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Abstract—We investigate some basic questions about the inter- as follows: is it decidable whether a given a regular refatio

action of regular and rational relations on words. The primary
motivation comes from the study of logics for querying graph
topology, which have recently found numerous applicationsSuch
logics use conditions on paths expressed by regular langues
and relations, but they often need to be extended by rational
relations such as subword (factor) or subsequence. Evaluag
formulae in such extended graph logics boils down to checkin
nonemptiness of the intersection of rational relations wih regular
or recognizable relations (or, more generally, to the genalized
intersection problem, asking whether some projections of a
regular relation have a nonempty intersection with a given
rational relation).

We prove that for several basic and commonly used rational
relations, the intersection problem with regular relations is either
undecidable (e.g., for subword or suffix, and some generaklz
tions), or decidable with non-multiply-recursive complesity (e.g.,
for subsequence and its generalizations). These resultseansed to
rule out many classes of graph logics that freely combine radar
and rational relations, as well as to provide the simplest poblem
related to verifying lossy channel systems that has non-mtiply-
recursive complexity. We then prove a dichotomy result for bgics
combining regular conditions on individual paths and rational
relations on paths, by showing that the syntactic form of fomulae
classifies them into either efficiently checkable or undecable
cases. We also give examples of rational relations for whicéuch
logics are decidable even without syntactic restrictions.

I. INTRODUCTION

contains a paifw,w’) so thatw is a subword/subsequence of
w’? Problems like this are very basic and deserve a study on
their own right, but they are also necessary to answer aquresti

on the power and complexity of querying graph databases. We
now explain how they arise in that setting.

Logical languages for querying graph data have been de-
veloped since the late 1980s (and some of them became
precursors of languages later used for XML). They query the
topology of the graph, often leaving querying data that migh
be stored in the nodes to a standard database engine. Such
logics are quite different in their nature and applicatifnasn
another class of graph logics based on spatial calculi [1@],

Their formulae combine reachability patterns. The sinples
form is known agegular path queries (RPQ$16], [15]; they
check the existence of a path whose label belongs to a regular
language. Those are typically used as atoms and then closed
under conjunction and existential quantification, resgltin

the class otonjunctive regular path querie€CRP ), which

have been the subject of much investigation [8], [18], [21].
For instance, a CRPQ may ask for nodeso that there exist
nodesv; and vy, and paths fromv to v; with the label in a
regular languagéd.;.

The expressiveness of these queries, however, became insuf
ficient in applications such as the Semantic Web or bioldgica

The motivation for the problems investigated in this paaetworks due to their inability toomparepaths. For instance,

per comes from the study of logics for querying graph#. is a common requirement in RDF languages to compare
Such logics form the basis of query languages for grapaths based on specific semantic associations [2]; bi@bgic
databases, that have recently found numerous applicationsequences often need to be compared for similarity, based, f
areas including biological networks, social networks, 8etic  example, on the edit distance.
Web, crime detection, etc. (see [1] for a survey) and led to To address this, an extension of CRPQs with relations on
multiple systems and prototypes. In such applicationsa dadgaths was proposed [3]. It useggular relations on paths, i.e.,
is usually represented as a labeled graph. For instance rétations given by synchronized automata [20], [22]. Equiv
social networks, people are nodes, and labeled edges eaprefently, these are the relations definable in automatic siras
different types of relationship between them; in RDF — then words [4], [6], [7]. They include prefix, equality, equal
underlying data model of the Semantic Web — data is modellethgth of words, or fixed edit distance between words. The
as a graph, with RDF triples naturally representing labeletension of CRPQs with them, called ECRPQs, was shown
edges. to have acceptable complexity (MIGSPACE with respect to
The questions that we address are related to the interdata, P®ACE with respect to query).
tion of various classes of relations on words, for instance, However, it was still short of the expressiveness needed
rational relations (examples of those include subword aidl many applications. For instance, semantic associations
subsequence) or regular relations (such as prefix, or éguabietween paths used in RDF applications often deal with
of words). An example of a question we are interested in $sibwords or subsequences, but these relationeatnegular.



They arerational: they are still accepted by automata, buéxtend this in two ways. First, we show that the lower bound
those whose heads move asynchronously. Adding themrémains true even for regular relatio®s Second, we extend
a query language must be done with extreme care: simmlgcidability to the class of all rational relations for whic
replacing regular relations with rational in the definitioh one projection is closed under subsequence (the subsefjuenc
ECRPQs makes query evaluation undecidable! relation itself is trivially such, obtained by closing thesfi

So we set out to investigate the following problem: giveprojection of the equality relation).
a class of graph queries, e.g., CRPQs or ECRPQs, whatn addition to establishing some basic facts about classes
happens if one adds the ability to test whether pairs of relations on words, these results tell us about the in-
paths belong to a rational relatiofi, such as subword or feasibility of adding rational relations to ECRPQs: in fact
subsequence? We start by observing that this problem isadding subword makes query evaluation undecidable, and
generalization of thentersection problemgiven a regular while it remains decidable with subsequence, the complexit
relation R, and a rational relatiors, is RN S # 0? It is is prohibitively high.
well known that there exist rational relatiorss for which it So we then turn to the generalized intersection problem
is undecidable [5]; however, we are not interested in aidific with recognizable relations, corresponding to the eviduat
relations obtained by encoding PCP instances, but ratherdNCRPQs with an extra relatiof. We show that the shape
very concrete relations used in querying graph data. of the relation/ holds the key to decidability. If its underlying

The intersection problem captures the essence of grapidirected graph is acyclic, then the problem is decidable
logics ECRPQs and CRPQs (for the latter, when restrictgfl PSpacE for every rational relationS (and for a fixed
to the class of recognizable relations [5], [14]). In faatey formula the complexity drops to NbGSPACE). In the cyclic
evaluation can be cast as tgeneralized intersection problem case, the problem is undecidable for some rational relaion
Its input includes amr-ary regular relatior®z, a binary rational For relations generalizing subsequence, we have dedigabil

relation S, anq a set/ of pairs from {1,...,m}. It asks when is a DAG, and for subsequence itself, as well as for
whether there is a tuplews, ..., wy,) € I so that(w;, w;) €  suffix, query evaluation is decidable regardless of the sluip

S whenever(i, j) € I. Form =2 andI = {(1,2)}, this is CRPQs.

the usual intersection problem. Thus, under the mild syntactic restriction of acyclicity of

Another motivation for looking at these basic problemgomparisons with respect to rational relations, such icelat

comes from verification of lossy channel systems (finitéestacan pe added to the common class CRPQ of graph queries,
processes that communicate over unbounded, but lossy, Figfhout incurring a high complexity cost.

channels). Their reachability problem is known to be decid-

able, although the complexity is not bounded by any multiply Organization We give basic definitions in Section Il and
recursive function [13]. In fact, a “canonical” problem dse define the main problems we study in Section Ill. Section
reductions showing this enormous complexity [12], [13] calV introduces graph logics and establishes their connectio
be restated as follows: given a binary rational relatiyrdoes Wwith the (generalized) intersection problem. Section \dis

it have a pair(w,w’) so thatw is a subsequence af'? This decidable and undecidable cases of the intersection proble
naturally leads to the question whether the same bounds h8kktion VI looks at the case of recognizable relations and
for the simpler instance of the intersection problem when weRPQs and establishes decidability results based on the in-
use regular relations instead of rational ones. We actsalthyy tersection pattern. Complete proofs of all results arelalvki

that this is true. in the full version of the paper.
Summary of resultsWe start by showing that evaluating
CRPQs and ECRPQs extended with a rational relafiaan Il. PRELIMINARIES

be cas.t as the generalized ir_1tersection problemearvith Alphabets, languages, and morphisrive shall use letters
recogmz_able and reg_ule_lr relatlops respectlvgly. Moredbhe Y, I" to denote finite alphabets. The set of all finite words over
complexity of the basic intersection problem is a lower bbury, alphabet is denoted bys*. We write ¢ for the empty

for the complexity of query evgluation. ) ) word, w - w’ for the concatenation of two words, afd| for
We then study the complexity of the intersection probler{rl)1e length of a word.

for fixed relationsS. For recognizable relations, it is well . "= .~ / hen

known to be efficiently decidable for every rationél For . ' ) )

regular relations, we show that § is the subword, or the * © 1S a subwordof w (also calledfactor in the literature,

suffix relation, then the problem is undecidable. That is, it er't_te” asu Jw), )

is undecidable to check, given a binary regular relation ~ * % 1S aprefix of w (written asw”fpref w), and

whether it contains a paifw, w’) so thatw is a subword of ¢ @ is asuffixof w (written asw” =g w).

w’, or even a suffix ofv’. We also present a generalization of We say that' is asubsequencef w (also calledsubword

this result. embeddingin the literature, written asy’ C w) if w’ is
The analogous problem for the subsequence relationoistained by removing some letters (perhaps none) fiom

known to be decidable, and, if the input is a rational refatid.e., w = a; ...a,, andw’ = a;,a;, . .. a;,, wherel < iy <

R, then the complexity is non-multiply-recursive [12]. Weis < ... < i < n.




Recall that anonoidM = (U, -, 1) has an associative binaryfinite automaton4 overX' that accept{®@w | w € R}. The
operation- and a neutral elemerit satisfyingle = z1 = = class ofn-ary regular relations is denoted BEG,,; as before,
for all = (we often writexy for x - y). The set¥* with the we write REG whenn is clear or irrelevant.
operation of concatenation and the neutral elensefairms a  Finally, we define rational relations. There are two equiv-
monoid(¥*, -, ¢), the free monoid generated by A function alent ways of doing it. One uses regular expressions, which
f: M — M’ between two monoids is @orphismif it sends are now built from tuplesz € (X U {e})" using the same
the neutral element od/ to the neutral element ai/’, and operations of union, concatenation, and Kleene star. Binar
if f(zy) = f(x)f(y) for all z,y € M. Every morphismf : relations <,.g, <, and C are all rational: the expression
(¥*,-,e) — M is uniquely determined by the valugga), ({J,cx(c.a))" - (Uaez(aaa))* defines=..g, the expression
fora € ¥, asf(ay...an) = f(a1)--- f(an). A morphismf : (Uaez(g,a))* ) (Uaez(ma))* ) (Uaez(&a))* defines =,
(37, ¢) = (I'",,¢) is calledalphabeticif f(a) € TU{c}, and the expressiofilJ, (e, a) U (a,a))" definesC.
andstrictly alphabeticif f(a) € I' for eacha € %, see [5]. Alternatively, n-ary rational relations can be defined by
_ Alanguagel is a subset of". It is recognizablef there  means ofp-tape automata, that have heads for the tapes
is a finite monoidM, a morphismf : (¥*,-,¢) — M, and & apq one additional control; at every step, based on the state
subsetM, of M such thatl, = f~!(Mo). and the letters it is reading, the automaton can enter a new
A language L is regular if there exists an NFA (nON- gtate and move some (but not necessarily all) tape heads. The
deterministic finite automaton} = (Q, %, o, 5, F') such that ¢jasses of-ary relations so defined are calleational n-ary
L = L(A), the language of words accepted Hy We use the rg|ationg we use the notatioRAT,, or justRAT, as before.
standard notation for NFAs, whetg is the set of stategy is
the initial state," is the set of final states, aBdC Q x ¥ x Q Relationships between classes of relationwhile it very

is the transition relation. well known thatREC; = REG; = RAT;, we have strict
A language igational if it is denoted by a regular expres-inclusions

sion; such expressions are built frdine, and alphabet letters
by using operations of concatenatiend’), union ¢Ue’), and
Kleene star ¢*). It is of course the classical result of formal .
. for ever 1. For instance=,, REG, — RE n
language theory that the classes of recognizable, regarar, o < c yk > or instance =pret € REG C; and

. o =suft € RATo — REGs.
rational languages coincide. . .
The classes of recognizable and regular relations aredtlose

Recognizable, regular, and rational relatiansWhile the under intersection; however the class of rational relatin
notions of recognizability, regularity, and rationalitgiocide not. In fact one can findz € REG, and S € RAT, so that
over languages C X*, they differ over relations ovex, i.e., RN S ¢ RAT,. However, if R € REC,,, andS € RAT,,, then
subsets of2* x ... x ¥*. We now define those (see [5], [11],RN S € RAT,,.

[14], [20], [22], [30]). Binary rational relations can be characterized as follows

Since (¥*,-,¢) is a monoid, the product>*)" has the [5], [28]. A relation R C ¥* x ¥* is rational iff there is
structure of a monoid too. We can thus defieeognizable a finite alphabefl’, a regular languagd. C I'* and two
n-ary relationsover ¥ as subsets? C (¥*)" so that there alphabetic morphismsf,g : I'* — ¥* such thatR =
exists a finite monoidy/ and a morphisny : (X*)" — M {(f(w),g(w)) | w € L}. If we requiref andg to be strictly
such thatR = f~!(M,) for someM, C M. The class of alphabetic morphisms, we get the classlafgth-preserving
n-ary recognizable relations will be denoted R§C,,; when regular relations, i.e.R € REG, so that(w,w’) € R implies
n is clear or irrelevant, we write jusREC. |w| = |w’|. Regular binary relations are then finite unions of

Itis well-known that a relatiom? C (X*)" is in REC,, iff it relations of the form{(w - u,w’) | (w,w’) € R, u € L}
is a finite union of the sets of the foriy x ... x L, where and {(w,w’ - u) | (w,w’) € R, u € L}, where R ranges
eachL; is a regular language ovét, see [5], [20]. over length-preserving regular relations, ahdover regular

Next, we define the class of regular relations. Lletz ¥ |anguages.
be a new alphabet letter, and Bt be X U {L}. Each tuple
w = (wn,...,w,) of words from¥* can be viewed as a word Properties of classes of relationsSince relations inRREC
overX" as follows: pad wordsy; with L so that they all are and REG are given by NFAs, they inherit all the clo-
of the same length, and use as #flke symbol of the new word sure/decidability properties of regular languages? I€ RAT,
the n-tuple of thekth symbols of the padded words. Formallythen each of its projections is a regular language, and can
let £ = max; |w;|. Thenw; ® ... ® w, is a word of lengthy  be effectively constructed (e.g., from the descriptionohs

REC, C REG, C RATy

whosekth symbol is(aq,...,a,) € £ such that an n-tape automaton). Hence, the nonemptiness problem is
decidable for rational relations. However, testing nontngss
_ Jthekth letter ofw; if [wi| >k of the intersection of two rational relations is undeciga]].
’ uE otherwise. Also, for R, R’ € RAT, the following are undecidable: check-

ing whetherR C R’ or R = R/, universality R = X* x ¥*),

We shall also writepw for wi ® ... ® w,. A relation R C and checking whetheR € REG or R € REC [5], [11], [26].

(X*)™ is called aregular n-ary relation over X if there is a



Remark: We defined recognizable, regular, and rational « for ECRPQSG), these bounds are provided by the com-

relations over the same alphabet, i.e., as subsets&af*. Of
course it is possible to define them as subsets;of ... x 3,

plexity of GENINTs(REG) and of (REG N S) = 0.
The standard abstraction of graph databases [1] is fibite

with theX;'s not necessarily distinct. Technically, there are nppajeq graph€s = (V, E), whereV is a finite set of nodes

differences and all the results will continue to hold. Indlee
one can simply consider a new alphahleds the disjoint union
of ¥;’s, and enforce the condition that tli#a projection only (
use the letters fronx; (this is possible for all the classes °fTheIabeIofp, denoted by\(
relations we consider). In fact, in the proofs we shall bagsi

both types of relations.

IIl. GENERALIZED INTERSECTION PROBLEM

or vertices, andZ C V x ¥ x V is a set of labeled edges. A
path p from v, to v,,, in G is a sequence of edgésy, ag, v1),
v1,a1,02),  (Vm—1, @m—1, v ) from E, for somem > 0.
p),isthewordag - - - app—1 € 3.
The main building blocks for graph queries aegular path
queries or RPQs [16]; they are expressions of the form™ Y,
where L is a regular language. We normally assume thag

We now formalize the main technical problem we studyePresented by a regular expression or an NFA. Givenr a
Let R be a class of relations ov&r, andsS a class of binary 'abeled graplt; = (V; E), the answer to an RPQ above is the

relations oveix. We use the notatiopm| for {1,...,m}. The
generalized intersection proble(® N; S) Z §is defined as:
PROBLEM: (R N; S) =0
INPUT: anme-ary relationR € R,
a relationS € S, andI C [m)?
QUESTION: is therew = (w1, ..., wy) € R
so that(w;,w;) € S for all (¢,5) € I?
If § = {S}, we write S instead of {S}. We write

GENINTs(R) for the class of all problem$R N; S) = ¢
where S is fixed, i.e., the input consists a8 € R and [.

set of pairs of nodegv,v’) such that there is a pafh from
v to v with A(p) € L.

Conjunctive RPQsor CRP G [8], [9], [15] are the closure
of RPQs under conjunction and existential quantification.
Formally, they are expressions of the form

m

3y N\ (i =5 )

i=1

p(z) = 1)
where variables:;, u;s come fromz,y. The semantics nat-
urally extends the semantics of RPQsa) is true in G iff
there is a tuplé of nodes such that for eveiy< m and every

As was explained in the introduction, this problem capturés: V; interpreting/;ui and u;, respectively, we have a path
the essence of evaluating queries in various graph logigs, ePetweenv; andv; whose label\(p;) is in L;.

CRPQs or ECRPQs extended with rational relati6hs'he
classesR will typically be REC andREG.

CRPQs can further be extendedcmmparepaths. For that,
we need to name path variables, and choose a class of allowed

If m =2 andI = {(1,2)}, the generalized intersectionrelations on paths. The simplest such extension is the ofass

problem becomes simply thiatersection problemfor the
classesk andS of binary relations:

PROBLEM: (RNS) <0
INPUT: ReRandSesS
QUESTION: IS RNS #0?

CRPQS) queries, wheres' is a binary relation oveE*. Its
formulae are of the form

m

W (A5 u) A A Shaw) @

i=1 (i.d)el

p(r) =

wherel C [m]?. We use variableg, . . ., X, to denote paths;

The problem(RECN .S) ~ ¢ is decidable for every rational these are quantified existentially. That is, the semanfi¢s -

relation S, simply by constructingz N S, which is a rational
relation, and testing its nonemptiness. Howe({REGN.S) 9

©(a) is that there is a tupleof nodes and paths,, for k < m,
betweenv;, andvj, (where, as beforey;,v;, are elements of

could already be undecidable (we shall give one partioulard, b interpretinguy, uz) such thaiA(p;), A(p;)) € S whenever

simple example later).

IV. GRAPH LOGICS AND THE GENERALIZED
INTERSECTION PROBLEM

In this section we show how the (generalized) intersectk;lrrl1
problems provide us with upper and lower bounds on e
complexity of evaluating a variety of logical queries ovef
graphs. We start by recalling the basic classes of logics
used in querying graph data, and show that extending th&f
with rational relations allows us to cast the query evabrati
problem as an instance of the generalized intersectiorigrmob

The key observations are that:
« the complexity of GNINTg(REC) and (REC N S) 29

provide an upper and a lower bound for the complexi%ENmTS(REC)

of evaluating CRP(X) queries; and

(i,7) € I. For instance, the query

B,y (2 ) A @S y) AXEY)
ds nodew so that there are two paths starting fremone
ding with ana-edge, whose label is a subsequence of the
ther one, that ends with iaedge.
The input to thequery evaluation problentonsists of a
phG, a tuplev of nodes, and a query(z); the question
is whetherG |= (). This corresponds to theombined com-
plexity of query evaluation. In the context of query evaluation,
one is often interested idata complexitywhen the typically
small formulayp is fixed, and the input consists of the typically
large graph(G,v). We now relate it to the complexity of



Lemma IV.1. Fix a CRPQS) queryy as in (2). Then there 2) If the problem(REC N S) Z 0 is hard for K, then so is
is a DLOGSPACE algorithm that, given a grapliz and a tuple data complexity oCRPQS) queries.

v of nodes, constructs. am—gry relathnR € REC so that?the We now considerextended CRPQsor ECRPQs which
an‘swe,r _to the gen_erallzed intersection problefn; ) = 0 enhance CRPQs with regular relations [3], and prove a simila
Is 'yes' iff G = (). result for them, with the role oREC now played byREG.
Proof idea Given aX-labeled graphG = (V,E) and two Formally, ECRPQs are expressions of the form

nodesv,v’, we write A(G,v,v") for G viewed as an NFA m &
with the initial stat?v a_nd the final staftez’. Now consider a o) = 3Ty (/\(uz XL w) A /\ R; ()_(j)) (3)
CRPQQ) query(z) given by (2). Letv be a tuple of nodes i=1 j=1

of G, of the same length as. -
The algorithm first enumerates all tuplef nodes ofGG

_ . ) : : _ r :
of the samz/a length 7a§. I__et n; andn; tge theilnteripretat}ons course extends the semantics of CRPQs: the witnessing paths
of u; andu}, whenz is interpreted a® andy asb. Define

Ry = [I™,(L(AG, ni,nl) N Ly); this is a relation in gié'rﬁ'éf’"? should )a:flo(;)aﬁfg ttl:‘ﬁe?i?qm)o” thi‘z fo)r) svery

REC,,. Hence,R = |J; R; in REC,, too. It is now easy to in R Pivs - - Pin ' P Pir)s -5 MPi

see thatit Ny 5 # 0 iff G = ¢(0). Finally, we obtain ECRP(X) queries by adding compar-
Conversely, the intersection problem for recognizabla-relisons with respect to a relatiofi € RAT, getting a class of

tions andS can be encoded as answering CRBY{ueries. queriesy(z) of the form

Lemma IV.2. For each binary relationS, there is aCRPQS) o k

query ¢(x, ') and a DLOGSPACE algorithm that, given a 37 (/\(Uz ) A /\ R;(x5) A /\ S(Xi;Xj)) 4)
relation R € REC,, constructs a grapli? and two nodes, v’ i=1 j=1 (4,4)€I

so thatG = ¢(v,v') iff RS # 0. Exact analogs of Lemmas IV.1 and V.2 hold, with ECRPQs
Proof idea Let R € REC, be given agJ_, (L; x K;), where replacing CRPQs anBEG replacingREC. Hence, we get:
the L;, K; C X are regular languages for every.et (Vi, Ei)  Theorem IV.4. Let K be a complexity class closed under
be the underlying graph of the NFA definirg, such thaty p| oeSpacE reductions. Then:

is the initial state, and"; is the set of final states. Likewise
we define(W;, H;), nodesw) and setsC; C W; for NFA
defining K;.

We now construct the grapfi. Its labeling alphabet is the
union of ¥ and {#, $,!}. Its set of vertices is the disjoint
union of all theV;s, W;s, as well as two distinguished nodes Thus, our next goal is to understand the behaviors of the
start and end Its edges include all the edges frol)s and generalized intersection problem for various rationatiehs

where eachR; is a relation fromREG, and x; a tuple
from x1,...,xm Of the same arity ag?;. The semantics of

1) If the problemGENINTg(REG) is in K, then data com-
plexity of ECRPS) queries is inkC; and

2) If the problem(REG N S) < 0 is hard for K, then so is
data complexity oECRP{S) queries.

H;s, and the following: S which are of interest in graph logics; those include subword
» #-labeled edges fronstart to each initial state, i.e., to suffix, subsequence. In fact to rule out many undecidable or
eachv? andw? for all i < n. infeasible cases it is often sufficient to analyze the irtetion

» $-labeled edges between the initial states of automaieoblem. We do this in the next section, and then analyze
with the same index, i.e., edgés), $,w)) for all i < n. the decidable cases to come up with graph logics that can be
o l-labeled edges from final states ®nd i.e., edges extended with rational relations.
(v,!,end, wherev € | J,.,, Fi U, -, Ci.
The CRPQS§) queryo(z,y) is given below; it omits path
variables for paths that are not used in comparisons:

V. THE INTERSECTION PROBLEM DECIDABLE AND
UNDECIDABLE CASES

We now study the problenfREG N S) Z 0 for binary
# # . :
T — T T — T2 rational relationsS such as subword and subsequence, and for

A
. A 1y X" 2 A 29 Xz 2 classes of r_elations gene_ralizing them. The input is a pinar
X1, X2, 21, 22 A | regular relation®? overy, given by an NFA oveE | x>, . The

s 27y question is whetheR N S # (. We also derive results about

ANoxp=a A S(GxX) the complexity of ECRPQ) queries. For all lower-bound
It is routine to verify that? = o(start end) iff RNS £ ¢. O Tresults in this section, we assume that the alphabet cangin
least two symbols.

As already mentioned, there exist rational relatiéhsuch
Theorem IV.3. Let K be a complexity class closed undethat(REGNS) = § is undecidable. However, we are interested
DL OGSPACE reductions. Then: in relations that are useful in graph querying, and that are

1) If the problemGENINTg(REC) is in K, then data com- among the most commonly used rational relations, and for

plexity of CRPQS) queries is inC; and them the status of the problem was unknown.

!
ANz —y

Combining the lemmas, we obtain:



Note that the problenfREC N .S) ~ 0 is tractable: given for S = Ry - GrapHf) - Ry, the problem(REG N S) Zois
R € REC, the relationk N S is rational, can be efficiently undecidable.

constructed, and checked for nonempiiness. Note that both<,,# and= are of the required shape: suffix

A. Undecidable cases: subword and relatives is ({e} x ¥*) - Graph(id) ({e} x {¢}), and subword ig{e} x

We now show that even for such simple relations as subwo%) -Graph(id) ({e} x £¥), where id is the identity alphabetic

and suffix, the intersection problem is undecidable. That i@orpmsm.
given an NFA ovel: | x ¥, defining a regular relatio®, the B. Decidable cases: subsequence and relatives
problem of checking for the existence of a pir,w’) € B \ye now show that the intersection problem is decidable
with w =i w’ or w < w’ is undecidable. for the subsequence relatiahand, much more generally, for
Theorem V.1. The problems (REG N =) 20 and a class of relations that do not, ‘I‘ilfe. t’r,1e relations consider
(REG N <) 2 ¢ are undecidable. in the previous section, have a r.|g|d _part. More preC|$e!y
for relations one of whose projections is closed under akin
As an immediate consequence of this, we obtain: subsequences, we also retain decidability. However, the co
plexity bounds are extremely high. In fact we show that the
complexity of checking whethgiRNC) # (), when R ranges
overREGo, is not bounded by any multiply-recursive function.
Thus, some of the most commonly used rational relatioff$is was previously known foR ranging ovelRAT,, and was
cannot be added to ECRPQs without imposing further restrigiewed as the simplest problem with non-multiply-recuesiv
tions. complexity [12]. We now push it further and show that this

Proof idea We sketch the idea of the proof foKs. high complexity is already achieved with regular relations

We encode nonemptiness for linearly bounded automa}teéii;; r?fo:‘rlﬁt-:ltds(?sstf(cj)(r)rsrzgw(l)rr]]?j(;rljlfeCFc’)erSI(ferr?]r?PaCZgiudaarg:ael
(LBA). The alphabety is the disjoint union of the P »

tape alphabet of the LBA, its states, and the designattFrl] regular Post Embeddjng Problerar PEP, introduceq in
symbol $. Each configurationC' with the tape content ;. ], and shown to. be in the level,F of the fas.t-growmg
ao...a,, whereap and a, are the left and right markers hierarchy of recursive functions _[27], [29]. The input tceth
the state isq, and the head points at; is encoded ProPIem consists of two *r.n(_)rph|smﬁg : X° — I and
as a wordwe — S$ag...a;_1qa;...a,$. Note that the a regular languagd, C X*; it asks whether there is some
relation {(we,wer) | C'is an immediate successor 6% S L such thatf(w) C g(w) (recall that in the case of the
is regular and hence so is the relatok — FC he guestion is whethgi(w) = g(w) with L = ).
This problem is known to be decidable, and as hard as the

{(wcywe, - . we,,,wer ... wer ) | Cfyy is an immediate i, .
successor of’; for i < m}, since all configuration encodingsreaehab'“ty problem for Iossy_ channel sysf[ems [12.] wh|gh
cannot be bounded by any primitive-recursive function —in

are of the same length. In fact, taking product with ?act by any multiple-recursive function [29]

regular language, we can also assume tliatenforces g ; i
Cp to be an initial configuration, and’,, to be a final The problem PE? IS just a reformul_at|on of the prob
lem (RAT N C) = {. Indeed, relations of the form

configuration. If R N =<,g IS nonempty, it contains a "
pair (we,we, - .. we,, , we, - .. we, ) such thatCyy, is an {(f(w),g(w)) | w e L}, whereL C ¥* ranges over regular

immediate successor , for all i < m, i.e., iff there is an '@nguages and, g over morphisms:* — T are precisely

. . ? .
accepting computation of the LBA. This proves undecidgpili the relations inRAT, [5], [28]). Hence,(RAT NC) = 0§ is
The proof for<is very similar. O decidable, with non'multiply'reCUrSive Comp|EXity. Weosh

) ) ) ) that the lower bound already applies to regular relations.
Note that the relatio® constructed in the proof is definable

in first-order logic, so the intersection problem for suffixda Theorem V.4. The problem(REG N C) Z ¢ is decidable,
subword is undecidable even if the input relation comes froamd its complexity is not bounded by any multiply-recursive
the class of star-free regular relations. function.

The essence of the undecidability result is that relatioot s proof idea As already mentioned, decidability follows from
as < and < can be decomposed in a way that one of tha2]. To prove the lower bound, we first show that the existenc
components of the decomposition is a graph of a nontrivigf a solution to PE® is equivalent to the existence of a
strictly alphabetic morphism. More precisely, lét i’ be the special solution, which we call atrict codirect solutiort
binary relation{ (w-w’, v-u’) | (w,u) € R and (w’,u’) € R'}. A word w = ay---a,, € X* is a strict codirect solution
Let Grapl{f) be the graph of a functiorf : ¥* — ¥*, i.e., jf flar---am) T glai---an) and for everyi < m,
{(w, f(w)) | we X} f(ar---a;) Z g(ai---a;). We then show how to code

Prop03|_t|on V3. _Let Ro, R _be binary relqtlons ord: such 1This is a slightly more restrictive definition than tbedirect solutionsised
that Ry is recognizable and its second projectionis. Let f  for the decidability of PE® in [12], which is essential to make possible our
be a strictly alphabetic morphism that is not constant. Thereduction from the(REG N C) < @ problem.

Corollary V.2. The query evaluation problem for
ECRPQ=sus) and ECRPQX) is undecidable.



the existenge of a strict codirect solution as an instance ofWhen anSCR relation is given as an input to a problem,
(REGNC) = 0. we assume that it is represented as an NFA in item 3 in the
Given a rational relatiol® C X* x I'* we convert it into above proposition.

a length-preserving regular relatiof C 37 x I'} so that  Note also tha{SCRNSCR) = § is decidable in polynomial
R is the set of elements ok’ projected ontox* x I'*, and time: if R, R’ € SCR andRN R’ # 0, then(s,w) € RN R’

if (¢,(a,b),q’) is a transition of the NFA accepting’ so is for somew, and hence the problem reduces to simple NFA
(q,(L,L),q"). If we now let R” to be the regular relation nonemptiness checking.

R"-{(e,v) [ v € {L}"}, we obtain that: The main result abo®CR relations generalizes decidability

() if w e R'NC thenw € RNC, wherew' is the of (RATNC) = 0.

projection ofw onto ¥* x I'*; and -

(i) for any w’ € RN L there is some strict codirect solutionTheorem V.7. The problem(RAT N SCR) = () is decidable.
w € R” NLC such thatw’ is the projection ofw onto
¥Fox I,

Thus the theorem follows.

Whereas (i) is trivial, (i) follows from the fact that is a Proof idea Decidability is shown by reduction to a problem
strict codirect solution. Ifw’ = (u,v) € R”, where f(w) = wher_e solutions have a specific shape. Given a rat_lonal)bmar
(w)r, g(w) = (v)r, the complication is now that, sinee e relation Ry and a subsequence-closed relati®n defined by
., it could be thatu Z v just because there is somein WO automatad, and.A; overs:, x %, we say thatwo, wi)

u that does not appear in. But we build (u,v) such that 1S @solutionif wy = uo ® vo € L(Ag), w1 = u1 @01 €
wheneveru[i] = L forcesv[j] = L with j > i then we £(A1)and(uo)s = (u1)s, (vo)z = (v1)x, Wwherews, denotes
also have thau[j] = L. This repeats, forcing[k] = L for ~Projection ofw onto. We say thafwo, w1 ) is asynchronized
somek > j and so on, until we reach the tail ofthat has Solutionif it further satisfiesvy = v;.

sufficiently many_L’s to satisfy all the accumulated demands The problem of finding a solution reduces to that of finding
for occurrences ofl.. o asynchronized solution. Indeed, consider the autorgtad;

) as the result of adding all transitioig, (L, L), q) for every
Note that one cannot solve the problgREG NC) = 0 possible state to both automata. It is clear that the relations
by reducing to nonemptiness of rational relations due to th€cognized by these automata remain unchanged, anddthat

Of course the complexity is non-multiply-recursive, since
this subsume$REG N ) Z ¢ of Theorem V.4.

following. is still a SCR automaton. It is easy to verify that there is a
Proposition V.5. There is a binary regular relation? such synchronized solution fofAy, A3) if, and only if, there is a
that (R N C) is not rational. solution for (Ao, Ay).

The problem of finding a synchronized solution fdg, .4,
The next question is how far we can extend the decidabiligan be then formulated as the problem of finding words

of (RATNEC) Z ¢. It turns out that if we allow one projection v, ug, u1 € % with |v| = |ug| = |uq], S0 that(uo @ v, u; @)
of a rational relation to be closed under taking subsequends a solution. We can compute an automatdnover 3
then we retain decidability. from Ay, Ay, such that(ug,ui,v) € L(A) if, and only
Let R C ¥* x X* be a binary relation. Define another binaryf, uo ® v € L(Ag) andu; ® v € L(A;). Consider now
relation an automatond’ over ¥2 such thatC(A') = {(ug,u1) |
Jv (ug,u1,v) € L(A)}. It corresponds to the rational automa-
R = {(u,w) | u T« and (v, w) € R for someu'} ton of the projection onto the first and second components

Then the class obubsequence-closed relatiorsr SCR, is of the ternary relation of4, and it can be computed from
the class{R. | R € RAT}. Note that the subseq'uenceA in polynomial time. We then deduce that there exists
Y = g T : . / C i i
relation itself is in SCR, since it is obtained by closing ?;Ofeulzf vﬁvftﬁ fvfgtuaﬁ(?io)é ngau%r)wgtg, %n:é)rzly(/j,)tgenr;
the (regular) equality relation under subsequence. That s L — mol = 1M 0= = 0,
C i g{(w L)T w g »*}c. Not all rationalqrelations are 1@V € £(A1), where(uo)s T (u1)». But this is equivalent

- ST _ in
subsequence-closed (for instance, subword is not). to o N Ry # 0, since

The following summarizes properties of subsequence-dlose * | ((u1)s, (v)s) € Ri and (ug)s T (u1)s, then

relations. ((uwo)s, (v)z) € Ry (since Ry € SCR) and hence
((ug)s, (v)s) € Ry N Ry; and
Proposition V.6. « if RoNR; # 0, then there exists a synchronized solution
1) SCR C RAT. (uo ® v,u3 ®@v) of Ay, A; (Whereug ®v € L(Ap), and
2) SCR ¢ REG and REG ¢ SCR. ur ®v € L{Ar), and(ug)s = (u1)x).
3) A relation R is in SCR iff {w @ w' | (w,w’) € R} iS  We have thus reduced the problem(RAT N T) = ¢, which
accepted by an NFM = (Q,X, x ¥1,qo0,9, F) such s decidable [12], as already mentioned. m

that (g, (a,b),q’) € ¢ implies (¢, (L,b),q") € 4 for all

0. €Qanda,bey,. Coming back to graph logics, we obtain:



Corollary V.8. The complexity of evaluation @CRPQLC) different condition for each component of the-ary relation.
gueries is not bounded by a multiply-recursive function.  The finiteness of the computed tree follows from Higman’s

Another corollary can be stated in purely Ianguage-thdmrel‘emma this time in combination with Dickson’s Lemma [19].

terms. Corollary VI.2. The query evaluation problem for

C ies i i .
Corollary V.9. Let C be a class of binary relations ok* ECRPQL) queries is decidable

that is closed under intersection and contaREG. Then the  Of course the complexity is extremely high as we already

nonemptiness problem fart is: know from Corollary V.8.
« undecidable if< or <. is in C; Note that while the intersection problem Gfwith rational
« non-multiply-recursive it is in C. relations is decidable, as is ERINTC(REG), we lose the

. ) N ) _decidability of GENINTZ(RAT) even in the simplest cases
Discussion In addition to answering some basighat go beyond the intersection problem (that is, for ternar

language-theoretic questions about the interaction afilaeg rejations inRAT and anyI that does not force two words to
and rational relations, and to providing the simplest ygfe the same).

problem with non-multiply-recursive complexity, our résu )

also ruled out logical languages for graph databases thelyfr Proposition VI1.3. The problem(RAT n; C) = () is undecid-

combine regular relations and some of the most commor@ple even over ternary relations whéis one of the following:

used rational relations, such as subword and subsequeri¢é.2),(2,3)}, or {(1,2),(1,3)}, or {(1,2),(3,2)}.

With them, query evaluation becomes either undecidable Q1 G aneralized intersection problem for recognizabletietes

non-multiply-recursive (which means that no realisticaalg . )

rithm will be able to solve the hard instances of this prohlem W& now consider the problem of answering CRPQs
This does not yet fully answer our questions about tH4th rational relations S, or, equivalently, the problem

evaluation of queries in graph logics. First, in the case GIENINTs(REC). Recall that an instance of such a problem

subsequence (or, more generaBER relations) we still do SONSIStS of anm-ary recognizable relation? and a set

not know if query evaluation of ECRPQs with such relations & [m]°- The question is whethef N 5 # 0, i.e., whether

is decidable (i.e., what happens witle @ NTs(REG) for such there exists a tuplgws, ..., wn,) € R so that(w;, w;) € 5

relationss). whenever(i,j) € I. It turns out that the decidability of

Even more importantly, we do not yet know what happerligis problem hinges on t_he graph-theoretic p_ro_perties[.of
with the complexity of CRPQs (i.e., EMINTs(REC) for In fact we shall present dichotomy resultclassifying prob-

various relationsS. These questions are answered in the negi't""S GENINTS(REC) into PSAcEcomplete and undecidable
section. epending on the structure &f

Before stating the result, we need to decide how to represent
VI. RESTRICTED LOGICS AND GENERALIZED a recognizable relatioR. Recall that ann-ary R € REC is a
INTERSECTION PROBLEM union of relations of the forni.; x ... x L,,,, where each;

is a regular language. Hence, as the representatioR ol

The previous section already ruled out some graph logi .
with rational relations as either undecidable or decidabﬁ ﬁ<e the sef[ of all such,-_s involved, and as the measure of
complexity, the total size of NFAs defining tligs.

: : : . is
with extremely high complexity. This was done merely b)} With a setl C [m]? we associate aondirectedgraphG;

analyzing the intersection problem for binary rational andh nod b nd wh d o h
regular relations. We now move to the study of the genemliz 0S€ no gs_a AN 'a' 0se edges a'{?’]} sue
at either(i,j) € I or (j,i) € I. We call an instance of

intersection problem, and use it to analyze the complexi X o ] ]
of graph logics in full generality. We first deal with the(REC Ny ) = 0 acyclicif Grisan acyclic graph.
generalization of the decidable caséCR relations), and ~NOw we can state the dichotomy result.

then consider the problemeBiINTs(REC), corresponding to Thegrem VI.4.

CRPQs extended with relatiortson paths. o Let S be a binary rational relation. Then acyclic in-

stances ofGENINTgs(REC) are decidable inPSPACE.
Moreover, there is a fixed binary relatio, such that
the problem(REC Ny Sp) Zpis PSPAcCE-complete.
o For every ! such thatG; is not acyclic, there exists a
binary rational relationS such that the problefREC N;
Theorem VI.1. The problemGENINT (REG) is decidable. S) <  is undecidable.
That is, there is an algorithm that decides, for a giverary
regular relation R and I C [m]?, whetherR N C # ().

A. Generalized intersection problem and subsequence

We know that(REG N C) = ¢ is decidable, although not
multiply-recursive. What about its generalized versidrt@rns
out it remains decidable.

Proof idea For P$AcE-hardness we can do an easy reduction
from nonemptiness of NFA intersection. Given NFAs

For checking decidability we explore the solution spacdy,...,A,,, define the (acyclic) relatioh = {(i,i+1) | 1 <
tree as in the proof of Theorem V.7. However, this time thie< m}. Then(, £L(A;) is nonempty iff[ [, £L(A;)Nr So # 0,
notion of saturation is different, since we need to consaerwhereSy = {(w,w) | w € ¥*}.



For the upper bound, we show how to construct, in exere we establish the finite-model property, which implres t
ponential time, for eachm-ary recognizable relatiorR, a result.
binary rational relationS and an acyclicI C [m]?, an m- Also, as a corollary to the proof of Theorem V1.6, we get
ary transducetd(R, S,I) that accepts precisely those = the following result:
(w,...,wy) € (X*)™ such thatw € R and (w;, w;) € S,
for each (i,5) € I. Intuitively, A(R,S,I) represents the
“synchronization” of the transducer that accepgtswith a
copy of the transducer that recogniz&®ver each projection Corollary V1.8. If S € SCR is a partial order, therCRPQ5)
defined by the pairs in. Such synchronization is possiblequeries can be evaluated WitNEXPTIME combined com-
sinceI is acyclic. Hence, in order to solveE®INTs(REC) we plexity. In particular, CRPQL) queries haveNEXPTIME
only need to checld(R, S, I) for nonemptiness. The latter cancombined complexity.
be done in PBACE by the standard “on-the-fly”
analysis.

Proposition VI.7. Let S € SCR be a partial order. Then
GENINTs(REC) is decidable inNEXPTIME.

reachability g |55t question is whether these results can be extended
to other relations considered here, such as subword and.suffi
C. CRP with rational relations We do not know the result for subword (which appears to be

. » ) . hard), but we do have a matching complexity bound for the
The acyclicity condition gives us a robust class of queriegyfix relation.

with an easy syntactic definition, that can be extended with N _ _
arbitrary rational relations. Recall that CRP&)(queries are Proposition V1.9. The problemGENINT<_ . (REC) is decid-

those of the form able in NEXPTIME. In particular, CRPQ=us) queries can
m be evaluated witiNEXPTIME combined complexity.
— — LLL
(@) = Jy (/\(uzx—> u) AN S(X%Xj))v VIl. CONCLUSIONS
=1 (.g)el Motivated by problems arising in studying logics on graphs
see (2) in Sec.lV. We call such a queagyclic if G;, the (as well as some verification problems), we studied the in-
underlying undirected graph df, is acyclic. tersection problem for rational relations with recognieab

and regular relations over words. We have looked at rational
relations such as subword, suffix <5, and subsequence
C, which are often needed in graph querying tasks. The main

results on the complexity of the intersection and genezdliz
intersection problems, as well as the combined complexity
Thus, we get not only the possibility of extending CRPQef evaluating different classes of logical queries overpbsa
with rational relations but also a good complexity of quer§ire summarized in Fig. 1. Several results generalizingethos
evaluation. The NbGSPACE-data complexity matches that(€.g., to the class 08CR relations) were also shown. Two
of RPQs, CRPQs, and ECRPQs [15], [16], [3], and theroblems related to the interaction of the subword relatigh
combined complexity matches that of first-order logic, di€cognizable relations remain open and appear to be hard.
ECRPQs without extra relations. From the practical point of view, as rational-relation com-
The next natural question is whether we can recover decRfrisons are demanded by many applications of graph data,
ability for weaker syntactic conditions by putting restions Our results essentially say that such comparisons shotldeno
on a class of relation§. The answer to this is positive if we Used together with regular-relation comparisons, andttiet
considerdirectedacyclicity of I, rather than acyclicity of the need to form acyclic patterns (easily enforced syntadfiral
underlying undirected graph af. Then we get decidability for efficient evaluation.
for the class ofSCR relations. In fact, we have a dichotomy SO far we dealt with the classical setting of graph data [1],

Theorem VI.5. The query evaluation problem for acyclic
CRPQS) queries is decidable for every binary rational
relation S. Its combined complexity iBSPACE-complete, and
data complexity isNL OGSPACE-complete.

similar to that of Theorem VI.4. [8], [9], [15], [16] in which the model of data is that of a
graph with labels from a finite alphabet. In both graph data
Theorem VI.6. and verification problems it is often necessary to deal With t

« LetS be a relation fromSCR. Then(REC N; S) L ¢is extended case of infinite alphabets (say, with graphs hgldin
decidable inNEXPTIME if I is a directed acyclic graph. data values describing its nodes), and languages that query

« There is a relation/ with a directed cycle and € SCR  both topology and data have been proposed recently [23], [25
such that(REC Ny S) 2 0 is undecidable. A natural question is to extend the positive results shows he

to such a setting.
In particular, if we have a CRP@] query (2) wherel g

is acyclic (as a directed graph) arfd € SCR, then query AcknowledgmentsWe thank Sylvain Schmitz for help-
evaluation has NEPTIME combined complexity. ful comments and suggestions. Partial support provided by

The proof of this result is quite different from the uppeFondecyt grant 1110171, EPSRC grant G049165, and FET-
bound proof of Theorem V1.4, since the set of withesses f@pen Project FoX, grant agreement 233599. Part of this work
the generalized intersection problem is no longer guaeaitie was done when the first author visited Edinburgh, and thd thir
be rational without the undirected acyclicity conditionsfead, author visited Santiago.



Fig. 1.

R € REC R € REG R € RAT
(Rer)E:Q undecidable undecidable
(RN Zgufr) 29 | PTIvE (cf. [B]) undecidable undecidable
(Rrw;)gzw decidable, non-multiply-recursive decidable, non-multiply-recursive [12]
(RN; =) =0 2 undecidable
(er—jaﬁ)izﬁ NEXPTIME undecidable undecidable
(RN C) =0 NExPTIME | decidable, non-multiply-recursive
S =C S = 2 S == S arbitrary in RAT
ECRPQG) decidable, non-multiply-recursive undecidable| undecidable undecidable
CRPQG) NEXPTIME NEXPTIME ? undecidable
acyclic CRPQ6) PSPACE PSPACE PSPACE PSPACE
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