
Graph Logics with Rational Relations and
the Generalized Intersection Problem

Pablo Barceló
Department of Computer Science

University of Chile
pbarcelo@dcc.uchile.cl

Diego Figueira
School of Informatics

University of Edinburgh
dfigueir@inf.ed.ac.uk

Leonid Libkin
School of Informatics

University of Edinburgh
libkin@inf.ed.ac.uk

Abstract—We investigate some basic questions about the inter-
action of regular and rational relations on words. The primary
motivation comes from the study of logics for querying graph
topology, which have recently found numerous applications. Such
logics use conditions on paths expressed by regular languages
and relations, but they often need to be extended by rational
relations such as subword (factor) or subsequence. Evaluating
formulae in such extended graph logics boils down to checking
nonemptiness of the intersection of rational relations with regular
or recognizable relations (or, more generally, to the generalized
intersection problem, asking whether some projections of a
regular relation have a nonempty intersection with a given
rational relation).

We prove that for several basic and commonly used rational
relations, the intersection problem with regular relations is either
undecidable (e.g., for subword or suffix, and some generaliza-
tions), or decidable with non-multiply-recursive complexity (e.g.,
for subsequence and its generalizations). These results are used to
rule out many classes of graph logics that freely combine regular
and rational relations, as well as to provide the simplest problem
related to verifying lossy channel systems that has non-multiply-
recursive complexity. We then prove a dichotomy result for logics
combining regular conditions on individual paths and rational
relations on paths, by showing that the syntactic form of formulae
classifies them into either efficiently checkable or undecidable
cases. We also give examples of rational relations for whichsuch
logics are decidable even without syntactic restrictions.

I. I NTRODUCTION

The motivation for the problems investigated in this pa-
per comes from the study of logics for querying graphs.
Such logics form the basis of query languages for graph
databases, that have recently found numerous applicationsin
areas including biological networks, social networks, Semantic
Web, crime detection, etc. (see [1] for a survey) and led to
multiple systems and prototypes. In such applications, data
is usually represented as a labeled graph. For instance, in
social networks, people are nodes, and labeled edges represent
different types of relationship between them; in RDF – the
underlying data model of the Semantic Web – data is modeled
as a graph, with RDF triples naturally representing labeled
edges.

The questions that we address are related to the interac-
tion of various classes of relations on words, for instance,
rational relations (examples of those include subword and
subsequence) or regular relations (such as prefix, or equality
of words). An example of a question we are interested in is

as follows: is it decidable whether a given a regular relation
contains a pair(w, w′) so thatw is a subword/subsequence of
w′? Problems like this are very basic and deserve a study on
their own right, but they are also necessary to answer questions
on the power and complexity of querying graph databases. We
now explain how they arise in that setting.

Logical languages for querying graph data have been de-
veloped since the late 1980s (and some of them became
precursors of languages later used for XML). They query the
topology of the graph, often leaving querying data that might
be stored in the nodes to a standard database engine. Such
logics are quite different in their nature and applicationsfrom
another class of graph logics based on spatial calculi [10],[17].
Their formulae combine reachability patterns. The simplest
form is known asregular path queries (RPQs)[16], [15]; they
check the existence of a path whose label belongs to a regular
language. Those are typically used as atoms and then closed
under conjunction and existential quantification, resulting in
the class ofconjunctive regular path queries (CRPQs), which
have been the subject of much investigation [8], [18], [21].
For instance, a CRPQ may ask for nodesv so that there exist
nodesv1 and v2 and paths fromv to vi with the label in a
regular languageLi.

The expressiveness of these queries, however, became insuf-
ficient in applications such as the Semantic Web or biological
networks due to their inability tocomparepaths. For instance,
it is a common requirement in RDF languages to compare
paths based on specific semantic associations [2]; biological
sequences often need to be compared for similarity, based, for
example, on the edit distance.

To address this, an extension of CRPQs with relations on
paths was proposed [3]. It usedregular relations on paths, i.e.,
relations given by synchronized automata [20], [22]. Equiva-
lently, these are the relations definable in automatic structures
on words [4], [6], [7]. They include prefix, equality, equal
length of words, or fixed edit distance between words. The
extension of CRPQs with them, called ECRPQs, was shown
to have acceptable complexity (NLOGSPACE with respect to
data, PSPACE with respect to query).

However, it was still short of the expressiveness needed
in many applications. For instance, semantic associations
between paths used in RDF applications often deal with
subwords or subsequences, but these relations arenot regular.

They arerational: they are still accepted by automata, but
those whose heads move asynchronously. Adding them to
a query language must be done with extreme care: simply
replacing regular relations with rational in the definitionof
ECRPQs makes query evaluation undecidable!

So we set out to investigate the following problem: given
a class of graph queries, e.g., CRPQs or ECRPQs, what
happens if one adds the ability to test whether pairs of
paths belong to a rational relationS, such as subword or
subsequence? We start by observing that this problem is a
generalization of theintersection problem: given a regular
relation R, and a rational relationS, is R ∩ S 6= ∅? It is
well known that there exist rational relationsS for which it
is undecidable [5]; however, we are not interested in artificial
relations obtained by encoding PCP instances, but rather in
very concrete relations used in querying graph data.

The intersection problem captures the essence of graph
logics ECRPQs and CRPQs (for the latter, when restricted
to the class of recognizable relations [5], [14]). In fact, query
evaluation can be cast as thegeneralized intersection problem.
Its input includes anm-ary regular relationR, a binary rational
relation S, and a setI of pairs from {1, . . . , m}. It asks
whether there is a tuple(w1, . . . , wm) ∈ R so that(wi, wj) ∈
S whenever(i, j) ∈ I. For m = 2 and I = {(1, 2)}, this is
the usual intersection problem.

Another motivation for looking at these basic problems
comes from verification of lossy channel systems (finite-state
processes that communicate over unbounded, but lossy, FIFO
channels). Their reachability problem is known to be decid-
able, although the complexity is not bounded by any multiply-
recursive function [13]. In fact, a “canonical” problem used in
reductions showing this enormous complexity [12], [13] can
be restated as follows: given a binary rational relationR, does
it have a pair(w, w′) so thatw is a subsequence ofw′? This
naturally leads to the question whether the same bounds hold
for the simpler instance of the intersection problem when we
use regular relations instead of rational ones. We actuallyshow
that this is true.

Summary of results: We start by showing that evaluating
CRPQs and ECRPQs extended with a rational relationS can
be cast as the generalized intersection problem forS with
recognizable and regular relations respectively. Moreover, the
complexity of the basic intersection problem is a lower bound
for the complexity of query evaluation.

We then study the complexity of the intersection problem
for fixed relationsS. For recognizable relations, it is well
known to be efficiently decidable for every rationalS. For
regular relations, we show that ifS is the subword, or the
suffix relation, then the problem is undecidable. That is, it
is undecidable to check, given a binary regular relationR,
whether it contains a pair(w, w′) so thatw is a subword of
w′, or even a suffix ofw′. We also present a generalization of
this result.

The analogous problem for the subsequence relation is
known to be decidable, and, if the input is a rational relation
R, then the complexity is non-multiply-recursive [12]. We

extend this in two ways. First, we show that the lower bound
remains true even for regular relationsR. Second, we extend
decidability to the class of all rational relations for which
one projection is closed under subsequence (the subsequence
relation itself is trivially such, obtained by closing the first
projection of the equality relation).

In addition to establishing some basic facts about classes
of relations on words, these results tell us about the in-
feasibility of adding rational relations to ECRPQs: in fact
adding subword makes query evaluation undecidable, and
while it remains decidable with subsequence, the complexity
is prohibitively high.

So we then turn to the generalized intersection problem
with recognizable relations, corresponding to the evaluation
of CRPQs with an extra relationS. We show that the shape
of the relationI holds the key to decidability. If its underlying
undirected graph is acyclic, then the problem is decidable
in PSPACE for every rational relationS (and for a fixed
formula the complexity drops to NLOGSPACE). In the cyclic
case, the problem is undecidable for some rational relationS.
For relations generalizing subsequence, we have decidability
when I is a DAG, and for subsequence itself, as well as for
suffix, query evaluation is decidable regardless of the shape of
CRPQs.

Thus, under the mild syntactic restriction of acyclicity of
comparisons with respect to rational relations, such relations
can be added to the common class CRPQ of graph queries,
without incurring a high complexity cost.

Organization: We give basic definitions in Section II and
define the main problems we study in Section III. Section
IV introduces graph logics and establishes their connection
with the (generalized) intersection problem. Section V studies
decidable and undecidable cases of the intersection problem.
Section VI looks at the case of recognizable relations and
CRPQs and establishes decidability results based on the in-
tersection pattern. Complete proofs of all results are available
in the full version of the paper.

II. PRELIMINARIES

Alphabets, languages, and morphisms: We shall use letters
Σ, Γ to denote finite alphabets. The set of all finite words over
an alphabetΣ is denoted byΣ∗. We write ε for the empty
word, w · w′ for the concatenation of two words, and|w| for
the length of a wordw.

If w = w′ · u · w′′, then

• u is a subwordof w (also calledfactor in the literature,
written asu � w),

• w′ is a prefix of w (written asw′ �pref w), and
• w′′ is a suffixof w (written asw′′ �suff w).

We say thatw′ is a subsequenceof w (also calledsubword
embeddingin the literature, written asw′ ⊑ w) if w′ is
obtained by removing some letters (perhaps none) fromw,
i.e., w = a1 . . . an, andw′ = ai1ai2 . . . aik

, where1 ≤ i1 <

i2 < . . . < ik ≤ n.

Recall that amonoidM = 〈U, ·, 1〉 has an associative binary
operation· and a neutral element1 satisfying1x = x1 = x

for all x (we often writexy for x · y). The setΣ∗ with the
operation of concatenation and the neutral elementε forms a
monoid〈Σ∗, ·, ε〉, the free monoid generated byΣ. A function
f : M → M ′ between two monoids is amorphismif it sends
the neutral element ofM to the neutral element ofM ′, and
if f(xy) = f(x)f(y) for all x, y ∈ M . Every morphismf :
〈Σ∗, ·, ε〉 → M is uniquely determined by the valuesf(a),
for a ∈ Σ, asf(a1 . . . an) = f(a1) · · · f(an). A morphismf :
〈Σ∗, ·, ε〉 → 〈Γ∗, ·, ε〉 is calledalphabeticif f(a) ∈ Γ ∪ {ε},
andstrictly alphabeticif f(a) ∈ Γ for eacha ∈ Σ, see [5].

A languageL is a subset ofΣ∗. It is recognizableif there
is a finite monoidM , a morphismf : 〈Σ∗, ·, ε〉 → M , and a
subsetM0 of M such thatL = f−1(M0).

A languageL is regular if there exists an NFA (non-
deterministic finite automaton)A = 〈Q, Σ, q0, δ, F 〉 such that
L = L(A), the language of words accepted byA. We use the
standard notation for NFAs, whereQ is the set of states,q0 is
the initial state,F is the set of final states, andδ ⊆ Q×Σ×Q

is the transition relation.
A language isrational if it is denoted by a regular expres-

sion; such expressions are built from∅, ε, and alphabet letters
by using operations of concatenation (e ·e′), union (e∪e′), and
Kleene star (e∗). It is of course the classical result of formal
language theory that the classes of recognizable, regular,and
rational languages coincide.

Recognizable, regular, and rational relations: While the
notions of recognizability, regularity, and rationality coincide
over languagesL ⊆ Σ∗, they differ over relations overΣ, i.e.,
subsets ofΣ∗ × . . .×Σ∗. We now define those (see [5], [11],
[14], [20], [22], [30]).

Since 〈Σ∗, ·, ε〉 is a monoid, the product(Σ∗)n has the
structure of a monoid too. We can thus definerecognizable
n-ary relations over Σ as subsetsR ⊆ (Σ∗)n so that there
exists a finite monoidM and a morphismf : (Σ∗)n → M

such thatR = f−1(M0) for someM0 ⊆ M . The class of
n-ary recognizable relations will be denoted byRECn; when
n is clear or irrelevant, we write justREC.

It is well-known that a relationR ⊆ (Σ∗)n is in RECn iff it
is a finite union of the sets of the formL1 × . . .×Ln, where
eachLi is a regular language overΣ, see [5], [20].

Next, we define the class of regular relations. Let⊥ 6∈ Σ
be a new alphabet letter, and letΣ⊥ be Σ ∪ {⊥}. Each tuple
w̄ = (w1, . . . , wn) of words fromΣ∗ can be viewed as a word
overΣn

⊥ as follows: pad wordswi with ⊥ so that they all are
of the same length, and use as thekth symbol of the new word
then-tuple of thekth symbols of the padded words. Formally,
let ℓ = maxi |wi|. Thenw1 ⊗ . . . ⊗ wn is a word of lengthℓ
whosekth symbol is(a1, . . . , an) ∈ Σn

⊥ such that

ai =

{

the kth letter ofwi if |wi| ≥ k

⊥ otherwise.

We shall also write⊗w̄ for w1 ⊗ . . . ⊗ wn. A relation R ⊆
(Σ∗)n is called aregular n-ary relation over Σ if there is a

finite automatonA overΣn
⊥ that accepts{⊗w̄ | w̄ ∈ R}. The

class ofn-ary regular relations is denoted byREGn; as before,
we write REG whenn is clear or irrelevant.

Finally, we define rational relations. There are two equiv-
alent ways of doing it. One uses regular expressions, which
are now built from tuples̄a ∈ (Σ ∪ {ε})n using the same
operations of union, concatenation, and Kleene star. Binary
relations �suff , �, and ⊑ are all rational: the expression
(
⋃

a∈Σ(ε, a)
)∗

·
(
⋃

a∈Σ(a, a)
)∗

defines�suff , the expression
(
⋃

a∈Σ(ε, a)
)∗

·
(
⋃

a∈Σ(a, a)
)∗

·
(
⋃

a∈Σ(ε, a)
)∗

defines�,
and the expression

(
⋃

a∈Σ(ε, a) ∪ (a, a)
)∗

defines⊑.
Alternatively, n-ary rational relations can be defined by

means ofn-tape automata, that haven heads for the tapes
and one additional control; at every step, based on the state
and the letters it is reading, the automaton can enter a new
state and move some (but not necessarily all) tape heads. The
classes ofn-ary relations so defined are calledrational n-ary
relations; we use the notationRATn or just RAT, as before.

Relationships between classes of relations: While it very
well known that REC1 = REG1 = RAT1, we have strict
inclusions

RECk (REGk (RATk

for every k > 1. For instance,�pref ∈ REG2 − REC2 and
�suff ∈ RAT2 − REG2.

The classes of recognizable and regular relations are closed
under intersection; however the class of rational relations is
not. In fact one can findR ∈ REG2 and S ∈ RAT2 so that
R∩S 6∈ RAT2. However, ifR ∈ RECm andS ∈ RATm, then
R ∩ S ∈ RATm.

Binary rational relations can be characterized as follows
[5], [28]. A relation R ⊆ Σ∗ × Σ∗ is rational iff there is
a finite alphabetΓ, a regular languageL ⊆ Γ∗ and two
alphabetic morphismsf, g : Γ∗ → Σ∗ such thatR =
{(f(w), g(w)) | w ∈ L}. If we requiref andg to be strictly
alphabetic morphisms, we get the class oflength-preserving
regular relations, i.e.,R ∈ REG2 so that(w, w′) ∈ R implies
|w| = |w′|. Regular binary relations are then finite unions of
relations of the form{(w · u, w′) | (w, w′) ∈ R, u ∈ L}
and {(w, w′ · u) | (w, w′) ∈ R, u ∈ L}, whereR ranges
over length-preserving regular relations, andL over regular
languages.

Properties of classes of relations: Since relations inREC

and REG are given by NFAs, they inherit all the clo-
sure/decidability properties of regular languages. IfR ∈ RAT,
then each of its projections is a regular language, and can
be effectively constructed (e.g., from the description ofR as
an n-tape automaton). Hence, the nonemptiness problem is
decidable for rational relations. However, testing nonemptiness
of the intersection of two rational relations is undecidable [5].
Also, for R, R′ ∈ RAT, the following are undecidable: check-
ing whetherR ⊆ R′ or R = R′, universality (R = Σ∗ × Σ∗),
and checking whetherR ∈ REG or R ∈ REC [5], [11], [26].

Remark: We defined recognizable, regular, and rational
relations over the same alphabet, i.e., as subsets of(Σ∗)n. Of
course it is possible to define them as subsets ofΣ1×. . .×Σn,
with theΣi’s not necessarily distinct. Technically, there are no
differences and all the results will continue to hold. Indeed,
one can simply consider a new alphabetΣ as the disjoint union
of Σi’s, and enforce the condition that theith projection only
use the letters fromΣi (this is possible for all the classes of
relations we consider). In fact, in the proofs we shall be using
both types of relations.

III. G ENERALIZED INTERSECTION PROBLEM

We now formalize the main technical problem we study.
Let R be a class of relations overΣ, andS a class of binary
relations overΣ. We use the notation[m] for {1, . . . , m}. The

generalized intersection problem(R ∩I S)
?
= ∅ is defined as:

PROBLEM: (R ∩I S)
?
= ∅

INPUT: an m-ary relationR ∈ R,
a relationS ∈ S, andI ⊆ [m]2

QUESTION: is therew̄ = (w1, . . . , wm) ∈ R

so that(wi, wj) ∈ S for all (i, j) ∈ I?

If S = {S}, we write S instead of {S}. We write

GENINTS(R) for the class of all problems(R ∩I S)
?
= ∅

where S is fixed, i.e., the input consists ofR ∈ R and I.
As was explained in the introduction, this problem captures
the essence of evaluating queries in various graph logics, e.g.,
CRPQs or ECRPQs extended with rational relationsS. The
classesR will typically be REC andREG.

If m = 2 and I = {(1, 2)}, the generalized intersection
problem becomes simply theintersection problemfor the
classesR andS of binary relations:

PROBLEM: (R∩ S)
?
= ∅

INPUT: R ∈ R andS ∈ S
QUESTION: is R ∩ S 6= ∅?

The problem(REC∩S)
?
= ∅ is decidable for every rational

relationS, simply by constructingR ∩ S, which is a rational
relation, and testing its nonemptiness. However,(REG∩S)

?
= ∅

could already be undecidable (we shall give one particularly
simple example later).

IV. GRAPH LOGICS AND THE GENERALIZED

INTERSECTION PROBLEM

In this section we show how the (generalized) intersection
problems provide us with upper and lower bounds on the
complexity of evaluating a variety of logical queries over
graphs. We start by recalling the basic classes of logics
used in querying graph data, and show that extending them
with rational relations allows us to cast the query evaluation
problem as an instance of the generalized intersection problem.
The key observations are that:

• the complexity of GENINTS(REC) and (REC ∩ S)
?
= ∅

provide an upper and a lower bound for the complexity
of evaluating CRPQ(S) queries; and

• for ECRPQ(S), these bounds are provided by the com-
plexity of GENINTS(REG) and of(REG ∩ S)

?
= ∅.

The standard abstraction of graph databases [1] is finiteΣ-
labeled graphsG = 〈V, E〉, whereV is a finite set of nodes,
or vertices, andE ⊆ V × Σ × V is a set of labeled edges. A
pathρ from v0 to vm in G is a sequence of edges(v0, a0, v1),
(v1, a1, v2), · · · , (vm−1, am−1, vm) from E, for somem ≥ 0.
Thelabelof ρ, denoted byλ(ρ), is the worda0 · · · am−1 ∈ Σ∗.

The main building blocks for graph queries areregular path
queries, or RPQs [16]; they are expressions of the formx

L
→ y,

whereL is a regular language. We normally assume thatL is
represented by a regular expression or an NFA. Given aΣ-
labeled graphG = 〈V, E〉, the answer to an RPQ above is the
set of pairs of nodes(v, v′) such that there is a pathρ from
v to v′ with λ(ρ) ∈ L.

Conjunctive RPQs, or CRPQs [8], [9], [15] are the closure
of RPQs under conjunction and existential quantification.
Formally, they are expressions of the form

ϕ(x̄) = ∃ȳ

m
∧

i=1

(ui
Li−→ u′

i) (1)

where variablesui, u
′
is come fromx̄, ȳ. The semantics nat-

urally extends the semantics of RPQs:ϕ(ā) is true in G iff
there is a tuplēb of nodes such that for everyi ≤ m and every
vi, v

′
i interpretingui and u′

i, respectively, we have a pathρi

betweenvi andv′i whose labelλ(ρi) is in Li.
CRPQs can further be extended tocomparepaths. For that,

we need to name path variables, and choose a class of allowed
relations on paths. The simplest such extension is the classof
CRPQ(S) queries, whereS is a binary relation overΣ∗. Its
formulae are of the form

ϕ(x̄) = ∃ȳ
(

m
∧

i=1

(ui
χi:Li

−→ u′
i) ∧

∧

(i,j)∈I

S(χi, χj)
)

(2)

whereI ⊆ [m]2. We use variablesχ1, . . . , χm to denote paths;
these are quantified existentially. That is, the semantics of G |=
ϕ(ā) is that there is a tuplēb of nodes and pathsρk, for k ≤ m,
betweenvk andv′k (where, as before,vk, v′k are elements of
ā, b̄ interpretinguk, u′

k) such that(λ(ρi), λ(ρj)) ∈ S whenever
(i, j) ∈ I. For instance, the query

∃y, y′
(

(x
χ:Σ∗a
−→ y) ∧ (x

χ′:Σ∗b
−→ y′) ∧ χ ⊑ χ′

)

finds nodesv so that there are two paths starting fromv, one
ending with ana-edge, whose label is a subsequence of the
other one, that ends with ab-edge.

The input to thequery evaluation problemconsists of a
graphG, a tuplev̄ of nodes, and a queryϕ(x̄); the question
is whetherG |= ϕ(v̄). This corresponds to thecombined com-
plexityof query evaluation. In the context of query evaluation,
one is often interested indata complexity, when the typically
small formulaϕ is fixed, and the input consists of the typically
large graph(G, v̄). We now relate it to the complexity of
GENINTS(REC).

Lemma IV.1. Fix a CRPQ(S) queryϕ as in (2). Then there
is a DLOGSPACE algorithm that, given a graphG and a tuple
v̄ of nodes, constructs anm-ary relationR ∈ REC so that the
answer to the generalized intersection problem(R ∩I S)

?
= ∅

is ‘yes’ iff G |= ϕ(v̄).

Proof idea. Given a Σ-labeled graphG = 〈V, E〉 and two
nodesv, v′, we write A(G, v, v′) for G viewed as an NFA
with the initial statev and the final statev′. Now consider a
CRPQ(S) queryϕ(x̄) given by (2). Letv̄ be a tuple of nodes
of G, of the same length as̄x.

The algorithm first enumerates all tuplesb̄ of nodes ofG
of the same length as̄y. Let ni andn′

i be the interpretations
of ui and u′

i, when x̄ is interpreted as̄v and ȳ as b̄. Define
Rb̄ =

∏m

i=1(L(A(G, ni, n
′
i)) ∩ Li); this is a relation in

RECm. Hence,R =
⋃

b̄ Rb̄ in RECm too. It is now easy to
see thatR ∩I S 6= ∅ iff G |= ϕ(v̄). 2

Conversely, the intersection problem for recognizable rela-
tions andS can be encoded as answering CRPQ(S) queries.

Lemma IV.2. For each binary relationS, there is aCRPQ(S)
query ϕ(x, x′) and a DLOGSPACE algorithm that, given a
relation R ∈ REC2, constructs a graphG and two nodesv, v′

so thatG |= ϕ(v, v′) iff R ∩ S 6= ∅.

Proof idea. Let R ∈ REC2 be given as
⋃n

i=1(Li ×Ki), where
theLi, Ki ⊆ Σ∗ are regular languages for everyi. Let 〈Vi, Ei〉
be the underlying graph of the NFA definingLi, such thatvi

0

is the initial state, andFi is the set of final states. Likewise
we define〈Wi, Hi〉, nodeswi

0 and setsCi ⊆ Wi for NFA
definingKi.

We now construct the graphG. Its labeling alphabet is the
union of Σ and {#, $, !}. Its set of vertices is the disjoint
union of all theVis, Wis, as well as two distinguished nodes
start and end. Its edges include all the edges fromEis and
His, and the following:

• #-labeled edges fromstart to each initial state, i.e., to
eachv0

i andw0
i for all i ≤ n.

• $-labeled edges between the initial states of automata
with the same index, i.e., edges(vi

0, $, wi
0) for all i ≤ n.

• !-labeled edges from final states toend, i.e., edges
(v, !, end), wherev ∈

⋃

i≤n Fi ∪
⋃

i≤n Ci.
The CRPQ(S) queryϕ(x, y) is given below; it omits path

variables for paths that are not used in comparisons:

∃x1, x2, z1, z2

x
#
→ x1 ∧ x

#
→ x2

∧ x1
χ:Σ∗

→ z1 ∧ x2
χ′:Σ∗

→ z2

∧ z1
!
→ y ∧ z2

!
→ y

∧ x1
$
→ x2 ∧ S(χ, χ′)

It is routine to verify thatG |= ϕ(start, end) iff R∩S 6= ∅. 2

Combining the lemmas, we obtain:

Theorem IV.3. Let K be a complexity class closed under
DLOGSPACE reductions. Then:

1) If the problemGENINTS(REC) is in K, then data com-
plexity ofCRPQ(S) queries is inK; and

2) If the problem(REC ∩ S)
?
= ∅ is hard forK, then so is

data complexity ofCRPQ(S) queries.

We now considerextended CRPQs, or ECRPQs, which
enhance CRPQs with regular relations [3], and prove a similar
result for them, with the role ofREC now played byREG.
Formally, ECRPQs are expressions of the form

ϕ(x̄) = ∃ȳ
(

m
∧

i=1

(ui
χi:Li

−→ u′
i) ∧

k
∧

j=1

Rj(χ̄j)
)

(3)

where eachRj is a relation fromREG, and χ̄j a tuple
from χ1, . . . , χm of the same arity asRj . The semantics of
course extends the semantics of CRPQs: the witnessing paths
ρ1, . . . , ρm should also satisfy the condition that for every
atom R(ρi1 , . . . , ρil

) in (3), the tuple(λ(ρi1), . . . , λ(ρil
)) is

in R.
Finally, we obtain ECRPQ(S) queries by adding compar-

isons with respect to a relationS ∈ RAT, getting a class of
queriesϕ(x̄) of the form

∃ȳ
(

m
∧

i=1

(ui
χi:Li

−→ u′
i) ∧

k
∧

j=1

Rj(χ̄j) ∧
∧

(i,j)∈I

S(χi, χj)
)

(4)

Exact analogs of Lemmas IV.1 and IV.2 hold, with ECRPQs
replacing CRPQs andREG replacingREC. Hence, we get:

Theorem IV.4. Let K be a complexity class closed under
DLOGSPACE reductions. Then:

1) If the problemGENINTS(REG) is in K, then data com-
plexity ofECRPQ(S) queries is inK; and

2) If the problem(REG ∩ S)
?
= ∅ is hard for K, then so is

data complexity ofECRPQ(S) queries.

Thus, our next goal is to understand the behaviors of the
generalized intersection problem for various rational relations
S which are of interest in graph logics; those include subword,
suffix, subsequence. In fact to rule out many undecidable or
infeasible cases it is often sufficient to analyze the intersection
problem. We do this in the next section, and then analyze
the decidable cases to come up with graph logics that can be
extended with rational relations.

V. THE INTERSECTION PROBLEM: DECIDABLE AND

UNDECIDABLE CASES

We now study the problem(REG ∩ S)
?
= ∅ for binary

rational relationsS such as subword and subsequence, and for
classes of relations generalizing them. The input is a binary
regular relationR overΣ, given by an NFA overΣ⊥×Σ⊥. The
question is whetherR ∩ S 6= ∅. We also derive results about
the complexity of ECRPQ(S) queries. For all lower-bound
results in this section, we assume that the alphabet contains at
least two symbols.

As already mentioned, there exist rational relationsS such
that(REG∩S)

?
= ∅ is undecidable. However, we are interested

in relations that are useful in graph querying, and that are
among the most commonly used rational relations, and for
them the status of the problem was unknown.

Note that the problem(REC ∩ S)
?
= ∅ is tractable: given

R ∈ REC, the relationR ∩ S is rational, can be efficiently
constructed, and checked for nonemptiness.

A. Undecidable cases: subword and relatives

We now show that even for such simple relations as subword
and suffix, the intersection problem is undecidable. That is,
given an NFA overΣ⊥×Σ⊥ defining a regular relationR, the
problem of checking for the existence of a pair(w, w′) ∈ R

with w �suff w′ or w � w′ is undecidable.

Theorem V.1. The problems (REG ∩ �suff)
?
= ∅ and

(REG ∩ �)
?
= ∅ are undecidable.

As an immediate consequence of this, we obtain:

Corollary V.2. The query evaluation problem for
ECRPQ(�suff) and ECRPQ(�) is undecidable.

Thus, some of the most commonly used rational relations
cannot be added to ECRPQs without imposing further restric-
tions.

Proof idea. We sketch the idea of the proof for�suff .
We encode nonemptiness for linearly bounded automata
(LBA). The alphabet Σ is the disjoint union of the
tape alphabet of the LBA, its states, and the designated
symbol $. Each configurationC with the tape content
a0 . . . an, where a0 and an are the left and right markers,
the state is q, and the head points atai is encoded
as a word wC = $a0 . . . ai−1qai . . . an$. Note that the
relation {(wC , wC′) | C′ is an immediate successor ofC}
is regular and hence so is the relationR =
{(wC0

wC1
. . . wCm

, wC′

1
. . . wC′

m
) | C′

i+1 is an immediate
successor ofCi for i < m}, since all configuration encodings
are of the same length. In fact, taking product with a
regular language, we can also assume thatR enforces
C0 to be an initial configuration, andCm to be a final
configuration. If R ∩ �suff is nonempty, it contains a
pair (wC0

wC1
. . . wCm

, wC1
. . . wCm

) such thatCi+1 is an
immediate successor ofCi for all i < m, i.e., iff there is an
accepting computation of the LBA. This proves undecidability.
The proof for� is very similar. 2

Note that the relationR constructed in the proof is definable
in first-order logic, so the intersection problem for suffix and
subword is undecidable even if the input relation comes from
the class of star-free regular relations.

The essence of the undecidability result is that relations such
as�suff and� can be decomposed in a way that one of the
components of the decomposition is a graph of a nontrivial
strictly alphabetic morphism. More precisely, letR ·R′ be the
binary relation{(w·w′, u·u′) | (w, u) ∈ R and (w′, u′) ∈ R′}.
Let Graph(f) be the graph of a functionf : Σ∗ → Σ∗, i.e.,
{(w, f(w)) | w ∈ Σ∗}.

Proposition V.3. Let R0, R1 be binary relations onΣ such
that R0 is recognizable and its second projection isΣ∗. Let f
be a strictly alphabetic morphism that is not constant. Then,

for S = R0 · Graph(f) · R1, the problem(REG ∩ S)
?
= ∅ is

undecidable.

Note that both�suff and� are of the required shape: suffix
is ({ε}×Σ∗) ·Graph(id)· ({ε}×{ε}), and subword is({ε}×
Σ∗) ·Graph(id)·({ε}×Σ∗), where id is the identity alphabetic
morphism.

B. Decidable cases: subsequence and relatives

We now show that the intersection problem is decidable
for the subsequence relation⊑ and, much more generally, for
a class of relations that do not, like the relations considered
in the previous section, have a “rigid” part. More precisely,
for relations one of whose projections is closed under taking
subsequences, we also retain decidability. However, the com-
plexity bounds are extremely high. In fact we show that the
complexity of checking whether(R∩⊑) 6= ∅, whenR ranges
overREG2, is not bounded by any multiply-recursive function.
This was previously known forR ranging overRAT2, and was
viewed as the simplest problem with non-multiply-recursive
complexity [12]. We now push it further and show that this
high complexity is already achieved with regular relations.

Some of the ideas for showing this come from a decidable
relaxation of the Post Correspondence Problem (PCP), namely
the regular Post Embedding Problem, or PEPreg, introduced in
[12], and shown to be in the level Fωω of the fast-growing
hierarchy of recursive functions [27], [29]. The input to the
problem consists of two morphismsf, g : Σ∗ → Γ∗ and
a regular languageL ⊆ Σ∗; it asks whether there is some
w ∈ L such thatf(w) ⊑ g(w) (recall that in the case of the
PCP the question is whetherf(w) = g(w) with L = Σ+).
This problem is known to be decidable, and as hard as the
reachability problem for lossy channel systems [12] which
cannot be bounded by any primitive-recursive function —in
fact, by any multiple-recursive function [29].

The problem PEPreg is just a reformulation of the prob-
lem (RAT ∩ ⊑)

?
= ∅. Indeed, relations of the form

{(f(w), g(w)) | w ∈ L}, whereL ⊆ Σ∗ ranges over regular
languages andf, g over morphismsΣ∗ → Γ∗ are precisely
the relations inRAT2 [5], [28]). Hence,(RAT ∩ ⊑)

?
= ∅ is

decidable, with non-multiply-recursive complexity. We show
that the lower bound already applies to regular relations.

Theorem V.4. The problem(REG ∩ ⊑)
?
= ∅ is decidable,

and its complexity is not bounded by any multiply-recursive
function.

Proof idea. As already mentioned, decidability follows from
[12]. To prove the lower bound, we first show that the existence
of a solution to PEPreg is equivalent to the existence of a
special solution, which we call astrict codirect solution.1

A word w = a1 · · ·am ∈ Σ∗ is a strict codirect solution
if f(a1 · · · am) ⊑ g(a1 · · ·am) and for every i < m,
f(a1 · · ·ai) 6⊑ g(a1 · · · ai). We then show how to code

1This is a slightly more restrictive definition than thecodirect solutionsused
for the decidability of PEPreg in [12], which is essential to make possible our

reduction from the(REG ∩ ⊑)
?
= ∅ problem.

the existence of a strict codirect solution as an instance of
(REG ∩ ⊑)

?
= ∅.

Given a rational relationR ⊆ Σ∗ × Γ∗ we convert it into
a length-preserving regular relationR′ ⊆ Σ∗

⊥ × Γ∗
⊥ so that

R is the set of elements ofR′ projected ontoΣ∗ × Γ∗, and
if (q, (a, b), q′) is a transition of the NFA acceptingR′ so is
(q, (⊥,⊥), q′). If we now let R′′ to be the regular relation
R′ · {(ǫ, v) | v ∈ {⊥}∗}, we obtain that:

(i) if w ∈ R′′ ∩ ⊑ then w′ ∈ R ∩ ⊑, where w′ is the
projection ofw onto Σ∗ × Γ∗; and

(ii) for any w′ ∈ R∩⊑ there is some strict codirect solution
w ∈ R′′ ∩ ⊑ such thatw′ is the projection ofw onto
Σ∗ × Γ∗.

Thus the theorem follows.
Whereas (i) is trivial, (ii) follows from the fact thatw is a

strict codirect solution. Ifw′ = (u, v) ∈ R′′, wheref(w) =
(u)Γ, g(w) = (v)Γ, the complication is now that, sinceu ∈
Σ⊥, it could be thatu 6⊑ v just because there is some⊥ in
u that does not appear inv. But we build (u, v) such that
wheneveru[i] = ⊥ forces v[j] = ⊥ with j > i then we
also have thatu[j] = ⊥. This repeats, forcingv[k] = ⊥ for
somek > j and so on, until we reach the tail ofv that has
sufficiently many⊥’s to satisfy all the accumulated demands
for occurrences of⊥. 2

Note that one cannot solve the problem(REG ∩ ⊑)
?
= ∅

by reducing to nonemptiness of rational relations due to the
following.

Proposition V.5. There is a binary regular relationR such
that (R ∩⊑) is not rational.

The next question is how far we can extend the decidability
of (RAT∩⊑)

?
= ∅. It turns out that if we allow one projection

of a rational relation to be closed under taking subsequences,
then we retain decidability.

Let R ⊆ Σ∗×Σ∗ be a binary relation. Define another binary
relation

R⊑ = {(u, w) | u ⊑ u′ and (u′, w) ∈ R for someu′}

Then the class ofsubsequence-closed relations, or SCR, is
the class{R⊑ | R ∈ RAT}. Note that the subsequence
relation itself is in SCR, since it is obtained by closing
the (regular) equality relation under subsequence. That is,
⊑ = {(w, w) | w ∈ Σ∗}⊑. Not all rational relations are
subsequence-closed (for instance, subword is not).

The following summarizes properties of subsequence-closed
relations.

Proposition V.6.

1) SCR (RAT.
2) SCR 6⊆ REG and REG 6⊆ SCR.
3) A relation R is in SCR iff {w ⊗ w′ | (w, w′) ∈ R} is

accepted by an NFAA = 〈Q, Σ⊥ × Σ⊥, q0, δ, F 〉 such
that (q, (a, b), q′) ∈ δ implies (q, (⊥, b), q′) ∈ δ for all
q, q′ ∈ Q and a, b ∈ Σ⊥.

When anSCR relation is given as an input to a problem,
we assume that it is represented as an NFA in item 3 in the
above proposition.

Note also that(SCR∩SCR)
?
= ∅ is decidable in polynomial

time: if R, R′ ∈ SCR andR ∩ R′ 6= ∅, then(ε, w) ∈ R ∩ R′

for somew, and hence the problem reduces to simple NFA
nonemptiness checking.

The main result aboutSCR relations generalizes decidability
of (RAT ∩ ⊑)

?
= ∅.

Theorem V.7. The problem(RAT ∩ SCR)
?
= ∅ is decidable.

Of course the complexity is non-multiply-recursive, since
this subsumes(REG ∩ ⊑)

?
= ∅ of Theorem V.4.

Proof idea. Decidability is shown by reduction to a problem
where solutions have a specific shape. Given a rational binary
relationR0 and a subsequence-closed relationR1 defined by
two automataA0 andA1 overΣ⊥×Σ⊥, we say that(w0, w1)
is a solution if w0 = u0 ⊗ v0 ∈ L(A0), w1 = u1 ⊗ v1 ∈
L(A1) and(u0)Σ = (u1)Σ, (v0)Σ = (v1)Σ, wherewΣ denotes
projection ofw ontoΣ. We say that(w0, w1) is asynchronized
solution if it further satisfiesv0 = v1.

The problem of finding a solution reduces to that of finding
a synchronized solution. Indeed, consider the automataA′

0,A
′
1

as the result of adding all transitions(q, (⊥,⊥), q) for every
possible stateq to both automata. It is clear that the relations
recognized by these automata remain unchanged, and thatA′

0

is still a SCR automaton. It is easy to verify that there is a
synchronized solution for(A′

0,A
′
1) if, and only if, there is a

solution for (A0,A1).
The problem of finding a synchronized solution forA0,A1

can be then formulated as the problem of finding words
v, u0, u1 ∈ Σ∗

⊥ with |v| = |u0| = |u1|, so that(u0⊗v, u1⊗v)
is a solution. We can compute an automatonA over Σ3

⊥

from A0,A1, such that(u0, u1, v) ∈ L(A) if, and only
if, u0 ⊗ v ∈ L(A0) and u1 ⊗ v ∈ L(A1). Consider now
an automatonA′ over Σ2

⊥ such thatL(A′) = {(u0, u1) |
∃v (u0, u1, v) ∈ L(A)}. It corresponds to the rational automa-
ton of the projection onto the first and second components
of the ternary relation ofA, and it can be computed from
A in polynomial time. We then deduce that there exists
u0 ⊗ u1 ∈ L(A′) so that(u0)Σ ⊑ (u1)Σ if, and only if, there
is v ∈ Σ∗

⊥ with |v| = |u0| = |u1| so thatu0 ⊗ v ∈ L(A0) and
u1⊗ v ∈ L(A1), where(u0)Σ ⊑ (u1)Σ. But this is equivalent
to R0 ∩ R1 6= ∅, since

• if ((u1)Σ, (v)Σ) ∈ R1 and (u0)Σ ⊑ (u1)Σ, then
((u0)Σ, (v)Σ) ∈ R1 (since R1 ∈ SCR) and hence
((u0)Σ, (v)Σ) ∈ R0 ∩ R1; and

• if R0∩R1 6= ∅, then there exists a synchronized solution
(u0 ⊗ v, u1 ⊗ v) of A0,A1 (whereu0 ⊗ v ∈ L(A0), and
u1 ⊗ v ∈ L(A1), and(u0)Σ = (u1)Σ).

We have thus reduced the problem to(RAT ∩⊑)
?
= ∅, which

is decidable [12], as already mentioned. 2

Coming back to graph logics, we obtain:

Corollary V.8. The complexity of evaluation ofECRPQ(⊑)
queries is not bounded by a multiply-recursive function.

Another corollary can be stated in purely language-theoretic
terms.

Corollary V.9. Let C be a class of binary relations onΣ∗

that is closed under intersection and containsREG. Then the
nonemptiness problem forC is:

• undecidable if� or �suff is in C;
• non-multiply-recursive if⊑ is in C.

Discussion: In addition to answering some basic
language-theoretic questions about the interaction of regular
and rational relations, and to providing the simplest yet
problem with non-multiply-recursive complexity, our results
also ruled out logical languages for graph databases that freely
combine regular relations and some of the most commonly
used rational relations, such as subword and subsequence.
With them, query evaluation becomes either undecidable or
non-multiply-recursive (which means that no realistic algo-
rithm will be able to solve the hard instances of this problem).

This does not yet fully answer our questions about the
evaluation of queries in graph logics. First, in the case of
subsequence (or, more generally,SCR relations) we still do
not know if query evaluation of ECRPQs with such relations
is decidable (i.e., what happens with GENINTS(REG) for such
relationsS).

Even more importantly, we do not yet know what happens
with the complexity of CRPQs (i.e., GENINTS(REC) for
various relationsS. These questions are answered in the next
section.

VI. RESTRICTED LOGICS AND GENERALIZED

INTERSECTION PROBLEM

The previous section already ruled out some graph logics
with rational relations as either undecidable or decidable
with extremely high complexity. This was done merely by
analyzing the intersection problem for binary rational and
regular relations. We now move to the study of the generalized
intersection problem, and use it to analyze the complexity
of graph logics in full generality. We first deal with the
generalization of the decidable case (SCR relations), and
then consider the problem GENINTS(REC), corresponding to
CRPQs extended with relationsS on paths.

A. Generalized intersection problem and subsequence

We know that(REG ∩ ⊑)
?
= ∅ is decidable, although not

multiply-recursive. What about its generalized version? It turns
out it remains decidable.

Theorem VI.1. The problemGENINT⊑(REG) is decidable.
That is, there is an algorithm that decides, for a givenm-ary
regular relationR and I ⊆ [m]2, whetherR ∩I ⊑ 6= ∅.

For checking decidability we explore the solution space
tree as in the proof of Theorem V.7. However, this time the
notion of saturation is different, since we need to considera

different condition for each component of them-ary relation.
The finiteness of the computed tree follows from Higman’s
Lemma this time in combination with Dickson’s Lemma [19].

Corollary VI.2. The query evaluation problem for
ECRPQ(⊑) queries is decidable.

Of course the complexity is extremely high as we already
know from Corollary V.8.

Note that while the intersection problem of⊑ with rational
relations is decidable, as is GENINT⊑(REG), we lose the
decidability of GENINT⊑(RAT) even in the simplest cases
that go beyond the intersection problem (that is, for ternary
relations inRAT and anyI that does not force two words to
be the same).

Proposition VI.3. The problem(RAT ∩I ⊑)
?
= ∅ is undecid-

able even over ternary relations whenI is one of the following:
{(1, 2), (2, 3)}, or {(1, 2), (1, 3)}, or {(1, 2), (3, 2)}.

B. Generalized intersection problem for recognizable relations

We now consider the problem of answering CRPQs
with rational relations S, or, equivalently, the problem
GENINTS(REC). Recall that an instance of such a problem
consists of anm-ary recognizable relationR and a set
I ⊆ [m]2. The question is whetherR ∩I S 6= ∅, i.e., whether
there exists a tuple(w1, . . . , wm) ∈ R so that(wi, wj) ∈ S

whenever(i, j) ∈ I. It turns out that the decidability of
this problem hinges on the graph-theoretic properties ofI.
In fact we shall present adichotomy result, classifying prob-
lems GENINTS(REC) into PSPACE-complete and undecidable
depending on the structure ofI.

Before stating the result, we need to decide how to represent
a recognizable relationR. Recall that anm-ary R ∈ REC is a
union of relations of the formL1 × . . .×Lm, where eachLi

is a regular language. Hence, as the representation ofR we
take the set of all suchLis involved, and as the measure of
its complexity, the total size of NFAs defining theLis.

With a setI ⊆ [m]2 we associate anundirectedgraphGI

whose nodes are1, . . . , m and whose edges are{i, j} such
that either(i, j) ∈ I or (j, i) ∈ I. We call an instance of

(REC ∩I S)
?
= ∅ acyclic if GI is an acyclic graph.

Now we can state the dichotomy result.

Theorem VI.4.
• Let S be a binary rational relation. Then acyclic in-

stances ofGENINTS(REC) are decidable inPSPACE.
Moreover, there is a fixed binary relationS0 such that
the problem(REC ∩I S0)

?
= ∅ is PSPACE-complete.

• For every I such thatGI is not acyclic, there exists a
binary rational relationS such that the problem(REC ∩I

S)
?
= ∅ is undecidable.

Proof idea. For PSPACE-hardness we can do an easy reduction
from nonemptiness of NFA intersection. Givenm NFAs
A1, . . . ,Am, define the (acyclic) relationI = {(i, i+1) | 1 ≤
i < m}. Then

⋂

i L(Ai) is nonempty iff
∏

i L(Ai)∩I S0 6= ∅,
whereS0 = {(w, w) | w ∈ Σ∗}.

For the upper bound, we show how to construct, in ex-
ponential time, for eachm-ary recognizable relationR, a
binary rational relationS and an acyclicI ⊆ [m]2, an m-
ary transducerA(R, S, I) that accepts precisely thosēw =
(w1, . . . , wm) ∈ (Σ∗)m such thatw̄ ∈ R and (wi, wj) ∈ S,
for each (i, j) ∈ I. Intuitively, A(R, S, I) represents the
“synchronization” of the transducer that acceptsR with a
copy of the transducer that recognizesS over each projection
defined by the pairs inI. Such synchronization is possible
sinceI is acyclic. Hence, in order to solve GENINTS(REC) we
only need to checkA(R, S, I) for nonemptiness. The latter can
be done in PSPACE by the standard “on-the-fly” reachability
analysis. 2

C. CRPQs with rational relations

The acyclicity condition gives us a robust class of queries,
with an easy syntactic definition, that can be extended with
arbitrary rational relations. Recall that CRPQ(S) queries are
those of the form

ϕ(x̄) = ∃ȳ
(

m
∧

i=1

(ui
χi:Li

−→ u′
i) ∧

∧

(i,j)∈I

S(χi, χj)
)

,

see (2) in Sec.IV. We call such a queryacyclic if GI , the
underlying undirected graph ofI, is acyclic.

Theorem VI.5. The query evaluation problem for acyclic
CRPQ(S) queries is decidable for every binary rational
relation S. Its combined complexity isPSPACE-complete, and
data complexity isNLOGSPACE-complete.

Thus, we get not only the possibility of extending CRPQs
with rational relations but also a good complexity of query
evaluation. The NLOGSPACE-data complexity matches that
of RPQs, CRPQs, and ECRPQs [15], [16], [3], and the
combined complexity matches that of first-order logic, or
ECRPQs without extra relations.

The next natural question is whether we can recover decid-
ability for weaker syntactic conditions by putting restrictions
on a class of relationsS. The answer to this is positive if we
considerdirectedacyclicity of I, rather than acyclicity of the
underlying undirected graph ofI. Then we get decidability
for the class ofSCR relations. In fact, we have a dichotomy
similar to that of Theorem VI.4.

Theorem VI.6.

• Let S be a relation fromSCR. Then(REC ∩I S)
?
= ∅ is

decidable inNEXPTIME if I is a directed acyclic graph.
• There is a relationI with a directed cycle andS ∈ SCR

such that(REC ∩I S)
?
= ∅ is undecidable.

In particular, if we have a CRPQ(S) query (2) whereI
is acyclic (as a directed graph) andS ∈ SCR, then query
evaluation has NEXPTIME combined complexity.

The proof of this result is quite different from the upper
bound proof of Theorem VI.4, since the set of witnesses for
the generalized intersection problem is no longer guaranteed to
be rational without the undirected acyclicity condition. Instead,

here we establish the finite-model property, which implies the
result.

Also, as a corollary to the proof of Theorem VI.6, we get
the following result:

Proposition VI.7. Let S ∈ SCR be a partial order. Then
GENINTS(REC) is decidable inNEXPTIME.

Corollary VI.8. If S ∈ SCR is a partial order, thenCRPQ(S)
queries can be evaluated withNEXPTIME combined com-
plexity. In particular, CRPQ(⊑) queries haveNEXPTIME

combined complexity.

The last question is whether these results can be extended
to other relations considered here, such as subword and suffix.
We do not know the result for subword (which appears to be
hard), but we do have a matching complexity bound for the
suffix relation.

Proposition VI.9. The problemGENINT�suff
(REC) is decid-

able in NEXPTIME. In particular, CRPQ(�suff) queries can
be evaluated withNEXPTIME combined complexity.

VII. C ONCLUSIONS

Motivated by problems arising in studying logics on graphs
(as well as some verification problems), we studied the in-
tersection problem for rational relations with recognizable
and regular relations over words. We have looked at rational
relations such as subword�, suffix �suff , and subsequence
⊑, which are often needed in graph querying tasks. The main
results on the complexity of the intersection and generalized
intersection problems, as well as the combined complexity
of evaluating different classes of logical queries over graphs
are summarized in Fig. 1. Several results generalizing those
(e.g., to the class ofSCR relations) were also shown. Two
problems related to the interaction of the subword relationwith
recognizable relations remain open and appear to be hard.

From the practical point of view, as rational-relation com-
parisons are demanded by many applications of graph data,
our results essentially say that such comparisons should not be
used together with regular-relation comparisons, and thatthey
need to form acyclic patterns (easily enforced syntactically)
for efficient evaluation.

So far we dealt with the classical setting of graph data [1],
[8], [9], [15], [16] in which the model of data is that of a
graph with labels from a finite alphabet. In both graph data
and verification problems it is often necessary to deal with the
extended case of infinite alphabets (say, with graphs holding
data values describing its nodes), and languages that query
both topology and data have been proposed recently [23], [25].
A natural question is to extend the positive results shown here
to such a setting.

Acknowledgments:We thank Sylvain Schmitz for help-
ful comments and suggestions. Partial support provided by
Fondecyt grant 1110171, EPSRC grant G049165, and FET-
Open Project FoX, grant agreement 233599. Part of this work
was done when the first author visited Edinburgh, and the third
author visited Santiago.

R ∈ REC R ∈ REG R ∈ RAT

(R ∩ �)
?
= ∅ undecidable undecidable

(R ∩�suff)
?
= ∅ PTIME (cf. [5]) undecidable undecidable

(R ∩ ⊑)
?
= ∅ decidable, non-multiply-recursivedecidable, non-multiply-recursive [12]

(R ∩I �)
?
= ∅ ? undecidable

(R ∩I �suff)
?
= ∅ NEXPTIME undecidable undecidable

(R ∩I ⊑)
?
= ∅ NEXPTIME decidable, non-multiply-recursive

S = ⊑ S = �suff S = � S arbitrary inRAT

ECRPQ(S) decidable, non-multiply-recursiveundecidable undecidable undecidable
CRPQ(S) NEXPTIME NEXPTIME ? undecidable

acyclic CRPQ(S) PSPACE PSPACE PSPACE PSPACE

Fig. 1. Complexity of the intersection and generalized intersection problems, and combined complexity of graph queries for subword (�), suffix (�suff),
and subsequence (⊑) relations

REFERENCES

[1] R. Angles, C. Gutiérrez. Survey of graph database models. ACM
Comput. Surv.40(1): (2008).

[2] K. Anyanwu, A. P. Sheth.ρ-Queries: enabling querying for semantic
associations on the semantic web. InWWW’03.

[3] P. Barceló, C. Hurtado, L. Libkin, P. Wood. Expressive languages for
path queries over graph-structured data. InPODS, pages 3-14, 2010.

[4] M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin. Definable relations
and first-order query languages over strings.J. ACM 50(5):694-751
(2003).

[5] J. Berstel. Transductions and Context-Free Languages. B. G. Teubner,
1979.

[6] A. Blumensath and E. Grädel. Automatic structures. InLICS’00, pages
51–62.

[7] V. Bruyère, G. Hansel, C. Michaux, R. Villemaire. Logicand p-
recognizable sets of integers.Bull. Belg. Math. Soc.1 (1994), 191–238.

[8] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Containment
of conjunctive regular path queries with inverse. InKR’00, pages 176–
185.

[9] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. View-based
query processing and constraint satisfaction. InLICS, pages 361-371,
2000.

[10] L. Cardelli, P. Gardner, G. Ghelli. A spatial logic for querying graphs.
In ICALP’02, pages 597-610.

[11] O. Carton, C. Choffrut, S. Grigorieff. Decision problems among the
main subfamilies of rational relations.RAIRO/ITA, 40 (2006), 255–275.

[12] P. Chambart, Ph. Schnoebelen. Post embedding problem is not primitive
recursive, with applications to channel systems. InFSTTCS’07, pages
265–276.

[13] P. Chambart, Ph. Schnoebelen. The ordinal recursive complexity of lossy
channel systems.LICS’08, pages 205–216.

[14] C. Choffrut. Relations over words and logic: a chronology. Bulletin of
the EATCS89 (2006), 159–163.

[15] M. P. Consens, A. O. Mendelzon. GraphLog: a visual formalism for
real life recursion. InPODS’90, pages 404–416.

[16] I. Cruz, A. Mendelzon, P. Wood. A graphical query language supporting
recursion. InSIGMOD’87, pages 323-330.

[17] A. Dawar, P. Gardner, G. Ghelli. Expressiveness and complexity of
graph logic. Inf.& Comput.205 (2007), 263-310.

[18] A. Deutsch, V. Tannen. Optimization properties for classes of conjunc-
tive regular path queries.DBPL’01, pages 21–39.

[19] L. E. Dickson. Finiteness of the odd perfect and primitive abundant
numbers withn distinct prime factors. The American Journal of
Mathematics, 35(4):413–422, 1913.

[20] C. Elgot and J. Mezei. On relations defined by generalized finite
automata.IBM J. Res. Develop.9 (1965), 47–68.

[21] D. Florescu, A. Levy, D. Suciu. Query containment for conjunctive
queries with regular expressions. InPODS’98.

[22] C. Frougny and J. Sakarovitch. Synchronized rational relations of finite
and infinite words.TCS108 (1993), 45–82.

[23] O. Grumberg, O. Kupferman, S. Sheinvald. Variable automata over
infinite alphabets. InLATA’10, pages 561–572.

[24] G. Higman. Ordering by divisibility in abstract algebras. Proc. London
Math. Soc. (3), 2(7):326–336, 1952.

[25] L. Libkin, D. Vrgoč. Regular path queries on graphs with data. In
ICDT’12.

[26] L. Lisovik. The identity problem for regular events over the direct
product of free and cyclic semigroups.Doklady Akad. Nauk Ukr., ser.
A, 6 (1979), 410–413.

[27] M.H. Löb and S.S. Wainer. Hierarchies of number theoretic functions,
I. Arch. Math. Logik Grund., 13:39–51, 1970.

[28] M. Nivat. Transduction des langages de Chomsky.Ann. Inst. Fourier
18 (1968), 339–455.

[29] H. Rose. Subrecursion: Functions and Hierarchies. Clarendon Press,
1984.

[30] W. Thomas. Infinite trees and automaton-definable relations overω-
words. TCS103 (1992), 143–159.

