
Tree Extension Algebras: Logics, Automata, and Query Languages

Michael Benedikt�
Bell Labs

Leonid Libkinx
U. Toronto

Abstract

We study relations on trees defined by first-order con-
straints over a vocabulary that includes the tree extension
relationT � T 0, holding if and only if every branch ofT ex-
tends to a branch ofT 0, unary node-tests, and a binary rela-
tion checking if the domains of two trees are equal. We show
that from such a formula one can generate a tree automaton
that accepts the set of tuples of trees defined by the formula,
and conversely that every automaton over tree-tuples is cap-
tured by such a formula. We look at the fragment with only
extension inequalities and leaf tests, and show that it corre-
sponds to a new class of automata on tree tuples, which is
strictly weaker then general tree-tuple automata. We use the
automata representations to show separation and express-
ibility results for formulae in the logic. We then turn to rela-
tional calculi over the logic defined here: that is, from con-
straints we extend to queries that have second-order param-
eters for a finite set of tree tuples. We give normal forms for
queries, and use these to get bounds on the data complex-
ity of query evaluation, showing that while general query
evaluation is unbounded within the polynomial hierarchy,
generic query evaluation has very low complexity, giving
strong bounds on the expressive power of relational calculi
with tree extension constraints. We also give normal forms
for safe queries in the calculus.

1 Introduction

Because much of computing practice involves the manip-
ulation of tree structures, computer science abounds in for-
malisms for describing trees. Tree constraints and monadic-
second order logic are two declarative approaches to spec-
ifying tree properties, while tree grammars, various flavors
of tree automata and tree transducers are examples of more
procedural formalisms. Naturally, an extensive literature�Bell Laboratories, 2701 Lucent Lane, Lisle, IL 60532, USA. E-mail:
benedikt@research.bell-labs.com.xDepartment of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3H5, Canada. E-mail:
libkin@cs.toronto.edu. Research affiliation: Bell Labs.

exists comparing the expressive power of each of these for-
malisms (see [12, 33]) and for translating between declar-
ative formalisms and their procedural implementations. In
particular, work on analyzing specifications of trees plays
a significant role in program analysis [3, 24], verification
[15, 20, 26], logic and constraint programming [29, 30] and
linguistics [14, 19].

Over the last few years, applications in information ex-
change have appeared that necessitate new tools for syn-
thesizing tree-processing code from a declarative specifica-
tion. These applications all revolve around XML [1, 35]. In
XML, data is naturally modeled as a tree, the access meth-
ods and manipulation tools take input in the form of tree
transformations or transducers, and the interface specifica-
tions give preconditions using a combination of tree gram-
mars and tree constraints. The XML context brings issues
to the fore that were not as prominent in many prior ap-
plications. Most importantly, one can no longer deal with
only properties of a single tree, since databases store and
manipulate large sets and relations of trees. A natural aim
then is to use a tree constraint language to describe the kind
of properties of interest for XML transformation and query-
ing. XML querying could then be seen as constraint solving
– a model very much in line with the traditional declarative
model for database processing.

The prior literature does consider properties of tree tu-
ples and sets of trees, both in relation to logic programming
and program analysis [36, 32] and with respect to database
querying [13]. Most of this work revolves around the use of
equations and inequations among terms or trees. In these
cases the domain of the formulas or constraints is some
variation ofterm, or feature algebra. Rephrased in the ter-
minology of operations on labeled trees, term algebra cor-
responds to merging subtrees and extending branches by a
single node. Term algebra, however, does not allow one to
express the vertical ordering relationships among nodes that
are important for many applications. For example, a key
component of several XML standards ispath expressions,
which may describe the descendant relation between nodes
in a tree. An integrity constraint based on path expressions,
for example, might specify that every node labeleda in a
tree has a node labeledb as a descendant. Such a property

1

cannot be expressed over term algebra.

In this paper we investigate tree-tuple specifications
given in a constraint formalism that includesextensionrela-
tionships between trees:T1 � T2 iff T1 is an initial subtree
of T2. This is the same as the standard subsumption order-
ing used forfeature trees[14, 25]: intuitively, it means that
every branch ofT1 is also a branch ofT2.

We deal with thefirst-order theoryof this model, as op-
posed to just its equational theory. One of our key criteria
is that the theory be decidable. This makes it impossible to
combine the ordering� with term algebra operations, since
the resulting theory is known to be undecidable [25]. In-
stead, we introduce operations that allow us to extend trees
at the leaves, rather than combine subtrees at the root. We
shall call the set of trees with the extension relation (and
a number of other operations to be introduced shortly)tree
extension algebra, and the resulting formulaetree extension
formulae. To get an idea of the combination of multi-tree
constraints and single-tree formulas, we list below several
properties that can be expressed in this algebra.� branh(T1; T2): T1 is a single branch ofT2.� branhai (T1; T2): T1 andT2 are single branches, andT2 extendsT1 in directioni, labeling the leaf bya.� ab(T): Every node labeleda in T is followed by a

node labeledb.� :9T1 (branh(T1; T) ^ ab(T1)): T does not have a
branch in which every node labeleda is followed by a
node labeledb.

We show that the formalism allows considerable expres-
sive power, is closed under logical operations, and is decid-
able. After introducing the formalism, the first part of the
paper is devoted to the synthesis of automata from formulae.
We show that constraints given by tree extension formulae
can be solved, with a multi-tree automaton that recognizes
the defined collection of tuples being generated as a result.
We then consider restrictions of the tree extension algebra,
possessing considerable expressive power (in fact, covering
all the examples above) and yet having a simpler automa-
ton construction. We present such an restriction, calledpri-
mal tree extension algebra, and a corresponding class of
automata, calledsplitting automata. We use these results to
show separation between the two algebras.

We then examine tree extension algebras from both the
model-theoretic and the complexity-theoretic point of view.
What sort of combinatorial objects can be defined within the
model, and how does the solution set of a formula'(~x; ~y)
vary as the parameter~y varies? Term algebras arestablein
the model-theoretic sense (cf. [17]), implying that there is
no definable linear order and the fibers of a formula cannot

vary arbitrarily (i.e. theVC-dimensionof definable families
is bounded). We show that neither of these is true for tree
extension algebra – a linear order can be defined, even in
the primal case, and the VC-dimension is unbounded. We
also show that conversely there are properties of tree tuples
expressible over term algebra that are not expressible via
tree extension formulae.

In the second part of the paper we study database-related
aspects of the algebras, by looking atqueries– formulae of
the logic extended with free relational symbols. We study
the complexity of evaluation of queries (that is, constraint-
solving) given a collection of tree tuples as input for each
symbol. We consider the complexity in terms of the size
of a database (which is typically large). We first prove
a quantifier-restriction result, showing that any first-order
query can be expressed with quantification restricted to a
finite set, definable from the database. Using this, we
show that the complexity of query evaluation is essentially
PH. The general worst case upper bounds do not allow
us to show interesting inexpressibility results in relational
calculi with tree extension constraints, but we do obtain
such results by placing the complexity of evaluatinggeneric
queries in a much smaller class, AC0. This gives us match-
ing expressivity bounds for the pure relational calculus, and
relational calculus with tree extension constraints, as far as
generic queries are concerned. We also address the question
of characterizingsafequeries, and give a range-restricted
form that captures all safe queries with tree extension con-
straints.

Organization. Section 2 gives notations as well as the
formal definitions of the algebras. Section 3 gives the ba-
sic decidability and automata-synthesis results. Section4
introduces a specialized multi-tree automata and gives a
synthesis result for the primal tree extension algebra. Sec-
tion 5 gives model-theoretic and expressibility results on
the tree extension formulae. Section 6 introduces the re-
lational algebra corresponding to these structures, and gives
normal form, data-complexity, and range-restriction results
for them. Section 7 gives conclusions. Due to space limi-
tations, complete proofs are not included; a full version of
this paper is available from the authors.

2 Notations

The trees we consider are based on two fixed alphabets:
the alphabet for directions� of the formf1; : : : ; ng, and� for node labeling. Unless explicitly stated otherwise, we
assumen > 1. We writes1 � s2 if a strings1 is a prefix
of a strings2. A tree domainis a prefix-closed finite subsetD of ��: s1 2 D ands2 � s1 imply s2 2 D. A tree is
a pairT = (D; f) whereD � �� is a tree domain, andf
is a function fromD to �. We usedom(T) to denoteD.

2

The set of all trees over� = f1; : : : ; ng and� is denoted
by Treesn(�). Note thatTrees1(�) naturally corresponds
to��; we shall say more about this correspondence later.

A node in a treeT is a strings 2 D = dom(T), andf(s)
is its labeling. The root is the empty string�, and the leaves
ares 2 D such thats is not a prefix of any other string inD. The set of leaves ofT is called thefrontier of T and is
denoted byFr(T).

In the literature, quite often trees are considered over
completedomainsD; that is, for everys 2 D, either alls � i; i � n are inD, or none are. We donot make this as-
sumption here. However, we shall often consider trees with
complete domains. We define acompletionof T = (D; f)
with respect to a symbola 2 � asT a = (D0; f 0) whereD0 is the smallest complete domain that containsD, andf 0(s) = f(s) for s 2 D, andf 0(s) = a for s 2 D0 �D.

We now look at the operations (functions, predicates, and
constants) on trees in our algebra. The constants are�a; a 2�, with domainf�g labeled bya. Unary term construction
operators are as follows. Giveni � n (direction) anda 2 �,
for T = (D; f), suai (T) = (D0; f 0) whereD0 = D [fs �i j s 2 Fr(T)g, andf 0 extendsf toD0 by f 0(s � i) = a for
eachs 2 Fr(T).

The basic binary relation – the one that gives the name
to the algebra – is the extension order. Given two treesT =(D; f) andT 0 = (D0; f 0), we writeT � T 0 (T 0 extendsT)
if D � D0 andf is the restriction off 0 toD. Clearly it is a
partial order. As usualT � T 0 meansT � T 0 andT 6= T 0.
We denote the greatest lower bound ofT andT 0 by T u T 0.

A treeT is called abranchif dom(T) is linearly ordered
by the prefix relation, that is, for anys; s0 2 dom(T), eithers � s0 or s0 � s. Sometimes we use lowercase letters to
denote branches. Ift is a branch andt � T , we say thatt is
a branch ofT . If in additionFr(t) � Fr(T), thent is called
a maximal branch ofT .

As we will see, first-order formulae over the above func-
tions and predicates give us quite an expressive language.
But to captureall properties of tree tuples that are imple-
mentable by tree automata, we will require an additional op-
eration that allows us to compare trees based only on their
domains, ignoring alphabet symbols. For two treesT; T 0,
we writeT �dom T 0 iff dom(T) = dom(T 0).

We now introduce the basic objects of our study. For
eachn > 0, we define the following:

Primal Tree Extension Algebrais the structure having the
successor operations and the extension relation:Tp = hTreesn(�);�; (suai)i�n;a2�; (�a)a2�i

Tree Extension Algebrais the structure that in addition
allows domain comparisons:T = hTreesn(�);�; (suai)i�n;a2�; ; (�a)a2�;�domi

First-order formulae overT are calledtree extension formu-
lae.

We can show that many of basic tree operations and pred-
icates are definable overTp. There is a formula�(t) saying
thatt is a branch:8x; y (x � t^y � t)! (x � y_y � x).
We also write�(t; T) for �(t) ^ t � T (t is a branch ofT)
and�max(t; T) for �(t; T) ^ :9t0 (t � t0 ^ �(t0; T)) (t is a
maximal branch ofT).

CompletionsT a are definable as well. Indeed,T a is the
smallest, with respect to�, treeT 0 � T such that for any
nonmaximal brancht of T 0, and for eachi � n, eithersubi (t) � T for someb 2 �, or suai (t) � T 0. Clearly
this is definable overTp.

One can also see thatsuai could be defined in a num-
ber of different ways, for instance, as extending the left-
most branch, or the rightmost branch, or only extending
branches. With each of those operations and� one would
be able to definesuai . Furthermore, we can defineT u T 0
as the greatest lower bound ofT and T 0 in � (which is
a tree whose domain is the largest prefix-closed subset ofdom(T) \ dom(T 0) on whichf andf 0 coincide). We can
also define a predicateLa on branches which tests if the leaf
is labeled bya: La(t) � (t = �a) _ 9t0(t0 � t ^ Wi t =suai (t0)).
Complete vs incomplete domainsIn the literature, most
concepts related to regular tree languages and relations are
defined for complete domains [12, 33]. To make use of
them, we shall need a simple reduction of formulae con-
cerning incomplete domains to formulae over complete do-
mains. With this reduction, we shall continue to deal with
trees over arbitrary domains, but we shall be able to use
many results from the literature on trees over complete do-
mains.

Let ? be a symbol not in�. Let Treesn(�) be the set
of trees of the formT ?, whereT 2 Treesn(�). We extend
operationssuai to Treesn(�) as follows: if T 0 = T ?,
thensuai (T 0) = (suai (T))?. Define structuresTp andT whose universe isTreesn(�), and the operations are the
same as inTp andT, with su interpreted as above. Then
a simple inductive argument shows:

Lemma 1 Let'(~T) be a formula in the language ofTp (orT). ThenTp j= '(T1; : : : ; Tk) , Tp j= '((T1)?; : : : ; (Tk)?)
(respectively T j= '(T1; : : : ; Tk) , T j='((T1)?; : : : ; (Tk)?)) 2
3 Tree extension algebra and tree automata

In this section we show that sets definable by tree ex-
tension formulae are familiar objects: they are regular (rec-

3

ognizable) tree languages/relations. Furthermore, formulae
overT can be compiled into tree automata, and vice versa:
this automata-theoretic characterization makesT a natural
model to work in.

A set of trees over complete domains is called regular if it
is accepted by a tree automaton. Extending this to arbitrary
domains, we say that a setX � Treesn(�) is regular if the
setX? = fT ? j T 2 Xg is accepted by a tree automaton.

We next define regular tree relations, that is, subsets ofTreesn(�)�: : :�Treesn(�), following [12]. Let�? stand
for � [f?g. Let ~T = (T1; : : : ; Tk) be a tuple of trees. We
represent such a tuple as a tree[~T ℄ in Treesn(�k?). LetTi = (Di; fi); i � k. Then [~T ℄ = (D;F) whereD =D1 [: : : [Dk and for eachs 2 D, F (s) is an element of�k?, that is,F (s) = (a1; : : : ; ak) in whichai = (fi(s) if s 2 Di? otherwise

Over complete domains, the notion of recognizability says
that the set of trees[~T ℄ is accepted by a tree automata over
the alphabet�k?. To account for incomplete domains, we
say thatX � Treesn(�)k is regular iff the setf[~T ℄??? j ~T 2Xg is regular, that is, accepted by a tree automaton over the
alphabet�k?. Here??? stands for thek-tuple(?; : : : ;?).
Theorem 1 a) For anyk � 1, a subset ofTreesn(�)k is
definable by aT formula iff it is regular.

b) A subset ofTreesn(�) is definable inTp iff it is regu-
lar.

Furthermore, for both a) and b), the translations between
formulae and automata are effective.

Proof sketch. For a), we show that atomic predicates ofT are encoded by tree automata, and then use the closure
properties. For the other direction, we show how to encode
antichain logic [28] overdom([~T ℄???) in FO overT. The
encoding, in case ofdom(T ?), can be done without using�dom, which gives us b). 2

Thus, definability of sets of trees inTreesn(�) is the
same inTp andT. For relations, however, definability is
different, as we shall see in the next section.

Consequences of the automata-theoretic representation
First, we can show that in any formula'(~T), quantifiers
only need to range over a finite set. Given a tuple~T 2Treesn(�)k, let Treesn(�)jdom(~T) be the set of all trees
whose domain is a subset of

ST2~T dom(T). By encoding
the run of a tree automaton overT, one can see the follow-
ing.

Corollary 1 The finite setTreesn(�)jdom(~T) is definable

from ~T overT. Furthermore, every formula'(~T) overT

is equivalent to a formula in which quantifiers range overTreesn(�)jdom(~T). 2
The tree automata representation also gives us decidabil-

ity and lower complexity bounds.

Corollary 2 The theory ofT (and thus ofTp) is decid-
able. Decision procedures for bothTp andT have non-
elementary complexity.

Proof. Decidability follows from the automata represen-
tation; lower bounds from encoding WS1S [22]. 2
4 Primal tree extension algebra and au-

tomata

The goal of this section is to compare the power ofTp
andT. Since the previous results show that all regular sets
of trees can be defined inTp (assumingn > 1: we discuss
the special casen = 1 later), one might ask whether the
domain-comparison operator�dom is in fact already defin-
able inTp. We show here that�dom is not expressible in
the primal tree extension algebra, and thusTp andT are
different. We make the difference between the two models
more concrete by presenting a restricted tree-tuple automa-
ton model that exactly captures definability inTp.

Let ~T = (T1; : : : ; Tk) be a tuple of trees. We say thatt
is a branch of~T if t is a branch of one ofTis. In this case
we also writet 2 ~T for

Wi �(t; Ti). The automaton model
is called asplitting automaton; such a device accepts or re-
jects a tuple~T by defining a run over the set of all branches
of ~T (as opposed to products of branches as for general tree-
tuple automata). Intuitively, a splitting automaton has par-
allel threads moving up distinct branches of~T , with these
threads merging at the point where the branches meet.

A splitting-vectoris a functionV that assigns to each(i; a) 2 ��� a finite set of integers in such a way that for
any fixedi, the setsV (i; a); a 2 �, are disjoint. Therange
of a splitting vectorV is range(V) = S(i;a)2��� V (i; a).

For a finite setS, anS-splitting vectoris a finite setV
of tuples(i; a; J; s) 2 � � � � P�n(N) � S, such that
the projection on the first three components, denoted bySubset(V) = f(i; a; J) j 9s (i; a; J; s) 2 V g, is a split-
ting vector, and such that for every(i; a) there is exactly
one(i; a; J; s) 2 V . We letState(V)(i; a) be the uniques 2 S such that for someJ , (i; a; J; s) 2 V . For anS-
splitting vector, we define the range ofV to be the range of
the ordinary splitting-vectorSubset(V).

An S-splitting rule is a rule of the form(I; s)(V;
whereI is a finite set of integers,s 2 S, andV is anS-
splitting vector withrange(V) � I . Intuitively, a splitting

4

vector describes for each successorsuai (t) of a brancht
which components of~T have that successor. AnS-splitting
vector describes the state of the machine on each of these
successors of a branch, while a rule describes a bottom-up
transition to a new state and new set of trees in~T .

An acceptance partitionF is a function assigning to eacha 2 � a setJ 2 P�n(N), while anS-acceptance partitionF is a function assigning to eacha 2 � a pair (J; s) 2P�n(N) � S. For such a functionF , we letSubset(F) andState(F) be the two projection functions:Subset(F) is the
function mappinga 2 � to theJ such that(J; s) 2 F (a),
andState(F) is the function that mapsa 2 � to thes such
that(J; s) 2 F (a).

For a brancht, let supp(t; ~T) befi j t 2 Tig. Given ~T
and a brancht of ~T , v(t; ~T) is the splitting vector assigning
to (i; a) the setfj j suai (t) 2 Tjg. We let v(;; ~T) be
the acceptance partition assigning to eacha 2 � the setfi j �a 2 Tig.

A k-dimensional (bottom-up) splitting automatonA is a
tuple(S; Æ; IR;F) where:� S a finite set (thestatesof A).� Æ, the transition relation, is a finite set ofS-splitting

rules(I; s) (V with I � f1; : : : ; kg, with everyS-
splitting vectorV contained in at least one rule.� IR, the set ofinitialization rules is a set of rules of
the form(I; s) (, whereI � f1; : : : ; kg, and each
subsetI is in at least one rule ofIR.� A collection ofS-acceptance partitionsF , theaccept-
ing partitions ofA.

A bottom-up splitting automaton isdeterministicif there
is at most one initialization rule(I; s), for each I �f1; : : : ; kg, in Æ there is at most one rule with a given right-
hand side.

A run r of a k-dimensional bottom-up splitting automa-
tonA on ~T of sizek is a function from the branches of~T to
the statesS of A such that:� For every frontier brancht (i.e. a branch such that no

extension oft is a branch of~T) with supp(t; ~T) = I ,r(t) is a states such that(I; s)(is in IR.� For every non-frontier brancht, r(t) is a states such
that(supp(t; ~T); s) (V is in Æ, whereSubset(V) =v(t; ~T) andState(V)(i; a) = r(suai (t)), wheneversuai (t) is in ~T .

A run is acceptingif there is anS-acceptance partitionF 2 F with Subset(F) = v(;; ~T) andState(F)(a) =r(�a) for eacha such that�a is in ~T .

The following is an example of a2-splitting automatonA over alphabet� = fa; bg� = f1; 2g:IR = f(f1g; s0)(gÆ = f(f1g; s0)(f(1; b; f1g; s0); (2; b; f1g; s0)g(f1; 2g; s1)(f(1; b; f1g; s0)g(f1; 2g; s1)(f(1; a; f1; 2g; s1)gF = f(a; f1; 2g; s1)g
The initial rule says whatA does on nodes that have no

successors: these nodes must only be in the first tree, and on
each such node we start in states0. The first rule inÆ says
that if a noden0 has both of its successorsn1 andn2 in the
first tree with labelb andA is in states0, thenn0 is only in
the first tree, andA remains in states0 onn0. The second
rule says that on a noden0 with only a1-successorn1, if n1
is labeled withb and is only in the first tree, andA is in s0
on n1, thenn0 is in both trees, andA is in states1 on n0.
The final rule says that ifn0 has only1-successorn1, n1 is
in both trees, andn1 is labeled witha, thenn0 is in both
trees, and the state ofA is unchanged in moving ton0. The
acceptance partition describes the requirement that the root
node be common to both trees, labeled witha, and in states1. This automaton accepts a pair(T1; T2) iff T1 consists
of a binary tree labeled withb placed below a linear stem
labeled witha, T2 � T1, andT2 is exactly the linear stem.

In the special case of a1-dimensional automaton, a split-
ting vectorV is just a collection of pairs(i; a) 2 � � �,
such that for eachi there is at most onea with (i; a) 2 V . A
splitting vector can thus be identified with a function from� into �?. An S-splitting vector likewise corresponds to
a function from� into �? � S, and the set of rules of the
automaton can be identified with a partial function mappingf in (�? � S)� to s 2 S. Under this identification, a run
of a splitting automaton over a single treeT corresponds to
a run of a standard bottom-up tree automaton overT ?, and
hence the set of trees accepted by a1-dimensional splitting
automaton is regular.

Theorem 2 A subset ofTreesn(�)k is definable by a for-
mula ofTp iff it is accepted by ak-dimensional splitting
automaton. Furthermore, the translations from formulae to
automata and vice versa are effective.

Proof sketch. To go from a formula to an automaton, we
show that atomic formulae ofTp can be captured by split-
ting automata, and then prove the usual closure properties
for splitting automata. The converse is shown by induction
on the dimension: the casek = 1 is sketched above, and in
the inductive step one shows how to code inTp the effect
of a rule in which tree sequences of dimension belowk are
merged into a tree-sequence of sizek. 2
Consequences of the automaton representation forTp
The main consequence is thatTp andT are different:T
defines more subsets ofTreesn(�)k for anyk � 2.

5

Corollary 3 If j � j> 1, then the predicate�dom is not
expressible inTp.

Proof sketch. For eachm we consider the pair of trees
encoding stringsam andbm as the left-most possible path,
and a pair encodingam andbl, l 6= m. If we choosem; l
so thatbm andbl are indistinguishable by finite automata
with k states, then the resulting two pairs of trees are in-
distinguishable by splitting automata withk or fewer states.
Hence there can be noTp formula that uniformly separates
pairs(am; bm) from (am; bl), while there is such aT for-
mula. 2

Another consequence is that inTp, quantification can
be restricted to a finite set. For a symbola 2 �, letTreesn(�)j~T a be the set of all treesT0 such that every

branch ofT0 is a branch of a treeT a ; T 2 ~T . Note that
this set is definable from~T overTp. By encoding the run of
a splitting automaton, we can show:

Corollary 4 For anya 2 �, and everyTp formula'(~T),
there is an equivalent formula in which the quantifiers range
overTreesn(�)j~T a . 2
5 Expressibility and model theory

We now study model theoretic properties and the expres-
sive power of the tree extension algebras. We start with two
results that show a sharp contrast betweenT andTp on the
one hand, and term algebra. As mentioned in the introduc-
tion, term algebras have a particularly well behaved model
theory: they are stable (which implies that no linear order is
definable), have finite VC dimension, and admit quantifier-
elimination. In contrast to this, we can show:

Proposition 1 There is a linear ordering onTreesn(�) de-
finable inTp.

Proof sketch. We first show how to define a linear order
on branches, by comparing two branchest1; t2, at t1 u t2.
We then show how to extend the ordering to trees. 2

Since there is no linear order definable in a term algebra,
the operations ofTp clearly cannot be first-order definable
in term algebra.

Let joina(T1; T2) be the binary tree whose root
is labeled a, and whose left and right subtrees areT1 and T2 respectively. The structurehTreesn(�);�; (joina)a2�; (�a)a2�i corresponds to the first-order theory
of FT� constraints over feature trees studied in [23, 25].
Since that theory is known to be undecidable [25], we ob-
tain:

Proposition 2 joina is not definable inT. 2

One can also give a direct proof, showing that withjoina
one can define predicates not recognizable by tree automata.

Thus, first-order logic overTp and T is incompara-
ble with first-order logic over term and feature algebras
[25, 13]. Another consequence is that queries over this logic
(see Section 6) cannot express the classes of tree set con-
straints used most frequently in program analysis [3, 27].

VC dimension We now show that the behavior of defin-
able families inTp andT formula is not as tame as in a
term algebra. A standard notion of tameness for definable
families is given by the concept ofVC dimension(cf. [5])
(also known as not having the independence property [21]).
Given an infinite setX and a familyC of its subsets,X
shattersa finite setF � X if fF \ C j C 2 Cg is the pow-
erset ofF . The VC dimension ofC is the maximum size of
a finite set it shatters (or1 if arbitrarily large finite sets are
shattered). Given a structureM over a setU and a formula'(x1; : : : ; xm; yl; : : : ; yk) in the language ofM, the defin-
able family given by' is f f~a 2 Um j M j= '(~a;~b)g j~b 2 Ukg. We say thatM hasfinite VC dimensionif every
definable family has finite VC dimension. From the learn-
ing point of view, this means that every definable family is
PAC-learnable [5]. Finite VC dimension also implies strong
bounds on the expressiveness of relational query languages
[6, 8]. It turns out that the presence of the extension predi-
cate�, preventsM from having finite VC dimension.

Proposition 3 For any nonempty �, the structurehTrees2(�);�i does not have finite VC dimension.
HenceTp andT do not have finite VC dimension. 2
Model theory of strings vs. model theory of trees We
remarked before that if the alphabet of directions has a
unique element, then trees over such alphabet are naturally
associated with strings: that is, trees inTrees1(�) are in 1-1
correspondence with��. What are the analogs ofTp andT in this case then? It turns out that they are known and
well-studied structures. We now compare model-theoretic
properties of those structures withT andTp.

First, we define analogs ofT functions and predicates
for n = 1. The predicate� becomes string prefix<;
the successor operations become concatenation operationsfa(s) = s � a for a 2 �; �a becomes definable as the small-
est, with respect to<, image offa, and�dom simply tests
if two stringsx andy have the same length, which we shall
denote byel(x; y). Summing up, forn = 1,T is equivalent
to S = h��; <; (fa)a2�; eli
and Tp is equivalent to its reductSp = h��; <;(fa)a2�; i. These structures are well-known [11, 10, 9].

6

Figure 1 summarizes results onT;Tp, and their string
analogsS [11, 10] andSp [9]. It turns out that model-
theoreticallyS and T are rather close, butSp and Tp
are very different. The first line of the table talks about
one-dimensional definable sets, that is, subsets of�� orTreesn(�). The second line is about arbitrary definable
sets. The automaton construction forSp is a counter-free
restriction of regular prefix automata of [4]. No similar re-
striction (either to first-order definable or star-free treelan-
guages [34]) is possible overTp, since even in the one-
dimensional case, arbitrary regular tree languages are de-
finable.

The third line compares VC dimension of definable fam-
ilies. The fourth and the fifth line compare first-order and
weak monadic second-order theories; the undecidability of
the latter forTp is shown below.

Proposition 4 One can code arithmetic (+;�) in weak
MSO overTp. Consequently, the weak MSO theory ofTp
(and even the weak EMSO theory) is undecidable. 2
6 Relational calculi with tree extension con-

straints

One of the motivations for tree extension algebras is to
get tree constraints relevant in database (and in particu-
lar, XML) applications. In such applications, one writes
queries, typically first-order, not only over trees but also
over collections of trees. Using database terminology, we
deal withrelational calculuswith tree extension constraints.
From the logical point of view, we consider definability overT andTp parameterized by sets or relations on trees.

In this section, after giving the basic definition for rela-
tional calculi with constraints, we obtain normal forms for
queries that will allow us to classify the expressive power
and complexity of query evaluation for relational calculi
with tree extension constraints. We then obtain normal
forms for queries that are known to produce finite output
on any input.

6.1 Preliminaries

A databaseschema� is a finite collection of relation
symbols. Given an underlying structureM, relational cal-
culus overM and�, RC(M; �), is the class of first-order
queries (formulae) in the language ofM supplemented with
the symbols from�. If � is understood, or irrelevant, we
write RC(M). For example, if� has a single binary rela-
tionE, then theRC(Tp; �) query8x8y E(x; y)! ��(x) ^ �(y) ^ x � y�

tests whetherE is a subgraph of� whose nodes are
branches.

We shall always interpret� relations as finite relations
over the universe ofM (in our case,Treesn(�)). Theactive
domainof a�-structureA is the setadom(A) of all the ele-
ments ofTreesn(�) that occur inA. Active-domain quanti-
fiers are quantifiers of the form9x2adom and8x2adom;9x 2 adom '(x) is interpreted as the existence of an ele-
menta 2 adom(A) that satisfies'(a).
6.2 Normal forms

The main tools for analyzing the expressive power ofRC(M; �) come in the form of normal forms for queries.
The most basic one,restricted-quantifier normal form[6,
16, 8], states that everyRC(M; �) formula is equivalent to
a formula in which no� symbol appears in the scope of a
quantifier8x or 9x (that is, they appear only in the scope
of quantifiers8x 2 adom and9x 2 adom). The ability
to put queries in restricted-quantifier normal form implies
very strong expressivity bounds on relational calculi with
constraints. In particular, it gives a strong bound ongeneric
queries expressible in such calculi. Recall that a query is
generic if it commutes with permutations of the domain
of M. For example,parity, testing if the number of ele-
ments ofadom(A) is generic, as isgraph connectivity. In
fact, any query definable in a standard relational query lan-
guage (relational calculus, datalog, etc.) without constraints
is generic. If all queries can be put in restricted-quantifier
normal form, then every generic query inRC(M; �) is de-
finable in first-order over finite� structures and a linear or-
dering on their domain. This in turn implies that queries
such as parity and connectivity are not definable. However,
it was shown in [8] that no structure with infinite VC di-
mension admits restricted-quantifier normal form. Hence,

Corollary 5 Tp andT do not admit restricted-quantifier
normal form, even ifj� j= 1.

We thus need to find a different way of getting bounds
on the expressive power and complexity ofRC(T) andRC(Tp). The main tool is a normal form result that shows
how to restrict quantification to a finite extension of the ac-
tive domain. From that result, we derive both complexity
and expressibility bounds.

6.3 Restricting quantification in RC(T)
We show that a certain weaker restricted quantifier nor-

mal form holds for relational calculus overT. Recall that
for a setX of trees,Treesn(�)jdom(X) is the set of all treesT such thatdom(T) � ST02X dom(T0). Note that ifX is
definable by a formula ofT, then so isTreesn(�)jdom(X).

7

Model Sp Tp S T
one-dimension *-free regular regular regular
definable sets
arbitrary counter-free splitting regular regular
definable sets prefix automata automata
VC dimension finite infinite infinite infinite
FO theory decidable decidable decidable decidable
(weak) MSO theory decidable undecidable undecidable undecidable

Figure 1. Comparison of string and tree models

The main result of this section is that for everyRC(T; �)
query, quantifiers can be restricted to range over the (finite
and definable) set of trees whose domains can only contain
nodes present in the domains of trees in the active domain of
the finite�-structure, and in the tuple of the free variables.

Theorem 3 Let j � j> 1. Then any relational calcu-
lus formula'(~T) in RC(T; �) is equivalent to a formula
in which quantifiers range overTreesn(�)jdom(X) whereX = adom(A) [~T .

Proof sketch. We first change the vocabulary to a purely
relational one. For a�-structureA, we writedom(A) forST2adom(A) dom(T). Let T[A℄ be the structure in the
(new) vocabulary forT plus � whose universe is the set
of all treesT with dom(T) � dom(A). We then prove,
in two steps, using Ehrenfeuct-Fraı̈ssé games, that for anyk � 0, there existsm � 0 such thatT[A℄ �m T[B℄ im-
plies (T;A) �k (T;B). This suffices, since then everyRC(T; �) query of quantifier rankk is a union of rank-m types over the restriction ofT to trees withdom(T) �dom(A), for somem > 0 that depends onk only, and each
such type can be expressed by a query with restricted quan-
tification. 2

Theorem 3 does not hold forj�j = 1. However, the proof
of Theorem 3 implies that in this case it suffices to restrict
quantification to trees whose domains lie in thecompletion
of the union of the domains of trees in the databases and in
the tuple of free variables.

RemarkWhile the result of Theorem 3 also applies toRC(Tp; �), the setTreesn(�)jdom(X) is not definable fromX overTp. We can get a finer bound forTp (using the
notation of Corollary 3).

Proposition 5 Any relational calculus formula'(~T) inRC(Tp; �) is equivalent to a formula in which quantifiers

range overTreesn(�)jXa , whereX = adom(A) [~T , anda 2 �. 2

6.4 Data complexity of relational calculi overT
andTp

Using Theorem 3, we obtain bounds on query evaluation
overTp andT. For relational calculi, we are interested in
data complexity[2]: the complexity of evaluating a fixed
query as databases vary. The result below says that data
complexity is essentially PH (polynomial hierarchy): PH is
an upper bound, and for every level of PH, there is a com-
plete problem that can be encoded. Since the encoding can
be done inRC(Tp), this gives us matching bounds for the
complexity overT and the simpler algebraTp.
Theorem 4 The data complexity ofRC(T) (and thusRC(Tp)) is in PH. Furthermore, there is an infinite setS � Treesn(�) definable inTp such that for everyn,
there are problems complete for�pn and �pn which can
be expressed inRC(Tp) (and thusRC(T)) over databases
whose active domain lies inS.

Proof sketch. Using the quantifier-restriction of Theorem
3, we codeRC(T; �) queries in second-order logic over a
(polynomially computable) expansion of�. For the con-
verse, we code MSO over� in RC(Tp; �) for �-structuresA with dom(T) � 1� and labeling identicallya for some
fixeda, for anyT 2 adom(A). 2
6.5 Generic data complexity and expressivity

bounds

The PH bounds on query expressivity might lead one
to imagine that arbitrary NP-complete calculations on tree
sets can be performed by tree extension queries. We show,
however, that the complexity ofgenericqueries is in fact
quite low. A generic (Boolean) query is just an isomor-
phism typeQ of �-structures. We say thatQ is expressible
in RC(M; �) if there is a sentence� of RC(M; �) such
that for any�-structureA overM, (M;A) j= � if A is of
isomorphism typeQ.

Normally, data complexity of a Boolean queryQ is de-
fined as the complexity of the language that consists of

8

encodings of structuresA 2 Q. If A is a relation overTreesn(�), such an encoding must also encode all the trees
in adom(A). Since in generic queries it is irrelevant which
trees belong toadom(A), we can use a different encod-
ing, where elements of the active domain, of sizek, are en-
coded as1; 2; : : : ; k in binary, just as in the case of relational
calculus without any additional constraints [2]. We denote
such an encoding byengen(A), and say thatgeneric data
complexityof RC(M) is in a complexity classK if for any� and any generic queryQ expressible inRC(M; �), the
languagefengen(A) j A 2 Qg is inK.

Theorem 5 Generic data complexity ofRC(T) is in (uni-
form)AC0. 2

From AC0 lower bounds (cf. [18]), we obtain:

Corollary 6 Parity test and connectivity test are not defin-
able inRC(T). 2
6.6 Normal forms for safe queries

A fundamental property of database queries is their
safety: whether for a relational calculus query'(~x), the set'(A) = f~a j A j= '(~a)g is finite for all A. It is well
known that even for pure relational calculus, without addi-
tional constraints, safety is undecidable [2]. However, safe
queries in pure relational calculus haveeffective syntax; that
is, there is an r.e. set of safe queries such that every safe
query is equivalent to one in that set. If one considers rela-
tional calculus with additional constraints,RC(M; �), the
question is whether there is effective syntax for safe queries.
It is known [31] that effective syntax need not exist even for
some decidableM.

The typical way of ensuring query safety is to fix some
specific collection of safe queriesh'ii and to explicitly
bind the output of each query to lie in the output of one
of these'i. If the sequence'i is sufficiently rich, then all
safe queries can be captured in this way. This is the idea
behind the classical database concept ofrange-restriction,
which is extended to the setting of built-in functions in [7].
A query'(~x) is range restricted by another query (~x) if'(A) � (A) for everyA. For a structureM, we say that
queries overM haverange-restricted formif there is an
r.e. sequence of safe queriesh'ii such that every safe query
is range-restricted by some'i. If safeRC(M; �) queries
have a range-restricted form, then queries of the form'^'i
provide an enumeration of all safeRC(M; �) queries; thus,
safeRC(M; �) queries have effective syntax. The tech-
niques of [16] or [13] can be used to show that queries over
term algebra have a range-restricted normal form. We now
extend this to our tree structures.

Theorem 6 Safe queries in bothRC(Tp) andRC(T) have
a range-restricted form. In particular, safe queries for both
calculi have effective syntax.

Proof sketch. The proof is by an Ehrenfeucht-Fraı̈ssé
game argument, showing that if a tree in'(A) has a branch
that is “very far” fromA, then'(A) is infinite, where “very
far” depends on' only. Then the sequence of queries'i
returning all branches of distance at mosti fromA can be
used. 2
Summary We conclude this section by summarizing the
results onRC(T) andRC(Tp), as well as comparing them
with relational calculi over strings,RC(S) andRC(Sp).
As for expressibility without database relations,T happens
to be close toS, butSp, which is the restriction ofTp to
one-directional trees, is significantly simpler thanTp.RC(Sp) RC(Tp) RC(S) RC(T)

restricted yes no no no
quantifier
normal form
data AC0 PH PH PH
complexity
generic data FO(<) AC0 AC0 AC0
complexity
Syntax for yes yes yes yes
safe queries

7 Conclusion

We have seen that constraints based on extension rela-
tions with additional domain comparison and leaf concate-
nation functions are solvable, with the resulting solutionset
presented by a regular tree relation. We also saw (Proposi-
tion 2) that one cannot combine these formulae with unary
term equalities while remaining within the domain of regu-
lar relations.

Although the bounds presented for primal tree extension
formulae are the same as for general formulae in the worst
case, it remains to check to what extent primal formulae
can be evaluated with greater parallelism. It is clear that
splitting automata can be implemented more efficiently than
general tree-tuple automata on trees with small overlap, but
we currently have no formal results that capture this ad-
vantage. The bounds presented here for deciding sentences
that are parameterized by predicates for tree sets are rather
discouraging. Even when a primal formula' is fixed, we
have shown that the complexity of query evaluation is high.
There are, however, sublogics where the data complexity
is polynomial: for instance, when one restricts to formu-
lae that operate on sequential encodings of the tree, one can
obtain polynomial bounds by simply “pulling back” the cor-
responding results for strings.

9

The results here apply to tuples of finite trees. In future
work, we will examine what occurs for tuples ofinfinite
trees. The natural motivation for this comes from verifica-
tion: given a set of state machinesS1 : : : Sn, one is often
interested in synthesizing a state machineS such that the
product ofS with Si satisfies some property. If one passes
from the machineSi to the behavior treeTi obtained from
unwinding it, this corresponds to generating a regular infi-
nite treeT that satisfies a formula'(T; T1 : : : Tn).

AcknowledgementsWe thank anonymous referees for their
comments. Part of this work was done while Michael Benedikt
was visiting the University of Toronto. Leonid Libkin is supported
in part by grants from the Natural Sciences and Engineering Re-
search Council of Canada and from Bell University Laboratories.

References

[1] S. Abiteboul. Semistructured data: from practice to theory.
In LICS’01, pages 379–386.

[2] S. Abiteboul, R. Hull and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] A. Aiken. Set constraints: results, applications, and future
directions. InPPCP’94, pages 326–335.

[4] D. Angluin, D. N. Hoover. Regular prefix relations.Mathe-
matical Systems Theory17(3),167–191,1984.

[5] M. Anthony and N. Biggs.Computational Learning Theory.
Cambridge Univ. Press, 1992.

[6] M. Benedikt, L. Libkin. Relational queries over interpreted
structures.J. ACM47 (2000), 644–680.

[7] M. Benedikt, L. Libkin. Safe constraint queries.SIAM J.
Comput.29 (2000), 1652–1682.

[8] M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin. String
operations in query languages. InPODS’01, pages 183–194.

[9] M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin. A
model-theoretic approach to regular string relations. In
LICS’01, pages 431–440.

[10] A. Blumensath and E. Grädel. Automatic structures. In
LICS’00, pages 51–62.

[11] V. Bruyère, G. Hansel, C. Michaux, R. Villemaire. Logic
andp-recognizable sets of integers.Bull. Belg. Math. Soc.1
(1994), 191–238.

[12] H. Comon et al. Tree Automata: Techniques and
Applications. Available at www.grappa.univ-
lille3.fr/tata.

[13] E. Dantsin, A. Voronkov. Expressive power and data com-
plexity of query languages for trees and lists. InPODS’2000,
pages 157–165.

[14] J. Dörre. Feature logics with weak subsumption constraints.
In Annual Meeting of the Assoc. of Comput. Linguistics,
1991, pages 256–263.

[15] J. Elgaard, N. Klarlund, A. Moller. MONA 1.x: new tech-
niques for WS1S and WS2S. InCAV’98, pages 516–520.

[16] J. Flum and M. Ziegler. Pseudo-finite homogeneity and sat-
uration.J. Symbolic Logic64 (1999), 1689–1699.

[17] W. Hodges.Model Theory. Cambridge, 1993.

[18] N. Immerman. Descriptive Complexity. Springer Verlag,
1999.

[19] H.-P. Kolb, U. Mönnich. The Mathematics of Syntactic
Structure: Trees and Their Logics. Walter De Gruyter, 1999.

[20] O. Kupferman, S. Safra, M. Vardi. Relating word and tree
automata. InLICS’96, pages 322–332.

[21] M. C. Laskowski. Vapnik-Chervonenkis classes of definable
sets.J. London Math. Soc., 45:377–384, 1992.

[22] A. R. Meyer. The inherent complexity of theories of ordered
sets.Proc. Int. Congress of Mathematics, 1975, pages 477–
482.

[23] M. Müller, J. Niehren. Ordering constraints over feature trees
expressed in second-order monadic logic. InRTA’98, pages
196–210.

[24] M. Müller, J. Niehren, A. Podelski. Ordering constraints over
feature trees. InPPCP’97, pages 297–311.

[25] M. Müller, J. Niehren, R. Treinen. The first-order theory of
ordering constraints over feature trees. InLICS’98, pages
432–443.

[26] D. Niwinski, I. Walukiewicz. Relating hierarchies of word
and tree automata. InSTACS’98, pages 320–331.

[27] L. Pacholski, A. Podelski. Set constraints: a pearl in research
on constraints. InCP’97, pages 549–562.

[28] A. Potthoff, W. Thomas. Regular tree languages without
unary symbols are star-free.FCT’93, pages 396–405.

[29] G. Smolka. The Oz programming model. InComputer Sci-
ence Today, LNCS 1000, 1995, pages 324–343.

[30] G. Smolka, R. Treinen. Records for logic programming.
J. Logic Progr.18 (1994), 229–258.

[31] A. Stolboushkin , M. Tsaitlin. Finite queries do not have
effective syntax.Information and Computation, 153 (1999),
99–116.

[32] Z. Su, A. Aiken, J. Niehren, T. Priesnitz, and R. Treinen. The
first-order theory of subtyping constraints. InPOPL’02.

[33] W. Thomas. Languages, automata, and logic.Handbook of
Formal Languages, Vol. 3, Springer, 1997.

[34] W. Thomas. Logical aspects in the study of tree languages.
CAAP’84, pages 31–50.

[35] V. Vianu. A Web Odyssey: from Codd to XML. In PODS’01.

[36] S. Vorobyov, A. Voronkov. Complexity of nonrecursive logic
programs with complex values.PODS’98, pages 244–253.

10

