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Abstract ture 90, and formulae in one free variablgx) define sets

of trees/stringqz | M = ¢(z)}. This approach was stud-
Unranked trees, that is, trees with no restriction on the iedin [3, 5, 10, 6, 20, 19].

number of children of nodes, have recently attracted much  The second approach led to the studpofomaticstruc-
attention, primarily as an abstraction of XML documents. tyres, that is, structures in which every definable predicat

In this paper, we study logical definability over unranked can be represented by a finite automaton [19, 20]. It was
trees, as well as collections of unranked trees, that can beshown in [6] that there is aniversalautomatic structure

viewed as databases of XML documents. The traditional ap-gver strings, that is, a structu® such that every other

proach to definability is to view each tree as a structure of gytomatic structure can be embedded i&o That struc-

a fixed vocabulary, and study the expressive power of var-tyre & also had several reducts defining regular and star-
ious logics on trees. A different approach, based on modelfree languages, and having some nice properties that made
theory, considers a structure whose universe is the set ofthem useful as the basis for relational calculi on databases
all trees, and studies definable sets and relations; this ap- gver strings [3, 4]. Recently, automatic structures hawmbe
proach extends smoothly to the setting of definability over stydied in the context ofankedtrees [5]. In that case,
collections of trees. We study the latter, model-theosglic  the universe is the set of all trees, and the universal tree-
proach. We find sets of operations on unranked trees thataytomatic structur& has as its definable relations precisely
define regular tree languages, and show that some naturalthe relations recognized by tree automata [15].

restrictions correspond to logics studied in the context of
XML pattern languages. We then look at relational calculi
over collections of unranked trees, and obtain quantifier-
restriction results that give us bounds on the expressive
power and complexity. As unrestricted relational calculi
can express problems complete for each level of the polyno
mial hierarchy, we look at their restrictions, correspongi

to the restricted logics over the family of all unranked gee
and find several calculi with lowNC') data complexity,
that can express important XML properties like DTD vali-
dation and XPath evaluation.

In this paper, we study definability in automatic struc-
tures overunranked tregsand related database query lan-
guages (relational calculi) over collections of unranked
trees. Unranked trees differ from ranked trees in that there
is no restriction on the arity of nodes. Although unranked
Trees have been considered in the 60s and 70s [28, 34], and
are related to feature trees over an infinite set of features
[22, 23], it was the advent of XML that initiated their sys-
tematic study [8]. XML is a popular data format which is
becoming the lingua franca for information exchange on the
world wide web [37], and XML data is naturally modeled
as unranked trees [25, 37]. This connection made recent
advances in unranked tree language theory foundational for
1. Introduction XML-related research in areas such as XML pattern lan-
guages [9, 24, 26, 27, 31] and XML schema languages

In the literature, there are two different approaches to [18, 29].
logical definability over strings and trees: in the older and  Most crucial XML concepts are closely related to un-
by now classic way of providing logical descriptions of reg- ranked tree automata. For example, DTDs (Document Type
ularity [35], strings and trees are represented as stresfur Definitions, the most common form of typing XML) cor-
and definability in a logic (e.qg., first-order, monadic-sedo  respond to a subset of tree automata, and a proposed exten-
order) characterizes a class of strings/trees acceptedrby ¢ sion, called DTDs with specialization [29], has precisély t
tain automata. In the other setting, one considers the fam-power of tree automata. A pattern language XPath allows
ily of all strings ¥* or the family of all trees, and defines one to navigate documents following paths of labels from
some operations on them. This gives us a first-order struc-a given regular language. In general, the connection be-



tween regularity and querying tree-structured data is-well Organization. Section 2 defines the main concepts and
recognized [17]. presents the main proof techniques. In Section 3, we present
However, logics for unranked trees have only been con- the basic definability results ovar, andT* and show that
sidered for the setting where each tree is a model. By con-the latter defines precisely the regular relations. In ecti
structing automatic structures over unranked trees, we not4, we look at restricted definability ovar,, €, and ranked
only connect the two different definability approaches, but tree models, and connect it with first-order, monadic path
also make it easy to extend definability from a single tree logic [36], and their unranked extension [26]. We also prove
to a collection of trees. Most often such collections ap- data-complexity results. In Section 5, we consider query
pear as repositories of XML documents. If we have a struc- languages for collections of unranked trees based on first-
ture M over unranked trees, to construct relational calculus order logic ovef¥,; andT*. Section 6 presents conclusions.
over 9t we simply augment the vocabulary with symbols Due to space limitations, complete proofs are not included;
for sets/relations in the database. For examplegyifl) is a full version can be obtained from the authors.
a formula ove®t saying thatl’ conforms to DTDd, then
U(T) N pq(T) is a relational calculus query asking for all 2. Preliminaries
treesT in U that conform tad.

In the first part of the paper, we consider definability |n this section, we give a brief overview of the two differ-
over automatic structures of unranked trees. We construct aent approaches to logical definability over strings andsiree
structureT" which turns out to be the universal one. Like To avoid confusion, when we deal with logics in the first
the corresponding structure for ranked tre®s,is based on  setting, where strings and trees are represented as separat
the extension relatior among trees [5, 22, 23]; however, structures, we use calligraphic letters, e (first-order),
in the unranked case we split it into two relations., (ex-  MSO (monadic second-order), etc. In the other setting, we
tend a tree by adding siblings), ard ( extend a tree by  normally consider first-order definability over some struc-
adding descendants). We also consider a weaker structurewre 9t, and then we write F@). Throughout the paper,
%, that still defines all regular languages, but a smaller ¥ is a finite alphabet with at least two letters.
class of relations. We then look at restricted definability
over¥" and‘I; and connect it with definability in the tra- 2.1, Strings
ditional setting: it turns out that some natural sublogits o
first-order over¥™ and ¥ correspond to logics that have A string s = ay ...a, overX can be represented as a
been studied in connection with XML pattern languages, structure({1,...,n}, <, (0,)acs), Where< is the usual
and are closely connected to monadic path logic [36]. ordering, andO,, is interpreted af: | a; = a}. Clas-

If we have a formulap(T), its input, a tre€l’, can be  sical results state that a set of strings is definable by an
viewed as a first-order structure, and hence we can considetM SO (FO) sentence iff it is regular (star-free, respec-
the notion ofdata complexityof a formula. Reduction to tively), cf. [35].
tree automata and other techniques give us good bounds, Another approach to definability is by using the standard
from AC” to NC' to DLOGSPACE, on the data complexity model-theoretic setting. In that case, we consider several
of (restricted) logics ovek, andx". operations on the sé&t* of all finite strings ove:. One of

In the second part of the paper, we focus on databasethem is the prefix relatios; <pre s2 among strings. For
related aspects by adding relations of unranked trees toeach symbok € ¥ we have a function,, : ¥* — ¥* that
our structures and considering queries on them. The no-addsa as the last symbol, that i&,(s) = s - a. Finally, we
tion of data complexity in this setting views the input as have a relatiorl(sy, s2) which holds iff[s;| = |s2|; here
a database of trees. We show that the data-complexity of|s| is the length of string.
query evaluation is in the polynomial hierarchy, and find The structures most often considered in this setting are:
a class of queries for which it is AC this gives us some .
useful bounds on the ex [ Wi S {27, <pres (la)aes, €l);

pressive power. We then look at S, = (5 <pro (ln)ues)
various relational calculi based on restricted logics fitbe 4 »prey Vajagx/:
first part of the paper, and find that they have low data com- |t is known that a subset &t* is FO-definable ir& iff it is
plexity (e.g, NC) while remaining quite expressive. regular [6, 10], and it is FO-definable &, iff it is star-free

Many results in this paper are proved by a combination [3]. Furthermore& is the “universal” automatic structure,
of two techniques. One is the encoding afsinto S2S, as any relation given by a finite automaton is FO-definable
due to Rabin (cf. [7]), which gives us a coding of unranked in &, and vice versa [6, 10]. The indgxin &, stands for
trees as ranked trees. To be able to use it, we need severdprimal”, following the notation introduced in [5].
results showing how to restrict quantification over various  To explain the notion of aelation, that is, a subset of
structures; those are proved by Ehrenfeucht-Fraisséegam (X*)* k > 1, being definable by an automaton, letbe



a new symbol not ir}, and¥X;, = X U {L}. Given ak-
tuple of stringss' = (sq, .. ., sx), we define a strings] over
¥, whose length isnax; |s;|, and whoseith symbol is
(si,- .-, s), wheres} is theith symbol ofs;, if |s;| < 4,

new structures:

‘I =
‘IP

<TREE(E)7 =, (Succg)i:(),l;aEEv (Ea)aEEv %dom>
<TREE(E)7 =, (Succg)izoyl;aeEv (Ea)a€E>

and L otherwise. In other words, we pad shorter strings Here < is the subsumption [22, 23] (or extension [5], de-
with L so that all strings are of the same length. We then pending on how one looks at it) relation{Dy, f;) <

say that a relatiolR C (X*)* is regular if the language
{[8] | § € R} is accepted by an automaton ov&j.

2.2. Ranked trees

(Do, f2) if D1 C Dy andf; and f, agree onD;. We write
T <Ty if Ty <TyorTy =1Ts.

The successor functions work as followsTif= (D, f),
thensucc?(T) is the tree(D’, f') whereD’ = DU {s- i |
saleaf ofT'}, and f’ extendsf by labeling each node in
D’ — D by a. The one-node tree labeledis denoted

When dealing with ranked trees, one usually fixes a nat-by ¢, (that is, dom(e,) is ¢, the empty string.) Finally,
ural numberk and requires that all interior nodes of trees (D, f1) ~qom (D2, f2) iff D1 = Ds.

have at mosk children. In this paper, without any loss of

We consider first-order logic (FO) over these structures.

generality, we consider binary trees. The trees we considerTo emphasize the structure at hand, we write(E¢Q) and
are on two fixed alphabets: the alphabet for the domain of FO(T) to denote FO oveE, and¥T, respectively.

the tree consists df0, 1}; we use the finite alphab& for
the node labels. A séb of strings isprefix-closedf s € D
ands’ <pre simply s € D. A ranked tree domaitis a
finite prefix-closed subset dfo, 1}*. A rankedX-treeis
a pairT = (D, f) whereD is a ranked tree domain and
f: D — Yisafunction. We refer td as thedomainof T,
and tof as thdabeling function We uselom(T") to denote
D. By TREE(X) we denote the set of all rankétitrees.
Anodeinatred isastrings € D = dom(T), andf(s)
is its labeling. The root is the empty strimgand the leaves
ares € D such thats is not a prefix of any other string

in D. Nodes are ordered lexicographically so we have the

left-right relations between them.

A ranked treel’ = (D, f) is represented as a first-order

structure (D, <pre, Succo, sucer, (Og)aes), Where <pre is

the prefix relation,0, = {s € D | f(s) = a}, and

succo(s) = s-0,succi(s) =s-1foralls,s-0,s-1€ D.
We denote byFO (MSQO) the set of first-order

(monadic second-order) formulae over the above vocabu-

lary. A set of treesX C TREE(X) is FO (MSO) de-
finable if there is anFO (MSO) sentenced such that
X ={T | T [ ®}. Itis known that a set of trees isISO-

definable if it is regular, that is, accepted by a tree automa-

ton! We shall consider some restrictions.{S©; among
them ispath logic M SOP*™" [36], which isMS© in which
quantification is restricted to paths: sets linearly orddre
<pre. Itis known thatFO G MSO**" C MSO [36].

It was shown recently [5] that regularity over trees can
be captured by the model-theoretic notion of definability, FO(T).

Note that these structures are natural extension& of
and &,; that is, if we associate strings with unary trees
(D C 0%), then the definable relations &f are precisely
those of&, and the definable relations @f, are precisely
those of&,,.

As with strings, definability by automata can be ex-
tended to tuples of trees. L& = (T1,...,T%) be a tu-
ple of trees. We represent it as a trfgd in TREE(XF).
Let T, = (D;,f), i < k. Then[T] = (D, f) where
D = Dy U...UDy and for eachs € D, f(s) is an el-

ement of£% , thatis, f(s) = (a1, ..., ax) where
o fz(S) if s e Dy;
T L otherwise.

We say that a subsét of TREE(X)" is regular if {[T] |
Te R} is accepted by a tree automaton (again, with adding

nodes to ensure that the automaton runs on a tree without

unary branching).
We shall use the following results from [5].

Factl a) If X C TREE(Y), then
X isregular< X is definable in¥, < X is definable in¥.

b) If k¥ > 1 and R C TREE(X)*, thenX is definable in¥
iff it is regular.
c) The relationr4,m is not definable irg,.

We will also look at some restrictions of K@, ) and
Thereto, we introduce the following notion: a

similarly to the string case. For that, one finds natural tree branchis a treeT” such that the set of tredd” | 7" < T}

analogs of the operations & and&,. We introduce two

INote that tree automata are normally defined for trees in hvbiery
non-leaf node has two children. Since we do not impose thjgirement,

we can defingegular as being accepted by a tree automaton over the com-

pletion of a tree, in which a successor node labeled by a syndian >
is added to each node with exactly one successor.

is linearly ordered by<. This is definable in¥, by the
following formulan(T"):

VI, T (T' < TAT" <T) — (T' < T"VT" <T').

We shall consider restrictions of FO ov& and T, in
which only quantification over branches is allowed. These



restrictions will be denoted by F@%,) and FQ,(T). We
also use the notatioi” andv” to emphasize that quantifi-

the set of final states; and,is a function from@Q x X to
2@Q" assigning a regular string language ogeto every pair

cation is over branches. Clearly, these can be defined in(q, o).

FO(%,) and FOX).

2.3. Unranked trees

Arunof Aonatreel’ = (D, f) isa mapping\ : D —
@ such that for every node € D with n children, A(s -
1)---A(s-n) € 6(A(s), f(s)). Note that for leaf nodes
this implies that € d(A(s), f(s)). A run is acceptingif

For unranked trees there is no bound on the number of A(€) € F. The automatomcceptsa tree when there is an

children. We use consecutive positive integers to enureerat
children of a node. That is, we define anranked tree do-
mainas a prefix-closed finite subsBtof N*_ (finite strings

of positive integers) such that: € D impliess-j € D for
all j < i. Anunranked-treeis a pairl’ = (D, f) where

D is an unranked tree domain afid D — Y. The set of

all unranked trees ovet is denoted by WREE(Y).

An unranked tred” = (D, f) is represented as a first-
order structure(D, <pre, <sib, (Oa)acs), Where <pe and
O, are as before, ands, is the order relation on siblings
(s-i <sp s-jforalls-i,s-j € D,i,57 € N, and
i < j). Denote the above vocabulary by.. Apart from
FO and MSO over vs;, we also consider the extension
of the monadic path logic to unranked treMsSOi and a
logic FOREG, which is the extension aF O with hori-
zontal and vertical regular path expressions. These will be
defined in Section 4.

We now look at the operations on unranked trees. The
relation< is defined as before. However, using just this re-
lation would force us to introduce infinitely many successor
relations in the vocabulary. To keep the vocabulary finite,
we split< into two relations:

1. ForT = (Dlafl) andTy = (Dg,fg), T < Tif
Ty < Ty and for everys - i € Dy — Dy, thereisj < i
such thats - j € D, (extension on the right);

2.7 <) Tr if Th < Ty and for everys € Dy — Dy,
s’ <pre s for some leafs’ of T} (extension down).

Likewise we define<_, and=. Clearly,<x==_, o =,.

Let L,(T) hold, fora € X, iff the rightmost node in
T (that is, the largest one in the lexicographic ordering) is
labeleda. As before T} ~4om T holds iff D; = Ds.

With these operations, we now define two structures:

‘Iu
5

<UTREE(E)7 <=, =0 (LG)GGEa zd0m>
= (UTREE(Y), <, <, (Lg)aen)-

We define unranked branches as trees satisfyi1g).
Similarly to the ranked case, we define the logics &),
FO(T"), FO,(%,) and FQ,(T").

Next, we extend the notion of tree automata to the un-
ranked case, following [8].

Definition 1 An unranked tree automatas a tupleA =
(@, %,4, F) where( is a finite set of statesf” C @ is

accepting run.

A set of unranked trees iegular if there is an unranked
tree automaton accepting it. A relatighC UTREE(X)” is
regular if so is the sef[T] | T € R} over UTREE(ZH ).

Similarly to the ranked caseMSO over the vocabu-
lary (<sib, <pre, (Oa)acx) defines precisely the regular un-
ranked tree languages [27].

2.4. XML: DTDs and XPath

Document Type Definitions (DTDs) is the most com-
monly used XML schema definition language. It can be
abstracted by extended context-free grammars (with regula
expressions as right-hand sides of productions). Formally
a DTD overX is a pair(s, d) wheres € 3 is the start sym-
bol andd : ¥ — 2% maps everyt-symbol to a regular
language oved. AtreeT = (D, f) conforms tod iff
f(s-1)---f(s-n) € d(f(s)) for everys € D with n
children.

XPath [14] is an XML pattern language employed by
several XML transformation languages like XSLT [13] and
XQuery [12]. We have the core XPath fragment in mind,
which is normally defined by the following grammar:

p=pilp1 | /p | p1/p2 | p1//p2 | Pilpe] | o | *

We refrain from giving a direct formal semantics, but,
instead consider a logic containing this fragment. Let
FO(3F*) be the fragment ofFO over the vocabularys,
consisting of formulaex(x, y) in the prenex normal form
and all quantifiers existential. Additionally, formulasnca
make use of the unary predicates 1@gt leaf(x), first(x),
and lasfx) (denoting thatz is the root, a leaf, the first
and the last child, respectively) and the binary predicate
sucdz, y) (denoting thay is the right sibling ofz, respec-
tively). Note that these predicates &€ -definable but not
FO(F*)-definable. A patterrp(z, y) is always evaluated
against some context node we write o(u, T') for the set
{v| T E ¢(u,v)}. For logical characterizations of frag-
ments of XPath, we refer to [2].

2.5. The toolbox

Many results in this paper are proved by a combination
of two techniques: translating unranked trees into ranked
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Figure 2. A branch ofT" with endpoint labeled and

a branch ofR (T') with endpoint labeled.

2.5.2 Ehrenfeucht-Fraisg games

ones, and Ehrenfeucht-Fraissé games. Below we briEfIyMost proofs in this paper make extensive use of

review them.

2.5.1 Encoding unranked trees

Ehrenfeucht-Fraissé (EF) games. The standard (FO) EF
game is played on two structured, and B, of the same
vocabulary, by two players, the spoiler and the duplica-
tor. In rounds, the spoiler selects a structure, sayand

This encoding is basically the same as Rabin’s encoding ofan element:; of it; the duplicator responds by selecting

SwS into S2S, cf. [7]. Given a string; - - - ny of positive
integers,
R(ny---ng) = 01"01™20---01™ € {0,1}".

Also,R(e) =e.
Given a treeT' = (D, f) € UTREE(X), we define
R(T) = (D', f') € TREE(X ) as follows:

e D'is the prefix-closure oR(D) = {R(s) | s € D};

o If s € D, thenf'(R(s)) = f(s);if s € D' — R(D),
thenf'(s') = L.

We give an example in Figure 1.

an element; of B. The duplicator wins ink-rounds if
{(as,b;) | i < k} defines a partial isomorphism betwen
and®B. We write2l =, B to denote this. A classical result
states tha®l =, % iff 2( andB agree on all FO sentences
of quantifier rank up td, cf. [16].

The game forM SO is similar, except that the players
can play point moves, like in the FO game, and set moves, in
which case the spoiler plays; C A (or B; C 8), and the
duplicator responds witl3; C 9 (or A; C ). The win-
ning condition also requires that, in addition, theand
relations be preserved. Then we wile=;'°° 9B. Again,

2 =3*°¢ B iff A andB agree on allMSO sentences of
quantifier rank up td, cf. [16].
We shall also make use of reduced EF games, which

It turns out that unranked regular and ranked regular areare helpful for logics with restricted quantification (for-i

in fact similar notions. For a set of unranked tre€slet
R(X)={R(T)| T € X}. SinceMSO over unranked
trees can rather easily be encodedMtSO over ranked
trees and vice versa, and since the imag® 0 is MSO-
definable, we have the following folklore result (for an ex-
plicit proof, see [33]):

Proposition 1 For any finite alphabet® and X C
UTREE(X), X is regular iff R(X) is regular.

We conclude with a note on branches. Branches are a

crucial notion in many of the restricted logical formalisms
It is therefore worthwhile to point out that this notion dif-

fers for ranked and unranked trees. Indeed, a branch in an
unranked tree includes the left siblings of every node in the

stance, to branches). For that, let -@Gtand for FO with
restricted quantification of the for@z € V, whereV is to

be interpreted as a subset of the structur i$ interpreted
asV? in 2 andV'® in B, then we write(2, @) ~ (B, b)

if for every such restricted quantification formutd®) of

quantifier rank< k, it is the case tha®l = ¢(a) iff

B = o(b).

The V-restricted EF game is defined as the usual EF
game except that moves can only come frgth andV'®.
We write (20,a@) =) (%, b) if the duplicator wins ink
rounds of thel/-restricted game, starting from the position
(@,b). Note thati andb do not have to come froi® and
V. The proof of the following result mimics the usual
proof for EF games, cf. [16].

branch, while a branch in a ranked tree does not. The latter emma 1 (2, @) vV (B, b) iff (A, a) ~V (B, b).

follows immediately from the definition of branches given
in Section 2.3. We give an example in Figure 2.

In all the logics we consider, there will be finitely many



formulae of quantifier rank;, up to logical equivalence. A  treeT”’ as an unranked one we could have tested by a for-
rank-k type of a tuplez in 20 is the set of all formulae (%) mulao(T,T") if T' = R(T). The following result shows
such tha®l = ¢(@). Giventhe above, there are only finitely that such a formula does not exist.
ms:;ygfgﬁgrxﬁgrsr;:g_emh of them is definable by a for- Proposition 2 The graph ofR is notFO(T")-definable.
We introduce the notion oflata complexityfor logics

3. Basic definability results over unranked over infinite structures as follows. For a complexity class

trees C, we say that the data complexity of such a logic awer
(e.g., FAT),) or FO,(T")) is C, if for every formulap(z)
in the logic, the se{T | M = ¢(T)} isinC. HereT is
encoded as the appropriate first-order structure (depgndin
on whethefT is ranked or unranked).

As an immediate corollary of Theorem 1, we see that
the data complexity of both F@,) and FGT") is poly-
nomial, since formulae can be converted into unranked tree
Lemma 2 Let M be elther‘I“ or T, over UTREE(Y), automata. Moreover, a recent result [30] places the com-
and letO be the correspondmg ranked tree model, over plexity of unranked regular tree languages in DLOGSPACE
TREE(Y, ). Then for every FQ*)-formulay there exists ~ (for ranked trees, the bound is NG21]). We shall see

In this section, we link definability over unranked trees
in the structure&; andT™ to regular languages.

Here, and throughout the paper, we make use of the fol-
lowing lemma. The proof is by induction on E@;) and
FO(T")-formulae.

anFO("M)-formulay’ such that: a number low data complexity bounds in the next section.
. B (Notice, however, that the combined complexity, that is, th
M Ee(T) & MEG(RT)). complexity of {(¢,T) | ¢(T') holds is hyperexponential

o for both T, and ™).
Moreover, if is anFO, (901*)-formula, theny’ can be cho-

sen to be afrG, (M)-formula. 4. Restricted logics over trees

Using this Lemma, together with the encodiRg:), we

show that Fact 1 extends from ranked to unranked trees. In this section we present a number of restrictions of FO
over both ranked and unranked tree models, that capture
Theorem 1 Let X be a subset oUTREE(X). Thenthefol-  some familiar subclasses of regular tree languages, includ
lowing are equivalent: ing those definable itFO, monadic path logic [36] (over
1. X isdefinable inI;; ranked trees), and several other logics recently proposed
2. X isdefinableing"; in connection with XML research. We shall also establish
3. Xisregular. data complexity results for those logics. All restricticare

based on quantification over branches.

We normally state the results for definable subsets of
TREE(X) or UTREE(Y). For structures with the 4o, pred-
icate, the results straightforwardly extend to definapii

So, %" is the universal automatic structure for unranked felations. Ak-ary relationk on trees ovek is definable in
trees, meaning that any other structure that only defines reg @ logic like 7O, MSO0, etc, if the se{[T] | T € R} of
ular relations can be interpreted in it. As over strings and tré€s ovedt is defmable in the logic.

Furthermore, fork > 1 and R C UTREE(X)®, R is
FO(T")-definable iff it is regular. Moreover, the conver-
sions between formulae and automata are effective.

ranked trees [5, 6], this implies decidability: We start by looking atranked trees, and show that
FO, (%) and FQ(%,) capture familiar classes of regular

Corollary 1 First-order theories ofl;‘ and " are decid- tree languages.

able.

o ) ) Theorem 2 1. Aset of ranked trees IBO-definable iff it
The decision procedure is hyperexponential even for ranked is FO, (T, )-definable.

trees, as was shown in [5] by reduction from WS1S.
As a corollary of Fact 1, and Lemma 2, we obtain sepa- 2. A set of ranked trees i81SOP**_definable iff it is
ration of ¥ and ¥ FO, (%)-definable.

Corollary 2 The relation~q,., is NotFO(T))-definable. Proof sketch.Coding FO in FO,(T,) and MSOP*" in
FO, (%) is routine. For the other direction, we show that
The proof of Theorem 1 would have been a trivial corol- for everyk > 0, there ism > 0 such thatl; =, T»
lary of Fact 1 and Proposition 1, had the graptRdf) been implies that the duplicator wins ik rounds in the branch-
definable in‘Z;l or T". That s, if by considering a binary restricted EF game of¥,,77) and (¥, T>) (for the first



item). For the second item, we show that likewise one can MSO moves corresponding to the chains of nodes with

find m > 0 such that :%5‘9"“““ T implies the win for  the same type. o

the duplicator in the branch-restricted game(@ T%) and As one corollary of Theorem 3, we obtain the separa-

(%, T3). The result easily follows from these claims. O tion FO,(T") G FO(T") (sinceMS(’)i G MSO, which
Theorem 2, 1), extends to the unranked case: follows from the fact that over ranked trees, path logic is

properly contained in\ISO [36]).

Next, we show that it has low data complexity. Recall
that NC' is the class of languages accepted by bounded
fan-in logarithmic-depth polysize circuits; it is contaih
in DLOGSPACE By using a different representation of
MS(’) and a logical characterization of N{38], we

show:

Proposition 3 A set of unranked trees i8O-definable iff
itis FO,(%,)-definable.

We now turn our attention to FQT"), first-order logic
with branch quantification ovex™. We show that this logic
is quite powerful, that it corresponds to an unranked analog
of MSOP*! and yet has low data complexity.

The first result, which will follow immediately from
Theorem 3 (to be proved shortly), shows that with branch

i .
quantification overt™, one can express standard XML \ye conclude this section by connecting an extension
computations such as DTD validation and XPath pattern- ¢ o (‘Zu) with another logic studied in connection

matching. with XML as an abstraction of XML pattern languages:

FOREG [26]. FOREG is the extension of- O with pred-

4 . icatesr! (x) andr— (z) for every regular expressian For
F?” (T%) fO”T‘“'aS"d with one free variable such that atreeT én)d a nodé,)T = rl(s) iff the labels on the path
T = wa(T) iff T conforms tad. from the root tos satisfyr; T' |= v () iff the string formed

e For every XPath expression = (z,y), there ex- DY concatenating the labels of the left siblings:cfatisfies

ists anFO, (T") formulay. (T, t,t") such thatT" = T

(T, t,t) iff ¢, 1 are branches of’ with leavesu, u/, Now, we introduce the logic F{¥. Thisis FQ, extended
and+(u, v’) holds inT', with the following predicates: for every regular expressio

r we haver! (T") andr— (T) with the following meaning:

Proposition 5 The data-complexity QI\/ISOi isNC'.

Proposition4 e For any DTD d, there exists an

We now show that FQ('T") can be described by a nat-
ural extension of the path logic to unranked trees. Over
ranked trees, we allow quantification over chains with re-

rH(T)iff T = (D, f) is a branch{si,...,s,} is the
set of right-most siblings witR; <pre - -+ <pre 5, and

spect to the<p partial order. For unranked trees, we F(s1)- f(sp) € L(r);

use the vocabular§/<p,e, <sib, (Oa)), and hence the exten- o r—(T)iff T = (D, f)is abranch{sy,...,s,} =
sion, caIIedMSO allows quantification over botter- {s | s <sib e(T)} with s1 <sib - -+ <sib sp, e(T) the
tical chains (W|th respect te<pre) and horizontal chains endpoint ofT’, andf(s1) - - - f(sp) € L(r).

(those with respect tecsip). In other words, mMSQ,

guantification is over set¥ such thatX is either linearly
ordered by< e, Or linearly ordered bysj,. Note that in the
latter case X must be a set of children of the same node. Theorem4 A set X C UTREEY) is definable in

FOL9(T,) iff X is definable inFOREG.

Clearly, FG’%(T") = FO,(T"). Therefore, we only
consider FGf9(T).

Theorem 3 A subset oUTREE(X)*, k > 1, is definable in

FO,(T") iff it is definable in./\/lSOi. Note that FCfg (T}) can express the properties of Propo—
sition 4. Since FQJ‘Z“ C FOJYT") = FO,(T"), w

Proof sketch For the MSOi C FO,(T") direction conclude that its data complexity is NCThe bound cannot

we show how to code vertical and horizontal chains with be lowered, due to the completeness of regular languages

branches. For the other direction, we again use EF gamesor NC' [38].

and show that for each, there is ann such thafl; =

T, implies the win for the duplicator in the-round branch- 5. Query languages

restricted game off", 71) and(T",T»). This is done in

two stages: in the first stage the game is furtherrestrictedt  The setting of first-order definability over structures
branches of1 andT3, and in the second stage it mimicsthe whose elements are trees extends smoothly to definabil-
MS(’) game by calculating!SO types of the string as- ity in relational calculus, that is, in the presence of a fi-
sociated with each level of an unranked branch, and playingnite relational structure whose elements are trees. In the



XML setting, the most likely scenario is that of a unary Theorem5 1. The data complexity of bothO(T,, o)
database vocabulary, corresponding to several repasstori andFO(T", o) is PH;
of trees. In general, however, there is no need to impose . ]
such a restriction, and we may consider arbitrary relations 2- The generic data complexity of bof©(T,, ) and
over UTREE(Y). FO(T",0) is AC".

Formally, in this setting we have a relational vocabulary )
o: eachm-ary relationS in o is interpreted as finitesubset ~ Proof sketch.Both 1) and 2) are based on the following
of UTREE(X)™. The logics we consider are E@;J) and quantifier-restriction result. By FQ., (9, o) we denote

FO(T", o) (we shall also see some restrictions later). These the set of FOM, o) sentences in which quantification is

extend FQT!) and FQT") by allowing atomic formulae ~ festricted todom(A) = Ureadom(ay dom(T).  That
of the formS(Ty, ..., Ty,), for Sin o. is, (M, A) = 3T ¢(T,-) means that for somé; with

We shall also usactive-domainquantification37 €  dom(Tp) C dom(A), (M, A) |= ¢(Tp,-). We show that,
adom and VT € adom. The active domain of a- by combining two game arguments and a similar result for
structure A over UTREE(Y) is the setadom(A) of all ranked trees, that every R®@", o) sentence is equivalent to
T € UTREE(Y) such thafl” occurs in one of the tuples ofa  @N FQiom (T, o) sentence. Both complexity bounds can
relations in A. We write (9, A) = 3T € adom o(T,-)to  €asily be derived from this. O

mean that for som&, € adom(A), (M, A To, ). . "
0 (). ( ) e, ) Corollary 3 Parity and transitive closure cannot be ex-

H u
5.1 Relational calculioverz; and *: expressive- pressed IFO(T", 7).

ness and complexity The upper bound of Theorem 5 cannot be lowered, since

. _ _ the relational calculi we introduced can express problems
We start by studying the expressiveness and complexitycomplete for each level of PH. Moreover, this can be done
» A > ( . !
of FO(%T},, o) and FQT", o). The general situationis rem- i a rather simple setting; for example, ov&rand T,

iniscent of that for ranked trees: one can prove a quantifier-z)| one needs is one unary relation and quantification over
restriction result for those calculi that gives us a PH (poly pranches.

nomial hierarchy) upper bound on query evaluation. The

proof, however, is not an immediate consequence of its Proposition 6 Leto; contain one unary relatioty, ando,

ranked counterpart. The reason is that all known quantifier- one binary relationE. Then for every, bothFO(T}, 02)

restriction results for ranked trees, when applied to tafes  andFO, (T, o) (in fact, everFO, (¥, 71)) can define? -

the formR(T'), involve quantification over trees that aret andII?-hard problems.

encodings of unranked trees. This, as before, is remedied by

combining the encoding techniques with some (restricted) Proof sketchThe proof for FQ%,, 02) is by reduction to a

EF games. similar result for ranked trees [5]. The prooffor FCE, 01)
The upper bounds theorem not only provides us with a is a reduction from QSAT. For each quantifier-prefixwe

PH bound (which is not very useful for proving expressivity construct an FO(T, o1) formula &, such that, if a unary

bounds), but it also gives us a bound on the complexity of relation.S codes a CNF formula, then(T, S) = &, iff ¢

genericqueries. A generic (Boolean) query is a collection preceded by the prefix is satisfiable. O

Q@ of isomorphism types of-structures. It is expressible

in FO(9M, o) if there is a sentenc@ such that for any- 5.2. Restricted query languages

structureA overM, (91, A) = @ if the isomorphism type

of Aisin@. Given the high bounds of the previous section, we pro-
Define a generic encoding of a structude encgen(A), pose some restricted relational calculi with lower data €om

with an n-element active domaifT},...,T,} as an en-  plexity, but still sufficiently expressive so that they cam d

coding in whichT; is encoded as in binary. We say  for example, DTD validation and XPath pattern-matching.
that generic data complexitpf FO(M, o) is in complex-  The source of high complexity in a query language is the
ity classC if for any o and any generic queiy) expressible  possibility of quantifying over the entire set of unranked
in FO(M, 0), the languagg encgen(A) [ A € Q}isinC.  trees, and — unlike in some string models suchéas —
Note that a generic encoding is determined by an orderingover trees one cannot in general get rid of this unrestricted
on the active domain and hence is not unique; however, for aquantification [5]. We therefore impose restrictions ontsuc
generic®, the choice of a particular generic encoding does qguantification, following the definition of restricted quian
not affect the definition of generic data complexity. fier normal form (cf. [3, 5]).
The upper bounds theorem is: Let FO**(9m, o) be the logic that is build from atomic
formulae ovew andarbitrary formulae of FG9t) by using



the Boolean connectives and quantificattihe adom and
VT € adom. If only FO, (1) formulae are used, we refer
to FOj’;Ct (M, o).

Combining the A€ data complexity of the relational
calculus [1] with the results of the previous section we get:

Corollary 4 The data complexity of bofO** (T,,0)and
FO*'(T*, o) is DLOGSPACE, and the data complexity of
FO*"(T",0) isNC'.

Notice that all these languages can do both DTD and
XPath checking.

As another restriction, we use the logic FOT;) of
Section 4, which extends FOZ,) with predicates (T
and r—(T) testing if the labeling of the right boundary
or the siblings of the rightmost node of a branch is in the
language denoted by the regular expressiorBy adding
atomic formulae of the forn$(T) whereS € o, and re-
stricted quantificatiodT” € adom andVT € adom, we
obtain a logic FGFY(T,, o). Note that this logic is closer
to FO(M, o) than to FO (9, o), since it can mix quan-
tification over (a subset ofpt and quantification over the
active-domain in an arbitrary way. Still, it has low data
complexity.

Theorem 6 The data-complexity dFO[9(T}, o) is NC.

Proof sketch. This is shown by proving a quantifier-
restriction result: it suffices to use active-domain gu@nti
cation together with quantification restricted to brancbies
trees inadom (.A). This is proved by EF games. O

Safe query languages. We conclude by a remark on
safetyin relational calculi. An FO, o) query o(T) is
safe if for everyA, the number of tupled}, such that
(M, A) = o(T,) is finite. This property is undecidable
even for the pure relational calculus (that is, when the vo-
cabulary oft is empty), but the class of safe queries of-
ten haseffective syntaxthat is, an r.e. collection of safe
queriesy;, i € N, such that every safe query in B, o)

is equivalent to one af;’s. The existence of effective syn-

tax for pure relational calculus is a standard result of-rela

tional database theory [1], but [32] showed that it may not
extend even to some structures with quantifier-elimination
and decidable first-order theory. Nevertheless, for previ-
ously studied automatic structures, safe queries wereshow
to have effective syntax [3, 5]. We now extend this result to
the calculi studied here for unranked trees.

Proposition 7 Safe queries in all of FO(%,0),
FO,(%,,0), FO¥(%,,0), FO(T",0), and FO,(T",0)
have effective syntax.

A slightly more complicated version of range-restriction

guarantees safety for calculi with active-domain quaraific
tion; we leave the details for the full version.

Logic Class of Languages Data Complexity
FO(TY) MSO =regular DLOGSPACE
FO(T,) MSO =regular DLOGSPACE
FO,(T") MSO. NC!
FO,(T}) FO AC’

FOY(TY) MSO NC!
FO™9(T}) FOREG NC

Figure 3. Definability overT, and<".

Logic Class of Languages
FO(T) | MSO =regular [5]
FO(T,) | MSO =regular [5]
FO,(%) MSOP

FO,(%,) FO

Figure 4. Definability over®, and¥.

6. Conclusion

Motivated by applications to XML, we examined defin-
ability and query languages for unranked trees. The ob-
tained results are summarized in Figure 3-5. The defin-
ability results over unranked trees provide a rather com-
plete picture concerning definability in the classicaliagtt
versus definability in the model-theory setting. In the sec-
ond part of the paper, we focused on relational calculi. De-
pending on the allowed operators, the complexity of these
range from AC to PH. All of the calculi in Figure 5, except
FO,(¥,) and the generic restrictions, are suitable for basic
XML querying as they are able to express DTDs and XPath.

In the study of definability and querying over automatic
structures, we found many commonalities between strings,
ranked trees, and unranked trees: for example, the com-
plexity of the relational calculus is in PH, while for gereeri
queries it drops to A8 the safe queries always have ef-
fective syntax, etc. However, tharoofs of these results
in [3], [5], and here are quite different. We would like
to find a better explanation of how the definability by au-
tomata affects such basic properties of query languages.
We also would like to understand the precise expressive-
ness of generic queries in relational calculi over automati
structures: we know that ACis an upper bound, but we
suspect that these queries may capture an interesting sub-
class of AC that properly extends first-order. Finally, we
would like to find precise descriptions of fragments of var-
ious XML query languages (e.g., [12, 11]) that correspond
to the logics studied here.
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