
Logics with Counting, Auxiliary Relations, and Lower Bounds forInvariant QueriesLeonid LibkinBell Laboratories/INRIA600 Mountain AvenueMurray Hill, NJ 07974, USAEmail: libkin@research.bell-labs.comAbstractWe study the expressive power of counting logics in thepresence of auxiliary relations such as orders and pre-orders. The simplest such logic, �rst-order with count-ing, captures the complexity class TC0 over orderedstructures. We also consider �rst-order logic with ar-bitrary unary quanti�ers, and in�nitary extensions.The main result of the paper is that all the counting log-ics above, in the presence of pre-orders that are almost-everywhere linear orders, exhibit a very tame behaviornormally associated with �rst-order properties of un-ordered structures. This is in sharp contrast with theexpressiveness of these logics in the presence of linearorders: such a tame behavior is not the case even for�rst-order logic with counting, and the most powerfullogic we consider can express every property of orderedstructures. The results attest to the di�culty of provingseparation results for the ordered case, in particular,to proving the separation of TC0 from NP. To provethe main results, we use locality techniques from �nite-model theory, modifying the main notions of localityalong the way.1 IntroductionThe main motivation for studying the expressive powerof logics on �nite structures comes from applicationsin Complexity Theory and Databases. Many com-plexity classes have logical characterizations in termsof expressiveness of various extensions of �rst-orderlogic (FO) on �nite structures, and most traditionaldatabase query languages have well-understood logi-cal counterparts. As the expressiveness of FO is quite

limited { most notably, FO cannot express nontrivialcounting properties and recursive computation, { vari-ous extensions are considered in the literature. In thispaper, we study logics that extend �rst-order with acounting mechanism. Typically, this is done by addingcounting quanti�ers or terms [8, 11, 14, 20, 29].Several extensions of FO capture familiar complexityclasses over �nite structures, and most of the captureresults assume that the structures are ordered. The in-tuition behind the introduction of a linear order is thatit allows us to simulate encodings of structures on thetape of a Turing machine. While for order-invariantproperties it does not matter in which order elementsappear on the tape (indeed, properties like connectivityof graphs to do not depend on how graphs are repre-sented), they do appear in some order, and one must beable to use this order in logical formulae. Among thebest known characterizations of this kind are charac-terization of PTIME as FO + LFP (least-�xpoint oper-ator) [19, 35], PSPACE as FO + PFP (partial-�xpoint)[35], TC0 as FO(C) (FO with counting quanti�ers) [2],all over ordered structures.Even though the particular ordering does not changethe result of formula, the mere presence of an ordergives many logics extra power. For example, whileFO+LFP and FO+PFP capture PTIME and PSPACEover ordered structures, they possess the 0-1 law overunordered structures [21], meaning that such a simplePTIME property as parity cannot be expressed. Thelower bound of Cai, F�urer and Immerman [4] showsthat there are PTIME properties of unordered struc-tures not de�nable even in FO+LFP extended withcounting quanti�ers. A similar phenomenon is ob-served for other logics, e.g., FO and FO(C) [3, 30].Our main goal is to study the impact of auxiliary re-1



lations, such as orderings, on the expressive power ofcounting. The primary motivation comes from com-plexity theory: while good expressivity bounds existsfor counting logics, e.g., FO(C), over unordered struc-tures [8, 23, 24], no nontrivial bounds are known forthe ordered case. As we mentioned, FO(C), over or-dered structures, captures TC0, the class of problemssolvable by polynomial-size, constant-depth thresholdcircuits, under DLOGTIME-uniformity, see [2]. This isan important complexity class: problems such as inte-ger multiplication and division, and sorting belong toit; TC0 has also been studied in connection with neu-ral nets, cf. [31]. Despite many e�orts, the separationTC0 � NP has not been proved, and it appears thatthere are very serious obstacles to proving it using tra-ditional approaches to circuit lower bounds, see [1, 32].One might thus hope that the approach based on prov-ing expressivity bounds for logics may circumvent theproblems raised by [32].The results we prove apply to a variety of logics, start-ing with FO and FO(C), and ending with a logicL�1!(C) proposed in [24]. This logic subsumes FO(C)and all other known pure counting extensions of FO.(When we speak of counting extensions of FO, we meanextensions that only add a counting mechanism, as op-posed to those { extensively studied in the literature,see [29] { that add both counting and �xpoint.)We will show a dichotomy of the following kind: withauxiliary relations that are almost-everywhere linearorders, L�1!(C) and other counting logics exhibit avery tame behavior, normally associated with FO de-�nable properties. However, when the order is added,this tameness is lost. For example, L�1!(C) expressesevery property of ordered structures. These results fur-ther attest to the di�culty of proving separation of TC0from other classes.As our de�nition of tame behavior we shall use thebounded number of degrees property, or BNDP, �rst in-troduced in [26]. We de�ne it �rst for mappings Q fromgraphs to graphs. Such a mapping Q is said to have theBNDP, if there exists a function fQ : N ! N such thatwhenever the degrees of all nodes in a graph G are atmost k, then in Q(G) one �nds at most fQ(k) di�erentdegrees. Note a certain asymmetry in this de�nition:while the assumption is that the degrees in G are belowk, the conclusion is that the number of di�erent degreesin Q(G) is below fQ(k).It is known that over unordered structures FO de�n-able graph queries have the BNDP. This was proved in[26], using Gaifman's locality theorem. More recently,this property was shown to hold in FO(C) [23] and

L�1!(C) [24] (again, over unordered structures) andvery recently it was proved for FO in the ordered case[13], assuming that queries are order-invariant.Informally, our main result can be then stated as fol-lows: In the presence of relations which are almost-everywhere linear orders, invariant queries de�nable inL�1!(C) and other counting logics have the boundednumber of degrees property.The BNDP gives us easy proofs of expressivity bounds.For example, it is easy to see that transitive closuretrcl violates the BNDP: if one starts with a graph ofa successor relation on an n-element set (i.e., a chainin which all degrees are bounded by 1), in its transi-tive closure one �nds n + 1 di�erent degrees, showingthat ftrcl cannot exist. Thus, there are LOGSPACEproblems that cannot be expressed in L�1!(C) in thepresence of auxiliary relations that coincide with linearorders almost everywhere. Note that in a rather ad-hocway (the proof only works for trcl) the inexpressibilityof trcl in FO(C) in the presence of such auxiliary re-lations was proved very recently [27]; from the resultshere, this will follow as an easy corollary. The paper[27] then raised a natural question: is it possible thatFO(C) has the same power on ordered structures asit has on structures equipped with almost-linear-orderpreorder relations? A positive answer would imply thatthe lower bounds of [27] apply to TC0. However, weshall show (as a corollary of the main result) that theanswer to the above question is negative.To prove the main result, we exploit the locality tech-niques in �nite-model theory. Originated in the workby Hanf [15] and Gaifman [10], they were recently asubject of renewed attention [5, 9, 13, 26, 23, 24, 28, 34].The BNDP is typically proved by showing that a logicsatis�es an analog of either Hanf's or Gaifman's theo-rem [23]. However, those fail for L�1!(C) in the pres-ence of several classes of preorders. Nevertheless, weprove a statement, weaker than Gaifman's theorem, forcounting logics in the presence of auxiliary relations,and show that it implies the BNDP.Organization In Section 2, we give formal de�ni-tions of various counting extensions of FO, notions oflocality, and de�nability with auxiliary relations. Wealso give an example that shows how the presence ofauxiliary relations a�ects expressiveness.In Section 3, we state the main result and its corol-laries, in particular, the above mentioned dichotomy:there is an enormous gain in expressiveness of countinglogics, by going from auxiliary relations which almost-2



everywhere linear orders, to linear orders. We also givean example of failure of Gaifman's locality theorem forFO(C) in the presence of almost-everywhere linear or-ders.In the remainder of the paper, we prove the main result.In Section 4, we present two notions of locality thatare weaker than the notion corresponding to Gaifman'stheorem. We explain the connections between thosenotions and the BNDP, and show that the main theo-rem reduces to proving weak semi-locality of a logic. InSection 5, we prove weak semi-locality of L�1!(C) inthe presence of almost-everywhere linear orders, com-bining the bijective games of [16] and a strategy for theduplicator inspired by [33].Concluding remarks are given in Section 6. All proofscan be found in the full version [25].2 NotationsFinite Structures and Logics All structures areassumed to be �nite. A relational signature � is aset of relation symbols fR1, ..., Rlg, with associatedarities pi > 0. For directed graphs, the signatureconsists of one binary predicate. A �-structure isA = hA;RA1 ; : : : ; RAl i, where A is a �nite set, andRAi � Api interpretsRi. The class of �nite �-structuresis denoted by STRUCT[�]. When there is no confusion,we write Ri in place of RAi . Isomorphism is denotedby �=. The carrier of a structure A is always denotedby A.We abbreviate �rst-order logic by FO, and omit thestandard de�nitions. FO with counting, denoted byFO(C), is a two-sorted logic, with second sort beinginterpreted as an initial segment of natural numbers.That is, a structure A is of the formhfv1; : : : ; vng; f1; : : : ; ng; <;BIT; 1; n; RA1 ; : : : ; RAl i:Here the relations RAi are de�ned on the domainfv1; : : : ; vng, while on the numerical domain f1; : : : ; ngone has 1; n;< and the BIT predicate available(BIT(i; j) i� the ith bit in the binary representationof j is one). This logic also has counting quanti�ers9ix:'(x), meaning that that are at least i elements xthat satisfy '(x); here i refers to the numerical domainand x to the domain fv1; : : : ; vng. These quanti�ersbind x but not i. Ternary predicates + and � are de-�nable on the numerical domain [8], as is the quanti�er9!ixmeaning the existence of exactly i elements satisfy-ing a formula. For example, 9i9j [(j+j) = i^9!ix:'(x)]

tests if the number of x satisfying ' is even; this prop-erty is not de�nable in FO alone. We separate �rst-sort variables from second-sort variables by semicolon:'(~x;~|).There are several counting extensions of FO that aremore powerful than FO(C); among them FO(Qu),which is FO extended with all unary quanti�ers. Werefer the reader to [16] for the de�nition of FO(Qu)and its properties. Here, we mostly work with an evenmore powerful logic, de�ned below.We denote the in�nitary logic by L1! ; it extends FOby allowing in�nite conjunctions V and disjunctionsW. Then L1!(C) is a two-sorted logic, that extendsin�nitary logic L1!. Its structures are of the form(A;N), where A is a �nite relational structure, andN is a copy of natural numbers. Assume that everyconstant n 2 N is a second-sort term. To L1!, addcounting quanti�ers 9ix for every i 2 N, and countingterms: If ' is a formula and ~x is a tuple of free �rst-sort variables in ', then #~x:' is a term of the secondsort, and its free variables are those in ' except ~x.Its interpretation is the number of tuples ~a over the�nite �rst-sort universe that satisfy '. That is, givena structure A, a formula '(~x; ~y;~|), ~b � A, and ~|0 � N,the value of the term #~x:'(~x;~b;~|0) is the cardinality ofthe (�nite) set f~a � A j A j= '(~a;~b;~|0)g. For example,the interpretation of #x:E(x; y) is the in-degree of nodey in a graph with the edge-relation E.As this logic is too powerful (it expresses every propertyof �nite structures), we restrict it by means of the rankof a formulae and terms, denoted by rk. It is de�ned asquanti�er rank (that is, it is 0 for atomic formulae,rk(Wi 'i) = maxi rk('i); rk(:') = rk('); rk(9x') =rk(9ix') = rk(')+1) but it does not take into accountquanti�cation over N: rk(9i') = rk('). Furthermore,rk(#~x: ) = rk( ) + j~xj.De�nition 1 (see [24]) The logic L�1!(C) is de�nedto be the restriction of L1!(C) to terms and formulaeof �nite rank.It is known [24] that L�1!(C) formulae are closed underBoolean connectives and all quanti�cation, and thatevery predicate on N�: : :�N is de�nable by a L�1!(C)formula of rank 0. Thus, we assume that +; �;�;�,and in fact every predicate on natural numbers is avail-able. Known counting expansions of FO are containedin L�1!(C). That is, for every FO, FO(C), or FO(Qu)formula, there exists an equivalent L�1!(C) formula ofthe same rank. A counting logic of [3] can also be em-bedded into L�1!(C).3



De�nability with auxiliary relations An m-aryquery on �-structures, Q, is a mapping that associatesto each A 2 STRUCT[�] a structure hA;Si, where S �Am. We write ~a 2 Q(A) if ~a 2 S, where hA;Si =Q(A). A query Q is de�nable in a logic L if thereexists an L formula '(x1; : : : ; xm) such that Q(A) ='[A] def= hA; f~a j A j= '(~a)gi.Let �0 be a relational signature disjoint from �. If A is a�-structure on a universe A, and A0 is a �0-structure onA, we use the notation (A;A0) for the � [ �0-structureon A which inherits the interpretation of � relationalsymbols from A, and the interpretation of �0 symbolsfrom A0.Let C be a class of �0-structures, with � and �0 be-ing disjoint. Let A 2 STRUCT[�]. A formula '(~x)in the language of � [ �0 is called C-invariant on Aif for any two C structures A0 and A00 on A we have'[(A;A0)] = '[(A;A00)]. Associated with such a for-mula is the following m-ary query (where m =j~x j):Qw' (A) = � '[(A;A0)]; ' is C-invariant on A;; otherwise.where A0 is any structure from C on A. We use thenotation (L+ C)w to denote all queries de�ned in sucha way when ' ranges over formulae of L.A formula ' is C-invariant if it is C-invariant on everystructure. With such a ', we associate a query Q'given by Q'(A) = '[(A;A0)] where A0 is a structurefrom C on A. The class of all such queries is denotedby L+ C. Clearly,L+ C � (L+ C)wWe thus shall aim to establish expressivity bounds for(L+ C)w.When C is the class of order relations, we shall write <instead of C. The capture results for complexity classesdeal with the classes of queries of the form L+ <; forexample, uniform TC0 equals FO(C)+ < [2]. Whilequeries in L+ < are independent of a particular orderrelation used, the mere presence of such a relation canhave an impact on the expressivity of a logic.We give an example for FO(C). Assume that � has onebinary and unary relation, i.e. its structures are graphswith a selected subset of nodes. Let Q0 be the followingBoolean query [3]: given such a structure hA;E;Xi,where A 6= ;, E � A2 and X � A, return true i� Eis an equivalence relation, and the number of distinctsizes of E-classes equals jX j. It is known that Q0 is notexpressible in FO(C) [3]. However, it is expressible in

FO(C)+ <. Indeed, the equivalence relation x�y i�the E-equivalence classes of x and y have the samecardinality is de�nable in FO(C). Thus, in FO(C) onede�nes the set of smallest (wrt <) elements of eachsuch class, and then compares, in FO(C), the size ofthis set to X . The two are the same i� the value of Q0is true. Note that any linear order su�ces to expressthis query.Thus, FO(C) � FO(C)+ <. Since the latter capturesuniform TC0, this means that there are problems inTC0 not de�nable in FO(C) over unordered structures.It is also known that FO � FO+ <. We shall see laterthat this continues to be true for other counting logics.Bounded number of degrees property (BNDP)If A 2 STRUCT[�], and Ri is of arity pi, thendegreej(RAi ; a) for 1 � j � pi is the number of tu-ples ~a in RAi having a in the jth position. In the caseof directed graphs, this gives us the usual notions ofin- and out-degree. By deg set(A) we mean the setof all degrees realized in A, and deg count(A) standsfor the cardinality of deg set(A). We use the notationSTRUCTk[�] for fA 2 STRUCT[�] j deg set(A) �f0; 1; : : : ; kgg.De�nition 2 (see [26, 5, 23]) An m-ary query Q,m � 1, is said to have the bounded number of de-grees property1 , or BNDP, if there exists a functionfQ : N ! N such that deg count(Q(A)) � fQ(k) forevery A 2 STRUCTk[�]. 2The BNDP is very easy to use for proving expressivitybounds [26]. For example, it is very easy to verify that(deterministic) transitive closure violates the BNDP.Locality All existing proofs of the BNDP establish�rst that a logic is local. We now de�ne this concept.Given a structure A, its Gaifman graph [7, 10, 9] G(A)is de�ned as hA;Ei where (a; b) is in E i� there isa tuple ~c 2 RAi for some i such that both a and bare in ~c. The distance d(a; b) is de�ned as the lengthof the shortest path from a to b in G(A); we assumed(a; a) = 0. If ~a = (a1; : : : ; an) and ~b = (b1; : : : ; bm),then d(~a;~b) = minij d(ai; bj). Given ~a over A, its1This property was formerly known as the bounded degreeproperty, or the BDP, see [5, 17, 24, 26, 27, etc]. However, manyfound the name confusing, as the property refers to the numberof degrees in the output being bounded, rather than the degreesthemselves. Following a suggestion by Neil Immerman, we de-cided to change the name from BDP to BNDP.4



r-sphere SAr (~a) is fb 2 A j d(~a; b) � rg. Its r-neighborhood NAr (~a) is de�ned as a structure NAr (~a)hSAr (~a); RA1 \ SAr (~a)p1 ; : : : ; RAk \ SAr (~a)pl ; a1; : : : ; aniin the signature that extends � with n constant sym-bols. That is, the carrier of NAr (~a) is SAr (~a), the in-terpretation of the �-relations is inherited from A, andthe n extra constants are the elements of ~a. If A isunderstood, we write Sr(~a) and Nr(~a).If A;B 2 STRUCT[�], and there is an isomorphismNAr (~a)! NBr (~b) (that sends ~a to~b), we write ~a �A;Br ~b.If A = B, we write ~a �Ar ~b.De�nition 3 (cf. [23]) An m-ary query Q is called lo-cal if there exists a number r � 0 such that, for anystructure A and any ~a;~b 2 Am~a �Ar ~b implies ~a 2 Q(A) i� ~b 2 Q(A):The minimum such r is called the locality rank of Q,and is denoted by lr(Q). 2It follows from Gaifman's theorem [10] that every FO-de�nable query is local; moreover, if Q is de�nable by aformula '(~x), then lr(Q) � (7qr(')�1)=2. It was shownin [23, 24] that every FO(Qu), FO(C), and L�1!(C)-de�nable query is local; furthermore, lr(Q) � 2rk(')[24].Fact 1 (see [5]) Every local query has the boundednumber of degrees property. 2Thus, without auxiliary relations, queries such as tran-sitive closure cannot be expressed in FO(C) and evenin L�1!(C).3 Main resultsWe need to de�ne structures that are \as close as pos-sible" to linear orders. We use the approach of [27]:take a linear order, and replace a small portion of it atthe end by a preorder whose equivalence classes havesize 2. See Figure 1 for a picture.Formally, let g : N ! R be a nondecreasing function2.De�ne <�g as the class of binary relations (A;R) suchthat there exists a partition A = B [ C with jBj �n� g(n) and the following properties:2One can deal with functions g : N ! N as well; however, asin many examples we use log2, we prefer to have R as the range.

� R restricted to B is a linear order.� R restricted to C is a preorder where every equiv-alence class has at most two elements.� For any b 2 B and c 2 C, (b; c) 2 R.� For any b 2 B and c 2 C, (c; b) 62 RProviso: When we deal with queries in L + C and(L+C)w, which are de�ned on structures (A;A0), A0 2C, all locality concepts (neighborhoods, degrees, etc)refer only to the �-structureA, and not to the auxiliarystructure A0 from C.Theorem 1 Let g : N ! R be a nondecreasing func-tion that is not bounded by a constant. Then everyquery in (L�1!(C)+ <�g)w has the bounded number ofdegrees property.That is, with auxiliary structures arbitrarily close tolinear orders, the most powerful of counting logics,L�1!(C), still exhibits the very tame behavior typicalfor FO queries over unordered structures.Corollaries With g as above, the (deterministic)transitive closure, and, more generally, problems com-plete for classes DLOGSPACE and above it under �rst-order reductions, are not de�nable in any of the count-ing logics we consider, even in the presence of relationsfrom <�g . That is,Corollary 1 Let g : N ! R be a nondecreasingfunction that is not bounded by a constant. Thenevery query in (FO(Qu)+ <�g)w, (FO(C)+ <�g)w,L�1!(C)+ <�g , FO(Qu)+ <�g , or FO(C)+ <�g hasthe BNDP.The following corollaries demonstrate the enormousgain in expressiveness by going from \almost orders" toorders. By a colored graph we mean a structure of thesignature (E;U1; : : : ; Um) where E is binary, and Uisare unary. That is, it is a graph with a few selectedsubsets of nodes. A colored graph query is a binaryquery Q on colored graphs; that is, it returns graphs.The hardness of such a query is de�ned as the functionHQ : N ! N where HQ(n) is maxfdeg count(Q(A))gwith A ranging over structures with jAj = n and Ebeing a successor relation.Recall that deg count(�) is the cardinality of the set ofall degrees realized in a structure. That is, the hardnessshows how complex the output might look like if the5
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� n� g(n) elements � g(n) elements
Figure 1. A relation from <�ginput is a successor relation with a few colored subsets.Note that 0 � HQ(n) � n + 1. Since every propertyof ordered structures is de�nable in L�1!(C) [24], weobtain the following dichotomy result:Corollary 2 � Let g : N ! R be any nondecreasingfunction that is not bounded by a constant. Let Qbe a colored graph query in L�1!(C)+ <�g . Thenthere exists a constant C such that HQ(n) < C forall n.� For any function f : N ! N such that 0 � f(n) �n + 1, there exists a colored graph query Q inL�1!(C)+ < such that HQ = f .Thus, dropping a tiny portion of linear order (e.g.,log log : : : logn elements) accounts for the increase inhardness from constant to arbitrary one!FO(C) also admits this kind of dichotomy, as there ex-ists a colored graph query Q de�nable in FO(C)+ <such that HQ(n) � logn [17]. In particular, there areproblems in uniform TC0 that cannot be expressed inFO(C)+ <�g . Moreover, it is known that there are uni-form AC0 (that is, FO(BIT)+ <) queries that violatethe BNDP ([12], see also [6]). Hence, we obtain:Corollary 3 AC0 6� (L�1!(C)+ <�g )w. 2Corollary 3 also answers an open question from [27].While [27] showed that trcl 62 FO(C)+ <�g , it was leftopen if FO(C)+ <�g= TC0 for some function g as inTheorem 1. Now we have:Corollary 4 Let g : N ! R be as in Theorem 1, andL be FO(C), or FO(Qu), or L�1!(C). Then L+ <�g6= L+ <. Furthermore, FO(C) � FO(C)+ <�g .

Note that the presence of some form of counting isessential in these results: it was shown recently [13]that every query in FO+ < has the BNDP.Outline of the proof of Theorem 1 All proofsof the BNDP that are currently known derive it fromlocality of queries. Unfortunately, we cannot use thismethod as queries in (L�1!(C)+ <�g)w need not belocal.Proposition 1 Let g(n) < log nlog logn be nondecreasing,and not bounded by a constant. Then there exist non-local queries in (L�1!(C)+ <�g)w.Proof sketch: We construct a query Q de�nable by aformula '(x), and a sequence of structures An, n 2 N,with an n-element universe, so that for each n largeenough, there are two points a; b in An with isomorphicr-neighborhoods, and (An; P ) j= '(a) ^ :'(b) for anyP 2<�g , where r increases with n.The signature � consists of three unary relations U1; U2and C, and one binary relation E. We use P for theauxiliary relation from <�g . Let l(n) = b log(n�logn)g(n)+1 c.In An, U1 has cardinality Mn = l(n)(g(n) + 1) �log(n � logn), and U2 is its complement. The unaryrelation C is interpreted as a two-element subset ofU2. Let E0 be de�ned on U1 as a disjoint union ofg(n) + 1 successor relations of length l(n) each. Foreach such successor relation E0i, i = 1; : : : ; g(n) + 1, letci be the node at the distance bl(n)=3c from the startnode, and di be the node at the distance b2 � l(n)=3cfrom the start node. Let CAn = fa; bg. We then de�neEAn = E0 [ Sg(n)+1i=1 f(a; ci); (b; di)g.We next show that there exists a formula �(x; y)in FO(C) such that �(x; y) implies x; y 2 C and(An; P ) j= �(a; b) and (An; P ) j= :�(b; a) for any inter-pretation of P as a relation from <�g . This will clearly6



su�ce, as a and b have isomorphic neighborhoods ofradius O(l(n)).The formula �(x; y) is de�ned as C(x) ^ C(y) ^9u; v:(E(x; u) ^ E(y; v) ^ (u; v)) where (u; v) holdsi� there is an E-path from u to v all of whose nodesare in P1, the linear order part of P . That  can beexpressed follows from two observations: �rst, thereare su�ciently many successor relations in E for oneof them to be totally contained in P1, and second, onthat successor relation, one can use the order part ofP to code monadic second-order using counting, as itwas done in [17]. See [25] for details. 2Proposition 1 provides the �rst nontrivial example thatseparates the notion of locality and the BNDP. Nowone needs a di�erent technique to prove Theorem 1.We introduce this technique in two steps. In the nextsection, we consider two ways of weakening the notionof locality, and we show that one of them, weak semi-locality, implies the BNDP. In Section 5, we show howthe bijective games [16] can be used to prove weak semi-locality of (L�1!(C)+ <�g)w queries.4 Weak localityTo de�ne locality of a query, we considered the equiv-alence relation ~a �Ar ~b i� NAr (~a) �= NAr (~b). We nowconsider two re�nements that lead to weaker notionsof locality. First, we write ~a!!Ar ~b if ~a �Ar ~b andSAr (~a) \ SAr (~b) = ;.For the other re�nement, consider a partition I =(I1; I2) of the set f1; : : : ; ng. Given ~x = (x1; : : : ; xn),we denote by ~xI1 and ~xI2 the subtuples of ~x that con-sist of those components whose indices belong to I1or I2, respectively. For example, if n = 4 and I =(f1; 3g; f2; 4g), then ~xI1 = (x1; x3) and ~xI2 = (x2; x4).We then write ~a!Ar ~b, for ~a;~b 2 An, if there exists apartition I = (I1; I2) of f1; : : : ; ng such that� ~aI1 �Ar ~bI1 ;� ~aI2 = ~bI2 ;� SAr (~aI1 ), SAr (~aI2 ), SAr (~bI1 ) are disjoint.Clearly, ~a!!Ar ~b implies ~a!Ar ~b (by taking I2 to beempty), and ~a!Ar+1 ~b implies ~a �Ar ~b.De�nition 4 An m-ary query Q on �-structures iscalled weakly local if there exists a number r 2 N suchthat for any A 2 STRUCT[�] and any ~a;~b 2 Am,~a!!Ar ~b implies ~a 2 Q(A) i� ~b 2 Q(A).

A query Q is said to be weakly semi-local if there existsa number r 2 N such that for any A 2 STRUCT[�] andany ~a;~b 2 Am, ~a!Ar ~b implies ~a 2 Q(A) i� ~b 2 Q(A).Proposition 2 Every local query is weakly semi-local,and every weakly semi-local query is weakly local. Thereexist queries that are weakly local but not weakly semi-local, and there exist queries that are weakly semi-localbut not local. 2We study these notions because they are easier to provethan the BNDP, and we will see that the BNDP canbe derived from them. The notion of weak locality isparticularly simple: the only di�erence between it andlocality is the disjointness of neighborhoods. However,it only gives us a partial result:Proposition 3 a) Let Q be a binary weakly local query(i.e., the output is a graph). Then Q has the boundednumber of degrees property.b) For every m > 2, there exists an m-ary weakly localquery that does not have the bounded number of degreesproperty. 2Combined with the results of Section 5, that would besu�cient to derive Theorem 1 for queries that returngraphs. However, for arbitrary queries, we need themore involved notion of weak semi-locality:Theorem 2 Every weakly semi-local query has thebounded number of degrees property.Proof sketch. For an m-ary query Q on �-structures,let r witness its weak semi-locality. For each k > 0,we show how to �nd a numberM =M(�;m; r; k) suchthat, whenever A 2 STRUCTk[�], NAr (a) �= NAr (b)and the isomorphism type of NAr (a) is realized at leastM times in A, then for each �xed i � m, degree i(a) =degree i(b) in Q(A). From this we can calculate fQ(k)and derive the BNDP. See [25] for details. 2To incorporate the information about the function g,we modify the de�nition as follows: ~a!Ag;r ~b if ~a!Ar~b and ���SAr (~a) [ Sr(~b)��� � g(jAj). Then a query Q isg-weakly semi-local if there exists an r 2 N such that~a!Ag;r ~b implies ~a 2 Q(A) i� ~b 2 Q(A). The followingis easily derived from Theorem 2.Corollary 5 Let g : N ! R be nondecreasing and notbounded by a constant. Then every g-weakly semi-localquery has the BNDP. 27



5 Games and weak semi-localityThe goal of this section is to prove the g-weak semi-locality of queries in (L�1!(C)+ <�g)w. We do this byusing bijective games of [16].The game is played by two players, called thespoiler and the duplicator, on two structures A;B 2STRUCT[�]. For the n-round game, in each round i =1; : : : ; n, the duplicator selects a bijection fi : A ! B,where B is the carrier of B, and the spoiler selects apoint ai 2 A (if card(A) 6= card(B), then the spoilerimmediately wins). The duplicator wins after n roundsif the relation f(ai; fi(ai)) j 1 � i � ng is a partial iso-morphism A ! B; otherwise the spoiler wins. If theduplicator has a winning strategy in the n-move bijec-tive game on A and B, we write A �bijn B. We write(A;~a) �bijn (B;~b)) if the duplicator has a winning strat-egy in the n-move bijective game that starts with theposition (~a;~b). This condition implies that for a FO (orFO(Qu)) formula '(~x) of quanti�er rank n, A j= '(~a)i� B j= '(~b) [16]. We extend this to L�1!(C). Notethat the lemma below follows from a slightly more gen-eral result of [18], but it also has a simple direct proof,see [25].Lemma 1 Let '(x1; : : : ; xm) be a L�1!(C) formula inthe language of �, with all free variables of the �rstsort. Let (A;~a) �bijrk(') (B;~b), where ~a 2 Am;~b 2 Bm.Then A j= '(~a) i� B j= '(~b). 2The following is the key lemma, which is proved by atechnique reminiscent of that in [33], extended to dealwith bijective games.Lemma 2 Let g : N ! R be nondecreasing and notbounded by a constant. For any A, m > 0, ~a;~b 2 Am,and n > 0, if ~a!Ag;2n ~b, then there exists a preorderP on A such that P 2<�g and(A; P;~a) �bijn (A; P;~b)Proof sketch. Let r = 2n and ~a !Ag;r ~b.Let I = (I1; I2) be a partition witnessing that.We assume without loss of generality that I1 isnonempty and equals f1; : : : ; lg, l � m. Let ~a0 =(a1; : : : ; al), ~b0 = (b1; : : : ; bl), and ~c = (al+1; : : : ; am) =(bl+1; : : : ; bm). Then ~a0!!Ar ~b0, SAr (~a0~b0) \ SAr (~c) = ;,and ���SAr (~a0~b0~c)��� � g(jAj).

We now construct P . Let A0 be SAr (~a0)�fa1; : : : ; alg.Pick any ordering �1 on SAr (~a0) such that a1 �1 a2 �1: : : �1 al and further, for any a 2 SAr (~a0)�fa1; : : : ; algwe have ai �1 a, for each i = 1; : : : ; l, and for anya0; a00 2 SAr (~a0) � fa1; : : : ; alg, d(a0;~a0) < d(a00;~a0) im-plies a0 �1 a00.Let h be an isomorphism of NAr (~a) onto NAr (~b). De-�ne, on SAr (~b0), an ordering �2 by letting b0 �2 b00 i�h�1(b0) �1 h�1(b00). Clearly, the initial fragment of�2 is (b1; : : : ; bl), and it respects the distance to ~b0:d(b0;~b0) < d(b00;~b0) implies b0 �2 b00.Let P0 be an arbitrary linear ordering on A�SAr (~a0~b0).Intuitively, P is P0 followed by a preorder obtainedby putting together �1 and �2, and tying them by h.Formally, (x; y) 2 P i�8>>>>>>><>>>>>>>: x; y 62 SAr (~a0~b0) and (x; y) 2 P0; orx 62 SAr (~a0~b0) and y 2 SAr (~a0~b0); orx 2 SAr (~a0); y 2 SAr (~a0) and x �1 y; orx 2 SAr (~b0); y 2 SAr (~b0) and x �2 y; orx 2 SAr (~a0); y 2 SAr (~b0) and h(x) �2 y; orx 2 SAr (~b0); y 2 SAr (~a0) and x �2 h(y)It easily follows from ~a0!!Ag;r~b0 that P 2<�g .Our next claims give a winning strategy for the du-plicator in the bijective game on A~a = (A; P;~a) andA~b = (A; P;~b). Note that the universe of both struc-tures is the same, A, and in the game the spoiler se-lects points in A, and the duplicator select bijectionsf : A! A.De�ne a binary relation H on SAr (~a0~b0) by letting(x; y) 2 H i� x = h(y) or y = h(x). We showthat the duplicator can play in such a way that, if~x = (x1; : : : ; xn) and ~y = (y1; : : : ; yn) are points playedon A~a and A~b respectively after n rounds, then thereexists a set J � f1; : : : ; ng with the following proper-ties. (1) If j 2 J , then (xj ; yj) 2 H . (2) If j 62 J , thenxj = yj . (3) ~a0~xJ �A0 ~b0~yJ , where ~xJ is the subtupleof ~x that consists of the component of ~x whose indicesare in J , and likewise for ~yJ . (4) dA(~a0~xJ ; ~xJ ) > 1, anddA(~b0~yJ ; ~xJ ) > 1, where dA is the distance in G(A), and~xJ consists of the components of ~x whose indices arenot in ~xJ .This su�ces to show that the duplicator wins. For thiswe need to establish ~a0~c~x �A0 ~b0~c~y, and furthermore,show that the mapping F induced by these two tuplespreserves P . The latter is clear though as for any v =F (u), either u = v or (u; v) 2 H , by construction, andthus P is preserved. To see that ~a0~c~x �A0 ~b0~c~y, notice8



that ~a0~xJ �0 ~b0~yJ by (3), and by (4) and the de�nitionof ~c, dA(~a0~xJ ;~c~xJ ) > 1, and dA(~b0~yJ ;~c~xJ ) > 1. Thusno �-relation can have a tuple containing an elementof ~a0~xJ and an element of ~c~xJ , or an element of ~b0~yJand an element of ~c~xJ . This su�ces to conclude that~a0~c~x �A0 ~b0~c~y, and thus the duplicator wins the n-roundgame, provided (1)-(4) hold.To prove that the duplicator can play as required, weuse a strategy somewhat similar to the one used in[33] for ordinary (not bijective) games. Details can befound in [25]. 2We now put these two lemmas together to showTheorem 3 Let g be nondecreasing and not boundedby a constant, and let Q be an m-ary query in(L�1!(C)+ <�g)w. Then Q is g-weakly semi-local.Proof: Let Q be de�nable by '(x1; : : : ; xm), where 'is a L�1!(C) formula in the language of � and an ex-tra symbol S for the auxiliary preorder. Let A be a�-structure, with ~a;~b 2 Am and ~a !Ag;2n ~b, wheren = rk('). Assume that ' is <�g -invariant on A.Let P0 be a preorder on A, such that P0 2<�g . Let~a 2 Q(A) = '[(A; P0)]. Choose P to be the pre-order given by Lemma 2. Due to the invariance of', ~a 2 '[(A; P )]; that is, (A; P ) j= '(~a). By Lem-mas 2 and 1, (A; P ) j= '(~b), and again by invariance(A; P0) j= '(~b). Thus, ~b 2 '[(A; P0)] = Q(A). Thisproves g-weak semi-locality of Q. 2Corollary 6 Let -2 be the class of preorders in whichevery equivalence class has size at most 2. Then everyquery de�nable in L�1!(C)+ -2 is weakly semi-local,and has the BNDP. 2Proof of Theorem 1 Let Q be in (L�1!(C)+ <�g)w.By Theorem 3, it is g-weakly semi-local. By Corollary5, it has the BNDP. 26 ConclusionWe have shown that queries de�nable in counting logicsFO(C), FO(Qu) and L�1!(C), in the presence of rela-tions from the class <�g have the bounded number ofdegrees property. In other words, even extremely pow-erful counting logics in the presence of relations whichare almost-everywhere linear orders have a very tamebehavior. The situation changes drastically when <�g

is replaced by a linear order: for example, L�1!(C)+ <expresses every query on ordered structures. Some mo-tivation for this study stems from a result in [27] thatshowed, in a rather ad hoc way, that transitive closureis not de�nable in FO(C)+ <�g . As FO(C)+ < cap-tures uniform TC0, one may wonder if the techniquescould extend from <�g to <. In fact, [27] did not re-solve the problem whether FO(C)+ <�g 6= FO(C)+ <,thus leaving open the possibility that the two may co-incide. We showed here that this is not the case. Theresults in this paper provide further evidence that it isvery hard to separate TC0 from other classes, e.g., NP.Unlike previous results of this kind [32], we showed in-herent limitations of the current techniques in descrip-tive complexity, based on the structure of the auxiliaryrelations.The techniques of this paper cannot be straightfor-wardly extended to prove separation results in the or-dered case. The logic L�1!(C) is very powerful, as itexpresses every property of natural numbers, and allother known counting extensions of FO can be embed-ded into it. We also relied on bijective games to provethe main result. However, bijective games characterizeexpressiveness of a logic which de�nes all queries on or-dered �nite structures. Thus, in the ordered case onecannot use the generic techniques from [16, 23, 24, 28]that apply to a variety of counting logics.It was shown in [8] that if there is a proof of inexpress-ibility of some property in FO(C)+ <, then there mustbe a proof of that based on the counting games of [20].The counting game is weaker than the bijective game;on the other hand, it does not have the inherent limita-tions of the latter in the ordered case. Thus, a possibleway of proving a separation result may be to modify thelocality techniques to work with the counting, ratherthan bijective, games.Another approach would be to modify the ordered con-jecture of [22] to include counting. Namely, such amodi�ed conjecture would say that there is no un-bounded class of ordered structures on which FO(C)captures polynomial time. One reason to consider thisis that there are strong indications that for FO the con-jecture holds [22]. With counting, however, one hasto be careful: by considering the class of linear ordersand adding unary quanti�ers which test for polynomialtime properties of cardinalities, one obtains a countinglogic for which the conjecture fails. However, FO(C)has rather limited arithmetic, and perhaps an attemptto understand why it fails to capture polynomial timeon various classes of structures may lead to a better un-derstanding of its structural properties which are not9
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