
SEMANTIC REPRESENTATIONS AND QUERYLANGUAGES FOR OR-SETSLeonid LibkinAT&T Bell Laboratories600 Mountain AvenueMurray Hill, NJ 07974, USAEmail: libkin@research.att.com
Limsoon WongReal World Computing Partnership Novel FunctionInstitute of Systems Science LaboratoryHeng Mui Keng Terrace, Singapore 0511Email: limsoon@iss.nus.sg

Correspondence to: Leonid LibkinRoom 2A-422AT&T Bell Laboratories600 Mountain AvenueMurray Hill NJ 07974, USA
Running head: Languages for or-sets 1

AbstractOr-sets were introduced by Imielinski, Naqvi, and Vadaparty for dealing with limitedforms of disjunctive information in database queries. Independently, Rounds used a similarnotion for representing disjunctive and conjunctive information in the context of situationtheory. In this paper we formulate a query language with adequate expressive powerfor or-sets. Using the notion of normalization of or-sets, queries at the \structural" and\conceptual" levels are distinguished. Losslessness of normalization is established for alarge class of queries. We obtain upper bounds for the cost of normalization. An approachrelated to that of Rounds is used to provide semantics for or-sets. We also treat or-setsin the context of partial information in databases.

2

1 IntroductionApplications within design, planning, and scheduling areas have motivated Imielinski, Naqvi,and Vadaparty to introduce the notion of or-set [17, 18]. Although or-sets are in essence disjunc-tive information, they are distinguished from the latter by having two distinct interpretations.An or-set can either be treated at a structural level or at a conceptual level. The structural levelconcerns the precise way in which an or-set is represented. The conceptual level sees an or-setas denoting an object which is equal to a member of the or-set. For example, the or-set h1; 2; 3iis structurally a collection of numbers; however it is conceptually a number that is either 1, 2,or 3. (In this paper angle brackets hi are used for or-sets and fg for the usual sets.)The two views of or-sets are complementary. Consider a design template used by an engineer.The template may indicate that component A can be built by either module B or module C.Such a template, as explained in [17], is structurally a complex object whose component A isthe or-set containing B and C. A designer employing such a template should be allowed toquery the structure of the template, for example, by asking what are the choices for componentA. On the other hand, the designer should also be allowed to query about possible completeddesigns, for example, by asking if there is a low cost completed design. In the latter case, as thedesigner is still in the process of creating a design, the \completed design" is purely conceptual.Both views of or-sets are important and should be supported.The structural interpretation of or-sets is quite clear. However, the conceptual interpretationrequires further exposition. A few operators at the structural level prescribing the interactionof or-sets, products and ordinary sets are needed for this purpose. These operators are usedto express transformations among objects that are conceptually equivalent. Their goal is totransform any object X with or-sets into an or-set hx1; : : : ; xni, where xis are the objectsdenoted by X, and xis do not use or-sets. In other words, hx1; : : : ; xni may be considered asthe value that is represented by X, and the transformation X ! hx1; : : : ; xni as the passagefrom the structural to the conceptual level. We shall see in Section 3 that the operators beloware the only crucial ones for performing this transformation.The operator or �s : hhsii ! hsi
attens an or-set of or-sets of type s. For example, applyingor � to hh1; 2; 3i; h2; 4ii produces the or-set h1; 2; 3; 4i. The most important thing to note hereis that or � preserves the conceptual value of the input. First h1; 2; 3i is conceptually either 1,or 2, or 3. Similarly, h2; 4i is conceptually either 2 or 4. The input is conceptually either h2; 4ior h1; 2; 3i; that is, it conceptually represents 1, 2, 3, or 4. This is of course what the output isat the conceptual level.The operator or �2s;t : s�hti ! hs�ti takes in a pair of type s�hti and pairs the �rst componentwith every item in the second component, which is an or-set. For example, or �2 (1; h2; 3i) yieldsthe or-set h(1; 2); (1; 3)i. Here the input stands conceptually for a pair whose �rst componentis 1 and whose second component is either 2 or 3. That is, the input is conceptually either3

(1; 2) or (1; 3). Hence or �2 also has the important property of preserving the meaning at theconceptual level. We also use or �1s;t : hsi � t! hs� ti for the operator that does pairing theother way round.The operator �s : fhsig ! hfsgi takes in an ordinary set containing or-sets of types and produces an or-set containing sets of type s obtained by combining the or-setscomponentwise in all possible ways. For example, � fh2; 3i; h4; 5; 3ig produces the or-sethf2; 4g; f2; 5g; f2; 3g; f3; 4g; f3; 5g; f3gi. This is also an operator that preserves conceptualmeaning. In the above example, the input is conceptually a set of two elements such thatone of them is either 2 or 3 and the other is either 4, or 5, or 3. This is precisely what theoutput is conceptually. Note that sets such as f2g, f4g, etc. are not part of the output, eventhough f3g is because it arises by letting both the �rst and second elements be 3.As a further example, consider the result of applying � to fh1; 2i; hi; h3ig. It is nothf1; 3g; f2; 3gi. The correct output is the empty or-set hi. To see this, let us �nd out what theinput is at the conceptual level. It represents a set of three elements, that are conceptuallythe values represented respectively by h1; 2i, hi, and h3i. Hence the �rst element is either 1or 2 and the third is 3. But what is the second element? Recall that an or-set represents atthe conceptual level an object that is equal to one of its elements. Since hi has no element, itdoes not represent any object at the conceptual level. Consequently, our input represents atthe conceptual level \a set having an element which is not anything." As there is no such set,the input does not represent any object either. This coincides precisely with the meaning ofthe output. An item which does not represent any object at the conceptual level indicates aconceptual inconsistency. (But note that it is still structurally meaningful.)The above operators provide an idea of what to include in a structural query language. Butwhat kind of operators should be provided in a conceptual query language? Should there bean operator for testing whether two objects are conceptually equivalent? Should there be anoperator for testing whether one object is among the objects denoted by a second object?Fortunately, it is not necessary to make such chaotic \enhancements." It is found that anytwo objects which are conceptually equivalent can be reduced to the same object by repeatedapplications of the above operators. The normal form induced happens to be independent of theprecise sequence of applications of these operators. Moreover, given the type of any object, thetype of its normal form can be read o�. Therefore, one can take the conceptual meaning of anyobject to be its normal form under the rewriting induced by the above operators. Consequently,a conceptual query language can be built by extending a structural query language with a singleoperator normalize which takes the input object to its normal form. A query at the conceptuallevel is then simply a query performed on normal forms.Related work. Imielinski, Naqvi, and Vadaparty stressed applications of or-sets in designand planning areas and informally explained the distinction between structural and conceptualqueries [17, 18]. The semantics and query language proposed by [17] are rather involved. They4

de�ned a concept of order-independence which is related to the notion of normalization but isbased on assigning object identi�ers, and gave conditions for order-independence. In addition,they were able to demonstrate a coNP-complexity result for that particular proposal. In[18] they studied some intrinsic lower bounds on complexity of LDL-style [29] queries on or-sets. The language can express queries of hyper-exponential complexity. Nevertheless, theywere successful in identifying certain restricted tractable fragments that are useful in real-lifeapplications.Rounds [32] studied complex object databases from the situation-theoretic point of view. Con-nections with natural language problems motivated him to introduce the notions of conjunctiveand disjunctive information which correspond exactly to our notions of sets and or-sets. Hestudied order relations on complex objects and their logical representations.Organization. A query language or-NRA that cleanly integrates or-sets and more traditionaltypes of data at the structural level is proposed in Section 2.In Section 3 we give two semantic representations which are in the spirit of Rounds' work [32]but use simpler machinery. For example, using our representations we were able to provide asimple proof that �s is the isomorphism of semantic domains of types fhsig and hfsgi.A query at the conceptual level is a query on an object that is in a certain normal form. InSection 4, the normal form is properly characterized. Moreover, we show that the process ofnormalization is coherent. That is, the normal form of any object is independent of how theobject is normalized. This allows us to de�ne a query language or-NRA+ at the conceptuallevel by adding a new operator normalize to or-NRA.Since di�erently represented objects may have the same value (if they have the same normalform), it is clear that certain structural information is lost by normalization. In Section 5, alosslessness theorem is proved. Consequently, loss of structural information has no e�ect withrespect to a large class of queries.Conceptual queries are performed on normalized data. In Section 6, we study a few importantcosts of normalization. In particular, an upper bound on the number of elements in normalforms of complex objects and an upper bound on the actual size of normal forms of complexobjects are given. Also signi�cant is that we have been able to demonstrate that every de�nablequery in or-NRA+ is at most exponential in the size of input, in contrast to the proposal ofImielinski, Naqvi, and Vadaparty [18] which contains some hyperexponential queries.In the last section we brie
y describe an implementation of the proposed languages and outlinesome problems for further research.The extended abstract of this paper appeared in [24].5

2 Structural Query LanguageA nested relational language based on structural recursion [4, 3] and monads [27, 33] wasproposed in [5]. This language is of polynomial time complexity and smoothly generalizesmany approaches [2] to nested relational algebras. It is extensible and has an appealing syntax.For example, hx j x 2 normalize(DB); is cheap(x)i selects cheap completed designs assumingthat is cheap and normalize are de�ned. (In Section 4, normalize is added as a primitive toobtain the conceptual query language.)The algebraic version of the language is used in this paper. We denote this language byNRA(�) where � are some additional primitives like operations on integers. As observed byWadler [33], the same syntax can be used for many \collection" types besides sets. In particular,by replacing the set operators of NRA by the corresponding operators for or-sets, a languagefor programming with or-sets can be obtained. This language is denoted by NRAor.For example, the above query becomes or � � or map(cond(is cheap; or �;Khi�!)) � normalize.Here cond is a primitive: cond(p; t; f)(x) = t(x) if p(x) is true and f(x) otherwise. Thencond(is cheap; or �; Khi�!) (x) is hxi if x is cheap and hi otherwise. or map applies it to everyelement in the normalized database, returning hxi for each cheap x and hi for each expensiveone. or �
attens this or-set of or-sets, producing an or-set containing precisely the cheapcompleted designs.In this section, the language for sets NRA and the language for or-sets NRAor are integratedinto a single language we called the structural query language, denoted by or-NRA. or-NRAsupports structural manipulations of complex objects containing a mixture of freely combinedtuples, sets, and or-sets. This language is obtained by the union of NRA and NRAor and anoperator � prescribing the interaction between sets and or-sets.Types. A type of or-NRA is either an object type or a function type s! t, where s and t areboth object types. The object types are given by the grammar: t ::= b j t� t j ftg j hti, whereb ranges over base types such as booleans and integers. Included in b is a special base type unitcontaining precisely one element. In this paper hti stands for the or-set of type t, while ftg isthe ordinary set of type t.Morphisms (expressions). The \morphisms" (or expressions) of or-NRA are formed ac-cording to the rules in Figure 1. The language is parameterized by a collection of primitives pof function type Type(p). Among them are the equality tests =s: s� s! bool for each objecttype s, and a collection of constants c of base type Type(c). Type superscripts are usuallyomitted because the most general type of any given morphism can be inferred; see [13].Semantics. �1 and �2 are the �rst and second projections. ! maps everything to the uniqueelement of type unit. (f; g) is pair formation, f � g is the composition of f and g. id isthe identity function. or �2, or �, and � have already been described. or � is the singleton6

Operators shared by NRA and NRAorg : u! s f : s! tf � g : u! t �s;t1 : s� t! s �s;t2 : s� t! t f : u! s g : u! t(f; g) : u! s� t!t : t! unit Kc : unit! Type(c) p : Type(p) idt : t! tOperators from NRA�s;t2 : s� ftg ! fs� tg �t : t! ftg [t : ftg � ftg ! ftg�t : fftgg ! ftg Kfgt : unit! ftg f : s! tmap f : fsg ! ftgOperators from NRAoror �2s;t : s� hti ! hs� ti or �t : t! hti or [t : hti � hti ! htior �t : hhtii ! hti Khit : unit! hti f : s! tor map f : hsi ! htiInteraction of sets and or-sets�t : fhtig ! hftgiFigure 1: Syntax of or-NRA
7

formation: or �(x) = hxi. or [makes the union of two or-sets. or map(f) applies f to allelements of an or-set. Khi produces an empty or-set. or �1 has been omitted because it isde�nable as or map(�2; �1) � or �2 � (�2; �1). The operators from NRA have similar meaningfor the usual sets.We have included Khi, the morphism which produces the empty or-set, in or-NRA. We notethat if f is a morphism of or-NRA such that Khi does not occur in it and such that eachprimitive p in it does not produce the empty or-set, then f applied to any complex object xnot containing any empty or-set yields a complex object f(x) containing no empty or-set.The primitive � is essentially a translation of conjunctive normal form into disjunctive normalform. This operation may be very expensive. Indeed, if its argument is a collection of ntwo-element or-sets, all 2n elements being distinct, then � produces an or-set containing 2n n-element sets. Several query languages have expensive exponential-cost operations. For example,in the Abiteboul-Beeri algebra [1, 5], one of the primitives is powerset : ftg ! fftgg which takesa set and returns the set of all its subsets. The result that we are going to formulate can beintuitively understood as follows: the expressive power of � is that of powerset . However,powerset does not use the hi type constructor. To be able to speak of the equivalence ofexpressive power of languages one of which uses or-sets and the other does not, for technicalpurposes only, we introduce the functions or to set : hti ! ftg and set to or : ftg ! hti withthe obvious semantics: or to set(hx1; : : : ; xni) = fx1; : : : ; xng and set to or(fx1; : : : ; xng) =hx1; : : : ; xni. We remark here that, if or to set and set to or are given, then NRA and NRAorare interde�nable. That is, NRA(or to set; set to or) �= NRAor(or to set; set to or).Proposition 2.1 NRA(or to set; set to or; �) �=NRA(or to set; set to or; powerset).Proof. It can be seen that powerset is de�nable as follows:powerset = or to set � � �map(or [� (or � �Kfg�!; or � � �))Conversely, we must show that � is de�nable in NRA(or to set; set to or; powerset). For thesake of clarity we use cond to show that � is de�nable. A clumsier proof that does not usecond is also possible. It is known [5] that the test for equal cardinality can be implemented inNRA(powerset). To check whether jX j�jY j, notice that� �map(�Z:cond(equal card?(X;Z); X; fg))(powerset(Y))returns X if jX j�jY j and fg otherwise, thus giving us the test for lesser cardinality.Now, given an input of type fhtig, �rst apply map(or to set) to it and then
atten the result,thus obtaining the set of elements that occur in the input. Applying powerset now gives theset of all sets of those elements. A set of elements of the input makes it to the output if andonly if two conditions hold. First, its cardinality does not exceed the cardinality of the input,8

which is the number of or-sets. Second, it has a nonempty intersection with any element of theinput, unless the input is fg. Since selection, lesser cardinality test, intersection and test fornonemptiness are de�nable in NRA(powerset) (see [5] and above), selection over the powersetfollowed by an application of set to or yields the desired result. 23 Partial Information and Or-setsIn this section we address some semantic issues. The presence of or-sets in a database meansthe presence of partial information. We assume that partiality can be expressed by means of apartial order on database objects. That is, x � y expresses the fact that x is more partial thany or y is more informative than x. The idea of using partially ordered sets to model partialinformation has been around since early 80s: Codd's tables, for example, can be captured by so-called
at domains which are obtained from unordered sets by adding a unique bottom element(null). An approach of having three kinds of nulls | unknown, nonexistent, existent unknown| is another example of ordering on objects. In fact, a general approach to the treatment ofpartial information as ordering on the set of objects was proposed in [7] and further developedin [6, 19, 21]. We remark here that this approach is also suitable for databases without partialinformation. In such a case, values of base types are totally unordered.Assume that orders on values of base types are given. It is clear how to order pairs: (x; y) �(x0; y0) i� x � x0 and y � y0. However, there is no immediate answer to the question of how toextend the ordering to set and or-set types. In [7, 6, 19, 32] two ways to extend an orderingto subsets of a partially ordered set were studied. Let hX;�i be a poset and A;B � X. TheHoare (�[) and the Smyth (�]) orderings are de�ned as follows:A �[B , 8a 2 A 9b 2 B : a � bA �] B , (8b 2 B 9a 2 A : a � b)& (B = ;) A = ;)Traditionally the condition B = ;) A = ; is omitted because the Smyth powerdomain doesnot contain the empty set. Observe that if X is totally unordered, �[is the subset and �] isthe superset ordering on non-empty sets. The Hoare ordering was also used in [15] to orderrelations with partial information. We will try to justify using �[to order values of set typesand �] to order values of or-set types.Assume that a set A � X is given. How can we improve our knowledge about the realworld situation represented by this set? There are two ways to do so. First, by replacing anelement a 2 A by a set A0 of elements greater than a. For example, if a record [Name)?; O�ce) 05150] is contained in the database, we can improve our knowledge about theo�ce assignment by replacing this record by [Name) 0Joe0; O�ce) 05150] and [Name)0Mary0; O�ce) 05150]. Second, we can add an element to the set. For example, adding arecord [Name) 0Bill0; O�ce) 02120] gives us more information about o�ce allocation.9

De�ne a binary relation ; on subsets of X as follows: A ; (A� fag) [A0, where a � a0 forall a0 2 A0, and A; A[fag. A set B is said to be more informative than A, denoted A �; B,if B can be obtained from A by a sequence of transformations ;. In other words, �; is there
exive-transitive closure of ;.Similarly for or-sets we de�ne 7! by A 7! (A � fag) [A0, where a � a0 for all a0 2 A0, andA 7! A� fag provided that A� fag is not empty (removing an element from an or-set makesit more informative). Again, �7! is de�ned as the re
exive-transitive closure of 7!.Proposition 3.1 �; coincides with �[and �7! coincides with �].Proof. First notice that ; ��[and 7!��]. Therefore, transitivity of �[and �] implies�;��[and �7!��].To prove the reverse inclusion, let A �[B. The case of empty sets is obvious, so assumeA;B 6= ;. Let Ba = fb 2 B j a � bg and BA = Sa2ABa. Notice that BA 6= ;. For each a 2 A,apply the following transformations to A: A ; (A� fag) [(Ba [fag) for each a 2 A in anyorder. This shows A �; (A [BA). For any a 2 A, pick ba 2 Ba and apply transformationsA[BA ; ((A[BA)�fag)[fbag in any order, thus obtaining A �; BA. Finally, if B�BA 6= ;and B�BA = fb1; : : : ; bkg, BA ; BA [fb1g; : : :; BA [fb1; : : : ; bkg = B, i.e. A �; B. Thisshows �[� �;. The proof of �]� �7! is similar. 2This proposition justi�es the semantics of types de�ned below. Notice that the semantics foror-sets is given in such a way that the empty or-set is incomparable with any other or-set. Thismatches the intention that the empty or-set represents inconsistency.� For each base type b a poset h[[b]];�bi is given;� [[s� t]] = h[[s]]� [[t]];�s � �ti;� [[ftg]] = hP�n([[t]]);�[ti;� [[hti]] = hP�n([[t]]);�]ti.In several papers dealing with partial information in databases it was proposed that instances oftype ftg be restricted to those containing no comparable elements, commonly called antichains,see [7, 19]. For example, if one �eld of a record plays the role of the object identi�er (oid),then instead of having two comparable elements with the same oid their join should be taken,provided the records with the same oid are consistent. One way to obtain an antichain froman arbitrary �nite set is to take all its maximal elements. Dually, we can take its minimalelements. Antichains thus obtained will be denoted by max�A and min�A or just maxA and10

minA if the ordering is understood. We suggest using max for the usual sets and min for or-sets[21, 32]. Then the relations ; and 7! must be rede�ned as follows: A;a max((A� a) [A0),A ;a max(A [a) and A 7!a min((A � a) [A0), A 7!a min(A � a). As before, we de�ne �;aand �7!a to be the transitive closure of ;a and 7!a respectively.Proposition 3.2 On the family of �nite antichains of hX;�i, �;a coincides with �[and �7!acoincides with �].Proof. Again, as in the proof of Proposition 3.1, only the case of nonempty sets should beconsidered and only one direction, namely �[� �;a and �]� �7!a must be proved as the otherdirection is immediate. We also need the following ordering on sets, called the Plotkin ordering(cf. [11]): A �\ B , A �[B and A �] B.Let A;B 6= ;, A \ B = ;. De�ne BA as in the proof of Proposition 3.1. Similarly, Ab = fa 2A j a � bg and AB = Sb2B Ab.Claim 1. Let A �\ B, A \ B = ;. Then A �;a B and, moreover, only elements of A [B areused in the transformations.Proof of Claim 1. We proceed by induction on the size of B. The base case jB j= 1 is obvious.If jB j> 1, let B0 be a minimal subset of B such that A �\ B0. Our goal is to show that thereexists b 2 B0 such that A�Ab �\ B0�b. Then, by the induction hypothesis, A�Ab �;a B0�fbg.Since the left hand side and the right hand side remain antichains if one adds any subset ofAb to them, we obtain A �;a Ab [(B0 � fbg) (the same transformations can be used). SinceAb [(B0 � fbg) �;a B0, A �;a B0 follows, and adding elements of B � B0 gives us A �;a B.Assume that there is no b 2 B0 such that A�Ab �\ B0 � b. Since A�Ab �[B0 � b holds, thismeans A � Ab 6�] B0 � b for any b 2 B. Fix an element b 2 B. Since B0 � b 6= ;, we can �ndan element b0 2 B0 � b such that a 6� b0 for all a 2 A�Ab. In other words, Ab0 � Ab. We claimthat A �\ B0 � b0. Indeed, A �] B0 �] B0 � b0. Now consider a 2 A. We must show that thereis b0 2 B0� b0 such that a � b0. Since A �[B0, there is b0 2 B0 such that a � b0. If b0 6= b0, weare done. If b0 = b0, then a 2 Ab0 � Ab and hence a � b 2 B0� b0. Thus, A �[B0� b0 and henceA �\ B0 � b0, which contradicts the minimality of B0. This contradiction �nishes the proof ofClaim 1.Claim 2. Let A �\ B, A \ B = ;. Then A �7!a B and, moreover, only elements of A [B areused in the transformations.Proof of Claim 2. The proof is similar to that of Claim 1. We use induction on jB j. Sinceremoval is now allowed, assume w.l.o.g. that no proper subset of A is less than B w.r.t. �\. Weclaim that there exists a 2 A such that A�fag �\ B�Ba. Suppose not; then for every a 2 Athere exists a1 2 A such that Ba1 � Ba. Continuing, we obtain Ba � Ba1 � Ba2 � : : :. Since allthe sets are �nite, Bai = Baj for some distinct ai and aj which contradicts minimality of A for11

A�faig �\ B. Now, given a 2 A such that A�fag �\ B�Ba, apply the hypothesis to A�fagand B�Ba and observe that a is not under any element of B�Ba. Hence, A �7!a (B�Ba)[fagsince only elements of (A�fag)[(B�Ba) were used in transformation. (B�Ba)[fag �7!a B�nishes the proof of Claim 2.Claim 3. Let A �;a B (or A �7!a B) and all ; and 7! transformations use only elements of Aand B. If C is a �nite set such that both A[C and B[C are antichains, then A[C �;a B[C(or A [C �7!a B [C).Proof of Claim 3. Clearly, C does not interact with any �;a or �7!a transformation, providedthey use only elements of A [B.Now, let A �[B. Since A and B are antichains, for A0 = A � B and B0 = B � A one hasA0 �[B0. Therefore, A0 �\ B0A and by Claim 1 A0 �;a B0A. Moreover, all transformations useonly elements from A0 [B0A. Then, by claim 3, A �;a B0A [(A \ B). Adding elements to theright hand side one obtains A �;a B. The proof that A �] B implies A �7!a B is similar and itrelies on Claims 2 and 3. The proposition is proved. 2This proposition shows that if we deal with antichains, we can change the last two clauses inthe inductive de�nition of the semantics of types to� [[ftg]]a = hA�n([[t]]);�[ti;� [[hti]]a = hA�n([[t]]);�]ti;where A�n(X) is the set of �nite antichains of X. It is clear how to de�ne the semantics ofor-NRA expressions if either semantics for types is used. In the case of the antichain semantics,if an application produces a set (or or-set), max (or min) operation is used to make the resultingobject into an antichain.The operator � in the case of the antichain semantics requires some care: �a � [[�]]a is a functionfrom [[fhtig]]a to [[hftgi]]a. Given an element of [[fhtig]]a, i.e. an antichain A = fA1; : : : ; Angw.r.t. �[, of antichains from [[t]]a, let Ai = fai1; : : : ; ainig. Let FA be the set of all choicefunctions f : f1; : : : ; ng ! N such that 1 � f(i) � ni. For f 2 FA, f(A) is de�ned to befa1f(1); : : : ; anf(n)g. Then �a(A) = minf2FA �[(max f(A))Furthermore, the result that iterated powerdomains are isomorphic [9, 14] can now be given avery simple description along the lines of [20]:
12

Theorem 3.3 �a establishes an isomorphism between [[fhtig]]a and [[hftgi]]a. The converse �ais �a(A) = maxf2FA �](min f(A)); A 2 [[hftgi]]a:Proof. We have to show that �a maps [[fhtig]]a to [[hftgi]]a, �a maps [[hftgi]]a to [[fhtig]]a and �aand �a are mutually inverse and monotone. The �rst two claims follow immediately from thede�nitions of �a and �a. To complete the proof, show that �a is monotone and �a � �a = id.By duality the proof of monotonicity of �a and �a � �a = id can be obtained.We start with two easy observations. If Y1 and Y2 are �nite subsets of an arbitrary poset, then(1) Y1 �[Y2 i� maxY1 �[maxY2 and (2) Y1 �] Y2 i� minY1 �] minY2.Throughout this proof, A is de�ned as above, i.e. A = fA1; : : : ; Ang and each Ai consists ofelements aij, j = 1; : : : ; ki.Claim 1. �a is monotone.Proof of Claim 1. Let A;B = fB1; :::; Bmg 2 [[fhtig]]a and A �[B. We must prove that�a(A) �] �a(B). In view of the two observations above, it is enough to show that for anyf 2 FB there exists g 2 FA such that g(A) �[f(B). Since for each i = 1; : : : ; n there exists jisuch that Ai �] Bji, there is an element aipi 2 Ai such that aipi � bjif(ji). Let g(i) = pi. Then forthis function g one has faig(i) j i = 1; : : : ; ng �[fbif(i) j i = 1; : : : ; mg, i.e. g(A) �[f(B). Claim1 is proved.Let A 2 [[fhtig]]a and B = fB1; : : : ; Bmg = �a(A) 2 [[hftgi]]a. By the two observations above,to show that �a � �a = id, i.e. that �a(B) = A, it su�ces to prove two claims.Claim 2. For any f 2 FB there exists Ai 2 A such that f(B) �] Ai.Claim 3. Every Ai is in �a(B).Proof of Claim 2. Let C be the collection of all sets f(A) where f 2 FA; C = fC1; : : : ; Ckg.Then for any g 2 FC, there exists Ai 2 A such that Ai is contained in g(C) because, if this isnot the case, for any Ai 2 A there exists ji � ki such that aiji 2 Ai and, for any f 2 FA, g onf(A) picks an element di�erent from aiji. If we de�ne f0 such that f0(i) = ji, g may pick onlyelements of form aiji on f0(A), a contradiction. Therefore, g(C) �] Ai for some i.Let f 2 FB. Let H be the set of functions in FA that correspond to the elements of B = �a(A)or, in other words, maxh(A) 2 B for h 2 H. Then, for any h0 2 FA�H, there exists a functionh 2 H such that maxh(A) �[maxh0(A), i.e. h(A) �[h0(A). Since h 2 H, max h(A) 2 B, i.e.maxh(A) = Bi. If f(i) = j, then there is an element in h0(A) that is greater than bij. De�nea function g 2 FC to coincide with f on those Ci's that are given by the functions in H. OnCi that corresponds to f 2 FA �H, let g pick an element which is greater than some bij where13

f(i) = j (we have just shown it can be done). Then f(B) �] fcig(i) j i = 1; : : : ; kg = g(C). Weknow that there exists Ai 2 A such that g(C) �] Ai. Thus, f(B) �] Ai. Claim 2 is proved.Proof of Claim 3. We prove that for any aij 2 Ai there exists Bl 2 B such that aij 2 Bl.Consider the set F ijA of functions f 2 FA such that f(i) = j. If for no f 2 F ijA : aij 2 max f(A),then there exists Ap 2 A such that all elements of Ap are greater than aij, i.e. Ai �] Ap. Thiscontradicts our assumption that A is an antichain w.r.t. �]. Hence, aij 2 max f(A) for at leastone function in F ijA . Since A is an antichain, for any p 6= i there exists apq 2 Ap which is notgreater than any element of Ai. Change f to pick such an element for any p 6= i. Then aijis still in max f(A). There exists a function f 0 2 FA such that max f 0(A) �[max f(A) andmax f 0(A) 2 �a(A). If f 0(i) = j 0 6= j, then, since f 0(A) �[f(A) and Ai is an antichain, aij0 � apqfor some p and q, where p 6= i. But this contradicts the de�nition of f . Hence, f 0(i) = j andaij 2 max f 0(A) because aij 2 max f(A). Since max f 0(A) = Bl for some index l, aij 2 Bl 2 B.Let B0 be the collection of elements of B that contain elements of Ai. Then we can de�ne afunction f 2 FB on elements of B0 to pick all elements of Ai. Each Bj 2 B �B0 either containsan element of Ai or contains an element which is greater than some aip 2 Ai. Let f pick anysuch element. Then min f(B) = Ai. Suppose Ai 62 �a(B). Then Ai �] min g(B) for somefunction g 2 FB such that min g(B) 2 �a(B). By Claim 2, g(B) �] Aj for some Aj. Hence,min g(B) �] Aj and since A is an antichain w.r.t. �], Ai = Aj = min g(B) 2 �a(B). This�nishes the proof of Claim 3 and the theorem. 2It was shown in [34] that the orderings �[and �] can be given a logical interpretation. Mo-tivated by applications in the semantics of concurrent programming, Winskel used the modalconnectives 2 and 3 to describe �[and �]. Rounds [32] used a similar logic to show the in-teraction between derivable properties of complex objects and their ordering. Here we presentwhat we believe is the simplest interpretation of the logics of [32, 34] for complex objects withor-sets.Start with an unspeci�ed language L that contains the symbol _ for disjunction but does notcontain &;2 and 3. With each element x 2 [[b]], where b is a base type, associate a collectionof formulae in L closed under _, called the theory of x and denoted by Th(x), in such a waythat x < y implies Th(x) � Th(y) and x 6= y implies Th(x) 6= Th(y). For example, if [[b]] is a
at domain, i.e. an unordered collection of values with added bottom element ? which is lessthan anything else, the above requirement says that theories of distinct nonbottom elements donot coincide and the theory of ? contains all other theories (i.e. bottom implies everything).The theory of a pair is a collection of pairs of statements from the theories of the components.The theory of a set is informally de�ned as those facts that are true of all elements of the set.A theory of an or-set contains facts that are true of at least one element of the or-set. Thesedescriptions are the unary connectives in modal logic usually denoted by 2 and 3.14

Now we can give a formal de�nition of theories of objects in an extended language L[f&;2;3g.A theory of an object x, Th(x), is the minimal collection of formulae which contains� f'1&'2 j 'i 2 Th(xi); i = 1; 2g if x = (x1; x2);� f2' j 8i : ' 2 Th(xi)g if x = fx1; : : : ; xng;� f3' j 9i : ' 2 Th(xi)g if x = hx1; : : : ; xni,and, together with any ' 2 Th(x), all formulae ' _ (that is, if ' is in the theory of x, so areall the disjunctions ' _).Proposition 3.4 Given two objects x; y of the same type, x � y i� Th(x) � Th(y).Proof. We proceed by induction on the type of x and y. The base case follows immediatelyfrom the de�nition. The case of pair is easy. Let x = fx1; : : : ; xng and y = fy1; : : : ; ymg. Thenx � y means x �[y. If 2' 2 Th(y), then for all i = 1; : : : ; m: ' 2 Th(yi). Given any xj,there exists yi such that xj � yi; hence ' 2 Th(xj) and therefore 2' 2 Th(x). Conversely,let Th(x) � Th(y). Suppose that x 6�[y, i.e. there exists xi such that xi � yj for no yj.Then, by the hypothesis, there exists a formula 'j 2 Th(yj) such that 'j 62 Th(xi). Let' = '1 _ : : : _ 'm. Then ' 2 Th(yj) for all j = 1; : : : ; m. Therefore, 2' 2 Th(y) � Th(x), i.e.'1 _ : : : _ 'm 2 Th(xi) which means that for at least one j: 'j 2 Th(xi). This contradictionproves x �[y. A similar proof for the case of or-sets which is based on the properties of �] isomitted. 2Since X �[Y i� maxX �[maxY and X �] Y i� minX �] minY , Proposition 3.4 is true ifeither [[�]] or [[�]]a semantics is used.4 Conceptual Query Language and NormalizationAs we have pointed out, there are two levels of manipulation of objects | structural andconceptual. This section is devoted to the query language for the conceptual level.We start with an example. Given an object x = (fh1; 2i; h3ig; h1; 2i) of type fhintig � hinti.Denote the �rst component by y. Applying or �2 to x �rst yields h(y; 1); (y; 2)i which is anobject of type hfhintig � inti. Applying or map(� � �1; �2) yields an objecth(hf1; 3g; f2; 3gi; 1); (hf1; 3g; f2; 3gi; 2)i15

of type hhfintgi � inti. Finally, applying or � � or map(or �1) yieldsh(f1; 3g; 1); (f1; 3g; 2); (f2; 3g; 1); (f2; 3g; 2)iof type hfintg � inti. This can be considered as a conceptual level object because all thepossibilities are listed.However, one could have used another strategy to list all the possibilities. For example, to apply(���1; �2) �rst to obtain an object of type hfintgi�hinti and then or ��or map(or �1)�or �2to obtain an object of type hfintg � inti. It is easy to check that such a strategy results inprecisely the same object as the previous one.In fact, there is a general result saying that each type has a unique representation at theconceptual level such that no or-set type occurs in the type expression except as the outermosttype constructor. For reasons that should emerge shortly we call such a type a normal form.Furthermore, for each object of type t there exists its unique representation at the conceptuallevel whose type is the normal form of t.To state these results precisely, we need some de�nitions about rewrite systems [8]. If a signatureis �xed, a rewrite system is a set of rules of form �1 �! �2 where �1; �2 are terms. If � is obtainedfrom � by rewriting a subterm of � , we also write � �! �. If � is obtained from � by a (possiblyempty) sequence of applications of rewrite rules, we write � �!�! �.A term � is called a normal form if there is no other term � such that � �! �. A rewritesystem is called terminating if there is no in�nite sequence of terms �1 �! �2 �! : : :. It iscalled Church-Rosser if, whenever � �!�! �1 and � �!�! �2, there exists a term � 0 such that�1 �!�! � 0 and �2 �!�! � 0. In a Church-Rosser terminating system for every term � there existsa unique normal form nf (�) such that � �!�! nf (�).Now we introduce the rewrite rules for type expressions:t� hsi �! ht� si hti � s �! ht� sihhtii �! hti fhtig �! hftgiProposition 4.1 The above rewrite system is terminating and Church-Rosser. The normalform nf (t) for type t can be found as follows. If t does not use hi, then nf (t) = t. Otherwise,remove all angle brackets from t. If the resulting type is t0, then nf (t) = ht0i.Proof. To show that the rewrite system is terminating, de�ne the following function on types.Considering types as their derivation trees, let ki be the number of occurrences of hi on the ithlevel of the derivation tree of type t. If the height of the derivation tree is n, de�ne '(t) as�ni=1ki � i. It is easy to see that if t �! t0, then '(t) > '(t0). Hence, any rewriting terminates.16

To prove Church-Rosserness, one has to �nd the so-called critical pairs [8], which in essence arepairs of terms that can give rise to ambiguity in rewriting, and show that for any critical pair(�1; �2) there exists a term � such that �1 �!�! � and �2 �!�! � . We refer the interested readerto [8] for the de�nitions and proof of the critical pair lemma. A straightforward analysis of ourrewrite system reveals the following critical pairs: 1) (hfhtigi; fhtig); 2) (ht � hsii; t� hsi); 3)(hhsi � ti; hs � htii) and 4) (hhsi � ti; hhsii � t) and their symmetric analogs. The terms towhich both components of the critical pairs rewrite are hftgi for 1), ht�si for 2) and hs� ti for3) and 4). Thus, the rewrite system is Church-Rosser and therefore has unique normal forms.The proof of the last statement is by induction on the structure of a given type. We limitourselves only to types containing h�i. The base case is immediate. In the general case, considerthree subcases: 1) t = t1 � t2, 2) t = ft1g, 3) t = ht1i. In subcase 1, t0 = t01 � t02, hence, if botht1 and t2 contain or-sets, nf (t1) = ht01i; nf (t2) = ht02i and t �!�! ht01i � ht02i �!�! ht01 � t02i = ht0iwhich is a normal form. Thus, nf (t) = ht0i. The simple proofs of other cases are omitted. 2Having de�ned the rewrite rules for types, we must show how to apply these rules to objects.First, associate the following morphisms with the �rst three rules of the rewrite system:or �2 : t� hsi �! ht� si or �1 : hti � s �! ht� si or � : hhtii �! htiOne may be tempted to associate � with the rewrite rule fhtig �! hftgi. However, the followingsubtlety prevents us from doing so. In the process of applying the functions corresponding to therewrite rules, we may obtain an object of type fhtig in which two or-sets, say ha; bi, coincide.Using the set semantics forces us to keep only one copy. Hence, the set fa; bg will not beincluded in the result (because it is not possible to choose a from one copy of ha; bi and b fromthe other, as we only have one copy), and consequently some of the objects can be lost from theconceptual level representation. This suggests keeping track of duplicates in order to obtainthe correct result. In other words, we should use multisets rather than sets.To formalize this, we introduce the new type fjtjg of multisets of type t. Multiset types willonly be used internally for the normalization process and should not be considered as a part ofthe language. With each type t we associate a type td, which is obtained from t by replacingall set brackets fg with multiset brackets fjjg (d is for \duplicates"). Also, each object o of typet is turned into an object od : td by making all sets into multisets with single multiplicities.Conversely, for every type t we de�ne ts by replacing all fjjg with fg, and for every o : t, theobject os : ts is de�ned by removing duplicates from all multisets and making them ordinarysets.We need two operations on multisets that resemble two operations of or-NRA. One isd map(f) : fjsjg ! fjtjg, provided f is of type s ! t. It applies f to all elementsof its input. Since no duplicates are removed, d map always preserves cardinality. Theother operation is �d : fjhtijg ! hfjtjgi. It is de�ned exactly as �, except that its in-put may have duplicates, and duplicates are not removed from the result. For example,�d(fjh1; 2i; h1; 2ijg) = hfj1; 1jg; fj1; 2jg; fj2; 2jgi. 17

For types of the form td we de�ne a rewrite system similar to the one above, except thatfjhtijg ! hfjtjgi is used in the place of fhtig ! hftgi. This rewrite system is also terminatingand Church-Rosser. Moreover, for any ordinary type t, nf (t) may be obtained as ts0 where t0is the normal form of td in the new rewrite system. The functions we associate with the rulesnot involving bags are those shown above. We associate �d with fjhtijg ! hfjtjgi.Let t be a type and p a position in the derivation tree for t such that applying a rewrite rulewith its associated function f to t at p yields type s. (We assume that t does not use f�g.)Our aim is to de�ne a function d app(t; p; f) : t! s showing the action of the rewrite rules onobjects. De�ne it by induction on the structure of t:� if p is the root of the derivation of t, then d app(t; p; f) = f ;� if t = t1 � t2 and p is in t1 , then d app(t; p; f) = (d app(t1; p; f) � �1; �2);� if t = t1 � t2 and p is in t2, then d app(t; p; f) = (�1; d app(t2; p; f) � �2);� if t = fjt0jg then d app(t; p; f) = d map(app(t0; p; f));� if t = ht0i then app(t; p; f) = or map(app(t0; p; f)).Given a type t and a rewriting strategy r := t f1�! t1 f2�! : : : fn�! tn such that the rewriterule with associated function fi is applied at a position pi, we can extend the function d app tod app(t; r) : t! tn by d app(t; r) = d app(tn�1; pn; fn) � : : : � d app(t1; p2; f2) � d app(t; p1; f1).Now assume that we are given an object x of type t. Suppose r is a rewriting that rewrites tto nf (t). Associated with r, there is a rewriting rd from td to nf (t)d. We de�ne app(t; r) : t!nf (t), the result of applying r, as follows:app(t; r)(x) = [d app(td; rd)(xd)]sIn other words, turn x into an object with multisets, apply rd and then remove duplicates. Thefollowing theorem, which is a key result that allows us to introduce techniques for conceptualquerying, says that the result of app(t; r) is independent of the rewriting r.Theorem 4.2 (Coherence) Given a type t, any two rewrite strategies r1; r2 : t �!�! nf (t) yieldthe same result on objects. That is, for any object x of type t, app(t; r1)(x) = app(t; r2)(x).Proof. Let us �rst explain the strategy for proving the theorem. It su�ces to proved app(td; rd1)(xd) = d app(td; rd2)(xd). We de�ne an abstract rewrite system on objects ofform od (that is, objects using multisets but not ordinary sets) by letting x ! y i� y can beobtained from x by an application of one of the rewrite rules for types to x (by means of d app).For instance, (1; hh1i; h2ii)! (1; h1; 2i) by applying hhtii ! hti in the second position. If x is18

of type t and y is of type s, then t ! s according to the rewrite system for types. Moreover,normal forms for our new rewrite system are precisely objects whose types are in normal form.Therefore, the rewrite system is terminating according to Proposition 4.1.Now our goal is to prove that the new rewrite system is weakly Church-Rosser. That is, if xcan be rewritten in one step to two objects, x1 and x2, then there exists an object x0 such thatboth x1 and x2 can be rewritten to x0 in zero or more steps. Then, by Newman's lemma [8],it will follow that the system is Church-Rosser and has unique normal forms, thus proving thetheorem.To prove weak Church-Rosserness, assume that x! x1 by means of rule r1 in position p1 in tand x ! x2 by means of rule r2 in position p2 in t. We denote the functions that correspondto applying r1 and r2 by f1 and f2 respectively. Notice that if positions p1 and p2 are in twodi�erent subtrees determined by a pair formation, then the existence of x0 is immediate. Hence,we can assume that one position, say p1, is closer to the root than p2 because fj � jg and h�i areunary type constructors. The rest of the proof is a straightforward case analysis. We presenttwo cases for illustration.The rule applied in p1 is s � hti ! hs � ti, and p2 occurs inside the tree for s. The objecttherefore is a pair (x1; x2) and the function applied is or �2. Assume that d app(s; p2; r2)(x1) =x01. Then we obtain h(x1; xi2) j xi2 2 x2i�����or �2 � @@@@@or map(f2 � �1; �2)R(x1; x2) h(x01; xi2) j xi2 2 x2i@@@@@(f2 � �1; �2) R �����or �2�(x01; x2)The rule applied in p1 is fjhtijg ! hfjtjgi, and p2 is inside t. The object therefore is a bag ofor-sets X = fjX1; : : : ; Xpjg where Xi = hxi1; : : : ; xinii and the function applied is �d. Assumethat applying f2 to every xij yields yij. The result of applying f2 (by means of d app) to Xis Y = fjhyij j j = 1; : : : ; nii j i = 1; : : : ; pjg. Consider the following diagram, in which wedo not yet say what the target is. (We only note that applying or map(d map(f2)) � �d and�d � d map(or map(f2)) to X yield objects of the same type.)19

hfjxih(i) j i = 1; : : : ; pjg j h 2 FX i������d � @@@@@or map(d map(f2))RX �@@@@@d map(or map(f2))R ������d�fjhyij j j = 1; : : : ; nii j i = 1; : : : ; pjgTo prove the case, we must show that this diagram commutes. First notice that because of thesemantics of d map, Y has p elements. Denote hyij j j = 1; : : : ; nii by Yi. First assume thatB 2 or map(d map(f2))��d(X). Then for some h 2 FX we have B = fjf2(xih(i)) j i = 1; : : : ; pjg.Assume that yij is such that yij = f2(xih(i)), and de�ne g 2 FY by letting g(i) be j. ThenB = fjyig(i) j i = 1; : : : ; pjg and hence B 2 �d(Y) = �d � d map(or map(f2))(X).Conversely, let B 2 �d(Y). Then for some g 2 FY we have B = fjyig(i) j i = 1; : : : ; pjg.Since yig(i) 2 Yi = or map(f2)(Xi), there exists xij 2 Xi such that f2(xij) = yig(i). De�neh 2 FX by letting h(i) = j for all i. Then B = fjf2(xih(i)) j i = 1; : : : ; pjg and therefore B 2or map(d map(f2))��d(X). Hence, or map(d map(f2))��d(X) = �d�d map(or map(f2))(X),which shows that the diagram commutes and this proves the case. 2Therefore, all objects with the same meaning at the conceptual level rewrite to the samenormal form. The intuitive notion of the conceptual meaning can now be rigorously de�nedas the normal form. We de�ne the conceptual query language or-NRA+ by adding the newconstruct normalizet : t! nf (t)to or-NRA. By the coherence theorem, normalizet can be implemented as app(t; r) where ris any rewriting t �!�! nf (t). Conceptual queries are now de�ned as queries on normal forms.That is, queries of form q � normalize, where q is a structural query.In the remainder of this section, we show that for each type t, it is possible to express normalizetin or-NRA. That is, the introduction of normalizet to build the conceptual language is a matterof convenience. Nonetheless, it is important to include normalizet in the conceptual languagebecause it cannot be de�ned in a polymorphic way.20

Corollary 4.3 For each type t, normalizet is expressible in or-NRA.Proof sketch. As it follows from the proof of the coherence theorem, to express normalizetwe have to simulate the operations �d and d map in a way that retains duplicates. We do it asfollows. First, de�ne a family of translations of types (�)0: b0 = b, (s� t)0 = s0 � t0, hsi0 = hs0i,fsg0 = fs0� usg. Now each object o : t is translated into an object o0 : t0. The only nonobviouscase in the translation is the set case: fx1; : : : ; xng0 = f(x01; y1); : : : ; (x0n; yn)g, where all yis aredistinct. One such translation is de�nable in or-NRA: us in the set case is taken to be s, andfx1; : : : ; xng0 = f(x01; x1); : : : ; (x0n; xn)g. That is, each element of a set gets a unique tag.Now, for each function f : s1 ! s2 used in the process of normalization, we de�ne a newfunction f 0 : s01 ! s02 that simulates the action of f using tags in sets to retain duplicates. Weonly need to consider the case of � and map. For � : fhsig ! hfsgi and fhsig0 = fhs0i � ug,de�ne �0 = � � map(or �1) : fhs0i � ug ! hfs0 � ugi. For g : s0 ! t0, de�ne map(g)0 asmap((g0 � �1); �2). Finally, let o be an object of type t. Translate it to o0 : t0 as shown above,and simulate the normalization process using �0 in the place of �d and map0 in the place ofd map. At the end, project out all tags. Now it is an easy application of the coherence theoremto show that the object thus obtained is normalizet(o). 2Two questions can be asked of this new query language. First, how much information is lostby normalization? There are di�erent objects that normalize to the same one and informationfrom the structural level could be lost. Second, how costly is normalization? We address theseproblems in subsequent sections. In the next section it is shown that normalization is oftenlossless, i.e. many queries are una�ected by the loss of structural information. In Section 6,upper bounds for the size of normalized objects are found.5 Losslessness of NormalizationThis section investigates whether the process of normalization loses anything \that can beregarded as critical." If loss of information is inevitable in the general case, then one wouldlike to obtain a set of general su�cient (and if possible, necessary) conditions that guaranteelosslessness of normalization. In order to proceed, a criterion on what normalization can beregarded as \losing nothing essential" has to be formulated.De�nition. Given a de�nable morphism f : s! t. Suppose there is a morphism preserve(f) :nf (hsi)! nf (hti) such that preserve(f)�normalizehsi�or �s = normalizehti�or �t�f , providedthe input is restricted to objects not containing any empty or-set. Then normalization is losslesswith respect to f .Let us �rst justify the de�nition given above. The proviso on the input is necessary becauseall objects containing empty or-set have the same normal form, namely hi. Recalling that hi21

stands for inconsistency, such objects are conceptually inconsistent and should be omitted. Theuse of or �s and or �t is a technical device to ensure that the normal forms produced alwayslook like hd1; :::; dni where d1; ::; dn have no or-sets. This is justi�ed since or � d is conceptuallyd for any d.The equation itself is justi�ed because preserve(f) takes the meaning of the input to f andreturns the meaning of the output of f .It turns out that it is not easy to achieve losslessness of normalization with respect to anarbitrarily given morphism f . There is no simple method to discover the required preserve(f).However, we have been able to isolate the morphisms that can give rise to possible di�culty.Theorem 5.1 (Losslessness) Let f : s ! t be a morphism of or-NRA not containing anyKhi; p where some or-set appears in Type(p); �u;v2 , �u, and [u where u has some or-sets;map(g) : fug ! fvg where u or v have some orsets; and (g; h) : r ! u � v where r, u, or vhave some or-sets. Then normalization is lossless with respect to f . Moreover, the preserve(f)that makes normalization lossless has a map-like property and preserves consistency. That is,preserve(f) = or ��or map(preserve(f)�or �) and preserve(f)(x) 6= hi whenever x containsno hi.Proof. Let preserve t be the type obtained by converting every base type b in t tohbi. Let preservet : t ! preserve t be the morphism such that preservet(x) is the ob-ject obtained by mapping every base type object o : b in x to the singleton or-set hoi.Using the fact that normalization is coherent, it is easy to show by induction on t thatnormalize � or �t = normalize � preservet. Consequently, to prove the theorem, we can in-stead prove the commutativity ofx : s preserves- � : s0 normalize - � : hs00i
� : tf? preservet- � : t0 normalize - � : ht00i?preserve(f)for any complex object x : s having no empty or-set and any morphism f : s! t satisfying thepreconditions of the theorem, where preserve(f) is de�ned by structural induction on f below.Case f is id. Then preserve(f) = id.Case f is �, �1, �2, �, Kfg, Kc, !, [, �2, or p. Then preserve(f) = or map(f).Case f is (g; h). Then preserve(g; h) = or ��or map(or �1)�or �2 � (preserve g; preserve h).22

Case f is g � h. Then preserve(g � h) = preserve(g) � preserve(h).Case f is map(g). Then preserve(map g) = or � � or map(�) � or map(map(preserve(g) �or �)).Case f is �, or �, or �2, or or �. Then preserve(f) = id.Case f is or [. Then preserve(f) = or � � or map(or [� (or � � or �)).Case f is or map(g). Then preserve(or map(g)) = preserve(g).It is readily veri�ed that preserve(f) is map-like and preserves consistency. The proof that thediagram commutes is by induction on f and uses the coherence theorem in several places. Wepresent two illustrative cases.Suppose f is or map(g), where g : u ! v. Then s = hui and t = hvi. By hypothesis,preserve(g) exists and is map-like. Now consider the diagram below.x : hui preserve- � : hu0i or map(normalize) - � : hhu00ii or �- � : hu00i
� : hvi?or map(g)preserve- � : hv0i or map(normalize) - � : hhv00iior map(preserve g)? or �- � : hv00ipreserve g?The left rectangle commutes by hypothesis. The right rectangle commutes because preserve(g)is map-like. Hence the entire diagram commutes. By the coherence theorem, normalizehu0i =or �u00 �or map(normalizeu0) and normalizehv0i = or �v00 �or map(normalizev0). So the originaldiagram commutes and the case follows.Suppose f is �u;v1 . Then s = u�v and t = u. Let or cp = or ��or map(or �1)�or �2. Considerthe diagram below.x : u� v preserve- � : u0 � v0 (normalize � �1; normalize � �2)- y : hu00i � hv00i or cp- � : hu00 � v00i

� : u�1? preserve - � : u0�1? normalize - � : hu00i�1? id - � : hu00ior map(�1)?The two left rectangles obviously commute. By assumption, x has no empty or-set. Thus y hasno empty or-set. Therefore, the right rectangle commutes. Hence the whole diagram commutes.Finally, the coherence theorem is applied to conclude the case. 223

Since p is generally an uninterpreted primitive, the quali�cation that Type(p) has no or-set isnecessary. This means that equality tests =t, where t has or-sets, have been excluded. =t is anequality test that is structural. Normalization is a process that removes structural di�erencesfrom objects that are conceptually identical. Hence one cannot expect normalization to belossless with respect to =t.On the other hand, the restrictions placed on �, [, and map(g) can be lifted under certain cir-cumstances. Recall from Corollary 4.3 that in order to express normalize in or-NRA, elementsof sets are tagged with unique identi�ers. This tagging is to prevent or-sets from being collapsedprematurely. The problem with �, [, and map(g) is that they can collapse two or-sets intoone. There are two solutions to this problem. The �rst is to make sure that these operationsare not applied to objects involving or-sets, as required by the preconditions of the losslessnesstheorem. The second is to make sure that these operations are not applied to objects in whichor-sets can be collapsed. For example, if it is known that [is only applied to a pair of sets ofor-sets having empty intersection, then we can still achieve losslessness for [using preserve([)as given above.Given an or-NRA morphism f : s ! t and an object x : s containing some or-sets. Then xconceptually represents several values x1; :::; xn. Suppose f x is an object containing or-sets;then it conceptually represents several values y1; :::; ym. It is desirable to discover which one ofx1; :::; xn leads to which one of y1; :::; ym. This is a question of searching for a conceptual analogof f that associates each xi in normalize x to a subset of normalize(f x).The idea of a conceptual analog of a morphism is illustrated in Figure 2. One would like toknow which combination of the conceptual values of the input gives rise to which subset of theconceptual values of the output. However, the ideal situation can only be approximated. As a�rst attempt, for each possible conceptual value xi of the input x, we aim only to account forsome of the conceptual values in the output that are due to it. Some conceptual values yj inthe output may be left unaccounted for. For example, the last element of normalize y in the�gure. Similarly, the picture given for each input xi is only partial. For example, the secondelement of normalize x in the �gure might in reality contribute to 3 values in the output butthe conceptual analog discovers only 2. This approximation to conceptual analog is formalizedbelow.De�nition. Let f : s ! t be a de�nable morphism of or-NRA. Then its conceptual analogis a morphism preserve(f) such that for all x : s, (preserve(f) � normalizehsi � or �s)(x) isincluded in (normalizehti � or �t � f)(x).There is some relationship between losslessness and conceptual analog. A conceptual analogof f that accounts for every element in the output is a morphism that makes normalizationlossless with respect to f . Hence the search for a lossless preserve(f) can be generalized asa search for a conceptual analog of f that accounts for each possible conceptual value of theoutput. 24

f f f f f f�� �� fm �
��f 6 6
-?AAAAAAU ������� CCCCCWSSSSSw@@@@@@R������������� 6

x ynormalize f
preserve(f)

normalizeh i h i
Figure 2: Conceptual analog of morphism fThe losslessness theorem and conceptual analog can be given a somewhat simpler description iftypes are restricted only to those containing or-sets. The morphism preservet : t! preserve tde�ned in the proof of Theorem 5.1 forces an object of type t into an object of type preserve tby inserting singleton or-sets wherever possible. Types of the form preserve t can be describedby the following grammar: t ::= hbi j t � t j ftg j hti. We call such a type a pure or-type. Itcan be easily seen that any object x is conceptually equivalent to preserve(x), provided x hasor-sets.Given an or-NRA-morphism f : s! t and two objects x : s and y = f(x) : t, let normalize(x) =hx1; : : : ; xni and normalize(y) = hy1; : : : ; ymi, nf (s) = hs0i and nf (t) = ht0i. Our motivation tostudy losslessness was to �nd a conceptual analog of f . What can such an analog be? As the�rst approximation, it is given by a function f 0 : s0 ! ht0i which associates with each elementxi in normalize(x) a subset of normalize(y), thus de�ning the action of f on elements its inputcould possibly stand for. The morphism preserve(f) : nf (s) ! nf (t) can now be de�ned asor � � or map(f 0).How could one re�ne the action of f on elements of normalized object? There are two ways todo so. First, one can require that this action be de�ned unambiguously. That is, f 0 maps everyelement from normalize(x) into a unique element of normalize(y), thus having type s0 ! t0.preserve(f) can then be reconstructed as or map(f 0). Second, one can require that all theelements of normalize(y) be accounted for. That is, preserve(f)�normalize(x) = normalize(y).In other words, preserve(f) is onto. It is not hard to see that this is precisely the de�nition oflosslessness in the case of pure or-types.Proposition 5.2 Let s and t be pure or-types. Let f : s ! t be a morphism in or-NRA thatdoes not use any primitive p where Type(p) has or-sets and any �u, [u, or map(g) : fug ! fvgwhere u or v involve or-sets. Then there exists a conceptual analog preserve(f) for f . This25

conceptual analog is map-like. However, if f does not use Khi, or [and (�; �), then it can begiven the form or map(�). Moreover, if f does not use Khi, (�; �), and �2, then it is also ontowith respect to input having no hi.Proof sketch. The precondition is weaker than that of Theorem 5.1 because we merelyrequired that (preserve(f) � normalize � or �)(x) be included in normalize � or � � f)(x), asopposed to being equal. The proof is a simple adaptation of the proof of Theorem 5.1. Afterde�ning preserve(Khi) as or � � or map(Khi�!), we can de�ne the remaining preserve(f) thesame way as in Theorem 5.1. This makes preserve(f) map-like.There are only three cases in which preserve(f) as de�ned above cannot be made into the formor map(�): Khi, (�; �), and or [. We illustrate the case f = or [: hti � hti ! hti. To see whythe translation cannot be of the form or map(�), let t be a base type, say int, and consideran object x = (h1; 2i; h3i). Applying normalize � or [gives h1; 2; 3i while applying normalizeyields h(1; 3); (2; 3)i. Clearly no mapping over the latter object can produce the former.The preconditions of this proposition is weaker than that of Theorem 5.1 in three places: fcan use arbitrary Khi, (�; �), and �2. It is precisely these three operations that may destroythe surjectivity of preserve(f). We illustrate the case f = �2 : s � ftg ! fs � tg. Since sand t are pure or-types, nf (s) = hs0i and nf (t) = ht0i. Then preserve(�2) must have typehs0� ft0gi ! hfs0� t0gi. We take preserve(�2) to be or map(�s0;t02). An easy application of thecoherence theorem shows that for any object x of type s� ftg, or map(�s0;t02) � normalize(x) �normalize ��s;t2 (x). So preserve(�2) is a conceptual analog of �2. To see that it is not onto, let xbe (h1; 2i; f3; 4g). Then preserve(�2)(normalize(x)) = hf(1; 3); (1; 4)g; f(2; 3); (2; 4)gi. On theother hand, normalize(�2(x)) = hf(1; 3); (1; 4)g; f(1; 3); (2; 4)g; f(2; 3); (1; 4)g; f(2; 3); (2; 4)gi.26 Costs of NormalizationWe have seen before that the complexity of or-NRA+ queries can be exponential. In particular,the cardinality of normalize(x) can be exponential in the size of x provided that � was usedin the course of normalization. In fact, the example given in Section 2 shows that even oneapplication of � may result in an or-set of exponential cardinality. If one tries to estimate thecost of normalization by \brute force," a hyperexponential upper bound can be immediatelyobtained: indeed, if n is the size of x, applying the costly � O(n) times seems to yield ahyperexponential bound.In this section we show that the fear of hyperexponentiality is not justi�ed. In fact, boththe cardinality of normalize(x) and its size are in the worst case exponential in the size of x.The �rst result in this section explains why consecutive applications of � still yield objects of26

exponential size. Then we proceed to �nd upper bounds on the cardinality and the size ofnormalized objects. The last result in this section shows that there exist existential queriesinvolving normalization which cannot be evaluated in polynomial time.Let x be an object and y = normalize(x). De�ne m(y) as the number of elements in y if it isan or-set and 1 otherwise. Uniformly, m(x) = jnormalize(or �(x))j. The size of an object isde�ned inductively: the size of an atomic object is 1, size (x; y) = size x+size y, size fx1; : : : ; xng= size hx1; : : : ; xni = size x1 + : : :+ size xn.To work with objects, it is convenient to associate rooted labeled trees with them. A treeT x associated with an atomic object x is de�ned as a one-node tree labeled by x. T (x; y) isa tree with the root labeled by �, and two subtrees rooted at its children are T x and T y.T fx1; : : : ; xng (or T hx1; : : : ; xni) is a tree whose root is labeled by fg (or hi) and n subtreesrooted at its children are T x1; : : : ; T xn. In view of this de�nition, m(x) can be rede�ned as thenumber of children of the root of T normalize(x) if the root is labeled by hi and 1 otherwise.size x is the number of leaves in T x.Intuitively, the following proposition says that the \internal" structure of T x does not con-tribute to the creation of new possibilities in normalize(x), and the number of such possibilitiesm(x) is determined by the or-sets which are closest to the leaves.Proposition 6.1 Let x be an object, and v1; : : : ; vk be the nodes in T x labeled by hi, such thatthe subtrees rooted at vi's do not have other nodes labeled by hi (i.e. they are or-sets closest tothe leaves). Let mi be the number of children of vi, i = 1; :::; k. Then, if k 6= 0,m(x) � kYi=1(mi + 1)Proof. We proceed by induction on the structure of the object x. We consider only objectscontaining or-sets. The base case (i.e. or-sets of objects of base types) is obvious. Let x =(x1; x2). Assume that both x1 and x2 contain or-sets and v1; : : : ; vp are nodes of T x1 andvp+1; : : : ; vk are nodes of T x2. Then, by the induction hypothesis, m(x1) � Qpi=1(mi + 1) andm(x2) � Qki=p+1(mi + 1). By coherence, normalize(x) = or �(normalize(x1); normalize(x2))where or � pairs each item in its �rst argument with each item in its second argument (it canbe easily expressed in or-NRA). Therefore, m(x) � m(x1)m(x2) � Qki=1(mi + 1). Two othercases when either x1 or x2 contains or-sets are similar.Let x = fx1; : : : ; xng. Then all xi's contain or-sets. Again, by coherence,normalize(x) = [�d(fjnormalize(x1); : : : ; normalize(xn)jg)]sTherefore, m(x) � Qni=1m(xi) and the result follows from the induction hypothesis.27

Finally, if x = hx1; : : : ; xni, there are two cases. If xi's do not contain or-sets, then m(x) = n �n + 1. If they do contain or-sets, then by coherencenormalize(x) = or �(hnormalize(x1); : : : ; normalize(xn)i)i.e. m(x) � �ni=1m(xi) � Qni=1m(xi) because m(�) � 2. The case now follows from thehypothesis. 2This proposition explains why there is an exponential upper bound for m(x) despite the factthat � can be applied many times. The following result �nds a tight upper bound in terms ofthe size rather than the tree structure.Theorem 6.2 Let x be an object with size x = n. Thenm(x) � 3p3 nMoreover, for any n divisible by 3 there exists an object x such that size x = n and m(x) = 3p3 n.Proof. As in the proof of Proposition 6.1, consider only objects containing or-sets. Proceedby induction on the number of steps of normalization. If the object is already normalized, weare done. Assume normalize(x) is obtained by one step of normalization. Then this step is oneof the maps associated with the rewrite rules, so we have four cases. Notice that in the basecases we may assume w.l.o.g that any element of a set or an or-set is of base type since thiswill give us the maximal possible m(x) for a given size x.Case 1. x = (x1; x2) where x1 = hx11; : : : ; x1n�1i. Then normalize(x) = or �1(x) and it is aneasy arithmetic exercise to show that m(x) = n� 1 � 3p3 n.Case 2 when or �2 is applied to obtain the normal form is similar.Case 3. Let x = fX1; : : : ; Xkg where each Xi is an or-set hxi1; : : : ; xikii where all xij are elementsof a base type. Since we are interested in an upper bound, assume w.l.o.g. that all xij's aredistinct (if they are not, some of sets in normalize(x) could collapse). Let X = Si;j xij. De�nea graph G = (X;E) where (xi1j1; xi2j2) is in E i� i1 6= i2. Let normalize(x) = �(x) = hY1; : : : ; Ypi(Yk's are sets). Then it follows from the de�nition of � that Y1; : : : ; Yp are precisely the cliquesof G. Since n = size x = jXj, applying the upper bound on the number of cliques for a graphwith n vertices [28], we obtain p = m(x) � 3p3 n.Case 4. x = hX1; : : : ; Xki where Xi's are or-sets of a base type. Then normalize(x) = or �(x)and m(x) � n. Again, simple arithmetic shows that n � 3p3 n. Hence, m(x) � 3p3 n.The proof of the general case is very similar to the proof of Proposition 6.1 and we will showonly one case. Let x = fx1; : : : ; xkg where xi's are not normalized. Then normalize(x) is28

obtained by applying �d to fjnormalize(x1); : : : ; normalize(xn)jg and removing duplicates fromthe result. Let size xi = ni. By the induction hypothesis, m(xi) � 3p3 ni. We now havem(x) � kYi=1m(xi) � kYi=1 3p3 ni � 3p3 nThe other cases are similar. To show the tightness of the upper bound, let n = 3k; k > 0.Assume that we have a base type whose domain is in�nite (a typical example is int). Letb1; : : : ; bn be n distinct elements of such a type. Letx = fhb1; b2; b3i; hb4; b5; b6i; : : : ; hbn�2; bn�1; bnigThen size x = n and normalize(x) = �(x) which contains 3k = 3p3 n elements. The theorem iscompletely proved. 2Using Theorem 6.2, one can prove the following upper bound on the size of normal forms byinduction on the steps of the normalization process.Theorem 6.3 Let x be an object with size(x) = n where n > 1. Thensize normalize(x) � n2 3p3 nProof. Similarly to the proof of Theorem 6.2, proceed by induction on the steps of normaliza-tion. We start with base cases, i.e. consider an application of or �2 or or �1 or � or or �.Case 1. x = (x1; x2) where x1 = hx11; : : : ; x1ki. Let size x1 = s1, size x1i = �i. Then s1+�1+ : : :+�k = n. Since normalize(x) = or �1(x), size normalize(x) = ks1+�1+: : :+�k = ks1+(n�s1) �(n� s1)s1+ n� s1 � 2n� 2. Since empty sets and or-sets are excluded, n � 2 in this case andtherefore 2n� 2 � n2 3p3 n.Case 2 when or �2 is applied is similar.Case 3. Let x = fX1; : : : ; Xlg where each Xi is an or-set hxi1; : : : ; xikii where all xij have typescontaining no or-set. Let size xij = sij andkiXj=1 sij = �i lXi=1 �i = nThen an easy calculation shows that sizenormalize(x) = size�(x) is bounded above by�1 � k2 � ::: � kl + �2 � k1 � k3 � ::: � kl + : : :+ �l � k1 � ::: � kl�1 � l � �1 � : : : � �l29

Therefore, we need to maximize l ��1 � : : : ��l under the constraint �1+ : : :+�l = n. A standardargument shows that such a maximum is bounded above by8<: 1 if n = 1n2p2 n if 1 < n < 21n3 3p3 n if n � 21If it easy to see that for n > 1, the upper bounds given above are less than n2 3p3 n. If n = 1,then the size of the normal form is also 1.Case 4. x = hX1; : : : ; Xli where Xi's are or-sets of a type that does not contain or-sets. Then normalize(x) = or �(x). Since the or � does not change the size of an object,size normalize(x) < n2 3p3 n for all n � 2. If n = 1, then size normalize(x) = 1.To complete the inductive proof, we show that after each step of normalization that producesa normalized subobject x00, that is, x00 = normalize(x0) for a subobject x0 of x, either size x00 �n2 3p3 n is satis�ed if n = size x0 > 1, or size x00 = 1 if n = 1. This will complete the proof. Twocases corresponding to application of or �1 or or �2 are similar to the case of �, so we showhere only the case of application of �.Let x = fx1; : : : ; xkg where each xi is an unnormalized object. Let x0i = normalize(xi) and kibe the cardinality of x0i, i.e. ki = m(xi). Let ni = size xi. By Theorem 6.2, ki � 3p3 ni. Firstconsider the case when all ni > 1.Let x0i = hyi1; : : : ; yikii, i = 1; : : : ; k. By sij we denote size yij. By the induction hypothesis,8i = 1; : : : ; k : kiXj=1 sij � ni2 3p3 ninormalize(x) is obtained by applying �d to fjx01; : : : ; x0kjg and then removing duplicates, i.e. itselements are sets of representatives of x01; : : : ; x0k. Since we are interested in an upper bound,we may assume that all the elements of x01; : : : ; x0k are distinct. Then each element of x0i willbe present in k(i) = (Qkj=1 kj)=ki sets. Therefore, the upper bound for size normalize(x) canbe calculated as the sum of the sizes of all elements of x01; : : : ; x0k multiplied by the number oftheir occurrences in the normalized object, i.e.size normalize(x) � kXi=1 kiXj=1 k(i)sij = kXi=1 k(i) kiXj=1 sij �kXi=1 ni2 k(i) 3p3 ni � 3p3 n1+:::+ni kXi=1 ni2 = n2 3p3 n
30

If all ni = 1, then size normalize(x) = k = n. If n > 1, then n � n2 3p3 n and if n = 1, that is,size x = 1, then size normalize(x) = 1.Now consider the general case, i.e. n1; : : : ; np > 1 and np+1; : : : ; nk = 1. Normalization of xi fori > p results in a size one object. Let �0 = n1+: : :+np and �1 = k�p. Clearly �0+�1 = n. Hadwe applied �d only to fjx01; : : : ; x0pjg, it would have resulted in an object whose size is boundedabove by �02 3p3 �0 according to the calculations for the case where all ni > 1. But taking intoaccount �1 size one objects adds size �1 to every element of the or-set normalize(x). Since thereare at most 3p3 �0 such sets, we obtainsize normalize(x) � �02 3p3 �0 + �1 3p3 �0Since �0 > 1, we obtain �0 + 2�1 � (�0 + �1) 3p3 �1 . Therefore,size normalize(x) � �02 3p3 �0 + �1 3p3 �0 � n2 3p3 nFinally, if or � is applied in the process of normalization, it does not change size. Assume x =hx1; : : : ; xki where each xi is an unnormalized object. Let x0i = normalize(xi) and ni = size xi.Assume n1; : : : ; np > 1 and np+1 = : : : = nk = 1. De�ne �0 and �1 as in the case of applying �.Then, by the induction hypothesis,size normalize(x) � pXi=1 ni2 3p3 ni + �1 � �02 3p3 �0 + �1 � n2 3p3 nIf all ni = 1, then two cases arise. If n > 1, then size normalize(x) = n � n2 3p3 n, and if n = 1,then size normalize(x) = n = 1. This proves the theorem. 2Corollary 6.4 Let x = normalize(y) and size x = n. Then O(logn) � size y � n.The upper bound of Theorem 6.3 is not tight. The following result exhibits a tight upperbound for a large class of objects. This shows that the previous theorem cannot be signi�cantlyimproved.Theorem 6.5 Let x be an object with size x = n containing or-sets. Assume that every sub-object of type fht0ig has size at least 21, every subobject of type t0 � ht00i or ht00i � t0 has sizeat least 6 and every subobject of type hht0ii has size at least 3, where t0 and t00 do not use theor-set type constructor. Then size normalize(x) � n3 3p3 n31

Moreover, for any n divisible by 3 there exists an object x such that size x = n andsize normalize(x) = n3 3p3 n.Proof. We have to rework the base cases only. Since no subobject involving or-sets can havesize one, the induction step easily goes through, as in the proof of Theorem 6.3.The case of applying � was already proved; see the proof of Theorem 6.3. For the case ofapplying or �1 or or �2, we established an upper bound 2n� 2. It is easily seen that 2n� 2 �n3 3p3 n for n � 6. Finally, applying or � does not a�ect the size, and n � n3 3p3 n for n � 3.To show tightness, consider the example from the proof of Theorem 6.3. Letx = fhb1; b2; b3i; hb4; b5; b6i; : : : ; hbn�2; bn�1; bnigwhere all bi's are distinct elements of a base type. Then �(x) contains 3p3 n elements, eachhaving cardinality n3 . Thus, size normalize(x) = n3 3p3 n. 2The importance of existential queries was emphasized in [17, 18]. Essentially, an existentialquery asks whether there exists a possibility| in the normal form| satisfying a given property.In terms of or-NRA+, if nf (s) = hti and p : t ! bool is a predicate, 9(p) : hti ! bool is apredicate which is true of y : hti if or map(p)(y) : hbooli is an or-set containing the true value.Given an object x of type s, one may ask a query 9(p)(normalize(x)). If p is a polynomial timequery, then 9(p)(normalize(x)) can be answered in time polynomial in the size of normalize(x).But can it be answered in time polynomial in the size of x?The following example gives a negative answer to this question, provided P 6=NP. Assume thatp : ft� sg ! bool checks if its input R satis�es the functional dependency #1! #2. That is,if (x; y) 2 R and (x; y0) 2 R imply y = y0. This query can be easily implemented in relationalalgebra and hence in or-NRA. Now we encode conjunctive normal form Boolean formulae inor-NRA as follows. Assume that literals are encoded by elements of a base type b. Each positiveliteral u is then a pair (u; true) : b�bool and each negative literal u is a pair (u; false) : b�bool .Each disjunction of formulae is encoded as an or-set of encodings of its components, andeach conjunction of formulae is encoded as a set of encodings of its components. Now letx : fhb� boolig be an encoding of a Boolean formula . Then 9(p)(normalize(x)) evaluatesto true if and only if is satis�able. Thus, we cannot evaluate existential queries on normalforms in polynomial time under the assumption that P 6=NP.7 Conclusion and Future WorkIn this paper we considered a simple semantic model that cleanly integrates sets and or-sets,taking into account their intended meaning. We showed that there are two levels for manipu-lating sets and or-sets | structural and conceptual | and we extended proposals of [3, 5, 33]32

to formulate a query language for the structural manipulation of or-sets. We de�ned the con-cept of normalization of objects involving or-sets and proved its coherence. That allowed us toinclude normalization as a primitive to obtain the language for manipulation of or-sets at theconceptual level. We proved that normalization is lossless and established upper bounds on thecost of normalization.The language or-NRA+ has been implemented on top of Standard ML. The implementationprovides an interface which includes the operations of or-NRA+ and a few additional operationsthat elevate or-NRA+ to capture the power of a nested bag language [25]. The package alsoincludes additional features such as creation and destruction of objects, structural recursionon sets and or-sets, input and output facilities. It also comes equipped with several librariesof derived functions. For example, the library of set functions includes membership test, setdi�erence, inclusion test, cartesian product, etc., and their analogs for or-sets which, as followsfrom the results of [5] and this paper, are de�nable in or-NRA+. Another library de�nes alifting of linear orders from base types to arbitrary types which is de�nable in or-NRA asdemonstrated in [26]. A complete description of this implementation of or-NRA+ can be foundin [12].There are many further problems which we would like to investigate. The use of bags in theproof of the coherence theorem suggests adding or-sets to a bag language. We would like tostudy the language obtained by combining the or-set component of or-NRA and the standardnested bag language such as the one in [25]. Such a language gives rise to interesting equationaltheories which can lead to useful optimizations. In addition to the monad equations of [5], everydiagram in the proof of Theorem 4.2 gives rise to a new equation.We have seen that normalization can be quite expensive. Therefore, there is a need for tech-niques that make query evaluation faster. Using functional style language and its implemen-tation on top of ML suggests the use of lazy evaluation for possible optimization of somequeries. For instance, implement normalization in such a way that elements of a normal formare produced as elements of a stream. Then, if an existential query is evaluated over a normalform, elements of the normal form are produced as they are needed, and if the test is satis�ed,the evaluation stops without producing the whole normal form. Such a mechanism for queryevaluation has recently been developed by one of the authors [23].Yet another idea is the complexity-tailored design of Imielinski, van der Meyden, and Vadaparty[16] when queries are forced to run in polynomial time by, for instance, obtaining additionalinformation about some of the or-sets, thus reducing the size of the normal form. In [16] a logicallanguage was used. We would like to see if the idea can be worked out for our languages.There are various sophisticated order-theoretic models of partial information in databases |sandwiches [6], mixes [10], snacks [31, 30], and their generalizations [31, 22]. They are usedwhen a real world situation can be approximated from below and above by information in adatabase. These structures enjoy universality properties and therefore can be incorporated33

into the programming language syntax [22]. We have recently shown [22] that the intimateconnection between or-sets and the Smyth powerdomain can help us use or-sets for a suitablerepresentation of those approximation models in the context of database programming lan-guages like or-NRA. We plan to further investigate the applicability of such models to thestudy of or-sets.Our languages have been extended to include variant types. It is known that the coherenceresult still holds in the extended languages. The validity of the remaining results of this reportremains to be checked for this extension.Acknowledgements. The authors are grateful to Tim Gri�n, Elsa Gunter, Anthony Kosky,Shamim Naqvi, Val Tannen and especially Peter Buneman for many interesting discussions.Most of this work was done when both authors were at the University of Pennsylvania. Wegratefully acknowledge the support of an AT&T Doctoral Fellowship and NSF Grant IRI-90-04137 (for Libkin) and NSF Grant IRI-90-04137 and ARO Grant DAALO3-89-C-0031-PRIME(for Wong).References[1] S. Abiteboul, C. Beeri, On the power of languages for the manipulation of complexobjects, in \Proceedings of International Workshop on Theory and Applications of NestedRelations and Complex Objects," Darmstadt, 1988.[2] S. Abiteboul, P. Fischer, and H.-J. Schek, editors, \LNCS 361: Nested Relationsand Complex Objects in Databases," Springer-Verlag, 1989.[3] V. Breazu-Tannen, P. Buneman, S. Naqvi, Structural recursion as a query language,in \Proceedings of 3rd International Workshop on Database Programming Languages,Naphlion, Greece, August 1991," 9{19.[4] V. Breazu-Tannen, R. Subrahmanyam, Logical and computational aspects of pro-gramming with sets/bags/lists, in \LNCS 510: Proceedings of 18th International Collo-quium on Automata, Languages, and Programming, Madrid, Spain, July 1991," 60{75.[5] P. Buneman, S. Naqvi, V. Tannen, and L. Wong, Principles of programming withcomplex objects and collection types, Theoretical Computer Science, to appear. Extendedabstract in \LNCS 646: Proceedings of International Conference on Database Theory,"Berlin, Germany, October 1992.[6] P. Buneman, S. Davidson, A. Watters, A semantics for complex objects and ap-proximate answers, Journal of Computer and System Sciences 43 (1991), 170{218.34

[7] P. Buneman, A. Ohori, A. Jung, Using powerdomains to generalize relationaldatabases, Theoretical Computer Science 91 (1991), 23{55.[8] N. Dershowitz and J.-P. Jouannand, Rewrite systems, in \Handbook of TheoreticalComputer Science", North Holland, 1990, 243{320.[9] K.E. Flannery and J.J. Martin, Hoare and Smyth power domain constructors com-mute under composition, Journal of Computer and System Sciences 40 (1990), 125{135.[10] C. Gunter, The mixed powerdomain, Theoretical Computer Science 103 (1992), 311{334.[11] C. Gunter and D. Scott, Semantic Domains, in \Handbook of Theoretical ComputerScience", North Holland, 1990, 633{674.[12] E. Gunter and L. Libkin, OR-SML: A functional database programming language fordisjunctive information and its applications, in \LNCS 856: Proceedings of Database andExpert Systems Applications, Athens, September 1994," 641{650.[13] R. Harper, R. Milner, and M. Tofte, \The De�nition of Standard ML," MIT Press,1990.[14] R. Heckmann, Lower and upper power domain constructions commute on all cpos,Information Processing Letters 40 (1991), 7-11.[15] T. Imielinski and W. Lipski, Incomplete information in relational databases, Journalof the ACM 31 (1984), 761{791.[16] T. Imielinski, R. van der Meyden, and K. Vadaparty, Complexity tailored de-sign: A new design methodology for databases with incomplete information, Journal ofComputer and System Sciences, to appear.[17] T. Imielinski, S. Naqvi, and K. Vadaparty, Incomplete objects | a data modelfor design and planning applications, in \Proceedings of ACM-SIGMOD InternationalConference on Management of Data, Denver, Colorado, May 1991," 288{297.[18] T. Imielinski, S. Naqvi, and K. Vadaparty, Querying design and planning databases,in \LNCS 566: Proceedings of 2nd International Conference on Deductive and Object-Oriented Databases, Munich, Germany, December 1991," 524{545.[19] L. Libkin, A relational algebra for complex objects based on partial information, in\LNCS 495: Proceedings of Symposium on Mathematical Fundamentals of Database Sys-tems, Rostock, May 1991," 36{41.[20] L. Libkin, An elementary proof that upper and lower powerdomain constructions com-mute, Bulletin of the EATCS 48 (1992), 175-177.35

[21] L. Libkin, \Aspects of Partial Information in Databases," PhD Thesis, University ofPennsylvania, August 1994. Available fromhttp://www.cis.upenn.edu/~libkin/home.html.[22] L. Libkin, Approximation in databases, in \LNCS 893: Proceedings of 5th InternationalConference on Database Theory, Prague, January 1995," 411{424.[23] L. Libkin, Normalizing incomplete databases, in \Proceedings of 14th ACM Symposiumon Principles of Database Systems, San Jose, California, May 1995," 219{230.[24] L. Libkin, L. Wong, Semantic representations and query languages for or-sets, in\Proceedings of 12th ACM Symposium on Principles of Database Systems, Washington,D. C., May 1993," 37{48.[25] L. Libkin, L. Wong, Some properties of query languages for bags, in \Proceedingsof 4th International Workshop on Database Programming Languages, Manhattan, NewYork, August 1993," 97{114.[26] L. Libkin, L. Wong, Conservativity of nested relational calculi with internal genericfunctions, Information Processing Letters 49 (1994), 273{280.[27] E. Moggi, Notions of computation and monads, Information and Computation 93 (1991),55{92.[28] J. Moon and L. Moser, On cliques in graphs, Israel Journal of Mathematics 3 (1965),23{28.[29] S. Naqvi and S. Tsur, \A Logical Language for Data and Knowledge Bases," ComputerScience Press, 1989.[30] T.-H. Ngair, \Convex Spaces as an Order-theoretic Basis for Problem Solving," PhDThesis, University of Pennsylvania, August 1992.[31] H. Puhlmann, The snack powerdomain for database semantics, in \LNCS 711: Mathe-matical Foundations of Computer Science, Gdansk, September 1993," 650{659.[32] B. Rounds, Situation-theoretic aspects of databases, in \CSLI 26: Proceedings of 1991Conference on Situation Theory and Applications," 229-256.[33] P. Wadler, Comprehending monads, Mathematical Structures in Computer Science 2(1992), 461{493.[34] G. Winskel, Powerdomains and modality, Theoretical Computer Science 36 (1985),127-137.
36

