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logic, cf. [1]. Another area of application is descriptive complexity. It turns out that familiar logicscapture complexity classes over classes of (ordered) �nite structures, cf. [8, 18].Since compactness fails in restriction to �nite structures [15], to prove results about the limits ofexpressiveness of �rst-order logic, one has to use Ehrenfeucht-Fra��ss�e games. Moreover, Ehrenfeucht-Fra��ss�e games are often used as the basic step in other, more sophisticated games for di�erent logics.For example, playing the Ehrenfeucht-Fra��ss�e game is one of the steps in the Ajtai-Fagin game formonadic �11 [2]. Since playing the game often involves an intricate combinatorial argument, it wassuggested by Fagin, Stockmeyer and Vardi in [11] to build a library of winning strategies for thosegames. Or, more generally, one would like to have a collection of versatile and easily applicable toolsfor proving expressibility bounds for �rst-order logic.A number of results proving expressibility bounds explain the nature of the limitations of �rst-orderlogic by saying that it can only express local properties. Intuitively, one cannot grasp the wholestructure; instead, to answer a �rst-order query, one only looks at small portions of the input.Several proposals have been made to formalize the notion of locality. Gaifman [12] proved that theoutcome of a �rst-order de�nable query depends only on the isomorphism types of neighborhoodsof a �xed radius. Fagin, Stockmeyer and Vardi [11], modifying a result by Hanf [16] for the �nitecase, proved that if a certain criterion relating the numbers of small neighborhoods in two structuresholds, then these structures agree on sentences whose quanti�er rank is determined by the size of thoseneighborhoods. Libkin and Wong [22] showed that if a �rst-order query operates on graphs, then thenumber of di�erent in- and out-degrees in the output is below a bound given by the query and themaximal degree in the input graph. This property, called the bounded degree property, was generalizedto �rst-order queries on arbitrary �nite structures by Dong, Libkin and Wong [6].Typically, inexpressibility proofs based on the bounded degree property are very easy (see, e.g., [22]).Proofs based on Hanf's theorem, while often easier than playing a game directly (compare, for example,the proofs that connectivity is not monadic �11 in [2] and [11]) may still involve somewhat nontrivialcombinatorial argument (see, e.g., [5]). On the other hand, Hanf's theorem being close to gamecharacterization of logics, its extensions have been proved for several extensions of �rst-order logics[9, 24, 26]. Thus, it would be desirable to understand the relationship between various locality notionsfor �rst-order logic and its extensions.This constitutes the main goal of the paper. We isolate the locality notions underlying Gaifman'sand Hanf's theorems, and prove a chain of implications among them. In particular, we show that thebounded degree property and an analog of Gaifman's theorem hold in several counting extensions of�rst-order logic.Organization and summary In Section 2, we introduce the notation and describe the basic notionsof locality. We start by reviewing Gaifman's theorem, and note that it leads to two properties, calledthe Gaifman-locality and the strong Gaifman-locality. The result of [12] then says that �rst-order logichas both of these properties. We review the modi�cation of Hanf's technique [16] for the �nite case[11], and de�ne the notion of Hanf-locality. We review the bounded degree property of [6, 22] whichis implied by the Gaifman-locality [6].In Section 3 we review the extensions of �rst-order logic we consider in this paper. These are fragmentsof in�nitary logic, logics with unary quanti�ers and �rst-order logic with second-sort counting. Wethen establish that all these logics have the Hanf-locality property. In Section 4 we give the maintechnical machinery which is used in the rest of the paper. Mainly, we examine Hanf's technique more2



closely and among other things give a new simple proof that the extension of �rst-order logic by allunary generalized quanti�ers has the Hanf-locality property.In Section 5 relationships between the notions of locality are considered. In Section 5.1, we showthat the Hanf-locality implies the Gaifman-locality. We use this to derive a number of expressibilitybounds for various logics; we also touch on some applications in descriptive complexity. This impliesthe bounded degree property for any logic that possesses the Hanf-locality property. In Section 5.2, weshow that the strong Gaifman-locality implies the Hanf-locality. We do not yet know of any extensionof �rst-order that is strongly Gaifman-local, so the main implication of this result is a very simple andintuitive proof that �rst-order logic is Hanf-local.In Section 6, we give complete characterizations of the three main notions of locality on structures ofsmall degree. We show that, in order to check whether a query has the bounded degree property, it isenough to check whether it is de�nable in a certain logic on structures of bounded degree. These resultsmay also be helpful in proving expressibility bounds over �nite models, as many counterexamples thatare constructed in �nite model theory turn out to be structures of small degree.2 Notions of localityNotationUnless explicitly stated otherwise, all structures are assumed to be �nite.A relational signature � is a set of relation symbols fR1, ..., Rlg, with an associated arity function.In what follows, pi(> 0) denotes the arity of Ri. We write �n for � extended with n new constantsymbols. The signature of graphs (that is, one binary predicate R) is denoted by �gr.A �-structure is A = hA;RA1 ; : : : ; RAl i, where A is a �nite set, and RAi � Api interprets Ri. The classof �nite �-structures is denoted by STRUCT[�]. When there is no confusion, we may write Ri in placeof RAi . Isomorphism of structures is denoted by �=. We shall adopt the convention that the carrier ofa structure A is always denoted by A and the carrier of B is denoted by B.To make our results applicable to a number of logics, we state below the condition that is necessaryfor the proofs. Let L be a logic. Assume a vocabulary �, and let U1; : : : ; Um be relational symbolsnot in �. Let �0 = � [ fU1; : : : ; Umg. Then, for every � formula '(~x) in L, we can form a �0 sentence� = 8~x((~x) ! '(~x)) in L, where  is a Boolean combination of atomic formulas in fU1; : : : ; Umgusing variables from ~x. That is, a �0-structure A satis�es � i� for every ~a from A such that (~a)holds, it is the case that A� j= '(~a), where A� is the �-reduct of A. This condition can be formulatedalong the lines of [7, 20] for abstract logics. However, as all the logics we consider here are extensionsof �rst-order that trivially satisfy this condition, we will not go into more detail. In what follows,whenever we speak of a logic closed under �rst-order operations, we mean that the condition above issatis�ed.With each formula  (x1; : : : ; xm) in a logical language whose symbols are in �, we associate a querythat maps a �-structure A to an m-ary relation  A = f(a1; : : : ; am) 2 Amj A j=  (a1; : : : ; am)g; wedenote the corresponding structure with universe A by  [A] = hA; Ai.Given a structure A, its Gaifman graph [11, 12, 8] G(A) is de�ned as hA;Ei where (a; b) is in E i�there is a tuple ~t 2 RAi for some i such that both a and b are in ~t. The distance d(a; b) is de�ned as3



the length of the shortest path from a to b in G(A); we assume d(a; a) = 0. Given a 2 A, its r-sphereSAr (a) is fb 2 A j d(a; b) � rg. For a tuple ~t, de�ne SAr (~t) as Sa2~t SAr (a).Given a tuple ~t = (t1; : : : ; tn), its r-neighborhood NAr (~t) is de�ned as a �n structureA � SAr (~t) = hSAr (~t); RA1 \ SAr (~t)p1 ; : : : ; RAk \ SAr (~t)pk ; t1; : : : ; tniThat is, the carrier of NAr (~t) is SAr (~t), the interpretation of the �-relations is obtained by restrictingthem from A to the carrier, and the n extra constants are the elements of ~t. If the structure A is clearfrom the context, we shall write Sr(~t) and Nr(~t).The quanti�er rank of a �rst-order formula  , qr( ), is de�ned as the maximum depth of quanti�ernesting in  ; that is, qr( ) = 0 for atomic formulas  , qr( ) = maxfqr('); qr(�)g if  is ' _ �,qr( ) = qr(') if  is :', and qr( ) = qr(') + 1 if  is of the form 9x' or 8x'.Gaifman-localityBefore presenting Gaifman's theorem, note that for any �-structure A, there is a �rst order formula�(x; y) such that A j= �(a; b) i� (a; b) 2 G(A). Thus, for every �xed k, there are �rst order formulaed<k(x; y), dk(x; y) and d>k(x; y) such that A j= d<k(a; b) i� d(a; b) < k, and similarly for dk and d>k.This means that bounded quanti�cation of the form 8x 2 Sk(~y) and 9x 2 Sk(~y) is expressible forevery constant k. If every quanti�er in a formula is of this form, where ~y are among its free variables,and k � r, we call the formula r-local.Theorem 2.1 (Gaifman [12]) For every �rst-order formula  (x1; : : : ; xn) there exist t and r suchthat  is equivalent to a Boolean combination of t-local formulae �(xi1 ; : : : ; xis) and sentences of theform(1) 9y1 : : : 9ym( m̂i=1'(yi) ^ ^i;j�m;i6=j d>2r(yi; yj))where ' is r-local. Furthermore, we can choose r � 7qr( )�1, t � (7qr( )�1 � 1)=2, m � n + qr( ),and, if  is a sentence, only sentences (1) occur in the Boolean combination. 2Note that this theorem holds both on in�nite and �nite structures. To abstract the notion of beinglocal and extend it to other logics, we introduce the following de�nitions. For �-structures A and B,and two tuples ~a from A and ~b from B of the same length, we write ~a �A;Br ~b if NAr (~a) �= NBr (~b). If ~aand ~b are both tuples of elements of A, we abbreviate this as ~a �Ar ~b. Again, A and B are omitted ifthey are clear from the context.De�nition 2.2 � A formula  (x1; : : : ; xm), is Gaifman-local if there exists r > 0 such that, forevery A 2 STRUCT[�] and for every two m-tuples ~a, ~b of elements of A, ~a �r ~b impliesA j=  (~a) i� A j=  (~b). The minimum r for which this holds is called the locality rank of  ,and is denoted by lr( ).� A formula  (x1; : : : ; xm), is strongly Gaifman-local if there exists r > 0 such that, for everyA;B 2 STRUCT[�] and for every two m-tuples ~a, ~b of elements of A and B respectively, ~a �r ~bimplies A j=  (~a) i� B j=  (~b). 4



� A sentence 	 is strongly Gaifman-local if it is equivalent to a Boolean combination of sentencesof the form 9~y (~y), where  (~y) is a strongly Gaifman-local formula.Now we immediately see:Proposition 2.3 Every �rst-order formula is Gaifman-local, and every �rst-order sentence is stronglyGaifman-local. Moreover, for every  (~x) of quanti�er rank n, lr( ) � (7n � 1)=2.Proof: Suppose  (~x) is a �rst-order formula. Then it is equivalent to a Boolean combination offormulae i(~x) and sentences �j , where each i is ri-local. Let r = max ri. Then lr( ) � r. Indeed,take a structure A and let ~a �r ~b. Since Nr(~a) �= Nr(~b), we have A j= i(~a) $ i(~b), which gives usA j=  (~a)$  (~b), since all �js are sentences.To prove strong Gaifman-locality, note that any formula of the form(2)  (~y) = Q1z1 2 Sr1(~y) : : : Qkzk 2 Srm(~y)(~y; ~z);where the Qis are quanti�ers and  is quanti�er-free, is strongly Gaifman-local, since maxki=1 ri wit-nesses strong locality. The formula Vi=1;:::;m '(yi) ^ Vi;j�m;i6=j d>2r(yi; yj), where ' is r-local, can berepresented in the form (2) with ri � 2r+1 for each i = 1; : : : ; k. This implies strong Gaifman-locality.2Note that not every �rst-order formula is strongly Gaifman-local. Consider  (x) � (8y:R(y; x)) ^9z8y:R(z; y). Assume that it is strongly local, �x r as in the de�nition and consider two graphs: G1is a chain of length r + 1, and G2 is obtained from G1 by adding a loop on the end-node of G1. Letai be the start node of Gi. Then a1 �G1;G2r a2, but G1 j=  (a1) and G2 j= : (a2).Hanf-localityLet � be an isomorphism type of a structure in the language �1 (� extended with one constant). Apoint a in a structure A d-realizes � , written as �d(A; a) = � , if NAd (a) is of isomorphism type � .By #d[A; � ] we denote the number of elements of A which d-realize � , that is, the cardinality offa 2 A j �d(A; a) = �g.We say that A;B 2 STRUCT[�] are d-equivalent, if for every isomorphism type � of a �1-structure wehave #d[A; � ] = #d[B; � ]. This is denoted by A�d B. If d > d0, then A�d B implies A�d0 B [11].Note that d-equivalence can also be de�ned by letting A�d B i� there exists a bijection f : A ! Bsuch that a �A;Bd f(a) for every a 2 A.It was shown by Hanf [16] that two (�nite or in�nite) models are elementary equivalent if their spheresof �nite radius are �nite and, for each d and each type � , either #d[A; � ] = #d[B; � ] < !, or both#d[A; � ] and #d[B; � ] are in�nite. This was recently modi�ed for the �nite case as follows.Theorem 2.4 (Fagin-Stockmeyer-Vardi [11]) Let n > 0. Then there exists an integer d > 0 suchthat whenever A�d B, then A and B agree on all �rst-order sentences ' with qr(') � n. 2It follows from the proof in [11] that d can be taken to be 3n�1, see also [10]. This leads to thefollowing de�nition. 5



De�nition 2.5 A sentence 	 is Hanf-local if there exists a number d such that any two d-equivalentstructures agree on 	. The minimum d for which this holds is called the Hanf locality rank of 	, andis denoted by hlr(	).Thus, Fagin-Stockmeyer-Vardi's theorem says that every �rst order sentence 	 is Hanf-local, andhlr(	) � 3qr(	)�1. Several extensions of this theorem are known. We consider them in the nextsection.Bounded degree propertyWe de�ne the notions of degrees in the usual way. For a graphG, its degree set deg set(G) is the set of allpossible in- and out-degrees that are realized in G, and deg count(G) is the cardinality of deg set(G).These notions generalize to arbitrary �-structures: Given a relation RAi in A, degreej(Ri; a) is thenumber of tuples in RAi whose jth component is a. Then deg set(A) is the set fdegree j(Ri; a) j Ri 2�; a 2 A; j � pig, and deg count(A) is its cardinality. The class of �-structures A with deg set(A) �f0; 1; : : : ; kg is denoted by STRUCTk[�].Given a formula  (x1; : : : ; xm) and a structure A, one can apply these concepts to the output structure [A] = hA; Ai. The bounded degree property says that there is an upper bound on deg count('[A])that depends only on  and the maximal value in deg set(A). More precisely,De�nition 2.6 (see [6]) A formula  (x1; : : : ; xm) has the bounded degree property (BDP), if thereis a function f : N ! N such that deg count( [A]) � f(k) for any A 2 STRUCTk[�]. 2The BDP was introduced and proved for �rst-order queries from graphs to graphs (that is, formulae (x; y) in the language �gr) in [22]. It was also shown there that the BDP proves many inexpressibilityresults e�ortlessly. For example, to prove that (deterministic) transitive closure [8, 18] is not �rst-order,consider the following Cn 2 STRUCT1[�gr]: -- -... -where n is the number of nodes. Since the degree-set of its (deterministic) transitive closure has nelements, it violates the BDP and thus is not �rst-order de�nable. Another example in [22] is testingfor balanced binary trees (that is, all paths from the root to the leaves are of the same length; note thatthis involves both recursive computation and counting). Assume this test is de�nable, and assumeG is an input graph. For every two nodes a; b in G, having two successors each, a1; a2 and b1; b2, wede�ne a new graph Ga;b by making b1; b2 the successors of a and a1; a2 the successors of b. If G werea balanced binary tree, then Ga;b is a balanced binary tree i� a and b have the same distance to theroot. Thus, we see that there is a �rst-order query that, when its input is a balanced binary treeG 2 STRUCT2[�gr] of length n, returns the set of cliques of elements at the same distance from theroot, that is, a graph with an n+ 1-element degree-set. This again violates the BDP.Theorem 2.7 (Dong-Libkin-Wong [6]) Every Gaifman-local formula has the bounded degree prop-erty. 26



Thus, from Gaifman's theorem, we obtain:Corollary 2.8 Every �rst-order formula has the bounded degree property. 2We saw that simple forms of recursion (deterministic transitive closure) violate the BDP. So does thesimplest form of second-order quanti�cation: monadic �11 is not local. The BDP was introduced inconnection with studying expressive power of database languages with aggregation [14, 22], where itwas asked if such languages have it. The positive answer given recently [6] also implies that �rst-orderlogic with Rescher and H�artig quanti�ers (see below for a de�nition of these quanti�ers) has the BDP,but it was not known (although conjectured) if any of these is Gaifman-local.3 Extensions of �rst-order logicIn this section we introduce the extensions of �rst-order logic that are considered in this paper. Theseare extensions with unary quanti�ers and counting, and a fragment of in�nitary logic with unaryquanti�ers.First of all, recall that in�nitary logic L1! is the extension of �rst-order logic where in�nite disjunctionsand conjunctions of formulas are also allowed. It is well known that any (isomorphism closed) classC � STRUCT[�] can be de�ned in L1!. Interest of this logic comes from its fragments which haveweaker expressive power. One such fragment is Lk1! where only k distinct variables, free or bound,are allowed. The �nite variable logic L!1! is then the union of Lk1! over all natural numbers k. Foran extensive study of this logic, see e.g. [8].Another fragment of L1! we are interested in, is the one where the quanti�er rank of each formulais allowed to be at most r. From now on, we use the notation (L1!)r for this fragment and (L1!)!for the union of the logics (L1!)r over all natural numbers r. More generally, if L is any logic with awell-de�ned notion of quanti�er rank, then the fragment of L consisting of all formulas with quanti�errank at most r is denoted by Lr, Lr = f' j ' 2 L; qr(') � rg, and their union over all naturalnumbers r is denoted by L!. (The parenthesis notation (L1!)r is used to avoid confusion with the�nite variable logic.)Unary quanti�ersSuppose L is a logic. Let �unaryk be a signature of k unary symbols, and let K be a class of �unaryk -structures which is closed under isomorphisms. Then L(QK) extends the set of formulae of L with thefollowing additional rule:if  1(x1; ~y1); : : : ;  k(xk; ~yk) are formulae, then QKx1 : : : xk( 1(x1; ~y1); : : : ;  k(xk; ~yk))is a formula.Here QK binds xi in the ith formula, for each i = 1; : : : ; k. A free occurrence of a variable y in  i(xi; ~yi)remains free in this new formula unless y = xi. The semantics of QK is de�ned as follows:A j= QKx1 : : : xk( 1(x1;~a1); : : : ;  k(xk;~ak)) i� (A; 1[A;~a1]; : : : ;  k[A;~ak]) 2 K, where i[A;~ai] = fa 2 A j A j=  i(a;~ai)g. 7



In this de�nition, ~ai is a tuple of parameters that gives the interpretation for those free variables of i(xi; ~yi) which are not equal to xi. The logic L(Q) for a set Q of unary generalized quanti�ers isde�ned similarly with the corresponding rule for each quanti�er QK 2 Q. The quanti�er rank qr(')of an L(Q) formula ' is de�ned as the quanti�er rank for the logic L with the following additionalrule for each QK 2 Q:qr(QKx1; : : : ; xk( 1(x1; ~y1); : : : ;  k(xk; ~yk))) = maxfqr( i(xi; ~yi)) j i � kg+ 1:Examples of unary quanti�ers include the usual 9 and 8, as well as the Rescher (bigger cardinality)and the H�artig (equicardinality) quanti�ers. The Rescher quanti�er QR and the H�artig quanti�er QIare classes of �unary2 -structures; the Rescher quanti�er QRx1x2( 1(x1;~a1);  2(x2;~a2)) is true if andonly if there are at most as many points a that satisfy  1(a;~a1) as there are points b that satisfy 2(b;~a2). The H�artig quanti�er QIx1x2( 1(x1;~a1);  2(x2;~a2)) in turn is true if and only if there areequally many points a that satisfy  1(a;~a1) as there are points b that satisfy  2(b;~a2). We use thenotation L(Qu) for L extended with all unary quanti�ers.Next we give a game characterization for queries de�nable in L1!(Qu)!, that is, the fragment ofin�nitary logic with unary quanti�ers that consists of formulas of �nite quanti�er rank. For this, werecall the de�nition of bijective Ehrenfeucht-Fra��ss�e game [17]. There are two players in this game,called the spoiler and the duplicator. Furthermore, the number of rounds, say n, and two structuresA;B 2 STRUCT[�] are given. In each round i = 1; : : : ; n, the duplicator selects a bijection fi : A! B,and the spoiler selects a point ai 2 A (if card (A) 6= card (B), then the spoiler wins). The duplicatorwins the game, if after the last round the relation f(ai; fi(ai)) j 1 � i � ng is a partial isomorphismA ! B; otherwise the spoiler wins. From the results in [17] it follows that the bijective Ehrenfeucht-Fra��ss�e game characterizes the expressive power of L1!(Qu)!. To see this, we �rst recall the followingresult.Theorem 3.1 ([17]) Let A;B 2 STRUCT[�]. Then A and B agree on all sentences of FO(Qu) ofquanti�er rank up to n if and only if the duplicator has a winning strategy in the n-round bijectiveEhrenfeucht-Fra��ss�e game over A and B. 2The proof of this in [17] actually shows that if the duplicator has a winning strategy in the n-roundbijective Ehrenfeucht-Fra��ss�e game, then the structures agree on all sentences of L1!(Qu)n. Thisyields the following characterization.Proposition 3.2 A class C � STRUCT[�] is de�nable in L1!(Qu)! i� there is n such that the spoilerhas a winning strategy in the n-round bijective Ehrenfeucht-Fra��ss�e game over A and B whenever A 2 Cand B 62 C.Proof: Suppose C is de�nable by a sentence ' of L1!(Qu)n, for some n. Then for every A;B 2STRUCT[�] such that A and B satisfy the same sentences of L1!(Qu) of quanti�er rank up to n, wehave A 2 C if and only if B 2 C. Hence there cannot be structures A and B as in the claim.Assume then that the spoiler has a winning strategy in the n-round bijective Ehrenfeucht-Fra��ss�eover all A and B where A 2 C and B 62 C. For every such pair A and B, by Theorem 3.1 thereis a sentence 'A;B of L1!(Qu)n such that A j= 'A;B but B 6j= 'A;B. But now C is de�ned by theL1!(Qu)n-sentence _A2C0@B̂62C 'A;B1A :8



Note that the in�nite conjunctions and disjunction above can be restricted to range over sets, sincethere are only countably many non-isomorphic structures in STRUCT[�]. 2Let us remark that L1!(Qu)! is strictly stronger in expressive power than FO(Qu)!. This followsbecause the second vectorization of H�artig quanti�er cannot be de�ned in FO(Qu)!, as was shownby Luosto [23] (using Ramsey theory). On the other hand, each vectorization of a unary quanti�ercan be de�ned in L1!(Qu)! [20].As mentioned in the previous section, several extensions of Theorem 2.4 are known. One such extensioncan be given for L1!(Qu)!. This is because in [24] it was shown that d-equivalence, for large enoughd, guarantees a winning strategy for the duplicator in the n-round bijective Ehrenfeucht-Fra��ss�e game.Theorem 3.3 (see [24, 26]) Every L1!(Qu)! sentence 	 is Hanf-local. Moreover, hlr(	) � 3qr(	).2In the next section we give a new simple proof for this fact.We also consider �rst-order logic with counting FO +COUNT [19]. We present it here following [9].FO + COUNT is de�ned as a two sorted logic, with second sort being the sort of natural numbers.More precisely, in this approach a structure A is of the formA = hf1; : : : ; ng; fv1; : : : ; vng; <;BIT; 1;max; RA1 ; : : : ; RAl i:Here the relationsRAi are de�ned on the domain fv1; : : : ; vng, while on the numerical domain f1; : : : ; ngone has 1;max; < and the BIT predicate available (BIT(i; j) i� the ith bit in the binary representationof j is one). It also has counting quanti�ers 9ix'(x), meaning that ' has at least i satis�ers; here irefers to the numerical domain and x to the domain fv1; : : : ; vng. These quanti�ers bind x but not i.Etessami noticed that the technique used in a proof of [24] (which is based on bijective Ehrenfeucht-Fra��ss�e games [17]) applies to FO + COUNT:Theorem 3.4 (see [9]) Every FO + COUNT sentence is Hanf-local. Moreover, hlr(	) � 3qr(	). 24 Technical machineryIn this section we give the technical machinery used repeatedly in the paper in examining the rela-tionships of the notions of locality, and characterizations of these notions on structures of boundeddegree.We start with a lemma which is one of our main technical tools and we apply it several times in thissection. The idea of the proof given below is similar to all the earlier applications of Hanf's techniquementioned before [11, 16, 24, 25], but we believe this proof is simpler.First, we need two obvious facts stated previously in [6].Claim 4.1 Assume that A 2 STRUCT[�] and h : NAr (~a) ! NAr (~b) is an isomorphism. Let d � r.Then h restricted to SAd (~a) is an isomorphism between NAd (~a) and NAd (~b). 29



Claim 4.2 Assume that A 2 STRUCT[�] and h : NAr (~a)! NAr (~b) is an isomorphism. Let d+ l � rand ~x be a tuple from Sl(~a). Then h(Sd(~x)) = Sd(h(~x)), and Nd(~x) and Nd(h(~x)) are isomorphic. 2The next claim generalizes a result from [6].Claim 4.3 Let A;B 2 STRUCT[�] and let ~a1 2 An;~b1 2 Bn for n � 1, and ~a2 2 Am;~b2 2 Bm form � 1. Assume that ~a1 �r ~b1 and ~a2 �r ~b2. Let ~a be ~a1 followed by ~a2 and ~b be ~b1 followed by ~b2.Furthermore, assume that for any components a1; a2 of ~a1 and ~a2 respectively we have d(a1; a2) >2r + 1, and similarly for any components b1; b2 of ~b1 and ~b2 respectively, d(b1; b2) > 2r + 1. Then~a �r ~b.Proof: Since the distance between any two components of ~a1 and ~a2 is at least 2r+1, any tuple in any�-relation in NAr (~a) either has all its components in SAr (~a1), or it has all its components in SAr (~a2).Similarly, any tuple in a �-relation in NBr (~b) either has all its components in SBr (~b1), or in SBr (~b2).Thus, the isomorphism between NAr (~a) and NBr (~b) can be de�ned componentwise. 2Let ~a be an n-tuple. By ~ax we denote the n + 1-tuple whose �rst n components are those of ~a andthe last one is x.We de�ne d-equivalence for structures with parameters. Let A;B 2 STRUCT[�] and let ~a and ~b betwo tuples of the same length of A and B, respectively. We say that (A;~a) and (B;~b) are d-equivalentif card (fx 2 A j NAd (~ax) is of isomorphism type �g) =card (fy 2 B j NBd (~by) is of isomorphism type �g)for every isomorphism type � . That is, there is a bijection f : A! B such that ~ax �d ~bf(x) for everyx 2 A. This is denoted by (A;~a)�d (B;~b).Lemma 4.4 If A�d B and ~a �A;B3d+1 ~b, then (A;~a)�d (B;~b).Proof: We need to de�ne a bijection f : A ! B such that ~ax �A;Bd ~bf(x) for every x 2 A. Since~a �A;B3d+1 ~b, there is an isomorphism h : NA3d+1(~a)! NA3d+1(~b). Then the restriction of h to SA2d+1(~a) isan isomorphism between NA2d+1(~a) and NA2d+1(~b) (Claim 4.1), and thuscard (A� SA2d+1(~a)) = card (B � SB2d+1(~b)):Now consider an arbitrary type � of a d-neighborhood of a single point. Assume that a 2 SA2d+1(~a)realizes � in A. Since h is an isomorphism of 3d+1-neighborhoods, we see that SAd (a) � SA3d+1(~a) andthus h(a) 2 SB2d+1(~b) realizes � . Thus, the number of elements in SA2d+1(~a) and SB2d+1(~b) that realize �is the same.Since A�d B (that is, #d[A; � ] = #d[B; � ]), the observation above implies thatcard (fa 2 A� SA2d+1(~a) j �d(A; a) = �g) = card (fb 2 B � SB2d+1(~b) j �d(B; b) = �g)for any � . Thus, we can �nd a bijection g : A� SA2d+1(~a)! B � SB2d+1(~b) such that a �d g(a) for anya 2 A� SA2d+1(~a). 10



We now de�ne f by f(x) = � h(x) if x 2 SA2d+1(~a)g(x) if x 62 SA2d+1(~a)It is clear that f is a bijection A! B.We now claim that ~ax �d ~bf(x) for every x 2 A. If x 2 SA2d+1(~a), then SAd (x) � SA3d+1(~a), and~ax �d ~bh(x) because h is an isomorphism. If x 62 SA2d+1(~a), then f(x) = g(x) 62 SB2d+1(~b), andx �d g(x). Hence, by Claim 4.3, ~ax �d ~bg(x). 2Lemma 4.4 says that d-equivalent structures are d-equivalent even with parameters if large enoughneighborhoods of these parameters are isomorphic. A similar idea was used in [24] to show that d-equivalence, for large enough d, guarantees a win for duplicator in the r-round bijective Ehrenfeucht-Fra��ss�e game. Lemma 4.4 allows us to simplify the proof of Theorem 3.3 given in [24].First we give an easy consequence of Lemma 4.4.Corollary 4.5 If (A;~a) �3d+1 (B;~b) then there exists a bijection f : A ! B such that (A;~ax) �d(B;~bf(x)) for every x 2 A.Proof: If (A;~a) �3d+1 (B;~b) then there exists a bijection f : A ! B such that ~ax �3d+1 ~bf(x)for every x 2 A. On the other hand, (A;~a) �3d+1 (B;~b) implies A �d B. Then by Lemma 4.4,(A;~ax)�d (B;~bf(x)) for every x 2 A. 2This provides a winning strategy in the bijective Ehrenfeucht-Fra��ss�e game on A and B, if theird-equivalence for large enough d can be guaranteed. That is:Proposition 4.6 Let n � 1 and d = (3n�1 � 1)=2. Assume that A�d B. Then the duplicator has awinning strategy in the n-round bijective Ehrenfeucht-Fra��ss�e game on A and B.Proof: Let d0 = 0, d1 = 3d0 + 1; d2 = 3d1 + 1; : : : ; dk = 3dk�1 + 1; : : :. Note that d = dn�1. Supposethat A �d B. Assume that after a round i < n the spoiler has chosen points a1; : : : ; ai and theduplicator has chosen bijections f1; : : : ; fi and the equivalence(A; (a1; : : : ; ai))�dn�i (B; (f1(a1); : : : ; fi(ai)))holds. By Corollary 4.5 the duplicator can choose a bijection fi+1 such that(A; (a1; : : : ; ai+1))�dn�i�1 (B; (f1(a1); : : : ; fi+1(ai+1)))for all ai+1. In particular, after the last round(A; (a1; : : : ; an))�0 (B; (f1(a1); : : : ; fn(an)));which guarantees that f(ai; fi(ai)) j 1 � i � ng is a partial isomorphism. 2In particular, it follows that every L1!(Qu)! sentence is Hanf-local (Theorem 3.3).
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4.1 (n; d)-equivalenceWe extend the notion of d-equivalence from points to tuples. Let �n be an isomorphism type of astructure in the language �n (� extended with n constants). An n-tuple ~a of a structure A d-realizes�n, written as �d(A;~a) = �n, if Nd(~a) is of isomorphism type �n.We denote the cardinality of f~a 2 An j �d(A;~a) = �ng by #d[A; �n], that is, the number of n-tuplesof A which d-realize �n.We say that structures A;B 2 STRUCT[�] are (n; d)-equivalent, A�n;d B, if for every isomorphismtype �n we have #d[A; �n] = #d[B; �n], i.e., there are equally many n-tuples in A and B whosed-neighborhoods realize �n. Obviously, (1; d)-equivalence is the same as d-equivalence.We start by analyzing this notion of equivalence. First observe that A �n;d B implies A �d B.Indeed, let ~a 2 An be an n-tuple whose all components are a 2 A. Since A �n;d B there is ~b 2 Bnsuch that ~a �d ~b, and this isomorphism proves that all components of ~b are the same, say b 2 B. Thusa �d b, which shows that A �d B. Recall from a remark preceding Theorem 2.4 that this impliesA�d0 B for every d0 � d [11].Our main result in this section is that r-equivalence of n+1-tuples can be guaranteed by d-equivalenceof n-tuples for su�ciently large d that depends on r only.First, we give a simple criterion for (n; d)-equivalence.Proposition 4.7 A�n;d B i� there is a bijection � : An ! Bn such that for any ~a 2 An,~a �d �(~a):Proof: Let �n1 ; : : : ; �ns be the collection of all isomorphism types of d-neighborhoods of n-tuples realizedinA or B. Let Ai = f~a 2 An j �d(A;~a) = �ni g and Bi = f~b 2 Bn j �d(B;~b) = �ni g. Then fAigi=1;:::;s andfBigi=1;:::;s form partitions of An and Bn respectively. Assume A�n;d B. Then card (Ai) = card (Bi)for every i = 1; : : : ; s, and the required � is de�ned as the union of bijective maps between Ai and Bifor all i. Conversely, if � satisfying ~x �d �(~x) exists, let �n be an isomorphism type and let ~a1; : : : ;~akbe the elements of An such that �d(A;~ai) = �n. Then �d(B; �(~ai)) = �n, and #d[A; �n] � #d[B; �n].A symmetric argument shows the reverse inequality. 2The proposition below provides the main technical tool for Section 5.Proposition 4.8 Let n > 0 and d � 0. Then A�n;3d+1 B implies A�n+1;d B. 2Proof: Suppose A �n;3d+1 B. Then there exists a bijection � : An ! Bn such that ~a �3d+1 �(~a) forevery ~a 2 An. As observed above, we also know that A�d B. Thus by Lemma 4.4, (A;~a)�d (B; �(~a))for every ~a 2 An. By de�nition, for every ~a 2 An there is a bijection f~a : A ! B such that~ax �d �(~a)f~a(x) for every x 2 A. Now the bijection �(~ax) = �(~a)f~a(x) proves the claim A�n+1;d B.2As an immediate consequence we state the following.Corollary 4.9 For any r > 0 and any n � 1 there exists a number d such that A �d B impliesA�n;r B. In fact, d can be taken to be 3n�1r + (3n�2 � 1)=2 for n > 1 and d = r for n = 1. 212



5 Relationships between the notions of localityThis section is dedicated to the study of the relationships between the notions of locality. We showthat the Hanf-locality implies the Gaifman-locality, and the strong Gaifman-locality implies the Hanf-locality. We then see that each of these notions of locality implies the bounded degree property.First, we extend De�nition 2.5 from sentences to formulas.De�nition 5.1 A formula  (x1; : : : ; xn) is Hanf-local if there exists a number d such that for everyA;B 2 STRUCT[�] and for every two n-tuples ~a and ~b of elements of A and B respectively, (A;~a)�d(B;~b) implies A j=  (~a) i� B j=  (~b). The minimum d for which this holds is called the Hanf localityrank of  , and is denoted by hlr( ).We start with a simple observation, which shows that in the study of Hanf-locality it is enough toconsider just sentences.Given a signature �, by �(n) we denote � extended with n new unary symbols U1; : : : ; Un. Given astructure A and an n-tuple ~a, by A[~a] we denote the �(n) structure that extends A by interpretingthe Uis as singletons containing the corresponding components of ~a.Let  (x1; : : : ; xn) be a formula with n free variables. By 	(n) we denote a sentence in a logic L thatis equivalent to 8x1 : : : 8xn ((U1(x1) ^ : : : ^ Un(xn))!  (x1; : : : ; xn)); it exists if L is closed under�rst-order operations. Obviously, for any A and any n-tuple ~a, A j=  (~a) if and only if A[~a] j= 	(n).Proposition 5.2 Let L be a logic that is closed under �rst-order operations. If every sentence in Lis Hanf-local, then every formula in L is Hanf-local.Proof. Let  (x1; : : : ; xn) be a formula of L, and let hlr(	(n)) = d. Suppose (A;~a)�d (B;~b); then alsoA[~a]�d B[~b]. By the observation above we then haveA j=  (~a) i� A[~a] j= 	(n) i� B[~b] j= 	(n) i� B j=  (~b) :Hence  (~x) is Hanf-local and hlr( ) � d. 25.1 Hanf-locality implies Gaifman-localityThe �rst main result of this section is:Theorem 5.3 Every Hanf-local formula is Gaifman-local.Proof: Let a formula  (x1; : : : ; xn) be Hanf-local and suppose hlr( ) = d. Let ~a and ~b be n-tuples ofA such that ~a �3d+1 ~b. Since A�d A, by Lemma 4.4, (A;~a) �d (A;~b). From Hanf-locality of  wesee that A j=  (~a) i� A j=  (~b). Thus  is Gaifman-local and lr( ) � 3d+ 1. 2By Proposition 5.2, the following holds as well.Corollary 5.4 Let L be a logic that is closed under �rst-order operations. Assume that every sentencein L is Hanf-local. Then every formula in L is Gaifman-local. 213



The proof above also shows that lr( ) � 3 � hlr(	(n))+ 1. In the case  is a �rst-order formula, 	(n) isof quanti�er rank qr( )+n, and hence we obtain a new bound that improves Gaifman's (7qr( )�1)=2.Corollary 5.5 Let  (x1; : : : ; xn) be a �rst-order formula. Then lr( ) � 3qr( )+n + 1. 2Note that this improves the locality rank implied by Gaifman's theorem, not the bound on the size ofneighborhood in an explicitly constructed formula used in Gaifman's proof.We now list some corollaries of Theorem 5.3. We immediately obtainCorollary 5.6 Every Hanf-local formula has the bounded degree property. If L is a logic closed under�rst-order operations and such that every L-sentence is Hanf-local, then L has the bounded degreeproperty. 2Corollary 5.7 FO(Qu) and FO+COUNT are Gaifman-local and have the bounded degree property.2More precisely, every FO + COUNT formula without free variables over the numerical domain isGaifman-local and has the BDP. This generalizes a number of known results. For example, the boundeddegree property of �rst-order logic with H�artig and Rescher quanti�ers (proved in [6] by a lengthy andquite involved argument) follows straightforwardly. We also obtain a theorem by Etessami [9] thatdeterministic transitive closure is not de�nable in FO+COUNT in the presence of a successor relation.Note that this can be viewed as a small step towards separating TC0 from DLOGSPACE, becauseFO + COUNT captures uniform TC0 on linearly ordered structures [3] and FO with deterministictransitive closure captures DLOGSPACE with built-in successor relation [8, 18].Corollary 5.7 allows us to make the next incremental step. First, recall from Section 3 that with thecounting quanti�ers 9ix'(x) in FO + COUNT we can use the built-in relations (like < and BIT)of the numerical second sort. Let then k 2 N and let Sk be any family of built-in relations on thenon-numerical domain whose degrees do not exceed k.Corollary 5.8 Deterministic transitive closure is not de�nable in FO + COUNT with the built-inrelations Sk. 1 2Furthermore, using locality, we can extend the above results to more complex auxiliary data. Considera class of structures C � STRUCT[�0] for some relational vocabulary �0. De�ne a function sC : N ! Nby letting sC(n) be the maximal possible degree in some n-element structure A 2 C. We say that Cis of moderate degree (see [11]) if sC(n) � logo(1) n. That is, there is a function � : N ! N such thatlimn!1 �(n) = 0 and sC(n) � log�(n) n.The following was shown in [6].Proposition 5.9 (see [6]) Let  be a local graph query, of locality rank r. Then for any structureA, the number of distinct in-degrees in the graph  [A] is at most the number of non-isomorphic3r + 1-neighborhoods realized in A. The same is true for out-degrees. 21In fact, if T is any set of built-in relations de�ned on the numerical domain, then deterministic transitive closurestill is not de�nable in FO + COUNT with the built-in relations Sk and the built-in relations T .14



Now one can use this proposition and calculate that, for structures of moderate degree, one cannotconstruct a graph that has n distinct in-degrees, where n is the number of nodes. This, and localityof FO + COUNT, gives usCorollary 5.10 Transitive closure and deterministic transitive closure are not de�nable in FO +COUNT in the presence of built-in relations of moderate degree. 2However, the order relation adds all degrees from 0 to the cardinality of the input. Thus, we cannotgeneralize Corollary 5.8 to the case of built-in linear order.5.2 Strong Gaifman-locality implies Hanf-localityThe next main result of the section is:Theorem 5.11 Every strongly Gaifman-local sentence is Hanf-local.From this and Gaifman's theorem, the theorem by Fagin, Stockmeyer and Vardi follows immediately(though not the bound produced by the proof in [11]). We also believe that the proof below is simplerthan that in [11] and shows clearly why this result is indeed a form of locality, as claimed in [11].Proof of Theorem 5.11. It is enough to consider a sentence 	 which is equivalent to9x1 : : : 9xn (x1; : : : ; xn), where  (~x) is strongly Gaifman-local. Assume that r > 0 witnesses stronglocality of  : that is, ~a �A;Br ~b implies A j=  (~a) i� B j=  (~b). Let d be given by Corollary 4.9; thenA �d B implies A �n;r B. We claim that hlr(	) � d. Indeed, assume A �d B. Let A j= 	. ThenA j=  (~a) for some ~a 2 An. By Corollary 4.9, A �n;r B, and thus we �nd ~b 2 Bn such that ~b �r ~a.From strong Gaifman-locality of  we see B j=  (~b) and thus B j= 	. The converse (that is, B j= 	implies A j= 	) is similar. Hence, hlr(	) � d, which completes the proof. 2From Proposition 5.2 we get the following corollary.Corollary 5.12 Let L be a logic that is closed under �rst-order operations. Assume that every sen-tence in L is strongly Gaifman-local. Then every formula in L is Hanf-local.Combining the proof above with Gaifman's theorem, we see that for an arbitrary �rst-order sentence	, we have the bound hlr(	) � 2 � 3qr(	) � 7qr(	)�1, which is much worse than 3qr(	) that is given by[11]. However, it is not the bound itself, but its existence that is used in most applications. Also, theabove proof reveals the close connection between Gaifman's and Hanf's theorems.Another corollary of Theorem 5.11 is that the two parts of Gaifman's theorem are not independent:Corollary 5.13 Let L be a logic that is closed under �rst-order operations. Assume that every sen-tence in L is strongly Gaifman-local. Then every formula in L is Gaifman-local. 2
15



6 Locality and structures of small degreeIn this section we give characterizations of the notions of locality on structures of bounded degree.We start with a simple observation:Lemma 6.1 For any signature �, there exist functions f�; F� : N � N � N ! N such that for anyA 2 STRUCTk[�], card (f�n j 9~a 2 An : �r(A;~a) = �ng) � f�(k; r; n) and8~a 2 An : card (SAr (~a)) � F�(k; r; n): 2The next two lemmas show us that on structures of bounded degree the relations �r and �r arede�nable by formulas of certain logics.Recall from Section 2 that for every �xed r there is a �rst-order formula d�r(z; ~x) which expressesthat d(z; ~x) � r, i.e., d(z; x) � r for some component x of ~x. A proof of the �rst lemma is essentiallygiven already in [8, Section 1], and we only sketch the proof below.Lemma 6.2 � For every A, ~a 2 An and a positive integer r, there exists a �rst-order formula'rA;~a(~x) such that for every B and ~b 2 Bn, B j= 'rA;~a(~b) i� ~a �r ~b.� For every A and positive integers r and n, there exists a �rst-order sentence �r;nA such that forevery B, B j= �r;nA i� exactly the same isomorphism types of n-tuples are r-realized in A and B.Proof: We de�ne 'rA;~a(~x) to be a �rst-order formula which says that ~x realizes the isomorphismtype of NAr (~a). For this, let ~a 2 An and let a1; : : : ; an; b1; : : : ; bm be the elements of SAr (~a). Let�(x1; : : : ; xn; y1; : : : ; : : : ; ym) be the diagram of NAr (~a), that is, the conjunction of atomic and negatedatomic formulas realized in NAr (~a). Then 'rA;~a(~x) can be de�ned as9y1; : : : 9ym8z �(x1; : : : ; xn; y1; : : : ; ym) ^ d�r(z; ~x)$ ( n_i=1 z = xi _ m_i=1 z = yi)!! :Suppose that for B and ~b 2 Bn we have B j= 'rA;~a(~b). Then NAr (~a) and NBr (~b) satisfy the same atomicformulas and the second part of the de�nition of 'rA;~a(~x) says that there are no other points in SBr (~b).Hence ~a �r ~b. Suppose then ~a �r ~b, that is, NAr (~a) �= NBr (~b). By construction we have A j= 'rA;~a(~a)and hence also B j= 'rA;~a(~b).For the second claim, suppose ~a 2 An and consider a �rst-order formula 'rA;~a(~x) which says that ~xr-realizes the isomorphism type of NAr (~a). We de�ne the �rst-order sentence �r;nA as_~a2An 9~x'rA;~a(~x) ^ 8~x _~a2An 'rA;~a(~x):If the same isomorphism types of n-tuples are realized in A and B, then obviously B j= �r;nA . Supposethat B j= �r;nA . Then the �rst part of �r;nA implies that every isomorphism type of an n-tuple whichis r-realized in A, is also r-realized in B. The second part of the formula in turn says that no otherisomorphism types are realized in B. Thus exactly the same isomorphism types are realized in A andB. 216



The second lemma below gives a formula which de�nes the relation�r. It shows us that on structuresof bounded degree unary quanti�ers allow us to keep quanti�er rank bounded.Lemma 6.3 For every A 2 STRUCTk[�], ~a 2 An and a positive integer r, there exists a positiveinteger m, which is independent of A, and an FO(Qu)m-formula �rA;~a(~x) such that, for every B and~b 2 Bn, B j= �rA;~a(~b) i� (A;~a)�r (B;~b). Here m can be taken to be F�(k; r; n) � n+ 1.Proof: Suppose A 2 STRUCTk[�] and ~a 2 An. For every b 2 A let 'rA;~ab(~xy) be the �rst-orderformula given by Lemma 6.2 which describes the isomorphism type of NAr (~ab). By Lemma 6.1 we seethat qr('rA;~ab) � F�(k; r; n)�n. Then for every isomorphism type NAr (~ab) we can express the numberof points b which realize this isomorphism type by 9=jy'rA;~ab(~xy). Here 9=jy is the unary quanti�ergiven by the class of structures hA;Ui where U is a j-element subset of A.From Lemma 6.1 we see that there exists a bound M on the number of di�erent isomorphism typesNCr (~de) in structures from STRUCTk[�]. Let these isomorphism types be �1; : : : ; �M and let �i(~xy)be the �rst-order formula given by Lemma 6.2 which describes the isomorphism type �i. Denoteni = #r[(A;~a); �i]. Then the formula �rA;~a(~x) can be de�ned as^1�i�M 9=niy�i(~xy):If (A;~a)�r (B;~b) then obviously B j= �rA;~a(~b). By the de�nition of �rA;~a(~x), if B j= �rA;~a(~b), then thereare exactly the same number of points in B with the same isomorphism type as NAr (~ab) for everyb 2 A. Hence there exists a bijection A! B which shows that (A;~a)�r (B;~b). 2We �rst give a characterization for strongly Gaifman-local queries. We say that a Boolean query 	 isstrongly Gaifman-local on STRUCTk[�] if in De�nition 2.2 STRUCT[�] is replaced by STRUCTk[�],i.e., we restrict the consideration to structures where each point has degree at most k. The idea of theproof given below is similar to the one in [25], where a characterization for Boolean queries de�nablein FO (and in FO with modular counting quanti�ers) on structures of bounded degree, was given.Proposition 6.4 Let 	 be a Boolean query and k a natural number. Then 	 is strongly Gaifman-localon STRUCTk[�] i� 	 is de�nable in �rst-order logic.Proof: The implication from right to left is already established in Proposition 2.3. For the converse,let 	 be strongly Gaifman-local, let r witness strong Gaifman-locality. That is, 	 is a Booleancombination of sentences of the form 9~x (~x) where each ~a �A;Br ~b implies A j=  (~a) i� B j=  (~b). Letn be the maximum length of the tuples ~x in these formulas  . Consider then the sentence �:_Aj=	A2STRUCTk[�] �r;nAwhere the sentences �r;nA are given by Lemma 6.2. Since there are only 2m sentences �r;nA whenA 2 STRUCTk[�] (up to logical equivalence), where m = f�(k; r; n), this disjunction is �nite andhence � is a �rst-order sentence. Intuitively, � describes the isomorphism types of n-tuples which arer-realized in the structures satisfying 	.We claim that � is equivalent to 	 on structures from STRUCTk[�]. Suppose that B 2 STRUCTk[�]and B j= 	. Then B j= �r;nB and thus B j= �. If B j= � then B j= �r;nA for some A 2 STRUCTk[�] for17



which A j= 	. Then exactly the same isomorphism types of n-tuples are r-realized in A and B. Thus,A and B agree on every sentence of the form 9~x (~x), where r witnesses strong Gaifman-locality of  .This implies B j= 	. 2Next we give a characterization for Hanf-local queries in terms of logical expressibility.Proposition 6.5 Let k be a natural number, and let  (~x) be a query on STRUCTk[�]. Then  isHanf-local i�  is de�nable in L1!(Qu)!.Proof: The implication from right to left follows from Theorem 3.3 and Proposition 5.2. For the otherdirection, let  (x1; : : : ; xn) be Hanf-local and hlr( ) = r. Consider the formula '(~x) de�ned as_Aj= (~a)A2STRUCTk[�] �rA;~a(~x)where the formulas �rA;~a(~x) are given by Lemma 6.3. Since each �rA;~a(~x) is an FO(Qu)m-formula, '(~x)is an L1!(Qu)m-formula.We show that '(~x) and  (~x) are equivalent on STRUCTk[�]. Let B 2 STRUCTk[�] and ~b 2 Bn. IfB j=  (~b) then B j= �rB;~b(~b) and hence B j= '(~b). Suppose then that B j= '(~b). Now B j= �rA;~a(~b) forsome A and ~a which satisfy A j=  (~a). Then (A;~a) �r (B;~b) by Lemma 6.3 and since  has Hanflocality rank r, we have B j=  (~b). 2In particular, when studying the bounded degree property, Hanf-locality can be replaced by de�n-ability in L1!(Qu)!. Using this, we can now give a very simple alternative proof for Corollary 5.6:Let  (x1; : : : ; xn) be a formula of L1!(Qu)r. Then for each j and l there is a formula 'j;l(x) ofL1!(Qu)r+n�1 which says that degreej( ; x), the jth degree of x in the output of  , is exactly l.Hence, if for any two points a and b we have a �d b, where d = 3r+n�1, then a and b have the samedegrees with respect to  . But by Lemma 6.1 the number of di�erent isomorphism types of 3r+n�1-neighborhoods realized in structures from STRUCTk[�] is bounded, and thus  has the boundeddegree property.To describe Gaifman-local formulae on structures of small degree, we need the following de�nition.De�nition 6.6 A formula  (x1; : : : ; xn) in a language � is given by a �rst-order de�nition by caseson a class C � STRUCT[�] if there exists a partition C = C1 [ : : : [ Cm and �rst-order formulae�1(x1; : : : ; xn); : : : ; �m(x1; : : : ; xn) in the language �, such that on all structures A 2 Ci,  is equivalentto �i. That is, for any 1 � i � m and any A 2 Ci,A j= 8~x( (~x)$ �i(~x)):This is reminiscent of the familiar case statement (or equivalently, a nested if-then-else statement)in many programming languages.Proposition 6.7 Let  (x1; : : : ; xn) be a formula and k a natural number. Then  is Gaifman-localon structures from STRUCTk[�] i�  is given by a �rst-order de�nition by cases on STRUCTk[�].Furthermore, if  is given by a �rst-order de�nition by cases on STRUCTk[�], and  is in a logic L18



that is closed under �rst-order operations, then each class Ci of the corresponding partition is de�nableby a sentence in L.Proof: That a formula given by a �rst-order de�nition by cases is Gaifman-local follows from localityof �rst-order formulae. Indeed, lr( ) � maxmi=1flr(�i)g. For the converse, assume that  is of localityrank r. We know that there exists a bound, M = f�(k; r; n), on the number of di�erent isomorphismtypes of r-neighborhoods of n-tuples in structures from STRUCTk[�], see Lemma 6.1. Let �1; : : : ; �Mbe an enumeration of those isomorphism types, and let �i(~x) be the �rst-order formula given by Lemma6.2 saying that ~x r-realizes �i. Let �i be the sentence 9~y(�i(~y)^ (~y)) (note that �i is not necessarilyin L, unless L is closed under �rst-order operations). We now claim that  (~x) is equivalent to'(~x) = M_i=1(�i(~x) ^ �i)on structures from STRUCTk[�]. Indeed, if A 2 STRUCTk[�] and A j=  (~a), assuming that ~a realizes�i in A, we see that A j= �i and thus A j= '(~a). Conversely, let A j= '(~a); that is, A j= �i(~a) andA j= �i for some i. In particular, there exists an n-tuple~b such that A j= �i(~b)^ (~b). Since A j= �i(~b),we obtain ~a �Ar ~b, and thus A j=  (~a) by locality, which proves the claim.Finally, for each subset I � f1; : : : ;Mg, let �I = (Vi2I �i)^ (Vi62I :�i), and let �I(~x) be a �rst-orderformula equivalent to Wi2I �i(~x). Then we still have (~x) $ _I�f1;:::;Mg(�I(~x) ^ �I):Since the classes CI = fA 2 STRUCTk[�] j A j= �Ig form a partition of STRUCTk[�], the above givesthe desired �rst-order de�nition by cases. Furthermore, the second claim follows from the proof. 2This proposition gives us yet another proof of the bounded degree property of arbitrary local formulae(assuming the BDP of �rst-order formulae). Indeed, for each k, the upper bound on deg count( [A])for A 2 STRUCTk[�] can be calculated as the maximum of f�i(k), where �is come from the �rst-orderde�nition by cases of  , and f�i is the function giving the bound for �rst-order formula �i.As another corollary of the above characterization of locality, we have the following Ramsey-styleproperty, similar to those studied in [4].Corollary 6.8 Let C be an in�nite class of structures in STRUCTk[�]. Let  (~x) be a Gaifman-localformula. Then there exists an in�nite subclass C0 � C and a �rst-order formula '(~x) that is equivalentto  on C0. That is, A j= 8~x( (~x)$ '(~x)) for all A 2 C0. 2Studying the bounded degree property on structures of small degree appears to be of little interest,since any query producing a result that has a small number of in- and out-degrees will have theBDP. This leads to an easy characterization of formulae that have the BDP on structures of smalldegree. Namely, let R be an n-ary relational symbol, and �m a formula in the language fRg suchthat A j= �m(~a) i� ~a 2 RA and there are at most m distinct vectors of the form deg count(b)under deg count(ai), ai 2 ~a, in the lexicographic order. Here by deg count(b) we mean the vector(degree1(RA; b); : : : ; degreen(RA; b)). Note that �m is easily de�nable in L!1!. Thus, formulae havingthe bounded degree property on structures of small degree can be characterized as those of the form�m['(~x)=R(~x)], where ' is an arbitrary L!1! formula (that is, each occurrence of R(~x) is replaced by'(~x)). 19



7 ConclusionWe examined the main notions of locality of �rst-order formulae, and proved that these notions areclosely related. We showed that the Hanf-locality implies the Gaifman-locality for open formulae,and the strong Gaifman-locality for sentences implies the Hanf-locality. Each of these implies thebounded degree property, which is one of the easiest tools for proving inexpressibility results. Ourpresentation goes beyond the �rst-order case, and thus allows us to infer new results for logics withunary quanti�ers and counting.We believe that the most challenging problem is to extend these techniques to the ordered setting.Note that on ordered structures all queries are trivially strongly Gaifman-local; this is simply becausethe distance between any two elements in the Gaifman graph of an ordered structure is at most 1.Thus, to obtain interesting results one should restrict the attention to order-independent queries, suchas the transitive closure. More precisely, we are interested in structures of the form hA;R1; : : : ; Rl; <i,where, in addition to �-relations R1; : : : ; Rl, we have a binary relation < which is interpreted as a linearorder. When we talk about neighborhoods, we mean neighborhoods in the �-reduct hA;R1; : : : ; Rli {this gives us the de�nitions of all the notions of locality. Finally, if we have a �-structure A, and anordering < on A, by A< we denote the corresponding ordered structure. The order-independence ofa query  (~x) in a language that includes both � and < means that for any A, and any two orderings<1 and <2, we have A<1 j=  (~a) i� A<2 j=  (~a) for every ~a.The �rst natural question is whether the locality properties of �rst-order logic could be extended tothe order-independent setting. A positive answer to this question was recently obtained by Groheand Schwentick [13], who proved that all order-independent queries in FO are Gaifman-local. On theother hand, the corresponding problem for Hanf-locality is still open.It would be tempting to conjecture that the Gaifman-locality of FO+COUNT could also be extendedto the case of order-independent queries. Indeed, this would imply that deterministic transitive closureis not in TC0, which in turn would imply the separation of TC0 and DLOGSPACE. However, thefollowing counterexample shows that this conjecture, made in [21], is false.Proposition 7.1 There is an order-independent query  in FO + COUNT which does not have thebounded degree property, and hence is not Gaifman-local.Proof: Consider structures of the type A = hA;P;Ei, where P � A and hA;Ei is a directed graphsuch that E � P 2 is the graph of a successor relation. Let �(x; y) be a formula of FO+COUNT in theextended signature fP;E;<g saying that x 2 P and card (fa 2 P j a < xg) = card (fb 2 A j b < yg).Thus, for each ordering < of A, � de�nes in A< a bijection from P to an initial segment P 0 of <. LetE0 be the image of the relation E under this bijection. Clearly E0 is de�nable in A< by a formula ofFO + COUNT, and the graph hP 0; E0i is an isomorphic copy of hP;Ei.It is known that the BIT predicate corresponding to an ordering < is de�nable in FO+COUNT (see[3]). The BIT predicate in turn can be used for encoding subsets of P 0 by elements of A as follows: foreach a 2 A, let Sa = fb 2 P 0 j BIT(b; a)g. If the initial segment P 0 is of length at most log(card (A)),then all subsets of P 0 are encoded by at least one element, i.e., for every S � P 0 there is a 2 A suchthat S = Sa. Hence, assuming that(�) card (P ) � log(card (A))we can simulate monadic second-order quanti�ers over P 0 by �rst-order quanti�ers over A. In par-ticular, there is a formula '0(x; y) of FO + COUNT such that if (�) holds, then for all a; b 2 P 0,20
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