
Certain Answers as Objects and Knowledge

Leonid Libkin
School of Informatics, University of Edinburgh

Abstract

The standard way of answering queries over incomplete
databases is to compute certain answers, defined as the
intersection of query answers on all complete databases
that the incomplete database represents. But is this uni-
versally accepted definition correct? We argue that this
“one-size-fits-all” definition can often lead to counter-
intuitive or just plain wrong results, and propose an al-
ternative framework for defining certain answers.
The idea of the framework is to move away from the
standard, in the database literature, assumption that
query results be given in the form of a database ob-
ject, and to allow instead two alternative representations
of answers: as objects defining all other answers, or
as knowledge we can deduce with certainty about all
such answers. We show that the latter is often easier
to achieve than the former, that in general certain an-
swers need not be defined as intersection, and may well
contain missing information in them. We also show that
with a proper choice of semantics, we can often reduce
computing certain answers – as either objects or knowl-
edge – to standard query evaluation. We describe the
framework in the most general way, applicable to a va-
riety of data models, and test it on three concrete rela-
tional semantics of incompleteness: open, closed, and
weak closed world.

1 Introduction
Handling incomplete information is one of the oldest top-
ics in database research. It has been tackled both from the
database perspective, resulting in classical notions of the
semantics and complexity of query evaluation (Abiteboul,
Kanellakis, and Grahne 1991; Imielinski and Lipski 1984),
and from the AI perspective, providing an alternative view of
the problem, see, e.g., (Reiter 1982; Lenzerini 1991). With
the shifting focus in database applications, owing to the ever
increasing amounts of data as well as data heterogeneity, the
problem of incomplete information is becoming much more
pronounced. It appears in many important application ar-
eas such as data integration (Lenzerini 2002), data exchange
(Arenas et al. 2014), inconsistent databases (Bertossi 2011),
probabilistic data (Suciu et al. 2011), and data quality (Fan
and Geerts 2012).

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The central problem in the database field is of course
query answering, and in the presence of incompleteness,
one looks for certain answers: those that do not depend on
the interpretation of unknown data. The concept was first
mentioned in (Grant 1977) and formally defined 35 years
ago in (Lipski 1979) as follows. Assume that the seman-
tics [[D]] of an incomplete database D is given as the set
of all complete databases D′ which D can represent. Then
the certain answer to Q on D is defined as cert∩(Q,D) =⋂
{Q(D′) | D′ ∈ [[D]]}. Since database queries produce col-

lections (sets, multisets, etc.), it makes sense to talk about
their intersection. This definition has been universally ap-
plied to all the semantics of incompleteness, and in all the
scenarios such as those listed above. The intuition is that
this gives us the set of tuples independent of the interpreta-
tion of the missing information in D. Such a universal adop-
tion of this basic definition has another consequence: certain
answers themselves contain no missing information. In fact
many algorithms for computing certain answers have, as the
last step, elimination of any objects (say, rows in relational
databases) with missing data.

The question that we address here is the following: Is this
standard “one-size-fits-all” definition really the right one to
use for all the semantics, and all the applications? The an-
swer, as we shall argue, is negative: the standard intersection
semantics, as well as the assumption that no missing infor-
mation is present in the answers, leads to many problems,
and crucially to producing meaningless query answers.

To argue that this is the case, and to explain some basic
ideas behind the alternative approach we present here, note
that in the database field, one tends to operate with objects
(i.e., relations, XML documents, graph databases, etc.); in
particular, queries take objects and return objects. Thus, the
idea behind certain answers is to find an object A represent-
ing the set of objects Q([[D]]) = {Q(D′) | D′ ∈ [[D]]}. Such
an object A must contain information common to all the ob-
jects in Q([[D]]): that is, it must be no more informative than
any of the objects in Q([[D]]).

Now take a simple example: we have a relation R =
{(1, 2), (3,⊥)} in a database, where ⊥ represents a null,
or a missing value. The query Q returns R itself. Then
cert∩(Q,D)={(1, 2)} under every reasonable semantics of
incompleteness. But is it less informative than all of Q(D′)
forD′ ∈ [[D]]? The answer depends on the semantics. Under

the common open-world semantics, the answer is yes: in fact
(1, 2) is precisely the greatest lower bound of Q([[D]]) under
the ordering whose meaning is “being less informative”. But
under the equally common closed-world semantics, the an-
swer is no. Even worse, (1, 2) is not less informative than
any of the answers Q(D′) for D′ ∈ [[D]] which are of the
form {(1, 2), (3, n)} for different values n. Indeed, under
the closed world semantics, the answer {(1, 2)} contains ad-
ditional information that no tuple except (1, 2) is present.
Thus, returning just (1, 2) in this case makes no sense at all.

The problem with returning the single tuple (1, 2) as the
certain answer becomes even more pronounced if we fol-
low the approach, pioneered by (Reiter 1982), that views
databases as logical theories and query answering as log-
ical implication. The fact R(1, 2) is certainly implied by
the database. But is it the only fact that is implied? Of
course not: under the open-world semantics, we can deduce
∃x R(1, 2)∧R(3, x) with certainty, adding the fact that there
is a tuple whose first component is 3. And under the closed
world semantics, we know for certain even more, for in-
stance ∃x∀y (y = 1 ∨ y = 2 ∨ y = 3 ∨ y = x), since
we cannot expand the database.

Even from this simple example, we learn a few lessons:
• Certain answers can be presented as both objects and log-

ical formulae;
• they depend on both logical languages and semantics

used; and
• taking intersection and removing missing values from the

answers is not always the right way to compute them.
Note that viewing answers as formulae brings us closer

to knowledge bases. The difference though is that while in
databases we start with objects and produce objects, and in
querying knowledge bases we start with logical theories and
produce logical theories, here we may also combine the two,
starting with an object, and returning a formula, or a theory,
as the result.

The goal of this paper is to develop an alternative frame-
work for handling certain answers to queries. For that, we
combine the approaches to viewing databases as objects
(Imielinski and Lipski 1984) and as logical theories (Reiter
1982), rather than treat them separately. Specifically, the key
elements of our framework are as follows.
• Certain answers can be viewed as either objects or theo-

ries, depending on the semantics, and the logical formal-
ism used. The former is in line with the standard database
approach, while the latter defines certain knowledge about
query answers over incomplete databases.

• Both ways are based on extracting certain information
from a set of objects. Each way defines certainty as a
greatest lower bound: either of a set of objects, or the
theory of that set of objects, with the ordering meaning
“being more informative”.

• Proper query answering is based on the notion of repre-
sentation systems: these are a natural relaxation of a rather
restrictive concept of what database people call strong
representation systems. Representation systems let one
define important sets of objects by logical formulae, in
the spirit of (Reiter 1982).

• Under the choice of the right semantics for both query
inputs and query answers, certain answers – as both ob-
jects and knowledge – can be found by straightforward
database query evaluation. Thus, with the correct choice
of semantics and representation system, we can use ex-
isting query evaluation techniques for obtaining correct
answers in the presence of incomplete information.

• In general, it is easier to find certain answers as knowl-
edge as opposed to certain answers as objects: sometimes
the former exists and the latter does not. Thus, represent-
ing certain knowledge about query answers is not a mere
convenience, it may well be a necessity.

Most of the results in the paper are shown in an abstract
setting, for two reasons. First, it makes them applicable to
other data models, beyond relational databases (e.g., XML
and graph data). Second, it helps us see the essential condi-
tions that need to be imposed on queries and the semantics
of incompleteness, without being too “clouded” by details of
a particular data model. At the same time we use three com-
mon relational semantics – open world, closed world, and
weak closed world – to translate general results into con-
crete examples, to test the approach.
Organization. After presenting basic facts about relational
incompleteness in Section 2, we introduce the abstract set-
ting and notions of certainty as objects and knowledge in
Section 3. Section 4 defines representation systems and con-
nects knowledge certainty with greatest lower bounds. Sec-
tion 5 defines certain answers for queries, and Section 6
shows how to compute them. Summary and future work are
in Section 7.

2 Background: relational incompleteness
Incomplete databases These have two types of values:
constants (e.g., 1, 2, . . .) and nulls. We thus assume count-
ably infinite sets of constants, denoted by Const, and of
nulls, denoted by Null. Nulls themselves are denoted by ⊥,
sometimes with sub- or superscripts.

A relational vocabulary (often called schema in database
literature) is a set of relation names with associated arities.
An incomplete relational instance D assigns to each k-ary
relation symbol R from the vocabulary a k-ary relation RD

over Const ∪ Null, i.e., a finite subset of (Const ∪ Null)k.
If the instance D is clear from the context, we may write R
instead ofRD. Sets of constants and nulls that occur inD are
denoted by Const(D) and Null(D). The active domain of D
is adom(D) = Const(D) ∪ Null(D). A complete database
D has no nulls, i.e., adom(D) ⊆ Const.

Semantics and valuations A valuation of nulls on an in-
complete database D is a map v : Null(D) → Const as-
signing a constant value to each null. It naturally extends
to databases, so we can write v(D) as well. The standard
semantics of incompleteness in relational databases are de-
fined in terms of valuations, see (Abiteboul, Hull, and Vianu
1995; Imielinski and Lipski 1984). These are the closed
world assumption, or CWA semantics:

[[D]]CWA = {v(D) | v is a valuation},

and the open-world assumption, or OWA semantics:

[[D]]OWA =
{
D′

∣∣∣∣ D′ is complete and
v(D) ⊆ D′ for some valuation v

}
.

We shall also consider the weak CWA, or WCWA semantics,
inspired by (Reiter 1980), given by

[[D]]WCWA =
{
v(D) ∪D′

∣∣∣∣ v is a valuation and
adom(D′) ⊆ adom(v(D))

}
.

That is, under CWA, we simply instantiate nulls by con-
stants; under OWA, we can also add arbitrary tuples, and
under WCWA, we can only add tuples formed by elements
already present. For instance, if D0 = {(⊥,⊥′)}, then
[[D]]CWA only has instances {(c, c′)} for c, c′ ∈ Const, while
[[D]]WCWA can have in addition instances that add to (c, c′) tu-
ples (c, c), (c′, c′), and (c′, c), and [[D]]OWA has all instances
containing at least one tuple.

Information orderings With an arbitrary semantics [[]] of
incompleteness, we can associate an information ordering

D � D′ ⇔ [[D′]] ⊆ [[D]].
The meaning is that D′ is more informative than D. Indeed,
the more possible objects we have in the semantics of an
incomplete database, the less we know about it. Note that
� is a preorder, i.e., it is reflexive and transitive, but both
D � D′ and D′ � D may be true if [[D]] = [[D′]].

We write �∗ for the ordering given by [[]]∗, where ∗ is
one of CWA, WCWA, or OWA. These can be described in
terms of homomorphisms. Given two relational databases
D and D′, a homomorphism h : D → D′ is a map from
adom(D) to adom(D′) such that h(c) = c for each con-
stant c, and such that for every relation symbolR and a tuple
t̄ ∈ RD, the tuple h(t̄) is in RD′

. The image of the homo-
morphism is denoted by h(D). A homomorphism is onto if
adom(h(D)) = adom(D′), and strong onto if D′ = h(D).

It is known (Libkin 2011; Gheerbrant, Libkin, and Sir-
angelo 2013) that D �∗ D′ iff there exists a
• homomorphism h : D → D′, for ∗ =OWA;
• onto homomorphism h : D → D′, for ∗ =WCWA;
• strong onto homomorphism h : D → D′, for ∗ =CWA.

Classical definition of certain answers Given an incom-
plete database D, a semantics of incompleteness [[]], and a
query Q, the standard notion of certain answers under [[]] is

cert∩(Q,D) =
⋂
{Q(R) | R ∈ [[D]]}.

Note that cert∩(Q,D) cannot contain any tuples with nulls.
In some cases, these answers are obtained by almost

straightforward query evaluation, namely by evaluating
Q(D) and then throwing away the tuples with nulls. We
shall denote this by QC(D). For instance, if the query Q just
returns a relation R, and RD = {(1, 2), (1,⊥)}, then both
QC(D) and cert∩(Q,D) are {(1, 2)}. In general of course
the two need not coincide, as finding certain answers may
be computationally very expensive: for instance, undecid-
able under OWA, or CONP-hard under CWA for first-order
queries (Abiteboul, Kanellakis, and Grahne 1991).

Logics Most of database query languages are based on
first-order predicate logic, or FO, whose formulae are built
from relational atoms R(x̄), where R is a vocabulary sym-
bol, equational atoms x = y, and are closed under Boolean
connectives ∧,∨,¬ and quantifiers ∃ and ∀.

The fragment that disallows ¬ and ∀ (i.e., has ∧,∨,∃)
is referred to as existential positive formulae, denoted by
∃Pos. In terms of their expressiveness, they correspond pre-
cisely to unions of conjunctive queries (although ∃Pos for-
mulae can be more compact).

The fragment without negation (i.e., the ∧,∨,∃,∀ frag-
ment) is referred to as positive formulae, denoted by Pos.

It is known that cert∩(Q,D) = QC(D) for ∃Pos queries
under OWA (Imielinski and Lipski 1984), and for Pos
queries under WCWA (Gheerbrant, Libkin, and Sirangelo
2013). There is a fragment for which the equality holds un-
der CWA as well, and it will be given later.

3 Objects and knowledge
The key idea, as explained in the introduction, is to decou-
ple objects and their descriptions in terms of some logical
formalisms, i.e., to decouple objects and knowledge about
them. We want to do this at the highest level of abstrac-
tion, so that the framework would not be limited to just rela-
tional databases, but instead would be applicable across mul-
tiple data models. For this, we use a very minimalist setting
inspired by abstract model theory (Barwise and Feferman
1985) or information systems (Gunter 1992), with some spe-
cific features tailored to handle incompleteness, as also used
in (Libkin 2011; Gheerbrant, Libkin, and Sirangelo 2013).

We have two basic entities: (database) objects, and formu-
lae they satisfy. Objects themselves are either incomplete or
complete, and each object has its semantics defined as the
set of more informative complete objects.

To formalize this, we define a database pre-domain as a
triple D◦ = 〈D, C, [[]]〉, where
• D is a set of database objects (e.g., relational databases

over the same schema),
• C is the set of complete objects (e.g., databases without

nulls);
• [[]] is a function from D to subsets of C; the set [[x]] ⊆ C is

the semantics of an incomplete database x.
• We require that for c ∈ [[x]], two conditions hold: c ∈ [[c]]

and [[c]] ⊆ [[x]].
The last two conditions hold in the standard semantics of
incompleteness: they say that a complete object should de-
note at least itself, and that we have less uncertainty about
an object c in the semantics of x than about x itself.

As for relational semantics seen earlier, we have the in-
formation ordering

x � y ⇔ [[y]] ⊆ [[x]].

Note that c ∈ [[x]] implies x � c, i.e., an incomplete object
is less informative than the objects it represents.

A pre-representation system is a triple RS◦ = 〈D◦,F, |=〉,
where
• D◦ is a pre-domain;

• F is a set of formulae, and
• |= is the satisfaction relation, i.e., a subset of D × F such

that x � y and x |= ϕ imply y |= ϕ.

The intuition is that formulae in F express knowledge we
possess about objects inD, and if we know something about
an object, we also know it about a more informative object.

We shall write Th(x) for the theory of x, i.e., {ϕ | x |= ϕ}
and Mod(ϕ) for models of ϕ, i.e., {x | x |= ϕ}. These are
extended to sets in the usual way: Th(X) =

⋂
x∈X Th(x)

and Mod(Φ) =
⋂

ϕ∈Φ Mod(ϕ).
Note that Mod and Th define a Galois connection between

D and F; in particular Mod(Th(·)) is a closure operator.

Certain information
Computing certain answers boils down to finding certain in-
formation contained in a set of objects; in the case of query
answering, in Q([[D]]) = {Q(D′) | D′ ∈ [[D]]}. Thus, we
need to know how to define certain information contained
in a set of objects X ⊆ D. The usual database approach is
to represent this information as another object, but of course
we argue that it can be viewed as both object and knowledge.

Certain information as object If we want to represent what
we know aboutX with certainty by an object y, this object
must be less informative than any object x ∈ X (as it
reflects knowledge contained in all other objects in X as
well). If we have two such objects y and y′, and y′ � y,
then of course we prefer y as giving us more information.
Thus, the object that we seek must be less informative
than all objects in X , and at the same time the most infor-
mative among such objects. This is precisely the greatest
lower bound of X , with respect to � (or

∧
X , using the

standard order-theoretic notation). If it is exists, we denote
it by �OX .

Certain information as knowledge We want to describe X
by a single formula summarizing what we know about it
with certainty. If X = Mod(ϕ), then ϕ is such a formula,
but generally, X need not be of the form Mod(ϕ).
So we go for the next best thing: we want a formula that
is equivalent to the theory of X . Of course two sets of
formulae are equivalent when they have the same models,
so a formula equivalent to the theory of X is a formula
ϕ such that Mod(ϕ) = Mod(Th(X)). We denote such a
formula by �KX .

Thus, certain information contained in X is described as:

• At the object level as �OX =
∧
X; and

• At the knowledge level as a formula �KX so that
Mod(�KX) = Mod(Th(X)).

We now make a couple observations about these concepts.
First, neither �OX nor �KX need exist in general (in fact
it is easy to come up with the examples of preorders without
greatest lower bounds).

Second, even if they exist, they are not unique. This is not
an issue, however, as they are equivalent. Since � is a pre-
order, the greatest lower bound is, technically speaking, a set
of objects, but every two such objects y, y′ are equivalent:

y � y′ and y′ � y, and thus [[y]] = [[y′]]. If we have mul-
tiple formulae ϕ for which Mod(ϕ) = Mod(Th(X)), then
every two such formulae ϕ,ϕ′ are equivalent: Mod(ϕ) =
Mod(ϕ′). So we shall write y = �OX or ϕ = �KX , mean-
ing y or ϕ is one of the equivalent objects or formulae.

Also note that a rudimentary case of �KX was used in
(David, Libkin, and Murlak 2010), which looked at certain
answers for XML queries. There, the set F of formulae was
D itself, and x |= y simply meant y � x. Just in that simple
case, Theorem 1 below is a consequence of (Libkin 2011).

Example Consider the example from the introduction, of a
database D containing (1, 2) and (3,⊥) in a relation R. if
X = [[D]]OWA, then �OX is justD itself, as expected. If F =
∃Pos, then �KX = ∃z R(1, 2) ∧ R(3, z). If F is the set of
ground facts and their conjunctions, then �KX = R(1, 2).

If X = [[D]]CWA, then
∧
X is still D, but we need a more

complex class to describe �KX; in fact the two formulae
above can easily be shown to violate the definition of �KX
in this case. We shall continue with this example in the next
section and present a formula �KX under CWA, that comes
from a more expressive subclass of FO.

4 Representation systems
So far we imposed no conditions on pre-representation sys-
tems. We now define representation systems, which are pre-
representation systems with two conditions imposed. These
conditions, that hold in the standard semantics of incom-
pleteness, say essentially that the sets of objects and formu-
lae are not too “thin”: there are enough complete objects, and
there are formulae defining some fairly basic sets of objects.

There are enough objects To motivate this condition,
consider a database D with a single tuple (⊥,⊥). In its se-
mantics, we are allowed to replace this tuple by an arbitrary
tuple (c, c) with c ∈ Const. Moreover, the resulting database
is isomorphic to the original one: for instance, they agree on
logical formulae not mentioning constants. Even if we have
a logical formula mentioning constants from a finite set C,
we can replace ⊥ by constants outside this set C: this is
what we mean by the existence of enough complete objects.
Then D and the result of the replacement will still agree on
formulae that only refer to constants in C.

To formalize this, define a database domain D as a tuple
〈D, C, [[]], Iso〉 where 〈D, C, [[]]〉 is a pre-domain, and Iso is a
family {≈j}j∈J of equivalence relations on D so that:

• The set [[x]]≈j
= {c ∈ [[x]] | x ≈j c} is nonempty for each

x ∈ D and j ∈ J ;
• for every j, j′ ∈ J , there is k ∈ J so that≈k ⊆≈j ∩ ≈j′ .

Coming back to the relational intuition, j ∈ J enumerate
finite sets of constants Cj ⊂ Const, and D ≈j D

′ means
that there is an isomorphism between D and D′ preserving
constants in Cj . Then the first condition says that we can
replace nulls by constants outside Cj (since Const − Cj is
infinite), and the second one says that Ck = Cj ∪ Cj′ pre-
serves constants in both Cj and Cj′ .

There are enough formulae First, we assume that formu-
lae are closed under conjunction, i.e. for ϕ,ψ ∈ F we have
ϕ ∧ ψ ∈ F with Mod(ϕ ∧ ψ) = Mod(ϕ) ∩Mod(ψ).

The second assumption is that the set ↑x = {y | x �
y} of objects more informative than x can be defined by a
formula. We shall see shortly that this is true in the classical
incompleteness semantics, and that this is equivalent to finite
axiomatizability of Th(x).

Formally the condition states that for each object x, there
is a formula δx in F, such that Mod(δx) = ↑x.

Representation systems A representation system is a
triple RS = 〈D,F, |=〉, where:

• D is a database domain and 〈D,F, |=〉 is a pre-
representation system whose formulae are closed under
conjunction;

• for each x ∈ D, there is a formula δx with Mod(δx) = ↑x;
• for each ϕ ∈ F, there is j ∈ J so that x |= ϕ ⇔ y |= ϕ

whenever x ≈j y.

The last condition is essentially the analog of the condi-
tion that a formula can only refer to finitely many constants,
and thus cannot distinguish objects equivalent with respect
to ≈j for some j.

Examples of domains and representation systems
We now provide examples of representation systems corre-
sponding to relational OWA, WCWA, and CWA semantics. We
use the notation D(σ) for the set of all relational databases
of vocabulary σ over Const∪Null, and C(σ) for the set of all
such databases that do not use nulls in Null. The database do-
mains will be of the form D∗(σ) = 〈D(σ), C(σ), [[]]∗, Iso〉,
where ∗ is one of OWA, WCWA, or CWA.

The equivalence relations Iso are as follows. Let J enu-
merate all the finite subsets of Const. Given such a finite
set C, we have D ≈C D′ if there is an isomorphism
f : D → D′ such that both f and f−1 are identity on C.

In what follows, we describe formulae F and formu-
lae δD for each D. Let PosDiag(D) be the positive dia-
gram of D in the vocabulary including constants for each
a ∈ Const, where with each null ⊥i in D we associate a
variable xi. For instance, if D contains relation R with tu-
ples (1, 2), (2,⊥1), (⊥1,⊥2), then PosDiag(D) = R(1, 2)∧
R(2, x1) ∧R(x1, x2).

OWA The OWA representation system is RSOWA(σ) =
〈DOWA(σ),∃Pos, |=〉. For each D with Null(D) =
{⊥1, . . . ,⊥n}, we have δD = ∃x1, . . . , xn PosDiag(D).

WCWA The WCWA representation system is
RSWCWA(σ) = 〈DWCWA(σ),Pos, |=〉. For each D with
Const(D) = {a1, . . . , am} and Null(D) = {⊥1, . . . ,⊥n},
the formula δD is

∃x1 . . . xn

(
PosDiag(D) ∧ ∀y (

m∨
i=1

y = ai ∨
n∨

i=1

y = xi)
)

CWA We need to define an extension of the class of pos-
itive formulae, introduced by (Compton 1983) and used re-
cently in (Gheerbrant, Libkin, and Sirangelo 2013). The
class, denoted by Pos∀G, extends Pos with a special type
of guarded formulae. It is defined as the closure of positive
atoms of the form R(x̄) and x = y under ∧,∨,∀,∃ and the
following rule: if ϕ(x̄, ȳ) is a Pos∀G formula in which all
variables in x̄ are distinct, and R is a relation symbol of the
arity |x̄|, then ∀x̄ (R(x̄) → ϕ(x̄, ȳ)) is a Pos∀G formula.

With this, the CWA representation system is defined as
RSOWA(σ) = 〈DCWA(σ),Pos∀G, |=〉. For each D with
Null(D) = {⊥1, . . . ,⊥n}, the formula δD is

∃x1, . . . , xn

(
PosDiag(D)∧

∧
R∈σ

∀ȳ
(
R(ȳ) →

∨
t̄∈RD

ȳ = t̄
))
,

where the length of ȳ and t̄ is the arity ofR, and ȳ = t̄means∧
i≤arity(R)(yi = ti).

Proposition 1 Each of RSOWA(σ), RSWCWA(σ), and
RSCWA(σ) is a representation system.

Proof sketch. Conditions on Iso are easily checked: sets
[[D]]C are nonempty, since one can replace nulls with distinct
constants from Const−C, and≈C∪C′ ⊆≈C ∩ ≈C′ . Mono-
tonicity follows from the description of orderings �∗ by the
existence of homomorphisms (see Section 2) and the fact
that ∃Pos (resp., Pos and Pos∀G) formulae are preserved
under homomorphisms (resp., onto and strong onto), see
(Rossman 2008; Chang and Keisler 1990; Compton 1983).
And the properties of δD again follow from the properties of
the ordering, as one can easily check that Mod(δD) are the
structures into which there is a homomorphism (resp., onto
or strong onto homomorphism) from D. �

Properties of representation systems
We now collect some useful properties of representation sys-
tems. First, we look at certain information contained in sets
[[x]] and prove that, as expected, it is represented at the object
level by x, and at the knowledge level by δx.

Proposition 2 In a pre-domain, �O[[x]] = x for every x.

Proof. Assume that x 6=
∧

[[x]]. Then there is y 6� x such
that y � c for each c ∈ [[x]]. Since y 6� x we have [[x]] 6⊆ [[y]],
i.e., there is c ∈ [[x]] such that c 6∈ [[y]]. But since y � c, we
have [[c]] ⊆ [[y]], and since c ∈ C, this implies c ∈ [[y]] as
c ∈ [[c]], which gives us the desired contradiction. �

Let ≈=
⋃

j∈J ≈j , and let [[x]]≈ = {c ∈ [[x]] | c ≈ x}. In
case of relational databases, D ≈ D′ if D,D′ are isomor-
phic objects; for instance,D = {(⊥,⊥)} andD′ = {(1, 1)}
are isomorphic. Note that FO formulae not using constants
are preserved by ≈. In general though, objects related by ≈j

may not agree on all the formulae of F (e.g., D and D′ do
not agree on ∃x (x = 1)) and hence there are potentially for-
mulae in Th([[x]]≈j

) which are not satisfied by x. However,

Proposition 3 In a representation system, Th([[x]]) =
Th([[x]]≈) = Th(x) for every x.

Proof. It suffices to prove Th([[x]]≈) = Th(x) since
Th(x) ⊆ Th([[x]]) ⊆ Th([[x]]≈). Let c ∈ [[x]]≈; then x � c
and thus Th(x) ⊆ Th(c), and hence Th(x) ⊆ Th([[x]]≈).
Conversely, take ϕ ∈ Th([[x]]≈). We know that there is
j ∈ J so that whenever y ≈j y′, then y, y′ agree on ϕ.
Note that ϕ ∈ Th([[x]]≈j

), since [[x]]≈j
⊆ [[x]]≈. We know

that [[x]]≈j
6= ∅, so pick c ∈ [[x]]≈j

. Since ϕ ∈ Th([[x]]≈j
),

we have c |= ϕ, and since c ≈j x, we have x |= ϕ. Hence
ϕ ∈ Th(x), as required. �

Now we can show:

Proposition 4 In a representation system, δx = �K[[x]] for
every x.

Proof. We first show that Mod(Th(x)) = ↑x. Let y � x. By
monotonicity we have y ∈ Mod(Th(x)). Conversely let y 6�
x; then δx ∈ Th(x) − Th(y) and hence y 6∈ Mod(Th(x)).
Thus indeed Mod(Th(x)) =↑x. Since ↑x = Mod(δx) and
Mod(Th(x)) = Mod(Th([[x]])) by Proposition 3, we have
Mod(δx) = Mod(Th([[x]])), i.e., δx = �K[[x]]. �

Corollary 1 In a representation system:

• Mod(δx) = Mod(Th(x)), and
• �O[[x]] |= �K[[x]]
for every x.

We finally give a condition equivalent to the existence of
formulae δx. A set Φ of formulae is finitely axiomatizable if
there is a finite set Φ0 such that Mod(Φ) = Mod(Φ0).

Proposition 5 In a pre-representation system RS◦ whose
formulae are closed under conjunction, the following are
equivalent:

1. Each Th(x) is finitely axiomatizable, and Th(x) ⊆ Th(y)
implies x � y for all x, y;

2. for each x, there is a formula δx so that Mod(δx) = ↑x.

Proof sketch. If Φ is a finite axiomatization of Th(x), it is
easy to see that δx can be taken to be

∧
{ϕ | ϕ ∈ Φ}. Con-

versely, one shows that δx axiomatizes Th(x). �

�K�K�K as a greatest lower bound
We now show that �KX can be viewed as a greatest lower
bound as well. Note that we have a well-known preorder on
sets of formulae, namely implication: Φ ` Ψ iff Mod(Φ) ⊆
Mod(Ψ). Thus, for any set of formulae Φ, we can look at
its greatest lower bound in this preorder, i.e., a formula ϕ
so that ϕ ` Φ, and whenever ψ ` Φ, we have ψ ` ϕ. If
such a formula exists, it is denoted by

∧
Φ. Note that as

with objects, ` is a preorder, so technically
∧

Φ is a set of
formulae, all of which, however, are equivalent, so we shall
write ϕ =

∧
Φ when ϕ is one of such formulae.

Theorem 1 In a representation system, �KX =
∧

Th(X)
for every set X of objects.

Proof. Assume that α =
∧

Th(X) exists. We have
Mod(α) ⊆ Mod(ϕ) for each ϕ ∈ Th(X) and thus
Mod(α) ⊆ Mod(Th(X)). Suppose, for the sake of con-
tradiction, that Mod(α) (Mod(Th(X)), and take y ∈
Mod(Th(X))−Mod(α). Since y |= ϕ for each ϕ ∈ Th(X),

we have that the same is true for every z � y, and hence
Mod(δy) ⊆ Mod(ϕ) for each ϕ ∈ Th(X). Thus δy `
Th(X), and by the definition of α as the greatest lower
bound, we have δy ` α, and thus Mod(δy) ⊆ Mod(α).

Now assume Mod(α) ⊆ Mod(δy). Then Mod(α) =
Mod(δy) and y ∈ Mod(α), a contradiction. Hence,
Mod(α) 6⊆ Mod(δy). But then Mod(δy) 6⊆ Mod(α) since
y 6|= α, and at the same time Mod(δy) ⊆ Mod(Th(X))
since y ∈ Mod(Th(X)). Thus sets Mod(δy) and Mod(α)
are incomparable subsets of Mod(Th(X)): in particular,
α ` Th(X), δy ` Th(X), and yet neither α ` δy nor δy ` α
holds, contradicting the assumption that α =

∧
Th(X).

This shows that Mod(Th(X)) − Mod(α) = ∅ and thus
Mod(α) = Mod(Th(X)).

Conversely, suppose we have α so that Mod(α) =
Mod(Th(X)) =

⋂
ϕ∈Th(X) Mod(ϕ). Then Mod(α) ⊆

Mod(ϕ) for each ϕ ∈ Th(X) and thus α ` ϕ for each
such ϕ. If there is any other formula ψ such that ψ ` ϕ for
each ϕ ∈ Th(X), then Mod(ψ) ⊆

⋂
ϕ∈Th(X) Mod(ϕ) =

Mod(α) and thus ψ ` α, proving that α =
∧

Th(X). �

5 Defining certain answers to queries
Now we move to answering queries. A query is a mappingQ
that takes an object and returns another object. For instance,
relational queries take relational databases and return rela-
tional databases (most commonly, single relations: queries
in FO, or in commercial languages such as SQL, are such).

Thus, for two database domains D = 〈D, C, [[]], Iso〉 and
D′ = 〈D′, C′, [[]]′, Iso′〉, a query Q : D → D′ is a mapping
associating with an object x ∈ D its answer, Q(x) ∈ D′.

We require that if x � y then Q(x) �′ Q(y), where �′
is the ordering associated with the semantics [[]]′. Indeed,
the semantics of answers must be such that if we know more
about the input, then we know more about the output. In par-
ticular, using blindly the same semantics for both databases
and query results (as is often actually done) does not neces-
sarily make sense.

Certain answers to Q on an object x represent certain in-
formation in the set Q([[x]]) = {Q(c) | c ∈ [[x]]}. We have
seen that there are two ways to define it: as object, and as
knowledge. For the letter, we need to have a representation
system RS = 〈D′,F, |=〉 over the target domain D′. If we
have it, we can either extract the most general object repre-
senting Q([[x]]), or the most general knowledge representing
Th(Q([[x]])). That is, we have two certain answers notions,
as objects and as knowledge:
• As objects: certO(Q, x) = �OQ([[x]]);
• As knowledge: certK(Q, x) = �KQ([[x]]).

Comparing with relational theory Let us now review
the standard approach to query answering in relational
databases. Ideally, one tries to find a query answer A so
that [[A]]′ = Q([[D]]). This is often impossible, in fact even
for very simple queries (Imielinski and Lipski 1984). So the
next attempt is to find a formula ϕQ,D in some logical for-
malism so that

Mod(ϕQ,D) = Q([[D]]) (1)

When this happens, one refers to such a logical formalism
as a strong representation system (see (Abiteboul, Hull, and
Vianu 1995; Imielinski and Lipski 1984)), which explains
why we used the name ‘representation system’.

The problem is that the structure of Q([[D]]) may be too
“irregular” to be described by a nice formalism. For in-
stance, it is known that under CWA, for relational calcu-
lus queries formulae ϕQ,D can be of the following form:
∃ū (α(ū) ∧

∧
R∈σ ∀x̄ (R(x̄) ↔

∨
i(x̄ = v̄i ∧ βi(x̄, ū)))),

where α and βi are boolean combinations of equalities, v̄is
combine variables from ū and constants, and ū ranges over
the underlying domain of constants rather than the active do-
main, see (Imielinski and Lipski 1984). Syntactically, this is
quite heavy, and it works only under the CWA.

If the set Q([[D]]) does not happen to be of the form
Mod(ϕ) for some nice formula ϕ, the approach adopted in
the database literature is to consider the object

⋂
Q([[D]])

as the answer. This is completely ad hoc, however: as we
have seen in the Introduction (and as we shall see in the next
section), in general it does not have much in common with
certain information contained in Q([[D]]).

It seems much better to ask then, in place of (1), for an an-
swer ϕQ,D that is equivalent to the theory of Q([[D]]), rather
than defining Q([[D]]) precisely. That is, we replace (1) with

Mod(ϕQ,D) = Mod(Th(Q([[D]]))) (2)

which is, of course, our definition of certain answers ex-
pressed as knowledge.

Note that (1) implies (2): this is an immediate conse-
quence of the fact that Mod(·) and Th(·) define a Galois
connection. Thus, the notion of certain answers as knowl-
edge in a representation system is a weakening of the notion
of the strong representation system, but much less ad hoc
that replacing Q([[D]]) with

⋂
Q([[D]]).

Example: when representation system makes a dif-
ference We can easily construct examples of relational
queries Q and representation systems so that (1) fails while
(2) is easily achieved. Suppose we have a schema with two
relationsR,S (for simplicity, just sets), and the queryR−S
(in FO, R(x) ∧ ¬S(x)), and assume closed-world seman-
tics. Consider D in which R = {1, 2} and S = {⊥}.
Then Q([[D]]CWA) = {{1}, {2}, {1, 2}}. Suppose the rep-
resentation system is 〈D(σ),∃Pos, |=〉. Then there is no
α with Mod(α) = Q([[D]]CWA) but there is one such that
Mod(α) = Mod(Th(Q([[D]]CWA))); in fact, the obvious an-
swer α = A(1) ∨A(2) does the job.

6 Computing certain answers
We now look at computing certain answers. We show that
with the proper semantics of query answering, where more
informative inputs lead to more informative answers, finding
certain answers is reduced to query evaluation:

(a) for objects, certO(Q, x) = Q(x);
(b) for knowledge, certK(Q, x) = δQ(x).

Crucially, (a) is a corollary of (b): without a representation
system for query answers, (a) may not be true. We explain

how these general results apply to relational OWA, WCWA,
and CWA semantics. We also revisit the intersection-based
definition of certain answers and show that it only makes
sense with restricted representation systems under OWA, and
is just plain wrong under CWA. Finally, we show that the
knowledge approach to certain answers gives us extra flexi-
bility compared to the object approach.

Recall that queries are required to be monotone: x � y
implies Q(x) �′ Q(y). We need an additional condition
of genericity, standard in the database context (see, e.g.,
(Abiteboul, Hull, and Vianu 1995)). In our abstract frame-
work it is expressed as follows: for every j, there is k so
that x ≈k y implies Q(x) ≈′j Q(y). Essentially, this con-
dition says that queries applied to isomorphic objects return
isomorphic objects. For instance, for FO queries that do not
refer to constants, it is usually formulated as D ≈ D′ ⇒
Q(D) ≈ Q(D′). We use a slightly more refined version that,
in the case of logically expressed queries, accounts for con-
stants by using multiple equivalence relations. All queries
expressed in FO and other logics over the vocabulary of
relation symbols and constants are generic in the standard
database domains for relational databases.

Theorem 2 Let Q : D → D′ be a monotone generic query,
and let RS = 〈D′,F, |=〉 be a representation system. Then,
for every object x,

• certO(Q, x) = Q(x), and
• certK(Q, x) = δQ(x).

Proof. We start by showing certK(Q, x) = δQ(x). By the
definition of certK(Q, x) as �KQ([[x]]), it suffices to show
that

Mod(δQ(x)) = Mod(Th(Q([[x]]))) (3)

for every x. Since we know that Mod(δz) = Mod(Th(z)),
for every z, by Corollary 1, we just need to show

Th(Q([[x]])) = Th(Q(x)) (4)

to conclude (3). Suppose ϕ ∈ Th(Q(x)). Since c � x for
every c ∈ [[x]], then Q(x) �′ Q(c) and Q(c) satisfies ϕ
as well by the properties of representation systems, proving
that ϕ ∈ Th(Q([[x]])).

Conversely, if ϕ ∈ Th(Q([[x]])), consider j such that
z ≈′j z′ implies that z, z′ agree on ϕ for every z, z′ (which
exists by the definition of representation systems). By gener-
icity, we have k so that y ≈k y

′ implies Q(y) ≈′j Q(y′) for
every y, y′. We know that [[x]]≈k

is nonempty; this pick an
element c in this set. We have c ∈ [[x]] and c ≈k x. Hence
(a) Q(c) ∈ Q([[x]]) and (b) Q(c) ≈′j Q(x). Then (a) implies
that Q(c) |= ϕ, and (b) then implies that Q(x) |= ϕ, thus
showing that ϕ ∈ Th(Q(x)) and proving (4) and (3).

Now we prove the result about certain answers at the ob-
ject level. Since Q is monotone, we have Q(x) �′ z for
each z ∈ Q([[x]]) (we denote this by Q(x) �′ Q([[x]]). Sup-
pose we have y �′ Q([[x]]). Then Th(y) ⊆ Th(Q([[x]])) and
by (4), Th(y) ⊆ Th(Q(x)). Since δy ∈ Th(y), we have
δy ∈ Th(Q(x)), and thus Q(x) |= δy and y �′ Q(x).
Thus, Q(x) is the greatest lower bound of Q([[x]]), i.e.,
Q(x) = certO(Q, x). �

Remark It is easy to construct examples of monotone queries
for which, in the absence of a representation system over
query answers, certO(Q, x) 6= Q(x). Thus, it is essential to
go via certain answer as knowledge to get its object repre-
sentation as well.

The following easy observation shows that classes of
queries for which certain answers can be computed by di-
rectly evaluating the query are closed under composition,
giving us a way of producing more complex queries that be-
have well with respect to certain answer computation.
Proposition 6 If Q : D → D′ and Q′ : D′ → D′′ are
monotone and generic, then so is Q′ ◦Q : D → D′′.

Genericity applies to most of the logical formalisms used
for querying databases, but not all: formalisms capable of
referring to infinitely many constants would not fall into that
category. Examples of such formalisms occur, for instance,
in data exchange, where one deals with logics that use the
predicate const(·) to distinguish constants from nulls, see
(Arenas, Barceló, and Reutter 2009; Fagin 2007).

There is another condition we can use in place of generic-
ity, namely a substitution property with respect to two repre-
sentation systems RS = 〈D,F, |=〉 and RS′ = 〈D′,F′, |=′〉.
We say that a query Q has the substitution property with re-
spect to RS and RS′ if for each ϕ ∈ F′, there exists ϕQ ∈ F
so that x |= ϕQ iff Q(x) |= ϕ. Intuitively, we can think of
both ϕ and Q given as logical formulae, and allow Q to be
substituted for predicate symbols used in ϕ.
Theorem 3 Let Q : D → D′ be a monotone query, and
assume we have representation systems RS and RS′ so that
Q has the substitution property with respect to them. Then,
for every object x,
• certO(Q, x) = Q(x), and
• certK(Q, x) = δQ(x).
Proof. We just need to prove (4) and then the proof of
Theorem 2 will apply. The Th(Q(x)) ⊆ Th(Q([[x]])) in-
clusion is proved as before. For the converse, let ϕ be in
Th(Q([[x]])); take ϕQ that exists by the substitution prop-
erty. Since Q(c) |= ϕ for each c ∈ [[x]], we have c |= ϕQ,
and thus ϕQ ∈ Th([[x]]). But we know by Proposition 3 that
Th([[x]]) = Th(x) and hence ϕQ ∈ Th(x). But now the sub-
stitution property and x |= ϕQ imply Q(x) |= ϕ, showing
ϕ ∈ Th(Q(x)) and proving the reverse inclusion. �

Certain answers for relational queries
We now look at examples of concrete domains and repre-
sentation systems for relational databases. The domains are
always D∗(σ), containing databases of vocabulary σ, with
∗ being the semantics. If a query Q returns sets of m-ary
tuples, the domain D′ will have as objects databases of vo-
cabulary σm that contains a single m-ary relation A(·). But
what will the semantics be? A natural thing to do is to as-
sume the same semantics for query answers and input data.
But will this guarantee conditions that let us apply results of
the previous section?

It turns out that for classes of queries given by the same
first-order formulae we use in representation systems RS∗,
we have all the required conditions.

Proposition 7 Consider an m-ary relational query Q :
D∗(σ) → D∗(σm). Then Q is monotone

• for ∗ =OWA: when Q is an ∃Pos query;
• for ∗ =WCWA: when Q is an Pos query;

• for ∗ =CWA: when Q is an Pos∀G query.

Moreover, for ∗ being OWA or WCWA, each such Q has the
substitution property with respect to RS∗(σ) and RS∗(σm).

Proof. It is very similar to the proof of Proposition 1, as it
follows from the preservation properties of the classes of for-
mulae we use. The second property is by a simple inspection
of the syntactic structure of the formulae. �

Corollary 2 Let Q be an m-ary relational query. Under the
OWA, WCWA, and CWA semantics, if Q comes from ∃Pos,
Pos, or Pos∀G respectively, then certO(Q,D) = Q(D) and
certK(Q,D) = δQ(D) for every database D (with δ coming
from RS∗(σm), when ∗ is OWA, WCWA, or CWA).

Returning to the first example from the introduction, as-
sume that our query just returns a relation R itself, and R =
{(1, 2), (3,⊥)}. Then, at the object level, certO(Q,R) = R
for all three semantics. Certain answers as knowledge, or
certK(Q,R) are given:

• under OWA, by the ∃Pos formula ∃x
(
R(1, 2)∧R(3, x)

)
;

• under WCWA, by the Pos formula

∃x
(
R(1, 2) ∧R(3, x) ∧ ∀y

(
y = 1 ∨ y = 2

∨ y = 3 ∨ y = x

))
;

• and under CWA, by the Pos∀G formula

∃x

 R(1, 2) ∧R(3, x)

∧ ∀y, z
(
R(y, z) → (y = 1 ∧ z = 2)

∨ (y = 3 ∧ z = x)

)
No intersection for certain answers
Now we return to the “classical” of defining certain answers
which involves throwing away tuples with nulls and com-
puting intersection, and give more evidence to the fact that
this practice does not really work, outside a fairly restric-
tive representation system under the OWA. As already men-
tioned in the preliminaries section, for the classes of queries
listed in Proposition 7, the well-known equivalences say
that cert∩(Q,D) is the same QC(D), which is Q(D) from
which tuples of nulls have been eliminated. We can also
view this as a composition of two mappings: QC is πC ◦ Q,
where πC simply keeps all tuples that only use constants.

The condition that we need on πC, and on QC, is mono-
tonicity. However, these are not guaranteed in general.

Proposition 8 The mapping πC is monotone with respect to
the ordering �OWA but it is not monotone with respect to
�CWA and �WCWA.

In fact there are ∃Pos queries Q such that QC is not
monotone with respect to �CWA and �WCWA.

Proof. Since there is the identity homomorphism from any
substructure to the structure, we have monotonicity un-
der �OWA. For closed world semantics, simply take R =
{(1, 2), (2,⊥)}. Then πC(R) = RC = {(1, 2)} and R 6�CWA

RC nor R 6�WCWA R
C. Thus the ∃Pos query can be taken to

be the query returning relation R. �

The consequences of this under WCWA and CWA are
twofold. We may easily have situations such that:

• QC(D) 6� certO(Q,D), and
• certK(Q,D) does not logically imply δQC(D).

In other words, such constant ‘certain answer’ need not rep-
resent certain information in Q([[D]]), and thus may contain
some false positives. This is also true for certain answers de-
fined as intersection because in the example used in Propo-
sition 8, we have QC(D) =

⋂
{Q(D′) | D′ ∈ [[D]]} under

both WCWA and CWA semantics.
Thus, the use of the intersection operator is indeed very

problematic under WCWA and CWA. In fact this should not
come as a surprise at all, even if we deal with query answer-
ing at the object level. The

⋂
operator is a greatest lower

bound for the ⊆ ordering, and ⊆ results in a more informa-
tive instance only under OWA, but not under closed-world
assumptions! Thus, choosing

⋂
to define certain answers for

all semantics was a completely ad hoc choice.

OWA: when intersection still makes sense We now look
at OWA, the only case where the mapping πC is monotone,
and where intersection corresponds to the greatest lower
bound in an ordering compatible with the semantics.

Given a database domain D = 〈D, C, [[]], Iso〉, let DC be
its restriction to complete objects, i.e., DC = 〈C, C, [[]], Iso〉.
It is easy to check that this is still a database domain.

Let PBCatom stand for the set of Positive Boolean Com-
binations of atoms R(c̄), with c̄ consisting only of elements
of Const. Recall that for OWA, we used the representation
system RSOWA(σ) = 〈D(σ),∃Pos, |=〉. Define a new repre-
sentation system RSC

OWA(σ) = 〈DC(σ),PBCatom, |=〉.

Proposition 9 RSC
OWA(σ) is a representation system, and if

Q is an ∃Pos query, then QC is monotone and generic with
respect to it.

Proof. Immediate from the fact that PosDiag(D) for a com-
plete D is a conjunction of atoms of the form R(c̄), and that
∃Pos queries are preserved under homomorphisms. �

Thus, for every database D, and every ∃Pos query Q, we
have certO(QC, D) = QC(D) and certK(QC, D) = δQC(D)

with respect to RSC
OWA(σ). Hence, under OWA, the tradi-

tional way of finding certain answers makes sense if we
use a representation system that only ‘cares’ about complete
databases.

Certain knowledge is more flexible
Note that for sets X of the form Q([[x]]) for monotone
generic queries Q, we have �OX |= �KX , as is implied
by Theorem 2. In general, however, this need not be the
case. The reason is that taking the greatest lower bound of

X may lose more information than taking the greatest lower
bound of Th(X), which indicates that working with certain
answers as knowledge may be preferable, as they convey
more information.

Proposition 10 There is a representation system and a set
of objects X such that �OX 6|= �KX .

Proof. Consider a domain D with the ordering x1 � x2 �
. . . � xn � . . . � x∗. We assume that all ≈js are the same,
and for each xi, there is ci � xi with xi ≈ ci. The formulas
are ϕi for i ≥ 0. Let Th(xi) = {ϕ0} ∪ {ϕj | j ≥ i} (with
Th(ci) = Th(xi)) and Th(x∗) = ∅. Let X = {xi | i 6= 0}.
Then

∧
X = x∗ and Th(X) = {ϕ0}; hence �OX = x∗

and �KX = ϕ0 and thus �OX 6|= �KX . �

We finish with examples showing that certain answer may
not exist as an object while it still exists as knowledge over
an appropriate representation system. Take a queryQ = R−
S, and a database D with RD = {1, 2} and SD = {3,⊥}.

Under CWA, we have Q([[D]]CWA) =
{
{1, 2}, {1}, {2}

}
.

If we take the greatest lower bound of these, then for �CWA

(and �WCWA) it simply does not exist. For the subset order-
ing, or the �OWA ordering, the greatest lower bound is ∅,
which is, incidentally, what a commercial DBMS would re-
turn if one runs this query in SQL (e.g., as select r.a from
r where r.a not in (select * from s)). It seems bizarre, to say
the least, to use�OWA while dealing with the CWA semantics.
However, the alternative is to return no answers at all!

This is of course yet another illustration that returning cer-
tain answers as objects is not always possible, and one needs
to return certain answers as knowledge instead. What sort of
knowledge will depend, of course, on the representation sys-
tem. If we use the set of ∃Pos formulae, then the best way
of describing certain answers will be A(1) ∨A(2).

Next, consider the same query under OWA. Then
Q([[D]]OWA) = {A | 3 6∈ A}. Again, this is not repre-
sentable by a single object: taking the greatest lower of
Q([[D]]OWA) results again in ∅, missing some valuable infor-
mation. If we use representation systems that allow nega-
tions of atomic formulae, then ¬A(3) will represent the cer-
tain answer properly.

7 Conclusions
We have argued that the standard definition of certain an-
swers in the database literature has a number of deficien-
cies, and proposed a new approach to handling queries over
incomplete databases. Its key features are as follows.

• Certain answers can be defined at two different levels:
as (database) objects, or as knowledge we possess about
query answers with certainty.

• The proposed framework, that applies to multiple data
models, defines both types of certain answers as greatest
lower bounds in orderings that capture the level of infor-
mativeness. It also leads to a proper definition of repre-
sentation systems for query answers.

• If the semantics of query answering is chosen properly,
then the process of finding certain answers is reduced to

query evaluation, at both object and knowledge level. Fur-
thermore, the knowledge level is crucial for obtaining re-
sults at the object level.

• This tells us that with the right choice of semantics, no
new tools are needed for computing query answers and
one can rely on the standard database query evaluation
engine. It also tells us that using the traditional way of
finding certain answers only makes sense under OWA, and
with restricted representation systems.

• In general, certain answers as knowledge give us more
information than certain answers as objects.

Future work. There are several directions to consider.
Commercial languages such as SQL use multi-valued logic
for reasoning. Evaluation algorithms of similar nature have
been explored in the knowledgebase literature (Levesque
1998), sometimes even using database evaluation techniques
(Liu and Levesque 2003). While not directly applicable to
relational databases, the connection is worth studying, espe-
cially for representing certain answers as knowledge.

Another direction has to do with the detailed study of the
efficiency of computing certain answers, and, if intractabil-
ity is encountered, finding either tractable restrictions, or ap-
proximation schemes, perhaps in the spirit of (Reiter 1986).

Yet another direction is to apply the framework to non-
relational models, particularly semi-structured and XML,
for which incompleteness has been studied extensively
(Abiteboul, Segoufin, and Vianu 2006; Barceló et al. 2010;
Calvanese, De Giacomo, and Lenzerini 1998; David, Libkin,
and Murlak 2010), and beyond, to graph data, where only
preliminary results have been established so far (Barceló,
Libkin, and Reutter 2014).

Acknowledgments I am grateful to Pablo Barceló and anony-
mous referees for their comments. Work partly supported by
EPSRC grant J015377.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Abiteboul, S.; Kanellakis, P.; and Grahne, G. 1991. On the rep-
resentation and querying of sets of possible worlds. Theoretical
Computer Science 78(1):158–187.
Abiteboul, S.; Segoufin, L.; and Vianu, V. 2006. Representing and
querying XML with incomplete information. ACM Transactions
on Database Systems 31(1):208–254.
Arenas, M.; Barceló, P.; and Reutter, J. 2009. Query languages for
data exchange: beyond unions of conjunctive queries. In Interna-
tional Conference on Database Theory (ICDT), 73–83.
Arenas, M.; Barceló, P.; Libkin, L.; and Murlak, F. 2014. Founda-
tions of Data Exchange. Cambridge University Press.
Barceló, P.; Libkin, L.; Poggi, A.; and Sirangelo, C. 2010. XML
with incomplete information. Journal of the ACM 58(1).
Barceló, P.; Libkin, L.; and Reutter, J. 2014. Querying regular
graph patterns. Journal of the ACM 61(1).
Barwise, J., and Feferman, S., eds. 1985. Model-Theoretic Logics.
Springer Verlag.
Bertossi, L. 2011. Database Repairing and Consistent Query An-
swering. Morgan&Claypool Publishers.

Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 1998. Semi-
structured data with constraints and incomplete information. In
Description Logics.
Chang, C., and Keisler, H. 1990. Model Theory. North Holland.
Compton, K. 1983. Some useful preservation theorems. Journal
of Symbolic Logic 48(2):427–440.
David, C.; Libkin, L.; and Murlak, F. 2010. Certain answers for
XML queries. In ACM Symposium on Principles of Database Sys-
tems (PODS), 191–202.
Fagin, R. 2007. Inverting schema mappings. ACM Transactions
on Database Systems 32(4).
Fan, W., and Geerts, F. 2012. Foundations of Data Quality Man-
agement. Morgan&Claypool Publishers.
Gheerbrant, A.; Libkin, L.; and Sirangelo, C. 2013. When is naı̈ve
evaluation possible? In ACM Symposium on Principles of Database
Systems (PODS), 201–212.
Grant, J. 1977. Null values in a relational data base. Inf. Process.
Lett. 6(5):156–157.
Gunter, C. 1992. Semantics of Programming Languages: Struc-
tures and Techniques. MIT Press.
Imielinski, T., and Lipski, W. 1984. Incomplete information in
relational databases. Journal of the ACM 31(4):761–791.
Lenzerini, M. 1991. Type data bases with incomplete information.
Inf. Sci. 53(1-2):61–87.
Lenzerini, M. 2002. Data integration: a theoretical perspective.
In ACM Symposium on Principles of Database Systems (PODS),
233–246.
Levesque, H. J. 1998. A completeness result for reasoning with
incomplete first-order knowledge bases. In KR, 14–23.
Libkin, L. 2011. Incomplete information and certain answers
in general data models. In ACM Symposium on Principles of
Database Systems (PODS), 59–70.
Lipski, W. 1979. On semantic issues connected with incomplete
information databases. ACM Transactions on Database Systems
4(3):262–296.
Liu, Y., and Levesque, H. J. 2003. A tractability result for reasoning
with incomplete first-order knowledge bases. In IJCAI, 83–88.
Reiter, R. 1980. Equality and domain closure in first-order
databases. Journal of the ACM 27(2):235–249.
Reiter, R. 1982. Towards a logical reconstruction of relational
database theory. In On Conceptual Modelling, 191–233.
Reiter, R. 1986. A sound and sometimes complete query evaluation
algorithm for relational databases with null values. Journal of the
ACM 33(2):349–370.
Rossman, B. 2008. Homomorphism preservation theorems. Jour-
nal of the ACM 55(3).
Suciu, D.; Olteanu, D.; Re, C.; and Koch, C. 2011. Probabilistic
Databases. Morgan&Claypool Publishers.

