Query Languages for Bags and Aggregate Functions

Leonid Libkin* Limsoon Wong
AT&T Bell Laboratories Institute of Systems Science
600 Mountain Avenue Heng Mui Keng Terrace
Murray Hill, NJ 07974, USA Singapore 0511
Email: libkin@research.att.com Email: limsoon@iss.nus.sg
Abstract

Theoretical foundations for querying databases based on bags are studied in this paper. We
fully determine the strength of many polynomial-time bag operators relative to an ambient query
language. Then we obtain BQL, a query language for bags, by picking the strongest combination
of these operators. The relationship between the nested relational algebra and various fragments
of BQL is investigated. The precise amount of extra power that BOL possesses over the nested
relational algebra is determined. It is shown that the additional expressiveness of BOL amounts to
adding aggregate functions to a relational language.

The expressive power of BQL and related languages is investigated in depth. We prove that
these languages possess the conservative extension property. That is, the expressibility of queries
in these languages is independent of the nesting height of intermediate data. Using this result, we
show that recursive queries, such as transitive closure, are not definable in BOL. A new tool for
analyzing expressibility, called the bounded degree property, is also introduced and we show how
it can be used on relational languages.

To enhance the expressiveness of BOL, we consider non-polynomial primitives such as powerbag,
structural recursion, and bounded loop. Structural recursion on bags is shown to be equivalent to
the bounded loop operator and strictly more powerful than the powerbag primitive. We show that
the class of numerical functions expressible in BOL augmented by structural recursion is precisely
the class of primitive recursive functions.

1 Introduction

Most research on database query languages concentrated on languages for sets. Furthermore, many
languages such as the relational algebra can only manipulate data and cannot produce new values.
However, real implementations frequently use bags as the underlying data model. In addition, they
provide aggregate functions that produce values which are not stored in a database. For example,
SQL has the “select distinct” construct, which makes sense only for bags, and the “select average”
construct, which generates new values.

The main goal of this paper is to understand the difference between theoretical languages, like the
relational algebra, and languages which are much closer to practical languages like SQL. We find out

*Contact author. Address: Room 2B-408, AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974,
USA. Telephone: (908) 582-7647, Fax: (908) 582-7550.

how the use of bags and the use of aggregate functions are related. We also find out which classical
results on the expressiveness of set languages continue to hold for bags and which do not.

One of the claims of the paper is that considering bags instead of sets allows us to obtain a rational
reconstruction of SQL. In some books, even a statement that SQL is equivalent to the relational
algebra can be found. For example, Paredaens et al. [45] state that the tuple relational calculus and
SQL have the same expressive power. While no one really knows what SQL is, since there are many
different versions, it is widely accepted that any version of SQL has at least two features which are
not present in the relational algebra:

e SQL provides a number of aggregate operators. According to Ullman [57], the five usual ones are
AVG, COUNT, SUM, MIN, and MAX. Many versions of SQL provide others, such as the standard
deviation STDDEV or variance VARIANCE.

e SQL allows a limited form of nesting by using the GROUP-BY construct. In particular, by
combining these two features, one can write a query that computes the average salary in each
department, as shown below.

SELECT Dept, AVG(Salary)
FROM Emp
GROUP-BY Dept

Note that the semantics of aggregate functions assumes that the underlying structure is a bag rather
than a set. In other words, elimination of duplicates may lead to wrong results if aggregates are
present in a language. For example, to compute

AVG(Ilgalary (Employees))

one cannot remove duplicates from IIg,jsry (Employees). Suppose at least two employees have the same
salary. Then the result of applying AVG to the set Ilgajary(Employees) will be wrong. The correct
result is achieved by applying AVG to the bag IIgalary(Employees) in which no duplicates are removed
after projection on the Salary field is performed.

This example reiterates that one needs bag semantics for the correct evaluation of aggregate functions.
Even though this has been common knowledge since SQL was first conceived, little effort has been
devoted to understand the connection between aggregate operators and bag query languages. Adding
aggregate operations to the relational algebra was considered by Klug [30] and then extended to
complex objects in Ozsoyoglu et al. [43]. The approach adopted in these papers is the following.
An aggregate function is introduced separately for each column. That is, there are functions AVGy,
AVGj,, etc. To compute the average of the B column, one would write AVGg(R). While this approach
incorporates aggregate functions into standard languages such as the nested relational algebra, it is
not completely satisfactory as it introduces too many new functions.

Another way to explain the semantics of SQL aggregate operators was given by Klausner and Goodman
[29] using the concept of hiding. Whenever a projection is followed by an application of an aggregate
function, the projection operation is interpreted as an operation to hide the missing columns. For ex-
ample, projecting on the second column of {(a, 6), (b,6), (c,12)} would yield {([a], 6), ([6], 6), ([¢c],12)},
where [] signifies those “hidden” values. Thus, in contrast to the relational projection, hiding keeps

both occurrences of 6 by tagging them with the hidden values. Then applying AVG gives the correct
result. Using hiding to retain duplicates is rather clumsy. It is much better to use bags in the first
place.

More recently, there has been some activity in trying to identify a “standard” query language for bags,
in the same spirit that the relational algebra is considered the standard language for sets. First, Albert
[4] proposed a number of operations on bags and established some of their properties. Two years later,
Grumbach and Milo [21] extended the algebra of Abiteboul and Beeri [1] to bags. At almost the same
time, we proposed [35] a bag language, BOL, that turned out to be equivalent to the polynomial-time
fragment of the language of Grumbach and Milo. Perhaps the most important property of BOL is its
close connection with relational languages and aggregate functions. In fact, it has precisely the power
of the nested relational algebra augmented with a general template for producing aggregate functions.

BQL can be seen as a rational reconstruction of SQL. The simplicity of its operations and the full-
compositionality of its syntax allows it to be analyzed. We use this language to answer several questions
on the expressibility of bag languages and set languages with aggregate functions. In particular, we
investigate the relative expressive power of various query languages for bags and we find out the exact
extra power that comes with aggregate functions and bags.

It is well known that first-order logic-based languages, such as the relational algebra or the tuple
relational calculus, cannot express recursive queries like transitive closure [28]. Intuitively, adding
nesting and aggregates to these languages will not give them sufficient expressiveness to do something
as radical as transitive closure. In fact, it is often claimed that SQL cannot express recursive queries.
However, this claim has never been proved. The previous result that comes closest to proving this
claim is Consens and Mendelzon [15], where an assumption that DLOGSPACE # NLOGSPACE is
made.

The flat relational algebra is an algebraization of first-order logic. Therefore, to answer questions on
the expressive power of flat relational languages based on the relational algebra, one can use a rich
body of results on first-order expressibility, as in Chandra and Harel [12], Fagin [17], and Gaifman [19].
However, calculi for nested relations are essentially higher-order logics, where very little is known about
expressibility over finite structures. Therefore, new techniques are needed for analyzing languages for
nested collections. A difficulty is that, even in simple queries, one can increase the level of nesting
in intermediate data and then get a desired result by flattening or unnesting. Unless there is some
restriction on doing this, there is very little hope for finding nice tools for analyzing the expressiveness
of such languages.

Fortunately, queries of the nested relational algebra were shown to be independent of the height of set
nesting in intermediate data. The first result of this kind was proved by Paredaens and Van Gucht [46]
for queries over flat relations. It was later generalized by Wong [59] to arbitrary queries. Recently, we
showed that it continues to hold in the presence of aggregate functions [36] and that it holds even in
the presence of a large variety of polymorphic functions [37]. This property provides the simplifying
tool we need to analyze our languages.

Since bag languages essentially add aggregate functions to relational languages, and hence have built-
in arithmetic, it is hard to find a logic that captures them. Thus it is not clear what techniques can
be used for proving results about expressive power. There are several conjectures on BQL and on the
nested relational algebra, formulated by Grumbach and Milo [21] and Paredaens [44]:

Conjecture 1 (Grumbach and Milo) The parity test is not definable in BOL.
Conjecture 2 (Grumbach and Milo) The transitive closure is not definable in BOL.

Conjecture 3 (Paredaens) The test for balanced binary trees is neither definable in the nested rela-
tional algebra nor in BOL.

A variant of Conjecture 1 concerns parity of natural numbers, rather than parity of the cardinality of
a bag. In this paper, among other things, we prove all three conjectures.

Let us make a few observations before we outline the main results. In most cases when people
conjecture that something like transitive closure is not expressible in a language, they actually mean
that the language is incapable of expressing recursive queries. Transitive closure just happens to be
the most famous example of a recursive query. However, it is not the simplest one. As shown by
Immerman [24], the first-order logic extended with transitive closure captures the complexity class
NLOGSPACE over ordered structures. There are possibly simpler classes and complete problems for
them. For example, DLOGSPACE is captured by the first-order logic with deterministic transitive
closure [24]. Therefore, if we could show that deterministic transitive closure is not expressible in a
language that has at least the power of first-order logic, then many other inexpressibility results will
be obtained for free; for instance, connectivity and transitive closure. We exhibit two queries which
are at most as hard as deterministic transitive closure, one of them being the test for balanced binary
trees, and show that they are not expressible in BOL.

There is also a lack of uniformity in proving inexpressibility results. There are well-known tools, such
as Ehrenfaucht-Fraissé games, for proving first-order inexpressibility. However, applying them to any
query whose inexpressibility is to be proved is a separate combinatorial problem, which is sometimes
non-trivial. For the Paredaens conjecture, it is easier to use another technique called Hanf’s lemma,
as presented in Fagin et al. [18], but it still requires some combinatorial proof which no longer works if
we ask for balanced ternary trees, 4-ary trees, etc. Note that 0/1 laws do provide a uniform technique
for proving inexpressibility results. However, they are rather restrictive. For example, all properties
of graphs considered in this paper can easily be shown to have asymptotic probability 0, and hence
0/1 laws are of no help.

In this paper, we demonstrate a uniform technique for proving various inexpressibility results for the
nested relational calculus. This technique is a variant of Gaifman’s locality theorem [19], but it is
often easier to apply, because it is a statement about semantic properties of queries, rather than their
syntactic representation.

Organization and summary of main results. In Section 2 we outline a recent approach [6, 8,
53, 9] to designing query languages for collection types. This approach is based on turning universal
properties of collections into programming syntax. Applying it to complex objects, we obtain a nested
relational language called NRL. The language resulting from adding equality test to A’RL, denoted
by NRL(eq), has the same expressive power as the nested relational algebra, originally developed in
Thomas and Fischer [54], Colby [13], and Schek and Scholl [49]. NRL(eq) is a better language for
the purpose of this paper than these older languages because it has simpler semantics and it is easily
extensible with operations such as aggregate functions. A very important property of NRL(eq) is its

conservativity [46, 59] — the class of A'RL(eq)-queries from flat relations to flat relations is precisely
the class of relational algebra, or first-order definable queries.

Another advantage of A/RL is its extensibility. In particular, it is easy to see what constructs should
be used if bags are used instead of sets. Turning the set constructs into the bag constructs, we obtain
the nested bag language called NBL. In Section 3, we augment it with a number of polynomial-time
computable primitives suggested previously in Albert [4], Grumbach and Milo [21], and Van den
Bussche and Paredaens [56]. We fully characterize their relative expressive power. The strongest
combination of these primitives includes the bag difference monus and duplicate elimination unique.
We define the basic bag language BOL (Bag Query Language) as NBL enhanced with these two
primitives.

In Section 4, the relationship of bag and set queries is studied. First, we prove the following theorem.

Theorem 4.1 The class of set functions computed by NBL endowed with equality on base types, test
for emptiness, and duplicate elimination is precisely the class of functions computed by NRL.

The relationship between sets and bags is also examined from a different perspective. We add enough
machinery to A/RL(eq) to uniformly generate most aggregate functions found in practical query lan-
guages. We augment it with rational arithmetic (+, —, x and <) and a general summation operator,
to obtain the language NRL>88". We also consider a weaker language N'RL™** obtained from ARL>88"
by restricting the type of rationals to natural numbers only. We show that these language are closely

related to BOL.
Theorem 4.4 The languages BOL and NRL™ have the same expressive power.

In Section 5, we study the expressive power of bag languages and set languages with aggregate func-
tions. First, we prove that ANRL™* and ARL®88 have the conservative extension property. That
is, the expressibility of queries in these languages is independent of the height of nesting allowed in
intermediate data.

To study limitations of the languages, we introduce the bounded degree property of a graph query ¢
that says the following: if G is a graph whose in- and out-degrees do not exceed k, then there exists
a number c¢(q, k) (depending on ¢ and k, but not G) such that the graph ¢(G) has at most c(g, k)
distinct in- and out-degrees.

We demonstrate that using the bounded degree property it is easy to show the inexpressibility of a
number of queries such as testing for a chain or testing for a balanced binary tree. It is also easy to
use this property to show that classes of queries described by their behavior on certain types of graphs
are not definable. The bounded degree is a property of the same kind as Gaifman’s locality [19], and
we are able to show that

Theorem 5.13 Any first-order definable graph query has the bounded degree property.

Using this result and conservativity, we obtain that A’RL-definable graph queries have the bounded
degree property if the nodes are of base types. We also conjecture that this continues to hold in
NRL?88" but so far we have been unable to prove this. To settle the main conjectures for A/RL>88"
(and hence for BOL) we use a different technique. We define k-multi-cycles as graphs that consist of
n > 1 connected components, each being a simple cycle of the same length > k. We prove a special
case of the locality theorem for A/RL8E",

Theorem 5.15 Let q be a N'RL®88"-definable Boolean query on graphs whose nodes are of unordered
base type. Then there exists a number k such that the value of q is the same for all k-multi-cycles.

It follows from this theorem that the parity test and transitive closure are not definable in A/RL288"
and BOL. We also formulate an analog of Theorem 5.15 for a different class of graphs, and from that
result we conclude that the balanced binary tree test is not BOL-definable.

In Section 6, we consider three extensions of BOL: with power operators such as powerset [21], with
structural recursion [6], and with loops [35, 48].

Theorems 6.3 and 6.4 BOL with the powerset primitive is strictly less expressive than BOL with
structural recursion, which in turn has the same expressive power as BOL with loops.

We study the impact of these primitives on the arithmetic expressive power and prove the following.

Theorems 6.5 and 6.6 The classes of arithmetic functions expressible in BOL enhanced with powerset
and with loops are the classes of Kalmar elementary and primitive recursive functions respectively.

Finally, we reexamine the equivalence NRL*®* ~ BOL in the presence of these operators. We show
that A/RL®" enhanced with powerset or loops is strictly less expressive than BOL enhanced with the
same primitives, and identify the gap between these languages. We define the new primitive gen
that takes a number n as an input and produces the set {0,...,n}, and prove that BOL with the
powerset primitive has the same expressive power as NRL®" with powerset and gen. The same holds
for structural recursion and loops.

2 An Approach to Language Design

Many query languages have traditionally been developed on the basis of the relational algebra or
the relational calculus. This approach may be too limiting when we have to deal with structures
that are not naturally supported by first-order logic-based languages. This is certainly the case with
nested structures or structures such as bags and lists, where multiplicity or the order of appearance
is important.

Instead of using first-order logic as a universal platform, it was suggested by Cardelli [11] to consider the
main type constructors (such as sets, bags, and records) independently and for each of them determine
the introduction and elimination operations. The introduction operations allow us to construct the
elements of a given type. The elimination operations compute with them.

This idea was further developed in Tannen et al. [8] and Buneman et al. [9], where it was suggested that
one use operations naturally associated with data types as introduction and elimination operations.
The formal category-theoretic treatment was given in Libkin [32]. The operations on collections
correspond to the categorical notion of a monad [40].

We illustrate the use of this approach in the design of the nested relational language ARL. This
language deals with complex objects in the form of nested relations. The types of complex objects are
given by the grammar below.

s,t n=unit | b|sxt]| {s}

The semantics of types is as follow. The type unit is a special base type containing exactly the

distinguished value denoted by (). The symbol b ranges over an unspecified collection of base types,
such as integers, booleans, etc. Elements of the product type s X t are pairs whose first component is
of type s and whose second component is of type t. Note that in this paper we use pairs instead of
records. This does not affect expressiveness, but makes notation more manageable. Finally, elements
of the set type {s} are finite sets whose elements are of type s.

The only operation naturally associated with type unit is the one that produces the unique element
of that type on any input. The introduction operation for pairs is pair formation: given z and y,
form the pair (z,y). The elimination operations are first and second projections: m; (#,y) = = and

2 (m: y) =Y.

For sets, the situation is not as straightforward because there are two ways to construct sets: either
by starting with an empty set and inserting elements, or by starting with empty and singleton sets
and using the union operation. We adopt the latter here. That is, each set is either (J, or it is a
singleton {z} or it is the union of two sets X UY. Assuming that @, singleton formation, and U are
the introduction operations, we define the elimination operation by prescribing its action in each of
the three cases:

fun s_sru(e, f,u)(0) = e
| ssrule, fiu)({2}) = f(z)
| ssru(e, f,u)(XUY) = u(s_sru(e, f,u)(X),ssru(e, f,u)(Y))

Following Tannen et al. [6, 7], s_sru stands for “structural recursion on the union presentation of sets.”
It has three parameters, e, f, and u. Setting these parameters arbitrarily leads to ill-defined programs.
It is well known that checking whether a program using s_sru is well-defined is undecidable [7]. Hence,
it was proposed [8] that some syntactic restrictions be imposed on s_sru to ensure well-definedness.
In particular, this is achieved by taking e to be) and u to be union. Then, the resulting function
s-sru(0, f,U), which is called s_ext(f), has type {s} — {¢} if f has type s — {t}. Its semantics is
given by
s_ext(f) {z1,...,2n} = f(z1)U... U f(z,)

That is, it extends f to sets. Instead of s_ext(f), one can use the following two constructs. The s_p
operator flattens a set of sets: s_pu {X1,...,Xp} = X1 U...UX,. The s_map(g) operator applies the
function g to every element of a set: s_map(g) {z1,...,2n} = {g(21),...,9(zn)}. It is not hard to see
[8] that s_ext(f) = s_p o somap(Az.f(z)), s_p = s_ext(id), and s_map(g) = s_ext(Az.{g(z)}).

Using these operations, we present the nested relational language A'RL here. It has three equally
expressive components that can be freely combined: the nested relational algebra A/RA, based on the
operations discussed above; the nested relational calculus A’RC; and relative set abstraction RSA.

Expressions of NRA, N'RC, and RSA are constructed using the rules in Figure 1. These rules give
the most general types of the expressions. In the figure, we also show these types in the superscript.
The type superscripts are omitted in subsequent sections as they can be inferred [26, 42, etc.] These
constructs have been fully explained by Tannen et al. [8]. We briefly repeat their semantics here.

e Kcis the constant function that produces the constant c.

e id is the identity function.

e g o his the composition of functions g and h; that is, (g o h)(d) = g(h(d)).

EXPRESSIONS OF NRA
General Operators

h:r—s g:s—t
Kc:unit — b id®:s— s goh:r—t

g:r—s h:r—t

1*: s — unit s xt—s Ty s Xt —t (g,h):r—sXxt

Set Operators
fis—t

s is— (s} sa (o (s) smap(f): {s} = {1}

KA{}* : unit — {s} U {s} x {s} — {s} s.pyt s x {t} = {sxt}

EXPRESSIONS OF NRC

Lambda Calculus and Products

e:t e :s—>t ey:s
c:b z®:s Ae’e:s —t e eq : t
e:sXxt e;1:8 ey:t
() : unit mpe:s mye:t (e1,e2) s Xt

Set Expressions

e:s e1: {s} ey:{s} e1 : {t} ey:{s}
{}*: {s} {e}: {s} erUey : {s} Ufer | ° € e} : {t}

EXPRESSIONS OF RSA
All constructs of NRC, except |J{e1 | = € e}, and

Relative Set Abstraction Construct

e:s e :{s1} ... en:{sn}
{e|z]' €e1,...,zi € en} : {s}

Figure 1: Syntax of NRL
8

e The bang ! produces () on all inputs.

e m; and 7y are the two projections on pairs.

e (g, h) is pair formation; that is, (g, h)(d) = (g(d), h(d)).

e K{} produces the empty set.

e U is set union.

e s_n forms singleton sets; for example, s 3 evaluates to {3}.

e s_p flattens a set of sets; for example, s_u{{1, 2, 3},{1,3,5,7}, {2,4}} evaluates to {1, 2, 3,4, 5,7}.

e s_map(f) applies f to every item in the input set; for example s_map(Az.1 + z){1, 2, 3} yields
{2,3,4} and s_map(Az.1){1,2,3} yields {1}.

e s_ps(z,y) pairs ¢ with every item in the set y; for example, s_p2(1, {1, 2}) returns {(1,1),(1,2)}.

o U{ei | = € ex} is equivalent to s_ext(Az.e;1)(e2), that is, (s_u o s_map(Az.e;))(e2). For example,
U{sm(z —1)Usmy(z+ 1) |z € {2,4}} evaluates to {1,3,5}.

o {e |z € e1,...,2, € €y} is equivalent to J{...U{{e} | zn € en}...| 21 € e1}. It can be
understood as a normal comprehension notation from set theory; see Wadler [58] and Buneman
et al. [9]. For instance, {(z,y) | z € X,y € Y} is the Cartesian product of sets X and Y.

The whole of NRL is used in many places of this report. However, in many of the proofs only one of
NRA, NRC, or RSA is used. This is fine because these three sublanguages are equivalent in terms of
denotations and in terms of equational theories [8, 59].

Proposition 2.1 NRA, NRC, and RSA are equivalent in terms of semantics. In fact, the translations
between them preserve and reflect their respective equational theories. |

Tannen et al. [8] represented booleans by the two values of type {unit}, that is, {()} for true and {}
for false. It was shown [8] that after adding an equality test primitive eq® : s x s — {unit} for each
complex object type s, NRL expresses all nested relational operations of the well-known algebra of
Thomas and Fischer [54]. In fact, this result can be strengthened [60] because the converse is also
true if a few constant relations are added to the algebra of Thomas and Fischer [54], which is known
to be equivalent to the language of Colby [13] and to the language of Schek and Scholl [49]. Also
[60], real booleans can be added to NRL as a base type together with equality tests =*: s X s — bool
and the conditional construct to yield a language that has the same strength as ARL(eq) (we list the
additional primitives explicitly in brackets to distinguish the various versions of NRL). Consequently,
we have

Proposition 2.2 NRL(eq) ~ NRL(=, bool, cond) ~ Thomas& Fischer ~ Schek&Scholl ~ Colby. O

Here and in what follows £; ~ £, means that £, and £, have the same expressive power. Occasionally
we use this notation when £ and £, have different type systems. This only happens when there exist
translations between the type systems and the equivalence is meant to be the equivalence of expressive

power with respect to those translations. We shall also use £; C L5 when L, is at least as expressive
as L1, and £, C L5 when L, is strictly more expressive than L.

For the sake of clarity, pattern matching is used in many places later on in this report. It can be
removed in a straightforward manner. For example, AX.{(a,{b | (¢,b) € X,c =a}) | (a,2) € X} is
just a syntactic sugar for AX.{(m, ¢, {myy |y € X,w € (m, y eq m; 2)}) | « € X}, which is the
function implementing the nest operation of the nested relational algebra.

3 The Basic Bag Language BOL

3.1 The Ambient Bag Language NBL

Using the approach outlined in the previous section, we now define an ambient bag query language
NBL consisting of three corresponding components: the bag algebra ANBA, the bag calculus NBC, and
the relative bag abstraction RBA. We use the {-, ..., [} brackets for bags.

Similar to sets, bags can be constructed from empty bag {[} and singleton bags {|z[} using the additive
union operation W that adds up multiplicities. The general elimination operation, called structural
recursion on union presentation of bags, b_sru, is defined by prescribing its action depending on the
structure of a bag:

fun bsru(e, o)D) =
| bosru(e, £y u)({=l}) = f(=)
| bsru(e, f,u)(B1UB;y) = wu(bsru(e, f,u)(B1), b_sru(e, f,u)(B2))

Similar to sets, there are choices of e, f, and u that make b_sru(e, f, u) ill-defined and well-definedness
is again undecidable [7]. So we ensure well-definedness by imposing syntactic restrictions on b_sru:
e is required to be {|[} and u is required to be W, leaving f the only parameter that may vary. The
resulting construct, denoted by b_ezt(f), has the semantics below and is equivalent to mapping over
a bag followed by flattening a bag of bags.

b_ext(f) {lz1,..., 2z} = f(z1) W ... W f(zn)

Summing up, we now have an ambient bag language which we called NBL. The expressions of NBL
are given in Figure 2. The types of NBL are the same as A'RL but uses bags instead of sets. That is,

s,t n=0>b| unit | sxt| {s}

where elements of type { s[} are finite bags containing elements of type s. A bag is different from a
set in that it is sensitive to the number of times an element occurs in it while a set is not.

The semantics of NBL is similar to the semantics of NRL. The difference is in the operations such
as W and b_u that add up multiplicities. b_n forms singleton bags; for example, b_n 3 evaluates to the
singleton bag {3[}. b_u flattens a bag of bags; for example, b_u {{1, 2, 3}, {1,3,5, 7}, {2, 4}} evaluates
to {1,2,3,1,3,5,7,2,4}. b_map(f) applies f to every item in the input bag; for example, b_map(Az.1+
z) {|1,2,1, 6} evaluates to {2, 3,2, 7]} and b_map(Az.1) {|1,2,1, 6]} evaluates to {|1,1,1,1}. K{[} forms

10

EXPRESSIONS OF NBA
Operations of category with products as in NRA.
Bag Operators

fis—t

b s sl bpt {{sbh = Jsl bomap(F): Js} — {¢}

Kb cunit — s} w*{shx {s}— {sb by s x {th = s x 1t}

EXPRESSIONS OF NBC
Operations of lambda calculus and products as in NRC.

Bag Operators

e:s er:fls) ex:{s} er: {tf ea: {sl
{0 : {sl {lel} e1Wey: {sft Wles | 2° € eal} - it}

EXPRESSIONS of RBA
All operations of NBC, except H{e; | z* € es]}, and

Relative Bag Abstraction Construct

e:s er:{slt ... en:{snlt

{e| =2* €e1,...,2i" €enl}

Figure 2: Expressions of NBL

11

empty bags of the appropriate types. W is additive union of bags; for example, W({1,2, 3]}, {2,2,4[})
returns {1,2,3,2,2,4}. b_p, pairs the first component of the input with every item in the second
component of the input; for example, b_p2(3,{1,2,3,1}) returns {(3,1),(3,2),(3,3),(3,1)[}. The
meaning of [J{e; | z* € ez} is to flat-map the function Az.e; over the bag es. That is, W{le; | z €
ea[} is equivalent to (b_p o bomap(Az.e1))(e2). The semantics of {e | 1 € e1,...,z, € e,]} is just
Wi .. - W{{el} | zn € enl}...| 21 € e1]}. It is a most convenient and easy to understand construct. For
example, {{(z,y) | z € e1,y € eaf} is just the “cartesian product” of bags e; and ey.

Similar to NRL, the three components of ABL are equally expressive. In fact, the proof is identical
to that used for NRL [8].

Proposition 3.1 NBA, NBC, and RBA are equivalent in terms of denotations. Moreover, the trans-
lations between them preserve and reflect their equational theories. |

Therefore, we normally work with the component that is most convenient.

3.2 Relative Strength of Bag Operators and the Language BOL

As mentioned earlier, the presence of equality tests elevates ARL from a language that merely has
structural manipulation capability to a full-fledged nested relational language. The question of what
primitives to add to NBL to make it a useful nested bag language should now be considered.

Unlike languages for sets, where we have well established yardsticks, very little is known for bags. Due
to this lack of adequate guideline, a large number of primitives are considered. These primitives are
either “invented” by us or are reported by other researchers, especially Albert [4] and Grumbach and
Milo [21]. In contrast to Grumbach and Milo [21] who included a powerbag operator as a primitive,
all operators considered by us have polynomial time complexity. We give a complete report of their
expressive strength relative to the ambient bag language.

Let us first fix some meta notations. We define count(d, B) to be the number of times the object d
occurs in the bag B. To define the semantics of a bag operation e(By, ..., By), it suffices to express
count(d, e(By, ..., By)) in terms of count(d, B;), ..., count(d, B,,). The bag operations to be considered
are listed below.

monus : { s} x {s} = {s} bag difference
maz : {s]} x {s} — {s} maximum union
min s} x {s}} — {s} minimum intersection
eq : sxs— {Junit]} equality test
member : s X {s[} = {unit]} membership test
subbag : s} x {Is[} — {lunit} subbag test
unique : {s} — {s[} duplicate elimination

The semantics of these additional operations is given in Figure 3. Notice that we are simulating
booleans using a bag of type {lunit}}. True is represented by the singleton bag {|()} and False is
represented by the empty bag {[}.

As emphasized in the introduction, each of these operators has polynomial time complexity with
respect to the size of the input. Hence

12

= max(count(d, By) — count(d, By), 0)
= max(count(d, By), count(d, By))
= min(count(d, By), count(d, By))

_ { {0} ifdi=dy
i

count(d, monus(B1, Bs)
count(d, maz(By, By)
count(d, min(B1, Bs)

otherwise

{0} if count(d,B) >0
member (d, B) {1} otherwise
{QF if count(d, B1) < count(d, By) for every d
otherwise

if count(d, B) > 0

' 1
count(d, unique(B)) = 0 if count(d,B) =0

subbag(B1, B2) = {{H}

Figure 3: Semantics of additional bag operations

Proposition 3.2 Every function definable in NBL(monus, maz, min, eq, member, unique) has poly-
nomial time complexity with respect to the size of the input. |

In the remainder of this section, the expressive power of these primitives is compared. The result is
the following complete characterization of their relative expressive power.

Theorem 3.3 monus can express all primitives other than unique which is independent from the rest
of the primitives; min is equivalent to subbag and can express both mazx and eq; member and eq are

interdefinable and both are independent from maz.

The results of this theorem can be visualized in the following diagram:

monus

min — subbag unique

/

maz eq — member

As a consequence of these results, NBL(monus, unique) can be considered as the most powerful can-
didate for a standard bag query language. Thus, we propose to use it as the standard query language
for bags.

Definition. The Bag Query Language, BOL, is defined as NBL endowed with monus and unique.

In the remainder of the section we prove Theorem 3.3. Let us first prove the easy expressibility results.
After that, the harder inexpressibility results are presented.

13

Proposition 3.4 e maz can be expressed in NBL(monus).

min can be expressed in NBL(monus).

eq can be ezpressed in NBL(monus).
subbag can be expressed in NBL(monus).
subbag can be expressed in NBL(eq, maz).
member can be expressed in NBL(eq).

eq can be ezpressed in NBL(member).

eq can be expressed in NBL(min).

subbag can be expressed in NBL(min).
min can be expressed in NBL(subbag).

maz can be expressed in NBL(min).

Proof. To reduce clutter, we use the primitives in infix form.

By maz By := By W (B monus By).

B; min By := Bymonus(B;monusBy).

dy eq dy i=)} monus (Riz & Rar) where R is UL{0D | = € {d} monus ;.
B, subbag By := B eq (Biymonus(B;monusBy)).

B, subbag By := By eq (B; maz By).

d member B := ({{() | = € B,y € (z eq d)[} eq {|}) eq {|}-
d; eq dy := dy member {d,}.

di eq dp :={() | = € {di} min {d]}[}
B, subbag By := By eq (B; min By).

By min By := F W Fis W Fy;, where E is the bag of elements having the same number of
occurrences in By and Bj, and F}; is the bag of elements of B; that occur strictly less frequently
in B; than in Bj.

Let X intersection Y be the function that returns those elements that occur the same number
of times in X and Y. Let X difference Y be the function that returns those elements in X that
occur different number of times in X and Y. Then E can be defined as B; intersection Bs, and
F;; as {{z | € B; difference Bj, z € {ly | y € B;, w € y eq z[} subbag {ly | y € B;,w € y eq z}}.
It remains to define intersection and difference. First observe that dy eq dy := {() | z €
{d1[} subbag {dsl},y € {da} subbag {di[}[}. Now B intersection By := {z| ¢ € By, w €
{ylyeBi,zcyeqz}eq{y|y€ Bs, z €y eq z}}. Finally, B; difference By := {lz | z €
By, w € (z member (B intersection By))eq {|}]}. Incidentally, it is also easy to show that eg,
intersection, difference, and member are inter-expressible.

14

e B; max By := F WF;3W Fy, where F is the bag of those elements that occur equally frequently
in By and By, and F;; is the bag containing those elements of B; that occur strictly more
frequently in B; than in B;. Thus, E can be defined as B; intersection By and Fj; as {z | z €
B; difference B;, w € {y | y € B;,z € y eq [} subbag {ly |y € Bj,z €y eq z]}]}.]

In contrast to A/RL, where the primitives eq, subset, —, N and member are interdefinable [8], the
corresponding bag primitives differ considerably in expressive power. These inexpressibility results
require arguments that are more cunning. We prove them in separate propositions below.

Proposition 3.5 eq cannot be ezpressed in NBL(unique, maz).

Proof. Define the relation C; on complex objects of type ¢t by induction as follows: di Cp dy iff
dy = dy; (di,d2) Coxe (dy,dy) if dy T, dy and dy Ty dy; By Ty, Ba if for every dy such that
count(dy, B1) # 0, there is some dy such that count(ds, B2) # 0 and d; T, dp. It is not difficult to
check that every function definable in NBA(unique, maz) is monotone with respect to C. However, eq
is not monotone with respect to C. O

Proposition 3.6 unique cannot be expressed in NBL(monus).

Proof. The technique of Wong [59] can be readily adapted to show that the rewrite system below is
strongly normalizing.

o (Az.e)(¢') ~ ele'/z] o mi(er,e2) ~ € o {e| Az e{l}, Al ~ {1}
{le | Ar,z € {e'l}; Aslt ~ {lefe/2] | Ag, Asle’/2]]}
{e| A1,z € e1 Weq, Agl} ~ A1 W Ay, where A4; is {le | A1,z € e;, Asl}.

{e | Av,z € {e' | A}, Agt ~ {lefe/a] | Ar, AY, Agle’/a]]}

(e1 monus ez) ~» e, where e;, es have no free variables and e is the result of evaluating
€1 monus e,.

It can be shown that the rewrite system obtained by adjoining the rule below to the above system is
weakly normalizing:

o {le| Ay, z € e; monus ez, Agf} ~ {{m2y | y € A1 monus Ayf}, where 4; is {{(z,e) | A1,z € e;, Aql}
and at least one of A; is not empty.

Now we argue that no normal form under these rules implements unique. Let b be a new base type.
Let O : {|b[} be a bag having k£ > 1 identical elements and nothing else. It can be checked that any
normal form implementing unique must have the form AR.e, where R is the only free variable of e.
Then the proposition follows from the claim below.

Claim. Let A: {...xbx ...[} be a normal form having R : {{b}} as its only free variable. Then for
any o:...x bx ..., count(o, A]O/R]) is a multiple of k.

15

Proof of claim. We proceed by analyzing the forms that A can take. When A is R, the count is
1-k if o occurs in R or is 0 - k otherwise. When A is {|[}, the count is 0 - k. When A is BWw C
or B monus C, the hypothesis is applicable to both B and C. So count(o, BlO/R]) = mp - k and
count(o,C|O/R]) = m¢ - k respectively. Then count(o, A[O/R])is (mp + m¢) -k or (mp ~m¢) - k
respectively.

There are two remaining possibilities. The first possibility is for A to take the form {e | z; €
R,...,z, € R[}. In this case, the count of any o in A[O/R] is obviously a multiple of k. The second
possibility is for A to take the form {e | # € B monus C|[}. In this case, e must have type ... xbx....
It can be checked that this forces x to have a type that is not necessarily the same as e’s but is still of
the form ...xbX.... As aresult, B monus C is a normal form whose type has the form {|...xbx...[}.
So the hypothesis can be applied and the count of an element in B monus C must be a multiple of
k. Let o be an element of A[O/R]. Let oy, ..., o, be the distinct elements of (B monus C)[O/R] such
that e[o1/%], ..., e[on/z] all evaluate to o. Then count(o, A[O/R]) = (m1 + ...+ my) - k, where m;’s
are the count of o;’s in (B monus C)[O/R)]. O

Proposition 3.7 monus cannot be expressed in NBL(subbag).

Proof. Let e be an expression of NBC(subbag) in normal form (induced by the rewrite system of
the previous proposition) having no constants of base type b and no function abstraction. Let its free
variables be #; : t1, ..., @, : t,. Let 0 assign object 6(z;) of type ¢; to ;. Let by, ..., by, be all the bags
of type {b[} appearing in 8(z1), ..., 8(zn). Let ay, ..., a; be all the objects of type b in 0(z1), ..., 0(zy).
Associate with each a; a set ka; = {qo, ..., gm}, where go = 1 if an occurrence of a; in some §(z;) is
not inside some of by, ..., bry; go = 0 otherwise; ¢1<;j<m = the number of times a; appears in b;. Let
el evaluate to an object 0. By structural induction on e, the number of occurrences of a; in o can be
expressed by a formula of the form: pg-go+ ...+ pm - ¢gm where ka; = {qo, ..., qm} and py, ..., pm are
natural numbers. However, monus clearly does not have this property. |

Proposition 3.8 Let MIN : {{s}}[} — {s]} be the function such that for every d,
count(d, MIN(R)) = min{count(d, X) | X € R}.
Then
e MIN cannot be expressed in NBL(monus).
e MIN cannot be ezpressed in NBL (unique, member).
e MIN can be expressed in NBL(unique, member, maz).

o subbag cannot be expressed by NBL(member).

e maz cannot be expressed by NBL (unique, member).
Proof. The last two items are immediate consequences of the first three items, which we prove below.

e Since unique cannot be expressed in NBL(monus), it suffices to show that it is expressible in

NBL(MIN, eq). Clearly, unique(B) := MIN{{r}W{z |z € B,y € (z eqr) eq {}}} | r € BJ}.

16

e From Section 4, it is not difficult to see that NBL(unique, member) ~ NRL(N, X, - +,eq) and
NBL (unique, subbag) ~ NRL(N,X, -, +,eq, <), where we add natural numbers, some limited
arithmetic, and a summation primitive to NRL. Clearly, NRL(Q, X, -, +, +, bool, cond, =) D
NRL(N,X, -, +,eq). It is proved in Section 5 that <: N X N — bool is not expressible in the
former nested relational language. Hence it cannot be expressed in the latter. Consequently,
NBL (unique, member) cannot express subbag. But NBL(MIN) easily expresses subbag. So MIN
cannot be expressible in NBL(unique, member).

e First note that subbag can be expressed in NBL(member, maz). Clearly, MIN is expressible
in NBL(unique, subbag) as MIN(R) := (b_p o wunique)(B), where B is {w | (y,w) € A,
not{|() | (z,v) € A, 2 = y,w # v,v subbag wl}} and A is {(y,{z | ¢ € v,z = y}) | v €
R,y € u,v € R[}. O

This finishes the proof of Theorem 3.3. The independence of unique was also proved by Van den
Bussche and Paredaens [56] and Grumbach and Milo [21], and the fact that monus is the strongest
amongst the remaining primitives was also shown by Albert [4]. However, their comparison was
incomplete. For example, the incomparability of maz and eq was not reported. In contrast, the
results presented in this section can be put together in Theorem 3.3 which completely and strictly
summarizes the relative strength of these primitives.

4 Relationship Between Bags and Sets

The relationship between sets and bags can be investigated from two perspectives. First, we compare
several of the nested bag languages with the nested relational language A’RL(eq). This can be regarded
as an attempt to understand the “set-theoretic” expressive power of these bag languages. Second, we
consider augmenting ARL(eq) by new primitives with the aim of simulating BOL, the most powerful
of bag languages considered so far. In this way, we hope to understand the precise character of the
new expressive power that bags bring us.

4.1 Set-Theoretic Expressive Power of Bag Languages

In order to compare bags and sets, two technical devices are required for conversions between bags
and sets.

f:s—t fis—t

bs-map(f) : {s}} — {t} sb-map(f) : {s} — {t}

The semantics is as follows. bs_map(f)(R) applies f to every item in the bag R and then puts the results
into a set. For example, bs_map(Az.1+z){1,2, 3,1, 4]} returns the set {2, 3,4,5}. sb_map(f)(R) applies
f to every item in the set R and then puts the results into a bag. For example, sb_map(Az.4){1,2,3}
returns a the bag {4, 4, 4}. In particular, sb_map(f) = b_map(f) o sb_map(id). This axiom guarantees
that when a set is converted to a bag using sb_map(id), the resulting bag contains no duplicates. Bags
without duplicates are considered in this section as the most natural representation of sets using bags.

17

Let s be a complex object type not involving bags. Then to_bag(s) is a complex object type obtained
by recursively converting every set brackets in s to bag brackets. Every object o of type s is converted
to an object to_bag,(o) of type to_bag(s). Conversely, let s be a complex object type not involving
sets. Then from_bag(s) is a complex object type obtained by converting every bag brackets in s to set
brackets. Every object o of type s is converted to an object from_bag, (o) of type from_bag(s). The
conversion operations are given inductively below.

to_bag, := 1d from_bagy := 1d
to_bag,,. := (to_bag, o my, to_bag, o ma) from_bag,,, ‘= {from_bag, o w1, from_bag, o 7a)
to_bagy, := sb-map(to-bag,) from_bagyq,; := bs_map(from_bag,)

Define SET(I') to be the class of functions f : s — ¢ where s and ¢ are complex object types not
involving bags and I is a list of primitives such that there is f' : to_bag(s) — to_bag(t) definable in
NBL(T') and the diagram below commutes.

! d
to_bag(s) i» to_bag(t) ® . to_bag(t)
to_bag, to_bag, fmm—bagto_bag(t)
s i - i
f id

The class SET(T') is precisely the class of “set-theoretic” functions expressible in NBL(T'). That is, it
corresponds to the class of functions from duplicate-free bags to duplicate-free bags in NBL(T'). We
compare SET (T') with A'RL(eq) for various bag primitives below. Let eg, be equality test restricted
to base types. Let empty : {{unit]} — {unit]} be a primitive such that it returns the bag {|()[} when
applied to the empty bag and returns the empty bag otherwise.

Theorem 4.1 SET (unique, eqy, empty) = NRL(eq).

Proof. It is easy to check [59] that NRL(eq) = NRL(egp, not) where not : {unit} — {unit} returns
{(} if applied to the empty set and returns {} otherwise. Hence we prove SET (unique, eqy, empty) =
NRL(egy, not) instead. To show NRL(egy,not) C SET (unique, eqy, empty), we prove that for any
f:s—tin NRA(eqy, not), there is f' : to_bag(s) — to_bag(t) in NBA(unique, eqy, empty) such that
the diagram below commutes.

! d
to_bag(s) i» to_bag(t) ® . to_bag(t)
to_bag, to_bag, fmm—bagto_bag(t)
s i - i
f id

First note that the right square in the above diagram obviously commutes. Therefore, we need only
to prove that the left square commutes. This is straightforward by defining f’ as follows:

18

id = 1d II({}' = K{} T i=m Th 1=y
V.1

Kcd:=Kec ! not' := empty S_py :=b_py
sy’ = unique ob_u (s_map g)' := unique ob_map g' (g oh) :=g'oh’ (g,h)Y = (g k)
sy :=bny eq; = egp U’ := unique oW

The reverse inclusion SET (unique, eqy, empty) C NRL(egp, not) follows by showing that for any f :
s — t in NBA(unique, eqy, empty) there is an f” : from_bag(s) — from_bag(t) in N'RL(egp, not) such
that

"

from_bag(s) i» from_bag(t)
from_bag, from_bag,

§ — ¢

This is straightforward by defining f" as follows:

1d" = id K{[}'":=K{} = m Ty =y
Kd":=Kc¢ ! :=! empty"” := not b_py := s_ps

by :=sp (bmapg)":=smapg” (g oh):=g"oh" (g,h)" :=(g" A"
bn":=smn eq =eq unique” = id W =U

Note that the use of unigue cannot be removed from the theorem above without weakening the notion
of what kind of bags is considered an acceptable representation of sets. As mentioned earlier, only
duplicate-free bags are accepted here as representation of sets. To see that unique cannot be removed,
consider how one can define the equivalent of set union U : {s} x {s} — {s} using bags. The bag-
equivalent of set union must take a pair of duplicate-free bags to a duplicate-free bag having exactly
those elements in the two input bags. The only binary operation from { s} X {s}} — {s[} that combines
data from both its input bags in the ambient bag language is . However, & takes two duplicate-free
bags having nonempty intersection to a bag with duplicates. In other words, the output of W is not
acceptable as a bag representing a set. Since duplicate elimination has been shown in the previous
section to be independent of the other bag operators, we have no choice but apply unique to the result
in order to obtain a bag that meets our standard.

Proposition 4.2 NRL(eq) C SET (unique, eq)

Proof. Since AMRL(eq) is a conservative extension of the flat relational algebra [59], it cannot
test whether two given sets have the same cardinality [28]. However, this function is defined in
SET (unique, eq) as from_bag o eq o (b_map ! om, b_map ! omy) o to_bag. O
Proposition 4.3 NRL(eq) and SET (monus) are incomparable.

Proof. It is immediate that SET (monus) € NRL(eq) because the function which tests if two sets have
equal cardinality is in the former but not the latter. To show that A'RL(eq) € SET (monus), consider

19

the relational projection II1{(z1,91), ..., (€n,yn)} = {1, ..., 2} I} is clearly in ARL(eq). Suppose
it is also in SET (monus). Then the function I} {(o1,01),...,(01,07), .., (0n,0%), .., (0, O™} =
{lo1, ..., 0n[}, where o, ..., 0, are distinct, is definable in NBL(monus). Then unique(R) = I} ({(z, z) |
z € R[}) is definable in NBL(monus), contradicting Proposition 3.6. So II; is not in SET (monus). O

The above results say that NBL(unique, ey, empty) is conservative over NRL(eq) in the sense that
it has precisely the same set-theoretic expressive power. On the other hand, NBL(unique, eq) is a
true extension over the set language. However, the presence of unique is in a technical sense essential
for a bag language to be an extension of a set language, because of the use of duplicate-free bags to
represent sets.

4.2 A Set Language Equivalent to BOL

It was shown in the previous section that BOL is the most powerful amongst the bag languages
considered so far. From the foregoing discussion, this bag language is a true extension of NRL(eq).
In this subsection, the relationship between sets and bags is studied from a different perspective. In
particular, the precise amount of extra power BOL possesses over N'RL(eq) is determined. In fact, in
order to give the nested relational language the expressive power of BOL, it has to be endowed with
natural numbers N together with multiplication, subtraction, and summation as defined below.

Multiplication - : N x N — N. The semantics of - is multiplication of natural numbers.

Subtraction -—: N X N — N (sometimes called modified subtraction). The semantics is as follows:

o Jna-m ifn-m2>0
[ifn—m<0

Summation } g : {s} — N where g : s — N. The semantics is as follows. > g {o1,...,0n} =
g(01) + ...+ g(on). Equivalently, the construct X{les | #° € e1]} : N where e; : N and e; : {s} is
also used and is interpreted as (3°(Az.e3))(e1). (We use bag brackets to emphasize the semantics
of >: after f is applied to all elements of a set, all values are counted, even if f produced the
same value on a number of elements.)

It is known [8] that adding the booleans and the conditional cond(es, ez, e3) := if e; then e else e
does not add expressiveness to ARL(eq). We now define a language NRL"** as N'RL(eq) with booleans
and conditional, enhanced by the type N of natural numbers and the three operations -, —and } above.

The rest of this subsection is devoted to proving

Theorem 4.4 BOL ~ NRLP8E.

Proof is given in two claims below. First, we need a slightly different kind of conversion between sets
and bags. Two additional devices are used: to_nat : {{unit} — N takes a bag containing n units to
n and from_nat : N — {Junit[} does the opposite thing. Let s be a complex object type not involving
sets. Then to_set(s) is the type obtained by changing all bag components {|t[} to {to_set(t) Xx N}. An
object o : s is converted to an object to_set (o) of type to_set(s). An object o : to_set(s) is converted
to an object from_set,(o0) of type s. The two conversion functions are defined inductively below.

20

to_setsy: == (to_set, o my, to_sety o ma)

to_setg,) := AB.bs_map(Ab.(to_set, b, tonat{() | c € B,beq c[})) B
o from_set,,;; == id
o from_set,,, ‘= (from_set, o 7y, from_set, o wy)

o from_sety,y = b_pob-map(b-map w1 0 b_py o (from_set, o my, from_nat o m3))

Using the above conversion, it can be shown that
Claim 1: BOL C N'RL™2t,

Proof of Claim 1. Since addition is definable by summation, to prove the proposition, it suffices to
show that for each f : s — t in BOL, there is a f’ : to_set(s) — to_set(t) in NRL™" such that the
diagram below commutes.

f id

to_set, to_set; from_set,
to_set(s) — to_set(t) — to_set(t
(5) 7 to-set(t) - to-st(1)

The right square in the above diagram clearly commutes. Hence we need only to prove that the left
square commutes. This is easy by defining f’ as follows:

o ! =1 o = o Ty 1= Ty e Kc':=Kec o K{[}/ := K{}
o id :=1d o (g,h)Y :={(g', A" e (goh) =g ok ebn :=smn o(id,Klo!)
o bpy:=Az,Y).{((z,2),n) | (z,n) €Y} o unique’ := s_map(m;, K1 o)

e monus' ;== A(X,Y){(z,m=n) | (z,m) € X,(y,n) €Y,z =y, (m=n) #0}

o W' := Uo (D, E) where D := A(4, B).{(a,n+ m) | (a,n) € A,(b,m) € B,a = b} and E :=
A(4,B){(a,n+m) | (a,n) € B,(b,m) € A,a = b}.

by = AA{(s,Z{n - Z{if s =z then m else 0 | (z,m) € a} | (a,n) € A}) | s € {z | (X,a) €
A, (z,b) € X}}

o (bomap g) == AA{(z,2{if a ==z then n else 0 | (a,n,z) € B}) | z € {z | (=,y,2) € B} where
B = {(s' byn,8) | (b,m) € A}. o

For the inclusion in the other direction, conversions similar to that in Claim 1 are used. Let s be
a complex object type not involving sets. Then to_bag(s) is the type obtained by changing all set
brackets to bag brackets and changing N to {Junit[}. Let o be an object of type s. Then it is converted
to an object to_bag, (o) of type to_bag(s). Let o be an object of type to_bag(s), then it is converted to
an object from_bag,(o0) of type s. The conversion functions are defined below.

21

to_bagy = from_nat from_bagy := to_nat

to_bag ..t = id from_bag,,,..;; = 1id
to_bag,,. := (to_bag, o my, to_bag, o ma) from_bag,,, ‘= {from_bag, o w1, from_bag, o 7a)
to_bagy, := sb-map(to-bag,) from_bagy,y := bs_map(from_bag,)

Then we have
Claim 2: NRLP® C BOL.

Proof of Claim 2. First note that NRL™* ~ NRL(eq, N, -, -, 3"), because the booleans and the condi-
tional in N/RL™®* are just devices of convenience and add no power to the language. Hence it suffices
to prove that for every f : s — ¢ in NRA(egy, not, N, -, =, 3"), there is a f” : to_bag(s) — to_bag(t) in
BQL such that the diagram below commutes.

f id

to_bag, to_bag, from_bag,

to_bag(s) ?,» to_bag(t) e to_bag(t)

As the right square clearly commutes, we are left to demonstrate that the left square commutes. This
can be accomplished by defining f” as follows, where NAT _n is the bag of exactly n units:

=1 Kn" := Az . NATn Kcd':=Kc

K{}":= K{[} = Ty = Ty

id” — zd <g, h>” — <g”, h”> (g o h)” = g” o h”

sm':=bny s_ph = b_py "= monus

=AY |ze X,ye Y} (X 9) :=bpobmap(g”) (s-mapg)’ := unique o b_map(g")
s_p' := unique o b_pu eq" := eq. not" := AR.{()}monus R

U" := unique ol

4.3 Relational Language with Aggregate Functions, N'RL8&"

The > construct introduced to the set language to capture the power of BOL is often helpful in
defining aggregate functions. For example, > (Az.1) corresponds to the aggregate COUNT and } id
is TOTAL. However, many aggregate functions are based on rational rather than integer arithmetic.
Thus, we suggest that ARL™® be extended to a language in which Q, the type of rational numbers, is
used as a new base type.

We define the nested relational language with aggregate functions, NRL*€" as N'RL(eq) enhanced
with rational numbers QQ; arithmetic operations +, —, -, and +; linear order < on rationals; and the
summation construct below with a semantics analogous to the summation over natural numbers. For
succinctness, we also throw in the booleans and if-then-else; but note that they add no expressive
power to the language [60].

22

f:s—0Q
X f:{s}—0Q

Equivalently, the construct 3{ ey | ° € e[} : Q where e3 : Q and e; : {s} is also used and is interpreted

as (Do (Az.e2))(er).

Many useful aggregate functions can be defined in A/RL?88". For example:

e “Total the first column of R” is TOTAL{(R) := Y {71 =z | z € R]}.
e “Average of the first column in R” is AVG;(R) := TOTAL;(R) +~ COUNT(R).
e “Variance of the first column of R” VARIANCE;(R) is

O Alsq(m1 z) | = € R} — (sq(D_{lm1 2 | = € R}) =~ COUNT(R))) ~ COUNT(R)

where sq := Ay.y - y.

We consider AN'RL?88" to be a rational reconstruction of SQL for the reason that it is capable of
expressing the constructs that contribute to the gap between SQL and relational algebra: nesting,
which is needed for GROUP-BY, and aggregate functions. In particular, to justify the claim that SQL
cannot express transitive closure, we prove that transitive closure is not definable in ANRL®88"; see
Corollary 5.17.

5 Expressive Power of Set Languages, Bag Languages and Aggre-
gate Functions

In this section limitation in the expressive power of NRL(eq), NRL*®8", and BOL is studied. The
results of this section are:

o NRL88" and NRL"' possess the conservative extension property. That is, expressibility of
queries in these languages is independent of the height of set nesting in intermediate results.

o The bounded degree property is introduced as a tool for investigating inexpressibility. We show
that it uniformly applies to a number of recursive queries. We prove that A'RL(eq) has this
property. However, it is not known if ARL®88" has the bounded degree property.

e By a careful analysis of the normal forms induced by the conservative extension property on
NRL?88" we show that the same recursive queries are also not expressible in N'RL?88". As BOL
is clearly a sublanguage of A'RL?88", these inexpressibility results settle Conjectures 1, 2, and 3.

e We prove that the class of unary arithmetic functions definable in BOL or A/RL™®! is the class
of extended polynomials. As a result, tests for properties which are simultaneously infinite and
co-infinite are inexpressible in these languages.

23

5.1 Conservative Properties of Set and Bag Languages

Let us first explain the idea of conservative extension. The set height ht(s) of a type s is defined as
the depth of the nesting of set- or bag- brackets in s. The set height ht(e) of an expression e is defined
as the maximum of the set heights of all the types that appear in the unique typing derivation of e.

Definition. A language L has the conservative extension property if any function f : s — t definable
in L can be expressed in L using an expression whose set height is at most max(k, ht(s), ht(t)), where
k is a constant fized for L.

In other words, the class of functions computable by a language possessing this property is indepen-
dent of the height of intermediate data structures. Note that if £ has the conservative extension
property and k is the fixed constant, then £(p) also has that property but the fixed constant becomes
max(k, ht(p)) for any additional primitive p.

For the rest of this subsection, we use the calculus versions of our languages.

Theorem 5.1 Let e : s be an expression of NRC*88". Then there is an equivalent NRC®88" expression
e’ : s such that ht(e') < max({ht(s)} U {ht(t) | t is the type of a free variable in e}).

Proof. We prove conservativity for the language that does not have < as a primitive. Notice
that < is of height zero; hence adding it does not affect the conservative extension property. We
proceed along the lines of Wong [59] by first introducing a strongly normalizing rewrite system and
then showing that the normal forms induced by the system do not generate intermediate data of great
height. Towards this end, consider the rewrite rules below.

o (Az.e1)(e2) ~ eiea/z] o m;(e1, e3) ~ ¢;

e Uleze{}}~{} o Ufer | 2 € {e2}} ~ eseq/7]

e Ule |z € (erUen)t~ Ule | € e} U Ufe | o € ea}

e UH{er [z eUfea |y €ea}}~ U{U{er | z € e2} | y € €3}

o U{e | z € (if ey then ey else e3)} ~> if e; then U{e | ¢ € ex} else J{e | = € e3}

o 7; (if ey then ey else e3) ~ if ey then m; ey else m; e3

o if true then ey else ez ~» ey o if false then ey else ez ~» e3

o Yfelee{}f~0 o X {e | ze{et}~ ele/a]

o Y{e| z €if ey then ey else e3]} ~ if e; then Y {e | z € esf} else Y {le | = € esf}

ed{elzecerUesl~d{e|lzce}+3{if © €e then 0 elsee| z € eyf}

o YelzecU{er|y€et
Y+ X{X{f e=vithenlelseO[veel|ycel)|zceal|ycel]

It is a fact that any equality test =*: s X s — bool can be implemented in terms of equality tests at
base types =b: b x b — bool, using N'RL*88" as the ambient language. Moreover, this can be done

24

without using the J{e; | # € ey} construct or the e; U ey construct. Furthermore, it can be done
without going beyond the height of s. In the rules above, all occurrences of = are to be treated as a
sugar for their implementation in terms of equality tests at base types.

Claim. These rewrite rules preserve the meanings of expressions. That is, e; ~» e; implies e; = e3.

Proof of claim. The proof is straightforward. However, the last rule deserves special attention.
Consider the incorrect equation: Y {e | z € U{e1 |y € e2}} =3 {{>{e | z € e1]} | y € ea[}. Suppose
e evaluates to a set of two distinct objects {01, 02}. Suppose e;[o1/y] and e;[o2/y] both evaluate to
{os}. Suppose e[oz/z] evaluates to 1. Then the left-hand-side of the “equation” returns 1 but the
right-hand-side yields 2. The division operation in the last rule is used to handle duplicates properly.

While the last two rules seem to increase the “character count” of expressions, it should be remarked
that > {le; | ¢ € ex[} is always rewritten by these two rules to an expression that decreases in the e,
position.

Claim. The rewrite system above is strongly normalizing. That is, after a finite number of rewrite
steps, we must arrive at an expression to which no rule is applicable.

Proof of claim. The rewrite system above really consists of two orthogonal subsystems. The first
contains all the rules except the last two. The second contains the last two rules but not the rest.
Thus, to prove the claim, it suffices to provide two non-interfering termination measures for the two
subsystems.

For the larger subsystem, we use the following measure. Let ¢ map variable names to natural numbers
greater than 1. Let ¢[n/z] be the function that maps = to n and agrees with ¢ on other variables.
Let ||e||¢, defined below, measure the size of e in the environment ¢ where each free variable z in e is
given the size p(z). Define ¢ < ¢’ if p(z) < ¢'(z) for all z. It is readily seen that || - ||¢ is monotonic
in . Moreover, if e; ~» ey via any rule but not the last two, then ||e1]|¢ > |le2||¢. That is, this
measure strictly decreases with respect to the first subsystem of rewrite rules.

o |lz|lp = p(z)

[true|| = ||false]|p = llc[lp = [[(lle = [{}HIe =2

1 elle = [lm2 ello = [{e}le =2 [lell¢
[Az-el| = [lell¢[2/2]
[(Az-e)(e)lle = [lellelllelle/2] - [[e'llp

llex U ealle = ||(e1, e2)llp = [[e1 +eallp = |lex — e2|lp = [[e1 - e2]lp = [[e1 +eal[= |le1 =b eal|p =
1+ |lexll + |lez]le

[U{e" | z € eblle = ([['llelllello/z]+1) - [lelle
[f €1 then e; else esllp = |ler]|¢ - (1 + [ezllp + lleslly)
122{€" | 2 € e}l = (ll'llelllellp/z]+1) - [lell¢-

For example, the left-hand-side of the rule [J{e; | ¢ € U{ea | y € es}} ~ U{U{e1 | 2 € e2} | y € es}
has measure |le1 [leallo- eslle-+ les - lesllo-+ lleall-llesllp + sl However, the right-hand-side
has measure ||e1||¢ - ||e2]|¢ - ||es]|® + ||es||¢. The latter is clearly smaller.

25

For the second subsystem, we need a more complex measure, which we define in two steps. For the
first step, let @ be a function that maps variables to natural numbers greater than 1. Let 0[n/z] be
the function that maps z to n and agrees with 6 on other variables. Let ||e||§ be defined as below.
Then ||e||@ is monotone in §. Moreover, if e; ~» ey via any rules, then ||e1]|6 > ||ez2]|6.

o |[truel|f = ||false|[6 = l|c[|6 = [|()[|6 = [[{}]|6 =2

o |Im1 elld = [z €][6 = [|e]|6

o ||z[|6 = 6(=)

o |[Az.e]|f = [le]|6[2/=]

o [[(Az.e1)(e2)||6 = max(]les]|6, [e1]|6]]|e2]|6/2])

o ||if ey then ey else e3||6 = max(||e1||0, ||e2]|0, ||es]|6)
o [[{e}]|6 =1+]lell6

* llex Ues||6 =1+ max([[ea][6), [|e2[|6)

o [[Ufer | = € ex}(|0 = ([le]|6[]]e2]|8/])I=II®

o [[(e1,€2)[|0 = lles+eal|6 = [ler —e2[|8 = [[e1-€5]|6 = [ler+ea]|6 = |l = €2]|6 = max(]les]|6, [e2]|6)
o [X{er | 2 € eal}]|§ = max([ea]|6, ||es]|6[l|e2]18/2])

For the second step, let o denote an infinite tuple (...,o(1),o(0)) of natural numbers with finitely
many non-zero components. These tuples are ordered left-to-right lexicographically. Furthermore,
since each tuple has only finitely many non-zero components, the ordering is well founded. Let
o1 * 09 denote the tuple o obtained by component-wise summation of ¢; and o5. Let o[n] denote
the tuple ¢’ such that ¢'(n) = o(n) + 1 and o'(m) = o(m) for m # n. Let ¢ be a function mapping
variables to tuples o’s. Let ¢[o/z] map z to the tuple o and agree with ¢ on other variables. Let
|le||¢p@ be defined as below. Then |le||¢pf is monotone in both ¢ and §. Furthermore, if e; ~ eg,
then ||e1]|¢d > |le2||¢pf. More importantly, if e; ~» ey via the last two rewrite rules above, then
|le1]|@8 > ||e2||@f. (For example, the measure for the left-hand-side of the last and most complicated
rule simplifies to (||e||¢8 |le1]|¢8 * ||e2]|#0)[||e1||6!°2/1°]. On the other hand, the measure for the
right-hand-side simplifies to (/e 0 < [ex90 |esl|#8) lje2 |01 e |61 28] 2)16). The latter is clearly
smaller than the former.) Thus this measure strictly decreases for the last two rules. That is, it
strictly decreases for the second subsystem of rules and decreases (but not necessarily strictly) for the
first subsystem of rules.

o |[z]|¢0 = ¢(z)

o [[Az.el|¢b = [le[|8[(. . ., 0)/x]0[2/=]

o [[(Az.e1)(e2)||98 = || U{er | = € ea}||98 = [le2]|#0 * ||e1]|(¢[[| €298/])(8]l|€2]6/z])
o |[true||pf = ||false||¢6 = ||c||p0 = ||()]|¢6 = [I{}]|¢6 = (...,0)

o ||if e1 then ey else es||¢0 = ||es]|d8 * ||ea]| 00 * ||es]| 60

26

o |Im1 ellgf = [Im2 ef|§8 = [[{e}[|$8 = [lell¢6 = [|e]|¢6

o |lex Ueal|@d = ||(e1,€2)]|90 = |lex =b €2 = |lex + e2|pf = |lex — e2|pf = |le1 - ea]|pf =
|ler + eal[@f = [|e1]|p0 * ||ez|| 40

o [[2der | 2 € ealt|98 = (lle2|¢0 * [les]|#]]e2]|¢6/2]8]||e2]|6/z])[]e2]|6]

The termination measure for the entire rewrite system above can now be defined as ||e||pgf =
(|le||99, ||e]|®), ordered left-to-right lexicographically. Then ||e||¢¢f is monotone in all of ¢, ¢, and 6.
Furthermore, if e; ~» ey, then ||le1||pdd > ||ez||ppf. Since orderings for both components are well-
founded, so is the lexicographic ordering. Therefore, the rewrite system above is strongly normalizing.

Next we analyze the normal forms induced by the rules above.

Claim. Let e : s be an expression of A/RL*88" in normal form. Then ht(e) < max({ht(s)} U {ht(¢) |t
is the type of a free variable occurring in e}).

Proof of claim. The proof is a routine induction on the structure of normal forms. Since the rewrite
system always leads to some normal forms, this completes the proof of the theorem. O

One of our goals is to demonstrate that division, enumeration of natural numbers from 0 to n for
a given n, etc. are not expressible in BOL. Observe that = is critical for achieving conservative
extension in the nested relational language endowed with rationals. Therefore, it is possible that
the set language equivalent to BOL, which lacks division, may not possess the conservative extension
property. Fortunately, this is not the case because ANRL™® has sufficient horsepower to compute a
linear order at all types, as shown by us in another paper [37].

Proposition 5.2 For each type s it is possible to define a function <,: s x s — {unit} in NRC"®*
which defines a linear order on the elements of s. Moreover, it can be defined in such a way that

ht(<,) = ht(s). 0

In the next theorem, this linear order is exploited to show that functions in ARC®*, and hence BOL,

do not depend on intermediate data structures.

Theorem 5.3 Let e : s be an expression of NRC™®*. Then there is an equivalent expression e’ : s such
that ht(e') < max({ht(s)} U {ht(t) | t is the type of a free variable in e}).

Proof. It suffices to replace the last rule used in Theorem 5.1 by the following: > {e |z € U{e1 | y €

eatt ~ A X{lif C{if « € er[w/y] then (if w =y then 0 else (if w < y then 1 else 0)) else 0 | w €
eal}) =0 then e else 0 | x € e1]} | y € eaf}.

The problem of > {le | « € U{e1 | ¥ € ex}[} is that the e; generated from different y’s in e; may
have nonempty intersection. In the last rule of Theorem 5.1, the duplicates are dealt with by dividing
their “contribution” to the final sum by the number of duplicates. The idea of the new rule above is
different. If y; and y, produce e;’s with nonempty intersection, the overlapping values are counted
only once. This is achieved by using the linear order of Proposition 5.2 to count those from the smaller
of y; and ys,. O

27

The conservative extension property was first studied by Paredaens and Van Gucht [46] and later by
Van den Bussche [55]. They proved that A’RC(eq) has it when the input and output are restricted to
flat relations. It was then extended by Wong [59] to any input and output. More recently, Suciu [50]
managed to prove the remarkable theorem that A/RC(egq, bfiz), note the absence of natural numbers,
has the conservative extension property when input and output are restricted to flat relations. Here
bfiz is a bounded version of the fixpoint operator. When added to first order logic, it yields a language
equivalent to datalog with negation.

The results presented in this section show that, with very little extra, conservative extension property
holds at any input/output in the presence of aggregate functions, transitive closure, and bounded
fixpoint. This is a very significant improvement of these previous results.

Grumbach and Milo [21] obtained a non-collapsing hierarchy theorem. Let gen : N — {N} be a
primitive which takes the number n to the set {0,...,n}. Their theorem is equivalent to saying that
for any k and i, there is an expression e in NRC"**(gen, powerset) where ht(e) is at most k and the
number of powerset operators along any path in e is at most 7 + 2 such that there is no equivalent e’
of height at most k£ and the number of powerset operators along any path in €’ is at most ¢. This is a
result on a different dimension of conservativity. It is a complement, rather than a contradiction, of
the last part of the corollary above.

The need for gen in the preceding discussion may not be obvious. The language of Grumbach and Milo
is a language for bags, in which the natural numbers are simulated as bags of unit. Thus they could
use the powerset operation in their language to enumerate small bags of unit (the small numbers)
given a big bag of unit (a big number). In contrast, NRC***(powerset) is a set language. Thus its
powerset operator cannot be used to generate small numbers from a big number. As we shall see
later, the gen operator fills this gap nicely.

By the conservative extension property, the class of functions on flat relations computed by ANRL?88"
is precisely that computed by flat relational algebra endowed with the same primitives. This has
a practical significance because it implies that A/RL®88" can be used as a convenient interface to
databases that speak SQL. A theoretically more interesting consequence is that every function of type
{unit} — {unit]} in BOL corresponds to very simple arithmetic. This fact is exploited in the next
section, where arithmetic properties of bag query languages are studied.

5.2 Arithmetic Power of BQOL

As seen earlier, natural numbers are present in BOL as objects of type {unit]}. So it is possible
to translate BQL into a set language augmented by either rational or natural numbers and some
arithmetic. In this section the conservative extension results from the previous section are used
to investigate the arithmetic power of BOL and ARL*88". We show that no property of natural
numbers that is simultaneously infinite and co-infinite can be tested in either language. This result is
particularly surprising for the language augmented by rational numbers and division, since it implies
the inexpressibility of parity test even when division by two is expressible. Next we show that if
~ is removed from the list of primitives of the language augmented by rationals, then there is no
expression that defines the usual ordering on rationals. Finally, we give a complete characterization
of unary arithmetic functions in BQL.

28

Proposition 5.4 Let U be a property of natural numbers, that is both infinite and co-infinite. That
is, U C N and both U and N — U are infinite. Then the membership test for U cannot be expressed in
NRL(QT, %, -, +,+, =, bool, cond, eq), where Q7 is the type of non-negative rationals.

Proof. Suppose there is an expression e : Q7 — QT that tests for membership in U. That is, if n € U,
then e(n) =1 and if n € N — U, then e(n) = 0. (We are not interested in what e returns on elements
of QT — N.) We may assume without loss of generality that e is defined everywhere. That is, division
by zero cannot occur in the course of the evaluation of e.

An expression e of type QT — Q7 is called a plus-expression (zero-expression) if there is a number n,
depending on e, such that for every # > n, it is the case that e(z) > 0 (e(z) = 0). It is enough to prove
that any expression e of type QT — Q7 that is defined everywhere is either a plus- or a zero-expression,
because testing membership in i/ cannot be such. In fact, we show that for any plus-expression, there
are two polynomial functions p(z) and ¢(z) with rational coefficients such that for any = > n, it is the
case that e(z) = p(z)/q(z) and p(z), ¢(x) > 0.

Let e be of type Qt — Q7. Since -~ can be expressed if a linear order on Q7 is present, and such

a linear order as a primitive has height 0, the language NRL(Q*, X, -, +, +, =, bool, cond, eq) has the
conservative extension property. Hence, e can be considered to be a height-zero expression. That is, it
is obtained from its only free variable and constants by operations +, =, -, and +. Observe that there

is a simple way to code conditionals. Every condition can be reduced to ¢’ = €”. For the equality test,
e/ = €', observe that (1 = (¢ ~e")) - (1 = (¢"” = ¢€')) returns 1 if ¢’ = €” and 0 otherwise. Therefore, we
may assume that in any if-then-else statement the condition can be either 1 or 0. But then if ¢ then
fi else fy is equivalent to ¢- f; + (1 =~ ¢) - fo. This shows that conditionals can be removed from any
expression of type Q1T — Q.

We proceed to prove the main claim by induction on the structure of e. The base case and the
cases e — e] + ey, € = e1 - €3 and e = e; + ey are straightforward. Let e = e; =~ e;. The only
case that is not immediate is when both e; and e; are plus-expressions given by pi(z)/¢:1(z) and
p2(z)/g2(z) for « greater than ny and ny respectively. Consider f(z) = p1(z) - ¢2(2) — p2(z) - q1 ().
If f is the constant function 0, then e is a zero-expression. Otherwise, let z; be the maximal root
of the polynomial f. There are two cases. If f(y) > 0 whenever y > f, then for every z >
max{ni,ny, s} + 1, we have pi(z)/q1(z) — p2(z)/g2(x) > 0 and therefore e(z) is a plus-expression
given by (pi(z) - g2(z) — pa(z) - q1(2))/(q1(=) - ¢2(x)). If f(y) < 0 whenever y > zy, then for every
¢ > max{ni,ny, zs} + 1, we have py(z)/q1(z) — p2(z)/g2(z) < 0 and so e(z) = 0, a zero-expression.
The claim, and the proposition are thus proved. O

It is well known that the relational algebra cannot express parity test [12]. By the results of Paredaens
and Van Gucht [46] and Wong [59], it cannot be expressed in NRL(eq). It follows from the theorem we
just proved that it remains inexpressible even in the greatly enhanced ARL™®, which is a sublanguage
of NRL(Q, X, -, +,+, =, bool, cond, eq), and hence not expressible in BOL. This is another consequence
of the conservative extension property.

Corollary 5.5 Parity test on numbers is not expressible in N'RLPE, O

This settles the variant of Conjecture 1 for parity test on numbers. In a more limited setting, where
there are no nested bags, it was also proved by Grumbach and Milo [21]. We used conservative
extension to obtain the more general result above.

29

The corollary above says that it is impossible to test whether a natural number is even or odd.
However, it is possible to test whether a set has an even or odd number of elements by exploiting the
linear order: odd(R) := U{if Y {if e <y then lelse 0|y e R} =>{if ¢ >y thenlelse0 |y €
R} then {()} else {} | « € R} = {()}. As a consequence, BQL cannot test whether a bag contains
an even or odd number of elements, but it can test whether a bag contains an even or odd number of
distinct elements. Using the same technique we can split a set into k equal parts, even though division
by k is undefinable. However, this is based on the assumption that a linear order is given for all base
types. In the absence of linear order, parity of cardinality is no longer definable; see Corollary 5.16.

As another application of the conservative extension property, we show that in the absence of -, the
usual order on rational numbers is no longer expressible.

Proposition 5.6 The language obtained from N'RL>®8" by removing the < primitive cannot express
the ordering <¢ on Q.

Proof. We claim the following. For any expression g : Q — Q defined by using +, -, =, =, if-then-
else, constants and minus, there exist two polynomials p(z) and g¢(z) with rational coefficients such
that g(z) coincides with p(z)/g¢(z) almost everywhere; that is, g(z) # p(z)/q(z) for only finitely many
z € Q. To prove this claim, we proceed by induction on the structure of an expression g. The base case
is immediate. The induction step easily goes through the arithmetic operations. Let g := if ¢ then
g1 else go. The condition c is e/ = €”. By induction hypothesis, ¢/ = p'/¢’, " = p"/4", 91 = p1/q1,
and go = p2/q» almost everywhere. Notice that c¢ is either true almost everywhere or false almost
everywhere. Indeed, consider » := p' - ¢" — p” - ¢’. If r is the constant function 0, then ¢ may be false
only in some of the points in which e’ and e do not coincide with their polynomial representations. If
r is not the constant function 0, then r has finitely many roots and therefore ¢ is true only in finitely
many points. Thus g coincides with either p;/¢; or ps/¢s almost everywhere.

Now, if <g is definable, then so is the following function g from Q to Q: g(z) =0ifz < 1and g(z) =1
if ¢ > 1. It follows from the claim above and conservative extension that g must coincide with ratios
of polynomials almost everywhere. However, this is not the case since g has infinitely many roots but
is not zero almost everywhere. This contradiction shows that < is not expressible. O

Combining techniques of Propositions 5.6 and 5.4 we can show the following.

Corollary 5.7 Properties of natural numbers that are simultaneously infinite and coinfinite cannot

be tested in NRLB8ET, O

nat

We now turn to the nested relational language A/RL™*, which is equivalent to BOL. Using the con-
servative extension property, we can prove the following result in a straighforward manner.

Proposition 5.8 The functions from N to N that coincide with polynomials in all but finitely many
points are exactly the unary arithmetic functions expressible in BOL. O

Corollary 5.9 None of the following functions is expressible in BOL: parity test, division by a con-
stant, bounded summation, bounded product, and f : N — {N[} such that f(n) = {0,1,...,n]}.

30

Proof. That parity test is not expressible follows either from Proposition 5.4 or the previous
proposition. Suppose integer division-by-two, diva(n) = |n/2], is definable. Then n is even iff
n = 2 - diva(n), which shows inexpressibility of divy. If a bounded summation is definable, then
f(n) =" oif 2-i=mn then 1 else 0 is a parity test. Similarly, if bounded product is definable, then
f(n) =T1%o4f 2-i = n then 2 else 1 gives us a parity test. Finally, since all operations in A/RL">*
are polynomial, the size of the output of any function f : N — ¢ is bounded by a constant, because
the size of the input is 1, which proves the inexpressibility of the generator of smaller numbers. O

Therefore, the arithmetic of BOL is quite limited. In Section 6, where non-polynomial primitives
are studied, we show that two extended languages give rise to all elementary and primitive recursive
functions respectively.

5.3 Recursive Queries and Bounded Degree Property

In this subsection, we first define two sample queries and show that they are at most as hard as
deterministic transitive closure in a language having at least the power of the flat relational algebra
or first-order logic. Then we define the bounded degree property and show that it implies a number
of inexpressibility results in a uniform fashion. Finally we prove that this property holds in NRL.

Definition.

e chain : {s X s} — bool is a query that takes a graph and returns true iff the graph is a chain.
That is, it returns true iff the graph is a tree such that the out-degree of each node is at most 1.

e bbtree : {s X s} — bool is a query that takes a graph and returns true iff the graph is a balanced
binary tree. That is, it returns true iff the graph is a binary tree in which all paths from the root
to the leaves have the same length.

o dic: {sxs} — {sx s} is the deterministic transitive closure. That is, if G = (V, E) is a digraph,
then dtc(G) = (V, E') where (v1,vr) € E' iff there is a path (vi,v3) € E, ..., (vk—1,vk) € E such
that v;11 is a unique descendant of v;, t =1,...,k — 1. See Immerman [24].

We first prove that the first two sample queries are no harder than the third.

Proposition 5.10 Let L be a language that has at least the power of the relational algebra. Then
chain and bbtree are expressible in L(dtc).

Proof. The result for chain is straightforward. It also follows from a recent result of Etessami that
chain is first-order complete for DLOGSPACE [16]. In particular, A'RL(eq, dtc) ~ NRL(eq, chain).
Now we sketch the proof of the expressibility of bbtree. Given a graph G = (V, E), let G* = (V, E*)
be dtc(G™'), where G™' = (V, {(v,u) | (u,v) € E}). Define root as a node with in-degree zero and
leaves as nodes with out-degree zero in G. Then it is not hard to see that G is a binary tree iff the
following is true. In G all nodes which are not leaves or roots have in-degree one and out-degree two;
there is exactly one root that has out-degree two and all leaves have in-degree one. In G*, there are
no loops and for every leaf [and the root r, (I,7) € E*.

31

To check that G is balanced, one should verify that all maximal paths from leaves to the root have
the same length. To do this, for any leaf ! consider the set P(I) = {I' | I'! =1 v ! =7r Vv
((1,I') e E* A (I',r) € E*)}. To check if card(P(l1)) = card(P(l3)), define a binary relation R on
P(ly) x P(ly) by (v1,v2)R(vy,v5) < (vi,v1) € E A (vy,ve) € E. Then card(P(l1)) = card(P(ly)) iff
((I1,13), (r, 7)) € dtc(R). O

It follows that

Corollary 5.11 Let L be a language that has at least the power of the relational algebra. If chain s
not expressible in L, then none of the following are expressible in L: dtc, transitive closure, tests for
connectivity of directed and undirected graphs, testing whether a graph is a tree, testing for acyclicity.
O

Let G = (V, E) be a graph. Define in-deg(v) = card({v' | (v',v) € E}) and out-deg(v) = card({v’ |
(v,v') € E'}). The degree set of G, deg(G)), is defined as {in-deg(v) | v € V}U{out-deg(v) | v € V} CN.
One of the reasons why most recursive queries are not first-order definable is that they may take in
a graph! whose degree set contains only small integers and may return a graph whose degree set is
large. The definition below captures this intuition.

Definition. Let g be a graph query. It is said to have the bounded degree property if for any number
k there exists a number c(q, k), depending on q and k only, such that the cardinality of the degree
set of ¢(G), card(deg(¢(G))), is at most c(q, k) for any graph G satisfying deg(G) C {0,1,...,k}.
A language L is said to have the bounded degree property at type s if any L-definable graph query
g:{s x s} — {sx s} has it.

The bounded degree property can be used to prove various inexpressibility results in a uniform fashion.
It is also easier to apply the bounded degree property than tools such as games or Hanf’s lemma.

Theorem 5.12 Let L be a language that has at least the power of the relational algebra. Suppose L has
the bounded degree property at type s. Then neither chain : {s x s} — bool nor bbtree : {s x s} — bool
is expressible in L.

Proof. We offer a proof by picture. The details and transformations are readily expressed by first-
order formulas.

Assume that chain is definable. Then it is possible to define an expression that, when given a chain
as an input, returns its transitive closure. As shown below, using chain it is possible to determine if a
precedes b by re-arranging two edges and checking if the resulting graph is a chain. First, edges from
a and b to their successors a’ and b’ are removed and then two edges are added: one from a to b’ and
the other from the node with no outgoing edges to a’.

! We use graphs for the simplicity of exposition. Relational structures of arbitrary finite arity can be used.

32

a { b b j
b ¥ a a

But this contradicts the bounded degree property as we started with an n—node graph whose degree
set is {0,1} and ended up with {0,1,...,n}.

If bbiree is definable, it is possible to determine if two nodes in a balanced binary tree are at the same
level by re-arranging two edges as shown below and checking if the result is still a balanced binary
tree.

Again, we start with an n—node graph whose degree set is {0, 1,2} and, making cliques of the nodes
at the same level, end up with a graph whose degree set has cardinality log,(n + 1). O

Having seen the power of the bounded degree property, we now prove that first-order logic has it. By
conservativity, it means that it holds in the nested relational language A'RL(eq).

Theorem 5.13 Any first-order definable graph query has the bounded degree property.

To be more specific, we view graph queries as relational calculus expressions of the form {(a,b) |
F(a,b)} where F is a first-order formula in the language that contains a binary predicate symbol E
and equality. To evaluate such a query @ on a graph G = (V, E), one can assume that all quantified
variables in F' range over V, cf. [23]. We can also view them as formulae YaVb.E'(a,b) <+ F(a,b)
where E’ is the predicate for the output graph, and F(-,-) is as above. Theorem 5.13 says that such
definable queries have the bounded degree property.

Proof of Theorem 5.13. Let @ be a graph query given by the first-order formula F(-,-) in the
language that contains F and equality. That is, (a,b) € E' iff F(a,b), where E’ is the set of edges of
the output graph. By a neighborhood of radius r of in F we mean the set of all nodes whose distance
from z (that is, the length of a minimal path in the symmetric closure of E') does not exceed r. We
denote the r-neighborhood of z by N,(z). By N,(X) we mean |J,.x Ny(z). According to Gaifman
[19], F is equivalent to a Boolean combination of formulae with a and b as free variables in which all
quantifiers are bounded to some neighborhoods of a and b. Moreover, the maximal radius of those
neighborhoods, r, is determined by F'.

33

If deg(G) C {0, ..., k}, then it is possible to find the number g, of all non-isomorphic neighborhoods
around a node of radius up to r. In fact, ¢, < pr2p?‘ where p, = (2k + 1)" is an upper bound on the
size of N,.(z).

Define an equivalence relation ~ on the nodes by letting a ~ b iff N3, 1(a) and Ny,11(b) are isomorphic.
Note that if @ ~ b, then N4(a) and N4(b) are isomorphic for any d < 2r + 1. Now consider the
partition Xi,..., X, of the set of nodes into ~-equivalence classes. Since deg(G) C {0,...,k}, we
obtain s < gopy1.

Let aj, ay belong to the same class X;. If b € Nari1(a1) U Napt1(az), then Ni(aq,bd) is the disjoint
union of N,(a;) and N,(b) and N,(a2,b) is the disjoint union of N,(az) and N,(b). Hence, N,(a;,b)
and N, (ag,b) are isomorphic. In particular, (a1,b) € E' iff (a,b) € E'. In F all quantified variables
are bounded to the neighborhoods of its free variables of radius at most ». Since these neighborhoods
are isomorphic when free variables are a;,b and a3, b, and since evaluating first-order formulae on
isomorphic models gives the same result, the statement follows.

Now let Y, = {b | (a,b) € E'}. Then there exists a constant d; that depends only on r and k
such that | card(Ys,) — card(Ys,,) |< d; whenever a;, ax € X;. Indeed, for elements b outside of
Noryi1(a1) U Napyi(ag), (a1,d) iff (ag,b), and hence the only difference is in the edges either inside or
between those neighborhoods. The maximal difference therefore is bounded by the doubled size of
such a neighborhood, that is, by 2(2k + 1)2" 1.

This shows that the number of different outdegrees for nodes that belong to the same a-equivalence
class X; is bounded by a constant that depends only on » and k. Since the number of ~-equivalence
classes is also bounded by the constant gs,.,; depending on k and r only, we obtain that the number
of possible different outdegrees is at most the product of these constants, and hence determined by &
and r. Since r depends only on @ (it can be calculated by a procedure suggested in [19]), the number
of distinct outdegrees in E’ is bounded by a constant that depends only on k£ and f. The proof for
indegrees is similar. |

Corollary 5.14 o The relational algebra queries have the bounded degree property.
o NRL(eq) has the bounded degree property at base types.

o chain, bbtree, and the other queries listed in Corollary 5.11 are not expressible in NRL. O

5.4 Expressiveness of BOL and N'RL88"

If we could prove that NRL?88" possesses the bounded degree property, we would have shown that
every query listed in Corollary 5.11 is neither A’/RL®88"- nor BOL-definable. Unfortunately, it is still an
open problem as to whether A/RL®88" has the bounded degree property. To the best of our knowledge,
there is no known logic capturing the language NRL88", not even its flat fragment. The proof of the
bounded degree property for ARC is based on Gaifman’s result about local formulae [19]. That result
was proved by quantifier elimination. This poses a problem if we try to prove the bounded degree
property for flat types in A/RL?88",

Inexpressibility of recursive queries in languages with aggregates was studied by Consens and Mendel-
zon [15]. They showed that transitive closure is not expressible in a first-order language with aggregate

functions, provided DLOGSPACE is strictly included in NLOGSPACE.

34

03 %h-1 03 Oh—1
o e e
0} O o oK
2
0 of'

Figure 4: A multi-cycle

However, there is no simple proof of the main conjectures based on this kind of complexity arguments.
For example, Conjecture 1 states that a DLOGSPACE-complexity query is not expressible in A/RL®88",
If it could be shown that the complexity of NRL?88" queries is in a class that is strictly lower than
DLOGSPACE and does not contain the parity test, then we would have solved Conjecture 1.

It is known that AC® C DLOGSPACE [5, 27]. If A'RL®88" had AC® data complexity, the same
argument would solve at least Conjectures 1 and 2. However, while queries written in ARL have
AC® data complexity [51], it is not hard to see that there are non-AC® queries in ARL®88" since
multiplication is not in AC® [5]. As a more interesting example, recall that parity of cardinality is
definable in ARL?88" if (, unit and bool are the only base types. Note that this does not mean
Conjecture 1 is wrong. Conjecture 1 asks, in particular, if the parity of the cardinality of a set of
elements of an unordered base type is definable in A/RL?88". The method above cannot answer this
question. It only shows that there exist non-AC® queries definable in ANRL388",

A simple complexity argument does not help us, nor do we know if the bounded degree property holds
for N'RL®88", so we use another technique to prove the desired results. It is well known that properties
of cardinalities of finite models which can be tested in the first-order logic are either finite or co-finite.
We proved a similar result in Section 5.2 in the course of investigating the arithmetic power of BOL.
Now, using the conservative extension property, we present two results of the same kind for AN/RL?88",
We show that for certain families of graphs a similar finiteness-cofiniteness property holds. Then we
derive the inexpressibility of chain and bbtree in N'RL?88". Since BOL can be embedded in N/RL®88",

these results confirm Conjecture 1, Conjecture 2, and the second part of Conjecture 3.

The first family of graphs to be considered are the k-multi-cycles. A binary relation O : {b x b} is
called a k-multi-cycle if it is nonempty and is of the form shown in Figure 4 where A > k and o] are all
distinct. That is, it is a graph containing m > 1 unconnected cycles of equal length h > k. Here b is
an uninterpreted base type with countably infinite domain on which only the equality test is available.

Theorem 5.15 Let G : {b X b} — bool be a function ezpressible in NRL*®8". Then there is some k
such that for all k-multi-cycles O, it is the case that G(O) is true; or for all k-multi-cycles O, it is the
case that G(O) is false.

Let us observe that if we identify isomorphic k-multi-cycles, then for any m > 1, Theorem 5.15 says
that N'RL>88"-definable properties of k-multi-cycles consisting of at most m components are either finite
or co-finite. Hence ANRL?8&" cannot distinguish one k-multi-cycle from another as long as the cycles
are long enough. In ARL?88"(chain) it is possible to distinguish k-multi-cycles containing one cycle

35

from those containing two. Therefore, chain is not expressible in A/RL?88". These two observations
together with the fact that BOL can be embedded in A/RL?88" and Corollary 5.11 settle Conjectures 1
and 2.

Corollary 5.16 Parity test on cardinality of relations is not expressible in N'RL>88" and hence not in

BoL. O

Corollary 5.17 Transitive closure of binary relations is not expressible in N'RL*88" and hence not in

BoL. O

The second family of graphs to be considered are the k-strict-binary-trees. A k-strict-binary-tree is a
nonempty tree where each node has either 0 or 2 descendents and the distance from the root to any
leaf is at least k.

Theorem 5.18 Let G : {b x b} — bool be a function ezpressible in NRL*®8". Then there is some k
such that for all k-strict-binary-trees O, it is the case that G(O) is true; or for all k-strict-binary-trees
O, it is the case that G(O) is false.

The immediate consequence of this theorem is that ARL?88" cannot distinguish one k-strict-binary-
tree from another as long as the trees are deep enough. In ARL88"(bbtree), for any k > 0, one can
distinguish a balanced binary tree of height k from any other k-strict-binary-tree. Therefore, we have
settled Conjecture 3.

Corollary 5.19 The test for balanced binary trees is not definable in NRL288" and hence not in BOL.
O

In summary,
Corollary 5.20 All the queries listed in Corollary 5.11 are not expressible in N'RL88", O

In contrast to the inexpressibility result of Consens and Mendelzon [15], which depends on the sepa-
ration of DLOGSPACE and NLOGSPACE, our results do not have such preconditions.

Let us make another observation before proving the main theorems. Some of the problems considered
above are known to be complete for various complexity classes under first-order reductions. For
example, the graph reachability problem is first-order complete for NLOGSPACE and its restriction
to graphs with outdegree 1 is first-order complete for DLOGSPACE. Using the results of Immerman
[24] on first-order completeness, the fact that ARL and NRL>88" are closed under first-order reductions
(the proof of this is similar to Immerman’s [25]), and the inexpressibility results proved in this paper,
we get

Corollary 5.21 Let P be a problem that is complete with respect to first-order reductions for one of
the following classes: DLOGSPACE, Sym-LOGSPACE, NLOGSPACE, PTIME. Then P cannot be
solved by N'RL?88" or by BOL. O

36

In the remainder of this section, we prove the main theorems. As the technique applied is sophisticated,
we first present the “eureka” step before we present the proof details.

Since graph queries have height 1, by the conservative extension property of ANRL88", it is only
necessary to consider expressions having height 1. Observe further that the normal forms produced
by the rewriting done in the conservative extension theorem have a rather special trait. Let e : Q
be an expression of height 1 in normal form. Let R : {b x b} be the only free variable in e. Let b
be an unordered base type. Let e contain no constant of type b. Then e contains no subexpression
of the form (J{e; | # € ex}. Also, every subexpression involving > is guaranteed to have the form

2{e | z € R}

It is natural to speculate on what e can look like. The most natural shape that comes to mind is the
one depicted below.

if Py
then f;

NS

: g1 €ER|} ...| zn €ER
else if Py

then fn
else i1

Assume that the probability, in terms of the number of edges in R, of P; being true and Pj.; being
false is p;. Then the expression above is equivalent to the polynomial N™- (p1 - fi + ...+ Prt1 - frt1)s
with N being the number of edges in R.

This observation is crucial for two reasons. First, the use of the summation operator is no longer
arbitrary. It is now used only for computing the number of edges in R. All other uses of it have been
replaced by a polynomial expression. Second, the expression no longer depends on the topology of
the graph R. The only thing in R that can affect the value of the polynomial (and hence the original
expression) is the cardinality of R. This leads to finite-cofiniteness of graph queries for which the
probability assumption holds.

The insight above leads to a search for classes of graphs that possess sufficient regularity so that
the required probability analysis can be performed. The simplest class of such graphs is perhaps the
k-multi-cycles. We first present two preliminary definitions and demonstrate the probability analysis
on k-multi-cycles. The proofs of Theorem 5.15 and Theorem 5.18 are then sketched.

Define distance.(o0,0',0) to be a predicate that holds iff the distance from node 70 to node w0’ in
graph O is c. Note that distance, is definable in A/RL®88" for each constant c.

Define a d-state S with respect to variables R : {b X b}, ¢1, ..., ,, : b X b to be a conjunction of
formulae of the form distance.(z;, z;, R) or the form —distance.(z;, z;, R), such that for each 0 < ¢ < d,
1 <14,j < m, either distance.(z;, z;, R) or ~distance.(z;, z;, R) must appear in the conjunction. Also
S has to be satisfiable in the sense that some chain O and edges o1, ..., 0, in O can be found so that

S[O/R, 01/, ...,0m/Tm] holds.

Proposition 5.22 Let e be an expression of NRL?88" having R : {bx b}, N : Q, z1, ..., Ty : b X b as

37

free variables such that e has the special form below
if P
Z Z then E | zpy1 €ER cor| Tman ER

else 0

where E is a ratio of polynomials in terms of N, P is a boolean combination of formulae of the

form mizy = mizy, mey £ wizy, —distancec(z;, zj, R), or distance.(x;,z;, R). Then there is a
constant D such that for any d > D and any d-state S with respect to R, z1, ..., T,,; there is a
ratio r of polynomials in terms of N such that for any d-multi-cycle O and any edges o1, ..., 0 in

O making S[O/R,01/1,...,0m/®m] true, it is the case that e[O/R,01/%1,...,0m/®m,card(O)/N] =
r[card(O)/N].

Proof. The constant D can be chosen as any number that is not less than the longest separation
between any nodes 7 z; and myz; in any graph R described by P that is dictated by P to be connected.
The constant D should also be larger than the minimum separation between any nodes m;z; and myz;
in any graph R described by P that is not dictated by P to be connected.

This number can be estimated as follows. Assume, without loss of generality, that Pis Q1 V...V @Qn,
where each @; contains only conjunctions. Let d; be the sum of the ¢’s for each distance.(z;,z;, R)
or —distance.(z;,z;, R) in Q;. Let D be the maximum of these d;’s plus m + n. The m + n is added
because an item of the form myz; = 71'1113"7- is equivalent to distance;(z;, z;, R). An easy upper bound for
Dis (n+m)-(C+1), where C is the sum of the ¢’s for each distance.(z;, ;, R) or ~distance.(z;, z;, R)
in P.

By the probability p for a predicate P of n free variables to hold with respect to a graph O, we mean
the proportion of the instantiations of the free variables to edges in O that make P true. The key to
this proposition is in realizing that the probability p for P to hold can be determined in the case of
k-multi-cycle when k is large (any k > D is good enough). Moreover p can be expressed as a ratio of
two polynomials of N. Thus r can be defined as N™-p- E.

The probability p can be calculated as follows. First, given d > D, we generate all possible d-states
D;’s with respect to the variables R, 1, ..., £m4n. Second, determine the probability ¢; of D; given
the certainty of S; this can be calculated using the procedure to be given shortly. Third, eliminate
those D;’s that are inconsistent with the conjunction of S and P. (Note that a D; that is consistent
with S can only be inconsistent with P in two ways: P is already inconsistent or P demands R to
contain a cycle of length shorter than D. The proposition restricts our attention to cycles of length
d > D; hence dictates the elimination of the second kind of inconsistency above. By picking the D to
be longer than any cycles that can be mentioned in P as we have done, we have essentially restricted
P to a predicate that does not mention cycles, thus implying the probability analysis below.) Finally,
calculate p by summing the g;’s corresponding to those remaining d-states.

It remains to show that each ¢; can be expressed as a ratio of two polynomials in N. Partition the
positive atomic formulae of the corresponding D; into groups so that the variables in each group are
connected between themselves and are unconnected with those in other groups. (Variables and y are
said to be connected in D; if there is a positive atom distance.(z,y, R) in D;.) Note that the negative
atomic formulae merely assert that these groups are unconnected. Then we proceed by induction on
the number of groups.

The base case is when there is just one group. In such a situation, all the variables lie on the same

38

cycle. Since a d-state can be satisfied by a chain of length d, these variables must lie on a line. Let u
be the number of bound variables amongst ,,11, ..., Zm+n appearing in the group; in this case u = n.
Then ¢; = N — N* if no variables amongst 1, ..., &, appear in the group. Otherwise, ¢; = 1 + N*.
In either case, ¢; is a ratio of polynomials in V.

For the induction case, suppose we have more than one group. The independent probability of each
group can be calculated as in the base case. Then g; is the difference between the product of these
independent probabilities and the sum of the probabilities where these groups are made to overlap
in all possible ways. These groups are made to overlap by turning some negative leaves in D; into
positive ones so that the results are again d-states. Notice that when groups overlap, the number of
groups strictly decreases. Hence the induction hypothesis can be applied to obtain these probabilities
as ratios of polynomials in N. Consequently, ¢g; can be expressed as a ratio of polynomials in N as
desired. |

Having established the above key result, Theorem 5.15 can be proved as follow.

Proof sketch of Theorem 5.15. Let G : {b x b} — bool be implemented by the A/RL*88" expression
AR.E. Without loss of generality, F/ can be assumed to be a normal form with respect to the rewrite
system used in the proof of Theorem 5.1. We note that such an F contains no subexpression of the form
U{e1 | z € ex}. Furthermore, all occurrences of summation in £ must be of the form Y {e | z € R[}.
These two observations on E come directly from the rewrite rules used in Theorem 5.1. For example,
the e3 in Y {le1 | # € e2} is always simplified by one of these rules, unless it is already a variable.

Let us temporarily enrich the language with the usual logical operators V, A, =, #, £, as well as
distance. and —distance.. Also introduce a new variable N : Q, which is to be interpreted as the
cardinality of R. Rewrite all summations into the special form given below

if P
Z Z then f | ¢pme1 €R v | Zman €ER

else 0

so that f has the form h = g, where h is a polynomial in N and g is either a polynomial in N or
is again a subexpression of the same special form. Also, P is a boolean combination of formulae of
the following form: m;z; = wjz i, mey # wiz;, distance.(z;, z;, R), ~distance.(z;,z;,R), U =% V,

UV, U<V,orU £V, where U and V also have the same special form.
Let the resultant expression be F. The rewriting should be such that for all sufficiently long k-multi-
cycles O, FIO/R, card(O)/N] holds if and only if E[O/R] holds. This rewriting can be accomplished
by using rules such as

o if e; then Y {ea |z € R} else e3 ~ Y { if e1 then ey else e3 - N | ¢ € R|}

o if e; then ey else > {les | ¢ € R[} ~ Y { if e1 then e ~ N else e3 | ¢ € R|}

eer-Yfea|ze R}~ {er-ex|zeR}

o Yflea [z € Rt -ex~ > {er-ez |z € R}

o Y{les|z€ R +ex~ Y{er ez |z € R}

o Y{elze R} +ea~ Yfles+(e2+N) |z e R}

39

2{ei|ze R} —ea~ 2fles — (e2+ N) [z € R}
e1—{ez|z€ R}~ {1+ N)—ex |z € R}
er+{ex|z e R}~ {1+ N)+ea|ze R}
S {lif e1 then ey else ez | ¢ € R[} ~ > {|if €1 then ez else 0| ¢ € R}+ Y_{if —e1 then ez else 0 |

z € R}, if neither ey nor e3 is 0.

We do not need a rule for rewriting e; +) {lea | € R[} when e; is not a summation because it is
already of the right form. Having obtained F in this special form, the proof is continued by repeating
the following steps until all occurrences of R have been eliminated.

Step 1. Look for an innermost subexpression of F' that has the special form required by Proposition
5.22. Let this subexpression be F’ and its free variables be y1, ..., ym, R and N. Generate all possible
d-states with respect to these free variables of F’. The d is the smallest one suggested by Proposition
5.22 and serves as a lower bound for k. Let Sy, ..., Sp4+1 be these d-states. Apply Proposition 5.22 to
F' with respect to each S; to obtain expressions r; which are ratios of polynomials of N. Then F” is
equivalent to ¢f S then ry else ...if Sy then ry else vy, under the assumption of the theorem that
the variable R is never instantiated to short k’-multi-cycles where k' < k.

Step 2. To maintain the same special form, we need to push the S; up one level to the expression in
which F’ is nested. This rewriting is done using rather simple rules:

o (if Sy then vy ...if Sy then 7y else rpy1) =0V ~ (S1 AP =CV)V -+ -V (Spi1 Arppr =0 V)

o if P then (f =+ (if S1 then 7y else ...if Sh then 7y else rhy1)) else e
~if PASy then f+ry ...if PASpyq then f+rpyq elsee

Step 3. After Step 2, some expression having the form U =% V, U < V, or their negation, can become
an equation of ratios of polynomials of N. Such an expression can be replaced either by true or by
false. For illustration, we explain the case of U =® V; the other cases are similar. First, U =2 V
is readily transformed into a polynomial P = 0 with N being its only free variable. Check if P is
identically 0. In that case, replace U =2 V by true. If P is not identically 0, we use the fact that a
polynomial has a finite number of roots. By choosing a sufficiently large lower bound for &, we can
ensure that N always exceeds the largest root of P. Thus, in this case we replace U =% V' by false.

Observe that in Step 1 we have reduced the number of summations and in Step 3 we have reduced the
number of equality and inequality tests. By repeating these steps, we eventually reach the base case
and arrive at an expression where R does not occur. When we are finished, the resultant expression
is clearly a boolean formula containing no free variables. Therefore its value does not depend on R.
Consequently the theorem holds for any k not smaller than the lower bound determined by the above
process. O

The proof of Theorem 5.15 relies on two things: satisfiability of d-states is easy to decide for k-multi-
cycles and probabilities are easy to calculate and express as ratios of polynomials in terms of the size
of graphs for k-multi-cycles. These two properties are also enjoyed by k-strict-binary-trees.

Proof sketch of Theorem 5.18. It is easy to decide if a d-state is satisfiable by some k-strict-
binary-trees. The probability calculation is also simple. The only problem is that the probability

40

must be expressed as a ratio of polynomials of the number of edges in the tree. This is dealt with by
observing that in k-strict-binary-trees, the number of internal nodes is 1 less than half the number of
edges and the number of leaves is equal to 2 plus the number of internal nodes. The theorem follows
by repeating verbatim the proof for k-multi-cycles. O

6 Power Operators, Bounded Loop, and Structural Recursion

In the previous section, we saw that BOL and AN'RL?88" have the same limitations as most languages
based on first-order logic: they cannot express recursive queries. There are several approaches to
adding expressive power to set languages. In this section, we study three of them for BOL and

NRLse,

Abiteboul and Beeri [1], as well as Gyssens and Van Gucht [22], used powerset as a new primitive
for NRL(eq) to increase its expressive power. For instance, both parity test and transitive closure
become expressible in NRL(eq, powerset). On the other hand, Breazu-Tannen, Buneman, and Naqvi
[6] introduced structural recursion as an alternative means for increasing the horsepower of query
languages.

It was shown in Tannen et al. [8], see also Gyssens and Van Gucht [22], that endowing A'RL(eq) with a
structural recursion primitive or with the powerset operator yields languages that are equi-expressive.
However, this is contingent upon the contrived restriction that the domain of each type is finite. Since
every type has finite domain, this result has an important consequence. Suppose the domain of type
{s} has cardinality n. Then every use of powerset on an input of type {s} can be safely replaced by
a function that computes all subsets of a set having at most n elements. Such a function is easily
definable in A/RL(eq). Therefore, NRL(eq) ~ NRL(eq, s_sri) ~ NRL(eq, powerset), if all types have
finite domains. Hence the extra power of s_sri and powerset has effect only when there are types
whose domains are infinite. Types such as natural numbers proved to be important in the earlier
part of this report. Therefore, the relationship of structural recursion and power operators should be
re-examined.

We have been using structural recursion on the union presentation. We also mentioned in the beginning
that sets can be equivalently constructed by starting with empty set and inserting new elements.
There is a corresponding structural recursion construct, called s_sri for structural recursion on the
insert presentation. It is known to have precisely the same power as s_sru [6], and it is sometimes
easier to use. The syntax for this construct is

1:sXt—t e:t
s_sri(i,e) : {s} =t

The semantics is s_sri(i,e){o1,...,0n} = i(01,%(02,%(...,%(0n,€)...))), provided ¢ satisfies certain
preconditions [7]. In particular, it is commutative: %(a,i(b, X)) = i(b,i(a, X)) and idempotent:
i(a,i(a, X)) = i(a, X). s_sri is undefined otherwise. Breazu-Tannen, Buneman, and Naqvi [6] proved
that efficient algorithms for computing functions such as transitive closure can be expressed using
structural recursion. While structural recursion gives rise to efficient algorithms, its well-definedness
precondition cannot be automatically checked by a compiler [7]. Therefore this approach is not com-
pletely satisfactory.

41

The powerset operator is always well defined. Unfortunately, algorithms expressed using powerset
are often unintuitive and inefficient. For example, to find transitive closure of a binary relation
R : {s X s}, one finds the domain of R by taking the union of the first and second projections of R,
takes powerset of cartesian product of the domain with itself and then selects all elements from this
powerset which are transitive and contain R. The intersection of those elements is the transitive closure
of R. Moreover, Paredaens and Suciu showed [52] that any algorithm for computing transitive closure
in NRL(powerset), evaluated under the standard operational semantics, must use exponential space.
Even though different evaluation schemes proposed recently [2, 33] give polynomial space algorithms
for transitive closure in the powerset algebra, it is conjectured that no reasonable evaluation strategy
will give us polynomial time algorithms.

We do not advocate the elimination of every expensive operation from query languages. However, we
believe that expressive power should not be achieved using expensive primitives. That is, if a function
can be expressed using a polynomial-time algorithm in some languages, then one should not be forced
to define it using an exponential-time algorithm. For this reason, powerset is not a good candidate
for increasing expressive power.

This section has three main objectives. First, we endow BQL with the bag analogs of the powerset
and structural recursion operators and we show that the former is strictly less expressive than the
latter. Second, we suggest an efficient bounded loop primitive which captures the power of structural
recursion but does not require any preconditions. We show that these non-polynomial bag operators
are strictly more expressive than their set analogs. Furthermore, we prove that the analog of the gen
primitive on sets fills the gap. We also characterize the arithmetic expressive power of bag languages
endowed with power operators and structural recursion. In particular, we prove that they define
precisely the classes of elementary and primitive recursive functions.

6.1 Powerset, Powerbag, and Structural Recursion

Grumbach and Milo [21], following Abiteboul and Beeri [1], introduced the powerbag operator into
their nested bag language. The semantics of powerbag is the function that produces a bag of all
subbags of the input bag. For example,

powerbag{|1,1,2t = {{[, {1[, {10, {2f, {1, 10, {1, 21, {1, 21, {1, 1, 2}

They also defined the powerset operator on bags as unique o powerbag. For example,

powerset{|1,1,2[} = {{I}, {1}, {2}, {1, 15, {1, 2}, {1, 1, 2}

We do not consider powerset on bags further because

Proposition 6.1 BOL(powerbag) ~ BAL(powerset).

Proof. We have to show how to express powerbag given powerset. Suppose a bag B is given. Then
another bag B’ can be constructed such that for any a € B, B’ contains a pair (a, {la, ..., al}) where the
cardinality of the second component is count(a, B). B’ can be constructed in BOL (powerset) because
selection is definable. Let B"” = unique(B'). Now observe that replacing the second component of
every pair by its powerset and then map(b_p2) followed by flattening gives us a bag where each element
a € B is given a unique label. Applying powerset to this bag followed by elimination of labels produces
powerbag(B). O

42

Structural recursion on bags is defined using the construct

e:t 1:85Xt—t
b_sri(i,e) : {s} — ¢

It is required that ¢ satisfy the commutativity precondition: i(a, (b, X)) = (b, i(a, X)), which cannot
be automatically verified [7]. Its semantics is similar to the semantics of s_sri. We want to show that
powerbag is strictly weaker than b_sri.

Let hyper be the hyper-exponentiation function. That is, hyper(0,n) = n and hyper(m + 1,n) =

ohyper(mn) 1n other words, hyper(m,n) is a stack of m 2’s with n at the top. Define size o, the size
of object o, as follows: it is 1 for objects of base types, sum of the sizes of the components for pairs
and sum of the sizes of the elements for bag type. Then

Proposition 6.2 Let f : s — ¢ be an expression of BOL(powerbag). Then there exists a constant cy
such that for every object o : s, size f(0) < hyper(cy,size o).

Proof sketch. The proof is by induction on the structure of f. For any polynomial operator p in
BOL, it is safe to define ¢, to be 1. For operators that are not polynomial, define Cpowerbag ‘= 1,

C(f.g) ‘= max(cys, Cq), Cfog := C¢ + Cg, and b map(s) = 1+ cy. O

The above establishes an upper bound on the size of output of queries in BOL(powerbag). This upper
bound is later used to characterize the arithmetic properties of BOL(powerbag). But its immediate
consequence is the separation of powerbag from b_sri.

Theorem 6.3 BOL(powerbag) C BOL(b_sri).

Proof. Inclusion is easy [8]. To prove strictness, define an auxiliary function g : {Junit]} — {Junit[}

in BOL(b_sri) by g := b-map(!) o powerbag. It is easy to see that on an input of size n, g pro-
duces the output of size 2”. Now define f := An.sri(g o ma,n)(n). A straightforward analysis
shows that size f(0) = hyper(size o,size 0). Therefore, by Proposition 6.2, f cannot be expressed in
BQL(powerbag). O

6.2 Bounded Loop and Structural Recursion

As mentioned earlier, powerbag is not a good primitive for increasing the power of the language. It
is not polynomial time and compels a programmer to use clumsy solutions for problems that can be
easily solved in polynomial time. In addition, powerbag is weaker than structural recursion. On the
other hand, b_sri is efficient [6] but its well-definedness precondition cannot be verified by a compiler
[7]. In this section, we present a bounded loop construct

fis—s
loop*(f) : {th x s — s

Its semantics is as follows: loop(f)({o1,--.,0nl},0) = f(...f(0)...) where f is applied n times to o.

43

The bounded loop construct is more satisfactory as a primitive than powerbag and b_sri for several
reasons. First, in contrast to powerbag, efficient algorithms for transitive closure, division, etc. can be
described using it. Second, it is very similar to the for-next-loop construct of familiar programming
languages such as Pascal and Fortran. Third, in contrast to b_sri, it has no preconditions to be
satisfied. Lastly, it has the same power as b_sri.

Theorem 6.4 BOL(loop) ~ BAL(b_sri).

Proof. For the BOL(loop) C BOAL(b_sri) part, it suffices to observe that loop(f)(n,e) = b_sri(f o
my, e)(n). This part was also proved by Saraiya [48]. The BQL(b_sri) C BQAL(loop) part is more
involved. Let

®¢(R) := {(A monus {al}, f(a,b)) | (A,b)€ R, a € Al}

Should the f above fail the commutativity requirement, b_map(ms)(unique(loop(®¢)(n, {|{(n,e€)[})) is
then a bag containing all possible outcomes (one for each order of applying f) of b_sri(f, e)(n). How-
ever, if f:s X t — t satisfies the commutativity precondition, then unique(loop(®)(n, {(n,e)})) is a
singleton bag and is equal to {|({[}, b_sri(f,e)(n))[}. b-map(ms) can then be applied to the result to
get a singleton bag containing b_sri(f, e)(n). This shows that b_sri is expressible in BOL(loop). O

Therefore, replacing structural recursion by bounded loop eliminates the need for verifying any pre-
condition. If the ¢ in b_s7i(%,) is not commutative, the translation used in the proof simply produces
a bag containing all possible outcomes of applying b_sri(¢, e), depending on how elements of the input
are enumerated. If ¢ is commutative, then such a bag has one element which is the result of applying
b_sri(i,e). Hence b_sri is really an optimized bounded loop obtained by exploiting the knowledge that
i is commutative, Furthermore, loop coincides with structural recursion over sets, bags, and (with
appropriately chosen primitives) lists.

The implementation of b_sri(%,e) using the bounded loop construct given in the proof of Theo-
rem 6.4 has exponential complexity but the source of inefficiency is in computing all permuta-
tions in order to return all possible outcomes. If we can pick a particular order of application
of ¢ in b_sri(7, e), then more efficient implementations are possible. For example, define ®’(R) as
{(A monus {a}}, f(72a,b)) | (A4,d) € R, a € unique(max(A))[}, where max returns the subbag of maxi-
mal elements with respect to the linear order (see Proposition 5.2). Then loop(®})(X, {(sort(X),e)[})
returns {/({|[}, b_sri(f,e)(X))}. However, if f is not commutative, then loop(®)(X, {|(sort(X), e)[})
equals to {{({|[}, f(o1, f(o2, f(..., f(or,€)..))))} where X = {lo1,...,0kf} and 01 < ... < o is the

linear order of Proposition 5.2.

6.3 Arithmetic Properties of Non-Polynomial Languages

In this section we characterize the arithmetic expressive power of BOL(powerbag) and BQL(loop).
Before proving the two theorems, let us argue that they are very intuitive and are not unexpected.
Recall two classical results in recursion theory [41]. One, due to Meyer and Ritchie, states that the
functions computable by the language that has assignment statement and for n do S, are precisely the
primitive recursive functions. The semantics of for n do S is to repeat S n times. A similar result by
Robinson, later improved by Gladstone, says that the primitive recursive functions are functions built
from the initial functions by composition and iteration. That is, f(n, %) = g(”)(a?:'); see Odifreddi [41].

44

In view of these results and the fact the loop construct is just a for—do iteration, the following result
is very natural.

Theorem 6.5 The class of functions f : N x ... X N — N definable in BOL(loop) coincides with the
class of primitive recursive functions.

Grumbach and Milo [21] showed that their bag language, which is equivalent to BOL(powerbag),
expresses all elementary queries. They obtained this result by encoding computations on Turing
machines in the language. Recall that the class of Kalmar-elementary functions € is the smallest class
that contains basic functions, addition, multiplication, modified subtraction - and is closed under
bounded sums and bounded products [47]. That is, the following functions are in £ if g is in &:

n n

fl(n,a?:'):Zg(i,;E') fg(n,f):Hg(i,f)

Using different techniques, we prove the following:

Theorem 6.6 The class of functions f :N x ... x N — N definable in BOL(powerbag) coincides with
the class of Kalmar-elementary functions.

Let us first give the

Proof of Theorem 6.5. Throughout the proof we use N as abbreviation for {Junit}} and n as an
abbreviation for {|(),...,()} (n times). First observe that since powerbag can be expressed in the
language, 2™ as a function of n can be expressed as we have done it in the proof of Theorem 6.3.
Therefore, encoding and decoding functions for tuples can be expressed. In view of that and the
Robinson-Gladstone result [41], to prove that all primitive recursive functions can be computed by
BOL (loop), it is enough to show that if g(mm) can be computed, then so can f(n,m) = g(®)(m). But
this is obvious because f(n, m) = loop(g)(n, m).

To prove the converse, first verify this claim: for any expression e : s — t in BQL(loop) there is
a monotone primitive recursive function ¢, of one argument such that sizee(o) < @e(sizeo). The
verification proceeds by structural induction on e. The only two problematic cases are b_map(f) and
loop(f). Let f :s' — t' and b_map(f)(d) = d’ where d = {o1,...,0x} and d' = {0}, ..., 0,}. Then
sized' = Y ;sizeo} < Y, py(sizeo;) < Y, py(sized) < sized - py(sized). So ©b_map(s) can be picked

to be n - pf(n) which is clearly monotonic. For the case of loop(f), define Ploop f)(n) = go(")(n).
From monotonicity of ¢y it can be easily derived that Ploop(f) satisfies the desireci property and is
monotone itself.

Now a straightforward translation of the operations of BOL(loop) into computations on a Turing
machine and the observation we have just made show that the space complexity for every expression
in the language remains bounded by a primitive recursive function. Therefore, if f : N X ... X N—+ N
is a function computable by BOL(loop), it is recursive and the space complexity (and therefore time
complexity) of its computation on a Turing machine is bounded by a primitive recursive function.
Now, if f is obtained from the initial functions by using primitive recursion schema and minimization,
this shows that every instance of minimization can be replaced by bounded minimization which is

45

known not to enlarge the class of primitive recursive functions. Thus, f is primitive recursive. This
completes the proof. O

Next we give the

Proof of Theorem 6.6. First we show that bounded sum and bounded product are expressible in
BOL (powerbag). Since coding functions for tuples are available, we restrict ourselves only to the case
of fi(n) = Yi-09(?) and fa(n) = [Iieo g(¢). Let powerset := unique o powerbag. It is easy to see that
powerset(n) = {0,1,2,...,n[}. Therefore, b_u o b_map(g) applied to powerset(n) gives us fi(n). The
proof of the expressibility of fo resembles the proof of the expressibility of the a primitive of [34] for
or-sets. Again, g is mapped over powerset(n) to obtain {g(0),g(1),...,g(n)}. If at least one of g(¢)
is 0 (that is, an empty bag), the result is 0. Otherwise each occurrence of () inside each g(¢) is paired
with ¢. The resulting bag is flattened and the powerbag is taken. From this powerbag such subbags
are selected that they contain exactly one pair tagged with ¢ for each 7. The number of such subbags
is exactly fa(n). So f, is expressible.

The proof of the converse is similar to the proof for the primitive recursive functions. The space com-
plexity for every expression in BQL(powerbag) is bounded above by hyper(c,n) where c is a constant,
see Proposition 6.2. That is, by a function in £. Again, a simple translation into computation on a Tur-
ing machine shows that complexity remains bounded by a function from £. Nowif f :Nx...XxN — N
is computable in BOL(powerbag), it can be computed by a Turing machine whose space complexity is
bounded by a function from £. Whence f € &; see Machtey and Young [39]. This finishes the proof
of Theorem 6.6. O

As a corollary, we show how to obtain all unary primitive recursive functions using simpler constructs.
First observe that powerset®™* : {Junit[} — {|{unit[}} is a polynomial operation: powerset'™(n) =
{0,1,2,...,nf}. We simplify the loop construct by defining ster(f) : {t} — {Junit]} where f : {Junit]} —
{unit} by ster(f){o1,...,on} = F(Ff(...(f{})...)) where is f applied n times.

Corollary 6.7 BOL(iter, powerset“”"t) expresses all unary primitive recursive functions.

Proof. It is known that all unary primitive recursive functions can be obtained from the iteration
schema: g(n) = f(")(0) and an extended list of initial functions, see Rose [47, Theorem 1.4]. Tt
is straightforward to verify that all additional initial functions can be expressed in the presence of
powerset?™t 0

6.4 Power Operators and Structural Recursion on Sets and Bags

We have introduced power operators and structural recursion for sets and bags. We also know that
BOL ~ N'RL™®*. Under the translations of Theorem 4.4, n : N is carried to a bag of n units: {(),..., ()}
Consider the following primitive from Corollary 5.9:

gen :N — {N}, gen(n) ={0,1,...,n}

Under the translations of Theorem 4.4, it corresponds to the bag language primitive that takes a bag
of n units and returns the bag of bags containing ¢ units for each ¢ = 0,1, ..., n. In other words, it is
powerset'™ = unique o powerbag“™. Observe that it remains a polynomial operation.

Having made this observation, we can formulate the first result of the section.

46

Theorem 6.8 o NRL " (powerset) C BOL(powerbag).
o NRL™(s_sri) C BOL(b_sri).

Proof. Inclusion easily follows from Theorem 4.4. We only have to demonstrate that powerset :
{s} — {{s}} is definable using powerbag and the translations of Theorem 4.4. This is indeed the case
because, taking a set X, translating it into a bag, applying unique o powerbag to it, translating it back
to sets and projecting out multiplicities we obtain the powerset of X.

To show strictness, observe that powerset'™ is definable in both BOL(powerbag) and BOL(b_sri).
Hence, in view of Theorem 6.3, it is enough to show that gen is not expressible in NRL"**(s_sri).
Define the size of an object as follows: size of an object of a base type is 1 and size of a pair or a set
is sum of the sizes of the components. Then, it is possible to show that for any function f definable
in MRL"®*(s_sri) there exists a monotone primitive recursive function ¢; such that, if f(i) = o and
sizes of ¢ and o are s; and s,, then s, < @f(s;). To show this, use structural induction on expressions
of NRL"®*(s_sri). For operations other than s_sri we can use ¢ as defined in the proof of Theorem
6.5. For s_sri(e, g) we define:

‘Ps_sri(e,g)(o) = size(e)

Ps_sri(e,g) (n) = @g(n+ Ps_sri(e,g) (n—1))
It can be seen that the inductive assumption of monotonicity of ¢4 implies that Ps_srife,q) satisfies the
desired property. Now assume that gen is definable. Let n = @gen(1). Then n+1 = size(gen(n+1)) <

Pgen(size(n 4 1)) = @gen(1l) = n. This contradiction shows that gen is not definable. 0

Now we have a problem of filling the gap between set and bag languages with power operators or
structural recursion. It turns out that the gen primitive is sufficiently powerful to do the job. The
following result is proved by extending translations of Theorem 4.4.

Theorem 6.9 Under the translations of Theorem 4.4, we have the following equivalences of languages:

o NRL"®(powerset, gen) ~ BOL (powerbag).

o NRL"(s_sri, gen) ~ BOL(b_sri).
Proof. Since one inclusion was proved in Theorem 6.8, we have to prove the reverse inclusions. We
do it for the power operators; the other equivalence is similar. Let ¢ be a type that may involve bags

but not sets, and let s = fo_set(t); see the proof of Theorem 4.4. We have to find a function f in
NRL"(powerset, gen) such that for any bag B of type {|t[} the following holds:

to_setg g,np © powerbag(B) = fo to_set{|t|}(B)

Elements of the set X = to_set{|t|} (B) are pairs of type s X N where the integer component indicates

the number of occurrences of the element in B. We have to construct a set of type {{s x N} x N} that
represents powerbag(B) under the to_set translation. We do this in four steps.

Step 1. For each pair (z,n) in X we create n copies of z with distinct labels of type N.

47

Step 2. Powerset of the X' set created in Step 1 is taken; the result is denoted by X.

For Step 3, we define a new equivalence test for the elements of {s x N}. Two such sets ¥ and
Z are equivalent if £(Y) and &£(Z) represent the same bag, where £(Y) = {(y,n) | (y,%) € Y,n =
card({(z,7) € Y | z=y})}. Thatis, Y and Z are equivalent iff £(Y) = £(Z). Now,

Step 3. Each set in & is paired it with the number of equivalent sets in X', thus creating the object
of type {{s x N} x N}.

Step 4. The function £ is applied to the first component of every element of the outcome of Step 3.

It can be seen that the outcome of Step 4 is to_set{|{|t|} B o powerbag(B). Indeed, by pairing each

element of type s with n distinct values, where n is its multiplicity, we simulate powerbag correctly,
and then Steps 3 and 4 put the result in the right form, pairing elements with their multiplicities
rather than those distinct labels.

To see that Steps 1 to 4 can be implemented in N'RL™®*(powerset, gen), it is enough to show that Step
1 can be done and £ can be expressed. The other operations are straightforward. The use of the gen
primitive in Step 1 is crucial:

X' = {(z,7) | (z,n) € X, i € geno(n)}

where geng(n) = difference(gen(n), sm(0)) = {1,...,n}. That £ is definable follows from its definition
and the fact that card is definable as > Az.1. This finishes the proof. O

7 Conclusion and Future Work

Many results on bags are presented in this report. A large combination of primitives have been
investigated and the relative strength is determined. The relationship between bags and sets has
been studied from two different perspectives. First, various bag languages are compared with a
standard nested relational language to understand their set-theoretic expressive power. Second, the
extra expressive power of bags is characterized accurately. It is shown that bag semantics corresponds
naturally to adding aggregate functions to relational languages.

We have proved the conservative extension property of the relational counterparts of the basic bag
language, and shown that it is a very powerful technique in analyzing their expressive power. We
have presented a new technique for proving a number of inexpressibility results in a uniform way
and showed that it works for our languages when aggregate functions are not present. When bags or
aggregates are present, we proved a finite-cofiniteness property of some graph queries. This property
ensures that some simple recursive queries remain inexpressible in the basic bag language, thus solving
a number of open problems on the expressive power of bag languages.

Finally, the relationship between structural recursion and powerbag operator has been re-examined.
The former is shown to be stronger than the latter. Then we introduce the bounded loop construct
that captures the power of structural recursion but has the advantage of not requiring verification
of any precondition. Moreover, we prove that structural recursion gives us all primitive recursive
functions.

These results complement earlier ones [8, 9, 34, 50, etc.] obtained for relational languages. All these

48

papers taken together are a foundation for programming with collection types using the paradigm of
designing languages around operations naturally associated with their datatypes.

Future work. There are many further problems which we would like to investigate. First, we would
like to know if the following is true.

Conjecture 4 NRL?88" has the bounded degree property.
Answering the following questions may shed some light on this conjecture.

1. What is a logic that captures (the first-order fragment of) AN/RL88'T

2. Which logics have the bounded degree propertyl’ Observe that we used only a part of Gaifman’s
result to prove the bounded degree property for the first-order logic. Hence we believe there is
a chance to find its generalizations for other logics.

It is known that the presence of a linear order adds tremendous power to first-order query languages
[3]. Our language for nested sets/bags has enough power to express a linear order at all types. It
is a good framework for investigating the impact of linear orders on nested collections. However,
the inexpressibility results proved for BOL and ARL?88" assume an unordered type, and we do not
know whether they continue to hold for ordered base types. Also, adding gen to AN'RL?88" destroys the
bounded degree property, but we conjecture that queries such as chain and bbtree remain inexpressible
in NRL%88(gen). We do not know of any techniques that would allow us to answer these questions.

It would be interesting to extend optimizations for set languages given by equational theory of the
corresponding monad [8, 59, 60] to bags and, in particular, to BOL queries. It is known [14] that many
optimizations that work well for sets do not carry over to bags. Furthermore, it was shown recently
[20] that equational theories of bag languages with monus are rather complicated. Nevertheless, we
believe some useful optimizations can still be found.

Finally, we would like to use the results of this report as a basis for extending the approach of Buneman
et al. [10] and Libkin [31, 32] to study bags with partial information and to program with them. Initial
results in this direction are reported in [38].

49

List of the languages

Language Definition in
NRL

and its components: NRA, NRC and RSA | Section 2
NRL(eq) Section 2
NBL

and its components: NBA, NBC and RBA

Subsection 3.1

BL

Subsection 3.2

NRL"a Subsection 4.2
NRLo8E" Subsection 4.3
BOL (powerbag) Subsection 6.1
BOL(b_sri) Subsection 6.1

BOL (loop) Subsection 6.2
NRL™® (powerset), NRL">* (s_sri) Subsection 6.4
NRL™®* (powerset, gen), NRL™*(s_sri, gen) | Subsection 6.4

Acknowledgements. Peter Buneman gave us the initial inspiration and provided many helpful suggestions.
We are grateful to Stéphane Grumbach for numerous comments and suggestions. We would like to thank all who
made helpful comments on earlier versions of this paper: Kousha Etessami, Jean Gallier, Neil Immerman, Paris
Kanellakis, Jan Paredaens, Dan Suciu, Val Tannen, Jan Van den Bussche, Bennet Vance, and Scott Weinstein.
Finally, we thank Latha Colby for a careful reading of the final version of this paper.

Most of this work was done when both authors were at the University of Pennsylvania. We gratefully acknowl-
edge the support of an AT&T Doctoral Fellowship and NSF Grant IRI-90-04137 (for Libkin) and NSF Grant
TRI-90-04137 and ARO Grant DAALO3-89-C-0031-PRIME (for Wong).

References

[1] S. ABITEBOUL, C. BEERI, On the power of languages for the manipulation of complex objects,
in “Proceedings of International Workshop on Theory and Applications of Nested Relations and
Complex Objects,” Darmstadt, 1988.

[2] S. ABITEBOUL AND G. HILLEBRAND, Space usage in functional query languages, in “LNCS 893:
Proceedings of 5th International Conference on Database Theory,” Springer Verlag, January 1995.

[3] S. ABITEBOUL, R. HUuLL, V. ViaNu, “Foundations of Databases,” Addison Wesley, 1994.

[4] J. ALBERT, Algebraic properties of bag data types, in “Proceedings of 17th International
Conference on Very Large Data Bases,” 1991.

[5] R.B. Boppana, M. SipsER, The Complexity of Finite Functions, in “Handbook of Theoretical
Computer Science,” Volume A, Chapter 14, pages 7569-804, North Holland, 1990.

[6] V. BREAZU-TANNEN, P. BUNEMAN, S. NAQVI, Structural recursion as a query language, in
“Proceedings of 3rd International Workshop on Database Programming Languages,” Naphlion,
Greece, August 1991.

50

[7] V. BREAZU-TANNEN, R. SUBRAHMANYAM, Logical and computational aspects of programming
with sets/bags/lists, in “LNCS 510: Proceedings of 18th International Colloquium on Automata,
Languages, and Programming,” Madrid, Spain, July 1991.

[8] V. BREAZU-TANNEN, P. BUNEMAN, L. WonNg, Naturally embedded query languages, in “LNCS
646: Proceedings of International Conference on Database Theory,” Berlin, Germany, October
1992. Full paper to appear in Theoretical Computer Science.

[9] P. BunEMAN, L. LiBKIN, D. Suciu, V. TANNEN, L. WoNG, Comprehension syntax, SIGMOD
Record 23 (1994), 87-96.

[10] P. BuNEMAN, A. OHORI, A. Jung, Using powerdomains to generalize relational databases,
Theoretical Computer Science 91 (1991), 23-55.

[11] L. CarDELLI, Types for data-oriented languages, in “LNCS 303: Proceedings of International
Conference on Extending Database Technology,” 1988.

[12] A. CHANDRA, D. HAREL, Structure and complexity of relational queries, Journal of Computer
and System Sciences 25 (1982), 99-128.

[13] L. S. CoLBY, A recursive algebra for nested relations, Information Systems 15, No. 5 (1990),
567-582.

[14] S. CHAUDHURI, M. Y. VARDI, Optimization of real conjunctive queries, in “Proceedings of 12th
ACM Symposium on Principles of Database Systems,” Washington, D. C., May 1993.

[15] M.P. CoNsENs, A.O. MENDELZON, Low complexity aggregation in GraphLog and Datalog,
Theoretical Computer Science 116, No. 1 (1993), 95-116.

[16] K. ETEssami, Counting quantifiers, successor relations, and logarithmic space, in “Proceedings
of 10th IEEE Conference on Structure in Complexity Theory,” May 1995.

[17] R. FaGIN, Finite model theory — a personal perspective, Theoretical Computer Science 116,
No. 1 (1993), 3-32.

[18] R. FacIN, L. STOCKMEYER, M. VARDI, On monadic NP vs monadic co-NP, in “Proceedings
of 8th IEEE Conference on Structure in Complexity Theory,” May 1993.

[19] H. GAIFMAN, On local and non-local properties, in “Proceedings of the Herbrand Symposium,
Logic Colloquium ’81,” North Holland, 1982.

[20] T. GRIFFIN, L. LiBKIN, “Incremental maintenance of views with duplicates,” in “Proceedings
of ACM-SIGMOD International Conference on Management of Data,” San Jose, CA, May 1995.

[21] S. GruMBACH, T. MiLo, Towards tractable algebras for bags, in “Proceedings of 12th ACM
Symposium on Principles of Database Systems,” Washington, D. C., May 1993. Full version to
appear in JCSS.

[22] M. GyssENS, D. VAN GUucHT, The powerset algebra as a natural tool to handle nested database
relations, Journal of Computer and System Sciences 45 (1992), 76-103.

[23] R. HuLr, J. Su, Domain independence and the relational calculus. Acta Informatica 31 (1994),
513-524.

51

[24] N. IMMERMAN, Languages that capture complexity classes, SIAM Journal of Computing 16
(1987), 760-778.

[25] N. IMMERMAN, S. PATNAIK, D. STEMPLE, The expressiveness of a family of finite set languages,
in “Proceedings of 10th ACM Symposium on Principles of Database Systems,” May 1991.

[26] L. A. JATEGAONKAR, J. C. MITCHELL, ML with extended pattern matching and subtypes, in
“Proceedings of ACM Conference on LISP and Functional Programming,” Snowbird, Utah, July
1988.

[27] D. JoHNSON, A catalog of complexity classes, in “Handbook of Theoretical Computer Science,”
Volume A, Chapter 2, pages 67-161, North Holland, 1990.

[28] P. KANELLAKIS, Elements of relational database theory, in “Handbook of Theoretical Computer
Science,” Volume B, Chapter 17, pages 1075-1176, North Holland, 1989.

[29] A. KLAUSNER, N. GooDMAN, Multirelations: Semantics and languages, in “Proceedings of 11th
International Conference on Very Large Data Bases,” Stockholm, August 1985.

[30] A. KLug, Equivalence of relational algebra and relational calculus query languages having ag-
gregate functions, Journal of the ACM 29, No. 3 (1982), 699-717.

[31] L. LiBKIN, A relational algebra for complex objects based on partial information, in “LNCS 495:
Mathematical Fundamentals of Database Systems,” Springer Verlag, May 1991.

[32] L. LiBKIN, Approximation in databases, in “LNCS 893: Proceedings of 5th International Con-
ference on Database Theory,” Springer Verlag, January 1995.

[33] L. LiBkIN, Normalizing incomplete databases, in “Proceedings of 14th ACM Symposium on
Principles of Database Systems,” San Jose, CA, May 1995.

[34] L. LiBKIN, L. WoNG, Semantic representations and query languages for or-sets, in “Proceedings
of 12th ACM Symposium on Principles of Database Systems,” Washington, D. C., May 1993.
Full version to appear in JCSS.

[35] L. LiBKIN, L. WoNG, Some properties of query languages for bags, in “Proceedings of 4th
International Workshop on Database Programming Languages,” Manhattan, New York, August
1993.

[36] L. LiBKIN, L. WoNG, Aggregate functions, conservative extension, and linear orders, in “Pro-
ceedings of 4th International Workshop on Database Programming Languages,” Manhattan, New
York, August 1993.

[37] L. LiBkIN, L. WonNg, Conservativity of nested relational calculi with internal generic functions,
Information Processing Letters 49 (1994), 273-280.

[38] L. LiBKIN, L. WoN@G, On representation and querying incomplete information in databases with
bags, Information Processing Letters 56 (1995), 209-214.

[39] M. MAcHTEY, P. YouNG, “An introduction to the General Theory of Algorithms,” North
Holland, 1978.

52

[40] E. MogaI, Notions of computation and monads, Information and Computation 93 (1991),
55-92.

[41] P. OpIFREDDI, “Classical Recursion Theory,” North Holland, 1989.

[42] A. OHoRI, P. BUNEMAN, V. BREAZU-TANNEN, Database programming in Machiavelli, a poly-
morphic language with static type inference, in “Proceedings of ACM-SIGMOD International
Conference on Management of Data,” Portland, Oregon, June 1989.

[43] G. OzsovocLu, Z. M. OzsovocLu, V. MaTos, Extending relational algebra and relational
calculus with set-valued attributes and aggregate functions, ACM Transactions on Database
Systems 12, No. 4 (1987), 566-592.

[44] J. PAREDAENS, Private communication, Collection Types Workshop, Bellcore, February 1993.

[45] J. PAREDAENS, P. DE Bra, M. GysseENs, D. VAN GucHT, “The Structure of the Relational
Data Model,” Springer-Verlag, Berlin, 1989.

[46] J. PAREDAENS, D. VAN GucHT, Converting nested relational algebra expressions into flat
algebra expressions, ACM Transaction on Database Systems 17, No. 1 (1992), 65-93.

[47] H. E. RosE, “Subrecursion: Functions and Hierarchies,” Clarendon Press, Oxford, 1984.

[48] Y. SaraArvA, “Fixpoints and optimizations in a language based on structural recursion on sets,”
Manuscript, December 1992.

[49] H.-J. ScHEK, M. H. ScHOLL, The relational model with relation-valued attributes, Information
Systems 11, No. 2 (1986), 137-147.

[50] D. Suciu, Fixpoints and bounded fixpoints for complex objects, in “Proceedings of 4th In-
ternational Workshop on Database Programming Languages,” Manhattan, New York, August
1993.

[61] D. Suctu, V. TANNEN, A query language for NC, in “Proceedings of 13th ACM Symposium on
Principles of Database Systems,” Minneapolis, Minnesota, May 1994.

[652] D. Suciu, J. PAREDAENS, Any algorithm in the complex object algebra with powerset needs
exponential space to compute transitive closure, in “Proceedings of 13th ACM Symposium on
Principles of Database Systems,” Minneapolis, May 1994.

[63] V. TANNEN, Tutorial: Languages for collection types, in “Proceedings of 13th Symposium on
Principles of Database Systems,” Minneapolis, May 1994.

[54] S. J. THoMmas, P. C. FiscHER, Nested relational structures, in “Advances in Computing
Research: The Theory of Databases,” JAI Press, 1986.

[55] J. VAN DEN BusscHE, “Complex object manipulation through identifiers: An algebraic perspec-
tive,” Technical Report 92-41, University of Antwerp, Department of Mathematics and Computer
Science, Universiteitsplein 1, B-2610 Antwerp, Belgium, September 1992.

[56] J. VAN DEN BuUsSCHE, J. PAREDAENS, “The expressive power of structured values in pure
OODB,” in “Proceedings of 10th ACM Symposium on Principles of Database Systems,” Denver,
Colorado, May 1991.

53

[57] J. D. ULLMAN, “Principles of Database and Knowledgebase Systems,” Volume I, Computer
Science Press, 1989.

[58] P. WADLER, Comprehending monads, Mathematical Structures in Computer Science 2 (1992),
461-493.

[59] L. WonNG, Normal forms and conservative properties for query languages over collection types,
in “Proceedings of 12th ACM Symposium on Principles of Database Systems,” Washington D.
C., May 1993.

[60] L. Wong, “Querying Nested Collections,” PhD Thesis, Department of Computer and Informa-
tion Sciences, University of Pennsylvania, Philadelphia, PA 19104, August 1994.

54

