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how the use of bags and the use of aggregate functions are related. We also �nd out which classicalresults on the expressiveness of set languages continue to hold for bags and which do not.One of the claims of the paper is that considering bags instead of sets allows us to obtain a rationalreconstruction of SQL. In some books, even a statement that SQL is equivalent to the relationalalgebra can be found. For example, Paredaens et al. [45] state that the tuple relational calculus andSQL have the same expressive power. While no one really knows what SQL is, since there are manydi�erent versions, it is widely accepted that any version of SQL has at least two features which arenot present in the relational algebra:� SQL provides a number of aggregate operators. According to Ullman [57], the �ve usual ones areAVG, COUNT, SUM, MIN, and MAX. Many versions of SQL provide others, such as the standarddeviation STDDEV or variance VARIANCE.� SQL allows a limited form of nesting by using the GROUP-BY construct. In particular, bycombining these two features, one can write a query that computes the average salary in eachdepartment, as shown below. SELECT Dept, AVG(Salary)FROM EmpGROUP-BY DeptNote that the semantics of aggregate functions assumes that the underlying structure is a bag ratherthan a set. In other words, elimination of duplicates may lead to wrong results if aggregates arepresent in a language. For example, to computeAVG(�Salary(Employees))one cannot remove duplicates from �Salary(Employees). Suppose at least two employees have the samesalary. Then the result of applying AVG to the set �Salary(Employees) will be wrong. The correctresult is achieved by applying AVG to the bag �Salary(Employees) in which no duplicates are removedafter projection on the Salary �eld is performed.This example reiterates that one needs bag semantics for the correct evaluation of aggregate functions.Even though this has been common knowledge since SQL was �rst conceived, little e�ort has beendevoted to understand the connection between aggregate operators and bag query languages. Addingaggregate operations to the relational algebra was considered by Klug [30] and then extended tocomplex objects in Ozsoyoglu et al. [43]. The approach adopted in these papers is the following.An aggregate function is introduced separately for each column. That is, there are functions AVG1,AVG2, etc. To compute the average of the B column, one would write AVGB(R). While this approachincorporates aggregate functions into standard languages such as the nested relational algebra, it isnot completely satisfactory as it introduces too many new functions.Another way to explain the semantics of SQL aggregate operators was given by Klausner and Goodman[29] using the concept of hiding. Whenever a projection is followed by an application of an aggregatefunction, the projection operation is interpreted as an operation to hide the missing columns. For ex-ample, projecting on the second column of f(a; 6); (b; 6); (c; 12)g would yield f([a]; 6); ([b]; 6); ([c]; 12)g,where [�] signi�es those \hidden" values. Thus, in contrast to the relational projection, hiding keeps2



both occurrences of 6 by tagging them with the hidden values. Then applying AVG gives the correctresult. Using hiding to retain duplicates is rather clumsy. It is much better to use bags in the �rstplace.More recently, there has been some activity in trying to identify a \standard" query language for bags,in the same spirit that the relational algebra is considered the standard language for sets. First, Albert[4] proposed a number of operations on bags and established some of their properties. Two years later,Grumbach and Milo [21] extended the algebra of Abiteboul and Beeri [1] to bags. At almost the sametime, we proposed [35] a bag language, BQL, that turned out to be equivalent to the polynomial-timefragment of the language of Grumbach and Milo. Perhaps the most important property of BQL is itsclose connection with relational languages and aggregate functions. In fact, it has precisely the powerof the nested relational algebra augmented with a general template for producing aggregate functions.BQL can be seen as a rational reconstruction of SQL. The simplicity of its operations and the full-compositionality of its syntax allows it to be analyzed. We use this language to answer several questionson the expressibility of bag languages and set languages with aggregate functions. In particular, weinvestigate the relative expressive power of various query languages for bags and we �nd out the exactextra power that comes with aggregate functions and bags.It is well known that �rst-order logic-based languages, such as the relational algebra or the tuplerelational calculus, cannot express recursive queries like transitive closure [28]. Intuitively, addingnesting and aggregates to these languages will not give them su�cient expressiveness to do somethingas radical as transitive closure. In fact, it is often claimed that SQL cannot express recursive queries.However, this claim has never been proved. The previous result that comes closest to proving thisclaim is Consens and Mendelzon [15], where an assumption that DLOGSPACE 6= NLOGSPACE ismade.The at relational algebra is an algebraization of �rst-order logic. Therefore, to answer questions onthe expressive power of at relational languages based on the relational algebra, one can use a richbody of results on �rst-order expressibility, as in Chandra and Harel [12], Fagin [17], and Gaifman [19].However, calculi for nested relations are essentially higher-order logics, where very little is known aboutexpressibility over �nite structures. Therefore, new techniques are needed for analyzing languages fornested collections. A di�culty is that, even in simple queries, one can increase the level of nestingin intermediate data and then get a desired result by attening or unnesting. Unless there is somerestriction on doing this, there is very little hope for �nding nice tools for analyzing the expressivenessof such languages.Fortunately, queries of the nested relational algebra were shown to be independent of the height of setnesting in intermediate data. The �rst result of this kind was proved by Paredaens and Van Gucht [46]for queries over at relations. It was later generalized by Wong [59] to arbitrary queries. Recently, weshowed that it continues to hold in the presence of aggregate functions [36] and that it holds even inthe presence of a large variety of polymorphic functions [37]. This property provides the simplifyingtool we need to analyze our languages.Since bag languages essentially add aggregate functions to relational languages, and hence have built-in arithmetic, it is hard to �nd a logic that captures them. Thus it is not clear what techniques canbe used for proving results about expressive power. There are several conjectures on BQL and on thenested relational algebra, formulated by Grumbach and Milo [21] and Paredaens [44]:3



Conjecture 1 (Grumbach and Milo) The parity test is not de�nable in BQL.Conjecture 2 (Grumbach and Milo) The transitive closure is not de�nable in BQL.Conjecture 3 (Paredaens) The test for balanced binary trees is neither de�nable in the nested rela-tional algebra nor in BQL.A variant of Conjecture 1 concerns parity of natural numbers, rather than parity of the cardinality ofa bag. In this paper, among other things, we prove all three conjectures.Let us make a few observations before we outline the main results. In most cases when peopleconjecture that something like transitive closure is not expressible in a language, they actually meanthat the language is incapable of expressing recursive queries. Transitive closure just happens to bethe most famous example of a recursive query. However, it is not the simplest one. As shown byImmerman [24], the �rst-order logic extended with transitive closure captures the complexity classNLOGSPACE over ordered structures. There are possibly simpler classes and complete problems forthem. For example, DLOGSPACE is captured by the �rst-order logic with deterministic transitiveclosure [24]. Therefore, if we could show that deterministic transitive closure is not expressible in alanguage that has at least the power of �rst-order logic, then many other inexpressibility results willbe obtained for free; for instance, connectivity and transitive closure. We exhibit two queries whichare at most as hard as deterministic transitive closure, one of them being the test for balanced binarytrees, and show that they are not expressible in BQL.There is also a lack of uniformity in proving inexpressibility results. There are well-known tools, suchas Ehrenfaucht-Fra��ss�e games, for proving �rst-order inexpressibility. However, applying them to anyquery whose inexpressibility is to be proved is a separate combinatorial problem, which is sometimesnon-trivial. For the Paredaens conjecture, it is easier to use another technique called Hanf's lemma,as presented in Fagin et al. [18], but it still requires some combinatorial proof which no longer works ifwe ask for balanced ternary trees, 4-ary trees, etc. Note that 0/1 laws do provide a uniform techniquefor proving inexpressibility results. However, they are rather restrictive. For example, all propertiesof graphs considered in this paper can easily be shown to have asymptotic probability 0, and hence0/1 laws are of no help.In this paper, we demonstrate a uniform technique for proving various inexpressibility results for thenested relational calculus. This technique is a variant of Gaifman's locality theorem [19], but it isoften easier to apply, because it is a statement about semantic properties of queries, rather than theirsyntactic representation.Organization and summary of main results. In Section 2 we outline a recent approach [6, 8,53, 9] to designing query languages for collection types. This approach is based on turning universalproperties of collections into programming syntax. Applying it to complex objects, we obtain a nestedrelational language called NRL. The language resulting from adding equality test to NRL, denotedby NRL(eq), has the same expressive power as the nested relational algebra, originally developed inThomas and Fischer [54], Colby [13], and Schek and Scholl [49]. NRL(eq) is a better language forthe purpose of this paper than these older languages because it has simpler semantics and it is easilyextensible with operations such as aggregate functions. A very important property of NRL(eq) is its4



conservativity [46, 59] | the class of NRL(eq)-queries from at relations to at relations is preciselythe class of relational algebra, or �rst-order de�nable queries.Another advantage of NRL is its extensibility. In particular, it is easy to see what constructs shouldbe used if bags are used instead of sets. Turning the set constructs into the bag constructs, we obtainthe nested bag language called NBL. In Section 3, we augment it with a number of polynomial-timecomputable primitives suggested previously in Albert [4], Grumbach and Milo [21], and Van denBussche and Paredaens [56]. We fully characterize their relative expressive power. The strongestcombination of these primitives includes the bag di�erence monus and duplicate elimination unique .We de�ne the basic bag language BQL (Bag Query Language) as NBL enhanced with these twoprimitives.In Section 4, the relationship of bag and set queries is studied. First, we prove the following theorem.Theorem 4.1 The class of set functions computed by NBL endowed with equality on base types, testfor emptiness, and duplicate elimination is precisely the class of functions computed by NRL.The relationship between sets and bags is also examined from a di�erent perspective. We add enoughmachinery to NRL(eq) to uniformly generate most aggregate functions found in practical query lan-guages. We augment it with rational arithmetic (+;�; � and �) and a general summation operator,to obtain the language NRLaggr. We also consider a weaker language NRLnat obtained from NRLaggrby restricting the type of rationals to natural numbers only. We show that these language are closelyrelated to BQL.Theorem 4.4 The languages BQL and NRLnat have the same expressive power.In Section 5, we study the expressive power of bag languages and set languages with aggregate func-tions. First, we prove that NRLnat and NRLaggr have the conservative extension property. Thatis, the expressibility of queries in these languages is independent of the height of nesting allowed inintermediate data.To study limitations of the languages, we introduce the bounded degree property of a graph query qthat says the following: if G is a graph whose in- and out-degrees do not exceed k, then there existsa number c(q; k) (depending on q and k, but not G) such that the graph q(G) has at most c(q; k)distinct in- and out-degrees.We demonstrate that using the bounded degree property it is easy to show the inexpressibility of anumber of queries such as testing for a chain or testing for a balanced binary tree. It is also easy touse this property to show that classes of queries described by their behavior on certain types of graphsare not de�nable. The bounded degree is a property of the same kind as Gaifman's locality [19], andwe are able to show thatTheorem 5.13 Any �rst-order de�nable graph query has the bounded degree property.Using this result and conservativity, we obtain that NRL-de�nable graph queries have the boundeddegree property if the nodes are of base types. We also conjecture that this continues to hold inNRLaggr, but so far we have been unable to prove this. To settle the main conjectures for NRLaggr(and hence for BQL) we use a di�erent technique. We de�ne k-multi-cycles as graphs that consist ofn � 1 connected components, each being a simple cycle of the same length � k. We prove a specialcase of the locality theorem for NRLaggr. 5



Theorem 5.15 Let q be a NRLaggr-de�nable Boolean query on graphs whose nodes are of unorderedbase type. Then there exists a number k such that the value of q is the same for all k-multi-cycles.It follows from this theorem that the parity test and transitive closure are not de�nable in NRLaggrand BQL. We also formulate an analog of Theorem 5.15 for a di�erent class of graphs, and from thatresult we conclude that the balanced binary tree test is not BQL-de�nable.In Section 6, we consider three extensions of BQL: with power operators such as powerset [21], withstructural recursion [6], and with loops [35, 48].Theorems 6.3 and 6.4 BQL with the powerset primitive is strictly less expressive than BQL withstructural recursion, which in turn has the same expressive power as BQL with loops.We study the impact of these primitives on the arithmetic expressive power and prove the following.Theorems 6.5 and 6.6 The classes of arithmetic functions expressible in BQL enhanced with powersetand with loops are the classes of Kalmar elementary and primitive recursive functions respectively.Finally, we reexamine the equivalence NRLnat ' BQL in the presence of these operators. We showthat NRLnat enhanced with powerset or loops is strictly less expressive than BQL enhanced with thesame primitives, and identify the gap between these languages. We de�ne the new primitive genthat takes a number n as an input and produces the set f0; : : : ; ng, and prove that BQL with thepowerset primitive has the same expressive power as NRLnat with powerset and gen. The same holdsfor structural recursion and loops.2 An Approach to Language DesignMany query languages have traditionally been developed on the basis of the relational algebra orthe relational calculus. This approach may be too limiting when we have to deal with structuresthat are not naturally supported by �rst-order logic-based languages. This is certainly the case withnested structures or structures such as bags and lists, where multiplicity or the order of appearanceis important.Instead of using �rst-order logic as a universal platform, it was suggested by Cardelli [11] to consider themain type constructors (such as sets, bags, and records) independently and for each of them determinethe introduction and elimination operations. The introduction operations allow us to construct theelements of a given type. The elimination operations compute with them.This idea was further developed in Tannen et al. [8] and Buneman et al. [9], where it was suggested thatone use operations naturally associated with data types as introduction and elimination operations.The formal category-theoretic treatment was given in Libkin [32]. The operations on collectionscorrespond to the categorical notion of a monad [40].We illustrate the use of this approach in the design of the nested relational language NRL. Thislanguage deals with complex objects in the form of nested relations. The types of complex objects aregiven by the grammar below. s; t ::= unit j b j s� t j fsgThe semantics of types is as follow. The type unit is a special base type containing exactly the6



distinguished value denoted by (). The symbol b ranges over an unspeci�ed collection of base types,such as integers, booleans, etc. Elements of the product type s� t are pairs whose �rst component isof type s and whose second component is of type t. Note that in this paper we use pairs instead ofrecords. This does not a�ect expressiveness, but makes notation more manageable. Finally, elementsof the set type fsg are �nite sets whose elements are of type s.The only operation naturally associated with type unit is the one that produces the unique elementof that type on any input. The introduction operation for pairs is pair formation: given x and y,form the pair (x; y). The elimination operations are �rst and second projections: �1 (x; y) = x and�2 (x; y) = y.For sets, the situation is not as straightforward because there are two ways to construct sets: eitherby starting with an empty set and inserting elements, or by starting with empty and singleton setsand using the union operation. We adopt the latter here. That is, each set is either ;, or it is asingleton fxg or it is the union of two sets X [ Y . Assuming that ;, singleton formation, and [ arethe introduction operations, we de�ne the elimination operation by prescribing its action in each ofthe three cases: fun s sru(e; f; u)(;) = ej s sru(e; f; u)(fxg) = f(x)j s sru(e; f; u)(X [ Y ) = u(s sru(e; f; u)(X); s sru(e; f; u)(Y ))Following Tannen et al. [6, 7], s sru stands for \structural recursion on the union presentation of sets."It has three parameters, e, f , and u. Setting these parameters arbitrarily leads to ill-de�ned programs.It is well known that checking whether a program using s sru is well-de�ned is undecidable [7]. Hence,it was proposed [8] that some syntactic restrictions be imposed on s sru to ensure well-de�nedness.In particular, this is achieved by taking e to be ; and u to be union. Then, the resulting functions sru(;; f;[), which is called s ext(f), has type fsg ! ftg if f has type s ! ftg. Its semantics isgiven by s ext(f) fx1; : : : ; xng = f(x1) [ : : :[ f(xn)That is, it extends f to sets. Instead of s ext(f), one can use the following two constructs. The s �operator attens a set of sets: s � fX1; : : : ; Xng = X1 [ : : :[Xn. The s map(g) operator applies thefunction g to every element of a set: s map(g) fx1; : : : ; xng = fg(x1); : : : ; g(xn)g. It is not hard to see[8] that s ext(f) = s � � s map(�x:f(x)), s � = s ext(id), and s map(g) = s ext(�x:fg(x)g).Using these operations, we present the nested relational language NRL here. It has three equallyexpressive components that can be freely combined: the nested relational algebra NRA, based on theoperations discussed above; the nested relational calculus NRC; and relative set abstraction RSA.Expressions of NRA, NRC, and RSA are constructed using the rules in Figure 1. These rules givethe most general types of the expressions. In the �gure, we also show these types in the superscript.The type superscripts are omitted in subsequent sections as they can be inferred [26, 42, etc.] Theseconstructs have been fully explained by Tannen et al. [8]. We briey repeat their semantics here.� Kc is the constant function that produces the constant c.� id is the identity function.� g � h is the composition of functions g and h; that is, (g � h)(d) = g(h(d)).7



EXPRESSIONS OF NRAGeneral OperatorsKc : unit ! b id s : s! s h : r! s g : s! tg � h : r! t!s : s! unit �s;t1 : s � t! s �s;t2 : s� t! t g : r! s h : r! thg; hi : r! s � tSet Operatorss �s : s! fsg s �s : ffsgg ! fsg f : s! ts map(f) : fsg ! ftgKfgs : unit ! fsg [s : fsg � fsg ! fsg s �s;t2 : s � ftg ! fs� tgEXPRESSIONS OF NRCLambda Calculus and Productsc : b xs : s e : t�xs:e : s! t e1 : s! t e2 : se1 e2 : t() : unit e : s� t�1 e : s �2 e : t e1 : s e2 : t(e1; e2) : s � tSet Expressionsfgs : fsg e : sfeg : fsg e1 : fsg e2 : fsge1 [ e2 : fsg e1 : ftg e2 : fsgSfe1 j xs 2 e2g : ftgEXPRESSIONS OF RSAAll constructs of NRC, except Sfe1 j x 2 e2g, andRelative Set Abstraction Constructe : s e1 : fs1g : : : en : fsngfe j xs11 2 e1; :::; xsnn 2 eng : fsgFigure 1: Syntax of NRL8



� The bang ! produces () on all inputs.� �1 and �2 are the two projections on pairs.� hg; hi is pair formation; that is, hg; hi(d) = (g(d); h(d)).� Kfg produces the empty set.� [ is set union.� s � forms singleton sets; for example, s � 3 evaluates to f3g.� s � attens a set of sets; for example, s �ff1; 2; 3g; f1; 3; 5; 7g; f2; 4gg evaluates to f1; 2; 3; 4; 5; 7g.� s map(f) applies f to every item in the input set; for example s map(�x:1 + x)f1; 2; 3g yieldsf2; 3; 4g and s map(�x:1)f1; 2; 3g yields f1g.� s �2(x; y) pairs x with every item in the set y; for example, s �2(1; f1; 2g) returns f(1; 1); (1; 2)g.� Sfe1 j x 2 e2g is equivalent to s ext(�x:e1)(e2), that is, (s � � s map(�x:e1))(e2). For example,Sfs �(x� 1)[ s �(x+ 1) j x 2 f2; 4gg evaluates to f1; 3; 5g.� fe j x1 2 e1; :::; xn 2 eng is equivalent to Sf: : :Sffeg j xn 2 eng : : : j x1 2 e1g. It can beunderstood as a normal comprehension notation from set theory; see Wadler [58] and Bunemanet al. [9]. For instance, f(x; y) j x 2 X; y 2 Y g is the Cartesian product of sets X and Y .The whole of NRL is used in many places of this report. However, in many of the proofs only one ofNRA, NRC, or RSA is used. This is �ne because these three sublanguages are equivalent in terms ofdenotations and in terms of equational theories [8, 59].Proposition 2.1 NRA, NRC, and RSA are equivalent in terms of semantics. In fact, the translationsbetween them preserve and reect their respective equational theories. 2Tannen et al. [8] represented booleans by the two values of type funitg, that is, f()g for true and fgfor false. It was shown [8] that after adding an equality test primitive eqs : s � s ! funitg for eachcomplex object type s, NRL expresses all nested relational operations of the well-known algebra ofThomas and Fischer [54]. In fact, this result can be strengthened [60] because the converse is alsotrue if a few constant relations are added to the algebra of Thomas and Fischer [54], which is knownto be equivalent to the language of Colby [13] and to the language of Schek and Scholl [49]. Also[60], real booleans can be added to NRL as a base type together with equality tests =s: s� s! booland the conditional construct to yield a language that has the same strength as NRL(eq) (we list theadditional primitives explicitly in brackets to distinguish the various versions of NRL). Consequently,we haveProposition 2.2 NRL(eq) ' NRL(=; bool; cond)' Thomas&Fischer ' Schek&Scholl ' Colby: 2Here and in what follows L1 ' L2 means that L1 and L2 have the same expressive power. Occasionallywe use this notation when L1 and L2 have di�erent type systems. This only happens when there existtranslations between the type systems and the equivalence is meant to be the equivalence of expressive9



power with respect to those translations. We shall also use L1 � L2 when L2 is at least as expressiveas L1, and L1 � L2 when L2 is strictly more expressive than L1.For the sake of clarity, pattern matching is used in many places later on in this report. It can beremoved in a straightforward manner. For example, �X:f(a; fb j (c; b) 2 X; c = ag) j (a; z) 2 Xg isjust a syntactic sugar for �X:f(�1 x; f�2 y j y 2 X;w 2 (�1 y eq �1 x)g) j x 2 Xg, which is thefunction implementing the nest operation of the nested relational algebra.3 The Basic Bag Language BQL3.1 The Ambient Bag Language NBLUsing the approach outlined in the previous section, we now de�ne an ambient bag query languageNBL consisting of three corresponding components: the bag algebra NBA, the bag calculus NBC, andthe relative bag abstraction RBA. We use the fj�; : : : ; �jg brackets for bags.Similar to sets, bags can be constructed from empty bag fjjg and singleton bags fjxjg using the additiveunion operation ] that adds up multiplicities. The general elimination operation, called structuralrecursion on union presentation of bags, b sru , is de�ned by prescribing its action depending on thestructure of a bag:fun b sru(e; f; u)(fjjg) = ej b sru(e; f; u)(fjxjg) = f(x)j b sru(e; f; u)(B1 [B2) = u(b sru(e; f; u)(B1); b sru(e; f; u)(B2))Similar to sets, there are choices of e, f , and u that make b sru(e; f; u) ill-de�ned and well-de�nednessis again undecidable [7]. So we ensure well-de�nedness by imposing syntactic restrictions on b sru :e is required to be fjjg and u is required to be ], leaving f the only parameter that may vary. Theresulting construct, denoted by b ext(f), has the semantics below and is equivalent to mapping overa bag followed by attening a bag of bags.b ext(f) fjx1; : : : ; xnjg = f(x1)] : : :] f(xn)Summing up, we now have an ambient bag language which we called NBL. The expressions of NBLare given in Figure 2. The types of NBL are the same as NRL but uses bags instead of sets. That is,s; t ::= b j unit j s� t j fjsjgwhere elements of type fjsjg are �nite bags containing elements of type s. A bag is di�erent from aset in that it is sensitive to the number of times an element occurs in it while a set is not.The semantics of NBL is similar to the semantics of NRL. The di�erence is in the operations suchas ] and b � that add up multiplicities. b � forms singleton bags; for example, b � 3 evaluates to thesingleton bag fj3jg. b � attens a bag of bags; for example, b � fjfj1; 2; 3jg; fj1; 3; 5; 7jg; fj2; 4jgjg evaluatesto fj1; 2; 3; 1; 3; 5; 7; 2; 4jg. b map(f) applies f to every item in the input bag; for example, b map(�x:1+x) fj1; 2; 1; 6jg evaluates to fj2; 3; 2; 7jg and b map(�x:1) fj1; 2; 1; 6jg evaluates to fj1; 1; 1; 1jg. Kfjjg forms10



EXPRESSIONS OF NBAOperations of category with products as in NRA.Bag Operatorsb �s : s! fjsjg b �s : fjfjsjgjg ! fjsjg f : s! tb map(f) : fjsjg ! fjtjgKfjjgs : unit ! fjsjg ]s : fjsjg � fjsjg ! fjsjg b �s;t2 : s� fjtjg ! fjs� tjgEXPRESSIONS OF NBCOperations of lambda calculus and products as in NRC.Bag Operatorsfjjgs : fjsjg e : sfjejg e1 : fjsjg e2 : fjsjge1 ] e2 : fjsjg e1 : fjtjg e2 : fjsjgUfje1 j xs 2 e2jg : fjtjgEXPRESSIONS of RBAAll operations of NBC, except Ufje1 j xs 2 e2jg, andRelative Bag Abstraction Constructe : s e1 : fjs1jg : : : en : fjsnjgfje j xs11 2 e1; : : : ; xsnn 2 enjgFigure 2: Expressions of NBL11



empty bags of the appropriate types. ] is additive union of bags; for example, ](fj1; 2; 3jg; fj2; 2; 4jg)returns fj1; 2; 3; 2; 2; 4jg. b �2 pairs the �rst component of the input with every item in the secondcomponent of the input; for example, b �2(3; fj1; 2; 3; 1jg) returns fj(3; 1); (3; 2); (3; 3); (3; 1)jg. Themeaning of Ufje1 j xs 2 e2jg is to at-map the function �x:e1 over the bag e2. That is, Ufje1 j x 2e2jg is equivalent to (b � � b map(�x:e1))(e2). The semantics of fje j x1 2 e1; : : : ; xn 2 enjg is justUfj : : :Ufjfjejg j xn 2 enjg : : : j x1 2 e1jg. It is a most convenient and easy to understand construct. Forexample, fj(x; y) j x 2 e1; y 2 e2jg is just the \cartesian product" of bags e1 and e2.Similar to NRL, the three components of NBL are equally expressive. In fact, the proof is identicalto that used for NRL [8].Proposition 3.1 NBA, NBC, and RBA are equivalent in terms of denotations. Moreover, the trans-lations between them preserve and reect their equational theories. 2Therefore, we normally work with the component that is most convenient.3.2 Relative Strength of Bag Operators and the Language BQLAs mentioned earlier, the presence of equality tests elevates NRL from a language that merely hasstructural manipulation capability to a full-edged nested relational language. The question of whatprimitives to add to NBL to make it a useful nested bag language should now be considered.Unlike languages for sets, where we have well established yardsticks, very little is known for bags. Dueto this lack of adequate guideline, a large number of primitives are considered. These primitives areeither \invented" by us or are reported by other researchers, especially Albert [4] and Grumbach andMilo [21]. In contrast to Grumbach and Milo [21] who included a powerbag operator as a primitive,all operators considered by us have polynomial time complexity. We give a complete report of theirexpressive strength relative to the ambient bag language.Let us �rst �x some meta notations. We de�ne count(d; B) to be the number of times the object doccurs in the bag B. To de�ne the semantics of a bag operation e(B1; : : : ; Bn), it su�ces to expresscount(d; e(B1; : : : ; Bn)) in terms of count(d; B1), ..., count(d; Bn). The bag operations to be consideredare listed below. monus : fjsjg � fjsjg ! fjsjg bag di�erencemax : fjsjg � fjsjg ! fjsjg maximum unionmin : fjsjg � fjsjg ! fjsjg minimum intersectioneq : s� s! fjunit jg equality testmember : s� fjsjg ! fjunit jg membership testsubbag : fjsjg � fjsjg ! fjunit jg subbag testunique : fjsjg ! fjsjg duplicate eliminationThe semantics of these additional operations is given in Figure 3. Notice that we are simulatingbooleans using a bag of type fjunit jg. True is represented by the singleton bag fj()jg and False isrepresented by the empty bag fjjg.As emphasized in the introduction, each of these operators has polynomial time complexity withrespect to the size of the input. Hence 12



count(d;monus(B1; B2)) = max(count(d; B1)� count(d; B2); 0)count(d;max(B1; B2)) = max(count(d; B1); count(d; B2))count(d;min(B1; B2)) = min(count(d; B1); count(d; B2))eq(d1; d2) = ( fj()jg if d1 = d2fjjg otherwisemember(d; B) = ( fj()jg if count(d; B) > 0fjjg otherwisesubbag(B1; B2) = ( fj()jg if count(d; B1) � count(d; B2) for every dfjjg otherwisecount(d; unique(B)) = ( 1 if count(d; B) > 00 if count(d; B) = 0Figure 3: Semantics of additional bag operationsProposition 3.2 Every function de�nable in NBL(monus;max ;min; eq;member; unique) has poly-nomial time complexity with respect to the size of the input. 2In the remainder of this section, the expressive power of these primitives is compared. The result isthe following complete characterization of their relative expressive power.Theorem 3.3 monus can express all primitives other than unique which is independent from the restof the primitives; min is equivalent to subbag and can express both max and eq; member and eq areinterde�nable and both are independent from max .The results of this theorem can be visualized in the following diagram:monusmin subbag unique���max eq memberAs a consequence of these results, NBL(monus; unique) can be considered as the most powerful can-didate for a standard bag query language. Thus, we propose to use it as the standard query languagefor bags.De�nition. The Bag Query Language, BQL, is de�ned as NBL endowed with monus and unique.In the remainder of the section we prove Theorem 3.3. Let us �rst prove the easy expressibility results.After that, the harder inexpressibility results are presented.13



Proposition 3.4 � max can be expressed in NBL(monus).� min can be expressed in NBL(monus).� eq can be expressed in NBL(monus).� subbag can be expressed in NBL(monus).� subbag can be expressed in NBL(eq;max).� member can be expressed in NBL(eq).� eq can be expressed in NBL(member).� eq can be expressed in NBL(min).� subbag can be expressed in NBL(min).� min can be expressed in NBL(subbag).� max can be expressed in NBL(min).Proof. To reduce clutter, we use the primitives in in�x form.� B1 max B2 := B2 ] (B1 monus B2).� B1 min B2 := B1monus(B1monusB2).� d1 eq d2 := fj()jg monus (R12 ] R21) where Rij is Sfjfj()jg j x 2 fjdijg monus fjdj jgjg.� B1 subbag B2 := B1 eq (B1monus(B1monusB2)).� B1 subbag B2 := B2 eq (B1 max B2).� d member B := (fj() j x 2 B; y 2 (x eq d)jg eq fjjg) eq fjjg.� d1 eq d2 := d1 member fjd2jg.� d1 eq d2 := fj() j x 2 fjd1jg min fjd2jgjg.� B1 subbag B2 := B1 eq (B1 min B2).� B1 min B2 := E ] F12 ] F21, where E is the bag of elements having the same number ofoccurrences in B1 and B2, and Fij is the bag of elements of Bi that occur strictly less frequentlyin Bi than in Bj .Let X intersection Y be the function that returns those elements that occur the same numberof times in X and Y . Let X di�erence Y be the function that returns those elements in X thatoccur di�erent number of times in X and Y . Then E can be de�ned as B1 intersection B2, andFij as fjx j x 2 Bi di�erence Bj , z 2 fjy j y 2 Bi, w 2 y eq xjg subbag fjy j y 2 Bj ; w 2 y eq xjgjg.It remains to de�ne intersection and di�erence. First observe that d1 eq d2 := fj() j x 2fjd1jg subbag fjd2jg; y 2 fjd2jg subbag fjd1jgjg. Now B1 intersection B2 := fjxj x 2 B1, w 2fjy j y 2 B1, z 2 y eq xjg eq fjy j y 2 B2, z 2 y eq xjgjg. Finally, B1 di�erence B2 := fjx j x 2B1; w 2 (x member (B1 intersection B2))eq fjjgjg. Incidentally, it is also easy to show that eq,intersection, di�erence, and member are inter-expressible.14



� B1 max B2 := E ]F12]F21, where E is the bag of those elements that occur equally frequentlyin B1 and B2, and Fij is the bag containing those elements of Bj that occur strictly morefrequently in Bj than in Bi. Thus, E can be de�ned as B1 intersection B2 and Fij as fjx j x 2Bj di�erence Bi, w 2 fjy j y 2 Bi; z 2 y eq xjg subbag fjy j y 2 Bj ; z 2 y eq xjgjg. 2In contrast to NRL, where the primitives eq, subset, �, \ and member are interde�nable [8], thecorresponding bag primitives di�er considerably in expressive power. These inexpressibility resultsrequire arguments that are more cunning. We prove them in separate propositions below.Proposition 3.5 eq cannot be expressed in NBL(unique;max).Proof. De�ne the relation vt on complex objects of type t by induction as follows: d1 vb d2 i�d1 = d2; (d1; d2) vs�t (d01; d02) if d1 vs d01 and d2 vt d02; B1 vfjsjg B2 if for every d1 such thatcount(d1; B1) 6= 0, there is some d2 such that count(d2; B2) 6= 0 and d1 vs d2. It is not di�cult tocheck that every function de�nable in NBA(unique;max) is monotone with respect to v. However, eqis not monotone with respect to v. 2Proposition 3.6 unique cannot be expressed in NBL(monus).Proof. The technique of Wong [59] can be readily adapted to show that the rewrite system below isstrongly normalizing.� (�x:e)(e0); e[e0=x] � �i(e1; e2); ei � fje j �1; x 2 fjjg;�2jg; fjjg� fje j �1; x 2 fje0jg;�2jg; fje[e0=x] j �1;�2[e0=x]jg� fje j �1; x 2 e1 ] e2;�2jg; A1 ]A2, where Ai is fje j �1; x 2 ei;�2jg.� fje j �1; x 2 fje0 j �0jg;�2jg; fje[e0=x] j �1;�0;�2[e0=x]jg� (e1 monus e2) ; e, where e1, e2 have no free variables and e is the result of evaluatinge1 monus e2.It can be shown that the rewrite system obtained by adjoining the rule below to the above system isweakly normalizing:� fje j�1; x 2 e1 monus e2;�2jg; fj�2 y j y 2 A1 monus A2jg, where Ai is fj(x; e) j�1; x 2 ei;�2jgand at least one of �j is not empty.Now we argue that no normal form under these rules implements unique. Let b be a new base type.Let O : fjbjg be a bag having k > 1 identical elements and nothing else. It can be checked that anynormal form implementing unique must have the form �R:e, where R is the only free variable of e.Then the proposition follows from the claim below.Claim. Let A : fj : : :� b � : : : jg be a normal form having R : fjbjg as its only free variable. Then forany o : : : :� b� : : :, count(o; A[O=R]) is a multiple of k.15



Proof of claim. We proceed by analyzing the forms that A can take. When A is R, the count is1 � k if o occurs in R or is 0 � k otherwise. When A is fjjg, the count is 0 � k. When A is B ] Cor B monus C, the hypothesis is applicable to both B and C. So count(o; B[O=R]) = mB � k andcount(o; C[O=R]) = mC � k respectively. Then count(o; A[O=R]) is (mB +mC) � k or (mB : mC) � krespectively.There are two remaining possibilities. The �rst possibility is for A to take the form fje j x1 2R; : : :; xm 2 Rjg. In this case, the count of any o in A[O=R] is obviously a multiple of k. The secondpossibility is for A to take the form fje j x 2 B monus Cjg. In this case, e must have type : : :� b� : : :.It can be checked that this forces x to have a type that is not necessarily the same as e's but is still ofthe form : : :�b�: : :. As a result, B monus C is a normal form whose type has the form fj : : :�b�: : : jg.So the hypothesis can be applied and the count of an element in B monus C must be a multiple ofk. Let o be an element of A[O=R]. Let o1, ..., on be the distinct elements of (B monus C)[O=R] suchthat e[o1=x], ..., e[on=x] all evaluate to o. Then count(o; A[O=R]) = (m1 + : : :+mn) � k, where mi'sare the count of oi's in (B monus C)[O=R]. 2Proposition 3.7 monus cannot be expressed in NBL(subbag).Proof. Let e be an expression of NBC(subbag) in normal form (induced by the rewrite system ofthe previous proposition) having no constants of base type b and no function abstraction. Let its freevariables be x1 : t1, ..., xn : tn. Let � assign object �(xi) of type ti to xi. Let b1, ..., bm be all the bagsof type fjbjg appearing in �(x1), ..., �(xn). Let a1, ..., al be all the objects of type b in �(x1), ..., �(xn).Associate with each ai a set �ai = fq0; : : : ; qmg, where q0 = 1 if an occurrence of ai in some �(xj) isnot inside some of b1, ..., bm; q0 = 0 otherwise; q1�j�m = the number of times ai appears in bj . Lete� evaluate to an object o. By structural induction on e, the number of occurrences of ai in o can beexpressed by a formula of the form: p0 � q0 + : : :+ pm � qm where �ai = fq0; : : : ; qmg and p0, ..., pm arenatural numbers. However, monus clearly does not have this property. 2Proposition 3.8 Let MIN : fjfjsjgjg ! fjsjg be the function such that for every d,count(d;MIN(R)) = minfcount(d;X) j X 2 Rg:Then� MIN cannot be expressed in NBL(monus).� MIN cannot be expressed in NBL(unique;member).� MIN can be expressed in NBL(unique;member ;max).� subbag cannot be expressed by NBL(member).� max cannot be expressed by NBL(unique;member).Proof. The last two items are immediate consequences of the �rst three items, which we prove below.� Since unique cannot be expressed in NBL(monus), it su�ces to show that it is expressible inNBL(MIN ; eq). Clearly, unique(B) :=MIN fjfjrjg ] fjx j x 2 B; y 2 (x eq r) eq fjjgjg j r 2 Bjg.16



� From Section 4, it is not di�cult to see that NBL(unique ;member) ' NRL(N;�; �;+; eq) andNBL(unique; subbag) ' NRL(N;�; �;+; eq;�), where we add natural numbers, some limitedarithmetic, and a summation primitive to NRL. Clearly, NRL(Q; �; �;+;�; bool; cond; =) �NRL(N;�; �;+; eq). It is proved in Section 5 that �: N � N ! bool is not expressible in theformer nested relational language. Hence it cannot be expressed in the latter. Consequently,NBL(unique;member) cannot express subbag . But NBL(MIN ) easily expresses subbag . So MINcannot be expressible in NBL(unique;member).� First note that subbag can be expressed in NBL(member ;max). Clearly, MIN is expressiblein NBL(unique; subbag) as MIN (R) := (b � � unique)(B), where B is fjw j (y; w) 2 A,notfj() j (x; v) 2 A, x = y; w 6= v; v subbag wjgjg and A is fj(y; fjx j x 2 v; x = yjg) j u 2R; y 2 u; v 2 Rjg. 2This �nishes the proof of Theorem 3.3. The independence of unique was also proved by Van denBussche and Paredaens [56] and Grumbach and Milo [21], and the fact that monus is the strongestamongst the remaining primitives was also shown by Albert [4]. However, their comparison wasincomplete. For example, the incomparability of max and eq was not reported. In contrast, theresults presented in this section can be put together in Theorem 3.3 which completely and strictlysummarizes the relative strength of these primitives.4 Relationship Between Bags and SetsThe relationship between sets and bags can be investigated from two perspectives. First, we compareseveral of the nested bag languages with the nested relational languageNRL(eq). This can be regardedas an attempt to understand the \set-theoretic" expressive power of these bag languages. Second, weconsider augmenting NRL(eq) by new primitives with the aim of simulating BQL, the most powerfulof bag languages considered so far. In this way, we hope to understand the precise character of thenew expressive power that bags bring us.4.1 Set-Theoretic Expressive Power of Bag LanguagesIn order to compare bags and sets, two technical devices are required for conversions between bagsand sets. f : s! tbs map(f) : fjsjg ! ftg f : s! tsb map(f) : fsg ! fjtjgThe semantics is as follows. bs map(f)(R) applies f to every item in the bagR and then puts the resultsinto a set. For example, bs map(�x:1+x)fj1; 2; 3; 1; 4jg returns the set f2; 3; 4; 5g. sb map(f)(R) appliesf to every item in the set R and then puts the results into a bag. For example, sb map(�x:4)f1; 2; 3greturns a the bag fj4; 4; 4jg. In particular, sb map(f) = b map(f)� sb map(id). This axiom guaranteesthat when a set is converted to a bag using sb map(id), the resulting bag contains no duplicates. Bagswithout duplicates are considered in this section as the most natural representation of sets using bags.17



Let s be a complex object type not involving bags. Then to bag(s) is a complex object type obtainedby recursively converting every set brackets in s to bag brackets. Every object o of type s is convertedto an object to bags(o) of type to bag(s). Conversely, let s be a complex object type not involvingsets. Then from bag(s) is a complex object type obtained by converting every bag brackets in s to setbrackets. Every object o of type s is converted to an object from bags(o) of type from bag(s). Theconversion operations are given inductively below.to bagb := id from bagb := idto bags�t := hto bags � �1; to bagt � �2i from bags�t := hfrom bags � �1; from bag t � �2ito bagfsg := sb map(to bags) from bagfjsjg := bs map(from bags)De�ne SET (�) to be the class of functions f : s ! t where s and t are complex object types notinvolving bags and � is a list of primitives such that there is f 0 : to bag(s) ! to bag(t) de�nable inNBL(�) and the diagram below commutes.to bag(s) f 0- to bag(t) id - to bag(t)sto bags6 f - t6to bag tid - t?from bagto bag(t)The class SET (�) is precisely the class of \set-theoretic" functions expressible in NBL(�). That is, itcorresponds to the class of functions from duplicate-free bags to duplicate-free bags in NBL(�). Wecompare SET (�) with NRL(eq) for various bag primitives below. Let eqb be equality test restrictedto base types. Let empty : fjunit jg ! fjunit jg be a primitive such that it returns the bag fj()jg whenapplied to the empty bag and returns the empty bag otherwise.Theorem 4.1 SET (unique; eqb; empty) = NRL(eq).Proof. It is easy to check [59] that NRL(eq) = NRL(eqb; not) where not : funitg ! funitg returnsf()g if applied to the empty set and returns fg otherwise. Hence we prove SET (unique ; eqb; empty) =NRL(eqb; not) instead. To show NRL(eqb; not) � SET (unique; eqb; empty), we prove that for anyf : s ! t in NRA(eqb; not), there is f 0 : to bag(s) ! to bag(t) in NBA(unique; eqb; empty) such thatthe diagram below commutes.to bag(s) f 0- to bag(t) id - to bag(t)sto bags6 f - t6to bag tid - t?from bagto bag(t)First note that the right square in the above diagram obviously commutes. Therefore, we need onlyto prove that the left square commutes. This is straightforward by de�ning f 0 as follows:18



id 0 := id Kfg0 := Kfjjg �01 := �1 �02 := �2Kc0 := Kc !0 := ! not0 := empty s �02 := b �2s �0 := unique � b � (s map g)0 := unique � b map g0 (g � h)0 := g0 � h0 hg; hi0 := hg0; h0is �0 := b � eq0b := eqb [0 := unique � ]The reverse inclusion SET (unique; eqb; empty) � NRL(eqb; not) follows by showing that for any f :s ! t in NBA(unique ; eqb; empty) there is an f 00 : from bag(s) ! from bag(t) in NRL(eqb; not) suchthat from bag(s) f 00- from bag(t)sfrom bags6 f - t6from bag tThis is straightforward by de�ning f 00 as follows:id 00 := id Kfjjg00 := Kfg �001 := �1 �002 := �2Kc00 := Kc !00 := ! empty00 := not b �002 := s �2b �00 := s � (b map g)00 := s map g00 (g � h)00 := g00 � h00 hg; hi00 := hg00; h00ib �00 := s � eq00b := eqb unique 00 := id ]00 := [ 2Note that the use of unique cannot be removed from the theorem above without weakening the notionof what kind of bags is considered an acceptable representation of sets. As mentioned earlier, onlyduplicate-free bags are accepted here as representation of sets. To see that unique cannot be removed,consider how one can de�ne the equivalent of set union [ : fsg � fsg ! fsg using bags. The bag-equivalent of set union must take a pair of duplicate-free bags to a duplicate-free bag having exactlythose elements in the two input bags. The only binary operation from fjsjg�fjsjg ! fjsjg that combinesdata from both its input bags in the ambient bag language is ]. However, ] takes two duplicate-freebags having nonempty intersection to a bag with duplicates. In other words, the output of ] is notacceptable as a bag representing a set. Since duplicate elimination has been shown in the previoussection to be independent of the other bag operators, we have no choice but apply unique to the resultin order to obtain a bag that meets our standard.Proposition 4.2 NRL(eq) � SET (unique; eq)Proof. Since NRL(eq) is a conservative extension of the at relational algebra [59], it cannottest whether two given sets have the same cardinality [28]. However, this function is de�ned inSET (unique; eq) as from bag � eq � hb map ! � �1; b map ! � �2i � to bag . 2Proposition 4.3 NRL(eq) and SET (monus) are incomparable.Proof. It is immediate that SET (monus) 6� NRL(eq) because the function which tests if two sets haveequal cardinality is in the former but not the latter. To show that NRL(eq) 6� SET (monus), consider19



the relational projection �1f(x1; y1); : : : ; (xn; yn)g = fx1; : : : ; xng. �1 is clearly in NRL(eq). Supposeit is also in SET (monus). Then the function �01fj(o1; o11); : : : ; (o1; om11 ); : : : ; (on; o1n); : : : ; (on; omnn )jg =fjo1; : : : ; onjg, where o1, ..., on are distinct, is de�nable in NBL(monus). Then unique(R) = �01(fj(x; x) jx 2 Rjg) is de�nable in NBL(monus), contradicting Proposition 3.6. So �1 is not in SET (monus). 2The above results say that NBL(unique; eqb; empty) is conservative over NRL(eq) in the sense thatit has precisely the same set-theoretic expressive power. On the other hand, NBL(unique; eq) is atrue extension over the set language. However, the presence of unique is in a technical sense essentialfor a bag language to be an extension of a set language, because of the use of duplicate-free bags torepresent sets.4.2 A Set Language Equivalent to BQLIt was shown in the previous section that BQL is the most powerful amongst the bag languagesconsidered so far. From the foregoing discussion, this bag language is a true extension of NRL(eq).In this subsection, the relationship between sets and bags is studied from a di�erent perspective. Inparticular, the precise amount of extra power BQL possesses over NRL(eq) is determined. In fact, inorder to give the nested relational language the expressive power of BQL, it has to be endowed withnatural numbers N together with multiplication, subtraction, and summation as de�ned below.Multiplication � : N� N! N. The semantics of � is multiplication of natural numbers.Subtraction : : N� N! N (sometimes called modi�ed subtraction). The semantics is as follows:n : m = ( n �m if n �m � 00 if n �m < 0Summation P g : fsg ! N where g : s ! N. The semantics is as follows. P g fo1; : : : ; ong =g(o1) + : : :+ g(on). Equivalently, the construct �fje2 j xs 2 e1jg : N where e2 : N and e1 : fsg isalso used and is interpreted as (P(�x:e2))(e1). (We use bag brackets to emphasize the semanticsof P: after f is applied to all elements of a set, all values are counted, even if f produced thesame value on a number of elements.)It is known [8] that adding the booleans and the conditional cond(e1; e2; e3) := if e1 then e2 else e3does not add expressiveness toNRL(eq). We now de�ne a languageNRLnat asNRL(eq) with booleansand conditional, enhanced by the type N of natural numbers and the three operations �; : andP above.The rest of this subsection is devoted to provingTheorem 4.4 BQL ' NRLnat.Proof is given in two claims below. First, we need a slightly di�erent kind of conversion between setsand bags. Two additional devices are used: to nat : fjunit jg ! N takes a bag containing n units ton and from nat : N! fjunit jg does the opposite thing. Let s be a complex object type not involvingsets. Then to set(s) is the type obtained by changing all bag components fjtjg to fto set(t)� Ng. Anobject o : s is converted to an object to sets(o) of type to set(s). An object o : to set(s) is convertedto an object from sets(o) of type s. The two conversion functions are de�ned inductively below.20



� to setunit := id� to sets�t := hto sets � �1; to set t � �2i� to setfjsjg := �B:bs map(�b:(to sets b; to natfj() j c 2 B; b eq cjg)) B� from setunit := id� from sets�t := hfrom sets � �1; from set t � �2i� from setfjsjg := b � � b map(b map �1 � b �2 � hfrom sets � �1; from nat � �2i)Using the above conversion, it can be shown thatClaim 1: BQL � NRLnat.Proof of Claim 1. Since addition is de�nable by summation, to prove the proposition, it su�ces toshow that for each f : s ! t in BQL, there is a f 0 : to set(s) ! to set(t) in NRLnat such that thediagram below commutes. s f - t id - tto set(s)to sets? f 0- to set(t)?to set tid- to set(t)6from set tThe right square in the above diagram clearly commutes. Hence we need only to prove that the leftsquare commutes. This is easy by de�ning f 0 as follows:� !0 := ! � �01 := �1 � �02 := �2 � Kc0 := Kc � Kfjjg0 := Kfg� id 0 := id � hg; hi0 := hg0; h0i � (g � h)0 := g0 � h0 � b �0 := s � � hid ; K1 � !i� b �02 := �(x; Y ):f((x; z); n) j (z; n) 2 Y g � unique 0 := s maph�1; K1 � !i� monus 0 := �(X; Y ):f(x;m : n) j (x;m) 2 X; (y; n) 2 Y; x = y; (m : n) 6= 0g� ]0 := [ � hD;Ei where D := �(A;B):f(a; n + m) j (a; n) 2 A; (b;m) 2 B; a = bg and E :=�(A;B):f(a; n+m) j (a; n) 2 B; (b;m) 2 A; a = bg.� b �0 := �A:f(s;�fn � �fif s = x then m else 0 j (x;m) 2 ag j (a; n) 2 Ag) j s 2 fx j (X; a) 2A; (x; b) 2 Xgg� (b map g)0 := �A:f(x;�fif a = x then n else 0 j (a; n; z) 2 Bg) j x 2 fx j (x; y; z) 2 Bg whereB := f(g0 b; n; b) j (b; n) 2 Ag. 2For the inclusion in the other direction, conversions similar to that in Claim 1 are used. Let s bea complex object type not involving sets. Then to bag(s) is the type obtained by changing all setbrackets to bag brackets and changing N to fjunit jg. Let o be an object of type s. Then it is convertedto an object to bags(o) of type to bag(s). Let o be an object of type to bag(s), then it is converted toan object from bags(o) of type s. The conversion functions are de�ned below.21



to bagN:= from nat from bagN:= to natto bagunit := id from bagunit := idto bags�t := hto bags � �1; to bagt � �2i from bags�t := hfrom bags � �1; from bag t � �2ito bagfsg := sb map(to bags) from bagfsg := bs map(from bags)Then we haveClaim 2: NRLnat � BQL.Proof of Claim 2. First note that NRLnat ' NRL(eq;N; �; : ;P), because the booleans and the condi-tional in NRLnat are just devices of convenience and add no power to the language. Hence it su�cesto prove that for every f : s ! t in NRA(eqb; not;N; �; : ;P), there is a f 00 : to bag(s) ! to bag(t) inBQL such that the diagram below commutes.s f - t id - tto bag(s)to bags? f 00- to bag(t)?to bag tid- to bag(t)6from bagtAs the right square clearly commutes, we are left to demonstrate that the left square commutes. Thiscan be accomplished by de�ning f 00 as follows, where NAT n is the bag of exactly n units:!00 := ! Kn00 := �x:NAT n Kc00 := KcKfg00 := Kfjjg �001 := �1 �002 := �2id 00 := id hg; hi00 := hg00; h00i (g � h)00 := g00 � h00s �00 := b � s �002 := b �2 : 00:= monus�00 := �(X; Y ):fj() j x 2 X; y 2 Y jg (P g)00 := b � � b map(g00) (s map g)00 := unique � b map(g00)s �00 := unique � b � eq00 := eq. not00 := �R:fj()jgmonus R[00 := unique � ] 24.3 Relational Language with Aggregate Functions, NRLaggrThe P construct introduced to the set language to capture the power of BQL is often helpful inde�ning aggregate functions. For example, P(�x:1) corresponds to the aggregate COUNT and P idis TOTAL. However, many aggregate functions are based on rational rather than integer arithmetic.Thus, we suggest that NRLnat be extended to a language in which Q, the type of rational numbers, isused as a new base type.We de�ne the nested relational language with aggregate functions, NRLaggr, as NRL(eq) enhancedwith rational numbers Q; arithmetic operations +, �, �, and �; linear order �Qon rationals; and thesummation construct below with a semantics analogous to the summation over natural numbers. Forsuccinctness, we also throw in the booleans and if -then-else; but note that they add no expressivepower to the language [60]. 22



f : s! QP f : fsg ! QEquivalently, the construct �fje2 j xs 2 e1jg : Qwhere e2 : Q and e1 : fsg is also used and is interpretedas (P(�x:e2))(e1).Many useful aggregate functions can be de�ned in NRLaggr. For example:� \Total the �rst column of R" is TOTAL1(R) :=Pfj�1 x j x 2 Rjg.� \Average of the �rst column in R" is AVG1(R) := TOTAL1(R)� COUNT(R).� \Variance of the �rst column of R" VARIANCE1(R) is(Xfjsq(�1 x) j x 2 Rjg � (sq(Xfj�1 x j x 2 Rjg)� COUNT(R)))� COUNT(R)where sq := �y:y � y.We consider NRLaggr to be a rational reconstruction of SQL for the reason that it is capable ofexpressing the constructs that contribute to the gap between SQL and relational algebra: nesting,which is needed for GROUP-BY, and aggregate functions. In particular, to justify the claim that SQLcannot express transitive closure, we prove that transitive closure is not de�nable in NRLaggr; seeCorollary 5.17.5 Expressive Power of Set Languages, Bag Languages and Aggre-gate FunctionsIn this section limitation in the expressive power of NRL(eq), NRLaggr, and BQL is studied. Theresults of this section are:� NRLaggr and NRLnat possess the conservative extension property. That is, expressibility ofqueries in these languages is independent of the height of set nesting in intermediate results.� The bounded degree property is introduced as a tool for investigating inexpressibility. We showthat it uniformly applies to a number of recursive queries. We prove that NRL(eq) has thisproperty. However, it is not known if NRLaggr has the bounded degree property.� By a careful analysis of the normal forms induced by the conservative extension property onNRLaggr, we show that the same recursive queries are also not expressible in NRLaggr. As BQLis clearly a sublanguage of NRLaggr, these inexpressibility results settle Conjectures 1, 2, and 3.� We prove that the class of unary arithmetic functions de�nable in BQL or NRLnat is the classof extended polynomials. As a result, tests for properties which are simultaneously in�nite andco-in�nite are inexpressible in these languages.23



5.1 Conservative Properties of Set and Bag LanguagesLet us �rst explain the idea of conservative extension. The set height ht(s) of a type s is de�ned asthe depth of the nesting of set- or bag- brackets in s. The set height ht(e) of an expression e is de�nedas the maximum of the set heights of all the types that appear in the unique typing derivation of e.De�nition. A language L has the conservative extension property if any function f : s! t de�nablein L can be expressed in L using an expression whose set height is at most max(k; ht(s); ht(t)), wherek is a constant �xed for L.In other words, the class of functions computable by a language possessing this property is indepen-dent of the height of intermediate data structures. Note that if L has the conservative extensionproperty and k is the �xed constant, then L(p) also has that property but the �xed constant becomesmax(k; ht(p)) for any additional primitive p.For the rest of this subsection, we use the calculus versions of our languages.Theorem 5.1 Let e : s be an expression of NRCaggr. Then there is an equivalent NRCaggr expressione0 : s such that ht(e0) � max(fht(s)g [ fht(t) j t is the type of a free variable in eg).Proof. We prove conservativity for the language that does not have �Qas a primitive. Noticethat �Qis of height zero; hence adding it does not a�ect the conservative extension property. Weproceed along the lines of Wong [59] by �rst introducing a strongly normalizing rewrite system andthen showing that the normal forms induced by the system do not generate intermediate data of greatheight. Towards this end, consider the rewrite rules below.� (�x:e1)(e2); e1[e2=x] � �i(e1; e2); ei� Sfe j x 2 fgg; fg � Sfe1 j x 2 fe2gg; e1[e2=x]� Sfe j x 2 (e1 [ e2)g; Sfe j x 2 e1g [ Sfe j x 2 e2g� Sfe1 j x 2 Sfe2 j y 2 e3gg; SfSfe1 j x 2 e2g j y 2 e3g� Sfe j x 2 (if e1 then e2 else e3)g ; if e1 then Sfe j x 2 e2g else Sfe j x 2 e3g� �i (if e1 then e2 else e3); if e1 then �i e2 else �i e3� if true then e2 else e3 ; e2 � if false then e2 else e3 ; e3� Pfje j x 2 fgjg; 0 � Pfje j x 2 fe0gjg; e[e0=x]� Pfje j x 2 if e1 then e2 else e3jg; if e1 then Pfje j x 2 e2jg else Pfje j x 2 e3jg� Pfje j x 2 e1 [ e2jg;Pfje j x 2 e1jg+Pfjif x 2 e1 then 0 else e j x 2 e2jg� Pfje j x 2 Sfe1 j y 2 e2gjg;PfjPfj(e�PfjPfjif x = v then 1 else 0 j v 2 e1jg j y 2 e2jg) j x 2 e1jg j y 2 e2jgIt is a fact that any equality test =s: s � s ! bool can be implemented in terms of equality tests atbase types =b: b � b ! bool , using NRLaggr as the ambient language. Moreover, this can be done24



without using the Sfe1 j x 2 e2g construct or the e1 [ e2 construct. Furthermore, it can be donewithout going beyond the height of s. In the rules above, all occurrences of = are to be treated as asugar for their implementation in terms of equality tests at base types.Claim. These rewrite rules preserve the meanings of expressions. That is, e1 ; e2 implies e1 = e2.Proof of claim. The proof is straightforward. However, the last rule deserves special attention.Consider the incorrect equation: Pfje j x 2 Sfe1 j y 2 e2gjg =PfjPfje j x 2 e1jg j y 2 e2jg. Supposee2 evaluates to a set of two distinct objects fo1; o2g. Suppose e1[o1=y] and e1[o2=y] both evaluate tofo3g. Suppose e[o3=x] evaluates to 1. Then the left-hand-side of the \equation" returns 1 but theright-hand-side yields 2. The division operation in the last rule is used to handle duplicates properly.While the last two rules seem to increase the \character count" of expressions, it should be remarkedthat Pfje1 j x 2 e2jg is always rewritten by these two rules to an expression that decreases in the e2position.Claim. The rewrite system above is strongly normalizing. That is, after a �nite number of rewritesteps, we must arrive at an expression to which no rule is applicable.Proof of claim. The rewrite system above really consists of two orthogonal subsystems. The �rstcontains all the rules except the last two. The second contains the last two rules but not the rest.Thus, to prove the claim, it su�ces to provide two non-interfering termination measures for the twosubsystems.For the larger subsystem, we use the following measure. Let ' map variable names to natural numbersgreater than 1. Let '[n=x] be the function that maps x to n and agrees with ' on other variables.Let kek', de�ned below, measure the size of e in the environment ' where each free variable x in e isgiven the size '(x). De�ne ' � '0 if '(x) � '0(x) for all x. It is readily seen that k � k' is monotonicin '. Moreover, if e1 ; e2 via any rule but not the last two, then ke1k' > ke2k'. That is, thismeasure strictly decreases with respect to the �rst subsystem of rewrite rules.� kxk' = '(x)� ktruek' = kfalsek' = kck' = k()k' = kfgk' = 2� k�1 ek' = k�2 ek' = kfegk' = 2 � kek'� k�x:ek' = kek'[2=x]� k(�x:e)(e0)k' = kek'[ke0k'=x] � ke0k'� ke1 [ e2k' = k(e1; e2)k' = ke1+ e2k' = ke1� e2k' = ke1 � e2k' = ke1� e2k' = ke1 =b e2k' =1 + ke1k'+ ke2k'� kSfe0 j x 2 egk' = (ke0k'[kek'=x] + 1) � kek'� kif e1 then e2 else e3k' = ke1k' � (1 + ke2k'+ ke3k')� kPfje0 j x 2 ejgk' = (ke0k'[kek'=x] + 1) � kek'.For example, the left-hand-side of the rule Sfe1 j x 2 Sfe2 j y 2 e3gg; SfSfe1 j x 2 e2g j y 2 e3ghas measure ke1k' �ke2k' �ke3k'+ke1k' �ke3k'+ke2k' �ke3k'+ke3k'. However, the right-hand-sidehas measure ke1k' � ke2k' � ke3k'+ ke3k'. The latter is clearly smaller.25



For the second subsystem, we need a more complex measure, which we de�ne in two steps. For the�rst step, let � be a function that maps variables to natural numbers greater than 1. Let �[n=x] bethe function that maps x to n and agrees with � on other variables. Let kek� be de�ned as below.Then kek� is monotone in �. Moreover, if e1 ; e2 via any rules, then ke1k� � ke2k�.� ktruek� = kfalsek� = kck� = k()k� = kfgk� = 2� k�1 ek� = k�2 ek� = kek�� kxk� = �(x)� k�x:ek� = kek�[2=x]� k(�x:e1)(e2)k� = max(ke2k�; ke1k�[ke2k�=x])� kif e1 then e2 else e3k� = max(ke1k�; ke2k�; ke3k�)� kfegk� = 1+ kek�� ke1 [ e2k� = 1 + max(ke1k�; ke2k�)� kSfe1 j x 2 e2gk� = (ke1k�[ke2k�=x])ke2k�� k(e1; e2)k� = ke1+e2k� = ke1�e2k� = ke1 �e2k� = ke1�e2k� = ke1 =b e2k� = max(ke1k�; ke2k�)� kPfje1 j x 2 e2jgk� = max(ke2k�; ke1k�[ke2k�=x])For the second step, let � denote an in�nite tuple (: : : ; �(1); �(0)) of natural numbers with �nitelymany non-zero components. These tuples are ordered left-to-right lexicographically. Furthermore,since each tuple has only �nitely many non-zero components, the ordering is well founded. Let�1 � �2 denote the tuple � obtained by component-wise summation of �1 and �2. Let �[n] denotethe tuple �0 such that �0(n) = �(n) + 1 and �0(m) = �(m) for m 6= n. Let � be a function mappingvariables to tuples �'s. Let �[�=x] map x to the tuple � and agree with � on other variables. Letkek�� be de�ned as below. Then kek�� is monotone in both � and �. Furthermore, if e1 ; e2,then ke1k�� � ke2k��. More importantly, if e1 ; e2 via the last two rewrite rules above, thenke1k�� > ke2k��. (For example, the measure for the left-hand-side of the last and most complicatedrule simpli�es to (kek�� � ke1k�� � ke2k��)[ke1k�ke2k�]. On the other hand, the measure for theright-hand-side simpli�es to (kek�� �ke1k�� �ke2k��)[ke1k�][ke1k�][ke2k�][ke2k�]. The latter is clearlysmaller than the former.) Thus this measure strictly decreases for the last two rules. That is, itstrictly decreases for the second subsystem of rules and decreases (but not necessarily strictly) for the�rst subsystem of rules.� kxk�� = �(x)� k�x:ek�� = kek�[(: : : ; 0)=x]�[2=x]� k(�x:e1)(e2)k�� = kSfe1 j x 2 e2gk�� = ke2k�� � ke1k(�[ke2k��=x])(�[ke2k�=x])� ktruek�� = kfalsek�� = kck�� = k()k�� = kfgk�� = (: : : ; 0)� kif e1 then e2 else e3k�� = ke1k�� � ke2k�� � ke3k��26



� k�1 ek�� = k�2 ek�� = kfegk�� = kek�� = kek��� ke1 [ e2k�� = k(e1; e2)k�� = ke1 =b e2k�� = ke1 + e2k�� = ke1 � e2k�� = ke1 � e2k�� =ke1 � e2k�� = ke1k�� � ke2k��� kPfje1 j x 2 e2jgk�� = (ke2k�� � ke1k�[ke2k��=x]�[ke2k�=x])[ke2k�]The termination measure for the entire rewrite system above can now be de�ned as kek'�� =(kek��; kek'), ordered left-to-right lexicographically. Then kek'�� is monotone in all of ', �, and �.Furthermore, if e1 ; e2, then ke1k'�� > ke2k'��. Since orderings for both components are well-founded, so is the lexicographic ordering. Therefore, the rewrite system above is strongly normalizing.Next we analyze the normal forms induced by the rules above.Claim. Let e : s be an expression of NRLaggr in normal form. Then ht(e) � max(fht(s)g [ fht(t) j tis the type of a free variable occurring in eg).Proof of claim. The proof is a routine induction on the structure of normal forms. Since the rewritesystem always leads to some normal forms, this completes the proof of the theorem. 2One of our goals is to demonstrate that division, enumeration of natural numbers from 0 to n fora given n, etc. are not expressible in BQL. Observe that � is critical for achieving conservativeextension in the nested relational language endowed with rationals. Therefore, it is possible thatthe set language equivalent to BQL, which lacks division, may not possess the conservative extensionproperty. Fortunately, this is not the case because NRLnat has su�cient horsepower to compute alinear order at all types, as shown by us in another paper [37].Proposition 5.2 For each type s it is possible to de�ne a function �s: s � s ! funitg in NRCnatwhich de�nes a linear order on the elements of s. Moreover, it can be de�ned in such a way thatht(�s) = ht(s). 2In the next theorem, this linear order is exploited to show that functions in NRCnat, and hence BQL,do not depend on intermediate data structures.Theorem 5.3 Let e : s be an expression of NRCnat. Then there is an equivalent expression e0 : s suchthat ht(e0) � max(fht(s)g [ fht(t) j t is the type of a free variable in eg).Proof. It su�ces to replace the last rule used in Theorem 5.1 by the following: Pfje j x 2 Sfe1 j y 2e2gjg;PfjPfjif (Pfjif x 2 e1[w=y] then (if w = y then 0 else (if w � y then 1 else 0)) else 0 j w 2e2jg) = 0 then e else 0 j x 2 e1jg j y 2 e2jg.The problem of Pfje j x 2 Sfe1 j y 2 e2gjg is that the e1 generated from di�erent y's in e2 mayhave nonempty intersection. In the last rule of Theorem 5.1, the duplicates are dealt with by dividingtheir \contribution" to the �nal sum by the number of duplicates. The idea of the new rule above isdi�erent. If y1 and y2 produce e1's with nonempty intersection, the overlapping values are countedonly once. This is achieved by using the linear order of Proposition 5.2 to count those from the smallerof y1 and y2. 227



The conservative extension property was �rst studied by Paredaens and Van Gucht [46] and later byVan den Bussche [55]. They proved that NRC(eq) has it when the input and output are restricted toat relations. It was then extended by Wong [59] to any input and output. More recently, Suciu [50]managed to prove the remarkable theorem that NRC(eq; b�x), note the absence of natural numbers,has the conservative extension property when input and output are restricted to at relations. Hereb�x is a bounded version of the �xpoint operator. When added to �rst order logic, it yields a languageequivalent to datalog with negation.The results presented in this section show that, with very little extra, conservative extension propertyholds at any input/output in the presence of aggregate functions, transitive closure, and bounded�xpoint. This is a very signi�cant improvement of these previous results.Grumbach and Milo [21] obtained a non-collapsing hierarchy theorem. Let gen : N ! fNg be aprimitive which takes the number n to the set f0; : : : ; ng. Their theorem is equivalent to saying thatfor any k and i, there is an expression e in NRCnat(gen; powerset) where ht(e) is at most k and thenumber of powerset operators along any path in e is at most i+ 2 such that there is no equivalent e0of height at most k and the number of powerset operators along any path in e0 is at most i. This is aresult on a di�erent dimension of conservativity. It is a complement, rather than a contradiction, ofthe last part of the corollary above.The need for gen in the preceding discussion may not be obvious. The language of Grumbach and Milois a language for bags, in which the natural numbers are simulated as bags of unit . Thus they coulduse the powerset operation in their language to enumerate small bags of unit (the small numbers)given a big bag of unit (a big number). In contrast, NRCnat(powerset) is a set language. Thus itspowerset operator cannot be used to generate small numbers from a big number. As we shall seelater, the gen operator �lls this gap nicely.By the conservative extension property, the class of functions on at relations computed by NRLaggris precisely that computed by at relational algebra endowed with the same primitives. This hasa practical signi�cance because it implies that NRLaggr can be used as a convenient interface todatabases that speak SQL. A theoretically more interesting consequence is that every function of typefjunit jg ! fjunit jg in BQL corresponds to very simple arithmetic. This fact is exploited in the nextsection, where arithmetic properties of bag query languages are studied.5.2 Arithmetic Power of BQLAs seen earlier, natural numbers are present in BQL as objects of type fjunit jg. So it is possibleto translate BQL into a set language augmented by either rational or natural numbers and somearithmetic. In this section the conservative extension results from the previous section are usedto investigate the arithmetic power of BQL and NRLaggr. We show that no property of naturalnumbers that is simultaneously in�nite and co-in�nite can be tested in either language. This result isparticularly surprising for the language augmented by rational numbers and division, since it impliesthe inexpressibility of parity test even when division by two is expressible. Next we show that if: is removed from the list of primitives of the language augmented by rationals, then there is noexpression that de�nes the usual ordering on rationals. Finally, we give a complete characterizationof unary arithmetic functions in BQL. 28



Proposition 5.4 Let U be a property of natural numbers, that is both in�nite and co-in�nite. Thatis, U � N and both U and N� U are in�nite. Then the membership test for U cannot be expressed inNRL(Q+;�; �;+;�; : ; bool; cond; eq), where Q+ is the type of non-negative rationals.Proof. Suppose there is an expression e : Q+ ! Q+ that tests for membership in U . That is, if n 2 U ,then e(n) = 1 and if n 2 N� U , then e(n) = 0. (We are not interested in what e returns on elementsof Q+�N.) We may assume without loss of generality that e is de�ned everywhere. That is, divisionby zero cannot occur in the course of the evaluation of e.An expression e of type Q+ ! Q+ is called a plus-expression (zero-expression) if there is a number n,depending on e, such that for every x � n, it is the case that e(x) > 0 (e(x) = 0). It is enough to provethat any expression e of type Q+ ! Q+ that is de�ned everywhere is either a plus- or a zero-expression,because testing membership in U cannot be such. In fact, we show that for any plus-expression, thereare two polynomial functions p(x) and q(x) with rational coe�cients such that for any x � n, it is thecase that e(x) = p(x)=q(x) and p(x); q(x)� 0.Let e be of type Q+ ! Q+. Since : can be expressed if a linear order on Q+ is present, and sucha linear order as a primitive has height 0, the language NRL(Q+;�; �;+;�; : ; bool; cond; eq) has theconservative extension property. Hence, e can be considered to be a height-zero expression. That is, itis obtained from its only free variable and constants by operations +, : , �, and �. Observe that thereis a simple way to code conditionals. Every condition can be reduced to e0 = e00. For the equality test,e0 = e00, observe that (1 : (e0 : e00)) � (1 : (e00 : e0)) returns 1 if e0 = e00 and 0 otherwise. Therefore, wemay assume that in any if-then-else statement the condition can be either 1 or 0. But then if c thenf1 else f2 is equivalent to c � f1 + (1 : c) � f2. This shows that conditionals can be removed from anyexpression of type Q+ ! Q+.We proceed to prove the main claim by induction on the structure of e. The base case and thecases e = e1 + e2, e = e1 � e2 and e = e1 � e2 are straightforward. Let e = e1 : e2. The onlycase that is not immediate is when both e1 and e2 are plus-expressions given by p1(x)=q1(x) andp2(x)=q2(x) for x greater than n1 and n2 respectively. Consider f(x) = p1(x) � q2(x) � p2(x) � q1(x).If f is the constant function 0, then e is a zero-expression. Otherwise, let xf be the maximal rootof the polynomial f . There are two cases. If f(y) > 0 whenever y > xf , then for every x �maxfn1; n2; xfg + 1, we have p1(x)=q1(x) � p2(x)=q2(x) > 0 and therefore e(x) is a plus-expressiongiven by (p1(x) � q2(x) � p2(x) � q1(x))=(q1(x) � q2(x)). If f(y) < 0 whenever y > xf , then for everyx � maxfn1; n2; xfg + 1, we have p1(x)=q1(x)� p2(x)=q2(x) < 0 and so e(x) = 0, a zero-expression.The claim, and the proposition are thus proved. 2It is well known that the relational algebra cannot express parity test [12]. By the results of Paredaensand Van Gucht [46] and Wong [59], it cannot be expressed in NRL(eq). It follows from the theorem wejust proved that it remains inexpressible even in the greatly enhanced NRLnat, which is a sublanguageofNRL(Q+;�; �;+;�; : ; bool; cond; eq), and hence not expressible in BQL. This is another consequenceof the conservative extension property.Corollary 5.5 Parity test on numbers is not expressible in NRLnat. 2This settles the variant of Conjecture 1 for parity test on numbers. In a more limited setting, wherethere are no nested bags, it was also proved by Grumbach and Milo [21]. We used conservativeextension to obtain the more general result above.29



The corollary above says that it is impossible to test whether a natural number is even or odd.However, it is possible to test whether a set has an even or odd number of elements by exploiting thelinear order: odd(R) := Sfif Pfif x < y then 1 else 0 j y 2 Rg = Pfif x > y then 1 else 0 j y 2Rg then f()g else fg j x 2 Rg = f()g. As a consequence, BQL cannot test whether a bag containsan even or odd number of elements, but it can test whether a bag contains an even or odd number ofdistinct elements. Using the same technique we can split a set into k equal parts, even though divisionby k is unde�nable. However, this is based on the assumption that a linear order is given for all basetypes. In the absence of linear order, parity of cardinality is no longer de�nable; see Corollary 5.16.As another application of the conservative extension property, we show that in the absence of : , theusual order on rational numbers is no longer expressible.Proposition 5.6 The language obtained from NRLaggr by removing the �Qprimitive cannot expressthe ordering �Qon Q.Proof. We claim the following. For any expression g : Q! Q de�ned by using +, �, �, =, if-then-else, constants and minus, there exist two polynomials p(x) and q(x) with rational coe�cients suchthat g(x) coincides with p(x)=q(x) almost everywhere; that is, g(x) 6= p(x)=q(x) for only �nitely manyx 2 Q. To prove this claim, we proceed by induction on the structure of an expression g. The base caseis immediate. The induction step easily goes through the arithmetic operations. Let g := if c theng1 else g2. The condition c is e0 = e00. By induction hypothesis, e0 = p0=q0, e00 = p00=q00, g1 = p1=q1,and g2 = p2=q2 almost everywhere. Notice that c is either true almost everywhere or false almosteverywhere. Indeed, consider r := p0 � q00 � p00 � q0. If r is the constant function 0, then c may be falseonly in some of the points in which e0 and e00 do not coincide with their polynomial representations. Ifr is not the constant function 0, then r has �nitely many roots and therefore c is true only in �nitelymany points. Thus g coincides with either p1=q1 or p2=q2 almost everywhere.Now, if �Qis de�nable, then so is the following function g from Q to Q: g(x) = 0 if x � 1 and g(x) = 1if x > 1. It follows from the claim above and conservative extension that g must coincide with ratiosof polynomials almost everywhere. However, this is not the case since g has in�nitely many roots butis not zero almost everywhere. This contradiction shows that �Qis not expressible. 2Combining techniques of Propositions 5.6 and 5.4 we can show the following.Corollary 5.7 Properties of natural numbers that are simultaneously in�nite and coin�nite cannotbe tested in NRLaggr. 2We now turn to the nested relational language NRLnat, which is equivalent to BQL. Using the con-servative extension property, we can prove the following result in a straighforward manner.Proposition 5.8 The functions from N to N that coincide with polynomials in all but �nitely manypoints are exactly the unary arithmetic functions expressible in BQL. 2Corollary 5.9 None of the following functions is expressible in BQL: parity test, division by a con-stant, bounded summation, bounded product, and f : N! fjNjg such that f(n) = fj0; 1; : : : ; njg.30



Proof. That parity test is not expressible follows either from Proposition 5.4 or the previousproposition. Suppose integer division-by-two, div2(n) = bn=2c, is de�nable. Then n is even i�n = 2 � div2(n), which shows inexpressibility of div2. If a bounded summation is de�nable, thenf(n) =Pni=0 if 2 � i = n then 1 else 0 is a parity test. Similarly, if bounded product is de�nable, thenf(n) = Qni=0 if 2 � i = n then 2 else 1 gives us a parity test. Finally, since all operations in NRLnatare polynomial, the size of the output of any function f : N ! t is bounded by a constant, becausethe size of the input is 1, which proves the inexpressibility of the generator of smaller numbers. 2Therefore, the arithmetic of BQL is quite limited. In Section 6, where non-polynomial primitivesare studied, we show that two extended languages give rise to all elementary and primitive recursivefunctions respectively.5.3 Recursive Queries and Bounded Degree PropertyIn this subsection, we �rst de�ne two sample queries and show that they are at most as hard asdeterministic transitive closure in a language having at least the power of the at relational algebraor �rst-order logic. Then we de�ne the bounded degree property and show that it implies a numberof inexpressibility results in a uniform fashion. Finally we prove that this property holds in NRL.De�nition.� chain : fs � sg ! bool is a query that takes a graph and returns true i� the graph is a chain.That is, it returns true i� the graph is a tree such that the out-degree of each node is at most 1.� bbtree : fs� sg ! bool is a query that takes a graph and returns true i� the graph is a balancedbinary tree. That is, it returns true i� the graph is a binary tree in which all paths from the rootto the leaves have the same length.� dtc : fs�sg ! fs�sg is the deterministic transitive closure. That is, if G = hV;Ei is a digraph,then dtc(G) = hV;E 0i where (v1; vk) 2 E 0 i� there is a path (v1; v2) 2 E; : : :; (vk�1; vk) 2 E suchthat vi+1 is a unique descendant of vi, i = 1; : : : ; k� 1. See Immerman [24].We �rst prove that the �rst two sample queries are no harder than the third.Proposition 5.10 Let L be a language that has at least the power of the relational algebra. Thenchain and bbtree are expressible in L(dtc).Proof. The result for chain is straightforward. It also follows from a recent result of Etessami thatchain is �rst-order complete for DLOGSPACE [16]. In particular, NRL(eq; dtc) ' NRL(eq; chain).Now we sketch the proof of the expressibility of bbtree. Given a graph G = hV;Ei, let G� = hV;E�ibe dtc(G�1), where G�1 = hV; f(v; u) j (u; v) 2 Egi. De�ne root as a node with in-degree zero andleaves as nodes with out-degree zero in G. Then it is not hard to see that G is a binary tree i� thefollowing is true. In G all nodes which are not leaves or roots have in-degree one and out-degree two;there is exactly one root that has out-degree two and all leaves have in-degree one. In G�, there areno loops and for every leaf l and the root r, (l; r) 2 E�.31



To check that G is balanced, one should verify that all maximal paths from leaves to the root havethe same length. To do this, for any leaf l consider the set P (l) = fl0 j l0 = l _ l0 = r _((l; l0) 2 E� ^ (l0; r) 2 E�)g. To check if card(P (l1)) = card(P (l2)), de�ne a binary relation R onP (l1) � P (l2) by (v1; v2)R(v01; v02) , (v01; v1) 2 E ^ (v02; v2) 2 E. Then card(P (l1)) = card(P (l2)) i�((l1; l2); (r; r)) 2 dtc(R). 2It follows thatCorollary 5.11 Let L be a language that has at least the power of the relational algebra. If chain isnot expressible in L, then none of the following are expressible in L: dtc, transitive closure, tests forconnectivity of directed and undirected graphs, testing whether a graph is a tree, testing for acyclicity.2Let G = hV;Ei be a graph. De�ne in-deg(v) = card(fv0 j (v0; v) 2 Eg) and out-deg(v) = card(fv0 j(v; v0) 2 Eg). The degree set of G, deg(G), is de�ned as fin-deg(v) j v 2 V g[fout-deg(v) j v 2 V g � N.One of the reasons why most recursive queries are not �rst-order de�nable is that they may take ina graph1 whose degree set contains only small integers and may return a graph whose degree set islarge. The de�nition below captures this intuition.De�nition. Let q be a graph query. It is said to have the bounded degree property if for any numberk there exists a number c(q; k), depending on q and k only, such that the cardinality of the degreeset of q(G), card(deg(q(G))), is at most c(q; k) for any graph G satisfying deg(G) � f0; 1; : : : ; kg.A language L is said to have the bounded degree property at type s if any L-de�nable graph queryq : fs � sg ! fs� sg has it.The bounded degree property can be used to prove various inexpressibility results in a uniform fashion.It is also easier to apply the bounded degree property than tools such as games or Hanf's lemma.Theorem 5.12 Let L be a language that has at least the power of the relational algebra. Suppose L hasthe bounded degree property at type s. Then neither chain : fs� sg ! bool nor bbtree : fs� sg ! boolis expressible in L.Proof. We o�er a proof by picture. The details and transformations are readily expressed by �rst-order formulas.Assume that chain is de�nable. Then it is possible to de�ne an expression that, when given a chainas an input, returns its transitive closure. As shown below, using chain it is possible to determine if aprecedes b by re-arranging two edges and checking if the resulting graph is a chain. First, edges froma and b to their successors a0 and b0 are removed and then two edges are added: one from a to b0 andthe other from the node with no outgoing edges to a0.1We use graphs for the simplicity of exposition. Relational structures of arbitrary �nite arity can be used.32



6&%�6&%� ?$'6& %-- -- --. . . . . . . . . .. . . . . . . . . . .a a0 b b0b b0 a a0But this contradicts the bounded degree property as we started with an n�node graph whose degreeset is f0; 1g and ended up with f0; 1; : : : ; ng.If bbtree is de�nable, it is possible to determine if two nodes in a balanced binary tree are at the samelevel by re-arranging two edges as shown below and checking if the result is still a balanced binarytree. ��������� @@@@@@@@@......���	 @@@R......QQQQs����+......a ba0 a00 b0 b00Again, we start with an n�node graph whose degree set is f0; 1; 2g and, making cliques of the nodesat the same level, end up with a graph whose degree set has cardinality log2(n+ 1). 2Having seen the power of the bounded degree property, we now prove that �rst-order logic has it. Byconservativity, it means that it holds in the nested relational language NRL(eq).Theorem 5.13 Any �rst-order de�nable graph query has the bounded degree property.To be more speci�c, we view graph queries as relational calculus expressions of the form f(a; b) jF (a; b)g where F is a �rst-order formula in the language that contains a binary predicate symbol Eand equality. To evaluate such a query Q on a graph G = hV;Ei, one can assume that all quanti�edvariables in F range over V , cf. [23]. We can also view them as formulae 8a8b:E 0(a; b) $ F (a; b)where E 0 is the predicate for the output graph, and F (�; �) is as above. Theorem 5.13 says that suchde�nable queries have the bounded degree property.Proof of Theorem 5.13. Let Q be a graph query given by the �rst-order formula F (�; �) in thelanguage that contains E and equality. That is, (a; b) 2 E 0 i� F (a; b), where E 0 is the set of edges ofthe output graph. By a neighborhood of radius r of x in E we mean the set of all nodes whose distancefrom x (that is, the length of a minimal path in the symmetric closure of E) does not exceed r. Wedenote the r-neighborhood of x by Nr(x). By Nr(X) we mean Sx2XNr(x). According to Gaifman[19], F is equivalent to a Boolean combination of formulae with a and b as free variables in which allquanti�ers are bounded to some neighborhoods of a and b. Moreover, the maximal radius of thoseneighborhoods, r, is determined by F . 33



If deg(G) � f0; : : : ; kg, then it is possible to �nd the number qr of all non-isomorphic neighborhoodsaround a node of radius up to r. In fact, qr � pr2p2r where pr = (2k + 1)r is an upper bound on thesize of Nr(x).De�ne an equivalence relation� on the nodes by letting a � b i�N2r+1(a) andN2r+1(b) are isomorphic.Note that if a � b, then Nd(a) and Nd(b) are isomorphic for any d � 2r + 1. Now consider thepartition X1; : : : ; Xs of the set of nodes into �-equivalence classes. Since deg(G) � f0; : : : ; kg, weobtain s � q2r+1.Let a1; a2 belong to the same class Xi. If b 62 N2r+1(a1) [ N2r+1(a2), then Nr(a1; b) is the disjointunion of Nr(a1) and Nr(b) and Nr(a2; b) is the disjoint union of Nr(a2) and Nr(b). Hence, Nr(a1; b)and Nr(a2; b) are isomorphic. In particular, (a1; b) 2 E 0 i� (a2; b) 2 E 0. In F all quanti�ed variablesare bounded to the neighborhoods of its free variables of radius at most r. Since these neighborhoodsare isomorphic when free variables are a1; b and a2; b, and since evaluating �rst-order formulae onisomorphic models gives the same result, the statement follows.Now let Ya = fb j (a; b) 2 E 0g. Then there exists a constant di that depends only on r and ksuch that j card(Ya1) � card(Ya2) j� di whenever a1, a2 2 Xi. Indeed, for elements b outside ofN2r+1(a1) [N2r+1(a2), (a1; b) i� (a2; b), and hence the only di�erence is in the edges either inside orbetween those neighborhoods. The maximal di�erence therefore is bounded by the doubled size ofsuch a neighborhood, that is, by 2(2k+ 1)2r+1.This shows that the number of di�erent outdegrees for nodes that belong to the same �-equivalenceclass Xi is bounded by a constant that depends only on r and k. Since the number of �-equivalenceclasses is also bounded by the constant q2r+1 depending on k and r only, we obtain that the numberof possible di�erent outdegrees is at most the product of these constants, and hence determined by kand r. Since r depends only on Q (it can be calculated by a procedure suggested in [19]), the numberof distinct outdegrees in E 0 is bounded by a constant that depends only on k and f . The proof forindegrees is similar. 2Corollary 5.14 � The relational algebra queries have the bounded degree property.� NRL(eq) has the bounded degree property at base types.� chain, bbtree, and the other queries listed in Corollary 5.11 are not expressible in NRL. 25.4 Expressiveness of BQL and NRLaggrIf we could prove that NRLaggr possesses the bounded degree property, we would have shown thatevery query listed in Corollary 5.11 is neither NRLaggr- nor BQL-de�nable. Unfortunately, it is still anopen problem as to whether NRLaggr has the bounded degree property. To the best of our knowledge,there is no known logic capturing the language NRLaggr, not even its at fragment. The proof of thebounded degree property for NRC is based on Gaifman's result about local formulae [19]. That resultwas proved by quanti�er elimination. This poses a problem if we try to prove the bounded degreeproperty for at types in NRLaggr.Inexpressibility of recursive queries in languages with aggregates was studied by Consens and Mendel-zon [15]. They showed that transitive closure is not expressible in a �rst-order language with aggregatefunctions, provided DLOGSPACE is strictly included in NLOGSPACE.34



���	 @@@I6���� ���	 ??o11o12o13 o1h�1o1h om1@@@I6���� om2 omh�1omhom3. . . . . .� � �Figure 4: A multi-cycleHowever, there is no simple proof of the main conjectures based on this kind of complexity arguments.For example, Conjecture 1 states that a DLOGSPACE-complexity query is not expressible inNRLaggr.If it could be shown that the complexity of NRLaggr queries is in a class that is strictly lower thanDLOGSPACE and does not contain the parity test, then we would have solved Conjecture 1.It is known that AC0 � DLOGSPACE [5, 27]. If NRLaggr had AC0 data complexity, the sameargument would solve at least Conjectures 1 and 2. However, while queries written in NRL haveAC0 data complexity [51], it is not hard to see that there are non-AC0 queries in NRLaggr sincemultiplication is not in AC0 [5]. As a more interesting example, recall that parity of cardinality isde�nable in NRLaggr if Q, unit and bool are the only base types. Note that this does not meanConjecture 1 is wrong. Conjecture 1 asks, in particular, if the parity of the cardinality of a set ofelements of an unordered base type is de�nable in NRLaggr. The method above cannot answer thisquestion. It only shows that there exist non-AC0 queries de�nable in NRLaggr.A simple complexity argument does not help us, nor do we know if the bounded degree property holdsfor NRLaggr, so we use another technique to prove the desired results. It is well known that propertiesof cardinalities of �nite models which can be tested in the �rst-order logic are either �nite or co-�nite.We proved a similar result in Section 5.2 in the course of investigating the arithmetic power of BQL.Now, using the conservative extension property, we present two results of the same kind for NRLaggr.We show that for certain families of graphs a similar �niteness-co�niteness property holds. Then wederive the inexpressibility of chain and bbtree in NRLaggr. Since BQL can be embedded in NRLaggr,these results con�rm Conjecture 1, Conjecture 2, and the second part of Conjecture 3.The �rst family of graphs to be considered are the k-multi-cycles. A binary relation O : fb � bg iscalled a k-multi-cycle if it is nonempty and is of the form shown in Figure 4 where h � k and oji are alldistinct. That is, it is a graph containing m � 1 unconnected cycles of equal length h � k. Here b isan uninterpreted base type with countably in�nite domain on which only the equality test is available.Theorem 5.15 Let G : fb � bg ! bool be a function expressible in NRLaggr. Then there is some ksuch that for all k-multi-cycles O, it is the case that G(O) is true; or for all k-multi-cycles O, it is thecase that G(O) is false.Let us observe that if we identify isomorphic k-multi-cycles, then for any m � 1, Theorem 5.15 saysthatNRLaggr-de�nable properties of k-multi-cycles consisting of at mostm components are either �niteor co-�nite. Hence NRLaggr cannot distinguish one k-multi-cycle from another as long as the cyclesare long enough. In NRLaggr(chain) it is possible to distinguish k-multi-cycles containing one cycle35



from those containing two. Therefore, chain is not expressible in NRLaggr. These two observationstogether with the fact that BQL can be embedded in NRLaggr and Corollary 5.11 settle Conjectures 1and 2.Corollary 5.16 Parity test on cardinality of relations is not expressible in NRLaggr and hence not inBQL. 2Corollary 5.17 Transitive closure of binary relations is not expressible in NRLaggr and hence not inBQL. 2The second family of graphs to be considered are the k-strict-binary-trees. A k-strict-binary-tree is anonempty tree where each node has either 0 or 2 descendents and the distance from the root to anyleaf is at least k.Theorem 5.18 Let G : fb � bg ! bool be a function expressible in NRLaggr. Then there is some ksuch that for all k-strict-binary-trees O, it is the case that G(O) is true; or for all k-strict-binary-treesO, it is the case that G(O) is false.The immediate consequence of this theorem is that NRLaggr cannot distinguish one k-strict-binary-tree from another as long as the trees are deep enough. In NRLaggr(bbtree), for any k > 0, one candistinguish a balanced binary tree of height k from any other k-strict-binary-tree. Therefore, we havesettled Conjecture 3.Corollary 5.19 The test for balanced binary trees is not de�nable in NRLaggr and hence not in BQL.2In summary,Corollary 5.20 All the queries listed in Corollary 5.11 are not expressible in NRLaggr. 2In contrast to the inexpressibility result of Consens and Mendelzon [15], which depends on the sepa-ration of DLOGSPACE and NLOGSPACE, our results do not have such preconditions.Let us make another observation before proving the main theorems. Some of the problems consideredabove are known to be complete for various complexity classes under �rst-order reductions. Forexample, the graph reachability problem is �rst-order complete for NLOGSPACE and its restrictionto graphs with outdegree 1 is �rst-order complete for DLOGSPACE. Using the results of Immerman[24] on �rst-order completeness, the fact thatNRL and NRLaggr are closed under �rst-order reductions(the proof of this is similar to Immerman's [25]), and the inexpressibility results proved in this paper,we getCorollary 5.21 Let P be a problem that is complete with respect to �rst-order reductions for one ofthe following classes: DLOGSPACE, Sym-LOGSPACE, NLOGSPACE, PTIME. Then P cannot besolved by NRLaggr or by BQL. 236



In the remainder of this section, we prove the main theorems. As the technique applied is sophisticated,we �rst present the \eureka" step before we present the proof details.Since graph queries have height 1, by the conservative extension property of NRLaggr, it is onlynecessary to consider expressions having height 1. Observe further that the normal forms producedby the rewriting done in the conservative extension theorem have a rather special trait. Let e : Qbe an expression of height 1 in normal form. Let R : fb � bg be the only free variable in e. Let bbe an unordered base type. Let e contain no constant of type b. Then e contains no subexpressionof the form Sfe1 j x 2 e2g. Also, every subexpression involving P is guaranteed to have the formPfje1 j x 2 Rjg.It is natural to speculate on what e can look like. The most natural shape that comes to mind is theone depicted below. X8>>>>>>>><>>>>>>>>:�������������� : : : X8>>>>>>>><>>>>>>>>:�������������� if P1then f1...else if Phthen fhelse fh+1 �������������� x1 2 R ��������������9>>>>>>>>=>>>>>>>>; : : : �������������� xn 2 R ��������������9>>>>>>>>=>>>>>>>>;Assume that the probability, in terms of the number of edges in R, of Pi being true and Pj<i beingfalse is pi. Then the expression above is equivalent to the polynomial Nn � (p1 � f1+ : : :+ ph+1 � fh+1),with N being the number of edges in R.This observation is crucial for two reasons. First, the use of the summation operator is no longerarbitrary. It is now used only for computing the number of edges in R. All other uses of it have beenreplaced by a polynomial expression. Second, the expression no longer depends on the topology ofthe graph R. The only thing in R that can a�ect the value of the polynomial (and hence the originalexpression) is the cardinality of R. This leads to �nite-co�niteness of graph queries for which theprobability assumption holds.The insight above leads to a search for classes of graphs that possess su�cient regularity so thatthe required probability analysis can be performed. The simplest class of such graphs is perhaps thek-multi-cycles. We �rst present two preliminary de�nitions and demonstrate the probability analysison k-multi-cycles. The proofs of Theorem 5.15 and Theorem 5.18 are then sketched.De�ne distancec(o; o0; O) to be a predicate that holds i� the distance from node �1o to node �2o0 ingraph O is c. Note that distancec is de�nable in NRLaggr for each constant c.De�ne a d-state S with respect to variables R : fb � bg, x1, ..., xm : b � b to be a conjunction offormulae of the form distancec(xi; xj; R) or the form:distancec(xi; xj; R), such that for each 0 � c � d,1 � i; j � m, either distancec(xi; xj; R) or :distancec(xi; xj ; R) must appear in the conjunction. AlsoS has to be satis�able in the sense that some chain O and edges o1, ..., om in O can be found so thatS[O=R; o1=x1; :::; om=xm] holds.Proposition 5.22 Let e be an expression of NRLaggr having R : fb� bg, N : Q, x1, ..., xm : b� b as37



free variables such that e has the special form belowX8><>:������� : : : X8><>:������� if Pthen Eelse 0 ������� xm+1 2 R �������9>=>; : : : ������� xm+n 2 R �������9>=>;where E is a ratio of polynomials in terms of N , P is a boolean combination of formulae of theform �ixi0 = �jxj0 , �ixi0 6= �jxj0, :distancec(xi; xj; R), or distancec(xi; xj; R). Then there is aconstant D such that for any d > D and any d-state S with respect to R, x1, ..., xm; there is aratio r of polynomials in terms of N such that for any d-multi-cycle O and any edges o1, ..., om inO making S[O=R; o1=1; : : : ; om=xm] true, it is the case that e[O=R; o1=x1; : : : ; om=xm; card(O)=N ] =r[card(O)=N ].Proof. The constant D can be chosen as any number that is not less than the longest separationbetween any nodes �1xi and �2xj in any graph R described by P that is dictated by P to be connected.The constant D should also be larger than the minimum separation between any nodes �1xi and �2xjin any graph R described by P that is not dictated by P to be connected.This number can be estimated as follows. Assume, without loss of generality, that P is Q1 _ : : :_Qn,where each Qi contains only conjunctions. Let di be the sum of the c's for each distancec(xi; xj ; R)or :distancec(xi; xj; R) in Qi. Let D be the maximum of these di's plus m+ n. The m+ n is addedbecause an item of the form �2xi = �1x0j is equivalent to distance1(xi; xj; R). An easy upper bound forD is (n+m) �(C+1), where C is the sum of the c's for each distancec(xi; xj ; R) or :distancec(xi; xj ; R)in P .By the probability p for a predicate P of n free variables to hold with respect to a graph O, we meanthe proportion of the instantiations of the free variables to edges in O that make P true. The key tothis proposition is in realizing that the probability p for P to hold can be determined in the case ofk-multi-cycle when k is large (any k > D is good enough). Moreover p can be expressed as a ratio oftwo polynomials of N . Thus r can be de�ned as Nn � p �E.The probability p can be calculated as follows. First, given d > D, we generate all possible d-statesDj 's with respect to the variables R, x1, ..., xm+n. Second, determine the probability qj of Dj giventhe certainty of S; this can be calculated using the procedure to be given shortly. Third, eliminatethose Dj 's that are inconsistent with the conjunction of S and P . (Note that a Dj that is consistentwith S can only be inconsistent with P in two ways: P is already inconsistent or P demands R tocontain a cycle of length shorter than D. The proposition restricts our attention to cycles of lengthd > D; hence dictates the elimination of the second kind of inconsistency above. By picking the D tobe longer than any cycles that can be mentioned in P as we have done, we have essentially restrictedP to a predicate that does not mention cycles, thus implying the probability analysis below.) Finally,calculate p by summing the qj 's corresponding to those remaining d-states.It remains to show that each qi can be expressed as a ratio of two polynomials in N . Partition thepositive atomic formulae of the corresponding Di into groups so that the variables in each group areconnected between themselves and are unconnected with those in other groups. (Variables x and y aresaid to be connected in Di if there is a positive atom distancec(x; y; R) in Di.) Note that the negativeatomic formulae merely assert that these groups are unconnected. Then we proceed by induction onthe number of groups.The base case is when there is just one group. In such a situation, all the variables lie on the same38



cycle. Since a d-state can be satis�ed by a chain of length d, these variables must lie on a line. Let ube the number of bound variables amongst xm+1, ..., xm+n appearing in the group; in this case u = n.Then qi = N �Nu if no variables amongst x1, ..., xm appear in the group. Otherwise, qi = 1 �Nu.In either case, qi is a ratio of polynomials in N .For the induction case, suppose we have more than one group. The independent probability of eachgroup can be calculated as in the base case. Then qi is the di�erence between the product of theseindependent probabilities and the sum of the probabilities where these groups are made to overlapin all possible ways. These groups are made to overlap by turning some negative leaves in Di intopositive ones so that the results are again d-states. Notice that when groups overlap, the number ofgroups strictly decreases. Hence the induction hypothesis can be applied to obtain these probabilitiesas ratios of polynomials in N . Consequently, qi can be expressed as a ratio of polynomials in N asdesired. 2Having established the above key result, Theorem 5.15 can be proved as follow.Proof sketch of Theorem 5.15. Let G : fb� bg ! bool be implemented by the NRLaggr expression�R:E. Without loss of generality, E can be assumed to be a normal form with respect to the rewritesystem used in the proof of Theorem 5.1. We note that such anE contains no subexpression of the formSfe1 j x 2 e2g. Furthermore, all occurrences of summation in E must be of the form Pfje j x 2 Rjg.These two observations on E come directly from the rewrite rules used in Theorem 5.1. For example,the e2 in Pfje1 j x 2 e2jg is always simpli�ed by one of these rules, unless it is already a variable.Let us temporarily enrich the language with the usual logical operators _, ^, :, 6=, 6�, as well asdistancec and :distancec. Also introduce a new variable N : Q, which is to be interpreted as thecardinality of R. Rewrite all summations into the special form given belowX8><>:������� : : : X8><>:������� if Pthen felse 0 ������� xm+1 2 R �������9>=>; : : : ������� xm+n 2 R �������9>=>;so that f has the form h � g, where h is a polynomial in N and g is either a polynomial in N oris again a subexpression of the same special form. Also, P is a boolean combination of formulae ofthe following form: �ixi0 = �jxj0 , �ixi0 6= �jxj0 , distancec(xi; xj ; R), :distancec(xi; xj ; R), U =QV ,U 6=QV , U � V , or U 6� V , where U and V also have the same special form.Let the resultant expression be F . The rewriting should be such that for all su�ciently long k-multi-cycles O, F [O=R; card(O)=N ] holds if and only if E[O=R] holds. This rewriting can be accomplishedby using rules such as� if e1 then Pfje2 j x 2 Rjg else e3 ;Pfj if e1 then e2 else e3 �N j x 2 Rjg� if e1 then e2 else Pfje3 j x 2 Rjg;Pfj if e1 then e2 �N else e3 j x 2 Rjg� e1 �Pfje2 j x 2 Rjg;Pfje1 � e2 j x 2 Rjg� Pfje1 j x 2 Rjg � e2 ;Pfje1 � e2 j x 2 Rjg� Pfje1 j x 2 Rjg � e2 ;Pfje1 � e2 j x 2 Rjg� Pfje1 j x 2 Rjg+ e2 ;Pfje1 + (e2 �N) j x 2 Rjg39



� Pfje1 j x 2 Rjg � e2 ;Pfje1 � (e2 �N) j x 2 Rjg� e1 �Pfje2 j x 2 Rjg;Pfj(e1 �N)� e2 j x 2 Rjg� e1 +Pfje2 j x 2 Rjg;Pfj(e1 �N) + e2 j x 2 Rjg� Pfjif e1 then e2 else e3 j x 2 Rjg;Pfjif e1 then e2 else 0 j x 2 Rjg+ Pfjif :e1 then e3 else 0 jx 2 Rjg, if neither e2 nor e3 is 0.We do not need a rule for rewriting e1 �Pfje2 j x 2 Rjg when e1 is not a summation because it isalready of the right form. Having obtained F in this special form, the proof is continued by repeatingthe following steps until all occurrences of R have been eliminated.Step 1. Look for an innermost subexpression of F that has the special form required by Proposition5.22. Let this subexpression be F 0 and its free variables be y1, ..., ym, R and N . Generate all possibled-states with respect to these free variables of F 0. The d is the smallest one suggested by Proposition5.22 and serves as a lower bound for k. Let S1, ..., Sh+1 be these d-states. Apply Proposition 5.22 toF 0 with respect to each Si to obtain expressions ri which are ratios of polynomials of N . Then F 0 isequivalent to if S1 then r1 else : : : if Sh then rh else rh+1 under the assumption of the theorem thatthe variable R is never instantiated to short k0-multi-cycles where k0 < k.Step 2. To maintain the same special form, we need to push the Si up one level to the expression inwhich F 0 is nested. This rewriting is done using rather simple rules:� (if S1 then r1 : : : if Sh then rh else rh+1) =QV ; (S1 ^ r1 =QV ) _ � � � _ (Sh+1 ^ rh+1 =QV )� if P then (f � (if S1 then r1 else : : : if Sh then rh else rh+1)) else e; if P ^ S1 then f � r1 : : : if P ^ Sh+1 then f � rh+1 else eStep 3. After Step 2, some expression having the form U =QV , U � V , or their negation, can becomean equation of ratios of polynomials of N . Such an expression can be replaced either by true or byfalse. For illustration, we explain the case of U =QV ; the other cases are similar. First, U =QVis readily transformed into a polynomial P = 0 with N being its only free variable. Check if P isidentically 0. In that case, replace U =QV by true . If P is not identically 0, we use the fact that apolynomial has a �nite number of roots. By choosing a su�ciently large lower bound for k, we canensure that N always exceeds the largest root of P . Thus, in this case we replace U =QV by false.Observe that in Step 1 we have reduced the number of summations and in Step 3 we have reduced thenumber of equality and inequality tests. By repeating these steps, we eventually reach the base caseand arrive at an expression where R does not occur. When we are �nished, the resultant expressionis clearly a boolean formula containing no free variables. Therefore its value does not depend on R.Consequently the theorem holds for any k not smaller than the lower bound determined by the aboveprocess. 2The proof of Theorem 5.15 relies on two things: satis�ability of d-states is easy to decide for k-multi-cycles and probabilities are easy to calculate and express as ratios of polynomials in terms of the sizeof graphs for k-multi-cycles. These two properties are also enjoyed by k-strict-binary-trees.Proof sketch of Theorem 5.18. It is easy to decide if a d-state is satis�able by some k-strict-binary-trees. The probability calculation is also simple. The only problem is that the probability40



must be expressed as a ratio of polynomials of the number of edges in the tree. This is dealt with byobserving that in k-strict-binary-trees, the number of internal nodes is 1 less than half the number ofedges and the number of leaves is equal to 2 plus the number of internal nodes. The theorem followsby repeating verbatim the proof for k-multi-cycles. 26 Power Operators, Bounded Loop, and Structural RecursionIn the previous section, we saw that BQL and NRLaggr have the same limitations as most languagesbased on �rst-order logic: they cannot express recursive queries. There are several approaches toadding expressive power to set languages. In this section, we study three of them for BQL andNRLaggr.Abiteboul and Beeri [1], as well as Gyssens and Van Gucht [22], used powerset as a new primitivefor NRL(eq) to increase its expressive power. For instance, both parity test and transitive closurebecome expressible in NRL(eq; powerset). On the other hand, Breazu-Tannen, Buneman, and Naqvi[6] introduced structural recursion as an alternative means for increasing the horsepower of querylanguages.It was shown in Tannen et al. [8], see also Gyssens and Van Gucht [22], that endowing NRL(eq) with astructural recursion primitive or with the powerset operator yields languages that are equi-expressive.However, this is contingent upon the contrived restriction that the domain of each type is �nite. Sinceevery type has �nite domain, this result has an important consequence. Suppose the domain of typefsg has cardinality n. Then every use of powerset on an input of type fsg can be safely replaced bya function that computes all subsets of a set having at most n elements. Such a function is easilyde�nable in NRL(eq). Therefore, NRL(eq) ' NRL(eq; s sri) ' NRL(eq; powerset), if all types have�nite domains. Hence the extra power of s sri and powerset has e�ect only when there are typeswhose domains are in�nite. Types such as natural numbers proved to be important in the earlierpart of this report. Therefore, the relationship of structural recursion and power operators should bere-examined.We have been using structural recursion on the union presentation. We also mentioned in the beginningthat sets can be equivalently constructed by starting with empty set and inserting new elements.There is a corresponding structural recursion construct, called s sri for structural recursion on theinsert presentation. It is known to have precisely the same power as s sru [6], and it is sometimeseasier to use. The syntax for this construct isi : s� t! t e : ts sri(i; e) : fsg ! tThe semantics is s sri(i; e)fo1; : : : ; ong = i(o1; i(o2; i(: : : ; i(on; e) : : :))), provided i satis�es certainpreconditions [7]. In particular, it is commutative: i(a; i(b;X)) = i(b; i(a;X)) and idempotent:i(a; i(a;X)) = i(a;X). s sri is unde�ned otherwise. Breazu-Tannen, Buneman, and Naqvi [6] provedthat e�cient algorithms for computing functions such as transitive closure can be expressed usingstructural recursion. While structural recursion gives rise to e�cient algorithms, its well-de�nednessprecondition cannot be automatically checked by a compiler [7]. Therefore this approach is not com-pletely satisfactory. 41



The powerset operator is always well de�ned. Unfortunately, algorithms expressed using powersetare often unintuitive and ine�cient. For example, to �nd transitive closure of a binary relationR : fs � sg, one �nds the domain of R by taking the union of the �rst and second projections of R,takes powerset of cartesian product of the domain with itself and then selects all elements from thispowerset which are transitive and containR. The intersection of those elements is the transitive closureof R. Moreover, Paredaens and Suciu showed [52] that any algorithm for computing transitive closurein NRL(powerset), evaluated under the standard operational semantics, must use exponential space.Even though di�erent evaluation schemes proposed recently [2, 33] give polynomial space algorithmsfor transitive closure in the powerset algebra, it is conjectured that no reasonable evaluation strategywill give us polynomial time algorithms.We do not advocate the elimination of every expensive operation from query languages. However, webelieve that expressive power should not be achieved using expensive primitives. That is, if a functioncan be expressed using a polynomial-time algorithm in some languages, then one should not be forcedto de�ne it using an exponential-time algorithm. For this reason, powerset is not a good candidatefor increasing expressive power.This section has three main objectives. First, we endow BQL with the bag analogs of the powersetand structural recursion operators and we show that the former is strictly less expressive than thelatter. Second, we suggest an e�cient bounded loop primitive which captures the power of structuralrecursion but does not require any preconditions. We show that these non-polynomial bag operatorsare strictly more expressive than their set analogs. Furthermore, we prove that the analog of the genprimitive on sets �lls the gap. We also characterize the arithmetic expressive power of bag languagesendowed with power operators and structural recursion. In particular, we prove that they de�neprecisely the classes of elementary and primitive recursive functions.6.1 Powerset, Powerbag, and Structural RecursionGrumbach and Milo [21], following Abiteboul and Beeri [1], introduced the powerbag operator intotheir nested bag language. The semantics of powerbag is the function that produces a bag of allsubbags of the input bag. For example,powerbagfj1; 1; 2jg = fjfjjg; fj1jg; fj1jg; fj2jg; fj1; 1jg; fj1; 2jg; fj1; 2jg; fj1; 1; 2jgjgThey also de�ned the powerset operator on bags as unique � powerbag . For example,powersetfj1; 1; 2jg = fjfjjg; fj1jg; fj2jg; fj1; 1jg; fj1; 2jg; fj1; 1; 2jgjgWe do not consider powerset on bags further becauseProposition 6.1 BQL(powerbag) ' BQL(powerset).Proof. We have to show how to express powerbag given powerset . Suppose a bag B is given. Thenanother bag B0 can be constructed such that for any a 2 B, B0 contains a pair (a; fja; : : : ; ajg) where thecardinality of the second component is count(a; B). B0 can be constructed in BQL(powerset) becauseselection is de�nable. Let B00 = unique(B0). Now observe that replacing the second component ofevery pair by its powerset and then map(b �2) followed by attening gives us a bag where each elementa 2 B is given a unique label. Applying powerset to this bag followed by elimination of labels producespowerbag(B). 242



Structural recursion on bags is de�ned using the constructe : t i : s� t! tb sri(i; e) : fjsjg ! tIt is required that i satisfy the commutativity precondition: i(a; i(b;X)) = i(b; i(a;X)), which cannotbe automatically veri�ed [7]. Its semantics is similar to the semantics of s sri . We want to show thatpowerbag is strictly weaker than b sri .Let hyper be the hyper-exponentiation function. That is, hyper(0; n) = n and hyper(m + 1; n) =2hyper (m;n). In other words, hyper(m;n) is a stack of m 2's with n at the top. De�ne size o, the sizeof object o, as follows: it is 1 for objects of base types, sum of the sizes of the components for pairsand sum of the sizes of the elements for bag type. ThenProposition 6.2 Let f : s ! t be an expression of BQL(powerbag). Then there exists a constant cfsuch that for every object o : s, size f(o) � hyper(cf ; size o).Proof sketch. The proof is by induction on the structure of f . For any polynomial operator p inBQL, it is safe to de�ne cp to be 1. For operators that are not polynomial, de�ne cpowerbag := 1,chf;gi := max(cf ; cg), cf�g := cf + cg, and cb map(f) := 1 + cf . 2The above establishes an upper bound on the size of output of queries in BQL(powerbag). This upperbound is later used to characterize the arithmetic properties of BQL(powerbag). But its immediateconsequence is the separation of powerbag from b sri .Theorem 6.3 BQL(powerbag) � BQL(b sri).Proof. Inclusion is easy [8]. To prove strictness, de�ne an auxiliary function g : fjunit jg ! fjunit jgin BQL(b sri) by g := b map(!) � powerbag . It is easy to see that on an input of size n, g pro-duces the output of size 2n. Now de�ne f := �n:sri(g � �2; n)(n). A straightforward analysisshows that size f(o) = hyper(size o; size o). Therefore, by Proposition 6.2, f cannot be expressed inBQL(powerbag). 26.2 Bounded Loop and Structural RecursionAs mentioned earlier, powerbag is not a good primitive for increasing the power of the language. Itis not polynomial time and compels a programmer to use clumsy solutions for problems that can beeasily solved in polynomial time. In addition, powerbag is weaker than structural recursion. On theother hand, b sri is e�cient [6] but its well-de�nedness precondition cannot be veri�ed by a compiler[7]. In this section, we present a bounded loop constructf : s! sloopt(f) : fjtjg � s! sIts semantics is as follows: loop(f)(fjo1; : : : ; onjg; o) = f(: : :f(o) : : :) where f is applied n times to o.43



The bounded loop construct is more satisfactory as a primitive than powerbag and b sri for severalreasons. First, in contrast to powerbag , e�cient algorithms for transitive closure, division, etc. can bedescribed using it. Second, it is very similar to the for-next-loop construct of familiar programminglanguages such as Pascal and Fortran. Third, in contrast to b sri , it has no preconditions to besatis�ed. Lastly, it has the same power as b sri .Theorem 6.4 BQL(loop) ' BQL(b sri).Proof. For the BQL(loop) � BQL(b sri) part, it su�ces to observe that loop(f)(n; e) = b sri(f ��2; e)(n). This part was also proved by Saraiya [48]. The BQL(b sri) � BQL(loop) part is moreinvolved. Let �f(R) := fj(A monus fjajg; f(a; b)) j (A; b) 2 R; a 2 AjgShould the f above fail the commutativity requirement, b map(�2)(unique(loop(�f)(n; fj(n; e)jg)) isthen a bag containing all possible outcomes (one for each order of applying f) of b sri(f; e)(n). How-ever, if f : s� t! t satis�es the commutativity precondition, then unique(loop(�f)(n; fj(n; e)jg)) is asingleton bag and is equal to fj(fjjg; b sri(f; e)(n))jg. b map(�2) can then be applied to the result toget a singleton bag containing b sri(f; e)(n). This shows that b sri is expressible in BQL(loop). 2Therefore, replacing structural recursion by bounded loop eliminates the need for verifying any pre-condition. If the i in b sri(i; e) is not commutative, the translation used in the proof simply producesa bag containing all possible outcomes of applying b sri(i; e), depending on how elements of the inputare enumerated. If i is commutative, then such a bag has one element which is the result of applyingb sri(i; e). Hence b sri is really an optimized bounded loop obtained by exploiting the knowledge thati is commutative, Furthermore, loop coincides with structural recursion over sets, bags, and (withappropriately chosen primitives) lists.The implementation of b sri(i; e) using the bounded loop construct given in the proof of Theo-rem 6.4 has exponential complexity but the source of ine�ciency is in computing all permuta-tions in order to return all possible outcomes. If we can pick a particular order of applicationof i in b sri(i; e), then more e�cient implementations are possible. For example, de�ne �0f (R) asfj(Amonus fjajg; f(�2 a; b)) j (A; b) 2 R; a 2 unique(max(A))jg, where max returns the subbag of maxi-mal elements with respect to the linear order (see Proposition 5.2). Then loop(�0f)(X; fj(sort(X); e)jg)returns fj(fjjg; b sri(f; e)(X))jg. However, if f is not commutative, then loop(�0f)(X; fj(sort(X); e)jg)equals to fj(fjjg; f(o1; f(o2; f(: : : ; f(ok; e) : : :))))jg where X = fjo1; : : : ; okjg and o1 � : : : � ok is thelinear order of Proposition 5.2.6.3 Arithmetic Properties of Non-Polynomial LanguagesIn this section we characterize the arithmetic expressive power of BQL(powerbag) and BQL(loop).Before proving the two theorems, let us argue that they are very intuitive and are not unexpected.Recall two classical results in recursion theory [41]. One, due to Meyer and Ritchie, states that thefunctions computable by the language that has assignment statement and for n do S, are precisely theprimitive recursive functions. The semantics of for n do S is to repeat S n times. A similar result byRobinson, later improved by Gladstone, says that the primitive recursive functions are functions builtfrom the initial functions by composition and iteration. That is, f(n; ~x) = g(n)(~x); see Odifreddi [41].44



In view of these results and the fact the loop construct is just a for{do iteration, the following resultis very natural.Theorem 6.5 The class of functions f : N� : : :� N! N de�nable in BQL(loop) coincides with theclass of primitive recursive functions.Grumbach and Milo [21] showed that their bag language, which is equivalent to BQL(powerbag),expresses all elementary queries. They obtained this result by encoding computations on Turingmachines in the language. Recall that the class of Kalmar-elementary functions E is the smallest classthat contains basic functions, addition, multiplication, modi�ed subtraction : and is closed underbounded sums and bounded products [47]. That is, the following functions are in E if g is in E :f1(n; ~x) = nXi=0 g(i; ~x) f2(n; ~x) = nYi=0 g(i; ~x)Using di�erent techniques, we prove the following:Theorem 6.6 The class of functions f : N� : : :� N! N de�nable in BQL(powerbag) coincides withthe class of Kalmar-elementary functions.Let us �rst give theProof of Theorem 6.5. Throughout the proof we use N as abbreviation for fjunit jg and n as anabbreviation for fj(); : : : ; ()jg (n times). First observe that since powerbag can be expressed in thelanguage, 2n as a function of n can be expressed as we have done it in the proof of Theorem 6.3.Therefore, encoding and decoding functions for tuples can be expressed. In view of that and theRobinson-Gladstone result [41], to prove that all primitive recursive functions can be computed byBQL(loop), it is enough to show that if g(m) can be computed, then so can f(n;m) = g(n)(m). Butthis is obvious because f(n;m) = loop(g)(n;m).To prove the converse, �rst verify this claim: for any expression e : s ! t in BQL(loop) there isa monotone primitive recursive function 'e of one argument such that size e(o) � 'e(size o). Theveri�cation proceeds by structural induction on e. The only two problematic cases are b map(f) andloop(f). Let f : s0 ! t0 and b map(f)(d) = d0 where d = fjo1; : : : ; okjg and d0 = fjo01; : : : ; o0kjg. Thensized0 = Pi size o0i � Pi 'f(size oi) � Pi 'f(size d) � size d � 'f (sized). So 'b map(f) can be pickedto be n � 'f(n) which is clearly monotonic. For the case of loop(f), de�ne 'loop(f)(n) = '(n)f (n).From monotonicity of 'f it can be easily derived that 'loop(f) satis�es the desired property and ismonotone itself.Now a straightforward translation of the operations of BQL(loop) into computations on a Turingmachine and the observation we have just made show that the space complexity for every expressionin the language remains bounded by a primitive recursive function. Therefore, if f : N� : : :� N! Nis a function computable by BQL(loop), it is recursive and the space complexity (and therefore timecomplexity) of its computation on a Turing machine is bounded by a primitive recursive function.Now, if f is obtained from the initial functions by using primitive recursion schema and minimization,this shows that every instance of minimization can be replaced by bounded minimization which is45



known not to enlarge the class of primitive recursive functions. Thus, f is primitive recursive. Thiscompletes the proof. 2Next we give theProof of Theorem 6.6. First we show that bounded sum and bounded product are expressible inBQL(powerbag). Since coding functions for tuples are available, we restrict ourselves only to the caseof f1(n) =Pni=0 g(i) and f2(n) = Qni=0 g(i). Let powerset := unique � powerbag . It is easy to see thatpowerset(n) = fj0; 1; 2; : : : ; njg. Therefore, b � � b map(g) applied to powerset(n) gives us f1(n). Theproof of the expressibility of f2 resembles the proof of the expressibility of the � primitive of [34] foror-sets. Again, g is mapped over powerset(n) to obtain fjg(0); g(1); : : : ; g(n)jg. If at least one of g(i)is 0 (that is, an empty bag), the result is 0. Otherwise each occurrence of () inside each g(i) is pairedwith i. The resulting bag is attened and the powerbag is taken. From this powerbag such subbagsare selected that they contain exactly one pair tagged with i for each i. The number of such subbagsis exactly f2(n). So f2 is expressible.The proof of the converse is similar to the proof for the primitive recursive functions. The space com-plexity for every expression in BQL(powerbag) is bounded above by hyper(c; n) where c is a constant,see Proposition 6.2. That is, by a function in E . Again, a simple translation into computation on a Tur-ing machine shows that complexity remains bounded by a function from E . Now if f : N� : : :�N! Nis computable in BQL(powerbag), it can be computed by a Turing machine whose space complexity isbounded by a function from E . Whence f 2 E ; see Machtey and Young [39]. This �nishes the proofof Theorem 6.6. 2As a corollary, we show how to obtain all unary primitive recursive functions using simpler constructs.First observe that powersetunit : fjunit jg ! fjfjunit jgjg is a polynomial operation: powersetunit(n) =fj0; 1; 2; : : : ; njg. We simplify the loop construct by de�ning iter(f) : fjtjg ! fjunit jg where f : fjunit jg !fjunit jg by iter(f)fjo1; : : : ; onjg = f(f(: : :(ffjjg) : : :)) where is f applied n times.Corollary 6.7 BQL(iter ; powersetunit) expresses all unary primitive recursive functions.Proof. It is known that all unary primitive recursive functions can be obtained from the iterationschema: g(n) = f (n)(0) and an extended list of initial functions, see Rose [47, Theorem 1.4]. Itis straightforward to verify that all additional initial functions can be expressed in the presence ofpowersetunit. 26.4 Power Operators and Structural Recursion on Sets and BagsWe have introduced power operators and structural recursion for sets and bags. We also know thatBQL ' NRLnat. Under the translations of Theorem 4.4, n : N is carried to a bag of n units: fj(); : : : ; ()jg.Consider the following primitive from Corollary 5.9:gen : N! fNg; gen(n) = f0; 1; : : : ; ngUnder the translations of Theorem 4.4, it corresponds to the bag language primitive that takes a bagof n units and returns the bag of bags containing i units for each i = 0; 1; : : : ; n. In other words, it ispowersetunit = unique � powerbagunit. Observe that it remains a polynomial operation.Having made this observation, we can formulate the �rst result of the section.46



Theorem 6.8 � NRLnat(powerset) � BQL(powerbag).� NRLnat(s sri) � BQL(b sri).Proof. Inclusion easily follows from Theorem 4.4. We only have to demonstrate that powerset :fsg ! ffsgg is de�nable using powerbag and the translations of Theorem 4.4. This is indeed the casebecause, taking a set X , translating it into a bag, applying unique � powerbag to it, translating it backto sets and projecting out multiplicities we obtain the powerset of X .To show strictness, observe that powersetunit is de�nable in both BQL(powerbag) and BQL(b sri).Hence, in view of Theorem 6.3, it is enough to show that gen is not expressible in NRLnat(s sri).De�ne the size of an object as follows: size of an object of a base type is 1 and size of a pair or a setis sum of the sizes of the components. Then, it is possible to show that for any function f de�nablein NRLnat(s sri) there exists a monotone primitive recursive function 'f such that, if f(i) = o andsizes of i and o are si and so, then so � 'f(si). To show this, use structural induction on expressionsof NRLnat(s sri). For operations other than s sri we can use ' as de�ned in the proof of Theorem6.5. For s sri(e; g) we de�ne:'s sri (e;g)(0) = size(e)'s sri(e;g)(n) = 'g(n+ 's sri(e;g)(n� 1))It can be seen that the inductive assumption of monotonicity of 'g implies that 's sri (e;g) satis�es thedesired property. Now assume that gen is de�nable. Let n = 'gen(1). Then n+1 = size(gen(n+1)) �'gen(size(n+ 1)) = 'gen(1) = n. This contradiction shows that gen is not de�nable. 2Now we have a problem of �lling the gap between set and bag languages with power operators orstructural recursion. It turns out that the gen primitive is su�ciently powerful to do the job. Thefollowing result is proved by extending translations of Theorem 4.4.Theorem 6.9 Under the translations of Theorem 4.4, we have the following equivalences of languages:� NRLnat(powerset ; gen) ' BQL(powerbag).� NRLnat(s sri ; gen) ' BQL(b sri).Proof. Since one inclusion was proved in Theorem 6.8, we have to prove the reverse inclusions. Wedo it for the power operators; the other equivalence is similar. Let t be a type that may involve bagsbut not sets, and let s = to set(t); see the proof of Theorem 4.4. We have to �nd a function f inNRLnat(powerset ; gen) such that for any bag B of type fjtjg the following holds:to setfjfjtjgjg � powerbag(B) = f � to setfjtjg(B)Elements of the set X = to setfjtjg(B) are pairs of type s � N where the integer component indicatesthe number of occurrences of the element in B. We have to construct a set of type ffs�Ng�Ng thatrepresents powerbag(B) under the to set translation. We do this in four steps.Step 1. For each pair (x; n) in X we create n copies of x with distinct labels of type N.47



Step 2. Powerset of the X 0 set created in Step 1 is taken; the result is denoted by X .For Step 3, we de�ne a new equivalence test for the elements of fs � Ng. Two such sets Y andZ are equivalent if �(Y ) and �(Z) represent the same bag, where �(Y ) = f(y; n) j (y; i) 2 Y; n =card(f(z; j) 2 Y j z = yg)g. That is, Y and Z are equivalent i� �(Y ) = �(Z). Now,Step 3. Each set in X is paired it with the number of equivalent sets in X , thus creating the objectof type ffs� Ng� Ng.Step 4. The function � is applied to the �rst component of every element of the outcome of Step 3.It can be seen that the outcome of Step 4 is to setfjfjtjgjg � powerbag(B). Indeed, by pairing eachelement of type s with n distinct values, where n is its multiplicity, we simulate powerbag correctly,and then Steps 3 and 4 put the result in the right form, pairing elements with their multiplicitiesrather than those distinct labels.To see that Steps 1 to 4 can be implemented in NRLnat(powerset ; gen), it is enough to show that Step1 can be done and � can be expressed. The other operations are straightforward. The use of the genprimitive in Step 1 is crucial: X 0 = f(x; i) j (x; n) 2 X; i 2 gen0(n)gwhere gen0(n) = di�erence(gen(n); s �(0)) = f1; : : : ; ng. That � is de�nable follows from its de�nitionand the fact that card is de�nable as P�x:1. This �nishes the proof. 27 Conclusion and Future WorkMany results on bags are presented in this report. A large combination of primitives have beeninvestigated and the relative strength is determined. The relationship between bags and sets hasbeen studied from two di�erent perspectives. First, various bag languages are compared with astandard nested relational language to understand their set-theoretic expressive power. Second, theextra expressive power of bags is characterized accurately. It is shown that bag semantics correspondsnaturally to adding aggregate functions to relational languages.We have proved the conservative extension property of the relational counterparts of the basic baglanguage, and shown that it is a very powerful technique in analyzing their expressive power. Wehave presented a new technique for proving a number of inexpressibility results in a uniform wayand showed that it works for our languages when aggregate functions are not present. When bags oraggregates are present, we proved a �nite-co�niteness property of some graph queries. This propertyensures that some simple recursive queries remain inexpressible in the basic bag language, thus solvinga number of open problems on the expressive power of bag languages.Finally, the relationship between structural recursion and powerbag operator has been re-examined.The former is shown to be stronger than the latter. Then we introduce the bounded loop constructthat captures the power of structural recursion but has the advantage of not requiring veri�cationof any precondition. Moreover, we prove that structural recursion gives us all primitive recursivefunctions.These results complement earlier ones [8, 9, 34, 50, etc.] obtained for relational languages. All these48



papers taken together are a foundation for programming with collection types using the paradigm ofdesigning languages around operations naturally associated with their datatypes.Future work. There are many further problems which we would like to investigate. First, we wouldlike to know if the following is true.Conjecture 4 NRLaggr has the bounded degree property.Answering the following questions may shed some light on this conjecture.1. What is a logic that captures (the �rst-order fragment of) NRLaggr?2. Which logics have the bounded degree property? Observe that we used only a part of Gaifman'sresult to prove the bounded degree property for the �rst-order logic. Hence we believe there isa chance to �nd its generalizations for other logics.It is known that the presence of a linear order adds tremendous power to �rst-order query languages[3]. Our language for nested sets/bags has enough power to express a linear order at all types. Itis a good framework for investigating the impact of linear orders on nested collections. However,the inexpressibility results proved for BQL and NRLaggr assume an unordered type, and we do notknow whether they continue to hold for ordered base types. Also, adding gen to NRLaggr destroys thebounded degree property, but we conjecture that queries such as chain and bbtree remain inexpressiblein NRLaggr(gen). We do not know of any techniques that would allow us to answer these questions.It would be interesting to extend optimizations for set languages given by equational theory of thecorresponding monad [8, 59, 60] to bags and, in particular, to BQL queries. It is known [14] that manyoptimizations that work well for sets do not carry over to bags. Furthermore, it was shown recently[20] that equational theories of bag languages with monus are rather complicated. Nevertheless, webelieve some useful optimizations can still be found.Finally, we would like to use the results of this report as a basis for extending the approach of Bunemanet al. [10] and Libkin [31, 32] to study bags with partial information and to program with them. Initialresults in this direction are reported in [38].
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