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Abstract

Unranked trees, that is, trees with no restriction on the
number of children of nodes, have recently attracted much
attention, primarily as an abstraction of XML documents.
In this paper, we study logical definability over unranked
trees, as well as collections of unranked trees, that can be
viewed as databases of XML documents. The traditional ap-
proach to definability is to view each tree as a structure of
a fixed vocabulary, and study the expressive power of var-
ious logics on trees. A different approach, based on model
theory, considers a structure whose universe is the set of
all trees, and studies definable sets and relations; this ap-
proach extends smoothly to the setting of definability over
collections of trees. We study the latter, model-theoreticap-
proach. We find sets of operations on unranked trees that
define regular tree languages, and show that some natural
restrictions correspond to logics studied in the context of
XML pattern languages. We then look at relational calculi
over collections of unranked trees, and obtain quantifier-
restriction results that give us bounds on the expressive
power and complexity. As unrestricted relational calculi
can express problems complete for each level of the polyno-
mial hierarchy, we look at their restrictions, corresponding
to the restricted logics over the family of all unranked trees,
and find several calculi with low (NC1) data complexity,
that can express important XML properties like DTD vali-
dation and XPath evaluation.

1. Introduction

In the literature, there are two different approaches to
logical definability over strings and trees: in the older and
by now classic way of providing logical descriptions of reg-
ularity [35], strings and trees are represented as structures,
and definability in a logic (e.g., first-order, monadic-second
order) characterizes a class of strings/trees accepted by cer-
tain automata. In the other setting, one considers the fam-
ily of all strings Σ∗ or the family of all trees, and defines
some operations on them. This gives us a first-order struc-

tureM, and formulae in one free variableϕ(x) define sets
of trees/strings{x | M |= ϕ(x)}. This approach was stud-
ied in [3, 5, 10, 6, 20, 19].

The second approach led to the study ofautomaticstruc-
tures, that is, structures in which every definable predicate
can be represented by a finite automaton [19, 20]. It was
shown in [6] that there is auniversalautomatic structure
over strings, that is, a structureS such that every other
automatic structure can be embedded intoS. That struc-
ture S also had several reducts defining regular and star-
free languages, and having some nice properties that made
them useful as the basis for relational calculi on databases
over strings [3, 4]. Recently, automatic structures have been
studied in the context ofranked trees [5]. In that case,
the universe is the set of all trees, and the universal tree-
automatic structureT has as its definable relations precisely
the relations recognized by tree automata [15].

In this paper, we study definability in automatic struc-
tures overunranked trees, and related database query lan-
guages (relational calculi) over collections of unranked
trees. Unranked trees differ from ranked trees in that there
is no restriction on the arity of nodes. Although unranked
trees have been considered in the 60s and 70s [28, 34], and
are related to feature trees over an infinite set of features
[22, 23], it was the advent of XML that initiated their sys-
tematic study [8]. XML is a popular data format which is
becoming the lingua franca for information exchange on the
world wide web [37], and XML data is naturally modeled
as unranked trees [25, 37]. This connection made recent
advances in unranked tree language theory foundational for
XML-related research in areas such as XML pattern lan-
guages [9, 24, 26, 27, 31] and XML schema languages
[18, 29].

Most crucial XML concepts are closely related to un-
ranked tree automata. For example, DTDs (Document Type
Definitions, the most common form of typing XML) cor-
respond to a subset of tree automata, and a proposed exten-
sion, called DTDs with specialization [29], has precisely the
power of tree automata. A pattern language XPath allows
one to navigate documents following paths of labels from
a given regular language. In general, the connection be-



tween regularity and querying tree-structured data is well-
recognized [17].

However, logics for unranked trees have only been con-
sidered for the setting where each tree is a model. By con-
structing automatic structures over unranked trees, we not
only connect the two different definability approaches, but
also make it easy to extend definability from a single tree
to a collection of trees. Most often such collections ap-
pear as repositories of XML documents. If we have a struc-
tureM over unranked trees, to construct relational calculus
over M we simply augment the vocabulary with symbols
for sets/relations in the database. For example, ifϕd(T ) is
a formula overM saying thatT conforms to DTDd, then
U(T ) ∧ ϕd(T ) is a relational calculus query asking for all
treesT in U that conform tod.

In the first part of the paper, we consider definability
over automatic structures of unranked trees. We construct a
structureTu which turns out to be the universal one. Like
the corresponding structure for ranked trees,T

u is based on
the extension relation≺ among trees [5, 22, 23]; however,
in the unranked case we split it into two relations:≺→ (ex-
tend a tree by adding siblings), and≺↓ ( extend a tree by
adding descendants). We also consider a weaker structure,
T

u
p, that still defines all regular languages, but a smaller

class of relations. We then look at restricted definability
overTu andT

u
p and connect it with definability in the tra-

ditional setting: it turns out that some natural sublogics of
first-order overTu andT

u
p correspond to logics that have

been studied in connection with XML pattern languages,
and are closely connected to monadic path logic [36].

If we have a formulaϕ(T ), its input, a treeT , can be
viewed as a first-order structure, and hence we can consider
the notion ofdata complexityof a formula. Reduction to
tree automata and other techniques give us good bounds,
from AC0 to NC1 to DLOGSPACE, on the data complexity
of (restricted) logics overTu

p andT
u.

In the second part of the paper, we focus on database
related aspects by adding relations of unranked trees to
our structures and considering queries on them. The no-
tion of data complexity in this setting views the input as
a database of trees. We show that the data-complexity of
query evaluation is in the polynomial hierarchy, and find
a class of queries for which it is AC0; this gives us some
useful bounds on the expressive power. We then look at
various relational calculi based on restricted logics fromthe
first part of the paper, and find that they have low data com-
plexity (e.g, NC1) while remaining quite expressive.

Many results in this paper are proved by a combination
of two techniques. One is the encoding of SωS into S2S,
due to Rabin (cf. [7]), which gives us a coding of unranked
trees as ranked trees. To be able to use it, we need several
results showing how to restrict quantification over various
structures; those are proved by Ehrenfeucht-Fraı̈ssé games.

Organization. Section 2 defines the main concepts and
presents the main proof techniques. In Section 3, we present
the basic definability results overT

u
p andT

u and show that
the latter defines precisely the regular relations. In Section
4, we look at restricted definability overT

u
p, Tu, and ranked

tree models, and connect it with first-order, monadic path
logic [36], and their unranked extension [26]. We also prove
data-complexity results. In Section 5, we consider query
languages for collections of unranked trees based on first-
order logic overTu

p andT
u. Section 6 presents conclusions.

Due to space limitations, complete proofs are not included;
a full version can be obtained from the authors.

2. Preliminaries

In this section, we give a brief overview of the two differ-
ent approaches to logical definability over strings and trees.
To avoid confusion, when we deal with logics in the first
setting, where strings and trees are represented as separate
structures, we use calligraphic letters, e.g.FO (first-order),
MSO (monadic second-order), etc. In the other setting, we
normally consider first-order definability over some struc-
tureM, and then we write FO(M). Throughout the paper,
Σ is a finite alphabet with at least two letters.

2.1. Strings

A string s = a1 . . . an over Σ can be represented as a
structure〈{1, . . . , n}, <, (Oa)a∈Σ〉, where< is the usual
ordering, andOa is interpreted as{i | ai = a}. Clas-
sical results state that a set of strings is definable by an
MSO (FO) sentence iff it is regular (star-free, respec-
tively), cf. [35].

Another approach to definability is by using the standard
model-theoretic setting. In that case, we consider several
operations on the setΣ∗ of all finite strings overΣ. One of
them is the prefix relations1 <pre s2 among strings. For
each symbola ∈ Σ we have a functionla : Σ∗ → Σ∗ that
addsa as the last symbol, that is,la(s) = s · a. Finally, we
have a relationel(s1, s2) which holds iff |s1| = |s2|; here
|s| is the length of strings.

The structures most often considered in this setting are:

S = 〈Σ∗, <pre, (la)a∈Σ, el〉;
Sp = 〈Σ∗, <pre, (la)a∈Σ〉.

It is known that a subset ofΣ∗ is FO-definable inS iff it is
regular [6, 10], and it is FO-definable inSp iff it is star-free
[3]. Furthermore,S is the “universal” automatic structure,
as any relation given by a finite automaton is FO-definable
in S, and vice versa [6, 10]. The indexp in Sp stands for
“primal”, following the notation introduced in [5].

To explain the notion of arelation, that is, a subset of
(Σ∗)k, k > 1, being definable by an automaton, let⊥ be



a new symbol not inΣ, andΣ⊥ = Σ ∪ {⊥}. Given ak-
tuple of strings~s = (s1, . . . , sk), we define a string[~s] over
Σk

⊥, whose length ismaxj |sj |, and whoseith symbol is
(si

1, . . . , s
i
k), wheresi

j is theith symbol ofsj , if |sj | ≤ i,
and⊥ otherwise. In other words, we pad shorter strings
with ⊥ so that all strings are of the same length. We then
say that a relationR ⊆ (Σ∗)k is regular if the language
{[~s] | ~s ∈ R} is accepted by an automaton overΣk

⊥.

2.2. Ranked trees

When dealing with ranked trees, one usually fixes a nat-
ural numberk and requires that all interior nodes of trees
have at mostk children. In this paper, without any loss of
generality, we consider binary trees. The trees we consider
are on two fixed alphabets: the alphabet for the domain of
the tree consists of{0, 1}; we use the finite alphabetΣ for
the node labels. A setD of strings isprefix-closedif s ∈ D
ands′ <pre s imply s′ ∈ D. A ranked tree domainis a
finite prefix-closed subset of{0, 1}∗. A rankedΣ-tree is
a pairT = (D, f) whereD is a ranked tree domain and
f : D → Σ is a function. We refer toD as thedomainof T ,
and tof as thelabeling function. We usedom(T ) to denote
D. By TREE(Σ) we denote the set of all rankedΣ-trees.

A node in a treeT is a strings ∈ D = dom(T ), andf(s)
is its labeling. The root is the empty stringǫ, and the leaves
ares ∈ D such thats is not a prefix of any other string
in D. Nodes are ordered lexicographically so we have the
left-right relations between them.

A ranked treeT = (D, f) is represented as a first-order
structure〈D,<pre, succ0, succ1, (Oa)a∈Σ〉, where<pre is
the prefix relation,Oa = {s ∈ D | f(s) = a}, and
succ0(s) = s · 0, succ1(s) = s · 1 for all s, s · 0, s · 1 ∈ D.

We denote byFO (MSO) the set of first-order
(monadic second-order) formulae over the above vocabu-
lary. A set of treesX ⊆ TREE(Σ) is FO (MSO) de-
finable if there is anFO (MSO) sentenceΦ such that
X = {T | T |= Φ}. It is known that a set of trees isMSO-
definable if it is regular, that is, accepted by a tree automa-
ton.1 We shall consider some restrictions ofMSO; among
them ispath logicMSOpath [36], which isMSO in which
quantification is restricted to paths: sets linearly ordered by
<pre. It is known thatFO $ MSOpath $ MSO [36].

It was shown recently [5] that regularity over trees can
be captured by the model-theoretic notion of definability,
similarly to the string case. For that, one finds natural tree
analogs of the operations ofS andSp. We introduce two

1Note that tree automata are normally defined for trees in which every
non-leaf node has two children. Since we do not impose this requirement,
we can defineregular as being accepted by a tree automaton over the com-
pletion of a tree, in which a successor node labeled by a symbol not in Σ

is added to each node with exactly one successor.

new structures:

T = 〈TREE(Σ),≺, (succa
i )i=0,1;a∈Σ, (ǫa)a∈Σ,≈dom〉

Tp = 〈TREE(Σ),≺, (succa
i )i=0,1;a∈Σ, (ǫa)a∈Σ〉

Here≺ is the subsumption [22, 23] (or extension [5], de-
pending on how one looks at it) relation:(D1, f1) ≺
(D2, f2) if D1 ⊂ D2 andf1 andf2 agree onD1. We write
T1 � T2 if T1 ≺ T2 or T1 = T2.

The successor functions work as follows: ifT = (D, f),
thensucca

i (T ) is the tree(D′, f ′) whereD′ = D ∪ {s · i |
s a leaf ofT }, andf ′ extendsf by labeling each node in
D′ − D by a. The one-node tree labeleda is denoted
by ǫa (that is, dom(ǫa) is ǫ, the empty string.) Finally,
(D1, f1) ≈dom (D2, f2) iff D1 = D2.

We consider first-order logic (FO) over these structures.
To emphasize the structure at hand, we write FO(Tp) and
FO(T) to denote FO overTp andT, respectively.

Note that these structures are natural extensions ofS

and Sp; that is, if we associate strings with unary trees
(D ⊆ 0∗), then the definable relations ofT are precisely
those ofS, and the definable relations ofTp are precisely
those ofSp.

As with strings, definability by automata can be ex-
tended to tuples of trees. Let~T = (T1, . . . , Tk) be a tu-
ple of trees. We represent it as a tree[~T ] in TREE(Σk

⊥).
Let Ti = (Di, fi), i ≤ k. Then [~T ] = (D, f) where
D = D1 ∪ . . . ∪ Dk and for eachs ∈ D, f(s) is an el-
ement ofΣk

⊥, that is,f(s) = (a1, . . . , ak) where

ai =

{

fi(s) if s ∈ Di;
⊥ otherwise.

We say that a subsetR of TREE(Σ)k is regular if {[~T ] |
~T ∈ R} is accepted by a tree automaton (again, with adding
nodes to ensure that the automaton runs on a tree without
unary branching).

We shall use the following results from [5].

Fact 1 a) If X ⊆ TREE(Σ), then

X is regular⇔ X is definable inTp ⇔ X is definable inT.

b) If k > 1 andR ⊆ TREE(Σ)k, thenX is definable inT
iff it is regular.
c) The relation≈dom is not definable inTp.

We will also look at some restrictions of FO(Tp) and
FO(T). Thereto, we introduce the following notion: a
branchis a treeT such that the set of trees{T ′ | T ′ � T }
is linearly ordered by≺. This is definable inTp by the
following formulaη(T ):

∀T ′, T ′′
(

T ′ � T ∧ T ′′ � T
)

→
(

T ′ � T ′′ ∨ T ′′ � T ′
)

.

We shall consider restrictions of FO overT andTp in
which only quantification over branches is allowed. These



restrictions will be denoted by FOη(Tp) and FOη(T). We
also use the notation∃η and∀η to emphasize that quantifi-
cation is over branches. Clearly, these can be defined in
FO(Tp) and FO(T).

2.3. Unranked trees

For unranked trees there is no bound on the number of
children. We use consecutive positive integers to enumerate
children of a node. That is, we define anunranked tree do-
mainas a prefix-closed finite subsetD of N∗

+ (finite strings
of positive integers) such thats · i ∈ D impliess · j ∈ D for
all j ≤ i. An unrankedΣ-tree is a pairT = (D, f) where
D is an unranked tree domain andf : D → Σ. The set of
all unranked trees overΣ is denoted by UTREE(Σ).

An unranked treeT = (D, f) is represented as a first-
order structure〈D,<pre, <sib, (Oa)a∈Σ〉, where<pre and
Oa are as before, and<sib is the order relation on siblings
(s · i <sib s · j for all s · i, s · j ∈ D, i, j ∈ N, and
i < j). Denote the above vocabulary byνΣ. Apart from
FO andMSO over νΣ, we also consider the extension
of the monadic path logic to unranked treesMSO

↓

→
and a

logic FOREG, which is the extension ofFO with hori-
zontal and vertical regular path expressions. These will be
defined in Section 4.

We now look at the operations on unranked trees. The
relation≺ is defined as before. However, using just this re-
lation would force us to introduce infinitely many successor
relations in the vocabulary. To keep the vocabulary finite,
we split≺ into two relations:

1. ForT1 = (D1, f1) andT2 = (D2, f2), T1 ≺→ T2 if
T1 ≺ T2 and for everys · i ∈ D2 −D1, there isj < i
such thats · j ∈ D1 (extension on the right);

2. T1 ≺↓ T2 if T1 ≺ T2 and for everys ∈ D2 − D1,
s′ <pre s for some leafs′ of T1 (extension down).

Likewise we define�→ and�↓. Clearly,�=�→ ◦ �↓.
Let La(T ) hold, for a ∈ Σ, iff the rightmost node in

T (that is, the largest one in the lexicographic ordering) is
labeleda. As before,T1 ≈dom T2 holds iffD1 = D2.

With these operations, we now define two structures:

T
u = 〈UTREE(Σ),≺→,≺↓, (La)a∈Σ,≈dom〉

T
u
p = 〈UTREE(Σ),≺→,≺↓, (La)a∈Σ〉.

We define unranked branches as trees satisfyingη(T ).
Similarly to the ranked case, we define the logics FO(Tu

p),
FO(Tu), FOη(Tu

p) and FOη(Tu).
Next, we extend the notion of tree automata to the un-

ranked case, following [8].

Definition 1 An unranked tree automatonis a tupleA =
(Q,Σ, δ, F ) whereQ is a finite set of states;F ⊆ Q is

the set of final states; and,δ is a function fromQ × Σ to
2Q∗

assigning a regular string language overQ to every pair
(q, σ).

A run of A on a treeT = (D, f) is a mappingλ : D →
Q such that for every nodes ∈ D with n children,λ(s ·
1) · · ·λ(s · n) ∈ δ(λ(s), f(s)). Note that for leaf nodess
this implies thatε ∈ δ(λ(s), f(s)). A run is acceptingif
λ(ǫ) ∈ F . The automatonacceptsa tree when there is an
accepting run.

A set of unranked trees isregular if there is an unranked
tree automaton accepting it. A relationR ⊆ UTREE(Σ)k is
regular if so is the set{[~T ] | ~T ∈ R} over UTREE(Σk

⊥).

Similarly to the ranked case,MSO over the vocabu-
lary (<sib, <pre, (Oa)a∈Σ) defines precisely the regular un-
ranked tree languages [27].

2.4. XML: DTDs and XPath

Document Type Definitions (DTDs) is the most com-
monly used XML schema definition language. It can be
abstracted by extended context-free grammars (with regular
expressions as right-hand sides of productions). Formally,
a DTD overΣ is a pair(s, d) wheres ∈ Σ is the start sym-
bol andd : Σ → 2Σ∗

maps everyΣ-symbol to a regular
language overΣ. A tree T = (D, f) conforms tod iff
f(s · 1) · · · f(s · n) ∈ d(f(s)) for every s ∈ D with n
children.

XPath [14] is an XML pattern language employed by
several XML transformation languages like XSLT [13] and
XQuery [12]. We have the core XPath fragment in mind,
which is normally defined by the following grammar:

p := p1|p1 | /p | p1/p2 | p1//p2 | p1[p2] | σ | ∗

We refrain from giving a direct formal semantics, but,
instead consider a logic containing this fragment. Let
FO(∃∗) be the fragment ofFO over the vocabularyνΣ
consisting of formulaeϕ(x, y) in the prenex normal form
and all quantifiers existential. Additionally, formulas can
make use of the unary predicates root(x), leaf(x), first(x),
and last(x) (denoting thatx is the root, a leaf, the first
and the last child, respectively) and the binary predicate
succ(x, y) (denoting thaty is the right sibling ofx, respec-
tively). Note that these predicates areFO-definable but not
FO(∃∗)-definable. A patternϕ(x, y) is always evaluated
against some context nodeu; we writeϕ(u, T ) for the set
{v | T |= ϕ(u, v)}. For logical characterizations of frag-
ments of XPath, we refer to [2].

2.5. The toolbox

Many results in this paper are proved by a combination
of two techniques: translating unranked trees into ranked
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Figure 1. A treeT andR(T ).

ones, and Ehrenfeucht-Fraı̈ssé games. Below we briefly
review them.

2.5.1 Encoding unranked trees

This encoding is basically the same as Rabin’s encoding of
SωS into S2S, cf. [7]. Given a stringn1 · · ·nk of positive
integers,

R(n1 · · ·nk) = 01n101n20 · · · 01nk ∈ {0, 1}∗.

Also,R(ǫ) = ǫ.
Given a treeT = (D, f) ∈ UTREE(Σ), we define

R(T ) = (D′, f ′) ∈ TREE(Σ⊥) as follows:

• D′ is the prefix-closure ofR(D) = {R(s) | s ∈ D};

• If s ∈ D, thenf ′(R(s)) = f(s); if s′ ∈ D′ − R(D),
thenf ′(s′) = ⊥.

We give an example in Figure 1.
It turns out that unranked regular and ranked regular are

in fact similar notions. For a set of unranked treesX , let
R(X) = {R(T ) | T ∈ X}. SinceMSO over unranked
trees can rather easily be encoded inMSO over ranked
trees and vice versa, and since the image ofR(·) isMSO-
definable, we have the following folklore result (for an ex-
plicit proof, see [33]):

Proposition 1 For any finite alphabetΣ and X ⊆
UTREE(Σ),X is regular iff R(X) is regular.

We conclude with a note on branches. Branches are a
crucial notion in many of the restricted logical formalisms.
It is therefore worthwhile to point out that this notion dif-
fers for ranked and unranked trees. Indeed, a branch in an
unranked tree includes the left siblings of every node in the
branch, while a branch in a ranked tree does not. The latter
follows immediately from the definition of branches given
in Section 2.3. We give an example in Figure 2.

a

b c

e f

a

⊥

b

c

d

Figure 2. A branch ofT with endpoint labeledf and
a branch ofR(T ) with endpoint labeledd.

2.5.2 Ehrenfeucht-Fraı̈sśe games

Most proofs in this paper make extensive use of
Ehrenfeucht-Fraı̈ssé (EF) games. The standard (FO) EF
game is played on two structures,A andB, of the same
vocabulary, by two players, the spoiler and the duplica-
tor. In roundi, the spoiler selects a structure, sayA, and
an elementai of it; the duplicator responds by selecting
an elementbi of B. The duplicator wins ink-rounds if
{(ai, bi) | i ≤ k} defines a partial isomorphism betweenA

andB. We writeA ≡k B to denote this. A classical result
states thatA ≡k B iff A andB agree on all FO sentences
of quantifier rank up tok, cf. [16].

The game forMSO is similar, except that the players
can play point moves, like in the FO game, and set moves, in
which case the spoiler playsAi ⊆ A (orBi ⊆ B), and the
duplicator responds withBi ⊆ B (or Ai ⊆ A). The win-
ning condition also requires that, in addition, the⊆ and∈
relations be preserved. Then we writeA ≡MSO

k B. Again,
A ≡MSO

k B iff A andB agree on allMSO sentences of
quantifier rank up tok, cf. [16].

We shall also make use of reduced EF games, which
are helpful for logics with restricted quantification (for in-
stance, to branches). For that, let FOV stand for FO with
restricted quantification of the formQx ∈ V , whereV is to
be interpreted as a subset of the structure. IfV is interpreted
asV A in A andV B in B, then we write(A,~a) ∼V

k (B,~b)
if for every such restricted quantification formulaϕ(~x) of
quantifier rank≤ k, it is the case thatA |= ϕ(~a) iff
B |= ϕ(~b).

The V -restricted EF game is defined as the usual EF
game except that moves can only come fromV A andV B.
We write (A,~a) ≡V

k (B,~b) if the duplicator wins ink
rounds of theV -restricted game, starting from the position
(~a,~b). Note that~a and~b do not have to come fromV A and
V B. The proof of the following result mimics the usual
proof for EF games, cf. [16].

Lemma 1 (A,~a) ≡V
k (B,~b) iff (A,~a) ∼V

k (B,~b).

In all the logics we consider, there will be finitely many



formulae of quantifier rankk, up to logical equivalence. A
rank-k type of a tuple~a in A is the set of all formulaeϕ(~x)
such thatA |= ϕ(~a). Given the above, there are only finitely
many rank-k types, and each of them is definable by a for-
mula of quantifier rankk.

3. Basic definability results over unranked
trees

In this section, we link definability over unranked trees
in the structuresTu

p andT
u to regular languages.

Here, and throughout the paper, we make use of the fol-
lowing lemma. The proof is by induction on FO(Tu

p) and
FO(Tu)-formulae.

Lemma 2 Let Mu be eitherTu
p or T

u, over UTREE(Σ),
and let M be the corresponding ranked tree model, over
TREE(Σ⊥). Then for every FO(Mu)-formulaϕ there exists
anFO(M)-formulaϕ′ such that:

Mu |= ϕ(~T ) ⇔ M |= ϕ′(R(~T )).

Moreover, ifϕ is anFOη(Mu)-formula, thenϕ′ can be cho-
sen to be anFOη(M)-formula.

Using this Lemma, together with the encodingR(·), we
show that Fact 1 extends from ranked to unranked trees.

Theorem 1 LetX be a subset ofUTREE(Σ). Then the fol-
lowing are equivalent:

1. X is definable inTu
p;

2. X is definable inTu;
3. X is regular.

Furthermore, fork > 1 and R ⊆ UTREE(Σ)k, R is
FO(Tu)-definable iff it is regular. Moreover, the conver-
sions between formulae and automata are effective.

So,Tu is the universal automatic structure for unranked
trees, meaning that any other structure that only defines reg-
ular relations can be interpreted in it. As over strings and
ranked trees [5, 6], this implies decidability:

Corollary 1 First-order theories ofTu
p andT

u are decid-
able.

The decision procedure is hyperexponential even for ranked
trees, as was shown in [5] by reduction from WS1S.

As a corollary of Fact 1, and Lemma 2, we obtain sepa-
ration ofTu andT

u
p:

Corollary 2 The relation≈dom is notFO(Tu
p)-definable.

The proof of Theorem 1 would have been a trivial corol-
lary of Fact 1 and Proposition 1, had the graph ofR(·) been
definable inTu

p or T
u. That is, if by considering a binary

treeT ′ as an unranked one we could have tested by a for-
mulaϕ(T, T ′) if T ′ = R(T ). The following result shows
that such a formula does not exist.

Proposition 2 The graph ofR is notFO(Tu)-definable.

We introduce the notion ofdata complexityfor logics
over infinite structures as follows. For a complexity class
C, we say that the data complexity of such a logic overM

(e.g., FO(Tu
p) or FOη(Tu)) is C, if for every formulaϕ(x)

in the logic, the set{T | M |= ϕ(T )} is in C. HereT is
encoded as the appropriate first-order structure (depending
on whetherT is ranked or unranked).

As an immediate corollary of Theorem 1, we see that
the data complexity of both FO(Tu

p) and FO(Tu) is poly-
nomial, since formulae can be converted into unranked tree
automata. Moreover, a recent result [30] places the com-
plexity of unranked regular tree languages in DLOGSPACE
(for ranked trees, the bound is NC1 [21]). We shall see
a number low data complexity bounds in the next section.
(Notice, however, that the combined complexity, that is, the
complexity of{(ϕ, T ) | ϕ(T ) holds} is hyperexponential
for bothT

u
p andT

u).

4. Restricted logics over trees

In this section we present a number of restrictions of FO
over both ranked and unranked tree models, that capture
some familiar subclasses of regular tree languages, includ-
ing those definable inFO, monadic path logic [36] (over
ranked trees), and several other logics recently proposed
in connection with XML research. We shall also establish
data complexity results for those logics. All restrictionsare
based on quantification over branches.

We normally state the results for definable subsets of
TREE(Σ) or UTREE(Σ). For structures with the≈dom pred-
icate, the results straightforwardly extend to definability of
relations. Ak-ary relationR on trees overΣ is definable in
a logic likeFO,MSO, etc, if the set{[~T ] | ~T ∈ R} of
trees overΣk

⊥ is definable in the logic.
We start by looking atranked trees, and show that

FOη(T) and FOη(Tp) capture familiar classes of regular
tree languages.

Theorem 2 1. A set of ranked trees isFO-definable iff it
is FOη(Tp)-definable.

2. A set of ranked trees isMSOpath-definable iff it is
FOη(T)-definable.

Proof sketch.CodingFO in FOη(Tp) andMSOpath in
FOη(T) is routine. For the other direction, we show that
for every k ≥ 0, there ism > 0 such thatT1 ≡m T2

implies that the duplicator wins ink rounds in the branch-
restricted EF game on(Tp, T1) and(Tp, T2) (for the first



item). For the second item, we show that likewise one can
findm > 0 such thatT1 ≡MSOpath

m T2 implies the win for
the duplicator in the branch-restricted game on(T, T1) and
(T, T2). The result easily follows from these claims. 2

Theorem 2, 1), extends to the unranked case:

Proposition 3 A set of unranked trees isFO-definable iff
it is FOη(Tu

p)-definable.

We now turn our attention to FOη(Tu), first-order logic
with branch quantification overTu. We show that this logic
is quite powerful, that it corresponds to an unranked analog
of MSOpath, and yet has low data complexity.

The first result, which will follow immediately from
Theorem 3 (to be proved shortly), shows that with branch
quantification overTu, one can express standard XML
computations such as DTD validation and XPath pattern-
matching.

Proposition 4 • For any DTD d, there exists an
FOη(Tu) formulaϕd with one free variable such that
T

u |= ϕd(T ) iff T conforms tod.

• For every XPath expressione = ψ(x, y), there ex-
ists anFOη(Tu) formulaϕe(T, t, t

′) such thatTu |=
ϕe(T, t, t

′) iff t, t′ are branches ofT with leavesu, u′,
andψ(u, u′) holds inT .

We now show that FOη(Tu) can be described by a nat-
ural extension of the path logic to unranked trees. Over
ranked trees, we allow quantification over chains with re-
spect to the<pre partial order. For unranked trees, we
use the vocabulary(<pre, <sib, (Oa)), and hence the exten-

sion, calledMSO
↓

→
, allows quantification over bothver-

tical chains (with respect to<pre) and horizontal chains

(those with respect to<sib). In other words, inMSO
↓

→
,

quantification is over setsX such thatX is either linearly
ordered by<pre, or linearly ordered by<sib. Note that in the
latter case,X must be a set of children of the same node.

Theorem 3 A subset ofUTREE(Σ)k, k ≥ 1, is definable in

FOη(Tu) iff it is definable inMSO
↓

→
.

Proof sketch. For the MSO
↓

→
⊆ FOη(Tu) direction

we show how to code vertical and horizontal chains with
branches. For the other direction, we again use EF games

and show that for eachk, there is anm such thatT1 ≡
MSO

↓

→
m

T2 implies the win for the duplicator in thek-round branch-
restricted game on(Tu, T1) and(Tu, T2). This is done in
two stages: in the first stage the game is further restricted to
branches ofT1 andT2, and in the second stage it mimics the

MSO
↓

→
game by calculatingMSO types of the string as-

sociated with each level of an unranked branch, and playing

MSO
↓

→
moves corresponding to the chains of nodes with

the same type. 2

As one corollary of Theorem 3, we obtain the separa-

tion FOη(Tu) $ FO(Tu) (sinceMSO
↓

→
$ MSO, which

follows from the fact that over ranked trees, path logic is
properly contained inMSO [36]).

Next, we show that it has low data complexity. Recall
that NC1 is the class of languages accepted by bounded
fan-in logarithmic-depth polysize circuits; it is contained
in DLOGSPACE. By using a different representation of

MSO
↓

→
and a logical characterization of NC1 [38], we

show:

Proposition 5 The data-complexity ofMSO
↓

→
is NC1.

We conclude this section by connecting an extension
of FOη(Tu

p) with another logic studied in connection
with XML, as an abstraction of XML pattern languages:
FOREG [26]. FOREG is the extension ofFO with pred-
icatesr↓(x) andr→(x) for every regular expressionr. For
a treeT and a nodes, T |= r↓(s) iff the labels on the path
from the root tos satisfyr; T |= r→(s) iff the string formed
by concatenating the labels of the left siblings ofs satisfies
r.

Now, we introduce the logic FOreg
η . This is FOη extended

with the following predicates: for every regular expression
r we haver↓(T ) andr→(T ) with the following meaning:

• r↓(T ) iff T = (D, f) is a branch,{s1, . . . , sp} is the
set of right-most siblings withs1 <pre · · · <pre sp and
f(s1) · · · f(sp) ∈ L(r);

• r→(T ) iff T = (D, f) is a branch,{s1, . . . , sp} =
{s | s ≤sib e(T )} with s1 <sib · · · <sib sp, e(T ) the
endpoint ofT , andf(s1) · · · f(sp) ∈ L(r).

Clearly, FOreg
η (Tu) = FOη(Tu). Therefore, we only

consider FOreg
η (Tu

p).

Theorem 4 A set X ⊆ UTREE(Σ) is definable in
FOreg

η (Tu
p) iff X is definable inFOREG.

Note that FOreg
η (Tu

p) can express the properties of Propo-
sition 4. Since FOreg

η (Tu
p) ⊆ FOreg

η (Tu) = FOη(Tu), we
conclude that its data complexity is NC1. The bound cannot
be lowered, due to the completeness of regular languages
for NC1 [38].

5. Query languages

The setting of first-order definability over structures
whose elements are trees extends smoothly to definabil-
ity in relational calculus, that is, in the presence of a fi-
nite relational structure whose elements are trees. In the



XML setting, the most likely scenario is that of a unary
database vocabulary, corresponding to several repositories
of trees. In general, however, there is no need to impose
such a restriction, and we may consider arbitrary relations
over UTREE(Σ).

Formally, in this setting we have a relational vocabulary
σ; eachm-ary relationS in σ is interpreted as afinitesubset
of UTREE(Σ)m. The logics we consider are FO(Tu

p, σ) and
FO(Tu, σ) (we shall also see some restrictions later). These
extend FO(Tu

p) and FO(Tu) by allowing atomic formulae
of the formS(T1, . . . , Tm), for S in σ.

We shall also useactive-domainquantification∃T ∈
adom and ∀T ∈ adom. The active domain of aσ-
structureA over UTREE(Σ) is the setadom(A) of all
T ∈ UTREE(Σ) such thatT occurs in one of the tuples of a
relationS in A. We write(M,A) |= ∃T ∈adom ϕ(T, ·) to
mean that for someT0 ∈ adom(A), (M,A) |= ϕ(T0, ·).

5.1 Relational calculi overTu
p andT

u: expressive-
ness and complexity

We start by studying the expressiveness and complexity
of FO(Tu

p, σ) and FO(Tu, σ). The general situation is rem-
iniscent of that for ranked trees: one can prove a quantifier-
restriction result for those calculi that gives us a PH (poly-
nomial hierarchy) upper bound on query evaluation. The
proof, however, is not an immediate consequence of its
ranked counterpart. The reason is that all known quantifier-
restriction results for ranked trees, when applied to treesof
the formR(T ), involve quantification over trees that arenot
encodings of unranked trees. This, as before, is remedied by
combining the encoding techniques with some (restricted)
EF games.

The upper bounds theorem not only provides us with a
PH bound (which is not very useful for proving expressivity
bounds), but it also gives us a bound on the complexity of
genericqueries. A generic (Boolean) query is a collection
Q of isomorphism types ofσ-structures. It is expressible
in FO(M, σ) if there is a sentenceΦ such that for anyσ-
structureA overM, (M,A) |= Φ if the isomorphism type
of A is inQ.

Define a generic encoding of a structureA, encgen(A),
with an n-element active domain{T1, . . . , Tn} as an en-
coding in whichTi is encoded asi in binary. We say
that generic data complexityof FO(M, σ) is in complex-
ity classC if for any σ and any generic queryQ expressible
in FO(M, σ), the language{encgen(A) | A ∈ Q} is in C.
Note that a generic encoding is determined by an ordering
on the active domain and hence is not unique; however, for a
genericQ, the choice of a particular generic encoding does
not affect the definition of generic data complexity.

The upper bounds theorem is:

Theorem 5 1. The data complexity of bothFO(Tu
p, σ)

andFO(Tu, σ) is PH;

2. The generic data complexity of bothFO(Tu
p, σ) and

FO(Tu, σ) is AC0.

Proof sketch. Both 1) and 2) are based on the following
quantifier-restriction result. By FOdom(M, σ) we denote
the set of FO(M, σ) sentences in which quantification is
restricted todom(A) =

⋃

T∈adom(A) dom(T ). That
is, (M,A) |= ∃T ψ(T, ·) means that for someT0 with
dom(T0) ⊆ dom(A), (M,A) |= ψ(T0, ·). We show that,
by combining two game arguments and a similar result for
ranked trees, that every FO(Tu, σ) sentence is equivalent to
an FOdom(Tu, σ) sentence. Both complexity bounds can
easily be derived from this. 2

Corollary 3 Parity and transitive closure cannot be ex-
pressed inFO(Tu, σ).

The upper bound of Theorem 5 cannot be lowered, since
the relational calculi we introduced can express problems
complete for each level of PH. Moreover, this can be done
in a rather simple setting; for example, overT and T

u,
all one needs is one unary relation and quantification over
branches.

Proposition 6 Letσ1 contain one unary relationU , andσ2

one binary relationE. Then for everyi, bothFO(Tu
p, σ2)

andFOη(Tu, σ1) (in fact, evenFOη(T, σ1)) can defineΣp
i -

andΠp
i -hard problems.

Proof sketch.The proof for FO(Tu
p, σ2) is by reduction to a

similar result for ranked trees [5]. The proof for FOη(T, σ1)
is a reduction from QSAT. For each quantifier-prefixπ, we
construct an FOη(T, σ1) formula ξπ such that, if a unary
relationS codes a CNF formulaϕ, then(T, S) |= ξπ iff ϕ
preceded by the prefixπ is satisfiable. 2

5.2. Restricted query languages

Given the high bounds of the previous section, we pro-
pose some restricted relational calculi with lower data com-
plexity, but still sufficiently expressive so that they can do,
for example, DTD validation and XPath pattern-matching.
The source of high complexity in a query language is the
possibility of quantifying over the entire set of unranked
trees, and – unlike in some string models such asSp –
over trees one cannot in general get rid of this unrestricted
quantification [5]. We therefore impose restrictions on such
quantification, following the definition of restricted quanti-
fier normal form (cf. [3, 5]).

Let FOact(M, σ) be the logic that is build from atomic
formulae overσ andarbitrary formulae of FO(M) by using



the Boolean connectives and quantification∃T ∈adom and
∀T ∈ adom. If only FOη(M) formulae are used, we refer
to FOact

η (M, σ).
Combining the AC0 data complexity of the relational

calculus [1] with the results of the previous section we get:

Corollary 4 The data complexity of bothFOact(Tu
p, σ) and

FOact(Tu, σ) is DLOGSPACE, and the data complexity of
FOact

η (Tu, σ) is NC1.

Notice that all these languages can do both DTD and
XPath checking.

As another restriction, we use the logic FOreg
η (Tu

p) of
Section 4, which extends FOη(Tu

p) with predicatesr↓(T )
and r→(T ) testing if the labeling of the right boundary
or the siblings of the rightmost node of a branch is in the
language denoted by the regular expressionr. By adding
atomic formulae of the formS(~T ) whereS ∈ σ, and re-
stricted quantification∃T ∈ adom and ∀T ∈ adom, we
obtain a logic FOreg

η (Tu
p, σ). Note that this logic is closer

to FO(M, σ) than to FOact(M, σ), since it can mix quan-
tification over (a subset of)M and quantification over the
active-domain in an arbitrary way. Still, it has low data
complexity.

Theorem 6 The data-complexity ofFOreg
η (Tu

p, σ) is NC1.

Proof sketch. This is shown by proving a quantifier-
restriction result: it suffices to use active-domain quantifi-
cation together with quantification restricted to branchesof
trees inadom(A). This is proved by EF games. 2

Safe query languages. We conclude by a remark on
safetyin relational calculi. An FO(M, σ) queryϕ(~T ) is
safe if for everyA, the number of tuples~T0 such that
(M,A) |= ϕ(~T0) is finite. This property is undecidable
even for the pure relational calculus (that is, when the vo-
cabulary ofM is empty), but the class of safe queries of-
ten haseffective syntax: that is, an r.e. collection of safe
queriesϕi, i ∈ N, such that every safe query in FO(M, σ)
is equivalent to one ofϕi’s. The existence of effective syn-
tax for pure relational calculus is a standard result of rela-
tional database theory [1], but [32] showed that it may not
extend even to some structures with quantifier-elimination
and decidable first-order theory. Nevertheless, for previ-
ously studied automatic structures, safe queries were shown
to have effective syntax [3, 5]. We now extend this result to
the calculi studied here for unranked trees.

Proposition 7 Safe queries in all of FO(Tu
p, σ),

FOη(Tu
p, σ), FOreg

η (Tu
p, σ), FO(Tu, σ), and FOη(Tu, σ)

have effective syntax.

A slightly more complicated version of range-restriction
guarantees safety for calculi with active-domain quantifica-
tion; we leave the details for the full version.

Logic Class of Languages Data Complexity
FO(Tu) MSO = regular DLOGSPACE
FO(Tu

p) MSO = regular DLOGSPACE

FOη(Tu) MSO
↓

→
NC1

FOη(Tu
p) FO AC0

FOreg
η (Tu) MSO

↓

→
NC1

FOreg
η (Tu

p) FOREG NC1

Figure 3. Definability overTu
p andT

u.

Logic Class of Languages
FO(T) MSO = regular [5]
FO(Tp) MSO = regular [5]
FOη(T) MSOpath

FOη(Tp) FO

Figure 4. Definability overTp andT.

6. Conclusion

Motivated by applications to XML, we examined defin-
ability and query languages for unranked trees. The ob-
tained results are summarized in Figure 3–5. The defin-
ability results over unranked trees provide a rather com-
plete picture concerning definability in the classical setting
versus definability in the model-theory setting. In the sec-
ond part of the paper, we focused on relational calculi. De-
pending on the allowed operators, the complexity of these
range from AC0 to PH. All of the calculi in Figure 5, except
FOη(Tu

p) and the generic restrictions, are suitable for basic
XML querying as they are able to express DTDs and XPath.

In the study of definability and querying over automatic
structures, we found many commonalities between strings,
ranked trees, and unranked trees: for example, the com-
plexity of the relational calculus is in PH, while for generic
queries it drops to AC0; the safe queries always have ef-
fective syntax, etc. However, theproofs of these results
in [3], [5], and here are quite different. We would like
to find a better explanation of how the definability by au-
tomata affects such basic properties of query languages.
We also would like to understand the precise expressive-
ness of generic queries in relational calculi over automatic
structures: we know that AC0 is an upper bound, but we
suspect that these queries may capture an interesting sub-
class of AC0 that properly extends first-order. Finally, we
would like to find precise descriptions of fragments of var-
ious XML query languages (e.g., [12, 11]) that correspond
to the logics studied here.
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