever it is di�erentiable, and the latter property anbe tested by an FO+Poly query.Let f2(x1; : : : ; xn�2) be the sum of all values of the funtion (mu2 � ml2)=2 + b(u � l), where thequadruples (u; l;m; b) vary over all quadruples of points suh that (l; u) are onseutive points ofnonsmoothness of g1x1;:::;xn�2 , and g1x1;:::;xn�2 = mx+ b on the interval (l; u).Note that sine g1x1;:::;xn�2 is pieewise linear, there are only �nitely many points where f1 is notsmooth, hene only �nitely many pairs of onseutive points of nonsmoothness. Therefore there areonly �nitely many quadruples (u; l;m; b) as above. Also note that the formula (w; l; u;m; b) givenby w = (mu2 � ml2)=2 + b(u � l) is a deterministi formula. Hene, by Proposition 7, there isan FO + Poly + Sum query returning the sum of all  output values w as (l; u;m; b) vary. Henef2(x1; : : : ; xn�2) is an FO +Poly+ Sum de�nable funtion.Claim 1 f2(x1 : : : xn�2) is exatly the volume of the �ber of S based on x1; : : : ; xn�2. That is,f2(x1 : : : xn�2) = Vol(f(xn�1; xn) j (x1; : : : ; xn�2; xn�1; xn) 2 Sg).Proof:. By Fubini's theorem, the volume is the integral of the one variable funtion g1x1;:::;xn�2(xn�1).Sine this funtion is pieewise linear, for eah �xed r1; : : : ; rn�2 there are �nitely many a1; : : : ; ak 2R [ f1;�1g with a1 < : : : < ak suh that g1 is linear on (aj ; aj+1). Hene the integral of g1r1:::rn�2is just the sum of the integral of g1 over the intervals (aj ; aj+1). But the integral of a linear funtionh(x) = mx+ b over an interval l; u is just mx2=2 + bxjul , and hene the result follows. 2Continuing this indutively, we have the funtion fk�1(x1; : : : ; xn�k+1) giving the volume of the �berof S de�ned by x1; : : : ; xn�k+1. If we �x the �rst n � k parameters in this funtion, we obtain afuntion gk�1x1;:::;xn�k(xn�k+1) whih is pieewise polynomial of degree at most k � 1. That is, R is21



partitioned into �nitely many intervals, and on eah of them gk�1x1;:::;xn�k(y) is give by bk�1yk+ : : :+ b0.One an now determine all the points of nonsmoothness ( sine this is the same as not being k � 1-times di�erentiable) of gk�1x1;:::;xn�k by a FO + Poly + Sum query. Furthermore, one an write aquery, using polynomial onstraints, that on every point in every interval between the points ofnonsmoothness �nds the oeÆients of the polynomial of degree k�1 that gives gk�1x1;:::;xn�k on every suhinterval (e.g., by omputing the derivatives and applying Taylor's theorem). Thus, we have a range-restrited FO+Poly+Sum query �k(bk�1; bk�2; : : : ; b0; u; l; x1; : : : ; xn�k) that for every x1; : : : ; xn�kprodues the tuples (bk�1; bk�2; : : : ; b0; u; l) suh that on (u; l), gk�1x1;:::;xn�k is given by the polynomialbk�1yk�1+ : : :+b0, and furthermore (u; l) list all suh intervals, whih over all R exept �nitely manypoints of nonsmoothness.Now let k(bk�1; bk�2; : : : ; b0; u; l) be de�ned bybk�1(uk � lk)k + bk�2(uk�1 � lk�1)k � 1 + : : :+ b0(u� l)Hene, fk(x1 : : : xn�k) given by[ X�k(bk�1;bk�2;:::;b0;u;l;x1;:::;xn�k) k(bk�1; bk�2; : : : ; b0; u; l)℄ (x1; : : : ; xn�k)de�nes, for eah (x1; : : : ; xn�k), Z gk�1x1:::xn�k(xn�k+1)dxn�k+1;and thus by Fubini's theorem it is the volume of the �ber of S over x1 : : : xn�k.Now it immediately follows that fn is a FO+Poly+Sum funtion giving the volume of S. Theorem5 is proved. 27 ConlusionsThis paper has dealt with the key question of how to add aggregation to onstraint query languages.The �rst fundamental question is whether there an be a language that is losed under the naturalspatial aggregation operators, and whih also retains the basi losure property that is fundamental to aonstraint-based approah: namely, that every query output an be again represented as a onstraintsolution set. Our results give indiation that this is impossible: these two losure properties arefundamentally inompatible. Perhaps more surprisingly, we show that the problem is not partiularto the polynomial or linear onstraint model; even going to a larger well-behaved onstraint set doesnot remedy the problem.The results above motivated us to look for languages that are not losed under volume operators, butwhih are losed under natural disrete aggregations and whih permit the omputation of volumesfor semi-linear sets. The language FO + Poly + Sum de�ned here gives a natural approah to theaddition of disrete aggregation operators to a onstraint language. The key idea is the notion ofrange-restrited querying: allowing aggregation to be formed only on sets that are guaranteed to be�nite. We show not only that FO+Poly+ Sum has some attrative losure properties analogous tolassial aggregate languages, but it allows one to do a signi�ant amount of spatial aggregation |e.g. volumes of semi-linear sets, averages over semi-linear sets | as well.22
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