SEMANTIC REPRESENTATIONS AND QUERY
LANGUAGES FOR OR-SETS

Leonid Libkin Limsoon Wong
AT&T Bell Laboratories Real World Computing Partnership Novel Function
600 Mountain Avenue Institute of Systems Science Laboratory
Murray Hill, NJ 07974, USA Heng Mui Keng Terrace, Singapore 0511
Email: 1ibkin@research.att.com Email: limsoon@iss.nus.sg

Correspondence to: Leonid Libkin
Room 2A-422
AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill NJ 07974, USA

Running head: LANGUAGES FOR OR-SETS

Abstract

Or-sets were introduced by Imielinski, Naqvi, and Vadaparty for dealing with limited
forms of disjunctive information in database queries. Independently, Rounds used a similar
notion for representing disjunctive and conjunctive information in the context of situation
theory. In this paper we formulate a query language with adequate expressive power
for or-sets. Using the notion of normalization of or-sets, queries at the “structural” and
“conceptual” levels are distinguished. Losslessness of normalization is established for a
large class of queries. We obtain upper bounds for the cost of normalization. An approach
related to that of Rounds is used to provide semantics for or-sets. We also treat or-sets
in the context of partial information in databases.

1 Introduction

Applications within design, planning, and scheduling areas have motivated Imielinski, Naqvi,
and Vadaparty to introduce the notion of or-set [17, 18]. Although or-sets are in essence disjunc-
tive information, they are distinguished from the latter by having two distinct interpretations.
An or-set can either be treated at a structural level or at a conceptual level. The structural level
concerns the precise way in which an or-set is represented. The conceptual level sees an or-set
as denoting an object which is equal to a member of the or-set. For example, the or-set (1,2, 3)
is structurally a collection of numbers; however it is conceptually a number that is either 1, 2,
or 3. (In this paper angle brackets () are used for or-sets and {} for the usual sets.)

The two views of or-sets are complementary. Consider a design template used by an engineer.
The template may indicate that component A can be built by either module B or module C.
Such a template, as explained in [17], is structurally a complex object whose component A is
the or-set containing B and C. A designer employing such a template should be allowed to
query the structure of the template, for example, by asking what are the choices for component
A. On the other hand, the designer should also be allowed to query about possible completed
designs, for example, by asking if there is a low cost completed design. In the latter case, as the
designer is still in the process of creating a design, the “completed design” is purely conceptual.
Both views of or-sets are important and should be supported.

The structural interpretation of or-sets is quite clear. However, the conceptual interpretation
requires further exposition. A few operators at the structural level prescribing the interaction
of or-sets, products and ordinary sets are needed for this purpose. These operators are used
to express transformations among objects that are conceptually equivalent. Their goal is to

transform any object X with or-sets into an or-set (zy,...,x,), where z;s are the objects
denoted by X, and ;s do not use or-sets. In other words, (zi,...,z,) may be considered as
the value that is represented by X, and the transformation X — (z1,...,x,) as the passage

from the structural to the conceptual level. We shall see in Section 3 that the operators below
are the only crucial ones for performing this transformation.

The operator or_p® : ((s)) — (s) flattens an or-set of or-sets of type s. For example, applying
or_i to ((1,2,3),(2,4)) produces the or-set (1,2,3,4). The most important thing to note here
is that or_p preserves the conceptual value of the input. First (1,2, 3) is conceptually either 1,
or 2, or 3. Similarly, (2,4) is conceptually either 2 or 4. The input is conceptually either (2, 4)
or (1,2,3); that is, it conceptually represents 1, 2, 3, or 4. This is of course what the output is
at the conceptual level.

The operator or_p,®" : sx(t) — (sxt) takes in a pair of type sx (t) and pairs the first component
with every item in the second component, which is an or-set. For example, or_p, (1, (2, 3)) yields
the or-set ((1,2),(1,3)). Here the input stands conceptually for a pair whose first component
is 1 and whose second component is either 2 or 3. That is, the input is conceptually either

(1,2) or (1,3). Hence or_p, also has the important property of preserving the meaning at the
conceptual level. We also use or_p;*': (s) x t — (s x t) for the operator that does pairing the
other way round.

The operator o : {(s)} — ({s}) takes in an ordinary set containing or-sets of type
s and produces an or-set containing sets of type s obtained by combining the or-sets
componentwise in all possible ways. For example, a {(2,3),(4,5,3)} produces the or-set
({2,4},.{2,5},{2,3},{3,4},{3,5},{3}). This is also an operator that preserves conceptual
meaning. In the above example, the input is conceptually a set of two elements such that
one of them is either 2 or 3 and the other is either 4, or 5, or 3. This is precisely what the
output is conceptually. Note that sets such as {2}, {4}, etc. are not part of the output, even
though {3} is because it arises by letting both the first and second elements be 3.

As a further example, consider the result of applying o to {(1,2),(),(3)}. It is not
({1,3},{2,3}). The correct output is the empty or-set (). To see this, let us find out what the
input is at the conceptual level. It represents a set of three elements, that are conceptually
the values represented respectively by (1,2), (), and (3). Hence the first element is either 1
or 2 and the third is 3. But what is the second element? Recall that an or-set represents at
the conceptual level an object that is equal to one of its elements. Since () has no element, it
does not represent any object at the conceptual level. Consequently, our input represents at
the conceptual level “a set having an element which is not anything.” As there is no such set,
the input does not represent any object either. This coincides precisely with the meaning of
the output. An item which does not represent any object at the conceptual level indicates a
conceptual inconsistency. (But note that it is still structurally meaningful.)

The above operators provide an idea of what to include in a structural query language. But
what kind of operators should be provided in a conceptual query language? Should there be
an operator for testing whether two objects are conceptually equivalent? Should there be an
operator for testing whether one object is among the objects denoted by a second object?

Fortunately, it is not necessary to make such chaotic “enhancements.” It is found that any
two objects which are conceptually equivalent can be reduced to the same object by repeated
applications of the above operators. The normal form induced happens to be independent of the
precise sequence of applications of these operators. Moreover, given the type of any object, the
type of its normal form can be read off. Therefore, one can take the conceptual meaning of any
object to be its normal form under the rewriting induced by the above operators. Consequently,
a conceptual query language can be built by extending a structural query language with a single
operator normalize which takes the input object to its normal form. A query at the conceptual
level is then simply a query performed on normal forms.

Related work. Imielinski, Naqvi, and Vadaparty stressed applications of or-sets in design
and planning areas and informally explained the distinction between structural and conceptual
queries [17, 18]. The semantics and query language proposed by [17] are rather involved. They

defined a concept of order-independence which is related to the notion of normalization but is
based on assigning object identifiers, and gave conditions for order-independence. In addition,
they were able to demonstrate a coNP-complexity result for that particular proposal. In
[18] they studied some intrinsic lower bounds on complexity of £LDL-style [29] queries on or-
sets. The language can express queries of hyper-exponential complexity. Nevertheless, they
were successful in identifying certain restricted tractable fragments that are useful in real-life
applications.

Rounds [32] studied complex object databases from the situation-theoretic point of view. Con-
nections with natural language problems motivated him to introduce the notions of conjunctive
and disjunctive information which correspond exactly to our notions of sets and or-sets. He
studied order relations on complex objects and their logical representations.

Organization. A query language or-N'RA that cleanly integrates or-sets and more traditional
types of data at the structural level is proposed in Section 2.

In Section 3 we give two semantic representations which are in the spirit of Rounds’ work [32]
but use simpler machinery. For example, using our representations we were able to provide a
simple proof that o is the isomorphism of semantic domains of types {(s)} and ({s}).

A query at the conceptual level is a query on an object that is in a certain normal form. In
Section 4, the normal form is properly characterized. Moreover, we show that the process of
normalization is coherent. That is, the normal form of any object is independent of how the
object is normalized. This allows us to define a query language or-NRA" at the conceptual
level by adding a new operator normalize to or-N'RA.

Since differently represented objects may have the same value (if they have the same normal
form), it is clear that certain structural information is lost by normalization. In Section 5, a
losslessness theorem is proved. Consequently, loss of structural information has no effect with
respect to a large class of queries.

Conceptual queries are performed on normalized data. In Section 6, we study a few important
costs of normalization. In particular, an upper bound on the number of elements in normal
forms of complex objects and an upper bound on the actual size of normal forms of complex
objects are given. Also significant is that we have been able to demonstrate that every definable
query in or-NRA" is at most exponential in the size of input, in contrast to the proposal of
Imielinski, Naqvi, and Vadaparty [18] which contains some hyperexponential queries.

In the last section we briefly describe an implementation of the proposed languages and outline
some problems for further research.

The extended abstract of this paper appeared in [24].

2 Structural Query Language

A nested relational language based on structural recursion [4, 3] and monads [27, 33] was
proposed in [5]. This language is of polynomial time complexity and smoothly generalizes
many approaches [2] to nested relational algebras. It is extensible and has an appealing syntax.
For example, (z | © € normalize(DB), is_cheap(z)) selects cheap completed designs assuming
that is_cheap and normalize are defined. (In Section 4, normalize is added as a primitive to
obtain the conceptual query language.)

The algebraic version of the language is used in this paper. We denote this language by
NRA(Y) where ¥ are some additional primitives like operations on integers. As observed by
Wadler [33], the same syntax can be used for many “collection” types besides sets. In particular,
by replacing the set operators of NRA by the corresponding operators for or-sets, a language
for programming with or-sets can be obtained. This language is denoted by NRA,,.

For example, the above query becomes or_u o or-map(cond(is_cheap, or_n, K()o!)) o normalize.
Here cond is a primitive: cond(p,t, f)(xz) = t(x) if p(z) is true and f(x) otherwise. Then
cond(is_cheap, or_n, K()o!) (z) is () if x is cheap and () otherwise. or_map applies it to every
element in the normalized database, returning (x) for each cheap = and () for each expensive
one. or_u flattens this or-set of or-sets, producing an or-set containing precisely the cheap
completed designs.

In this section, the language for sets NRA and the language for or-sets NRA,, are integrated
into a single language we called the structural query language, denoted by or-NRA. or-NRA
supports structural manipulations of complex objects containing a mixture of freely combined
tuples, sets, and or-sets. This language is obtained by the union of NRA and NRA,, and an
operator « prescribing the interaction between sets and or-sets.

Types. A type of or-NRA is either an object type or a function type s — ¢, where s and ¢ are
both object types. The object types are given by the grammar: ¢ :=b | ¢t x t | {t} | (t), where
b ranges over base types such as booleans and integers. Included in b is a special base type unit
containing precisely one element. In this paper (¢) stands for the or-set of type ¢, while {¢} is
the ordinary set of type t.

Morphisms (expressions). The “morphisms” (or expressions) of or-A'RA are formed ac-
cording to the rules in Figure 1. The language is parameterized by a collection of primitives p
of function type Type(p). Among them are the equality tests =,: s X s — bool for each object
type s, and a collection of constants ¢ of base type Type(c). Type superscripts are usually
omitted because the most general type of any given morphism can be inferred; see [13].

Semantics. m; and 7y are the first and second projections. ! maps everything to the unique
element of type unit. (f,g) is pair formation, f o g is the composition of f and g. id is
the identity function. or_p,, or_u, and a have already been described. or.n is the singleton

Operators shared by NRA and NRA,,

g:u—s f:is—t fru—s g:u—t
fog:u—t s xt— s s xt —t (f,g):u—sxt
et — unit Kec : unit — Type(c) p: Type(p) idl it —t

Operators from NRA

Pt s x {t} = {s x t} ntt— {t} Ut {t} x {t} — {t}

fis—t

s {{t}} — {t} K{}':unit — {t} map [:{s} — {t}

Operators from NRA,,

or_ps®t s x (t) — (s x t) ormt it — (1) or U« (t) x (t) — (t)
fis—t
or_ut 2 ((t)) — (t) KO': unit — (t) or_map [(s) — (t)

Interaction of sets and or-sets

o {{D)} = {t})

Figure 1: Syntax of or-NRA

formation: or-n(x) = (x). or-U makes the union of two or-sets. or_map(f) applies f to all
elements of an or-set. K () produces an empty or-set. or_p; has been omitted because it is
definable as or_map(my, m1) © 0r_py © (79, m1). The operators from NRA have similar meaning
for the usual sets.

We have included K (), the morphism which produces the empty or-set, in or-AN'RA. We note
that if f is a morphism of or-ARA such that K() does not occur in it and such that each
primitive p in it does not produce the empty or-set, then f applied to any complex object x
not containing any empty or-set yields a complex object f(z) containing no empty or-set.

The primitive « is essentially a translation of conjunctive normal form into disjunctive normal
form. This operation may be very expensive. Indeed, if its argument is a collection of n
two-element or-sets, all 2n elements being distinct, then a produces an or-set containing 2" n-
element sets. Several query languages have expensive exponential-cost operations. For example,
in the Abiteboul-Beeri algebra [1, 5], one of the primitives is powerset: {t} — {{t}} which takes
a set and returns the set of all its subsets. The result that we are going to formulate can be
intuitively understood as follows: the expressive power of « is that of powerset. However,
powerset does not use the () type constructor. To be able to speak of the equivalence of
expressive power of languages one of which uses or-sets and the other does not, for technical
purposes only, we introduce the functions or_to_set : (t) — {t} and set_to_or : {t} — (t) with
the obvious semantics: or_to_set({xy,...,2,)) = {x1,...,2,} and set_to_or({zy,...,z,}) =
(x1,...,2,). We remark here that, if or_to_set and set_to_or are given, then NRA and N'RA,,
are interdefinable. That is, NRA(or_to_set, set_to_or) = NRA,, (or_to_set, set_to_or).

Proposition 2.1 NRA(or_to_set, set_to_or,a) = NRA(or_to_set, set_to_or, powerset).
Proof. It can be seen that powerset is definable as follows:

powerset = or_to_set o oo map(or-J o (or_no K{}ol, ornon))
Conversely, we must show that « is definable in NRA(or_to_set, set_to-or, powerset). For the
sake of clarity we use cond to show that « is definable. A clumsier proof that does not use

cond is also possible. It is known [5] that the test for equal cardinality can be implemented in
NRA(powerset). To check whether | X |<| Y|, notice that

p o map(AZ.cond(equal card? (X, Z), X, {})) (powerset(Y))
returns X if | X |<|Y| and {} otherwise, thus giving us the test for lesser cardinality.

Now, given an input of type {(t)}, first apply map(or_to_set) to it and then flatten the result,
thus obtaining the set of elements that occur in the input. Applying powerset now gives the
set of all sets of those elements. A set of elements of the input makes it to the output if and
only if two conditions hold. First, its cardinality does not exceed the cardinality of the input,

which is the number of or-sets. Second, it has a nonempty intersection with any element of the
input, unless the input is {}. Since selection, lesser cardinality test, intersection and test for
nonemptiness are definable in NRA(powerset) (see [5] and above), selection over the powerset
followed by an application of set_to_or yields the desired result. a

3 Partial Information and Or-sets

In this section we address some semantic issues. The presence of or-sets in a database means
the presence of partial information. We assume that partiality can be expressed by means of a
partial order on database objects. That is, x < y expresses the fact that x is more partial than
y or y is more informative than x. The idea of using partially ordered sets to model partial
information has been around since early 80s: Codd’s tables, for example, can be captured by so-
called flat domains which are obtained from unordered sets by adding a unique bottom element
(null). An approach of having three kinds of nulls — unknown, nonexistent, existent unknown
— is another example of ordering on objects. In fact, a general approach to the treatment of
partial information as ordering on the set of objects was proposed in [7] and further developed
in [6, 19, 21]. We remark here that this approach is also suitable for databases without partial
information. In such a case, values of base types are totally unordered.

Assume that orders on values of base types are given. It is clear how to order pairs: (z,y) <
(«',y') iff z <2’ and y < y'. However, there is no immediate answer to the question of how to
extend the ordering to set and or-set types. In [7, 6, 19, 32] two ways to extend an ordering
to subsets of a partially ordered set were studied. Let (X, <) be a poset and A, B C X. The
Hoare (<°) and the Smyth (<*) orderings are defined as follows:

A<"B&oVYacAIeB:a<b

A<!'Be (VWweBIacA: a<h)&(B=0=A=0)

Traditionally the condition B = () = A = () is omitted because the Smyth powerdomain does
not contain the empty set. Observe that if X is totally unordered, <’ is the subset and < is
the superset ordering on non-empty sets. The Hoare ordering was also used in [15] to order
relations with partial information. We will try to justify using <” to order values of set types
and <! to order values of or-set types.

Assume that a set A C X is given. How can we improve our knowledge about the real
world situation represented by this set? There are two ways to do so. First, by replacing an
element a € A by a set A’ of elements greater than a. For example, if a record [Name =
1L, Office = '515] is contained in the database, we can improve our knowledge about the
office assignment by replacing this record by [Name = 'Joe', Office = '515'] and [Name =
'Mary’, Office = '515']. Second, we can add an element to the set. For example, adding a
record [Name = 'Bill’, Office = '212’] gives us more information about office allocation.

Define a binary relation ~ on subsets of X as follows: A~ (A L {a}) U A’, where a < a' for
alla’ € A', and A~» AU{a}. A set B is said to be more informative than A, denoted A~ B,
if B can be obtained from A by a sequence of transformations ~». In other words, ~> is the
reflexive-transitive closure of ~.

Similarly for or-sets we define — by A — (A L {a}) U A’, where a < d' for all ' € A, and
A — A1 {a} provided that A L {a} is not empty (removing an element from an or-set makes
it more informative). Again, ~ is defined as the reflexive-transitive closure of .

Proposition 3.1 ~> coincides with <* and > coincides with <.

Proof. First notice that ~» C<’ and —C<!. Therefore, transitivity of <’ and <! implies
~C<’ and —C<A.

To prove the reverse inclusion, let A <’ B. The case of empty sets is obvious, so assume
A,B#0. Let B, ={b€ B|a<b} and By = |J,c4 Ba- Notice that B4 # (). For each a € A,
apply the following transformations to A: A~ (A L {a}) U (B, U {a}) for each a € A in any
order. This shows A ~ (A U By). For any a € A, pick b, € B, and apply transformations
AUB, ~ ((AUBy) L {a})U{b,} in any order, thus obtaining A ~» B,. Finally, if B L B, # ()
and BL By = {by,...,by}, Bs~ ByU{bi} ~ ...~ ByU{by,..., by} = B, i.e. A~ B. This
shows <"C~5. The proof of <!C+ is similar. O

This proposition justifies the semantics of types defined below. Notice that the semantics for
or-sets is given in such a way that the empty or-set is incomparable with any other or-set. This
matches the intention that the empty or-set represents inconsistency.

e For each base type b a poset ([b], <y) is given;
o [sxt] =([s] x [t], <s x <u);

o [{1}] = (Pan([t]), <1);

o [(1)] = (Ps([t]), <.

In several papers dealing with partial information in databases it was proposed that instances of
type {t} be restricted to those containing no comparable elements, commonly called antichains,
see [7, 19]. For example, if one field of a record plays the role of the object identifier (oid),
then instead of having two comparable elements with the same oid their join should be taken,
provided the records with the same oid are consistent. One way to obtain an antichain from
an arbitrary finite set is to take all its maximal elements. Dually, we can take its minimal
elements. Antichains thus obtained will be denoted by max< A and min< A or just max A and

10

min A if the ordering is understood. We suggest using max for the usual sets and min for or-sets
[21, 32]. Then the relations ~» and — must be redefined as follows: A ~», max((A L a)U A"),
A ~, max(AUa) and A +—, min((A L a) UA'), A+, min(A L a). As before, we define ~,
and >, to be the transitive closure of ~, and >, respectively.

Proposition 3.2 On the family of finite antichains of (X, <), ~>, coincides with <’ and >,
coincides with <F.

Proof. Again, as in the proof of Proposition 3.1, only the case of nonempty sets should be
considered and only one direction, namely <tC~5, and <fCHS, must be proved as the other
direction is immediate. We also need the following ordering on sets, called the Plotkin ordering
(cf. [11]): A<* B& A<"Band A<'B.

Let A,B # (), AN B = (. Define B, as in the proof of Proposition 3.1. Similarly, A, = {a €
Ala<b}and Ag = Uy 5 A

Claim 1. Let A <! B, AN B = (. Then A ~>, B and, moreover, only elements of AU B are
used in the transformations.

Proof of Claim 1. We proceed by induction on the size of B. The base case | B|= 1 is obvious.
If | B|> 1, let B’ be a minimal subset of B such that A <" B’. Our goal is to show that there
exists b € B’ such that A1 A, <* B'1b. Then, by the induction hypothesis, AL A, ~», B' L {b}.
Since the left hand side and the right hand side remain antichains if one adds any subset of
Ay to them, we obtain A >, A, U (B' L {b}) (the same transformations can be used). Since
Ay U (B’ L {b}) 5, B', A<, B' follows, and adding elements of B | B’ gives us A ~», B.

Assume that there is no b € B’ such that A L A, <" B’ 1 b. Since A L A, <" B' 1 b holds, this
means A | Ay £ B' L b for any b € B. Fix an element b € B. Since B’ L b # (), we can find
an element b’ € B’ | b such that a £ V' for alla € A L A;. In other words, Ay C A,. We claim
that A <0 B’ 1 . Indeed, A <! B' <! B’ 1 ¥'. Now consider a € A. We must show that there
is by € B' L ¥ such that a < by. Since A <’ B, there is by € B’ such that a < by. If by # ¥/, we
are done. If by = b', thena € Ay C A, and hence a < b€ B' L¥. Thus, A <’ B' LV and hence
A <f B" 1 V', which contradicts the minimality of B’. This contradiction finishes the proof of
Claim 1.

Claim 2. Let A <! B, AN B = (. Then A+, B and, moreover, only elements of AU B are
used in the transformations.

Proof of Claim 2. The proof is similar to that of Claim 1. We use induction on | B |. Since
removal is now allowed, assume w.l.o.g. that no proper subset of A is less than B w.r.t. <% We
claim that there exists @ € A such that A | {a} <* B L B,. Suppose not; then for every a € A
there exists a; € A such that B,, C B,. Continuing, we obtain B, O By, 2 B,, 2 Since all
the sets are finite, B,, = By, for some distinct a; and a; which contradicts minimality of A for

11

A1 {a;} <* B. Now, given a € A such that A 1 {a} <" B 1 B,, apply the hypothesis to A L {a}
and B | B, and observe that a is not under any element of B | B,. Hence, A +, (B_L B,)U{a}

since only elements of (A L {a})U (B L B,) were used in transformation. (B L B,)U{a} +>, B
finishes the proof of Claim 2.

Claim 3. Let A5, B (or A+, B) and all ~» and + transformations use only elements of A

and B. If C is a finite set such that both AUC and BUC are antichains, then AUC ~>, BUC
(or AUC 5, BUO).

Proof of Claim 3. Clearly, C' does not interact with any ~», or —», transformation, provided
they use only elements of AU B.

Now, let A <’ B. Since A and B are antichains, for A’ = A 1 B and B' = B 1 A one has
A" <> B'. Therefore, A’ <* B’ and by Claim 1 A’ sy B'y. Moreover, all transformations use
only elements from A’ U B/;. Then, by claim 3, A ~, B, U (AN B). Adding elements to the
right hand side one obtains A ~», B. The proof that A <! B implies A =, B is similar and it
relies on Claims 2 and 3. The proposition is proved. O

This proposition shows that if we deal with antichains, we can change the last two clauses in
the inductive definition of the semantics of types to

o [{t}]a = (Aan (D, <1):
o [(6)]a = (Au([]), <D;

where Ag,(X) is the set of finite antichains of X. It is clear how to define the semantics of
or-N'RA expressions if either semantics for types is used. In the case of the antichain semantics,
if an application produces a set (or or-set), max (or min) operation is used to make the resulting
object into an antichain.

The operator « in the case of the antichain semantics requires some care: a, = [o], is a function
from [{(t)}]a to [({t})]s. Given an element of [{(¢)}]., i.-e. an antichain A = {A,,... A, }
w.r.t. <’, of antichains from [t],, let 4; = {a},...,a} }. Let F4 be the set of all choice
functions f : {1,...,n} — N such that 1 < f(i) < n;. For f € Fu, f(A) is defined to be
{a}(l), ...y @4y} Then
g (A) = min ., (max f(A))
feFa—

Furthermore, the result that iterated powerdomains are isomorphic [9, 14] can now be given a
very simple description along the lines of [20]:

12

Theorem 3.3 «, establishes an isomorphism between [{(t)}], and [({t})]s. The converse 3,
is

5,(A) = max o (min f (), A € (D]

Proof. We have to show that o, maps [{(¢)}], to [({t})]a: Ba maps [({t})]s to [{(t)}]. and a4
and 3, are mutually inverse and monotone. The first two claims follow immediately from the
definitions of a, and ,. To complete the proof, show that «a, is monotone and (3, o o, = id.
By duality the proof of monotonicity of 3, and o, o 3, = id can be obtained.

We start with two easy observations. If Y and Y; are finite subsets of an arbitrary poset, then
(1) V1 < Yy iff max V] <’ maxY; and (2) ¥; <!V, iff min Y] <f min V5.

Throughout this proof, A is defined as above, i.e. A = {A4;,..., A,} and each A; consists of
elements a’, j =1,..., k;.

Claim 1. o, is monotone.

Proof of Claim 1. Let A,B = {B,...,Bn} € [{{t)}]. and A <" B. We must prove that
aq(A) <F au(B). In view of the two observations above, it is enough to show that for any
f € Fp there exists g € F4 such that g(A) <* f(B). Since for each i = 1,...,n there exists j;
such that A; < Bj,, there is an element a!, € A; such that a} < bgf(jl_). Let g(i) = p;. Then for
this function g one has {a} ;) | i =1,...,n} <" {b}, |i=1,...,m}, ie g(A) <" f(B). Claim
1 is proved.

Let A € [{(t)}]o and B = {By,..., B} = a,(A) € [{{t})].- By the two observations above,
to show that (3, o a, = id, i.e. that (§,(B) = A, it suffices to prove two claims.

Claim 2. For any f € Fp there exists A; € A such that f(B) <! A,.
Claim 3. Every A, is in (3,(B).

Proof of Claim 2. Let C be the collection of all sets f(A) where f € Fu; C = {Cy,...,Ci}.
Then for any g € Fg, there exists A; € A such that A; is contained in ¢(C) because, if this is
not the case, for any A; € A there exists j; < k; such that aé-i € A; and, for any f € F4, g on

f(A) picks an element different from a?i. If we define fy such that fq(i) = j;, g may pick only
elements of form a} on fy(A), a contradiction. Therefore, g(C) <* A; for some i.

Let f € Fp. Let H be the set of functions in F4 that correspond to the elements of B = «a,(.A)
or, in other words, max h(A) € B for h € H. Then, for any b’ € F4 L H, there exists a function
h € H such that maxh(A) <’ maxh'(A), i.e. h(A) <* K'(A). Since h € H, maxh(A) € B, i.e.
max h(A) = B;. If f(i) = j, then there is an element in h'(A) that is greater than b}. Define
a function g € F¢ to coincide with f on those C;’s that are given by the functions in H. On
C; that corresponds to f € F4 L H, let g pick an element which is greater than some b; where

13

f(i) = j (we have just shown it can be done). Then f(B) <* {c;(i) li=1,...,k} =g(C). We
know that there exists A; € A such that ¢(C) <* A;. Thus, f(B) <! 4;. Claim 2 is proved.

Proof of Claim 3. We prove that for any a§ € A; there exists B; € B such that aé- € B,

Consider the set F'J of functions f € F4 such that f(i) = j. If for no f € FY¥: a; € max f(A),
then there exists A, € A such that all elements of A, are greater than a?, ie. A; <! A,. This
contradicts our assumption that A is an antichain w.r.t. <*. Hence, a} € max f(A) for at least

one function in Fj{ Since A is an antichain, for any p # i there exists a? € A, which is not
greater than any element of A;. Change f to pick such an element for any p # i. Then qj
is still in max f(A). There exists a function f' € F4 such that max f'(A) <’ max f(A) and
max f'(A) € aq(A). If /(i) = j' # j, then, since f'(A) <" f(A) and A; is an antichain, o}, < a?
for some p and ¢, where p # i. But this contradicts the definition of f. Hence, f'(i) = j and
a’ € max f'(A) because a} € max f(A). Since max f'(A) = B, for some index [, a} € B, € B.

Let B’ be the collection of elements of B that contain elements of A;. Then we can define a
function f € Fp on elements of B’ to pick all elements of A;. Each B; € B_L B' either contains
an element of A; or contains an element which is greater than some a; € A;. Let f pick any
such element. Then min f(B) = A;. Suppose A; ¢ (,(B). Then A; <* ming(B) for some
function g € Fp such that ming(B) € 3,(B). By Claim 2, g(B) <* A; for some A;. Hence,
min g(B) <* A; and since A is an antichain w.r.t. <! A; = A; = ming(B) € (,(B). This
finishes the proof of Claim 3 and the theorem. O

It was shown in [34] that the orderings <’ and <! can be given a logical interpretation. Mo-
tivated by applications in the semantics of concurrent programming, Winskel used the modal
connectives O and < to describe <” and <f. Rounds [32] used a similar logic to show the in-
teraction between derivable properties of complex objects and their ordering. Here we present
what we believe is the simplest interpretation of the logics of [32, 34] for complex objects with
or-sets.

Start with an unspecified language £ that contains the symbol V for disjunction but does not
contain &, 0 and ©. With each element x € [b], where b is a base type, associate a collection
of formulae in £ closed under V, called the theory of x and denoted by Th(zx), in such a way
that © < y implies Th(z) D Th(y) and = # y implies Th(z) # Th(y). For example, if [§] is a
flat domain, i.e. an unordered collection of values with added bottom element | which is less
than anything else, the above requirement says that theories of distinct nonbottom elements do
not coincide and the theory of L contains all other theories (i.e. bottom implies everything).

The theory of a pair is a collection of pairs of statements from the theories of the components.
The theory of a set is informally defined as those facts that are true of all elements of the set.
A theory of an or-set contains facts that are true of at least one element of the or-set. These
descriptions are the unary connectives in modal logic usually denoted by O and <.

14

Now we can give a formal definition of theories of objects in an extended language LU{&, O, C}.
A theory of an object z, Th(z), is the minimal collection of formulae which contains

o {pm&yy | pi € Th(x;),i=1,2}if v = (21, 29);
e {Jp |Vi:peTh(x)}if x={z1,...,2,};

e {Op|Ji:peTh(xy)}ifx = (x1,...,2,),

and, together with any ¢ € Th(z), all formulae ¢ V ¢ (that is, if ¢ is in the theory of z, so are
all the disjunctions ¢ V).

Proposition 3.4 Given two objects z,y of the same type, x < y iff Th(z) D Th(y).

Proof. We proceed by induction on the type of x and y. The base case follows immediately
from the definition. The case of pair is easy. Let x = {z1,...,2,} and y = {y1,...,ym}. Then
z < y means z <’ y. If Op € Th(y), then for all i = 1,...,m: ¢ € Th(y;). Given any z;,
there exists y; such that z; < y;; hence ¢ € Th(z;) and therefore Jp € Th(x). Conversely,
let Th(z) 2 Th(y). Suppose that x £’ y, i.e. there exists x; such that z; < y; for no y;.
Then, by the hypothesis, there exists a formula ¢; € Th(y;) such that ¢; ¢ Th(z;). Let
©=¢1V...Vn Then ¢ € Th(y;) for all j =1,...,m. Therefore, Op € Th(y) C Th(x), i.e.
©1 V...V @y € Th(z;) which means that for at least one j: ¢; € Th(z;). This contradiction
proves <’ y. A similar proof for the case of or-sets which is based on the properties of <! is
omitted. O

Since X <’V iff max X <’ maxY and X <' Y iff min X < minY", Proposition 3.4 is true if
either [-] or [-], semantics is used.

4 Conceptual Query Language and Normalization

As we have pointed out, there are two levels of manipulation of objects — structural and
conceptual. This section is devoted to the query language for the conceptual level.

We start with an example. Given an object z = ({(1,2), (3)},(1,2)) of type {(int)} x (int).
Denote the first component by y. Applying or_p, to x first yields ((y, 1), (y,2)) which is an
object of type ({(int)} x int). Applying or-map(a o my,my) yields an object

(({1,3},{2,31), 1), (({1,3},{2,3}), 2))

15

of type (({int}) x int). Finally, applying or_u o or-map(or_p,) yields

({131 1), ({1,3},2), ({2, 3}, 1), ({2,3},2))

of type ({int} x int). This can be considered as a conceptual level object because all the
possibilities are listed.

However, one could have used another strategy to list all the possibilities. For example, to apply
(o, my) first to obtain an object of type ({int}) x (int) and then or_po or_map(or_p;) o or_p,
to obtain an object of type ({int} x int). It is easy to check that such a strategy results in
precisely the same object as the previous one.

In fact, there is a general result saying that each type has a unique representation at the
conceptual level such that no or-set type occurs in the type expression except as the outermost
type constructor. For reasons that should emerge shortly we call such a type a normal form.
Furthermore, for each object of type ¢ there exists its unique representation at the conceptual
level whose type is the normal form of ¢.

To state these results precisely, we need some definitions about rewrite systems [8]. If a signature
is fixed, a rewrite system is a set of rules of form 71 1— 7 where 7, 75 are terms. If o is obtained
from 7 by rewriting a subterm of 7, we also write 7 1— o. If ¢ is obtained from 7 by a (possibly
empty) sequence of applications of rewrite rules, we write 7 1— o.

A term 7 is called a normal form if there is no other term o such that 7 1— o. A rewrite
system is called terminating if there is no infinite sequence of terms 71 1— 7 1— It is
called Church-Rosser if, whenever 7 ll— 71 and 7 l—» 75, there exists a term 7’ such that
71 1= 7" and 75 I— 7'. In a Church-Rosser terminating system for every term 7 there exists
a unique normal form nf(7) such that 7 1— nf (7).

Now we introduce the rewrite rules for type expressions:
tx (s)y L— (t x s) (t)y x s L— (t x s)
(1) 1= (t) {(t)} 1= {t})
Proposition 4.1 The above rewrite system is terminating and Church-Rosser. The normal

form nf(t) for type t can be found as follows. If t does not use (), then nf(t) = t. Otherwise,
remove all angle brackets from t. If the resulting type is t', then nf (t) = (t').

Proof. To show that the rewrite system is terminating, define the following function on types.
Considering types as their derivation trees, let k; be the number of occurrences of () on the ith
level of the derivation tree of type ¢. If the height of the derivation tree is n, define (t) as
¥ ki -i. Tt is easy to see that if t 1— ¢y, then ¢(t) > ¢(ty). Hence, any rewriting terminates.

16

To prove Church-Rosserness, one has to find the so-called critical pairs [8], which in essence are
pairs of terms that can give rise to ambiguity in rewriting, and show that for any critical pair
(71, 72) there exists a term 7 such that 7y 1— 7 and 75 1— 7. We refer the interested reader
to [8] for the definitions and proof of the critical pair lemma. A straightforward analysis of our
rewrite system reveals the following critical pairs: 1) (({(£)}), {{t)}); 2) ((t x (s)),t x (s)); 3)
(((s) x ty,(s x (t))) and 4) ({(s) x t),((s)) x t) and their symmetric analogs. The terms to
which both components of the critical pairs rewrite are ({¢}) for 1), (¢ x s) for 2) and (s x t) for
3) and 4). Thus, the rewrite system is Church-Rosser and therefore has unique normal forms.

The proof of the last statement is by induction on the structure of a given type. We limit
ourselves only to types containing (-). The base case is immediate. In the general case, consider
three subcases: 1) t =1t; X tg, 2) t = {t1}, 3) t = (t1). In subcase 1, t' =t} x t}, hence, if both
ty and t, contain or-sets, nf(t) = (t)), nf () = (t5) and ¢ d= (£y) x (t5) 1= (#; x 1) = (¥')
which is a normal form. Thus, nf(t) = (¢'). The simple proofs of other cases are omitted. O

Having defined the rewrite rules for types, we must show how to apply these rules to objects.
First, associate the following morphisms with the first three rules of the rewrite system:

or_py T x (s) L= (t X s) or_p; : (t) x s 1= (t x s) or_ : ((t)) 1— (t)

One may be tempted to associate o with the rewrite rule {(¢)} 1— ({t}). However, the following
subtlety prevents us from doing so. In the process of applying the functions corresponding to the
rewrite rules, we may obtain an object of type {(¢)} in which two or-sets, say (a, b), coincide.
Using the set semantics forces us to keep only one copy. Hence, the set {a,b} will not be
included in the result (because it is not possible to choose a from one copy of (a,b) and b from
the other, as we only have one copy), and consequently some of the objects can be lost from the
conceptual level representation. This suggests keeping track of duplicates in order to obtain
the correct result. In other words, we should use multisets rather than sets.

To formalize this, we introduce the new type {|t[} of multisets of type t. Multiset types will
only be used internally for the normalization process and should not be considered as a part of
the language. With each type ¢ we associate a type t9, which is obtained from ¢ by replacing
all set brackets {} with multiset brackets {||} (d is for “duplicates”). Also, each object o of type
t is turned into an object o? : t4 by making all sets into multisets with single multiplicities.
Conversely, for every type t we define ¢° by replacing all {/[} with {}, and for every o : ¢, the
object 0® : t° is defined by removing duplicates from all multisets and making them ordinary
sets.

We need two operations on multisets that resemble two operations of or-ANRA. One is
d_map(f) : {s} — {t}}, provided f is of type s — t. It applies f to all elements
of its input. Since no duplicates are removed, d_map always preserves cardinality. The
other operation is ag : {(&)} — ({|t[}). It is defined exactly as «, except that its in-
put may have duplicates, and duplicates are not removed from the result. For example,

aa({(1,2), (1, 2)[}) = ({1, 1}, {1, 211, {12, 2}}).

17

For types of the form ¢4 we define a rewrite system similar to the one above, except that
{{t)} — ({/t]}) is used in the place of {(t)} — ({t}). This rewrite system is also terminating
and Church-Rosser. Moreover, for any ordinary type ¢, nf(¢) may be obtained as t§ where t,
is the normal form of # in the new rewrite system. The functions we associate with the rules
not involving bags are those shown above. We associate aq with {|(¢)[} — ({|t]}).

Let ¢t be a type and p a position in the derivation tree for ¢ such that applying a rewrite rule
with its associated function f to ¢ at p yields type s. (We assume that ¢ does not use {-}.)
Our aim is to define a function d_app(t, p, f) : t = s showing the action of the rewrite rules on
objects. Define it by induction on the structure of ¢:

e if p is the root of the derivation of ¢, then d_app(¢,p, f) = f;

e if t =t; Xty and p is in ¢; , then d_app(t, p, f) = (d_app(t1, p, f) o w1, 72);
e if t =t; X ty and p is in ¢y, then d_app(t,p, f) = (w1, d-app(tse, p, f) 0 m2);
o if t = {|t'[} then d_app(t,p, f) = d-map(app(t’,p, f));

e if t = (') then app(t,p, f) = or_map(app(t',p, f)).

Given a type t and a rewriting strategy r := ¢ JUN t FLEN LR t, such that the rewrite
rule with associated function f; is applied at a position p;, we can extend the function d_app to

d_app(t,r) : t — t, by d_app(t,7) = d_app(tn_1,Pn, fu) © ... o d_app(t1, p2, f2) o d_app(t, p1, f1).

Now assume that we are given an object x of type t. Suppose r is a rewriting that rewrites ¢
to nf(t). Associated with r, there is a rewriting 79 from ¢4 to nf (t)4. We define app(t,7) : t —
nf (t), the result of applying r, as follows:

app(t,r)(z) = [d-app(t?, r®)(z)]®

In other words, turn z into an object with multisets, apply ¢ and then remove duplicates. The
following theorem, which is a key result that allows us to introduce techniques for conceptual
querying, says that the result of app(t,r) is independent of the rewriting r.

Theorem 4.2 (Coherence) Given a typet, any two rewrite strategies ri,ry : t 1— nf (t) yield
the same result on objects. That is, for any object x of type t, app(t,r1)(z) = app(t, r9)(z).

Proof. Let us first explain the strategy for proving the theorem. It suffices to prove
d_app(td,rd)(z4) = d.app(td,rd)(z9). We define an abstract rewrite system on objects of
form o (that is, objects using multisets but not ordinary sets) by letting x — y iff y can be
obtained from x by an application of one of the rewrite rules for types to z (by means of d_app).
For instance, (1, ((1),(2))) — (1, (1,2)) by applying ((¢t)) — (¢) in the second position. If x is

18

of type t and y is of type s, then ¢ — s according to the rewrite system for types. Moreover,
normal forms for our new rewrite system are precisely objects whose types are in normal form.
Therefore, the rewrite system is terminating according to Proposition 4.1.

Now our goal is to prove that the new rewrite system is weakly Church-Rosser. That is, if x
can be rewritten in one step to two objects, x; and z, then there exists an object 2’ such that
both z; and z, can be rewritten to 2’ in zero or more steps. Then, by Newman’s lemma [8],
it will follow that the system is Church-Rosser and has unique normal forms, thus proving the
theorem.

To prove weak Church-Rosserness, assume that x — x; by means of rule r; in position p; in ¢
and x — x5 by means of rule ry in position py in t. We denote the functions that correspond
to applying r; and ry by f; and f; respectively. Notice that if positions p; and p, are in two
different subtrees determined by a pair formation, then the existence of z’ is immediate. Hence,
we can assume that one position, say py, is closer to the root than py because { - [} and (-) are
unary type constructors. The rest of the proof is a straightforward case analysis. We present
two cases for illustration.

The rule applied in py is s x (t) — (s X t), and py occurs inside the tree for s. The object
therefore is a pair (21, 23) and the function applied is or_p,. Assume that d_app(s, p2, r2)(z1) =
x). Then we obtain

((x1,7)) | 2b € 3)

0T_Py or-map(fz o i,)
(1, 22) (21, 25) | 75 € w9)
(faom,m) 0T-Py
(l‘llal‘Q)

The rule applied in py is {{{t)} — ({|t]}), and py is inside t. The object therefore is a bag of
or-sets X = {|Xy,..., X[} where X; = (2},..., 2}) and the function applied is ag. Assume
that applying fo to every x; yields y; The result of applying fo (by means of d_app) to X
is V=A@, |j=1,...,n) | i=1,...,p[}. Consider the following diagram, in which we
do not yet say what the target is. (We only note that applying or_map(d_map(fs)) o ag and
aq o d_map(or_map(fo)) to X yield objects of the same type.)

19

g or_map(d_map(f2))

d_map(or-map(f3))
ad

{\(y;\jzl,...,ni)|i:1,...,p|}

To prove the case, we must show that this diagram commutes. First notice that because of the
semantics of d_map, Y has p elements. Denote (y; | 7 =1,...,n;) by Y;. First assume that
B € or-map(d-map(fz))oaq(X). Then for some h € Fx we have B = {\fQ(xﬁl(i)) i=1,...,p}
Assume.that y; is such that y; = fg(xﬁl(i)), and define g € Fy by letting g(i) be j. Then
B ={y,; | i=1.....p} and hence B € a4(Y) = aq o d-map(or-map(f))(X).

Conversely, let B € a4q()). Then for some g € Fy we have B = {\y;(i) o= 1,...,p[}
Since y;, € Yi = or-map(f2)(X;), there exists 2 € X; such that fo(a}) = yi,. Define
h € Fx by letting h(i) = j for all i. Then B = {|f2(mf1(i)) i =1,...,p|} and therefore B €
or-map(d_map(f2))o0a(X). Hence, or_map(d_map(f))o0a(X) = auod_map(ormap(f2))(X),
which shows that the diagram commutes and this proves the case. a

Therefore, all objects with the same meaning at the conceptual level rewrite to the same
normal form. The intuitive notion of the conceptual meaning can now be rigorously defined
as the normal form. We define the conceptual query language or-NRA"T by adding the new
construct

normalize' : t — nf ()

to or-NRA. By the coherence theorem, normalize’ can be implemented as app(t,r) where 7
is any rewriting ¢ 1— nf(¢). Conceptual queries are now defined as queries on normal forms.
That is, queries of form ¢ o normalize, where ¢ is a structural query.

In the remainder of this section, we show that for each type ¢, it is possible to express normalize’
in or-N'RA. That is, the introduction of normalize' to build the conceptual language is a matter
of convenience. Nonetheless, it is important to include normalize’ in the conceptual language
because it cannot be defined in a polymorphic way.

20

Corollary 4.3 For each type t, normalize’ is expressible in or-NRA.

Proof sketch. As it follows from the proof of the coherence theorem, to express normalize®
we have to simulate the operations ag and d_map in a way that retains duplicates. We do it as
follows. First, define a family of translations of types (-): o/ = b, (s x t)) = s x t', (s) = (&),
{s} = {s' x us}. Now each object o : t is translated into an object o' : t. The only nonobvious

case in the translation is the set case: {zq,...,2z,}' = {(z},v1),..., (2}, yn)}, where all y;s are
distinct. One such translation is definable in or-A/RA: u, in the set case is taken to be s, and
{z1,.. 2.} ={(2},21),..., (2}, 2,)}. That is, each element of a set gets a unique tag.

Now, for each function f : s; — s, used in the process of normalization, we define a new
function f': s} — s, that simulates the action of f using tags in sets to retain duplicates. We
only need to consider the case of a and map. For o : {(s)} — ({s}) and {(s)}' = {(s) x u},
define o = a o map(or_p,) : {{s') x u} = ({s' x u}). For g : s — t', define map(g)" as
map((g' o m), m2). Finally, let o be an object of type t. Translate it to o’ : ¢’ as shown above,
and simulate the normalization process using o’ in the place of ag and map’ in the place of
d_map. At the end, project out all tags. Now it is an easy application of the coherence theorem
to show that the object thus obtained is normalize' (o). O

Two questions can be asked of this new query language. First, how much information is lost
by normalization? There are different objects that normalize to the same one and information
from the structural level could be lost. Second, how costly is normalization? We address these
problems in subsequent sections. In the next section it is shown that normalization is often
lossless, i.e. many queries are unaffected by the loss of structural information. In Section 6,
upper bounds for the size of normalized objects are found.

5 Losslessness of Normalization

This section investigates whether the process of normalization loses anything “that can be
regarded as critical.” If loss of information is inevitable in the general case, then one would
like to obtain a set of general sufficient (and if possible, necessary) conditions that guarantee
losslessness of normalization. In order to proceed, a criterion on what normalization can be
regarded as “losing nothing essential” has to be formulated.

Definition. Given a definable morphism f : s — t. Suppose there is a morphism preserve(f) :
nf ((s)) = nf ((t)) such that preserve(f)onormalize!® o or_n®* = normalize®™ o or_n'o f, provided
the input is restricted to objects not containing any empty or-set. Then normalization is lossless
with respect to f.

Let us first justify the definition given above. The proviso on the input is necessary because
all objects containing empty or-set have the same normal form, namely (). Recalling that ()

21

stands for inconsistency, such objects are conceptually inconsistent and should be omitted. The
use of or.n® and or_n' is a technical device to ensure that the normal forms produced always
look like (dy, ..., d,,) where dy, .., d, have no or-sets. This is justified since or_n d is conceptually
d for any d.

The equation itself is justified because preserve(f) takes the meaning of the input to f and
returns the meaning of the output of f.

It turns out that it is not easy to achieve losslessness of normalization with respect to an
arbitrarily given morphism f. There is no simple method to discover the required preserve(f).
However, we have been able to isolate the morphisms that can give rise to possible difficulty.

Theorem 5.1 (Losslessness) Let f : s — t be a morphism of or-N'RA not containing any
K(); p where some or-set appears in Type(p); py", p*, and U" where u has some or-sets;
map(g) : {u} — {v} where u or v have some orsets; and (g,h) : r — u x v where r, u, or v
have some or-sets. Then normalization is lossless with respect to f. Moreover, the preserve(f)
that makes normalization lossless has a map-like property and preserves consistency. That is,
preserve(f) = or_po or-map(preserve(f)oorn) and preserve(f)(x) # () whenever x contains

no ().

Proof. Let preserve t be the type obtained by converting every base type b in t to
(b). Let preserve, : t — preserve t be the morphism such that preserve,(z) is the ob-
ject obtained by mapping every base type object o : b in z to the singleton or-set (o).
Using the fact that normalization is coherent, it is easy to show by induction on ¢ that
normalize o or_n' = normalize o preserve;. Consequently, to prove the theorem, we can in-
stead prove the commutativity of

preserves , normalize "
xS e:s o: (s")
f preserve(f)
°: ~e:t —— o (1)
preserve; normalize

for any complex object x : s having no empty or-set and any morphism f : s — ¢ satisfying the
preconditions of the theorem, where preserve(f) is defined by structural induction on f below.

Case f is id. Then preserve(f) = id.
Case f is n, w1, mo, u, K{}, K¢, !, U, py, or p. Then preserve(f) = or_map(f).

Case f is (g, h). Then preserve(g, h) = or_pio or_map(or_p,) o or_py o (preserve g, preserve h).

22

Case f is go h. Then preserve(g o h) = preserve(g) o preserve(h).

Case f is map(g). Then preserve(map g) = or-p o or-map(«) o or-map(map(preserve(g) o
or.).

Case f is «, orn, or_py, or or_u. Then preserve(f) = id.

Case f is orU. Then preserve(f) = or_u o or_map(or.U o (or-p x orn)).

Case f is or-map(g). Then preserve(or-map(g)) = preserve(g).

It is readily verified that preserve(f) is map-like and preserves consistency. The proof that the

diagram commutes is by induction on f and uses the coherence theorem in several places. We
present two illustrative cases.

Suppose f is or_map(g), where g : u — v. Then s = (u) and ¢ = (v). By hypothesis,
preserve(g) exists and is map-like. Now consider the diagram below.

reserve or_map (normalize or_
R R N &
or_map(g) or_map(preserve g) preserve g
o: (v o: (v 4 o ((v")) o: (v")
preserve or-map(normalize) oT_[1

The left rectangle commutes by hypothesis. The right rectangle commutes because preserve(g)
is map-like. Hence the entire diagram commutes. By the coherence theorem, normalize™) =
or_p" o or_map(normalize™) and normalize®”) = or_p”" o or_map(normalize”). So the original
diagram commutes and the case follows.

Suppose fism;"". Then s = uxv and t = u. Let or_cp = or_uoor-map(or_p,)o or_p,. Consider
the diagram below.

li li _
X preserve o o (normalize o w1, normalize o my) gy x (") or-cp . (W' x o)
i8] m m or_map(my)
o:u o:u _ o: (u)y ——— o (u")
preserve normalize 1d

The two left rectangles obviously commute. By assumption, x has no empty or-set. Thus y has
no empty or-set. Therefore, the right rectangle commutes. Hence the whole diagram commutes.
Finally, the coherence theorem is applied to conclude the case. O

23

Since p is generally an uninterpreted primitive, the qualification that T'ype(p) has no or-set is
necessary. This means that equality tests =!, where ¢ has or-sets, have been excluded. =! is an
equality test that is structural. Normalization is a process that removes structural differences
from objects that are conceptually identical. Hence one cannot expect normalization to be
lossless with respect to =",

On the other hand, the restrictions placed on p, U, and map(g) can be lifted under certain cir-
cumstances. Recall from Corollary 4.3 that in order to express normalize in or-N'RA, elements
of sets are tagged with unique identifiers. This tagging is to prevent or-sets from being collapsed
prematurely. The problem with p, U, and map(g) is that they can collapse two or-sets into
one. There are two solutions to this problem. The first is to make sure that these operations
are not applied to objects involving or-sets, as required by the preconditions of the losslessness
theorem. The second is to make sure that these operations are not applied to objects in which
or-sets can be collapsed. For example, if it is known that U is only applied to a pair of sets of
or-sets having empty intersection, then we can still achieve losslessness for U using preserve(U)
as given above.

Given an or-NRA morphism f : s — ¢ and an object z : s containing some or-sets. Then z
conceptually represents several values xy,...,z,. Suppose f x is an object containing or-sets;
then it conceptually represents several values 1, ..., ¥,. It is desirable to discover which one of
x1, ..., T, leads to which one of yq, ..., y,,. This is a question of searching for a conceptual analog
of f that associates each z; in normalize = to a subset of normalize(f x).

The idea of a conceptual analog of a morphism is illustrated in Figure 2. One would like to
know which combination of the conceptual values of the input gives rise to which subset of the
conceptual values of the output. However, the ideal situation can only be approximated. As a
first attempt, for each possible conceptual value z; of the input x, we aim only to account for
some of the conceptual values in the output that are due to it. Some conceptual values y; in
the output may be left unaccounted for. For example, the last element of normalize y in the
figure. Similarly, the picture given for each input x; is only partial. For example, the second
element of normalize x in the figure might in reality contribute to 3 values in the output but
the conceptual analog discovers only 2. This approximation to conceptual analog is formalized
below.

Definition. Let f : s — t be a definable morphism of or-N'RA. Then its conceptual analog
is a morphism preserve(f) such that for all = : s, (preserve(f) o normalize™® o orn®)(z) is
included in (normalize™ o ornt o f)(x).

There is some relationship between losslessness and conceptual analog. A conceptual analog
of f that accounts for every element in the output is a morphism that makes normalization
lossless with respect to f. Hence the search for a lossless preserve(f) can be generalized as
a search for a conceptual analog of f that accounts for each possible conceptual value of the
output.

24

preserve(f)

Figure 2: Conceptual analog of morphism f

The losslessness theorem and conceptual analog can be given a somewhat simpler description if
types are restricted only to those containing or-sets. The morphism preserve; : t — preservet
defined in the proof of Theorem 5.1 forces an object of type ¢ into an object of type preservet
by inserting singleton or-sets wherever possible. Types of the form preservet can be described
by the following grammar: ¢ ::= (b) | t x ¢ | {t} | (t). We call such a type a pure or-type. It
can be easily seen that any object z is conceptually equivalent to preserve(z), provided z has
or-sets.

Given an or-NRA-morphism f : s — ¢ and two objects z : sand y = f(x) : ¢, let normalize(x) =
(x1,...,2,) and normalize(y) = (Y1, - .., Ym), nf (s) = (s') and nf(t) = (¢'). Our motivation to
study losslessness was to find a conceptual analog of f. What can such an analog be? As the
first approximation, it is given by a function f’: s’ — (¢') which associates with each element
x; in normalize(x) a subset of normalize(y), thus defining the action of f on elements its input
could possibly stand for. The morphism preserve(f) : nf(s) — nf(t) can now be defined as

or_p o or-map(f").

How could one refine the action of f on elements of normalized object? There are two ways to
do so. First, one can require that this action be defined unambiguously. That is, f" maps every
element from normalize(x) into a unique element of normalize(y), thus having type s’ — t'.
preserve(f) can then be reconstructed as or-map(f'). Second, one can require that all the
elements of normalize(y) be accounted for. That is, preserve(f)onormalize(x) = normalize(y).
In other words, preserve(f) is onto. It is not hard to see that this is precisely the definition of
losslessness in the case of pure or-types.

Proposition 5.2 Let s and t be pure or-types. Let f : s — t be a morphism in or-N'RA that
does not use any primitive p where Type(p) has or-sets and any p*, U*, or map(g) : {u} — {v}
where u or v involve or-sets. Then there exists a conceptual analog preserve(f) for f. This

25

conceptual analog is map-like. However, if f does not use K(), or-U and (-,-), then it can be
given the form or_map(-). Moreover, if f does not use K(), (-,-), and py, then it is also onto
with respect to input having no ().

Proof sketch. The precondition is weaker than that of Theorem 5.1 because we merely
required that (preserve(f) o normalize o or_n)(z) be included in normalize o or-n o f)(z), as
opposed to being equal. The proof is a simple adaptation of the proof of Theorem 5.1. After
defining preserve(K()) as or_u o or-map(K ()o!), we can define the remaining preserve(f) the
same way as in Theorem 5.1. This makes preserve(f) map-like.

There are only three cases in which preserve(f) as defined above cannot be made into the form
or-map(-): K(), (-,-), and or_J. We illustrate the case f = or_U: (t) x (t) — (t). To see why
the translation cannot be of the form or_map(-), let ¢ be a base type, say int, and consider
an object x = ((1,2),(3)). Applying normalize o or_U gives (1,2, 3) while applying normalize
yields ((1,3), (2, 3)). Clearly no mapping over the latter object can produce the former.

The preconditions of this proposition is weaker than that of Theorem 5.1 in three places: f
can use arbitrary K(), (-,-), and py. It is precisely these three operations that may destroy
the surjectivity of preserve(f). We illustrate the case f = ps : s x {t} — {s x t}. Since s
and t are pure or-types, nf(s) = (s') and nf(t) = (¢'). Then preserve(p;) must have type
(s' x {t'}) = ({s' x t'}). We take preserve(ps) to be or_map(p5"). An easy application of the
coherence theorem shows that for any object z of type s x {t}, or_map(p5"") o normalize(z) C
normalizeo py'(z). So preserve(ps) is a conceptual analog of py. To see that it is not onto, let =
be ((1,2),{3,4}). Then preserve(ps)(normalize(x)) = ({(1,3),(1,4)},{(2,3),(2,4)}). On the

other hand, normalize(ps(z)) = ({(1,3), (1, 4)}, {(1,3), (2,4)}, {(2,3), (1,4)}, {(2.3), (2, 4)}).
O

6 Costs of Normalization

We have seen before that the complexity of or-N'RA™ queries can be exponential. In particular,
the cardinality of normalize(z) can be exponential in the size of 2 provided that o was used
in the course of normalization. In fact, the example given in Section 2 shows that even one
application of a may result in an or-set of exponential cardinality. If one tries to estimate the
cost of normalization by “brute force,” a hyperexponential upper bound can be immediately
obtained: indeed, if n is the size of x, applying the costly @ O(n) times seems to yield a
hyperexponential bound.

In this section we show that the fear of hyperexponentiality is not justified. In fact, both
the cardinality of normalize(x) and its size are in the worst case exponential in the size of x.
The first result in this section explains why consecutive applications of « still yield objects of

26

exponential size. Then we proceed to find upper bounds on the cardinality and the size of
normalized objects. The last result in this section shows that there exist existential queries
involving normalization which cannot be evaluated in polynomial time.

Let = be an object and y = normalize(x). Define m(y) as the number of elements in y if it is

an or-set and 1 otherwise. Uniformly, m(x) = |normalize(or-n(x))|. The size of an object is
defined inductively: the size of an atomic object is 1, size (x,y) = size x +size y, size {z1, ..., 2,}
= size (T1,...,%,) = sizex; + ...+ sizex,.

To work with objects, it is convenient to associate rooted labeled trees with them. A tree
T x associated with an atomic object z is defined as a one-node tree labeled by z. T (x,y) is
a tree with the root labeled by x, and two subtrees rooted at its children are 7x and Ty.
T{x1,...,z,} (or T{(xy,...,x,)) is a tree whose root is labeled by {} (or ()) and n subtrees
rooted at its children are Txy,..., Tx,. In view of this definition, m(z) can be redefined as the
number of children of the root of Tnormalize(x) if the root is labeled by () and 1 otherwise.
size x is the number of leaves in T z.

Intuitively, the following proposition says that the “internal” structure of 7x does not con-
tribute to the creation of new possibilities in normalize(z), and the number of such possibilities
m(z) is determined by the or-sets which are closest to the leaves.

Proposition 6.1 Let x be an object, and vy, ..., vy be the nodes in Tx labeled by (), such that
the subtrees rooted at v;’s do not have other nodes labeled by () (i.e. they are or-sets closest to
the leaves). Let m; be the number of children of v;, i = 1,...,k. Then, if k # 0,

k

m(z) < I_I(mZ +1)

i=1

Proof. We proceed by induction on the structure of the object x. We consider only objects
containing or-sets. The base case (i.e. or-sets of objects of base types) is obvious. Let z =
(71,22). Assume that both z; and z, contain or-sets and wvy,...,v, are nodes of 7z, and
Upt1, - - -, U are nodes of Txy. Then, by the induction hypothesis, m(z) < [[¢_,(m; + 1) and
m(zy) < Hf:p+1(mi + 1). By coherence, normalize(x) = or_p(normalize(z), normalize(xs))
where or_p pairs each item in its first argument with each item in its second argument (it can
be easily expressed in or-NRA). Therefore, m(z) < m(x,)m(zs) <[] (m; +1). Two other
cases when either z; or x5 contains or-sets are similar.

Let = {xy,...,z,}. Then all x;’s contain or-sets. Again, by coherence,
normalize(x) = [ag({normalize(xy), ..., normalize(x,)[})]*

Therefore, m(z) <[], m(x;) and the result follows from the induction hypothesis.

27

Finally, if z = (xq, ..., z,), there are two cases. If z;'s do not contain or-sets, then m(z) =n <
n + 1. If they do contain or-sets, then by coherence

normalize(x) = or_u({normalize(xy), . .., normalize(x,)))

ie. m(z) < X m(z;) < [, m(x;) because m(-) > 2. The case now follows from the
hypothesis. O

This proposition explains why there is an exponential upper bound for m(z) despite the fact
that o can be applied many times. The following result finds a tight upper bound in terms of
the size rather than the tree structure.

Theorem 6.2 Let x be an object with sizex =n. Then
m(z) < V3"
Moreover, for any n divisible by 3 there exists an object x such that sizex = n and m(x) = V3",

Proof. As in the proof of Proposition 6.1, consider only objects containing or-sets. Proceed
by induction on the number of steps of normalization. If the object is already normalized, we
are done. Assume normalize(z) is obtained by one step of normalization. Then this step is one
of the maps associated with the rewrite rules, so we have four cases. Notice that in the base
cases we may assume w.l.o.g that any element of a set or an or-set is of base type since this
will give us the maximal possible m(x) for a given size x.

Case 1. x = (z1,79) where z; = (x],...,z.). Then normalize(z) = or_p,(z) and it is an

easy arithmetic exercise to show that m(z) =n L1 < /3"
Case 2 when or_p, is applied to obtain the normal form is similar.

Case 3. Let z = {Xy,..., X;;} where each X; is an or-set (z}, ..., z}) where all 2} are elements
of a base type. Since we are interested in an upper bound, assume w.l.o.g. that all_ x’s are
distinct (if they are not, some of sets in normalize(x) could collapse). Let X =J; ; 2}. Define
a graph G = (X, E) where (lel,x;i) is in E iff 4 # iy. Let normalize(z) = a(z) = (Yi,...,Y))
(Y)’s are sets). Then it follows from the definition of that Y;,...,Y) are precisely the cliques
of G. Since n = sizex = [X], applying the upper bound on the number of cliques for a graph

with n vertices [28], we obtain p = m(z) < /3"

Case 4. © = (Xy,..., X}) where X;’s are or-sets of a base type. Then normalize(z) = or_u(z)
and m(z) < n. Again, simple arithmetic shows that n < /3". Hence, m(z) < /3.

The proof of the general case is very similar to the proof of Proposition 6.1 and we will show
only one case. Let x = {x1,...,2x} where z;’s are not normalized. Then normalize(x) is

28

obtained by applying aq4 to {{normalize(x,), ..., normalize(x,)|} and removing duplicates from
the result. Let size x; = n;. By the induction hypothesis, m(x;) < V3", We now have

i=1

The other cases are similar. To show the tightness of the upper bound, let n = 3k, k > 0.
Assume that we have a base type whose domain is infinite (a typical example is int). Let
by,...,b, be n distinct elements of such a type. Let

T = {<b1a b?a b3>a <b47 b5a b6>a R <bn—27 bn—la bn>}
Then size z = n and normalize(x) = o(z) which contains 3* = /3" elements. The theorem is

completely proved. O

Using Theorem 6.2, one can prove the following upper bound on the size of normal forms by
induction on the steps of the normalization process.

Theorem 6.3 Let x be an object with size(x) = n where n > 1. Then

: 4 n
size normalize(x) < 5%7;

Proof. Similarly to the proof of Theorem 6.2, proceed by induction on the steps of normaliza-
tion. We start with base cases, i.e. consider an application of or_p, or or_p, or a or or_p.
Case 1. = (71, 12) where z; = (z1,...,z}). Let sizex; = sy, sizex} = 0;. Then s;+01+...+
or = n. Since normalize(x) = or_p, (z), size normalize(x) = ksy+o1+...+0r = ks;+(nLsy) <
(n Lsy)s;+nLs; <2nl 2 Since empty sets and or-sets are excluded, n > 2 in this case and
therefore 2n 1 2 < g\?’/gn

Case 2 when or_p, is applied is similar.

Case 3. Let z = {Xy,..., X;} where each Xj is an or-set (zi,...,2},) where all 2} have types
containing no or-set. Let sizez} = s% and

z
=0 Soimn
i=1
Then an easy calculation shows that size normalize(x) = size a(z) is bounded above by

Ul'kg'...'kl+02'k1'k3'...'kl+...+0’l'kl'...'kl_lSl'O’l'...'O'l

29

Therefore, we need to maximize [- oy -...-0; under the constraint o1 +...4+ 0, = n. A standard
argument shows that such a maximum is bounded above by

1 if n=1
ny2" ifl<n<2l
ny/3" ifn>21

If it easy to see that for n > 1, the upper bounds given above are less than %\?’/gn Ifn=1,
then the size of the normal form is also 1.

Case 4. = = (Xy,...,X)) where X;’s are or-sets of a type that does not contain or-
sets. Then normalize(x) = or_u(x). Since the or_u does not change the size of an object,
size normalize(x) < g\?’/gn for all n > 2. If n = 1, then size normalize(z) = 1.

To complete the inductive proof, we show that after each step of normalization that produces
a normalized subobject z”, that is, 2 = normalize(z') for a subobject ' of x, either size 2" <
%\3/571 is satisfied if n = sizex’ > 1, or sizez” = 1 if n = 1. This will complete the proof. Two
cases corresponding to application of or_p; or or_p, are similar to the case of a, so we show
here only the case of application of a.

Let # = {z1,..., 2%} where each z; is an unnormalized object. Let x} = normalize(z;) and k;
be the cardinality of 2, i.e. k; = m(x;). Let n; = sizex;. By Theorem 6.2, k; < v/3 . First
consider the case when all n; > 1.

Let zj = (yi,...,y;,), i =1,..., k. By s} we denote sizey;. By the induction hypothesis,

ki
. n
wzyu¢;§:%<§%
j=1
normalize(x) is obtained by applying aq to {/z},..., 2} [} and then removing duplicates, i.e. its
elements are sets of representatives of x,...,z}. Since we are interested in an upper bound,
we may assume that all the elements of z),..., 2} are distinct. Then each element of x] will
be present in k() = (Hfz1 k;j)/k; sets. Therefore, the upper bound for size normalize(z) can
be calculated as the sum of the sizes of all elements of 2/, ..., z} multiplied by the number of
their occurrences in the normalized object, i.e.
k ki k k;
size normalize(x) < Z k(z Z k@ s
i=1 j=1 i=1 j=1
Ly fdmie~ T T

If all n; = 1, then size normalize(x) = k = n. If n > 1, then n < 2V 3" and if n = 1, that is,
sizex = 1, then size normalize(z) = 1.

Now consider the general case, i.e. ny,...,n, > 1 and n,41,...,n; = 1. Normalization of z; for
@ > p results in a size one object. Let o9 = ni+...+ny, and 0y = kK Lp. Clearly og+0; = n. Had
we applied aq only to {{z7,..., 7}, it would have resulted in an object whose size is bounded

above by 20y 37" according to the calculations for the case where all n; > 1. But taking into
account oy size one objects adds size oy to every element of the or-set normalize(x). Since there
are at most /3" such sets, we obtain

. , o
size normalize(x) < ?0\3/500 +ov3"
Since o¢ > 1, we obtain o¢ + 207 < (09 + 01)\9/501. Therefore,
: . of n
size normalize(x) < ?0\3/500 +0v37 < 5\?@”
Finally, if or_u is applied in the process of normalization, it does not change size. Assume x =
(x1,...,2r) where each x; is an unnormalized object. Let z} = normalize(z;) and n; = size x;.

Assume ny,...,n, > 1 and nyyy = ... = n, = 1. Define 0y and o0y as in the case of applying a.
Then, by the induction hypothesis,

p
size normalize(x) < Z%f/g"l +o, < %\e,/gffo o < g\g/gn
i=1

If all n; = 1, then two cases arise. If n > 1, then size normalize(x) = n < %\?/gn, and if n =1,
then size normalize(x) = n = 1. This proves the theorem. O

Corollary 6.4 Let © = normalize(y) and sizex = n. Then O(logn) < sizey < n.

The upper bound of Theorem 6.3 is not tight. The following result exhibits a tight upper
bound for a large class of objects. This shows that the previous theorem cannot be significantly
improved.

Theorem 6.5 Let x be an object with sizex = n containing or-sets. Assume that every sub-
object of type {(t')} has size at least 21, every subobject of type t' x (t") or (t") x t' has size
at least 6 and every subobject of type ((t')) has size at least 3, where t' and t" do not use the
or-set type constructor. Then

size normalize(x) < g\?’/gn

31

Moreover, for any n divisible by 3 there exists an object x such that sizex = n and
size normalize(x) = 23/3".

Proof. We have to rework the base cases only. Since no subobject involving or-sets can have
size one, the induction step easily goes through, as in the proof of Theorem 6.3.

The case of applying o was already proved; see the proof of Theorem 6.3. For the case of
applying or_p, or or_p,, we established an upper bound 2n L 2. It is easily seen that 2n 1 2 <
%\3/371 for n > 6. Finally, applying or_u does not affect the size, and n < %\e’/gn for n > 3.

To show tightness, consider the example from the proof of Theorem 6.3. Let

Tr = {<b1a b?a b3>a <b47 b5a b6>a R <bn—27 bn—la bn>}

where all b;’s are distinct elements of a base type. Then «(x) contains /3" elements, each
n

having cardinality %. Thus, size normalize(z) = g\e/gn. O
The importance of existential queries was emphasized in [17, 18]. Essentially, an existential
query asks whether there exists a possibility — in the normal form — satisfying a given property.
In terms of or-NRA™, if nf(s) = (t) and p : t — bool is a predicate, I(p) : (t) — bool is a
predicate which is true of y : (t) if or_map(p)(y) : (bool) is an or-set containing the true value.
Given an object x of type s, one may ask a query 3(p)(normalize(z)). If p is a polynomial time
query, then 3(p)(normalize(x)) can be answered in time polynomial in the size of normalize(x).
But can it be answered in time polynomial in the size of 7

The following example gives a negative answer to this question, provided P #NP. Assume that
p: {t x s} — bool checks if its input R satisfies the functional dependency #1 — #2. That is,
if (x,y) € R and (z,y') € R imply y = ¢'. This query can be easily implemented in relational
algebra and hence in or-NRA. Now we encode conjunctive normal form Boolean formulae in
or-N'RA as follows. Assume that literals are encoded by elements of a base type b. Each positive
literal u is then a pair (u, true) : b x bool and each negative literal w is a pair (u, false) : bx bool.
Each disjunction of formulae is encoded as an or-set of encodings of its components, and
each conjunction of formulae is encoded as a set of encodings of its components. Now let
Ty {(b x bool)} be an encoding of a Boolean formula v. Then 3(p)(normalize(zy)) evaluates
to true if and only if ¢ is satisfiable. Thus, we cannot evaluate existential queries on normal
forms in polynomial time under the assumption that P #ANP.

7 Conclusion and Future Work

In this paper we considered a simple semantic model that cleanly integrates sets and or-sets,
taking into account their intended meaning. We showed that there are two levels for manipu-
lating sets and or-sets — structural and conceptual — and we extended proposals of [3, 5, 33]

32

to formulate a query language for the structural manipulation of or-sets. We defined the con-
cept of normalization of objects involving or-sets and proved its coherence. That allowed us to
include normalization as a primitive to obtain the language for manipulation of or-sets at the
conceptual level. We proved that normalization is lossless and established upper bounds on the
cost of normalization.

The language or-N'RAT has been implemented on top of Standard ML. The implementation
provides an interface which includes the operations of or-NRA™ and a few additional operations
that elevate or-AN'RA" to capture the power of a nested bag language [25]. The package also
includes additional features such as creation and destruction of objects, structural recursion
on sets and or-sets, input and output facilities. It also comes equipped with several libraries
of derived functions. For example, the library of set functions includes membership test, set
difference, inclusion test, cartesian product, etc., and their analogs for or-sets which, as follows
from the results of [5] and this paper, are definable in or-NRA*. Another library defines a
lifting of linear orders from base types to arbitrary types which is definable in or-NRA as
demonstrated in [26]. A complete description of this implementation of or-A’RA™ can be found
in [12].

There are many further problems which we would like to investigate. The use of bags in the
proof of the coherence theorem suggests adding or-sets to a bag language. We would like to
study the language obtained by combining the or-set component of or-A’RA and the standard
nested bag language such as the one in [25]. Such a language gives rise to interesting equational
theories which can lead to useful optimizations. In addition to the monad equations of [5], every
diagram in the proof of Theorem 4.2 gives rise to a new equation.

We have seen that normalization can be quite expensive. Therefore, there is a need for tech-
niques that make query evaluation faster. Using functional style language and its implemen-
tation on top of ML suggests the use of lazy evaluation for possible optimization of some
queries. For instance, implement normalization in such a way that elements of a normal form
are produced as elements of a stream. Then, if an existential query is evaluated over a normal
form, elements of the normal form are produced as they are needed, and if the test is satisfied,
the evaluation stops without producing the whole normal form. Such a mechanism for query
evaluation has recently been developed by one of the authors [23].

Yet another idea is the complexity-tailored design of Imielinski, van der Meyden, and Vadaparty
[16] when queries are forced to run in polynomial time by, for instance, obtaining additional
information about some of the or-sets, thus reducing the size of the normal form. In [16] a logical
language was used. We would like to see if the idea can be worked out for our languages.

There are various sophisticated order-theoretic models of partial information in databases —
sandwiches [6], mixes [10], snacks [31, 30], and their generalizations [31, 22]. They are used
when a real world situation can be approximated from below and above by information in a
database. These structures enjoy universality properties and therefore can be incorporated

33

into the programming language syntax [22]. We have recently shown [22] that the intimate
connection between or-sets and the Smyth powerdomain can help us use or-sets for a suitable
representation of those approximation models in the context of database programming lan-
guages like or-NRA. We plan to further investigate the applicability of such models to the
study of or-sets.

Our languages have been extended to include variant types. It is known that the coherence
result still holds in the extended languages. The validity of the remaining results of this report
remains to be checked for this extension.

Acknowledgements. The authors are grateful to Tim Griffin, Elsa Gunter, Anthony Kosky,
Shamim Naqvi, Val Tannen and especially Peter Buneman for many interesting discussions.
Most of this work was done when both authors were at the University of Pennsylvania. We
gratefully acknowledge the support of an AT&T Doctoral Fellowship and NSF Grant IRI-90-
04137 (for Libkin) and NSF Grant IRI-90-04137 and ARO Grant DAALO3-89-C-0031-PRIME
(for Wong).

References

[1] S. ABITEBOUL, C. BEERI, On the power of languages for the manipulation of complex
objects, in “Proceedings of International Workshop on Theory and Applications of Nested
Relations and Complex Objects,” Darmstadt, 1988.

[2] S. ABITEBOUL, P. FISCHER, AND H.-J. SCHEK, editors, “LNCS 361: Nested Relations
and Complex Objects in Databases,” Springer-Verlag, 19809.

[3] V. BREAZU-TANNEN, P. BUNEMAN, S. NAQVI, Structural recursion as a query language,

in “Proceedings of 3rd International Workshop on Database Programming Languages,
Naphlion, Greece, August 1991,” 9-19.

[4] V. BREAZU-TANNEN, R. SUBRAHMANYAM, Logical and computational aspects of pro-
gramming with sets/bags/lists, in “LNCS 510: Proceedings of 18th International Collo-
quium on Automata, Languages, and Programming, Madrid, Spain, July 1991,” 60-75.

[5] P. BUNEMAN, S. NAQVI, V. TANNEN, AND L. WoNG, Principles of programming with
complex objects and collection types, Theoretical Computer Science, to appear. Extended
abstract in “LNCS 646: Proceedings of International Conference on Database Theory,”
Berlin, Germany, October 1992.

[6] P. BUNEMAN, S. DAvIDSON, A. WATTERS, A semantics for complex objects and ap-
proximate answers, Journal of Computer and System Sciences 43 (1991), 170-218.

34

7]

8]

[9]

[10]

[11]

[12]

[17]

18]

[19]

[20]

P. BunEmAN, A. OHORI, A. JuNG, Using powerdomains to generalize relational
databases, Theoretical Computer Science 91 (1991), 23-55.

N. DERSHOWITZ AND J.-P. JOUANNAND, Rewrite systems, in “Handbook of Theoretical
Computer Science”, North Holland, 1990, 243-320.

K.E. FLANNERY AND J.J. MARTIN, Hoare and Smyth power domain constructors com-
mute under composition, Journal of Computer and System Sciences 40 (1990), 125-135.

C. GUNTER, The mixed powerdomain, Theoretical Computer Science 103 (1992), 311-
334.

C. GUNTER AND D. ScoTT, Semantic Domains, in “Handbook of Theoretical Computer
Science”, North Holland, 1990, 633-674.

E. GUNTER AND L. LiBKIN, OR-SML: A functional database programming language for
disjunctive information and its applications, in “LNCS 856: Proceedings of Database and
Expert Systems Applications, Athens, September 1994,” 641-650.

R. HARPER, R. MILNER, AND M. TOFTE, “The Definition of Standard ML,” MIT Press,
1990.

R. HECKMANN, Lower and upper power domain constructions commute on all cpos,
Information Processing Letters 40 (1991), 7-11.

T. IMIELINSKI AND W. LipPskI, Incomplete information in relational databases, Journal
of the ACM 31 (1984), 761-791.

T. IMIELINSKI, R. VAN DER MEYDEN, AND K. VADAPARTY, Complexity tailored de-
sign: A new design methodology for databases with incomplete information, Journal of
Computer and System Sciences, to appear.

T. IMIELINSKI, S. NAQVI, AND K. VADAPARTY, Incomplete objects — a data model
for design and planning applications, in “Proceedings of ACM-SIGMOD International
Conference on Management of Data, Denver, Colorado, May 1991,” 288-297.

T. IMIELINSKI, S. NAQVI, AND K. VADAPARTY, Querying design and planning databases,
in “LNCS 566: Proceedings of 2nd International Conference on Deductive and Object-
Oriented Databases, Munich, Germany, December 1991,” 524-545.

L. LiBKIN, A relational algebra for complex objects based on partial information, in
“LNCS 495: Proceedings of Symposium on Mathematical Fundamentals of Database Sys-
tems, Rostock, May 1991,” 36—41.

L. LiBKIN, An elementary proof that upper and lower powerdomain constructions com-
mute, Bulletin of the EATCS 48 (1992), 175-177.

35

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

L. LiBKIN, “Aspects of Partial Information in Databases,” PhD Thesis, University of
Pennsylvania, August 1994. Available from
http://www.cis.upenn.edu/"1libkin/home.html.

L. LiBKIN, Approximation in databases, in “LNCS 893: Proceedings of 5th International
Conference on Database Theory, Prague, January 1995,” 411-424.

L. LiBKIN, Normalizing incomplete databases, in “Proceedings of 14th ACM Symposium
on Principles of Database Systems, San Jose, California, May 1995,” 219-230.

L. LiBkiN, L. WONG, Semantic representations and query languages for or-sets, in
“Proceedings of 12th ACM Symposium on Principles of Database Systems, Washington,
D. C., May 1993,” 37-48.

L. LiBkiN, L. WoNG, Some properties of query languages for bags, in “Proceedings
of 4th International Workshop on Database Programming Languages, Manhattan, New
York, August 1993,” 97-114.

L. LiBkIN, .. WoNG, Conservativity of nested relational calculi with internal generic
functions, Information Processing Letters 49 (1994), 273-280.

E. Moaat, Notions of computation and monads, Information and Computation 93 (1991),
55-92.

J. MooN AND L. MOSER, On cliques in graphs, Israel Journal of Mathematics 3 (1965),
23-28.

S. NAQVI AND S. TSUR, “A Logical Language for Data and Knowledge Bases,” Computer
Science Press, 1989.

T.-H. NGAIR, “Convex Spaces as an Order-theoretic Basis for Problem Solving,” PhD
Thesis, University of Pennsylvania, August 1992.

H. PuHLMANN, The snack powerdomain for database semantics, in “LNCS 711: Mathe-
matical Foundations of Computer Science, Gdansk, September 1993,” 650—659.

B. Rounbs, Situation-theoretic aspects of databases, in “CSLI 26: Proceedings of 1991
Conference on Situation Theory and Applications,” 229-256.

P. WADLER, Comprehending monads, Mathematical Structures in Computer Science 2
(1992), 461-493.

G. WINSKEL, Powerdomains and modality, Theoretical Computer Science 36 (1985),
127-137.

36

