
On the Structure of Queries in Constraint Query LanguagesMichael BenediktBell Laboratories1000 E Warrenville RdNaperville, IL 60566E-mail: benedikt@bell-labs.com Leonid LibkinBell Laboratories600 Mountain AvenueMurray Hill, NJ 07974E-mail: libkin@bell-labs.comAbstractWe study the structure of �rst-order and second-order queries over constraint databases. Constraintdatabases are formally modeled as �nite relationalstructures embedded in some �xed in�nite structure.We concentrate on problems of elimination of con-straints, reducing quanti�cation range to the active do-main of the database and obtaining new complexitybounds. We show that for a large class of signatures,including real arithmetic constraints, unbounded quan-ti�cation can be eliminated. That is, one can transforma sentence containing unrestricted quanti�cation overthe in�nite universe to get an equivalent sentence inwhich quanti�ers range over the �nite relational struc-ture. We use this result to get a new complexity upperbound on the evaluation of real arithmetic constraints.We also expand upon techniques in [21] and [4] for get-ting upper bounds on the expressiveness of constraintquery languages, and apply it to a number of �rst-orderand second-order query languages.1. IntroductionTechniques of �nite model theory have found appli-cations in a number of areas such as database theory[1] and descriptive complexity [18]. Database applica-tions of �nite model theory stem from one of the basicresults of relational database theory: Classical querylanguages, such as relational algebra, have precisely thepower of �rst-order logic. Since relational databasescan be viewed as �nite models in the language of therelational schema, this basic observation allows us toapply the tools of �nite model theory to study express-ibility of relational query languages. Early work in thatdirection includes [2, 8, 11]; for a survey see [1].In recent years, various extensions of the basic rela-tional model have been studied. Two most notable ones

are extensions to complex objects, or nested relations[27], which underlie most object-oriented datamodels,and extensions to constraint databases [19, 20], whichare used as the basis for geographical and temporaldatamodels. For nested relations most basic questionsabout expressive power and the structure of querieshave been answered (see [27] and references therein),but only very recently has some progress been madefor constraint databases.The framework of constraint databases assumessome underlying model M = hU;
i where U is a set(always assumed to be in�nite in this paper), and 
is a signature that consists of a number of interpretedfunctions and predicates over U. For instance, the do-main very often considered for geographical databasesis hR;+; �; 0;1;<i, with the intention that databasesrepresent some regions on the real plane. In the classi-cal framework of [20], (generalized) databases over Mare given by quanti�er-free formulae '(x1; : : : ; xn) inthe language of 
; such a database represents the setM' = f~a = (a1; : : : ; an) j ~a 2Un; M j= '(~a)g:For example, a convex polygon with known set of ver-tices can easily be represented in such a way. Themodel M is typically chosen to admit quanti�er elim-ination. Then the query evaluation process reduces toapplication of the quanti�er elimination procedure [20].Recently, attention has shifted from �nitely repre-sented models (that is, those that arise as M') to �-nite ones, cf. [4, 21, 23, 24]. Since queries arising ingeographical applications often involve regions that aredetermined by a �xed �nite number of points (i.e. aconvex polygon can be given by its vertices), we canconvert most interesting questions involving �nitely-represented models to questions involving �nite models[22]. For example, it was conjectured that �rst-orderlogic with polynomial inequality constraints cannot ex-press topological connectivity. A result of [23] reducedthat problem to connectivity of �nite graphs whose



nodes come fromR, and the problem for graph connec-tivity was recently solved in [4]. In addition, the settingof �nite databases embedded in a �xed in�nite struc-ture enables one to study constraint databases via thetools of �nite (and in�nite) model theory, and allowsfor helpful characterizations of the expressive power ofclasses of queries even in settings where quanti�er elim-ination does not hold in the underlying structure.We will work in the setting of �nite databases em-bedded in in�nite �xed structures. We start with theunderlying model M = hU;
i and add a number ofpredicate symbols R1; : : : ; Rk, Ri being of arity �i, for�nite database relations. These will be interpreted as�i-ary relations over U. Following the database tradi-tion, we will call R1; : : : ; Rk a schema, and denote it bySC. As our main language we take FO(M; SC), the�rst-order logic over the language L(SC ;
) that con-tains 
 and SC . If SC is understood, we often omit it.We will mostly deal with sentences, since most of theresults for sentences can be extended (as we'll show)for arbitrary formulae.Let Inst(U;SC) be the set of k-tuples of �nite re-lations over U, the ith one being of arity �i (that is,the set of possible �nite instances of SC over U). ForD 2 Inst(U; SC) and ' a L(M; SC) sentence, we de�neD j= ' in the usual way.Although the syntax of our formulas can be straight-forwardly adapted from classical predicate logic, theproperties of queries can depend in subtle ways on thedomain of quanti�cation. For D 2 Inst(U; SC), theminimum possible range of quanti�cation is the activedomain of D: adom(D) is the set of all elements of Uthat occur in relations in D, cf. [1, 17]. For A � U, wewrite D j=A ' if D j= '0 where '0 is obtained from 'by replacing each quanti�er Qx by its bounded versionQx 2 adom(D) [A.There are two cases of the j=A relations that are ofspecial interest: j=Uis the usual relation j= (which issometimes called the natural interpretation of queries),and j=; restricts quanti�cation to the active domainof the �nite D (this is sometimes called the active, oractive-domain interpretation of queries). To see thedi�erence between the two, assume that M = hR; <i, and ' is 9x8y:(x < y) _ (x = y). Then, for anynonempty D 2 Inst(R;SC), D j= :' but D j=; '.Much of what has been done in constraint databasesaddresses the problem of evaluating constraint queries;that is, queries in FO(M; SC), or in a language basedon another logic (e.g. �xpoint logic). To �nd satisfac-tory query evaluation algorithms for a query language,we have to address the following issues.

\ Expressive Power. Classical relational query lan-guages have been studied in great depth, and their ex-pressive power is well known. Prior results allow oneto infer what sorts of recursion constructs are neces-sary to express properties such as parity, connectivityand others that arise in database applications. We alsoknow much about the impact of adding these program-ming constructs on query optimization. For constraintquery languages, an understanding of many of the fun-damental expressivity questions is still lacking. In par-ticular, there is a need for tools to assist in getting up-per bounds for the expressivity of constraint languages.In this paper we continue the work of [4, 21, 24] ingetting techniques to bound the expressivity of con-straint query languages. We show how to extend theresults of [4] to show equivalence in expressive powerfor many �rst-order and second-order constraint querylanguages. We prove several kinds of collapse results,which say that adding new predicates or functions tothe signature 
 does not signi�cantly increase expres-sive power.\ Range of Quanti�cation. While databases them-selves are �nite, the natural range of quanti�cation forconstraint queries is the whole universe U. Thus, weneed tools to reduce the problem of query evaluation toa �nitary process. By choosing M to be decidable, weguarantee the ability to evaluate constraint queries fora �xed database, since given a query ', we can replaceeach occurrence of Ri(~x) in ' by ~x = t1 _ : : :_ ~x = tmwhere Ri = ft1; : : : ; tmg and apply the decision proce-dure to the resulting formula. However, this still for-bids us from doing important compile-time query op-timizations that are possible in the classical databasesetting. In particular, we lack the ability to reorderquanti�ers based on the range of quanti�cation, or toevaluate expressions `bottom-up' by retrieving storedvalues of subexpressions. One possible solution seemsto be this: try to show that unbounded quanti�cationcan be eliminated. This is equivalent to showing thatevery query ' has an equivalent one under the activeinterpretation. That is, there is a  such that D j= 'i� D j=;  . We will prove that this is possible formany constraint query languages of interest, and thatit holds for the real ordered �eld.\ Complexity of Constraints. There are many funda-mental questions to be answered about the complex-ity of query evaluation for constraint query languages.Since the relational algebra and calculus are equivalentto pure �rst-order logic, they have AC0 complexity [1].Adding constraints increases this complexity. For in-stance, if multiplication is in the signature, the AC0



complexity bound is lost, cf. [7]. As an upper bound forcomplexity, it is known that if M = hR;+; �; 0;1;<i,then data complexity of �rst-order queries is NC, see[20, 6]. Since AC0 � NC, one could hope for moreprecise information about the complexity of constraintqueries over the real �eld. We would also like to knowsomething about the e�ect of adding other interpretedstructure on these complexity bounds, both for �rst-order and higher-order logics. In this paper we will useresults on equivalence of signatures and on boundingquanti�cation to get tighter bounds on query evalua-tion for the real �eld, and to get complexity boundsfor a variety of other �rst-order and second-order lan-guages. One tool for doing this will be partial collapseresults: results that show that a certain set of oper-ations in the signature can be eliminated, assumingthat our databases have all their elements coming froma certain in�nite set. Using these results, we will beable to get tighter complexity and expressive boundsfor queries that are generic [1] (those invariant undercertain endomaps on U), since their behavior over anyin�nite set determines their behavior globally.Organization and quick summary In this paperwe o�er a detailed study of the structure of constraintqueries, addressing the three issues described above.In section 2 we introduce notation and a new notionof the `approximate collapse' arrow relationFO(M))FO(M0), for two models M and M0 on the same setU, meaning (informally) this: for every query ' inFO(M), one can �nd an in�nite set X � Uand a query in FO(M0) such that for every D 2 Inst(U; SC) withadom(D) � X, D j=X ' i� D j=X  . We are inter-ested in the case whenM0 is a reduct ofM. The arrowrelation shows that we have a means for reducing ex-pressivity and complexity questions about M to onesconcerningM0, a tool we will use later on in the paper.In section 3 we study the ability to eliminate un-bounded quanti�cation in queries in favor of quanti�-cation bounded by the active domain. Our main re-sult is Theorem 1, which shows that unbounded quan-ti�cation can be removed for all models that admitquanti�er elimination and satisfy the condition of o-minimality [25]. This class includes both cases forwhich the elimination result is known [17, 24], and alsothe important case of hR;+; �; 0;1;<i, thus solving theopen problem from [24].In section 4 we state approximate collapse results forquery languages, along the lines of [4, 21, 24]: we showthat one can get an in�nite set on which all constraintsin a query can be reduced to constraints in smallerlanguages. We prove such results for �rst-order logicand for fragments of second-order logic, and show how

they can be used to get expressivity bounds for �rst-and second-order queries.In section 5, we apply the results of section 3 toprove a TC0 complexity bound for �rst-order logic withpolynomial constraints, thus improving the NC boundof [20]. We also establish some complexity bounds foractive-domain second-order constraint queries.In section 6 we show that collapse results andbounded quanti�cation results can always be extendedfrom boolean queries to nonboolean queries (that is,from sentences to arbitrary formulae). We apply theseresults to get expressivity and complexity bounds fornonboolean queries.Section 7 contains concluding remarks.All proofs can be found in [5].2. NotationsAssume that the domain is an in�nite set U. Aschema is a nonempty collection SC = hR1; : : : ; Rki ofrelation names, Ri being of arity �i. A database in-stance D of schema SC is given by an interpretation ofeach relational symbolRi as a �nite �i-ary relation overU. The set of all instances is denoted by Inst(U;SC).The active domain of D, adom(D) is the set of all ele-ments in Uthat are in relations in D.Let 
 be a signature, that is, a collection of inter-preted functions and predicates on U. The languagethat contains the schema predicates, equality and thesymbols in 
 is denoted by L(SC ;
)1. A boolean queryis a �rst-order sentence in L(SC ;
). That is, it is builtup from atomic formulae via the usual logical connec-tives and quanti�ers of the form 8x and 9x.Let A be a subset of U. Under the A-interpretationof queries, we assume that for every D the quan-ti�ers range over A [ adom(D). That is, the ;-interpretation is the active domain interpretation, andthe U-interpretation is the natural interpretation. Wewrite D j=A ' to mean that ' is satis�ed by D underthe A-interpretation.The class of Boolean queries (maps from instancesof schema SC to fT,Fg) under the A-interpretationis denoted by FOA(U;
;SC). If A = U we omitit, i.e. we use FO(U;
;SC) for FOU(U;
; SC) andj= for j=U. We write FOA(U;
)f=;�gFOA(U;�) tomean thatFOA(U;
; SC)f=;�gFOA(U;�;SC) holdsfor any schema SC .The kind of unbounded-quanti�er elimination resultwe are interested in can be written as FO(U;
) =FO;(U;
). Two such results are known:1All languages we consider are assumed to have equality, sowe will not mention this explicitly any more.



Fact 1 (see [17, 24]) FO(U;;) = FO;(U; ;);FO(R;+;�; 0;1;<) = FO;(R;+;�;0; 1; <). 2In section 3 we will extend these results.We are also interested in equivalence of constraintlanguages, which in our notation can be written asFO(U;
) = FO(U;�) where generally � is \sim-pler" than 
.These kinds of results are hard to achieve,and often we can only �nd a certain approximation toequality. For this, we need the following notation.De�nition 1 We writeFOA(U;
;SC)) FOB(U;�;SC)if, for every L(SC ;
) sentence ', we can �nd an in�-nite set X � U and a L(SC ;�) sentence  such thatfor any D with adom(D) � X,D j=A\X ' i� D j=B\X  :We write FOA(U;
) ) FOB(U;�) ifFOA(U;
;SC) ) FOB(U;�; SC) holds for anyschema SC .The relation ) is an approximation to inclusion; itis an approximation in the sense that it is the inclu-sion restricted to models from a certain in�nite set.We also further restrict quanti�cation to that set X.For instance, if A = B = U (and this is the sit-uation we encounter most often), then FO(U;
) )FO(U;�) means that there is an in�nite set X suchthat FO(X;
) � FO(X;�), i.e. we have the inclusionfor the natural interpretation over an in�nite X.Thus, the desired collapse results would beFO(U;
) ) FO;(U;
), or FO(U;
) ) FO(U;�),when X happens to be U.We can analogously de�ne similar arrow notationfor nonboolean queries. The framework of nonbooleanqueries assumes the output schema SC 0 = fT1; : : : ; Tlg,l > 0. Then a �rst-order query is given by a formula'(x1; : : : ; xn), for each n-ary output relation. Such aformula de�nes the relation (under A-interpretation)given by f~a 2 Un j D j=A '(~a)g for each inputD 2 Inst(U;SC). We denote the class of nonbooleanqueries with input schema SC and output schema SC 0by FFOSC 0(U;
;SC). (Here FFO stands for \full�rst-order", as opposed to sentences only.)The de�nition of the arrow relation generalizesstraightforwardly. That is, we must say D j=A\X '(~a)i�D j=B\X  (~a) for any ~a 2 (adom(D)[X)n . Finally,we write FFO(U;
) f);=g FFO(U;�)if FFOSC 0(U;
;SC) ) FFOSC 0 (U;�; SC) (respec-tively for =) holds for any pair of input and outputschemas SC and SC 0.

3. Eliminating unbounded quanti�cationIn this section we prove that unbounded quanti�-cation can be eliminated in favor of quanti�cationbounded by the active domain for a large class of struc-tures. This is equivalent to saying that the active-domain interpretation and the natural interpretationcoincide for a large class of structures.Recall that a structure hU;
i, where the order re-lation < is in 
, is called o-minimal [25] if every de-�nable set fc 2 U j hU;
i j= '(c)g is composed of a�nite union of intervals. Here ' is a formula in thelanguage that includes all symbols of 
 and constantsfor elements of U. Examples of o-minimal structuresare hR; <i, hR;+; �; 0;1;<i (this follows from quanti�erelimination [9]) and hR;+; �; exi [28].Our main result is as follows:Theorem 1 Let 
 be a signature on U such thathU;
i is o-minimal and admits quanti�er elimination.Then FO(U;
)= FO;(U;
)That is, every �rst-order query using symbols from 
and the schema relations is equivalent to a formulawhere the quanti�ers are bounded by the active domain.Proof sketch: As in [4], we give here a nonconstructiveproof using the technique of nonstandard universes.For all the de�nitions, see [4].Lemma 1 If we have two hyper�nite instances A andA0 that agree on every standard active-semantics query,then they agree on every natural-semantics query.Proof of Lemma. As in [4], �M is the nonstandard ex-tension of M in a nonstandard universe satisfying theIsomorphism Property of [16]. Fix a counterexample,that is, �x A and A0, and a natural-semantics query 'on which they disagree. Let �M(A) be the expansionof �M to L(SC ;
) given by interpreting the schemarelation symbols as in A, and let �M(A0) be likewise.Let 
0 be the language containing (only) predicatesymbols for each atomic formula of 
. Let M0 be themodel for 
0 with domain equal to U, and with thepredicates of 
0 interpreted in the obvious way. ThenM0 also admits elimination of quanti�ers. Consider
0(A) and 
0(A0) as structures for L(SC ;
0) in whichthe domains are the active domains ofA and A0, respec-tively, the schema relations are unchanged, and eachpredicate of 
0 is interpreted as the � of the correspond-ing de�nable subset ofM . Using the assumption thatA and A0 agree on standard active-semantics queries,we can show:Claim 1 
0(A) and 
0(A0) are elementary equivalentin L(SC ;
0)



We apply the Isomorphism Property to 
0(A) and
0(A0), to get a mapping f from the active domainof A onto active domain of A0 that preserves schemarelations and the predicates of 
0. Since M0 has elim-ination of quanti�ers, for each '(~x) in 
0 and ~c in theactive domain of A, we have �M0 j= '(~c) if and only if�M0 j= '(f(~c)), since '(~c) is equivalent to a booleancombination of atomic formulae, each of which will bepreserved by f .Now it follows from the techniques developed in [4]that �M0(A) and �M0(A0) (which are de�ned analo-gously to �M(A) and �M(A0) but for the language
0 instead of 
) satisfy all the same sentences ofL(SC ;
0). Then it can be shown that �M(A) and�M(A0) satisfy all the same sentences of L(SC ;
).This gives us a contradiction, which proves the lemma.To show that lemma 1 implies the theorem, supposethere were a counterexample q to the theorem (that is,q is de�nable as a natural-semantics query, but not asan active-semantics query). We �rst note that for ev-ery �nite collection F of active-semantics queries, theremust be two �nite instances AF and A0F that agreeon all queries in F but disagree on q . By applyingsaturation, we would get two hyper�nite instances Aand A0 in the nonstandard universe that agree on ev-ery standard active-semantics query, but disagree on q,contradicting lemma 1. This completes the proof. 2The proof merely establishes the existence of anactive-domain query that is equivalent to a query us-ing unbounded quanti�cation. However, the processof transforming an unbounded-quanti�er sentence intoa bounded-quanti�er sentence can be done e�ectivelyassuming that the quanti�er elimination procedure forthe underlying model is e�ective. We shall present sucha procedure in a subsequent paper.Now, using the o-minimality of hR;+;�; 0; 1;<i andtheorem 1, we settle the open problem from [24].Corollary 1 Every �rst-order query in the languageof the schema relations and +; �; 0; 1; < can be ex-pressed by a formula in the same language with allquanti�ers bounded by the active domain. That is,FO(R;+;�;0; 1; <) = FO;(R;+; �;0; 1; <). 2For example, consider hR;+; �; 0;1;<i, and let ourschema have a binary predicate S(x; y). The sentence' states that all elements of S lie on some line:' = 9a9b8x8y:(S(x; y) ! y = a � x+ b)This gets converted to the equivalent active-domainsentence  = (card(S) < 3) _ ((card (S) � 3) ^  0)

where the conditions on cardinality of S are written as�rst-order sentences in the language of S, and  0 is9x19y18x28y2 8x38y3:S(x1; y1) ^ (S(x2; y2) ^S(x3; y3)! (x2 � x1)(y3 � y1) = (y2 � y1)(x3 � x1))Then D j= ' i� D j=;  for any D 2 Inst(R; fSg).The analog of corollary 1 for linear constraints wasproved in [24]. These result stand in sharp contrastto the results of [14], who showed that elimination ofunbounded quanti�ers fails for integer arithmetic con-straints.The ability to convert natural-semantics queries tobounded-quanti�er queries is important for achievinge�cient query evaluation. In addition, corollary 1 givesus an alternative proof of the conjecture that paritytest cannot be de�ned by �rst-order queries that usepolynomial inequality constraints (this conjecture wasrecently con�rmed in [4]). Indeed, assume that parityis de�nable in such a way; then it is de�nable underthe active semantics, and we know (see [4] and nextsection) that this is not the case.Using the fact that each model has a de�nitional ex-pansion to a model that admits quanti�er elimination,we obtain:Corollary 2 Let 
 be an o-minimal signature on U.Then we can �nd a (de�nitional) expansion of 
 to 
0such thatFO(U;
) = FO(U;
0) = FO;(U;
0):4. Collapsing signatures4.1 First-order logicThe goal of this section is to investigate the approx-imate collapse relation. We are interested in resultscollapsing queries over signature 
 to queries over �,where � is much simpler than 
. We start by review-ing the �rst-order case. We state a generalization ofthe result from [4] and [21], which can be used to getexpressivity bounds on �rst-order constraint languages(this technique is already implicit in [24]). We will thenmake use of the techniques developed in these proofs toextend the arrow relation results to second-order logicand to existential second-order.Our �rst approximate collapse result shows that anysignature approximately collapses to the order relation.The proof of the theorem below follows the basic idea of[4]: �rst, rewrite a query, and then use Ramsey theorem[12] repeatedly to eliminate all constraints other thanorder comparisons.Theorem 2 Let U be ordered by <. Then for anyL(SC ;
) sentence ', we can �nd an in�nite set X �U



and a L(SC ; <) sentence  such that for any D 2Inst(SC ; X), and any Y � X, it is the case thatD j=Y ' i� D j=Y  :Corollary 3 Let U be ordered by <. Then, for anysignature 
, FO(U;
)) FO(U;<):Theorem 2 was proved for the case Y = ; in [4].Results of this kind are particularly useful for study-ing expressibility under the active-domain semantics,as demonstrated in [4] and [21]. For example, manyqueries of interest are generic, that is, independent un-der permutations of the underlying domain. For suchqueries, their behavior on an in�nite subset of U fullydetermines their behavior on U. For example, it canbe immediately derived from theorem 2 that for any 
,there is no L(SC ;
) sentence ' such that D j=; ' i�adom(D) has even cardinality.It is generally impossible to eliminate the order re-lation from the right hand side of the arrow relation.However, it was shown in [4] that for signatures overthe reals satisfying certain smoothness conditions, col-lapse results to pure relational algebra are available.De�nition 2 A signature 
 on R is called analytic ifit consists of restrictions of analytic functions to realarguments.In other words, 
 = (fi)i2I is analytic if there is aset of analytic functions (Fi)i2I such that each fi is therestriction of Fi to the real arguments. For example,(+; �; ex) is an analytic signature.Theorem 3 Let 
 be an analytic signature on the re-als. Then for any L(SC ;
) sentence ', we can �nd anin�nite (in fact, uncountable) set X �Uand a L(SC)sentence  such that for any D 2 Inst(SC ; X), andany Y � X, it is the case thatD j=Y ' i� D j=Y  :A roughly analogous result was proved in [4], al-though the results there contained extra hypothesesand provided no cardinality information. The main dif-ference between the proof of theorem 3 and the proof in[4] is that here we demonstrate the existence of an un-countable set X. This is done by showing that a familyof nontrivial equations fi(~x) = 0, where fis are termsin 
 [ fr j r 2 Rg, can be simultaneously invalidatedby assigning distinct values from some uncountable setto distinct variables xjs.As a corollary, we obtain the following fact aboutthe arrow relation.

Corollary 4 Let 
 be an analytic signature on the re-als. Then FO(R;
)) FO(R;;):Combining the results of this section with the col-lapse result of section 3, we obtain:Corollary 5 Assume that (U; <) is a dense orderwithout endpoints. Then for an arbitrary signature 
we have FO(U;
)) FO;(U; <). Also, FO(R;
))FO;(R; ;) for any analytic signature 
 on the reals. 2We note that the hypothesis that the underlying or-der is dense in corollary 5 cannot be removed:Proposition 1 Let (U; <) be a scattered linear order-ing. Then FO(U; <) 6) FO;(U; <). 24.2 Second-order logicThe goal of this section is to generalize approximatecollapse results to second-order logic and its fragments.When we deal with sentences, we assume that they areconverted into normal form. That is, sentencesQ01P1 : : :Q0mPmQ1x1 : : :Qnxn:'(x1; : : : ; xn)where Q0iPi are second-order quanti�ers, and ' isa �rst-order formula in the language that containsP1; : : : ; Pm. Now, suppose that D 2 Inst(SC ;U).For � a second-order sentence, we de�ne D j= � inthe usual way. Furthermore, for X � U we de�neD j=X � by letting all �rst-order quanti�ers range overadom(D) [X and letting each second-order quanti�erQ0iPi range over 2(adom(D)[X)k , if Pi is of arity k.For a schema SC , a signature 
 on U, the classof second-order constraint queries, under the X inter-pretation, will be denoted by SOX (U;
; SC). Thatis, SOX(U;
;SC) is the class of queries Q over someschema SC for which there exists a second-order sen-tence � such that Q(D) = T i� D j=X �. As before,we write SO instead of SOU. Similarly to the �rstorder case, omitting the schema in a statement aboutequation or arrow relation means \for all schemas".We shall also consider fragments of second-orderlogic given by the quanti�er pre�xes of second-orderquanti�ers. Formally, a pre�x is a �nite sequenceof pairs (i; 8) or (i; 9) where i > 0. Then a (nor-mal form) second-order sentence conforms to the pre�x(i1;Q1); : : : ; (is;Qs) if it has s second-order quanti�ers,the jth one is Qj and it binds predicates of arity ij .A fragment F is the set of sentences that conform tosome collection of pre�xes. Examples of fragments arefull second-order logic, existential second-order logic



and monadic �11. The fragment associated with a setof pre�xes F (under the X-interpretation) will be de-noted by SOXF (U;
;SC), or SOF (U;
;SC) if X = U.We call a fragment given by a collection of pre�xesF orderable if F 6= ; and for every f 2 F , (m; 9) fol-lowed by f is in F for some m � 2. Examples arefull second-order, and existential second-order ESO.A non-orderable fragment is monadic �11. Now we canprove a result that extends approximate collapse theo-rems to second-order constraint queries, and furthergeneralizes them for orderable fragments of second-order logic.Theorem 4 1) Let F be an arbitrary fragment.Then SOF (U;
) ) SOF (U;<). Furthermore,SOF (R;
)) SOF (R; ;) if 
 is analytic.2) Let F be an orderable fragment of second-orderlogic. Then SOF (U;
)) SOF (U; ;)In particular, SO(U;
) ) SO(U;;)and ESO(U;
) ) ESO(U;;). These results are truefor the active-domain interpretation as well; that is,SO;F (U;
)) SO;F (U; ;).Proof sketch: The proof proceeds by converting asecond-order formula into a normal form, and then ap-plying the techniques in the proofs of theorem 2 and 3to the �rst-order part. For any orderable fragment wecan also get rid of the order relation, because it is de-�nable by one extra second-order quanti�er over m-aryrelations for any m � 2. 2It is easy to show that part 2) of theorem 4 fails formonadic �11.As we saw earlier, any approximate collapse resultcompletely describes the behavior of generic queries(those invariant under permutations of the domain,such as parity test or transitive closure). Thus, weobtainCorollary 6 If F is an orderable fragment, and 
is an arbitrary signature, then every generic query inSO;F (U;
) is expressible in SO;F (U; ;). 2From this we get some expressivity bounds. For ex-ample, connectivity of directed graphs is not de�nableunder the active interpretation as a monadic �11 con-straint query, no matter what operations are in thesignature. Similarly, any query that is complete forexponential space cannot be de�ned as a second-orderconstraint query under the active interpretation.Note also that the coincidence of the active and nat-ural interpretations proved for the �rst-order logic withpolynomial constraints does not extend to the second-order case.

Proposition 2 For any fragment F that allows ex-istential quanti�ers over unary predicates (e.g., fullsecond-order, existential second-order, monadic �11),SOF (R;+;�;0; 1; <) 6= SO;F (R;+; �;0;1; <).Proof sketch: The set of natural numbers can be de-�ned by a second-order formula with one unary existen-tial second order quanti�er in the language of +; 0; <.Then it follows from [14] that any total recursive queryon databases whose active domain consists only of nat-ural numbers is in SOF (R;+;�; 0; 1;<). On the otherhand, every query in SO;(R;+; �;0;1;<) (and thusin SO;F (R;+; �;0;1;<)) has PSPACE data complex-ity, which proves the proposition. 25. Complexity of constraint queriesAs was mentioned in the introduction, the resultson elimination of unbounded quanti�cation allow usto prove new low complexity bounds. In this sectionwe use theorem 1 to give a new complexity bound forFO(R;+;�; 0; 1;<). We also use corollary 6 to estab-lish complexity bound on generic second-order queries.We are dealing with data complexity, that is, thecomplexity of evaluating a given query for instancesthat vary. We only look at boolean queries here, butall results generalize easily for nonboolean queries. As-sume some encoding of instances, for example, the en-coding of [1]. Given D 2 Inst(SC ;U), we denote itsencoding by enc(D). Then for each boolean query' we de�ne the language L' = fenc(D) j D 2Inst(SC ;U); D j= 'g. The data complexity of ' is theconventional complexity of L'. In particular, for anycomplexity class C we say that ' has C data complexityif the language L' is in C.It was previously known [20] that every query fromFO(R;+;�; 0; 1;<) has NC data complexity. In fact,this follows from the NC complexity bound for the�rst-order theory of real closed �elds with a �xednumber of variables [6]. However, pure �rst-orderlogic queries, as well as �rst-order queries with lin-ear constraints, have AC0 data complexity [1, 15]and we know that AC0 � NC [7]. So the questionarises if we can improve the data complexity boundfor FO(R;+; �;0;1;<) using the elimination of un-bounded quanti�cation result proved in section 3. Thisis indeed possible. We prove below a TC0 complex-ity bound. Recall that AC0 is the class of problemsde�nable with unbounded fan-in constant depth cir-cuits that use and, or and not gates, and the num-ber of gates is polynomial in the size of input. Theclass TC0 extends AC0 by allowing threshold gates,or equivalently majority gates [3]. It is known that



AC0 � TC0 � NC1 � L � NL � NC and all �inclusions are conjectured to be strict [3].Theorem 5 Every query in FO(R;+;�;0; 1; <) hasTC0 data complexity.Proof sketch: Let RApoly be relational algebra in whichpolynomial inequality constraints are allowed as selec-tion predicates. For instance, �#1>#23+4(R) selectspairs (x; y) for which x > y3 + 4. Using theorem1 and the standard technique for equivalence of re-lational algebra and calculus, we show that, for eachL(SC ;+; �; 0; 1; <) sentence ', there is a RApoly ex-pression e' such that D j= ' if e'(D) = f()g (emptytuple) and D j= :' if e'(D) = fg.Next, we show that every RApoly query has TC0data complexity. The proof proceeds exactly as theproof of AC0 data complexity for relational algebra(see [1]) with one exception: every time the �p operatoris encountered, we have to compute the condition p.If p is of form t1(~y)f=; <; 6=; 6<gt2(~z) where t1; t2 areterms (that is, polynomials), we construct circuits thatcompute t1 and t2 �rst and then make the comparison.Since addition and multiplication are in TC0 [3], wecan insert a threshold circuit that computes �p. Thetheorem is proved. 2Since the behavior of generic (invariant under per-mutations) queries is fully determined by their behav-ior on an in�nite set, we obtain from corollary 1 (thiscan also be derived from combining the results of [4]and [15]):Corollary 7 Every generic query inFO(R;+;�;0; 1; <) has AC0 data complexity. 2From corollary 6 and classical descriptive complexityresults (cf. [18]) we obtainCorollary 8 Every generic query in SO;(U;
) hasPH data complexity, and every generic query inESO;(U;
) has NP data complexity. 26. Extension to nonboolean �rst-orderqueriesIn this section we show the following: all results con-cerning boolean queries extend to arbitrary nonbooleanqueries. In other words, all results we proved for sen-tences can be also proved for formulae with free vari-ables. We show this by proving \transfer" results thatextend a ) or an equality result from boolean queriesto arbitrary ones. Note that transfer results for genericqueries (active or natural) were proved earlier in [4].

Since we are now interested in arbitrary queries, weneed two schemas: the input schema SC1 and the out-put schema SC2. Given the underlying model hM;
i,a query is given by a formula '(x1; : : : ; xn), in the lan-guage L(SC1;
), for each n-ary predicate symbol inSC2. For each input D 2 Inst(SC;U) and each set X,under the X-interpretation such a query de�nes then-ary relation 'X [D] = f~a j ~a 2 Un; D j=X '(~a)g.The class of �rst-order queries between the schemasSC1 and SC2, under the X-interpretation, is denotedby FFOXSC2(U;
;SC1). Recall that this is a set ofsemantic objects.Note that 'X [D] need not be �nite. That is,FFOXSC2(U;
; SC1) is actually a set of maps fromInst(SC1;U) to Inst1(SC2;U), where Inst1(�) is theclass of �nite and in�nite instances. Since we are of-ten interested in the class of maps from Inst(SC1;U)to Inst(SC2;U), we de�ne a restriction on queries thatguarantees �niteness.We call a query Q domain-preserving if for any inputD, adom(Q(D)) � adom(D). That is, no element ofU can be present in Q(D) unless it is present in Ditself. (Every query expressed in relational algebra orsafe relational calculus is such.) For a class of queriesC, we denote the subclass of domain-preserving queriesin C by dp C.The arrow notation extends to nonboolean queriesand to domain preserving queries in the natural way.As usual, omitting SC1 and SC2 in the equality or ar-row relation means that the equality or arrow relationholds for all SC1 and SC2. Now we prove the �rsttransfer theorem that allows us to extend the arrowresults to arbitrary queries.Theorem 6 For any signatures 
 and �, FO (U; 
)) FO(U; �) implies FFO(U; 
) ) FFO(U; �).Furthermore, FOA(U;
) ) FOB(U;�) impliesdp FFOA(U;
)) dp FFOB(U;�).Proof sketch: We follow the idea of [4], where a similartransfer result was proved for the equality of classesof generic queries. Let '(x1; : : : ; xn) be a L(SC1;
)formula de�ning a nonboolean query for some n-aryrelational symbol in SC2. We extend SC1 to SC 0 byn unary predicate symbols S1; : : : ; Sn which are notpresent in SC1 [ SC2. De�ne the following L(SC 0;
)sentence �:Vni=1((9x:Si(x)) ^ (8x8y:(Si(x) ^ Si(y)! x = y))) ^(8x1 : : :8xn:(S1(x1) ^ : : :^ Sn(xn))! '(x1; : : : ; xn))Using the assumption, we get a L(SC 0;�) sentence	 and an in�nite set X such that for every D 2Inst(SC 0; X), D j=X � i� D j=X 	. Let  (z1; : : : ; zn)be a L(SC1;�) formula obtained from 	 be replacing



each Si(z) with z = zi, where zis are not used in 	.Now FFOSC2(U;SC1;
) ) FFOSC2(U; SC1;�) isproved by showing that D j=X '(~a) i� D j=X  (~a) forevery D 2 Inst(SC1; X) and every ~a 2 (adom(D) [X)n. Part 2 is proved similarly. 2From this we immediately obtain:Corollary 9 1) FFO(U;
)) FFO(U;<):2) FFO(R;
)) FFO(R;;), if 
 is analytic.3) If U is a dense order without endpoints, thendp FFO(U;
)) dp FFO;(U; <).4) If 
 is analytic, then dp FFO(R;
) )dp FFO;(R;;).Note that the right hand sides in 3) and 4) are theclasses of queries well known in the classical relationaltheory. Indeed, dp FFO;(U; SC) is precisely the classof queries that can be de�ned by the relational alge-bra, and dp FFO;(U; <; SC) is the class of queries de-�nable by the relational algebra with < comparisonsallowed in selections.Next, we prove a transfer theorem that allows usto extend elimination of unbounded quanti�cation tononboolean queries.Theorem 7 Suppose that for some signature 
 it isthe case that FO(U;
) = FO;(U;
). Then,FFO(U;
) = FFO;(U;
):Proof sketch: The proof is similar to the proof of the-orem 6, but we need a di�erent translation from 	 to (�) since we are dealing with bounded quanti�cation.We de�ne this translation as before except for the caseof existential quanti�cation: 9x:�(x; ~y) is translatedinto 9x:��(x; ~y) _ ��(z1; ~y) _ : : : _ ��(zn; ~y) where ��is the translation of � and z1; : : : ; zn are the free vari-ables of '. Now, de�ne  (z1; : : : ; zn) as 	�. It can beshown that for any D 2 Inst(SC1;U) and any ~a 2Un,D j= '(~a) i� D j=;  (~a), which proves the theorem. 2Corollary 10 Let 
 be o-minimal and admit quanti-�er elimination. Then FFO(U;
) = FFO;(U;
). Inparticular, the classes of arbitrary nonboolean queriesthat are �rst-order expressible with polynomial inequal-ity constraints over the reals, are the same under bothnatural and active-domain interpretations. 2We can now use the above results to get some ex-pressivity bounds.Corollary 11 The following cannot be expressed byany �rst-order constraint query under the active in-terpretation, nor by any �rst-order query with polyno-mial inequality constraints under the natural interpre-tation: transitive, or deterministic transitive closure of

a graph; maximal matching in a bipartite graph; Eule-rian cycle. 27. ConclusionsThrough the results of this paper, along with recentworks such as [4, 21, 24], we have a much better feel forthe expressive capabilities of constraint languages. Al-though the implications of these results for the designof query languages are dependent on many parametersof the application domain, we can draw a few generalconclusions for language design.Our results indicate that it is particularly promisingto focus on constraint query languages over o-minimalstructures. In particular, it seems that these languagesinherit most of the pleasant formal properties of thepure relational calculus, along with uniform versions ofthe formal properties of �rst-order logic over the realordered �eld. We can use the techniques developedhere to get �ner information about formal propertiesof de�nable sets that are possessed by these languages,Although many of our main results yield construc-tive proofs, we have not fully explored all the algo-rithmic consequences of the theorems. In particular,we are interested in investigating semantic query op-timization strategies enabled by theorems 2 and 1 indetail. As mentioned in section 3, there is an e�ec-tive version of theorem 1, which can be seen as gener-alizations of the classical Tarski-Seidenberg algorithmfor quanti�er elimination. We are interested in seeingif algorithms based on these results can be useful ingeometric theorem-proving applications that involvinglarge numbers of rational parameters.The results here can be seen from a mathemati-cal view as yielding interesting information concerningthe structure of sets de�nable from formulae with freesecond-order variables. As such, they can be seen asextending works such as [28], in showing the `tame' be-havior of important fragments of analytic geometry. Inparticular, results such as theorem 1 can yield interest-ing expressivity limits even in cases where there is noknown e�ective procedure.Many of the results within this paper point to con-nections between model-theoretic properties of a struc-ture M and expressibility properties of the constraintquery language based onM. In future work, we plan togive more detailed information on this relationship, in-cluding results for constraint query languages based onclasses appearing in model-theoretic stability theory.We are interested in extending the (partial) collapseresults to other logics (in�nitary, �xpoint) in order toestablish new expressivity bounds for generic queries.We are also interested in the interplay between



Ramsey-like theorems and collapse results. We can,for instance, get additional information about collaps-ing sets by making use of results in Ramsey theory andset theory, cf. [10]. For instance: we extend the ar-row notation by FO(U;
))� FO(U;�) if, for everyL(SC ;
) sentence ', we can �nd an in�nite set X � Uof cardinality � and a L(SC ;�) sentence  such thatfor any D 2 Inst(SC ; X), D j=X ' i� D j=X  . Fur-thermore, we use the notation )�� to mean that thecardinality of U�X is �. We can now show that:Theorem 8 1)There exists a signature 
 on R suchthat FO(R;
))� FO(R;<) implies � = @0.2) If 
 is analytic, then FO(R;
) )c FO(R; ;).However, FO(R;+;�;
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