Tree Extension Algebras: Logics, Automata, and Query Langages

Michael Benedikt Leonid Libkin®
Bell Labs U. Toronto
Abstract exists comparing the expressive power of each of these for-

malisms (see [12, 33]) and for translating between declar-

We study relations on trees defined by first-order con- ative formalisms and their procedural implementations. In
straints over a vocabulary that includes the tree extension particular, work on analyzing specifications of trees plays
relationT < T", holding if and only if every branch @fex- @ significant role in program analysis [3, 24], verification
tends to a branch df’, unary node-tests, and a binary rela- [15, 20, 26], logic and constraint programming [29, 30] and
tion checking if the domains of two trees are equal. We showlinguistics [14, 19].
that from such a formula one can generate a tree automaton Over the last few years, applications in information ex-
that accepts the set of tuples of trees defined by the formulachange have appeared that necessitate new tools for syn-
and conversely that every automaton over tree-tuples is cap thesizing tree-processing code from a declarative speeific
tured by such a formula. We look at the fragment with only tion. These applications all revolve around XML [1, 35]. In
extension inequalities and leaf tests, and show that itesorr XML, data is naturally modeled as a tree, the access meth-
sponds to a new class of automata on tree tuples, which isods and manipulation tools take input in the form of tree
strictly weaker then general tree-tuple automata. We use th transformations or transducers, and the interface spaeific
automata representations to show separation and expresstions give preconditions using a combination of tree gram-
ibility results for formulae in the logic. We then turn toael mars and tree constraints. The XML context brings issues
tional calculi over the logic defined here: that is, from con- to the fore that were not as prominent in many prior ap-
straints we extend to queries that have second-order param-plications. Most importantly, one can no longer deal with
eters for a finite set of tree tuples. We give normal forms for only properties of a single tree, since databases store and
queries, and use these to get bounds on the data complexmanipulate large sets and relations of trees. A natural aim
ity of query evaluation, showing that while general query then is to use a tree constraint language to describe the kind
evaluation is unbounded within the polynomial hierarchy, of properties of interest for XML transformation and query-
generic query evaluation has very low complexity, giving ing. XML querying could then be seen as constraint solving
strong bounds on the expressive power of relational calculi — a model very much in line with the traditional declarative
with tree extension constraints. We also give normal forms model for database processing.

for safe queries in the calculus. The prior literature does consider properties of tree tu-
ples and sets of trees, both in relation to logic programming
and program analysis [36, 32] and with respect to database
guerying [13]. Most of this work revolves around the use of
equations and inequations among terms or trees. In these
cases the domain of the formulas or constraints is some
Because much of computing practice involves the manip- variation ofterm, or feature algebra Rephrased in the ter-
ulation of tree structures, computer science abounds in for min0|ogy of operations on labeled trees, term a|gebra cor-
malisms for describing trees. Tree constraints and moradic responds to merging subtrees and extending branches by a
second order logic are two declarative approaches to specsingle node. Term algebra, however, does not allow one to
ifying tree properties, while tree grammars, various flavor express the vertical ordering relationships among nodss th
of tree automata and tree transducers are examples of morgre important for many applications. For example, a key
procedural formalisms. Naturally, an extensive literatur component of several XML standardsgath expressions
*Bell Laboratories, 2701 Lucent Lane, Lisle, IL 60532, USAm&il: which may describe the descendant relation between nodes
benediki@research.bell-labs.com. in a tree. An integrity constraint based on path expressions
SDepartment of Computer Science, University of Toronto, 6 for example, might specify that every node labeteih a

King's College Road, Toronto, Ontario M5S 3H5, Canada. H:ma tree has a node labelédas a descendant. Such a property
libkin@cs.toronto.edu. Research affiliation: Bell Labs.

1 Introduction

cannot be expressed over term algebra. vary arbitrarily (i.e. the/C-dimensiorof definable families

In this paper we investigate tree-tuple specifications is bounded). We show that neither of these is true for tree
given in a constraint formalism that includestensionela- ~ €xtension algebra — a linear order can be defined, even in
tionships between tree§; < T iff T} is an initial subtree the primal case, and the VC-dimension is unbounded. We
of Ty. This is the same as the standard subsumption orderalso show that conversely there are properties of tree suple
ing used forfeature tree§14, 25]: intuitively, it means that ~ expressible over term algebra that are not expressible via
every branch off} is also a branch df%. tree extension formulae.

We deal with théirst-order theoryof this model, as op- In the second part of the paper we study database-related
posed to just its equational theory. One of our key criteria @spects of the algebras, by lookingaieries- formulae of
is that the theory be decidable. This makes it impossible tothe logic extended with free relational symbols. We study
combine the ordering with term algebra operations, since the complexity of evaluation of queries (that is, constrain
the resulting theory is known to be undecidable [25]. In- solving) given a collection of tree tuples as input for each
stead, we introduce operations that allow us to extend treessymbol. We consider the complexity in terms of the size
at the leaves, rather than combine subtrees at the root. W@®f a database (which is typically large). We first prove
shall call the set of trees with the extension relation (and @ quantifier-restriction result, showing that any first-erd
a number of other operations to be introduced shottsg guery can be expressed with quantification restricted to a
extension algebraand the resulting formulaese extension ~ finite set, definable from the database. Using this, we
formulae To get an idea of the combination of multi-tree show that the complexity of query evaluation is essentially
constraints and single-tree formulas, we list below sdvera PH. The general worst case upper bounds do not allow

properties that can be expressed in this algebra. us to show interesting inexpressibility results in relatib
calculi with tree extension constraints, but we do obtain
e branch(Ty,Ty): T is a single branch df5. such results by placing the complexity of evaluatiyggperic

queries in a much smaller class, ACThis gives us match-
e branchj(Ty,Ty): Ty andT; are single branches, and ing expressivity bounds for the pure relational calculums a
T extendsT in directioni, labeling the leaf by:. relational calculus with tree extension constraints, as$a
generic queries are concerned. We also address the question
of characterizingsafequeries, and give a range-restricted
form that captures all safe queries with tree extension con-

e =3Ty (branch(Ty,T) A ab(Ty)): T does not have a Straints.
branch in which every node labeleds followed by a Organization. Section 2 gives notations as well as the
node labeled. formal definitions of the algebras. Section 3 gives the ba-
sic decidability and automata-synthesis results. Seeation
We show that the formalism allows considerable expres- introduces a specialized multi-tree automata and gives a
sive power, is closed under logical operations, and is decid Synthesis result for the primal tree extension algebra- Sec
able. After introducing the formalism, the first part of the tion 5 gives model-theoretic and expressibility results on
paper is devoted to the synthesis of automata from formulae the tree extension formulae. Section 6 introduces the re-
We show that constraints given by tree extension formulaelational algebra corresponding to these structures, arebgi
can be solved, with a multi-tree automaton that recognizesnormal form, data-complexity, and range-restriction tessu
the defined collection of tuples being generated as a resultfor them. Section 7 gives conclusions. Due to space limi-
We then consider restrictions of the tree extension algebra tations, complete proofs are not included; a full version of
possessing considerable expressive power (in fact, auyeri this paper is available from the authors.
all the examples above) and yet having a simpler automa-
ton construction. We present such an restriction, caked .
mal tree extension algebrand a corresponding class of 2 Notations
automata, calledplitting automata\We use these results to
show separation between the two algebras. The trees we consider are based on two fixed alphabets:
We then examine tree extension algebras from both thethe alphabet for directionA of the form{1,...,n}, and
model-theoretic and the complexity-theoretic point ofwie X for node labeling. Unless explicitly stated otherwise, we
What sort of combinatorial objects can be defined within the assume: > 1. We writes; < so if a string s, is a prefix
model, and how does the solution set of a formp(&, i) of a strings,. A tree domairis a prefix-closed finite subset
vary as the parametgtvaries? Term algebras aseablein D of A*: s € D andsy < s; imply s € D. A treeis
the model-theoretic sense (cf. [17]), implying that thexe i a pairT = (D, f) whereD C A* is a tree domain, and
no definable linear order and the fibers of a formula cannotis a function fromD to ¥. We usedom(T") to denoteD.

e ab(T): Every node labeled in T is followed by a
node labeled.

The set of all trees oveh = {1,...,n} andX is denoted First-order formulae oveT are calledree extension formu-
by Trees,, (X). Note thatTrees; (X) naturally corresponds lae.

to ¥*; we shall say more about this correspondence later. We can show that many of basic tree operations and pred-
Anodeinatred isastrings € D = dom(T'), andf(s) icates are definable ov@}. There is a formulg(t) saying

is its labeling. The root is the empty striagand the leaves thattis a branch¥z,y (z < tAy <t) — (zr 2 yVy =< z).

ares € D such thats is not a prefix of any other stringin ~ We also writen (¢, T') for n(t) At < T (¢ is a branch ofl")

D. The set of leaves dF is called thefrontier of 7' and is andnmax (¢, T) for (¢, T) A -3t (t <t' An(t',T)) (tisa

denoted byr(T). maximal branch of").
In the literature, quite often trees are considered over CompletionsI are definable as well. Inde€fiy is the
completedomainsD; that is, for everys € D, either all smallest, with respect t&, treeT’ = T such that for any

s-i,1 < nareinD, or none are. We doot make this as- nonmaximal branch of 7', and for eachi < n, either
sumption here. However, we shall often consider trees with succ?(t) < T for someb € ¥, orsucc¢(t) < T'. Clearly

complete domains. We definecampletionof T' = (D, f) this is definable oveTy.
with respect to a symbal € ¥ asT; = (D', ') where One can also see thaicc? could be defined in a num-
D' is the smallest complete domain that contalhsand per of different ways, for instance, as extending the left-
f'(s) = f(s)fors € D,andf'(s) =afors € D' — D. most branch, or the rightmost branch, or only extending
We now look at the operations (functions, predicates, andbranches. With each of those operations ahdne would
constants) on trees in our algebra. The constants,atec be able to definguccy. Furthermore, we can defirfern T
¥, with domain{e} labeled bya. Unary term construction as the greatest lower bound @fand 7’ in < (which is
operators are as follows. Givér< n (direction) anch € %, a tree whose domain is the largest prefix-closed subset of
forT = (D, f), succd(T) = (D', f') whereD' = DU {s - dom(T") N dom(T") on which f and f' coincide). We can
i|seFr(T)}, andf’ extendsf to D' by f'(s i) = a for also define a predicafe, on branches which tests if the leaf
eachs € Fr(T). is labeled bya: Lo(t) = (t = €,) VI (t' < tAV;t =

The basic binary relation — the one that gives the namesuccy (t')).
to the algebra — is the extension order. Given two tfEes
(D, f)andT' = (D', '), we writeT < T"' (T" extendsl")
if D C D' andf is the restriction off’ to D. Clearly it is a

Complete vs incomplete domainkn the literature, most
concepts related to regular tree languages and relatiens ar

) . , , defined for complete domains [12, 33]. To make use of
partial order. As usudl' < 7" meansl’ < T"andT #T". o e shall need a simple reduction of formulae con-

! !
We denote the greatest lower boundloandT” by TMT". orning incomplete domains to formulae over complete do-

AtreeT is called abranchif dom(T') is linearly ordered mains. With this reduction, we shall continue to deal with
by the prefix relation, that s, for any s € dom(T'), either trees over arbitrary domains, but we shall be able to use
s < s’ ors’ < s. Sometimes we use lowercase letters to many results from the literature on trees over complete do-
denote branches. tfis a branch and < T', we say that is mains.

a branch off". If in additionFr(¢) C Fr(T), thent is called Let L be a symbol not irE. Let Trees () be the set

amaximal pranch OT of trees of the forn¥'¢, whereT' € Trees,, (X). We extend
As we will see, first-order formulae over the above func- operationssucc? to Trees’,(X) as follows: if T’ = T¢,

tions and predicates 9in9 us quite an expressive |§nguagebhensuccg(T’) = (succy(T))q . Define structure@y and

But to captureall properties of tree tuples that are imple- g \whose universe igreest (), and the operations are the

mentable by tree automata, we will require an additional 0p- s me as iy andT, with succ interpreted as above. Then
eration that allows us to compare trees based only on their, gimple inductive argument shows:

domains, ignoring alphabet symbols. For two tréeq”,

we write T ~qom 1" iff dom(7T') = dom(7"). Lemma 1 Lety(T) be aformula in the language @ (or
We now introduce the basic objects of our study. For T). Then
eachp >0, we defme.the foIIovv_mg: _ GEeT,....T)) & TEe(T)l.....(T)5)
Primal Tree Extension Algebiathe structure having the) .
successor operations and the extension relation: (respectively T=o(T,....Ty) & TE
QE{J = <Treesn(2)a ja (SUCC?)ign,an; (ea)a62>

Tree Extension Algebre the structure that in addition 3 Tree extension algebra and tree automata

allows domain comparisons:))]
In this section we show that sets definable by tree ex-

T = (Trees,(X), =, (succ))i<n,aess; (€a)acs; Rdom) tension formulae are familiar objects: they are regulat{re

ognizable) tree languages/relations. Furthermore, ftau
over® can be compiled into tree automata, and vice versa:
this automata-theoretic characterization ma®ea natural
model to work in.

A set of trees over complete domains is called regular if it

is equivalent to a formula in which quantifiers range over

Treesn(2)|(1om(f)')

The tree automata representation also gives us decidabil-
ity and lower complexity bounds.

is accepted by a tree automaton. Extending this to arbitrarycorgllary 2 The theory of® (and thus ofy) is decid-

domains, we say that a s&t C Trees, (X) is regularif the
setX§ = {T¢ | T € X} is accepted by a tree automaton.

We next define regular tree relations, that is, subsets of

Trees, (X) x...x Trees, (X), following [12]. LetX® ; stand
for LU {L}. LetT = (Ty,...,T}) be a tuple of trees. We
represent such a tuple as a tidé in Trees, (X%). Let
T; = (Ds, f;),i < k. Then[T] = (D,F) whereD =
D, U...U Dy and for eachs € D, F(s) is an element of
¥k thatis,F(s) = (ai,...,ax) in which

" - {ﬁ(s)

Over complete domains, the notion of recognizability says
that the set of treel’] is accepted by a tree automata over
the alphabeE . To account for incomplete domains, we

say thatX C Trees, ()" is regulariff the set{[T]S | T €

if s € D;
otherwise

able. Decision procedures for boiy and T have non-
elementary complexity.

Proof. Decidability follows from the automata represen-
tation; lower bounds from encoding WS1S [22]. |

4 Primal tree extension algebra and au-
tomata

The goal of this section is to compare the powe@gf
andT. Since the previous results show that all regular sets
of trees can be defined iy (assuming: > 1: we discuss
the special case = 1 later), one might ask whether the
domain-comparison operatefy,, is in fact already defin-
able inTy. We show here that g, is not expressible in
the primal tree extension algebra, and ti@ysandT are
different. We make the difference between the two models

X} isregular, thatis, accepted by a tree automaton over themore concrete by presenting a restricted tree-tuple automa

alphabeft:* . Here L stands for thé-tuple(L, ..., 1).

Theorem 1 a) For anyk > 1, a subset offrees,, () is
definable by & formula iff it is regular.

b) A subset oflrees,, (X) is definable i@y iff it is regu-
lar.

Furthermore, for both a) and b), the translations between
formulae and automata are effective.

Proof sketch For a), we show that atomic predicates of

T are encoded by tree automata, and then use the closur

properties. For the other direction, we show how to encode
antichain logic [28] overlom([T']]) in FO over®. The
encoding, in case afom(T¢), can be done without using

Rl dom, Which gives us b). a

Thus, definability of sets of trees ifirees,, (X) is the
same inTy andT. For relations, however, definability is
different, as we shall see in the next section.

Consequences of the automata-theoretic representation
First, we can show that in any formula(T), quantifiers

only need to range over a finite set. Given a tuplec

Trees, (X)*, let Trees, (%) dom(7y D€ the set of all trees
whose domain is a subset|of;..;: dom(T'). By encoding
the run of a tree automaton ov&r one can see the follow-

ing.
Corollary 1 The finite sefTrees,, ()], (7 is definable
from T’ over@. Furthermore, every formulg(T) over®

ton model that exactly captures definability®.

LetT = (Ty,...,T}y) be a tuple of trees. We say thiat
is a branch off if ¢ is a branch of one df’;s. In this case
we also writet € T for V,; n(t,T;). The automaton model
is called asplitting automatonsuch a device accepts or re-
jects a tupléf by defining a run over the set of all branches
of T' (as opposed to products of branches as for general tree-
tuple automata). Intuitively, a splitting automaton has pa
allel threads moving up distinct branchesZf with these
threads merging at the point where the branches meet.

A splitting-vectoris a functionV that assigns to each
(i,a) € A x ¥ afinite set of integers in such a way that for
any fixedi, the setd/ (i, a),a € X, are disjoint. Theange
of a splitting vecto” is range(V)) = U ; »yeaxs V(i a).

For a finite setS, an S-splitting vectoris a finite sefl”
of tuples(i,a, J,s) € A x ¥ x Psn(N) x S, such that
the projection on the first three components, denoted by
Subset(V) = {(i,a,J) | 3s (i,a,J,s) € V},is a split-
ting vector, and such that for eve(y, a) there is exactly
one(i,a,J,s) € V. We letState(V)(i,a) be the unique
s € S such that for somd, (i,a,J,s) € V. For anS-
splitting vector, we define the range Bfto be the range of
the ordinary splitting-vectofubset(V').

An S-splitting ruleis a rule of the form
(I,s) <V,

wherel is a finite set of integers; € S, andV is an S-
splitting vector withrange(V') C I. Intuitively, a splitting

vector describes for each successatc! (t) of a branchy
which components df' have that successor. Afrsplitting

vector describes the state of the machine on each of these
successors of a branch, while a rule describes a bottom-up

transition to a new state and new set of tree® in

An acceptance partitiod” is a function assigning to each
a € ¥ aset] € Psn(N), while anS-acceptance partition
F is a function assigning to each € ¥ a pair(J,s) €
Pan(N) x S. For such a functiod”, we let Subset(F') and
State(F') be the two projection functionsiubset (F) is the
function mapping: € ¥ to the.J such thatJ, s) € F(a),
andState(F) is the function that maps € X to thes such
that(.J, s) € F(a).

For a branch, let supp(t, T) be {i | t € T;}. GivenT
and a branct of T, v(t, T) is the splitting vector assigning
to (i,a) the set{j | succt(t) € T;}. We letv(d,T) be
the acceptance partition assigning to eack X the set
{’L | €q € Tz}

A k-dimensional (bottom-up) splitting automatdnis a
tuple (S, d, IR, F) where:

¢ S afinite set (thestatesof A).

¢ ¢, thetransition relation is a finite set ofS-splitting
rules(I,s) < V with I C {1,...,k}, with everyS-
splitting vectorl” contained in at least one rule.

e IR, the set ofinitialization rulesis a set of rules of
the form (7, s) < , wherel C {1,...,k}, and each
subsef is in at least one rule ofR.

e A collection of S-acceptance partitions, theaccept-
ing partitions ofA.

A bottom-up splitting automaton teterministidf there
is at most one initialization rulél,s), for eachl C
{1,...,k}, in ¢ there is at most one rule with a given right-

)

hand side.

A run r of a k-dimensional bottom-up splitting automa-
ton A onT of sizek is a function from the branches &fto
the statess of A such that:

¢ For every frontier branch (i.g. a branch sugh that no
extension of is a branch ofl") with supp(t,T) = I,
r(t) is a states such tha(l, s) < isin IR.

¢ For every non-frontier branch r(¢) is a states such
that (supp(t,T),s) < V is in 6, whereSubset(V) =

o(t, T) and State(V)(i,a) = r(succt(t)), whenever
succ?(t) isinT.

A run is acceptingif there is anS-acceptance partition
F ¢ F with Subset(F) = v(0,T) and State(F)(a) =
r(e,) for eacha such that, isinT.

The following is an example of 2-splitting automaton
A over alphabet = {a,b} A = {1,2}:

IR={({1},50) <}

6= {({1}730) <= {(1=b7{1}730):(27b={1}730)}
({172}731) <= {(1ab: {1}7‘90)}
({172}731) <= {(La; {172}731)}

F= {(a7{1=2}531)}

The initial rule says whatl does on nodes that have no
successors: these nodes must only be in the first tree, and on
each such node we start in state The first rule ind says
that if a nodeny has both of its successais andns in the
first tree with labeb and A is in statesq, thenng is only in
the first tree, andd remains in state, onng. The second
rule says that on a nodg with only al-successon, if ny
is labeled withb and is only in the first tree, and is in sq
onni, thenng is in both trees, andl is in states; on ng.
The final rule says that iy has onlyl-successony, n; is
in both trees, and; is labeled witha, thenng is in both
trees, and the state df is unchanged in moving tag. The
acceptance partition describes the requirement that tite ro
node be common to both trees, labeled witfand in state
s1. This automaton accepts a péif, T») iff 77 consists
of a binary tree labeled with placed below a linear stem
labeled witha, T> < Ty, andTs; is exactly the linear stem.

In the special case ofladimensional automaton, a split-
ting vectorV is just a collection of pair$i,a) € A x %,
such that for eachthere is at most onewith (i,a) € V. A
splitting vector can thus be identified with a function from
A into X, . An S-splitting vector likewise corresponds to
a function fromA into ¥, x S, and the set of rules of the
automaton can be identified with a partial function mapping
fin (X1 x S)* tos € S. Under this identification, a run
of a splitting automaton over a single tréecorresponds to
a run of a standard bottom-up tree automaton @vgrand
hence the set of trees accepted hbiydmensional splitting
automaton is regular.

Theorem 2 A subset ofTrees,, (X)* is definable by a for-
mula of @, iff it is accepted by a-dimensional splitting
automaton. Furthermore, the translations from formulae to
automata and vice versa are effective.

Proof sketch To go from a formula to an automaton, we
show that atomic formulae &y can be captured by split-
ting automata, and then prove the usual closure properties
for splitting automata. The converse is shown by induction
on the dimension: the cage= 1 is sketched above, and in
the inductive step one shows how to codeZinthe effect
of a rule in which tree sequences of dimension betoare
merged into a tree-sequence of size |

Consequences of the automaton representation foy
The main consequence is tH&§ andT are different: T
defines more subsets @fees,, (X)* for anyk > 2.

Corollary 3 If | ¥ |> 1, then the predicatesq,,, IS not
expressible irfTy.

Proof sketch For eachm we consider the pair of trees
encoding stringa™ andb™ as the left-most possible path,
and a pair encoding™ andd!, I # m. If we choosem, |

so thaty™ andd’ are indistinguishable by finite automata
with £ states, then the resulting two pairs of trees are in-

distinguishable by splitting automata wittor fewer states.
Hence there can be iy formula that uniformly separates
pairs(a™,b™) from (a™,b'), while there is such & for-
mula. |

Another consequence is that ®y, quantification can
be restricted to a finite set. For a symhole X, let
Trees,(X)| 7. be the set of all tree§, such that every

branch ofT, is a branch of a treg°, T ¢ T. Note that
this set is definable frori' over@y. By encoding the run of
a splitting automaton, we can show:

Corollary 4 For anya € 3, and evenf@, formulao(T),

there is an equivalent formula in which the quantifiers range

" O

overTrees, ()| z..

5 Expressibility and model theory

We now study model theoretic properties and the expres-
sive power of the tree extension algebras. We start with two

results that show a sharp contrast betw&eandTy on the

One can also give a direct proof, showing that wjittn ,
one can define predicates not recognizable by tree automata.
Thus, first-order logic ove@y and T is incompara-
ble with first-order logic over term and feature algebras
[25, 13]. Another consequence is that queries over thiglogi
(see Section 6) cannot express the classes of tree set con-
straints used most frequently in program analysis [3, 27].

VC dimension We now show that the behavior of defin-
able families inTy and T formula is not as tame as in a
term algebra. A standard notion of tameness for definable
families is given by the concept &C dimensior{(cf. [5])
(also known as not having the independence property [21]).
Given an infinite setX and a familyC of its subsets X
shattersa finite setF" C X if {FNC | C € C} is the pow-
erset ofF". The VC dimension of is the maximum size of

a finite set it shatters (ex if arbitrarily large finite sets are
shattered). Given a structure! over a set/ and a formula
o(z1, ..., Zm, Y1, ---,yr) in the language oMM, the defin-
able family given byyp is { {@ € U™ | M |= ¢(@,b)} |

be Uk}. We say thatM hasfinite VC dimensioff every
definable family has finite VC dimension. From the learn-
ing point of view, this means that every definable family is
PAC-learnable [5]. Finite VC dimension also implies strong
bounds on the expressiveness of relational query languages
[6, 8]. It turns out that the presence of the extension predi-
cate<, preventsM from having finite VC dimension.

one hand, and term algebra. As mentioned in the introduc-Proposition 3 For any nonempty X, the structure
tion, term algebras have a particularly well behaved model {Trees2(X), <) does not have finite VC dimension.
theory: they are stable (which implies that no linear orderi HenceZy andT do not have finite VC dimension. O

definable), have finite VC dimension, and admit quantifier-

elimination. In contrast to this, we can show:

Proposition 1 There is a linear ordering ofrees, (X) de-
finable inTy.

Model theory of strings vs. model theory of trees We
remarked before that if the alphabet of directions has a
unigue element, then trees over such alphabet are naturally
associated with strings: that is, treedlirees; (X) are in 1-1

Proof sketch We first show how to define a linear order correspondence witl*. What are the analogs @, and

on branches, by comparing two branches,, att; M ts.
We then show how to extend the ordering to trees. O

Since there is no linear order definable in a term algebra,
the operations oy clearly cannot be first-order definable forn = 1.

in term algebra.
Let join,(Ty,T2) be the binary tree whose root

@ in this case then? It turns out that they are known and
well-studied structures. We now compare model-theoretic
properties of those structures wihandTp.

First, we define analogs & functions and predicates
The predicate< becomes string prefix;
the successor operations become concatenation operations
fa(s) = s-afora € X; ¢, becomes definable as the small-

is labeled a, and whose left and right subtrees are est, with respect tec, image off,, and~rgom Simply tests

T, and T, respectively. The structurdTrees, (X), <

Y

if two stringsz andy have the same length, which we shall

, (Joing)aes, (€a)acx) COMTesponds to the first-order theory - denote byel(z, y). Summing up, for = 1, T is equivalent
of FT< constraints over feature trees studied in [23, 25]. ¢

Since that theory is known to be undecidable [25], we ob-

tain:

Proposition 2 join, is not definable ir. O

S = <E*, <, (fa)anaeD

and Ty is equivalent to its reducSy = (¥* <,
(fa)aex,). These structures are well-known [11, 10, 9].

Figure 1 summarizes results @ Ty, and their string
analogsS [11, 10] andSy [9]. It turns out that model-
theoreticallyS and T are rather close, buBp and Ty
are very different. The first line of the table talks about
one-dimensional definable sets, that is, subset&*obr
Trees,(X). The second line is about arbitrary definable
sets. The automaton construction f&j is a counter-free
restriction of regular prefix automata of [4]. No similar re-
striction (either to first-order definable or star-free ttae-
guages [34]) is possible ov@y, since even in the one-

tests whetherE is a subgraph of< whose nodes are
branches.

We shall always interpret relations as finite relations
over the universe aM (in our caseTrees, (X)). Theactive
domainof ac-structure4 is the setadom (.A) of all the ele-
ments ofTrees, () that occurind. Active-domain quanti-
fiers are quantifiers of the forew € adom andvz € adom;;

Jz € adom p(z) is interpreted as the existence of an ele-
menta € adom(A) that satisfies(a).

dimensional case, arbitrary regular tree languages are deB 2 Normal forms

finable.

The third line compares VC dimension of definable fam-
ilies. The fourth and the fifth line compare first-order and
weak monadic second-order theories; the undecidability of
the latter forTy is shown below.

Proposition 4 One can code arithmeticH, x) in weak
MSO overTy. Consequently, the weak MSO theoryZgf
(and even the weak EMSO theory) is undecidable. O

6 Relational calculi with tree extension con-
straints

One of the motivations for tree extension algebras is to

The main tools for analyzing the expressive power of
RC(M, o) come in the form of normal forms for queries.
The most basic onegstricted-quantifier normal fornfe,

16, 8], states that evel®C(M, o) formula is equivalent to

a formula in which nar symbol appears in the scope of a
quantifiervz or 3z (that is, they appear only in the scope
of quantifiersVz € adom and3dx € adom). The ability

to put queries in restricted-quantifier normal form implies
very strong expressivity bounds on relational calculi with
constraints. In particular, it gives a strong boundyemeric
gueries expressible in such calculi. Recall that a query is
generic if it commutes with permutations of the domain
of M. For exampleparity, testing if the number of ele-
ments ofadom(.A) is generic, as igraph connectivity In

get tree constraints relevant in database (and in particu-fact, any query definable in a standard relational query lan-

lar, XML) applications. In such applications, one writes
queries, typically first-order, not only over trees but also
over collections of trees. Using database terminology, we
deal withrelational calculuswith tree extension constraints.
From the logical point of view, we consider definability over
T andT, parameterized by sets or relations on trees.

In this section, after giving the basic definition for rela-
tional calculi with constraints, we obtain normal forms for
gueries that will allow us to classify the expressive power
and complexity of query evaluation for relational calculi
with tree extension constraints. We then obtain normal
forms for queries that are known to produce finite output
on any input.

6.1 Preliminaries

A databaseschemao is a finite collection of relation
symbols. Given an underlying structund, relational cal-
culus overM ando, RC(M,), is the class of first-order
queries (formulae) in the languagedf supplemented with
the symbols froms. If o is understood, or irrelevant, we
write RC(M). For example, ifr has a single binary rela-
tion E, then theRC(Ty, o) query

Vavy E(z,y) = (n(z) An(y) Az < y)

guage (relational calculus, datalog, etc.) without caists

is generic. If all queries can be put in restricted-quarntifie
normal form, then every generic queryRC (M, o) is de-
finable in first-order over finite structures and a linear or-
dering on their domain. This in turn implies that queries
such as parity and connectivity are not definable. However,
it was shown in [8] that no structure with infinite VC di-
mension admits restricted-quantifier normal form. Hence,

Corollary5 Ty and T do not admit restricted-quantifier
normal form, even if¥ |= 1.

We thus need to find a different way of getting bounds
on the expressive power and complexity R€(T) and
RC(Ty). The main tool is a normal form result that shows
how to restrict quantification to a finite extension of the ac-
tive domain. From that result, we derive both complexity
and expressibility bounds.

6.3 Restricting quantification in RC(T)

We show that a certain weaker restricted quantifier nor-
mal form holds for relational calculus ov@:. Recall that
for a setX of trees,Trees, (X)|qom(x) iS the set of all trees
T such thatlom(T') C Uy, ¢ x dom(Tp). Note thatifX is
definable by a formula &, then so isTrees;, (X)]dom(x)-

Model 8{] pr S T
one-dimension *-free regular regular regular
definable sets

arbitrary counter-free splitting regular regular
definable sets prefix automata automata

VC dimension finite infinite infinite infinite
FO theory decidable decidable | decidable | decidable
(weak) MSO theory| decidable undecidablel undecidable| undecidable

Figure 1. Comparison of string and tree models

The main result of this section is that for evét¢ (T, o) 6.4 Data complexity of relational calculi over®
guery, gquantifiers can be restricted to range over the (finite and T,
and definable) set of trees whose domains can only contain
nodes presentin the domains of trees in the active domain of sing Theorem 3, we obtain bounds on query evaluation
the finiteo-structure, and in the tuple of the free variables. overT, andT. For relational calculi, we are interested in
data complexityf2]: the complexity of evaluating a fixed
. query as databases vary. The result below says that data
Theorem 3 LetJ _E > 1. Then apy relational calcu- complexity is essentially PH (polynomial hierarchy): PH is
lus formulap(T) in RC(T, 0) is equivalent to a formula o\ yner hound, and for every level of PH, there is a com-
in which quantifiers range oveTrees,,(X)laom(x) Where hiete problem that can be encoded. Since the encoding can
X = adom(A)UT. be done inRC(Ty), this gives us matching bounds for the
Proof sketch We first change the vocabulary to a purely complexity over® and the simpler algeb@j.
relational one. For a-structureA, we write dom(.A) for
Ureadom(a) dom(T). Let T[A] be the structure in the Theorem 4 The data complexity oRC(T) (and thus
(new) vocabulary fof€ plus o whose universe is the set RC(Tp)) is in PH. Furthermore, there is an infinite set
of all treesT" with dom(7") C dom(A). We then prove, S C Trees,(X) definable in@y such that for every,
in two steps, using Ehrenfeuct-Fraissé games, that fpr an there are problems complete fat? and I1? which can
k > 0, there existsn > 0 such that®[A] =, T[B] im- be expressed iRC(Ty) (and thusRC(T)) over databases
plies (T, A) =, (T,B). This suffices, since then every whose active domain lies if.
RC(T, o) query of quantifier rankt is a union of rank- Proof sketchUsing the quantifier-restriction of Theorem
m types over the restriction df to trees withdom(7") C 3, we codeRC(T, o) queries in second-order logic over a
dom(A), for somem > 0 that depends oh only, and each (polynomially computable) expansion ef For the con-
su_ch type can be expressed by a query with restricted quanyerse, we code MSO overin RC (Tp, o) for o-structures
tification. O Awith dom(T) c 1* and labeling identically for some
fixeda, foranyT € adom(A). O

Theorem 3 does not hold fgE| = 1. However, the proof)] o
of Theorem 3 implies that in this case it suffices to restrict 6-5 Generic data complexity and expressivity

quantification to trees whose domains lie in dmnpletion bounds
of the union of the domains of trees in the databases and in
the tuple of free variables. The PH bounds on query expressivity might lead one

RemarkWhile the result of Theorem 3 also applies to t0 imagine that arbitrary NP-complete calculations on tree
RC(Ty, o), the seflrees,, (£)|qom(x) iS NOt definable from sets can be performed by tree extension queries. We show,

X overT,. We can get a finer bound f@ (using the however, that the complexity afenericqueries is in fact
notation of Corollary 3). quite low. A generic (Boolean) query is just an isomor-

phism typeQ) of o-structures. We say th#} is expressible
. in RC(M, o) if there is a sentenc® of RC(M, o) such
Proposition 5 Any relational calculus formulap(T) in that for anyo-structure4 over M, (M, A) = @ if A is of
RC(Ty,0) is equivalent to a formula in which quantifiers isomorphism typ&).
range overTrees, (¥)|x:, whereX = adom(A) U T, and Normally, data complexity of a Boolean quefyis de-
a€X. o fined as the complexity of the language that consists of

encodings of structuresl € Q. If A is a relation over Theorem 6 Safe queries in botRC(Ty) andRC(T) have
Trees,, (X), such an encoding must also encode all the treesa range-restricted form. In particular, safe queries foitho
in adom(A). Since in generic queries it is irrelevant which calculi have effective syntax.

trees belong taudom(A), we can use a different encod- Proof sketch The proof is by an Ehrenfeucht-Fraissé
ing, where elemen_ts o_f the active d_omaln, of sizare en- game argument, showing that if a treed04) has a branch
coded ag,2,..., kin blnary, justasin the case of relational thatis “Very far” fromA, themp(A) is infinite, where “Very

calculus without any additional constraints [2]. We denote fgr” depends onp only. Then the sequence of querigs

such an encoding byncgen (A), and say thageneric data returning all branches of distance at mostom A can be
complexityof RC(M) is in a complexity clas¥ if for any used. O

o and any generic quer§) expressible irRC(M, o), the

language{encgen (A) [A € Q}is in K. Summary We conclude this section by summarizing the

results orRC(T) andRC(Tp), as well as comparing them
with relational calculi over stringsRC(S) and RC(Sp).
As for expressibility without database relatio@shappens
to be close t63, but Sy, which is the restriction oy to
one-directional trees, is significantly simpler tH&gn

Theorem 5 Generic data complexity &C(T) is in (uni-
form) AC®.

From AC’ lower bounds (cf. [18]), we obtain:

Corollary 6 Parity test and connectivity test are not defin- RC(Sp) | RC(Ty) | RC(S) | RC(T)
able inRC(T). O restricted yes no no no
quantifier
. normal form
6.6 Normal forms for safe queries data AC? PH PH PH
complexity
A fundamental property of database queries is their | genericdata| FO(<) AC’ AC’ AC’
safety whether for a relational calculus quep{), the set complexity
o(A) = {@ | A £ (@)} is finite for all A. It is well Syntax for yes yes yes yes
known that even for pure relational calculus, without addi- safe queries

tional constraints, safety is undecidable [2]. Howevefe sa
gueries in pure relational calculus haféective syntaxhat
is, there is an r.e. set of safe queries such that every safe
guery is equivalent to one in that set. If one considers rela-
tional calculus with additional constrainRC(M, o), the We have seen that constraints based on extension rela-
question is whether there is effective syntax for safe gseri tions with additional domain comparison and leaf concate-
Itis known [31] that effective syntax need not exist even for nation functions are solvable, with the resulting soluten
some decidablé. presented by a regular tree relation. We also saw (Proposi-
The typical way of ensuring query safety is to fix some tion 2) that_(_)ne ca_nnot cor_nk_Jine t_he_se formulae_with unary
specific collection of safe querie;) and to explicitly term eq_uaI|t|es while remaining within the domain of regu-
bind the output of each query to lie in the output of one lar relations.
of thesey;. If the sequence; is sufficiently rich, then all Although the bounds presented for primal tree extension
safe queries can be captured in this way. This is the ideaformulae are the same as for general formulae in the worst
behind the classical database conceptanige-restriction case, it remains to check to what extent primal formulae
which is extended to the setting of built-in functions in.[7] ~can be evaluated with greater parallelism. It is clear that
A query (%) is range restricted by another quepyz) if splitting automata can be implemented more efficiently than
o(A) C ¥(A) for every A. For a structureM, we say that ~ general tree-tuple automata on trees with small overlap, bu
queries overM haverange-restricted fornif there is an we currently have no formal results that capture this ad-
r.e. sequence of safe querigs) such that every safe query vantage. The bounds presented here for deciding sentences
is range-restricted by somg. If safeRC(M, o) queries that are parameterized by predicates for tree sets arerrathe
have a range-restricted form, then queries of the fpry; discouraging. Even when a primal formulais fixed, we
provide an enumeration of all saReC (M, o) queries; thus, have shown that the complexity of query evaluation is high.
safeRC(M, o) queries have effective syntax. The tech- There are, however, sublogics where the data complexity
niques of [16] or [13] can be used to show that queries overis polynomial: for instance, when one restricts to formu-

term algebra have a range-restricted normal form. We nowlae that operate on sequential encodings of the tree, one can
extend this to our tree structures. obtain polynomial bounds by simply “pulling back” the cor-

responding results for strings.

Conclusion

The results here apply to tuples of finite trees. In future [15] J. Elgaard, N. Klarlund, A. Moller. MONA 1.x: new tech-
work, we will examine what occurs for tuples offinite
trees. The natural motivation for this comes from verifica- [16]
tion: given a set of state machinés...S,, one is often
interested in synthesizing a state machthsuch that the

product ofS with S; satisfies some property. If one passes

from the machines; to the behavior tre&; obtained from

unwinding it, this corresponds to generating a regular infi-

nite treeT” that satisfies a formula(7T, T} ... T),).
AcknowledgementsWe thank anonymous referees for their

comments. Part of this work was done while Michael Benedikt

was visiting the University of Toronto. Leonid Libkin is spprted
in part by grants from the Natural Sciences and Engineeriag R
search Council of Canada and from Bell University Laboriator

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

S. Abiteboul. Semistructured data: from practice toottye
In LICS’01, pages 379-386.

S. Abiteboul, R. Hull and V. Vianu.
Databases Addison-Wesley, 1995.

Foundations of

A. Aiken. Set constraints: results, applications, aotlife
directions. INPPCP’94 pages 326—335.

D. Angluin, D. N. Hoover. Regular prefix relationdathe-
matical Systems Theofy’(3),167-191,1984.

M. Anthony and N. BiggsComputational Learning Theory.
Cambridge Univ. Press, 1992.

M. Benedikt, L. Libkin. Relational queries over integted
structures.J. ACM47 (2000), 644—680.

M. Benedikt, L. Libkin. Safe constraint queriesSIAM J.
Comput.29 (2000), 1652-1682.

M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin. Stgn
operations in query languages.P®ODS’01 pages 183-194.

M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin. A
model-theoretic approach to regular string relations. In
LICS'01, pages 431-440.

A. Blumensath and E. Gradel. Automatic structures. In

LICS’0Q, pages 51-62.

V. Bruyére, G. Hansel, C. Michaux, R. Villemaire. Lagi
andp-recognizable sets of integerBull. Belg. Math. Socl
(1994), 191-238.

H. Comon et al. Tree Automata: Techniques and
Applications Available at www. gr appa. uni v-
lille3.fr/tata.

E. Dantsin, A. Voronkov. Expressive power and data com-

plexity of query languages for trees and listsPI@DS'2000
pages 157-165.

J. Dorre. Feature logics with weak subsumption caists.
In Annual Meeting of the Assoc. of Comput. Linguistics
1991, pages 256-263.

10

[17]
[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

niques for WS1S and WS2S. GAV'98 pages 516-520.

J. Flum and M. Ziegler. Pseudo-finite homogeneity artd sa
uration. J. Symbolic Logi®4 (1999), 1689—-1699.

W. Hodges.Model Theory Cambridge, 1993.

N. Immerman. Descriptive Complexity Springer Verlag,
1999.

H.-P. Kolb, U. Monnich. The Mathematics of Syntactic
Structure: Trees and Their Logic®Valter De Gruyter, 1999.

O. Kupferman, S. Safra, M. Vardi. Relating word and tree
automata. IiLICS’96, pages 322—-332.

M. C. Laskowski. Vapnik-Chervonenkis classes of ddilaa
sets.J. London Math. Soc45:377-384, 1992.

A. R. Meyer. The inherent complexity of theories of orele:
sets.Proc. Int. Congress of Mathematick975, pages 477—
482,

M. Mller, J. Niehren. Ordering constraints over fag trees
expressed in second-order monadic logicRIFA'98 pages
196-210.

M. Miller, J. Niehren, A. Podelski. Ordering constrts over
feature trees. IPPCP’97 pages 297-311.

M. Miller, J. Niehren, R. Treinen. The first-order tmg@f
ordering constraints over feature trees. LICS'98 pages
432-443.

D. Niwinski, I. Walukiewicz. Relating hierarchies oford
and tree automata. RTACS’98pages 320-331.

L. Pacholski, A. Podelski. Set constraints: a pearbisearch
on constraints. ICP’97, pages 549-562.

A. Potthoff, W. Thomas. Regular tree languages without
unary symbols are star-freECT'93, pages 396—405.

G. Smolka. The Oz programming model. @omputer Sci-
ence TodayLNCS 1000, 1995, pages 324—-343.

G. Smolka, R. Treinen. Records for logic programming.
J. Logic Progr.18 (1994), 229-258.

A. Stolboushkin , M. Tsaitlin. Finite queries do not leav
effective syntaxInformation and Computatiqri53 (1999),
99-116.

Z.Su, A. Aiken, J. Niehren, T. Priesnitz, and R. Trein&éhe
first-order theory of subtyping constraints. ROPL'02

W. Thomas. Languages, automata, and logdlandbook of
Formal Languages, Vol.,Bpringer, 1997.

W. Thomas. Logical aspects in the study of tree langsage
CAAP’84 pages 31-50.

V. Vianu. A Web Odyssey: from Codd to XMin PODS’01

S. Vorobyov, A. Voronkov. Complexity of nonrecursivagic
programs with complex value®ODS’'98 pages 244-253.

