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set of the positions l suh that the lth harater in sis ai. Then a sentene � of some logi L de�nes alanguage L(�) = fs 2 �� j Ms j= �g. Two las-sial results on logi and language theory state thatlanguages thus de�nable in monadi seond-order logi(MSO) are preisely the regular languages [8℄, and thelanguages de�nable in �rst-order logi (FO) are pre-isely the star-free languages [25℄. For a survey, see[28, 29℄.An alternative approah to de�nability of strings,based on lassial in�nite model theory rather than �-nite model theory, dates bak to [8, 10℄. One onsidersan in�nite struture M onsisting of h��;
i, where 
is a set of funtions, prediates and onstants on ��.One an then look at de�nable sets, those of the formf~a jM j= '(~a)g, where ' is a �rst-order formula in thelanguage of M . A well-known result links de�nabil-ity with traditional formal language theory. Let 
regonsist of unary funtions la, a 2 �, binary prediatesel(x; y) and x � y, where la(x) = x � a, el(x; y) statesthat x and y have the same length, and x � y statesthat x is a pre�x of y. Let Slen be the model h��;
regi(we will explain the notation later). Then subsets of�� de�nable in Slen are preisely the regular languages[8, 10, 9℄.An advantage of the \model-theoreti approah" isthat one immediately gets an extension of the notionof reognizability from string languages to n-ary stringrelations for arbitrary n. One gets an algebra of n-arystring relations for every n, and these algebras auto-matially have losure under projetion and produt,in addition to the boolean operations. In the ase ofthe model Slen above, this algebra is not new: in fat,the de�nable n-ary relations are exatly the ones re-ognizable under a natural notion of automaton runningover n-tuples [10, 15℄.An obvious question to ask, then, is whether newalgebras of string relations arise through the model-theoreti approah. In partiular, if we restrit thesignature 
 to be less expressive than 
reg, do we getnew relation algebras lying within the reognizable re-lations?1



A natural starting point would be to �nd a signa-ture that aptures properties of the star-free sets. Hereagain, a simple example leaps out: onsider the signa-ture 
sf = (�; (la)a2�), and let S = h��;
sfi. Onean easily show that the de�nable subsets of �� in Sare exatly the star-free ones. Furthermore, we willshow that the de�nable n-ary relations of this modelare exatly those de�nable by regular pre�x automata(f. [1℄) whose underlying string automata are ounter-free.Just as there is a signi�ant di�erene between theomplexity-theoreti behavior of regular languages andstar-free languages, we �nd that the model S is muhmore tratable, in terms of its model-theory and itsomplexity than Slen. In partiular, we show that S hasquanti�er-elimination in a natural relational extension,while Slen does not.It would be tempting to think of S and Slen as anon-ial extensions of the notions of regularity and star-freeto n-ary relations. However, we will show that in fatthere are many hoies for 
 that share the same one-dimensional de�nable sets (either star-free or regular).Furthermore, algebras of de�nable sets may be iden-tial in terms of the string languages they de�ne, butdi�er onsiderably in the n-ary string relations in thede�nable algebra. We thus say that an algebra of de-�nable sets based on h��;
i, with 
 � 
reg is a regularalgebra of de�nable sets if the subsets of �� in it (i.ethe one-dimensional de�nable sets of h��;
i) are ex-atly the regular sets. We likewise say that the algebrabased on de�nable sets for h��;
i is a star-free algebraof de�nable sets if the subsets of �� in the algebra areexatly the star-free sets.The rest of the paper studies new examples of reg-ular and star-free de�nable algebras. We give an ex-ample of a star-free algebra with onsiderably more ex-pressive power than the basi star-free algebra S. Thismodel, whih we denote by Sleft (as it allows one to addharaters on the left of a string), shares most of the de-sirable properties of S: in partiular, it has quanti�er-elimination in a natural language, and membership testin this algebra has low omplexity.More surprisingly, perhaps, we give examples of reg-ular algebras (whih we denote Sreg and Sreg;left) thatare stritly ontained in Slen = h��;
regi. Althoughthe one-dimensional sets in these algebras are still theregular sets, the algebra as a whole shares many of theattrative properties of the star-free languages. In par-tiular, we give quanti�er-elimination results for thesealgebras.One key motivation for our work omes fromthe �eld of databases, in partiular, the study of

query languages with interpreted operations [3, 5, 19℄,and onstraint databases [23℄. In those settings,quanti�er-elimination gives one losed-form evaluationfor queries; it says that one an evaluate queries whoseinput is a quanti�er-free de�nable set and get a losedform solution as another quanti�er-free de�nable set.This approah has generally been applied to numerialdomains over the reals, sine there are several pow-erful quanti�er-elimination results available there. Itis natural to extend this approah to databases overstrings: the string datatype, after all, is ubiquitous indatabase appliations, and languages suh as SQL al-ready give some apability of manipulating star-freesets (via the LIKE prediate) de�ned from the in-put data within queries. But in order to extend theonstraint-database approah to the string ontext, weare �rst required to �nd de�nable algebras that ad-mit quanti�er-elimination in some natural yet power-ful language. (Some of the previous results in this di-retion onsidered query languages over undeidablestrutures [20℄, or deidable ones but not apable ofexpressing some very basi operations on strings [14℄.)The quanti�er-elimination results here thus yield newexamples where the onstraint approah an be ap-plied. In fat, the results we present here were usedin [7℄ to give expressiveness and omplexity bounds forthe database query languages that arise from severalalgebras of de�nable sets.Our approah was also motivated by the study ofautomati strutures [22, 9℄, whih are a sublass ofreursive strutures [21℄, and were introdued reentlyas a generalization of automati groups [16℄. In anautomati struture M = h��;
i, every prediate in
 is de�nable by a �nite automaton. More preisely,an n-ary prediate P is given by a letter-to-letter n-automaton [15, 18℄. Suh an automaton is a usualDFA whose alphabet is (� [ f#g)n, # 62 �. An n-tuple of strings s1; : : : ; sn an be viewed as a word oflength maxi jsij over the alphabet � [ f#g, where thejth letter is the tuple (sj1; : : : ; sjn); here sjk is the jthletter of sk, if jskj � j, and # otherwise. We then saythat a prediate P � (��)n is de�nable by a letter-to-letter n-automaton A if (s1; : : : ; sn) 2 P i� A aeptss1; : : : ; sn.It is known [10, 9℄ that a struture is automati i�it an be interpreted in the struture Slen; hene Slenis in some sense the universal automati struture. Itis interesting then to look at sublasses of automatistrutures de�nable within Slen that are signi�antlymore restritive, and that might have stronger model-theoreti or omputational properties than a rih stru-ture like Slen. One dividing line we fous on is be-tween automati strutures that do admit quanti�er-2



elimination in a natural relational language, and thosethat do not. Our �rst result gives a partial answer toopen question 0 in [26℄, whih asks whether Slen itselfhas quanti�er-elimination in a reasonable signature.We show that it does not have quanti�er-eliminationin any relational signature of bounded arity. The otherstrutures that we study | S, Sreg, Sleft and Sreg;left| do admit suh a quanti�er-elimination. A seonddihotomy is between automati strutures that admitstar-free de�nable algebras versus those that have reg-ular algebras. We show that the models S and Slefthave star-free de�nable algebras, while the model Sregdoes not. Our results indiate that the lass of auto-mati strutures that admit star-free de�nable algebrasis riher than one might have guessed.Organization Setion 2 introdues the notation.Setion 3 explores the motivating example, the modelSlen, and proves a set of results onerning its limita-tions. In Setion 4 we turn to the minimal example of astar-free algebra, the model S, and prove a quanti�er-elimination result for this model that ontrasts withthe negative result proved for Slen. Setion 5 extendsthe results of the previous setion to a more omplexexample of a star-free algebra, the model Sleft. Se-tion 6 gives a restrition of Slen that admits a regularalgebra, and proves a quanti�er elimination result forthis model. The setion also onnets this model tothe minimal model S. Setion 7 gives an additional ex-ample of a regular algebra, whih ontains eah of theprevious examples. Setion 8 gives onlusions. Allproofs are in the full version [6℄.2 NotationsThroughout the paper, � denotes a �nite alphabet,and �� the set of all �nite strings over �. We onsidera number of operations on ��:� x � y { onatenation of two strings x and y.� x � y { x is a pre�x of y.� la(x), a 2 �, is x � a (adds last harater).� fa(x), a 2 �, is a � x (adds f irst harater).� jx j is the length of string x.� xu y is the longest ommon pre�x of the strings xand y.� x� y { the string z suh that y � z = x, if it exists,and � otherwise.

Note that jxj does not return a string, so it is notan operation of ��. Instead, we often onsider theprediate el(x; y) whih is true i� jxj = jyj.We shall onsider several strutures on ��. The ba-si one is the struture S = h��;�; (la)a2�i. We ouldequivalently use unary prediates La, where La(x) istrue for strings of the form x0 � a. Note that in thepresene of �, la and La are interde�nable, and wethus shall use both of them.We further onsider a number of extensions of S.In one of them haraters an be added on the leftas well as on the right. This struture is denoted bySleft def= h��;�; (la)a2�; (fa)a2�i. Another extension,denoted by Slen, adds length omparisons via the elprediate (note that using � and el one an expressvarious relationships between lengths of strings, e.g.jxjf=; 6=; <;>gjyj, jxj = jyj+ k for a onstant k, et.).To summarize, we mainly deal with the following stru-tures:� S = h��;�; (la)a2�i;� Sleft = h��;�; (la)a2�; (fa)a2�i;� Slen = h��;�; (la)a2�; eli.One we onsider regular algebras, we introdue twomore strutures; however, operations in them will bemotivated by quanti�er-elimination results for S andSleft and thus those strutures will be de�ned later.There is a very lose onnetion between Slen and anextension of Presburger arithmeti. Assume that � =f0; 1g. Let val(n), for n 2 N, be n in binary, onsideredas a string in ��. Let V2(n) be the largest power of 2that divides n. Then P � Nk is de�nable in hN;+; V2 ii� f(val�1(n1); : : : ; val�1(nk)) j (n1; : : : ; nk) 2 Pg isde�nable in Slen [8, 10℄.Model theory bakground Let 
 be a �nite orountably in�nite �rst-order signature, andM a modelover 
. By FO(M) we denote the set of all �rst-orderformulae in the language of 
. The (omplete) theoryofM , Th(M), is the set of all sentenes in FO(M) truein M . Two models M and M 0 over 
 are elementaryequivalent if Th(M) = Th(M 0).We say thatM admits quanti�er elimination (QE) iffor every formula '(~x) in FO(M) there is a quanti�er-free formula '0(~x) suh that 8~x '(~x) $ '0(~x) is truein M .For a tuple ~a and a model M over 
, we let tpM (~a)be the type of ~a inM (the set of all formulae of FO(M)satis�ed by ~a), and atpM (~a) be the atomi type in M3



(the set of all quanti�er-free formulae of FO(M) sat-is�ed by ~a) . If A is a subset of M , tpM (~a=A) is thetype of ~a over A in M (the set of all FO-formulae over
 [ A satis�ed by ~a).A !-saturated model M over 
 is a model suh thateah onsistent type over a �nite set A in FO(M) issatis�ed in M . It is known [11℄ that every model Mover 
 has an elementary equivalent !-saturated modelM�.Isolation, VC-dimension Let T be a theory over
 and M be a model of T . A subset A of M is saidto be pseudo-�nite if (M;A) j= F (T; P ), where P is aunary prediate, and F (T; P ) is the set of all formulaeof FO(
 [ P ) satis�ed by all �nite sets of elements inany model of T .If p is a type over A in M , a subset q of p isolatesp if p is the only type over A in M ontaining q. Aomplete theory T over 
 is said to have the strongisolation property if for any model M of T and anypseudo-�nite set A and any element a in M , there isa �nite subset A0 of A suh that tpM (a=A0) isolatestpM (a=A). We say that it has the isolation property ifa ountable A0 exists as above.Isolation is an interesting property in the databaseontext beause it implies ertain ollapse results forquery languages [3, 17℄ and it is used for that purposein [7℄. Here we use it to provide bounds on the VC-dimension of de�nable families.For a family C of subsets of a set U , and a set F � U ,we say that C shatters F if fF \ C j C 2 Cg is thepowerset of F . The VC-dimension of C is the maxi-mum ardinality of a �nite set shattered by C (or 1,if arbitrarily large �nite sets are shattered by C). Thisonept is fundamental to learning theory, as �nite VC-dimension of a hypothesis spae is equivalent to learn-ability (PAC-learnability) [2, 4℄.Now onsider a struture M = h��;
i, and aFO(M) formula '(~x; ~y). For eah ~a, let '(~a;M) = f~b jM j= '(~a;~b)g. The family of sets '(~a;M), where ~aranges over all tuples overM , is alled a de�nable fam-ily. We say that M has �nite VC-dimension if everyde�nable family has �nite VC-dimension. In partiu-lar, this implies learnability of onepts de�ned in FOover M .3 Regular algebra based on SlenAs mentioned in the introdution, Slen is the anoni-al automati struture, and relations de�nable in Slenare preisely the regular relations, that is, k-ary de-

�nable relations are preisely those given by letter-to-letter k-automata [9, 10℄. In partiular, this gives anormal form for Slen-formulae. We introdue a newtype of length-bounded quanti�ers of the form 9jxj � jyjand 8jxj � jyj. A formula 9jxj � jyj' is meant asan abbreviation for 9x(jxj � jyj) ^ '. Sine every �-nite automaton an be simulated by a length-boundedFO(Slen) formula, we onlude that eah FO(Slen) for-mula is equivalent to a length-bounded FO(Slen) for-mula. Note that this result an also be shown by astraightforward Ehrenfeuht-Fra��ss�e game argument.The universal property of Slen mentioned above in-diates that Slen may be \too rih" in relations formany appliations. We present evidene for this byaddressing the open question of [12, 26℄ whether Slenhas quanti�er elimination in a reasonable signature.One �rst needs to de�ne what \reasonable"means here.Clearly, every struture has quanti�er elimination in asuÆiently large expansion of the signature: add sym-bols for all de�nable prediates, for example. One anthus take reasonable to mean a �nite expansion, butthis is not satisfatory: for example, Presburger arith-meti has quanti�er elimination in an in�nite signature(+; <; 0; 1; (mod k)k>1). Note however that in this ex-ample, the maximum arity of the prediates and fun-tions is 2. In fat, it appears to be a ommon phe-nomenon that when one proves quanti�er eliminationin an in�nite signature, there is an upper bound on thearity of funtions and prediates in it.We thus view this ondition as neessary for a signa-ture to be \reasonable". In general, a reasonable signa-ture might ontain relation symbols as well as funtionsymbols. Nevertheless, we an rule out the possibilityof a reasonable, purely relational signature for whihSlen has quanti�er elimination. This is in ontrast tothe weaker strutures that we onsider, all of whihhave quanti�er elimination in a relational signature ofbounded arity. Let S(n;m)len be the expansion of Slenwith all de�nable prediates of arity at most n, andde�nable funtions of arity m. We show the following:Theorem 1 (a) For any n � 0, and m = 0; 1, S(n;m)lendoes not have QE. In partiular, there is a propertyde�nable in Slen whih is not a Boolean ombina-tion of at most n-ary de�nable prediates in Slen.(b) S(1;2)len , the expansion of Slen with all unary predi-ates and binary funtions, has QE.Proof sketh. For (a), the property is whether for anN -tuple of strings, for suÆiently large N , there is aposition i suh that the ith symbol of all N strings is0. For (b), we show a stronger result, assuming that� ontains f0; 1g. We prove QE in a signature that4



ontains the bitwise and, or, and not funtions, left andright shifts, and the following two funtions. Fil�(w)has a 1 at position i i� w[i℄ = � and a 0 otherwise,and Patj;k(w) has the same length as w and has a 1at position i i� i mod k = j and a 0 otherwise, wherej < k.In ases of both (a) and (b), the proofs are based onautomata representations of de�nable sets, f. [9℄. 2Our next result shows another model-theoreti andomputational shortoming of Slen: namely, a singleformula '(x; y) an de�ne a widely varying olletion ofrelations as we let the parameter x vary. We formalizethis through the notion of VC-dimension.Proposition 1 There are de�nable families in Slenthat have in�nite VC-dimension. 24 Star-free algebra based on SWe now turn to the most obvious analog of Slenfor the star-free sets. This is the model S, whih isthe most basi model among those studied in the pa-per. We show that it has remarkably nie behavior:it admits e�etive QE in a rather small extension tothe signature. This immediately tells us that de�nablesubsets of �� are preisely the star-free languages. Wethen haraterize the n-dimensional de�nable relationsin S by their losure properties, and by an automatonmodel.Note that S is very lose to strings onsidered asterm algebras, that is, to h�; �; (la)a2�i. It is of oursewell-known that the theory of arbitrary term algebrasis deidable and admits QE [24℄. However, adding thepre�x relation is not neessarily a trivial addition: forarbitrary term algebras with pre�x (subterm), only theexistential theory is deidable, but the full theory is un-deidable [30℄ (similar results hold for other orderingson terms [13℄). The undeidability result of [30℄ re-quires at least one binary term onstrutor; our resultsindiate that in the simpler ase of strings one reoversQE with the pre�x relation.We start with a result that gives a normal form forformulae of FO(S). Given a set S of strings , we letTree(S) be the tree (i.e. the partially-ordered stru-ture) generated by losing S [ f�g under u. In otherwords, Tree(S) is the poset hfxuy j x; y 2 S[f�gg;�i.(Note that for any set of strings s1; : : : ; sk, there aretwo indies i; j � k suh that s1 u : : : u sk = si u sj .)A omplete tree-order desription of a vetor ~w ofvariables is the atomi diagram of Tree(~w) in the lan-guage of �;�;u. In other words, it is a spei�ation

of all the � relations that hold and do not hold inTree(~w).For eah L � ��, let PL be the set of pairs (x; y) ofstrings suh that x � y and y � x 2 L. The followinglemma is obvious, sine it is well-known that star-freesets are �rst-order de�nable on string models [25℄.Lemma 1 For eah star free language L, there is aformula 'L(x; y) in FO(S) whih de�nes PL. 2We now give a normal form result for FO(S).Proposition 2 Every formula  (~x) in FO(S) anbe e�etively transformed into an equivalent formulawhih is a disjuntion of formulae of the form(~x) ^ Æ(~x)where (~x) is a omplete tree-order desription over~x and Æ(~x) is a onjuntion of formulae of the form'L(t(~x); t0(~x)), where L is star-free, t(~x) and t0(~x) areeither � or a term of the form xiuxj , and (~x) impliesthat t(~x) is an immediate suessor of t0(~x) in the tree-order.Proof is by indution on the struture of  . 2Let S+ be the expansion of S to the signature thatontains �, u and a binary prediate PL for eah star-free language L. Note that S+ is a de�nable expansionof S, as all additional funtions and prediates are de-�nable. From the normal form we now immediatelyobtain:Theorem 2 S+ admits quanti�er elimination.Remark. As mentioned above there is no needto nest the u-operator. Therefore, S+ an beturned into a relational signature that admits quan-ti�er elimination as follows. For eah star-free L letP 0L be the set of tuples (s1; s2; s3; s4) of strings forwhih PL(u(s1; s2);u(s3; s4)). Note, that u(s1; s2) �u(s3; s4) an be expressed as P��(u(s1; s2);u(s3; s4)).It is straightforward to hek that this signature admitsquanti�er elimination. In the same way, the quanti�erelimination results in the remainder of the paper an beturned into quanti�er elimination results in a relationalsignature.Note also that S+ ould be onsidered as an expan-sion of S with either funtions la or prediates La inthe signature. In the latter ase, prediates La are notneeded as La(x) i� P��a(�; x).Another orollary of the normal form is that in thelanguage of S, it suÆes to use only bounded quan-ti�ation. That is, we introdue bounded quanti�ers of5



the form 9x � y and 8x � y (where 9x � y ' means9x x � y ^ '), and let FOb(S) be the restrition ofFO(S) to formulae '(y1; : : : ; yk) in whih all quanti-�ers are of the form Qx � yi. From the normal formand the fat that eah 'L an be de�ned with boundedquanti�ers, we obtain:Corollary 1 FOb(S) = FO(S). 2Finally, we haraterize S-de�nable subsets of ��and (��)k. Given a subset R � (��)k and a per-mutation � on f1; : : : ; kg, by �(R) we mean the setf(s�(1); : : : ; s�(k)) j (s1; : : : ; sk) 2 Rg.Corollary 2a) A language L � �� is de�nable in S i� it is star-free.b) The lass of relations de�nable over FO(S) is theminimal lass ontaining the empty set, f�g, faga 2 �, �, u, and losed under Boolean operations,Cartesian produt, permutation, and the operation� de�ned by L1 � L2 = f(s1; s1 � s2) j s1 2 L1; s2 2L2g for L1; L2 � ��.Proof. a) S+ formulae in one free variable are Booleanombinations of PL(�; x), for L star-free, and thus theyde�ne only star-free languages.b) For one diretion notie that �, fag, �, u arede�nable in FO(S), and that FO(S) is losed underboolean operations, permutation and Cartesian prod-ut. The losure under � is an easy onsequene ofLemma 1 as L1 �L2 orresponds to f(x; y) j 'L1(�; x)^'L2(x; y)g. The other diretion follows from the nor-mal form. 2Note that the projetion operation is not needed inthe losure result above.Automaton We now give an automaton model har-aterizing de�nability in FO(S). This automatonmodel orresponds exatly to the ounter-free variantof regular pre�x automaton as de�ned in [1℄.Let us reall the de�nition of regular pre�x automa-ton. Let A be a �nite non-deterministi automaton onstrings with state set Q, transition relation Æ and ini-tial state q0. We onstrut from A an automaton Â =(�; Q; q0; F; Æ) aepting n-tuples ~w = (w1; � � � ; wn) ofstrings in the following way. F is a subset of Qn whihdenotes the aepting states of Â. Let pre�x(~w) be theset of all pre�xes of all wi. A run of Â over ~w is amapping h from pre�x(~w) to Q whih assigns to every

node � 2 pre�x (~w) a state q 2 Q suh that h(�) = q0and, � = la(�) implies h(�) 2 Æ(h(�); a). The run isaepting if (h(w1); � � � ; h(wn)) 2 F . The n-tuple ~w isaepted by Â if there is an aepting run of Â over ~w.See [1℄ for more details.For eah �nite non-deterministi automaton A theorresponding automaton Â is alled regular pre�x au-tomaton (RPA). The subset of (��)n, n 2 N, it de�nesis alled a regular pre�x relation (RPR).If the automaton A is ounter-free then we say thatthe orresponding automaton Â is ounter-free (CF-PA). The following shows that the relations de�nablein FO(S) are exatly those reognizable by a CF-PA.Proposition 3 A relation is de�nable in FO(S) if andonly if it is de�nable by a ounter-free pre�x automa-ton. 2It should be noted that FO(S) an also be harater-ized by means of ounter-free deterministi bottom-upautomata.VC-dimension and Isolation In addition to quan-ti�er elimination, S has some further model-theoretiproperties that distinguish it from Slen.Proposition 4 Th(S) has the strong isolation prop-erty. 2As a orollary of the isolation property, we provethat, unlike for Slen, the de�nable families for S arelearnable. First, we need the following.Proposition 5 Let M be a model with the isolationproperty. Then its de�nable families have �nite VC-dimension.We give two proofs of this result in the full version: oneis a omplexity-theoreti argument, the other model-theoreti. 2It follows that the model S, unlike Slen, has learnablede�nable families.Corollary 3 Every de�nable family in S has �niteVC-dimension. 25 Star-free algebra based on SleftWe now study an example of a star-free algebra,one where the n-ary relations in the algebra are moreomplex than those de�nable over S. Reall that6



Sleft = h��;�; (la)a2�; (fa)a2�i; that is, in this stru-ture one an add haraters on the left as well as onthe right.Without the pre�x relation, this struture was stud-ied in [27℄, where a quanti�er-elimination result wasproved, by extending quanti�er-elimination for termalgebras (in fat [27℄ showed that term algebras withqueues admit QE). However, as in the ase of S, whihdi�ers from strings as terms algebras in that it has thepre�x relation, here, too, the pre�x relation ompli-ates things onsiderably.We start with an easy observation that FO(Sleft) ex-presses more relations that FO(S). Indeed, the graphof fa, Fa = f(x; a � x) j x 2 ��g is not expressible inFO(S), whih an be shown by a simple game argu-ment. More preisely, given a number k of rounds, letn = 2k+1 and onsider the game on the tuples (0n; 10n)and (0n+1; 10n). By Corollary 1 it is suÆient to playon the pre�xes of the partiipating strings. The dupli-ator has a trivial winning strategy on the strings 10nand a well-known winning strategy on 0n versus 0n+1.Let S+left be the extension of Sleft with the same (de-�nable) funtions and prediates we added to S+ (thatis, a onstant � for the empty string, the binary funtionu for the longest ommon pre�x, the prediate PL(x; y)for eah star-free language L), and the unary funtionx 7! x� a, for eah a 2 � (whih is also de�nable).Theorem 3 S+left admits quanti�er elimination.Proof sketh. Let 
S+ and 
S+left be the �rst-ordersignatures of S+ and S+left. Let M be an !-saturatedmodel over 
S+left elementary equivalent to S+left. It suf-�es to prove quanti�er elimination in M . Note thatM an have both �nite and in�nite strings. To proveQE, we must show that every two tuples of elementsof M that have the same atomi type, have the sametype. De�ne a nie term of 
S+left as a term of the formt(x) = x�a+b, where a and b are �nite strings. Giventwo tuples ~ and ~d of the same length over M , de�netwo relations on them:� ~ � ~d i� for all sequenes i1; : : : ; ik from f1; : : : ; ng(where n is the length of ~) and all sequenest1; : : : ; tk of nie terms:atpS+(t1(i1); : : : ; tk(ik ))= atpS+(t1(di1 ); : : : ; tk(dik ))� (0;~) �1 (d0; ~d) i� for all sequenes i1; : : : ; ikfrom f1; : : : ; ng and all sequenes t1; : : : ; tk of nieterms: atpS+(0; t1(i1); : : : ; tk(ik ))= atpS+(d0; t1(di1); : : : ; tk(dik ))

Of ourse, (0;~) � (d0; ~d) implies (0;~) �1 (d0; ~d),as the identity is a nie term. We then prove the mainlemma, whih shows that these two relations oinide;that is, if (0;~) �1 (d0; ~d), then also (0;~) � (d0; ~d).Using this, we show that � has the bak-and-forthproperty in M (whih is atually stronger than whatis needed for quanti�er-elimination). The theoremfollows from the lemma, as eah type of the formatpS+(t1(i1); : : : ; tk(ik )) is also an atomi type ofS+left. Hene, the atomi types determine the types.For details, see the full version [6℄. 2From the previous theorem we get the followingorollaries. First, the bak-and-forth property of �1gives us the following normal form for FO(S+left) for-mulae.Corollary 4 For every FO(Sleft) formula �(x; ~y) thereis an FO(S) formula �0(x; ~z) and a �nite set of nieS+left terms ~t suh that8x~y �(x; ~y)$ �0(x;~t(~y))holds in Sleft. 2Then Corollary 4 for the empty tuple ~y and Corol-lary 2 imply:Corollary 5 Subsets of �� de�nable over Sleft are pre-isely the star-free languages. 2For formulae in the language of Sleft (as opposedto S+left), we an show that bounded quanti�ationsuÆes, although the notion of bounded quanti�a-tion is slightly di�erent here from that used in theprevious setion. Let Np(s) be the pre�x-losure offs� s1 + s2 j js1j; js2j � pg. Clearly Np(s) is de�nablefrom s over Sleft. We then de�ne FO�(Sleft) as the lassof FO(Sleft) formulae '(~x) in whih all quanti�ationis of the form 9z 2 Np(xi) and 8z 2 Np(xi), where xiis a free variable of ' and p � 0 arbitrary.Corollary 6 FO�(Sleft) = FO(Sleft). 2Isolation and VC-dimension We now show thatthe results about isolation and VC-dimension extendfrom S to Sleft.Proposition 6 Th(Sleft) has the isolation property. 2Sine the argument for orollary 3 atually showsthat isolation implies �nite VC-dimension, we on-lude:Corollary 7 Every de�nable family in Sleft has �niteVC-dimension. 27



6 Regular algebra extending SThe previous setions presented star-free algebraswith attrative properties. We now give an example ofa regular algebra that has signi�antly less expressivepower than the rih struture Slen, and whih sharessome of the nier properties of the star-free algebras inthe previous setions.This algebra an be obtained by onsidering two pos-sible ways of extending FO(S): the �rst is by addingthe prediates PL for all regular languages L; that is,prediates PL(x; y) whih hold for x � y suh thaty � x 2 L, where L is a regular language. The se-ond extension is by using monadi-seond order logiinstead of only �rst-order logi. It turns out that theseextensions de�ne exatly the same algebra. We showthis, and also show that the resulting regular algebrashares the QE and VC-dimension properties of the star-free algebras de�ned previously.Let Sreg = h��;�; (la)a2�; (PL)L regulari. Sine itde�nes arbitrary regular languages in ��, it is a properextension of S. Every FO(Sreg)-de�nable set is de�n-able over Slen, beause the prediates PL are de�nablein Slen (the easiest way to see this is by using the har-aterization of Slen de�nable properties via letter-to-letter automata). Thus, we have:Proposition 7 Subsets of �� de�nable over Sreg arepreisely the regular languages. 2Let S+reg be the extension of Sreg with � and u. Mostof the results about S and S+ from Setion 4 an bestraightforwardly lifted to Sreg and S+reg. For example,the normal form Proposition 2 holds for Sreg if onereplaes \star-free" with \regular": the proof given inSetion 4 applies verbatim. From this normal form weimmediately obtain:Theorem 4 S+reg admits quanti�er elimination. 2The normal form result also shows that neither thefuntions fa nor the prediate el are de�nable in Sreg(the former an also be seen from the fat that Sreg hasQE in a signature of bounded arity, and Slen does not;for inexpressibility of fa it suÆes to apply the normalform results to pairs of strings of the form (1 � 0k; 0k)).One an also show, as in the ase of S, that boundedquanti�ation over pre�xes is suÆient.Our next aim is to show that FO(Sreg) gives us ex-atly the same algebra of de�nable sets as MSO(S).Notie �rst that eah relation de�nable in FO(Sreg)is already de�nable in MSO(S) beause eah prediate

PL is de�nable in MSO. We will show in the followingthat the onverse impliation also holds.The proof relies on a lemma whih essentially showsthat the monadi seond-order type of a tuple of stringsonly depends on its tree-order type and the monadiseond-order types of the paths between the strings andtheir ommon pre�xes.For a sequene ~a = (a1; : : : ; an) of strings, let T~a bethe struture h��;�; (La)a2�;~ai.For eah string w 2 ��, let Iw be the �nite struturehIw; <; (Ra)a2�; 1; jwji where Iw is f1; : : : ; jwjg, < isthe usual order and, for eah a 2 �, Ra is the set of allpositions of w that arry the letter a. For two stringsu; v 2 ��, we write u �sk v if Iu �MSOk Iv.Lemma 2 For eah k > 0, there is k0 > 0 suhthat the following holds. Let ~a = (a1; : : : ; an);~b =(b1; : : : ; bn) be sequenes of strings for whih there isa tree isomorphism h : Tree(~a)! Tree(~b) suh that(i) for eah i 2 f1; : : : ; ng, h(ai) = bi, and(ii) whenever u is the immediate predeessor of v inTree(~a) then v � u �sk h(v)� h(u).Then T~a �MSOk T~b. 2As both onditions (i) and (ii) of the Lemma areexpressible in FO(Sreg), we obtain:Theorem 5 FO(Sreg) = MSO(S). 2The bounded monadi seond-order quanti�er 9X �y is de�ned as follows. A formula 9X � y ' holdsif and only if 9X(8xX(x) ! x � y) ^ ' holds. Wede�ne MSOb(S) by binding all �rst-order and monadiseond-order quanti�ers.From Theorem 5 we an easily derive the followingorollaries.Corollary 8� MSOb(S) = MSO(S)� Subsets of �� de�nable in MSO(S) are exatly theregular languages.Automata model, isolation, and VC dimensionIt was proved in [1℄ that Regular Pre�x Relations(RPR) (those de�nable by Regular Pre�x Automata(RPA), introdued in Setion 4) are exatly those de-�nable in MSO(S). Thus Theorem 5 together with theresults of [1℄ gives a new haraterization of FO(Sreg).8
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Figure 1. Relationships between S;Sleft;Sreg;Sreg;left, and Slen.Corollary 9 The relations de�nable in FO(Sreg) areexatly the RPR relations. Thus eah relation de�nablein FO(Sreg) is reognizable by a RPA. 2The proof of the isolation property for S (Proposi-tion 4) is una�eted by the hange from star-free PLto regular PL. Thus, we obtain:Corollary 10 Th(Sreg) has the isolation property,and de�nable families of Sreg have �nite VC-dimension. 27 Regular algebra extending SleftWe now give a �nal example of a regular algebra.Let Sreg;left be the ommon expansion of Sleft and Sreg,that is, h��;�; (la)a2�; (fa)a2�; (PL)L regulari. SineSreg annot express the funtions fa, and Sleft annotde�ne arbitrary regular sets, we see that Sreg;left is aproper expansion of Sreg and Sleft. Furthermore, allSreg;left-de�nable sets are Slen-de�nable; the �nitenessof VC dimension for Sreg;left, shown below, implies thatthis ontainment is proper, too.Let S+reg;left be the ommon expansion of S+left andSreg, that is, the expansion of Sreg;left with � and u.The tehniques of the previous setions an be used toshow the following:Theorem 6 S+reg;left has quanti�er-elimination. Fur-thermore, Th(Sreg;left) has the isolation property, andde�nable families in Sreg;left have �nite VC-dimension.2 Similarly to Sleft, we derive from the proof of Theo-rem 6 the following normal form for Sreg;left formulae:Corollary 11 For every FO(Sreg;left) formula �(x; ~y)there is an FO(Sreg) formula �0(x; ~z) and a �nite set

of nie S+left terms ~t suh that8x~y �(x; ~y)$ �0(x;~t(~y))holds in Sreg;left. 2We onlude this setion with a remark show-ing that arithmeti properties de�nable in struturesS;Sleft;Sreg;Sreg;left are weaker than those de�nable inSlen. As we mentioned earlier, under the binary enod-ing, Slen gives us an extension of Presburger arithmeti;namely, it de�nes + and V2, where V2(x) is the largestpower of 2 that divides x. But even Sreg;left is muhweaker:Proposition 8 Neither suessor, nor order, noraddition, are de�nable in Sreg;left (and hene inS;Sreg;Sleft). 28 ConlusionThere has been signi�ant interest in theoretialomputer siene in understanding the struture of theregular languages, and in identifying sublasses of theregular languages that have speial properties [29, 28℄.Our work an be seen as an extension of this program,where we onsider sublasses of the regular n-ary re-lations rather than the regular sets. In our approah,however, we do not fous on properties that hold of onepartiular regular relation by itself, but rather look atsome desirable properties of a whole algebra of relationslying within the struture Slen.We have shown a sharp ontrast between the behav-ior of the full algebra of regular relations of Slen, andthose of various submodels suh as S, Sleft, Sreg, andSreg;left. We show that the latter are more tratable inmany respets. Furthermore, we show that the behav-ior of an algebra of relations is not at all determined by9
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