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Abstract

We investigate the problem of how to extend constraint query languages with aggregate oper-
ators. We deal with standard relational aggregation, and also with aggregates specific to spatial
data, such as volume. We study several approaches, including the addition of a new class of ap-
prozimate aggregate operators which allow an error tolerance in the computation. We show how
techniques of [23, 25] based on VC-dimension can be used to give languages with approximation
operators, but also show that these languages have a number of shortcomings. We then give a
set of results showing that it is impossible to get constraint-based languages that admit definable
aggregation operators, both for exact operators and for approximate ones. These results are quite
robust, in that they show that closure under aggregation is problematic even when the class of
functions permitted in constraints is expanded.

This motivates a different approach to the aggregation problem. We introduce a language FO +
Pory+ SuM, which permits standard discrete aggregation operators to be applied to the outputs of
range-restricted constraint queries. We show that this language has a number of attractive closure
and expressivity properties, and that it can compute volumes of linear-constraint databases.

1 Introduction

New applications of database technology, such as Geographical Information Systems, have spurred a
considerable amount of research into generalizations of the standard relational model to deal with the
manipulation of geometric or spatial data. One common approach to modeling spatial databases is to
consider input databases as given by a set of well-behaved relations in euclidean space — for example,
by a set of semi-linear or semi-algebraic sets. There are a number of proposed query languages that
extend classical relational algebra to this setting, languages that allow the use of various geometric
operations in manipulating spatial databases. One of the most well-developed models for spatial
queries is the constraint database model [22, 27]. In this model, spatial databases are represented as
sets of linear or polynomial constraints. Databases are queried using standard relational calculus with
linear (resp. polynomial) inequalities as selection criteria, see [3, 4, 5, 19, 20, 31, 36]. These languages,
denoted by FO + LIN and FO + PoLy, have become the dominant ones in the constraint database
literature. They have a very important closure property: the application of a FO + LIN query to a
linear constraint set yields a new set of linear constraints; similarly FO+PoOLY queries on sets definable
with polynomial constraints produce sets that can still be defined with polynomial constraints.
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Constraint Query Languages, then, give a natural analog of relational calculus in the geometric context.
A crucial question, though, concerns how to extend standard aggregation constructs from the relational
model to the geometric setting. This question has two components. First, we would like our languages
to be able to apply standard SQL operators such as TOTAL and AVG to spatial queries, whenever
these operators make sense. Since the output of queries in constraint query languages (and in other
spatial query languages) may be merely finitely representable (that is, representable by some finite
means, e.g., a finite set of constraints) and not finite, the aggregation operators cannot be allowed to
be applied to any constraint query output. One problem then, is to design a language that allows the
safe application of classical aggregates.

The second component of the ‘aggregation question’ concerns aggregation notions that are specific
to the spatial databases. Most commonly, given a database and the output of a query over it, one
wishes to form new queries about the volume of this output. One may also extend standard aggregates
such as AVG, and ask for the average value of a polynomial over a spatial object. Such aggregates
arise both from practical concerns of GIS, and also as the natural continuous analogs of classical
aggregation queries. Thus, we would like to extend constraint query languages to incorporate the
ability to calculate volumes and other aggregates arising in the spatial setting.

In attempting to add aggregation to constraint query languages, one immediately encounters some
daunting obstacles. While standard constraint databases are closed under first-order operations such
as join and projection, they are clearly not closed under taking of volumes. This fact is well-known
in the literature [22, 26, 11], and stems from the fact that neither the semi-linear nor semi-algebraic
sets are closed under integrals. To take an example from the semi-algebraic setting, a query asking
for the volume of initial slices of the epigraph of 1/z outputs the graph of the In function, while
iterating volume queries in this fashion would give as output transcendental functions that are not
even expressible using field operations, logarithms and exponents. Thus, one cannot hope to add a
general volume operator to existing first-order constraint query languages such as FO + PoLy and get
a closed language while still remaining within the domain of polynomial constraint databases.

There are several approaches to the volume problem mentioned above. First, one could weaken the
requirement that volumes be computed exactly and instead aim only to compute approzimate volumes.
Thus a query might have a tolerance associated with each instance of a volume operator, with output
required only to be correct within the given tolerance. There are a number of practical and theoretical
motivations for this approach. While it is known that computing volumes of even simple geometric
objects (convex polytopes) is a hard problem (#P-hard, see [13]), approximation of volumes, at
least of convex sets, can be done in polynomial time by a randomized algorithm [14]. Moreover, in
contrast to the well-known fact that semi-algebraic and semi-linear sets are not closed under volume
operators, the papers [23, 24, 25] show that volumes of sets definable with polynomial constraints
can be approximated, for any given ¢ > 0, by a first-order formula with polynomial constraints. By
giving up exact volume and settling for an approximation, one might hope to retain desirable closure
properties.

A second approach to the aggregation problem would be to expand out of the domain of polynomial
constraints, and add new functions to the signature of both the constraints and the query language.
This would give the possibility of retaining a constraint-based representation of databases, while
gaining closure under volume operators. Of course, in this approach one should expand the constraint
set so that it still defines only topologically well-behaved objects.

A third approach to the volume problem is to search for languages which can compute or approximate
the volumes of important classes of sets, but which may not be closed under iterative application of



volume operators. For example, one could allow volume and other aggregation operators to be applied
only to a subclass of the input queries. Restrictions on the nesting of volume operators would then
have to be imposed.

An example of this last approach in the existing literature is [10], where it is shown that polynomial
constraint query languages can express the (exact) volume for any set that admits a special condition
called ‘variable independence’. This condition means, informally, that in the constraint specification of
sets in, say, R?, there is no interaction between z and y. Unfortunately, this condition is too restrictive:
it excludes many of the sets that arise most often in spatial applications. As for practical applications of
aggregation in constraint databases, implemented systems normally do not have aggregate operations
(the DEDALE system, for example). One spatial extension of SQL, proposed in [28], does include
aggregates, but a careful examination of the language shows that they are severely restricted: the
only allowed aggregate operations are traditional relational ones applied to finite relations, and spatial
union and intersection, which are first-order definable.

In this paper, we analyze the feasibility of each of the above approaches in detail. For the first
approach, we show that techniques based on VC dimension, coming out of the work of [23, 24, 25] give
us approximate volume operators that give semi-algebraic output on semi-algebraic input. However,
we show a number of shortcomings of such an approach. Not only are the approximate volume
operators obtained according to the technique of [23, 24, 25] sensitive to the input representation,
but the blow-up in the size of the constraint databases produced in query evaluation precludes any
possible use of these operators in practice.

Turning to the second approach, we show that it is completely infeasible. No first-order constraint
language based on any reasonably well-behaved class of functions can express, or even approximate,
volume. In the process of showing this, we develop a new set of techniques for proving inexpressibility
results, techniques not based on the usual method of reduction to generic queries.

We then consider solutions that give up full closure under volume, and give a number of positive results.
We present a higher-order language that allows one to calculate the volume of arbitrary semi-linear
sets. Specifically, we give a language, called FO 4+ PoLy + SuM, that has attractive closure properties,
remains within the domain of polynomial constraint databases, and allows the exact calculation of
volumes for linear-constraint input databases. This language also has the pleasant feature that it is
closed under the classical aggregation operators SUM and AVG. Since FO+PoLy+SuM includes SQL
aggregation, contains FO +PoOLy, and also allows one to make use of standard aggregation evaluation
techniques in calculating volumes, it seems to be a good candidate for the constraint analog of classical
aggregation languages.

We remark that another approach to the aggregation problem was considered in [11], which gave a
new aggregate operator y, under which FO + LIN is closed. However, p(X) = 0 for any bounded set
X; thus, this operator cannot be used to deal with volumes.

Organization Section 2 introduces the notation. Approximability is studied in Section 3. The method
of defining approximate volumes of [23, 24, 25] is analyzed, and the main difficulties in applying the
approximation operators coming from this work are outlined. Section 4 shows that approximate
volume operators cannot be defined in first-order constraint languages, even when the signature is
expanded. Section 5 defines an extension of FO + PoLy with SQL-like aggregation (summation over
finite sets) and shows that this extension can express volumes of semi-linear databases.

The extended abstract of this paper appeared in the Proceedings of the 18th ACM Symposium on



Principles of Database Systems [7].

2 Notation

Structures, instances, queries Most notations are fairly standard in the literature on constraint
databases, cf. [4, 5, 27, 31, 19]. Let M = (U,Q) be an infinite structure, where ¢/ is an infinite set,
called a universe (in the database literature often called the domain), and © is a set of interpreted
functions, constants, and predicates. In the field of constraint databases, most examples have U = R,
the set of real numbers. Examples of signatures (and corresponding classes of constraints) that have
been considered are:

Dense Order Constraints: (R, <);
Linear Constraints: Ry, = (R, +, —,0,1, <);
Polynomial Constraints: R = (R, +,%,0,1, <);
Exponential Constraints: Rexp = (R, +, %, €, <).

A (relational) database schema SC is a nonempty collection of relation names {Si,...,S;} with asso-
ciated arities py,...,p; > 0. We shall consider both finite and finitely representable instances. Given
M, an finite instance of SC over M is a family of finite sets, {Ry,..., R;}, where R; C UPi. That
is, each schema symbol S; of arity p; is interpreted as a finite p;-ary relation over Y. Given a finite
instance D, adom (D) denotes its active domain, that is, the set of all elements that occur in the
relations in D.

A finitely-representable (f.r.) instance of SC over M is a family of sets {X1,..., X;}, with X; C UPi,
such that for each X; there exists a quantifier-free formula «;(z1,...,2p,;) in the language of M with
X, ={d e UPi | M = «a;(a)}. Most applications of constraint databases consider f.r. instances defined
over Ryj, (these are called semi-linear sets) or over R (called semi-algebraic sets). For example, in the
spatial setting, a f.r. instance interprets the schema predicates as semi-linear or semi-algebraic sets.

As our basic query language, we consider relational calculus, or first-order logic, FO, over the un-
derlying structure and the database schema. In what follows, L(SC, Q) stands for the language that
contains all symbols of SC and Q; FO(SC, Q) is the class of all first-order formulae built up from the
atomic SC and €2 formulae by using Boolean connectives V, A, —~ and quantifiers V, 4.

Regardless of whether we are in the ‘classical’ setting, where these queries are applied to finite
databases, or in the constraint query setting, we will refer to the above syntactic query languages as
relational calculus with Q constraints. This will be denoted by FO + Q. When Q is (+,—,0,1, <), or
(4+,%,0,1,<), or (+, *,€”, <), we use the standard abbreviations FO 4+ LIN, FO 4+ PoLy and FO 4+ Exp.
In the case of finite databases, we shall also use the active-domain quantifiers: for a formula ¢(z, ),
one can form formulae 3z € adom.p(z,¥y) and Vz € adom.¢(z,¥). For a structure M and a SC-
instance D, the notion of (M, D) |= ¢ is defined in a standard way for FO(SC, Q) formulae, where
(M, D) = 3z p(z, ) means for some a € U we have (M, D) = ¢(a,-), and (M, D) | 3z € adom ¢(z, -)
means that for some a € adom(D) we have (M, D) = ¢(a,-). If M is understood, we write D = ¢.

Given ¢(Z,7) and @, we write (@, D) for {b | D |= ¢(@,b)}; in the absence of Z we just write o(D)
for the output of ¢ on D.

The class of subformulae of FO that only use the active-domain quantification is denoted by FO,;.



Adding aggregate operators We shall use VOL(X) to denote the volume of a set X C R". More
precisely, VOL(X) is the measure of any Lebesgue-measurable set X C R™. We shall not worry about
dealing with non-measurable sets, as all bounded sets defined with constraints relevant for spatial
applications (those listed above, plus some extensions) are measurable.

—

We shall consider adding volume to a query language as follows. If ¢(Z,%) is a formula, then the
following is a formula with free variables Z, z:

[VoL g.o(Z, )](7, 2)
Assume that a structure M = (R, Q) is fixed. Let an instance (finite or f.r.) D be given. Then
D E [VoL g.o(Z,9)](d,v) if v = VoL(e(d, D)).
Recall that (@, D) = {b| D |= ¢(a,b)}.

The extension of any query language £ with VOL will be denoted by £ 4+ VoL; for example, one can
speak of FO 4+ LN+ VoL or FO 4+ PoLy + VoL. Of course we know that due to the nonclosure results
mentioned in the introduction, FO + LIN ; FO + LIN + VoL and FO + PoLy ; FO + Pory + VoL.

As the next step, we restrict our attention to bounded sets. Without any loss of generality, we shall
deal with subsets of I" C R", where I throughout this paper denotes the interval [0,1]. We define
VoL §.¢(Z,¥) just as above, except that now we require that v = VoL(p(a, D) N I™). In particular,
0 < v < 1. We similarly define languages £ + VoL;. As with VoL, languages like FO + LIN and
FO + PoLY are not closed under VOL;: for example, arctan(z) = [ % =Vorr({(y,2) | (0 <y <

T)A0<2z2<1/(y?>+1))}), for 0 <z < 1.

As standard languages are not closed under taking volume, we address the question of whether one
can obtain closure by lowering one’s demands. In particular, we would like to see if approzimating the
volume, rather than computing it directly, gives us a closed language. The hope that closure might be
obtained in this way is motivated by the fact that for every formula ¢(Z, %) in R and for every € > 0,
one can find a formula 1 (Z, z) that gives e-approximation of volumes of sets (@, R) = VoL;({b| =

-,

©(d,b)}), see [23, 24, 25].

We have to explain what we mean by approximating volume in this context. Clearly, we cannot hope
to find 1 (Z, z) with z defining an e-interval around the real value of the volume — then the volume
itself would be definable as the center of the interval! Thus, we settle for less. Similar to [23, 24, 25],
we say for every e > 0, that an operator VOL® is an e-approzimation operator if for every f.r., over M,
set A € R" x R™, given by a formula (&, i), VOL returns a f.r. set in R” x R, given by 9.(%, z) such
that :

1. For every @ € R", 1).(d,-) must be satisfiable (that is, M = 3z.9c(a, 2));

2. f M |=9(d,v), then v > 0 and |v — VOL(¢(@,R))| < e.
Thus, VOL® must return a 1, that is guaranteed to find an (absolute) e-approximation of the volume.
We next say that a query language £ defines VOLS, if there is a query in L that defines such an

operator. That is, for each query ¢(Z,%) in £ and € > 0 there is a L-query 1¢(%, z) such that for any
database D, and any @, we have

e D= 3z.1)(a,z), and



e D = e(a,v) implies v > 0 and |v — VOL(p(a, D)) |< e.

Notice that in the last definition . is independent of D. Also notice that to show definability of
approximate operators in standard query languages, it suffices to show that there is a query in the
language returning the e-approximate volume on every base relation of some fixed arity.

We also define e-approximation operators to volume in the case where we restrict to bounded sets. As
before, we use, w.l.o.g., I" as bounding set. An e-approximation operator in the bounded setting is
denoted by VOL$. Such an operator must satisfy the variant of condition 2) above: |v—VoL(¢(a, D)N
I')| < eand 0 <wv < 1.

These operators, and their definability in query languages, are studied in Sections 3 and 4.

O-minimality, VC dimension Many results that we prove extend beyond linear and polynomial
constraints. To state them in greater generality, we shall use o-minimality [35], which plays an
important role in the study of constraint query languages (cf. [4, 5, 6]).

A structure M = (U, Q) is o-minimal, if every definable set is a finite union of points and open intervals
(a,b) ={z | a <z <b}, (—00,a) ={z |z <a}, and (a,00) = {z | £ > a} (we assume that < is in Q).
Definable sets are those of the form {z | M |= ¢(x)}, where ¢ is a first-order formula in the language
of M, possibly supplemented with symbols for constants from M. All the structures on the reals we
mentioned so far - Rjip, R, Rexp — are o-minimal (the first two by Tarski’s quantifier-elimination, the
last one by [37]).

If M = (R,Q), we define M, , to be (R,Q,+,*). We often require that not just M but also M ,
be o-minimal.

We also consider structures having finite VC dimension of definable families [2, 29] (also known as
structures without the independence property [34]). VC dimension, introduced in statistics to study
uniform convergence of stochastic processes, has become central to computational learning theory
[2, 9], and found application in other areas, e.g., complexity [30].

Suppose X is an infinite set, and C C 2X. Let F C X be finite; we say that C shatters F if the
collection {F N C | C € C} is 2F. The Vapnik-Chervonenkis (VC) dimension of C, VCdim(C), is the
maximal cardinality of a finite set shattered by C. If arbitrarily large finite sets are shattered by C,
we let VCdim(C) = oc.

Let M = (U,Q), and let p(Z, §) be a formula in the language of M with | Z|= n, |7 |= m. For each
@ € U", define p(@, M) = {b € U™ | M |= ©(@,b)}, and let F,(M) be {p(d@, M) | @ € U"}. Families
of sets arising in such a way are called definable families. We say that M is a structure with finite
VC dimension if the VC dimension of each definable family is finite. Every o-minimal structure is a
structure with finite VC dimension [29], and the latter class is in fact much larger than the class of
o-minimal structures.



3 Approximating aggregates in constraint query languages

3.1 The VC dimension-based implementation of approximate volume operators

We now start our investigation of the expressibility of approximate volume operators. The results
of [23, 24, 25] do immediately give a closed language for computing approximate volumes. From
[23, 24, 25] we can easily derive:

Theorem 1 Let € > 0, and let p(Z,7) be a FO + PoLy query. Then for every semi-algebraic (resp.
semi-linear) database instance D there exists a formula ¢$)(Z,z) over the real ordered field R (resp.
group Riin) such that ¢ (@, ) is satisfiable for all @, and |= ¢% (@, v) implies |[v — VoL (p(d, D))|< €
and 0 < v < 1. Hence, there is a collection of e-approximation operators VOLS, € > 0, for R and Ryiy.

Since we want to examine those operators with regard to their efficiency, we now review the ideas of
[23, 24, 25] that lead to this theorem.

Pre-requisites (see [2, 9, 23, 25]) The idea of the approximation technique can be traced back to
the simplest randomized method for computing volumes. For a set S C I" C R”, take k points z1, ...,
z from the uniform distribution on I". Then VOL(S) can be approximated as vg = Zle xs(zi)/k,
where xg is the characteristic function of S: xs(z) =1 if z € S and xg(z) = 0 if x € S. Then for
e >0,

P(|lvs — VOL(S) > €)) < 2 2k

this follows from Hoeffding’s inequality. There are two reasons why this is not sufficient for getting
e-approximations to volume. First, the volume operators, as we defined them, may depend on param-
eters. Indeed, VOL ¢.¢(Z, ) requires computing the volume for every instantiation of parameters &.
Secondly, the randomized method above only tells us that |vg — VOL(S) |< e with high probability,
and thus the procedure must be derandomized to ensure a certain answer.

To overcome the first problem, we use techniques from statistics and machine learning to ensure that
one sample will suffice to test multiple volumes. Let ¢(Z,%) be a first-order formula over the real
field R, with | Z|= n and | |= m, and let ¢,6 > 0. Define (@, R) = {b € R | R = ¢(d@,b)}. Let
M > 0 be given, and assume that an M-point sample C = {¢i,...,cn} is randomly chosen in I"™.
For each @, let v(a,C) be the fraction of C that falls into ¢(a,R) N I™. Then one wants to achieve
\v(d, X) — Vors(p(d,R))|< e for all @ € R", with probability at least 1 — 4.

The classical results of learning theory [2, 9] say that this is possible when the VC dimension of
the family F,(R) = {¢(@,R) | @ € R"} C 2®" is finite, and the size of the sample of M is then
proportional to the VC dimension. In the construction of approximating formulae, we shall use the
following corollary of this result, that states the existence of so-called e-nets:

Fact 1 (e-nets) Let o(Z, ) be a first-order formula over the real field R, with |§|= m, and let € > 0.
Let d = VCdim(F,(R)). If M > S—Ed log £, then there exists an M-element set C = {¢,...,cu} C I™
such that for every @ with VoL(¢(a,R) N I™) > € it is the case that (@, R)NI™ NC # (. 0



Approximation method We now combine the existence of e-nets with a derandomization proce-
dure.

Assume that we are given a FO+PoLy query ¢(Z, %) and a semi-algebraic database D. Put the
definition of D into v, to obtain a new formula (Z,%) in the language of the real field, such that

R = ¢(@.b) iff D |= (@,b). For example, if 1(z,y) = Ju (S(z,y,u) Az < 0) and S is defined as
p(z,y,u) > 0, where p is a polynomial, then 9 (z,y) is Ju (p(z,y,u) > 0A z < 0).

Thus, we have to define approximating formulae for a formula ¢(Z, %) over R. To simplify notations,
write ®(a@) for p(a,R) N I™. Fix a number k¥ € N and v,§ € I. Define, for each @ € R”,

k
- - - m 1 -
S(a,v,6) = {(017---7%)6(1 )k \E'qua)(@) - VS(S}-
=1

That is, S(d,v,d) is the set of k-samples that produce an approximate volume of ®(a@) within § of v.
Note that for every fixed k, this set is definable with parameters d, v, d.

Next, define an operation & : I" X I" — I" by 2 @ y = (z + y) mod 1, with the mod 1 operation
applied component-wise. Let © be the inverse: x ©y = z iff £ = y @ z. These operations can then be
extended to sets: z6 S ={z6y|y e S}

Let ¢ € (I™)* be a k-element sample of points in ™. Define T'(c,d,v,d) = ¢ © S(@, v, ). For a fixed
k, this is definable if FO over the real field.

Fix now ¢ € I"™, and define the family ¢ © ®(@). As this is a definable family over R, it has finite
VC dimension [15, 29], which we denote by d. Then [23, 24, 25| calculate an upper bound on the VC
dimension of the family 7 of all sets T'(c, d, v, ) as 4d - klogk, for each fixed v and 4.

Applying Fact 1, we obtain that for M > %g—k log %, there is an e-net {t1,...,ty} for 7. As
translation by © does not change the volume, we see that all elements of 7 have the same volume;
thus, if this volume is > €, then every member of 7 contains one of the ¢;s. From this one derives that
the sets t; ® S(@,v, ) cover the entire (I"™)F, if the volume of S(&@, v, d) is at least .

By calculations based on Hoeffding’s inequality, [23, 24, 25] show that the inequality
VOL(S(@,v,€/2)) > 2e k¢"/2 implies | v — Vor(®(@)) |< €, and that | v — VOL(®(d)) |< /4 implies
VOL(S(@, v, €/2)) > 1 — 2eF<*/8_ Using this, one arrives at the following.

Proposition 1 (Karpinski, Macintyre, Koiran) Let

8-1n4 1 32dk log k 13
log —

0<e<1/2, k>—5—, MZmaX(QekEQ/Q’ - -

)

where d is the VC dimension of the family co®(a), ¢ € I™. Then the formula saying that M translates
(by ©) of 8(@,v,e/2) cover (I™)* defines v as an e-approzimation of VOL(®(d)). 0

€

As d is finite and depends only on ¢, the statement of the proposition can be converted into a FO-
definition, which serves as an approximating definition of volumes ¢(Z, R). Note that the resulting
approximating formulae satisfy a rather strong condition: every v within €/4 of the real volume is
returned by the approximating formulae. Also note that the approximating formulae have entirely
semi-linear character — multiplication is never used except in the formula ¢ itself. We thus obtain
Theorem 1 as a corollary of the above results.



3.2 Shortcomings of the approximation technique

We note here some shortcomings of the technique of Lemma 1 in the context of constraint databases.
In the technique, one has to put the definition of a constraint database D into a query ¢, and then
apply the method of [23, 24, 25] to the result. That method produces an output formula whose size
is a polynomial in the input formula and %: theoretically, a nice bound. In attempting to apply
this technique in practice, however, we find that the bounds obtained are rather unpleasant, even for
modest values of €, as the size of the quantifier prefix is quite large. In the constraint database setting,
those will have to be eliminated, via a quantifier-elimination procedure, which will be very costly. Let
us illustrate this by a simple example.

Example: Let the schema contain one unary predicate U interpreted as a subset of [0, 1]. The query
¢(T1,T2;Y1,Y2) is given by

Ulz) ANU(z2) Azt <yr Ayr <22 A0 <ya Aya <
For a,b € U,a < b, we have VOL(p(a,b,R)) = (b? — a?)/2.

Let € = 1/10. We want to evaluate the query

[VOLSY p(x1, z2:y1, y2)] (71, 72, 2)

saying that z is an e-approximation to the volume of ¢(x1,z9,U) = {(y1,y2) | U = ¢(z1, z2;y1,y2)},
where VOL} is the operator obtained through the method above. Note that VoLr;(¢(a,b,U)) =
(b® — a?)/2, for a < b in U, and 0 otherwise. To evaluate this query on a database where U consists
of N elements, by applying Theorem 1, we would first plug U in ¢ to obtain a formula with > 2N
atomic subformulae that does not mention U.

We then use bounds of Proposition 1 and obtain, by simple calculations:
kE>1,109 M > 25,206,250 .

The formula saying that there exist M translates starts with a prefix 3, - - - 3tps where each ¢ ranges
over (I?)¥; that is, this existential prefix binds 2kM > 5.5 - 10'° variables.

The formula bound by these quantifiers must say that every element of (I m)k is one of the translates,
which requires at least 2M k atomic formulae, and that v is indeed the average value of the character-
istic function, which requires at least 2kN atomic formulae. Thus, a crude lower bound for the length
of the quantifier-free part of the formula is 5.5 - 10'° + 2N - 103.

As eliminating > 10'? quantifiers from a formula of length at least 10'! is completely infeasible, the
approximation method has no chance of being applicable in practice. Still, the result that one can
achieve closure by using approximate operators is very interesting, and contrasts sharply with the
situation with the exact volume operators, where closure cannot be guaranteed.

Thus, applying the method of [23, 24, 25] ‘as is’” appears to be infeasible in the context of constraint
databases.

The technique of Lemma 1 also tells us nothing about the definability of the operators VOL{, nor the
power of the language that results from adding them to a standard language, like FO + PoLy, since
the approximating formula ¢, varies with the input database.



4 Uniformly definable volume operators and expansion of the sig-
nature

We saw in the last section that the main shortcoming of all known examples of approximate volume
operators was the blow-up in the size of the representation. It was also left open whether some volume
approximation operators can be defined in standard languages, like FO 4+ PoLy, uniformly for all
database instances. We now investigate whether we can find other approximation methods that can
be expressed in nicely-behaved languages and that admit low complexity evaluation techniques. The
main result is that one cannot capture approximate volume operators in a nice constraint language
such as FO+Povy. That is,

Inexpressibility of Approximate Operators FO + LiN, FO 4+ PoLy and FO + EXP cannot express
VoL for any e < 1/2. O

In fact, we prove a stronger result. Theorem 3 shows that even if one extends the constraint signature
to include functions beyond FO 4 EXP, as long as we stay within a well-behaved structure, we cannot
capture approximate volume. Furthermore, we show that in languages like FO + PovLy, only trivial
approximations are possible. An example of a trivial approximation is returning 1/2 for every subset
of I" — in this case we know that the difference between the real volume and its approximation is
<1/2.

Proving expressivity bounds such as Theorem 3 and Corollary 1 is not very simple. Almost all, if not
all, existing expressivity bounds for constraint query languages either involve generic queries (e.g., the
parity test, see [4, 5, 31, 3]) or are proved by reduction to generic queries (e.g., [20]). However, queries
involving approximation defined as in Section 2 are extremely nongeneric. ~We introduce the main
ideas for the proof in several steps. We first consider an easier case of the aggregate Ava for finite
instances and prove that it can be neither defined nor approximated in languages like FO + PoLy.
The proof introduces the idea of reduction to what we call a (cq, ¢o)-separating sentence, with ¢y, co
being constant real numbers. We then show how the same reduction easily proves that FO + PoLy
and the likes cannot produce relative approximations of VOL. For the absolute approximation VOLY,
the reduction only works under very special assumptions on the input, and to conclude the proof we
need to use results from circuit complexity.

This section gives further evidence that if one wants to stay within a reasonable (for spatial applica-
tions) class of constraints, one must give up uniform closure under any nontrivial approximation to
the volume.

Prerequisites: Collapse results We shall need the following two results proved in [4, 5], stated
here in a form most convenient for the proofs below.

Fact 2 a) Given any ordered structure M = (U,Q), an infinite set X C U, and an active-semantics
query (%) in FO,(SC,Q), there exists an infinite set Y C X and a FO,(SC, <) query (Z) such
that D |= ¢(a) iff D = v (a@) whenever adom(D)Ua C Y.

b) Let M = (U, Q) be o-minimal, and p(Z) and arbitrary natural-semantics FO(SC,Q) query. Then
there exists an expansion M' = (U, Q') and an active-semantics query P(Z) in FOuet (SC, Q') such
that for every SC-database D over U and for every @, D |= ¢(a@) iff D = v(d). Furthermore, each
relation in Q' — Q is interpreted as a set definable over M; thus, if M admits quantifier-elimination,
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one can take M' to be M. O

Separating sentences We shall consider a relational database schema SC that consists of two
unary relations, U; and Us. Let ¢1,co > 1 be two real numbers. We say that ® is a (cy, ¢2)-separating
sentence if for any finite instance D of SC, it is the case that card(Uy) > ¢ - card(Usy) implies D = @
and card(Uz) > ¢ - card(U;) implies D = —®. Note that this definition says nothing about the case
when % card(Us) < card(Uy) < ¢ - card(Us), and thus direct application of bounds on expressiveness
of generic queries is impossible. Still, we can show:

Proposition 2 Let M = (U,Q) be o-minimal, c1,co > 1, and SC as above. Then no (c1,co)-
separating sentence is definable in FO(SC, Q).

Proof. Assume that there is a (c1, ¢o)-separating sentence ®. From Fact 2, b), we conclude that there
is a FO,(SC, Q') (c1,c2)-separating sentence ®' for some extension ' O Q. From Fact 2, a), we
obtain that there is an infinite set Y C U and a FO,(SC, <)-sentence ¥ such that for every instance
D with adom(D) C Y it holds: D | @ iff D |= ¥. Thus, it remains to show that FO,(SC, <)
cannot express a (cj, cg)-separating sentence ¥, on instances over an infinite set.

Assume it can; and let ¢ be the quantifier rank of ¥. We now consider two instances over Y. In both
instances D; and D5 all elements of Uy precede Us in the linear order <. In Dy, card(Uy) = [¢1(2941)]
and card(Us) = 294 1; in Doy, card(Uy) = 29+ 1 and card (Us) = [¢2(27 + 1)]. Since ¥ is a (¢1,co)-
separating sentence, we must have D; = ¥ and Dy = —¥. We shall obtain contradiction by showing
that D1 |: v iff D2 |: v,

To show the latter, we must prove that the duplicator can win in a ¢-move Ehrenfeucht-Fraissé game
on Dy and Ds. This follows from the fact for every n,m > 29, the duplicator can win a g-move game
on two ordered sets of cardinalities n and m [21]. Thus, for D; and D5, the duplicator picks a separate
strategy for U; and Us, and whenever the spoiler plays in U;, the duplicator forgets about the moves
in Uy and responds in U; using the strategy for U;, and likewise in the case when the spoiler plays in
Us. Let (a1,b1),...,(a;,b) be moves made in the Uy part of Dy and Dy, with a;s played on Dy and b;s
played in Ds. Similarly, let (¢1,dy), ..., (ck,dx) be moves made in the Us part of Dy and Dy, k+1 = q.

Then both a; — b;, 2 =1,...,l and ¢; — d;, 1 = 1,...,k, are partial isomorphisms; since all elements
of Uy precede all elements of U, putting them together we get a partial isomorphism between D; and
D,. This shows that Dy = ¥ iff Dy = ¥, and thus concludes the proof. O

4.1 Dealing with AVG

We assume that instances store elements of a numerical domain, for example R. Given a query
@(Z, z), we define AVG, (&, y) by letting D = AvG,(d,v) iff card(p(d, D)) < oo and v = AvG(yp(d, D)),
where AVG(C) = (Y .cc¢)/card(C). Note that the aggregate AVG is typically defined using the bag
semantics; however, as we show inexpressibility results, dealing with this simplified version will suffice!.

It can be easily shown (by reduction to equal cardinality) that AvG,, is not definable in FO + Pory,
even if D = ¢(d,c) implies 0 < ¢ < 1. We now define e-approximation of AvG just as we did it for
VoOL. Assume a query ¢(Z, z) is given, and |#|= n. An operator AVG}, when applied to ¢, produces

"We shall come back to the multiset semantics later.
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a query (Z, z) such that, for any instance D and any a@, D = 3z.¢(d, z), and if D = ¢(@,v), then
v — AvG(p(d, D) N1I)|< e and 0 < v < 1. For convenience, we let AvG(C) = 0 for C' infinite.

For € > 1/2, Ava§ is definable in FO(SC, Q) if the input is finite or f.r. over 2, as long as the constants
0,1/2 and 1 are definable. However,

Theorem 2 Let M = (R,Q), and let M . be o-minimal. Let € < 1/2. Then AVGY is not definable
in FO + Q, even over finite instances. In particular, AVGY is not definable in FO + PoOLyY.

Proof. Assume AVGY is definable. Let the schema SC consists of two unary predicates, U; and Us. Let
A = (1 —2¢)/16. Given two finite sets U; and Us, containing at least two elements each, we translate
them into intervals [0, A] and [1 — A, 1]. By translating a finite set X with min X = ¢,maxC =d > ¢
into an interval [a,b] we mean the set X' containing exactly the numbers of the form a + W
where z € X; clearly X' C [a,b]. As the next step, we define U = U] U {4A —z | = € U]} and

U9 =UsU{2 —-4A — x| x € U}}. One observes U C [0,4A] and UY C [1 — 4A,1].

The preceding shows that U and UY are FO + Pory-definable. Thus, the set C = UYUUY c [0,1] is
definable in FO + Povy. Now easy calculations show that

m 3+ 2¢

€
Ave(C) = 4 n+m 4

1
8
where n is the cardinality of U; and m is the cardinality of Us.

We now define a Boolean query ® by letting D |= @ iff Ava®(C) = Ava;(C) > 1/2. More precisely,
C is defined by a FO + PoLy query «(z), and thus under the assumption that AvG{ is definable, we
have a satisfiable formula S, (x) such that D |= c(a) implies that |a — Ava(C)|< e. We now let ® be
z.Be(x) A (z > 1/2). Under the assumption that AvG§ is definable in FO + Q, we would obtain that
® is in FO + Q as well.

Let ¢ =1+ 31fg€ > 1. Assume m > ¢y - n. Plugging this into the equation for AvG(C), we derive
AVG(C) > 1/2 +¢; thus, in this case AvG‘(C) > 1/2 no matter which e-approximation of the average
is picked, and thus D |= ®. Similarlly, if we assume n > ¢ - m, we derive AvG(C') < 1/2 — ¢, and thus
Ava(C) < 1/2 and D |= —®. Hence, ® is a (cg, ¢p)-separating sentence, which is definable in FO + .

This contradiction proves the theorem. O

4.2 Dealing with volume

We start with two easy results. First, for unbounded measures (no restriction to I™) volume cannot
be approximated in languages like FO + PoLy.

Proposition 3 Let M = (R, Q), and let (R, Q, +, x) be o-minimal. Then no e-approzimation operator
VoL¢ is definable in FO + Q.

Proof. Let m > 2¢ + 1 be an integer. Consider a scheme with two unary symbols U; and Us and let
Yl(z) = Iy Ui (y)A |y — z|< m and ¥%(z) = Fy Us(y)A |y — £|< m. Assume that VOL® is definable;
we then have queries 8! (z) and 32 (x) which give e-approximation for the measure of outputs of ' ()
and 9?(z). Now let

U = dzia9 (661(3:1) A ,83(3:2)/\ \xl — T9 ‘< 26)
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Let (*) be the following condition on U = U; U Uy: for every a,b € U, if |a — b|< 2M then a = b.
Then under (%) it holds: D |= U iff card(U1) = card(Usz). However, this is impossible: Fact 2, a),
implies that any generic query definable in FO + € on databases over an infinite set must be definable
in FOut (<), but it is well known that equal cardinality is not FO,(<)-definable (cf. [21]). O

Thus, FO + LiN and FO + PoOLY cannot define e-approximations of volumes. Note that the proof
above is by reduction to equal cardinality, for sparse finite sets. It relies on the fact that there is no a
priori bound on the outputs of queries. Thus, a different approach is needed to show inexpressibility
of VoLS.

For a query ¢(Z,7y) and two constants 0 < ¢; < cg, we say that (%, z) gives a (c1,ca)-relative
approzimation of the volume if for any @, 1(d, -) is satisfiable, and

D Ey(a,v) = ¢ < (v/VoL(e(d,D))) < co
By a reduction to separating sentences, we will now show:

Proposition 4 Assume that (R, Q) is such that (R, Q, +,*) is o-minimal. Then for any 0 < ¢ < ca,
the (c1, ca)-relative approzimation of the volume is not definable in FO 4+ Q, for any dimension k > 0,
even for queries restricted to [0, 1]%.

Proof. Let k =1 (extension to k > 1 is trivial by taking a product with [0,1]*~!) and let the schema
contain two unary relations U; and Us. We shall assume that their interpretations are subsets of [0, 1].
Let n = card(U1),m = card(Uz). Let ¢’ = gL < $and ¢’ € (1, 72). We claim that with a (1, c2)-
relative approximation of the volume we can define a sentence ® such that n < ¢’ - m implies D | ®
and n > ¢ -m implies D |= =®. This will suffice, as such a sentence ® would be a (¢, 1/¢')-separating

sentence, which cannot be defined in FO + Q.

Given a finite set X = {z1 < ... <zp} C[0,1] and ¢ > 0, define

p—1
X(6) = U[mzamz +0] U [zp — 6, zp]
i=1
Note that for a given ¢ and X, this is FO + LiN-definable. We now let
1
o= —- min \al—aQ\

3 a1,a2€(U1UU2),a175a2
Then Uy (6),Uz(6) C [0,1] and VoL(U;(d)) = nd, VoL(Uz(d)) = md. Let @ = QU {+,+}. We now
have two queries in FO + ', ¢1(y) and ¢3(y) defining Uy (d) and Uy (d); assuming that (cq, co)-relative
approximation of the volume is definable, we have two queries 1)1 (z) and 19(z) that produce such an
approximation for U;(d) and Uz(d). We next define

o = 321322.1/)1(21)/\1/)2(22)/\(21/22<1/2).

Suppose 11 (v1) A 1a(v2) holds. Tt follows then that

cn v com

aro o4 20

Com () cm
Thus n < ¢ - m implies vy /vy < 1/2 for any v; and v that satisfy ¢ and 19, and hence D = ®.
Conversely, n > ¢" - m implies v /vs > 1/2 for any v; and vy that satisfy ¢ and 9, and thus in this

case D = —®. This completes the proof. O
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4.3 Absolute approximation

We shall now prove the strongest of the inexpressibility results: that VoOL§, for € < 1/2, cannot be
defined in languages like FO + LIN and FO + PoLy. First note:

Proposition 5 FO + LIN defines VOL; for e > 1/2.

Proof sketch. If the volume is not 0 or 1, then 1/2 is the e-approximation. O

It turns out that this trivial approximation is the best one can hope for in languages like FO + LN
and FO + Pory.

Theorem 3 Let M = (R, ), and let (R, Q, +,%) be o-minimal. Assume that € < 1/2. Then VOLY is
not definable in FO + €.

Proof. Let SC consist of two unary relations A and B. Call a finite instance good if two properties are
satisfied: A is an initial fragment of natural numbers (that is, {0,1,2,...,k}) and B is a nonempty

proper subset of A. Let
1 —2¢

2+ 2¢
Cl1 = =

and co = 3

We have 0 < ¢; < cg <1l and ¢ +¢c9 = 1.

Consider a sentence ® in the language of SC and Q. We call it a (¢1, ¢2)-good sentence is the following
two conditions hold, whenever (A, B) is a good instance:

1. If card(B) < ¢1 - card(A), then D |= —®;
2. If card(B) > ¢z - card(A), then D |= ©.

Note that this is the same as having a separating sentence for B and A — B; however, here we only
require that the above conditions hold for a good instance. The result now follows two lemmas.

Lemma 1 Assume VOLS is definable in FO + Q. Then for c¢1,ca as above there exists a signature Q'
extending Q and a (c1,c2)-good sentence in FOuet (SC, ).

Proof of Lemma 1. Assume that an instance (A, B) with B C A is given. Let n = card(B) and
m = card(A — B); n,m > 0. We now construct A’ and B’ by translating A and B into [0,1]. That
is, each element z of A is replaced by z/x); where z )/ is the maximal element of A. Note that A’ B
are FO + Povry-definable.

P = U [b,a] and R = U [b, a]

beB’ ,ac A’ (a,b)NA'=0 beA'—B',ac A’ (a,b)NA'=0

Note that both P and R are definable in FO + PoLy. We now have the following: if the instance
(A, B) is good, then

-1 —1
_n-: SVOL(P) < " _m= SVOL(R) < _m
n+m-—1 n+m-—1 n+m-—1 n+m-—1
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If VoL is definable in FO + Q, we have a FO(SC,Q U {+, %}) queries ¢)p(z) and ¥r(z) such that
D = 4p(v) implies |v — VOL(P)|< €, and likewise for R. We now define ¥ as

dz1329. Yp(21) ANPR(22) A 2z1 > 29

Let ¢ = 2tZ. Assume card( ) > ¢2 - card(A); then n > ¢m. Then simple calculations show that
n+m 1 > 1/2+e€and - < 1/2 — e which implies that no matter which e-approximations v; and
vy for VOL¢(P) and VoL* (R) we have, it is the case that v1 — vy > 0. Since 9 p and 1 are satisfiable,
we conclude that, under the assumption that the instance is good and card(B) > co - card(A), D = ¥

Next we assume that card(B) < ¢; - card(A). Then we get m > ¢'n. Again, with simple calculations
we obtain nT 1 > 1/2 4+ € and +m —n— < 1/2 — € hence, for every e-approximations v; and vy for
VoL¢(P) and VOL (R), it is the case that v; — vy < 0, and thus D = —=V.

Now the lemma follows from Fact 2, b). O

Lemma 2 Let © be an arbitrary signature on R. Then FO,(SC,O) cannot define a (c1,c2)-good
sentence.

Proof of Lemma 2. Suppose for 0 < ¢; < ¢ < 1 and for some signature O, there is a FO,¢(SC, ©)
sentence ® that is (c1,c2)-good according to the definition above. We may assume without loss of
generality (just by adding existential quantifiers over the active domain) that all atomic formulae
are either A(z) or B(z), where z is a variable, or ©-atomic formulae. Next, make a signature Og
by putting a k,-ary symbol P, for each ©-atomic subformula y(z1,...,2x,) of ® into it. We then
define a sentence ¥ in the language of ©4 and B by replacing, in ®, each atomic ©-formula v by the
corresponding symbol P,, and A(:) by true.

Next, with each n > 1 and each B C {0,...,n — 1} associate a ©¢ U {U} structure S(B,n) whose
universe is {0,...,n — 1}, the unary symbol U is interpreted as B, and Og predicates inherit their
interpretation from (R, ®) (this is possible since O does not contain any function symbols). We then
have, by a straightforward induction on the structure of a formula

SB,n) =T iff ({0,....n—1},B) = ®

where ({0,...,n—1}, B) is the good instance with A interpreted as {0,...,n—1}. Thus, for card(B) <
cin we have S(B,n) |= =¥ and for card(B) > can we have S(B,n) = ¥

It follows from [12] that ¥ is definable by a family of non-uniform AC? circuits, with size bounded by
some polynomial p(n), and depth d. This is because ¥ can be transformed into a Boolean formula by
replacing each 3z € adom by a disjunction over {0,1,...,n — 1} and each Vz € adom by a conjunction
over {0,1,...,n —1}. Once quantifiers are replaced, each occurrence of a ©¢ predicate only mentions
constants and is replaced by its truth value (this is why the circuit may be non-uniform). It now follows
from [12] that such a family of formulae is definable by a polynomial-size constant depth family of
ACO circuits.

According to Lemma 5 from [12], for large enough inputs, constant-depth circuits cannot distinguish
cardinalities in [/n,n — /n]. Thus, there is a number N; € N such that for all n > N; it is the
case that for any p,q € [\/n,n — \/n], p # q, there exists sets By and By of cardinalities p and ¢
respectively such that S(By,n) and S(Bs,n) agree on ¥. We now let N be an integer that exceeds
both N; and %. Let n be an arbitrary integer bigger than N. Then there are integers ni,ng such
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that ny,n9 € [\/n,n —y/n] and ny < ¢yn, ng > con. In particular, for any two By and Bs such that
ny = card(By) and ng = card(By), we have S(By,n) = -V and S(Ba,n) = ¥ (since VU is equivalent
to @, which is a (¢q, ¢2)-good sentence). However, this contradicts the above observation that for some
B; and Bs as above, S(Bj,n) and S(By,n) must agree on W. This contradiction concludes the proof
of the lemma and the theorem. O

Corollary 1 FO + LIN, FO + PoLy and FO + EXP cannot express VOLS for any € < 1/2. a

Theorem 3 shows that one cannot possibly adjust the method of [23, 24, 25] to get the approxi-
mation operators uniformly definable. This is somewhat surprising, for the following reasons. It is
possible that there exists an o-minimal structure which is closed under taking integrals. That is,
for every ¢(Z,7) in the language of the structure, there is a formula (&, z) such that = ¢(d,v) iff
v=[...[Xp@rm)nmdy = VOL(p(@, R") N I"). The existence of such a structure is conjectured in
[24]. By Theorem 3, even if such a structure M = (R, Q) existed, the volume of outputs of very simple
queries on finite instances could not be approximated in FO + !

Is it possible that one can express the approximate volume computation over outputs of some par-
ticularly simple queries? We now show that for two very simple classes, this remains impossible in
FO + Pory and similar languages.

Corollary 2 In languages FO + LIN, FO + PoLry, FO + EXP, it is impossible to express VOL; even
restricted to a) outputs of conjunctive <-queries over finite instances, or b) schema predicates, inter-
preted as f.r. instances definable with dense-order constraints.

Proof. Let the schema consist of three unary symbols A, B, C, and one binary symbol F. A finite
instance D is called good if B,C form a partition of A, the distance between any two consecutive
elements of A is the same, and E is the successor relation on A C [0,1]. With this, we follow the proof
of Theorem 3. We define P and R as before, and note that with C' and E in the signature, they can
be defined by conjunctive queries. For example, for P: 9p(z) = 3b € adom3c € adom. B(b) A C(c) A
E(b,c) Nb < z Az < c. Now, assuming VOLS is definable in FO(SC, ), we obtain, as in Lemma 1,
that a (c1,cz)-good sentence is definable in FO(SC, ), for a good instance as defined above. This
easily leads to contradiction: if a (c1, c2)-good sentence is definable in FO(SC, Q) for instances with
A C [0,1], it is definable in FO(SC, Q, +, *) for instances with A being an initial fragment of natural
numbers. Then the proof of Lemma 2 applies, as in the translation into a family of Boolean formulae
the symbols C and E can be eliminated: C(z) is replaced by =B(z), and E(z,y) by y —x = 1. This
completes the proof. O

Remarks One may ask where the procedure of [23, 24, 25] fails if we try to apply it, in a uniform way,
to, say, FO 4+ PoLY queries. Note that the method of [23, 24, 25] produces a formula whose quantifier
prefix is proportional to the VC dimension of the family of sets defined by the input formula. However,
for relational calculus queries, this may depend on the size of the database, thus making it impossible
to quantify uniformly over random samples. For a query ¢(Z,¢) with and a database D, the definable
family given by ¢ and D is F,(D) = {¢(d, D) | @ € U™} where ¢(d,D) = {b| D = o(@,b)}. The size
of a finite database D, | D|, is defined to be card(adom(D)).

Proposition 6 There exists a (quantifier-free) relational calculus query ¢(x,y), and a sequence of
databases D1, Dy, ... of increasing size such that VCdim(F,(Dy,)) > log | D, |.

16



Proof. Let SC contain a single binary symbol P. Let D,, be an instance with the second projection
being an n-element set A,, and the first projection coding the powerset of A, (as in [1, page 462]).
That is, for each B C A,, there is ap such that (ap,b) € P iff b € B. Let p(z,y) = P(z,y). We now
consider the family F, = {¢(a,D) | a € U}. Tt follows immediately from the construction that F,
shatters A,,; thus, VCdim(F,(D,)) > n. Since one needs 2" elements to code the powerset of A,,, one
can choose D,, to have the active domain of 2" elements. This proves the proposition. O

We also remark that under some special assumptions on the outputs of the queries, their volumes
can be approximated. One can show, using Léwner-John ellipsoids [16], that for a FO 4+ PoLy query

©(Z,9) with |§/|= k, under the assumption that ¢(a, D) is convex, a relative (¢1,c2) approximation of

_ kk+1 k*+1
2

its volume can be found with ¢; = SaE — € and ¢y = + ¢ for an arbitrarily small ¢ > 0.

5 FO-+PoLy+ Sum: An aggregate language for constraint databases

We now introduce a language for extending FO + PoLY with a summation operator. The main
difficulty is to make sure that when summation is done over all elements in some query output, we
are guaranteed that the query output is finite. To do this, we use techniques from [6] for guaranteeing
that a query is safe (that is, that a query yields finite output).

Let @ be a non-boolean query over a database schema SC. We say that @) is a semi-algebraic query if
it gives semi-algebraic output on semi-algebraic inputs. We say @ is semi-algebraic-to-finite and write
@ € SAF if @ produces finite output on semi-algebraic input databases. If Q) is expressed as ¢(y, Z),
we say that Q is Z-semi-algebraic-to-finite if for every d the query ¢(y, @), with one free variable y, is in
SAF. In the language FO + PoLy + SuM, all queries are semi-algebraic queries, but in the construction
we will have to ensure that certain subqueries are in the smaller class SAF.

A first-order formula v(z, @) with distinguished variable z in the language of the real field is said to
be deterministic if it produces at most one output x for every vector of real numbers . Deterministic
formulae are the building blocks from which safe queries can be formed. Given a deterministic formula
v(x, ) and a finite set of tuples of reals A (having the same length as ), we let v(A) refer to the bag
Waeafy(@), where f, is the corresponding partial function taking @ to the unique z such that v(z, )
holds. Note that it is decidable if a formula is deterministic.

Definition of FO + PorLy + SUM The query language FO 4+ POLY + SUM is defined inductively as
follows. Atomic queries are the same as for FO + PoLy. The formulae of FO + PorLy 4+ Sum are closed
under boolean connectives and quantification V and 3 (over the reals).

Next, we define the summation term-former. Given any FO + PoLy + SuMm formula ¢(y, Z), we let
END[y, ¢(y, Z)](u, Z) be the query that holds for a tuple (b, @) on an input database D iff b is an endpoint
of the intervals that compose ¢(D,d) = {c € R| D = ¢(c,a)}. Note that if ¢ is a semi-algebraic
query (which is guaranteed by Theorem 4 below), then END[y, p(y, Z)] is Z-SAF.

A range-restricted FO + POLY + SUM expression is an expression of the form p(,?)

(p1 (W, 2)|END[y, 2(y, Z)]) where ¢ (W, Z) and ¢s(y, Z) are FO + PoLy + SuM queries. It binds y,

-, -

that is, the free variables are Z,w. We have D |= p(a,b) for @ = (ai,...,a,) iff D = ¢1(d@,b) and

=,

D = (END[y, v2(y, 2)])(a;i,b), i =1,...,n.
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Figure 1: Area of convex polygon in FO+PoLy+SuM

It then follows from the closure property (Theorem 4) that for any D and any 5, the set p(D, 5) ={a |

-

D = p(d,b)} is finite.

=\

For any deterministic formula y(z, %) and any range-restricted expression p(w,2) as above we now
define a term ¢(2) by
DI

p(0,2)

Given D and b, the value of £(b) in D is the sum of all the members of the finite bag v(A), where
A= p(D,b).

Finally, new terms in FO 4+ POLY + SUM can be built by applying composition with the real functions
+,*. If ;s are terms and ¢ is a formula, then ¢y = t5,t; < t9 and ¢(t1,...,t;) are FO + PoLy 4+ SuM
formulae.

Examples of FO + PoLy + SUM queries Let p(w) be an FO 4+ PoLy query. Let y(z,w) = (z
and p(w) = (w = w)|END[w, ¢(w)]. Then the FO+PoLY+ SuM term (without free variables)
gives the sum of all the endpoints of the intervals that compose (D).

w)

p(w) Y

The area of a convex polygon in R? can be defined in FO 4+ PoLy + SuM. The idea of the query is
illustrated in Figure 1. Suppose we triangulate the polygon as shown. Then the area of the polygon
is the sum of the areas of triangles. We thus have to define the triangulation and then apply the
summation term of FO+PoLY+SUM to calculate the area.

This is done as follows. Assume that the polygon is given by a predicate P(z,y) (it could be an input
relation or the output of a query). There is a FO + PoLY query pp(z,y) that computes all the vertices
of P — this is because @ is vertex iff @ ¢ conv(P — {a}). Since one can compute the boundary of P
by a FO + PoLY query, it follows that there is a FO + PoLY query vp(Z,9) that tests if Z, ¥ are two
adjacent vertices of P.

We now form two FO + PoLy queries. The query w)9(u) tests if u is a coordinate of a vertex of
P. The query ¢,(Z, ¥, Z) tests the following conditions: (1) ¢p(Z) A ¢p(¥) A ¢p(Z) holds; (2) % is a
lexicographically minimal vertex of P; (3) either vp(7, Z) holds and ¥ is lexicographically less than Z
and —wvp(Z,y) A —vp(Z,2), or vp(Z,y) Avp(y,2) A —vp(Z, 2).

We now let p(Z,¥,7) be the range-restricted expression (¢ (%, ¥, Z)|END[u, ¢2(u)]). It can be easily
seen that for P convex, the output of p is finite and produces a triangulation of P. That is, p(d, E, )
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holds iff a, 5, ¢ are the vertices of one of the triangles such as those shown in Figure 1.

Since for each triangle with vertices (a1, as), (b1, b2), (c1,¢2), its area is computable as | (a1by — agby +
asc1 — ajcy + bicg — c1b2)/2 |, we obtain a deterministic formula (v, Z, 7, Z) saying that v is the area

of the triangle with vertices Z, 4, 2. We then conclude that the term Zp(f,g,z) ~ defines the area of P.
]

Note that the above method codes a standard computation of area used in computational geometry
[33] which generalizes to nonconvex polygons, and is in fact used in GISs for area computation [38].

Properties of FO4+PoLy+SuMm The language FO+PoLY+SUM has a number of attractive features.
It extends both FO+PoLy and the relational calculus with summation and other standard aggregates.
It is also related to aggregate languages for statistical databases studied recently in [17]. Furthermore,
we have the following property.

Theorem 4 FO+PoLY+SUM is closed. That is, every FO+POLY4+SUM query returns semi-algebraic
output on a semi-algebraic input.

Proof. We show this by structural induction on the construction of the query. Suppose we know
inductively that ¢(w,Z) is a semi-algebraic query, and fix a semi-algebraic database D. There is
an integer n such that for any @, D = END|y, p(y, 2)](c,a) for at most n distinct values of ¢ (by
o-minimality of the real field and the uniform bounds result of [32]). Moreover, this integer can be
effectively computed given ¢ and D. Hence, for every Z,

—\

p(w,2) = pi(d, ) | END[y, p(y, 7)]

holds for at most n™ tuples W, where m is the length of @. We then see that the set {(v,@) | D v =
> p(i,a) V@, W)} is semi-algebraic, since it is definable by the disjunction of v = 0 A Vi —p(d, @) with

1<k<nm
k
N o5, @) A (Vi p(i, @) — \/ (= @5;)) A [\ (0 # )
i=1 i i#j

k
ATur - Jug (A Y 55) V (V2 (z050) A = 0) A (0= 4+ + uk))> .

The language is also closed under the standard relational aggregation.

Proposition 7 e For any SAF FO+PoOLY+SUM query ¢(Z), we can express in FO+PoOLY+SUM
the cardinality of the output of .

e For any SAF query FO + PoLy ¢(2) and any deterministic formula x(z,wW) we can express in
FO 4 PoLy + SuM the sum of the = values of x for W ranging over the output of ¢ and the
average of the x values of x over the output of .

Proof. To see the first item, consider an arbitrary SAF FO + PoLy + SuM query ¢(w). Let ¢'(w)
be the query returning the active domain of the output of . Then ¢’ is clearly SAF as well, and
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END[w, ¢’ (w)] is the same as ¢'(w). Let p(w) = ¢(w)|END[w, ¢'(w)] and y(z,w) be x = 1. Then
Zp(w) v is an FO 4+ POLY 4+ SUM query returning the number of items in the output of ¢.

To see the second item, let p be as in the previous paragraph. For any deterministic formula x(z, )
we have that Zp(w) x is an FO + PoLy + SuM query returning the sum of the z-values of x over the
output of . The average of ¢ is simply the quotient of the sum of ¢ and the cardinality of . Since
the FO + PoLy definable functions are closed under division, we can define average. O

6 Computing the volume of Semi-linear sets in FO + PoLy + Sum

In this section we show how to use the aggregate language FO + PoLy 4+ SuM for volume computation
and approximation. Our goal is to prove that FO + POLY + SUM can compute the volume of semi-
linear sets. We start by noting that taking volumes of semi-linear sets does not take us out of the
semi-algebraic setting. This fact is easily derived from known results in the literature (and may have
been published before, see, for example, [8] for a closely related result).

—

Lemma 3 For any formula o(Z, 1) over the real ordered group Ry, the volume of ¢ is semi-algebraic.
That is, {T,s | [VOL §.o(Z,9)|(7, s)} is a semi-algebraic set.

Proof. By Fubini’s Theorem, [VOL §.¢(Z, §)](Z, ) holds exactly when z = [ [ ... [ x,(Z,9)dyn . .. dy1,
where X, is the characteristic function of the set defined by ¢.

Let Fi(y1...yn—1,Z) be the innermost integral [ x,(¥,%)dy,. We first show that Fy(yi...yn—1,7)
is semi-algebraic. Let l;(y1...yn—1,%) and ui(y1 ...yn—1,Z) be the ith lower and upper endpoint of
the set @z 4,y 1 = {Yn | ©(&,y1...yn)}. We know that u; and [; are semi-linear definable partial
functions. We now note that any such function is piecewise linear with the coefficients in the linear
polynomial being rational, cf. [35]. That is, for each function, its domain can be partitioned into finitely
many semi-linear sets on which it is linear. To see this, note that on its domain U;, u;(y1 ... yn, %) is
the unique solution to a disjunction of conjunctions of linear inequalities in y1, ..., yn, Z. Each disjunct
must then have at most one solution. Let a disjunct be a conjunction /\leT1 Ci(y1 - .. yn, )00, where
0 € {<,>,<,>}. We know that this must have at most one solution r,, for each ry...7r,_1,5 € U; . But
this solution must then be the solution to the conjunction of some subset of the corresponding equalities
Ci(y1 ... yn, @) = 0 where [ € Ty, C Ty. (Otherwise fix a counterexample r;...7,_1,5 and let T, be
the set of [ € T} such that the solution r, satisfies Cj(ry ...r,,8) = 0. If the corresponding solution
space is not 0-dimensional, then the set of proper inequalities of the form Cj(y; ... yn, Z){<, >}0 with
1 € Ty — T satisfied by 7, § defines an open subset of this space, which would then have to be infinite
or empty, giving a contradiction.) But by linear algebra, we know that when a set of linear equalities
Ci(y1 - --yn,¥) has a unique solution y,, this solution is given by a linear function with coefficients in
the field generated by yi ...yn—1,Z. Hence piecewise u; is linear, and similarly for ;.

Hence we can find a decomposition of R™T”~! into semilinear sets A;... Ay, and find a function
b:k — N and linear functions fi;(y1...yn—1,%) : 4 < k,j < b(i) such that

Y7y ... "h—181...5m € A; Fl(’l“l e Tp—1581 ... Sm) = Zkgb(i)fij('rl e Tp—1,81.-- Sm).
But now we have that [VOL §.¢(Z, 9)](Z, z) holds when z = [ [ ... [ Fi(z1...2p-1,9)dz1 ... dzn 1,
so we can partition R™ into finitely many pieces, on each one of which [VOL §.¢(Z, §)](Z, z) is given

by the graph of a polynomial in Z. Hence VOL 4.¢(Z, ¥) is semi-algebraic. O
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We now prove that the language FO + POLY 4 SUM can express volumes of semi-linear sets.

Theorem 5 e For every schema predicate S € SC there is an FO + PoOLY + SuM term 7 which,
for any semi-linear database D, computes the volume of S in D.

e For every FO +LIN query ¢ there is an FO +PoLy 4 SuM term 7, such that for any semi-linear
database D, 7,(D) returns the volume of ¢(D).

Proof: Note that the first item clearly implies the second, because, given such a term 7 we can
compose it with the query ¢ to get the necessary term in the second item. Hence we only prove the
first item here.

For any semi-linear S we have VOL(S) = [ [ ... [ xs(Z)dzy, ...dz1, where xg is the characteristic
function. The innermost integral is [>-, 4. 5, 1) V)(@1 ... Zn-1), Where pi(w,2z1...2p—1) is the
query saying w is the sum of difference of consecutive endpoints of the set {x, | S(z1...Zpn—1,2n)},
and y(w) = (w = w). Note that by o-minimality, p; is an FO + PoLYy + SUM query mapping semi-
algebraic sets to finite sets. The proof of Proposition 7 shows that any such query can be written as
a range-restricted expression in FO + PoLy + SuM.

Let f%l,,,mn_l = [Zm(w,xl...xn,l) Y(z1...2n—1). We know from the proof of Lemma 3 that for each
fixed r1,...,7r, o, the function g}l’myrn_Q(ajn,l) = fY'(ry,...,mn 2,2, 1) is piecewise a linear function
of ,,_1. Since f' is an FO 4+ PoLy + SuM definable function, we can also define in FO + PoLy + SuM
the set of points {ry,...,r_9,7h—1 : the function 91}1,---,%-2 is not smooth at r,_;} We can do this
because a piecewise linear function is smooth whenever it is differentiable, and the latter property can
be tested by an FO + PoLy query.

Let f2(x1,...,7n_2) be the sum of all values of the function (mu? — mi?)/2 + b(u — [), where the
quadruples (u,l,m,b) vary over all quadruples of points such that (I,u) are consecutive points of

nonsmoothness of g and g3 ., =mz+bon the interval (I, u).

w0y Tn—27 2

Note that since g]}“’___’%%2 is piecewise linear, there are only finitely many points where f! is not
smooth, hence only finitely many pairs of consecutive points of nonsmoothness. Therefore there are
only finitely many quadruples (u,l,m,b) as above. Also note that the formula y(w,!, u, m,b) given

by w = (mu? — mi?)/2 + b(u — 1) is a deterministic formula. Hence, by Proposition 7, there is
an FO 4+ PoLy + SuM query returning the sum of all v output values w as (I,u,m,b) vary. Hence
f2(z1,...,2n_2) is an FO + PoLy + SuM definable function.

Claim 1 f%(zy...x, o) is ezactly the volume of the fiber of S based on w1,...,2, 2. That is,
fZ(.’L'l .. .(L‘n_g) = VOL({(:En_l,:En) ‘ (,’L‘l, cee ,mn_g,xn_l,xn) € S})

Proof:. By Fubini’s theorem, the volume is the integral of the one variable function g}“’._’mn_Q(mn_l).
Since this function is piecewise linear, for each fixed rq,...,r,_o there are finitely many aq,...,a; €
R U {00, —oo} with a; < ... < a; such that g' is linear on (a;,a;j11). Hence the integral of g},
is just the sum of the integral of ¢! over the intervals (aj,aj4+1). But the integral of a linear function
h(z) = mx + b over an interval [, u is just mz?/2 + bz|!, and hence the result follows. |

Continuing this inductively, we have the function f*~'(zy,..., 2,_41) giving the volume of the fiber
of S defined by z1,...,2, k11. If we fix the first n — k parameters in this function, we obtain a
function g’;;}.,xn_k(mn_kﬂ) which is piecewise polynomial of degree at most k — 1. That is, R is
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o, (y) is give by br_1y* + ...+ bo.
One can now determine all the points of nonsmoothness ( since this is the same as not being k — 1-
times differentiable) of g!g;_l_#n_k by a FO + PoLy 4+ SuM query. Furthermore, one can write a
query, using polynomial constraints, that on every point in every interval between the points of
nonsmoothness finds the coefficients of the polynomial of degree k—1 that gives g’;;lmm on every such
interval (e.g., by computing the derivatives and applying Taylor’s theorem). Thus, we have a range-
restricted FO + PoLy + Sum query pg(bg—1,bg—2,...,bo, u,l,z1,...,x4_r) that for every z1,...,z,_g
produces the tuples (bg_1,bg_o2,...,bg,u,l) such that on (u,l), g’;;_l__,xn_k is given by the polynomial

partitioned into finitely many intervals, and on each of them g’jl_l

br_1y* 1 +...4bg, and furthermore (u, ) list all such intervals, which cover all R except finitely many
points of nonsmoothness.

Now let yg(bg—1,bg—2,...,bo,u,l) be defined by

bk—l(uk _ lk) bk_2(uk—1 _ lk—l)
k k-1

+...+bo(u—1)

Hence, f¥(xy...x,_;) given by

[ Z ’Yk(bk—labk—Qa"'abﬂauvl)] (xla'--axn—k)

pk(bk—l:bk—27---7b07u:l:m17"':xn—k)

defines, for each (z1,...,Z, k),

-1
/g];lmn_k($n—k+l)d$n—k+la
and thus by Fubini’s theorem it is the volume of the fiber of S over z;...z,_.

Now it immediately follows that f™ is a FO 4+ PoLy 4+ SuM function giving the volume of S. Theorem
5 is proved. O

7 Conclusions

This paper has dealt with the key question of how to add aggregation to constraint query languages.
The first fundamental question is whether there can be a language that is closed under the natural
spatial aggregation operators, and which also retains the basic closure property that is fundamental to a
constraint-based approach: namely, that every query output can be again represented as a constraint
solution set. Our results give indication that this is impossible: these two closure properties are
fundamentally incompatible. Perhaps more surprisingly, we show that the problem is not particular
to the polynomial or linear constraint model; even going to a larger well-behaved constraint set does
not remedy the problem.

The results above motivated us to look for languages that are not closed under volume operators, but
which are closed under natural discrete aggregations and which permit the computation of volumes
for semi-linear sets. The language FO + PoOLY + SUM defined here gives a natural approach to the
addition of discrete aggregation operators to a constraint language. The key idea is the notion of
range-restricted querying: allowing aggregation to be formed only on sets that are guaranteed to be
finite. We show not only that FO + PoLy + SuM has some attractive closure properties analogous to
classical aggregate languages, but it allows one to do a significant amount of spatial aggregation —
e.g. volumes of semi-linear sets, averages over semi-linear sets — as well.
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The approach given here based on classical summation over range-restricted sets is natural, and allows
one to re-use many of the evaluation strategies for classical aggregation operators; it is clear, however,
that the syntax given here for FO + PoLy 4+ SUM is quite awkward. We hope to find more streamlined
and natural syntax for FO 4+ PorLy + SuM, and we are looking at subsets of FO 4+ PoLy + SuMm that
can be more efficiently evaluated than the full language. It remains to discover how one could best
provide support for directly expressing volumes in some language built ‘on top of’ FO + PoLy + Sum,
and how to add grouping constructs to the language.

A challenging issue on the theoretical side is how to prove expressive bounds on aggregate constraint
database languages like FO + PoLy 4+ SuM. For example, the results of this paper give strong evidence
that FO 4+ PorLy + SuMm does not suffice to calculate volumes of semi-algebraic sets, but this is at this
point only a conjecture.
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