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Abstract

We study adding aggregate operators, such as sum-
ming up elements of a column of a relation, to log-
ics with counting mechanisms. The primary motiva-
tion comes from database applications, where aggregate
operators are present in all real life query languages.
Unlike other features of query languages, aggregates
are not adequately captured by the existing logical for-
malisms. Consequently, all previous approaches to an-
alyzing the expressive power of aggregation were only
capable of producing partial results, depending on the
allowed class of aggregate and arithmetic operations.

We consider a powerful counting logic, and extend
it with the set of all aggregate operators. We show that
the resulting logic satisfies analogs of Hanf’s and Gaif-
man’s theorems, meaning that it can only express local
properties. We consider a database query language that
expresses all the standard aggregates found in commer-
cial query languages, and show how it can be translated
into the aggregate logic, thereby providing a number of
expressivity bounds, that do not depend on a particu-
lar class of arithmetic functions, and that subsume all
those previously known. We consider a restricted ag-
gregate logic that gives us a tighter capture of database
languages, and also use it to show that some questions
on expressivity of aggregation cannot be answered with-
out resolving some deep problems in complexity theory.
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1 Introduction

First-order logic over finite structures plays a fun-
damental role in several computer science applications,
perhaps most notably, in database theory. The stan-
dard theoretical query languages — relational algebra
and calculus — that are the backbone for the commer-
cial query languages, have precisely the power of first-
order logic. However, while this power is sufficient for
writing many useful queries, in practice one often finds
that it is quite limited for two reasons. Firstly, in first-
order logic, one cannot do fixpoint computation (for ex-
ample, one cannot compute the transitive closure of a
graph). Secondly, one cannot express nontrivial count-
ing properties (for example, one cannot compare the
cardinalities of two sets).

From the practical point of view, fixpoint compu-
tation, although sometimes desirable, is of less impor-
tance in the database context than counting. Indeed,
in the de-facto standard of the commercial database
world, SQL, a limited recursive construct has only been
proposed for the latest language standard (SQL3). At
the same time, constructs such as cardinality of a re-
lation or the average value of a column, known as ag-
gregate functions, are present in any commercial imple-
mentation of SQL (they belong to what is called the
entry level SQL92, which is supported by all systems).

On the theory side, however, fixpoint extensions
of first-order logic and corresponding query languages
are much better studied than their counting counter-
parts. A standard fixpoint extension considered in the
database literature is the query language datalog, and
practically every aspect of it — expressive power, opti-
mization, adding negation, implementation techniques
— was the subject of numerous papers. For the study of
expressive power of query languages, which will interest
us most in this paper, a very nice result of [19] showed
that the infinitary logic with finitely many variables,
L% ., has a 0-1 law over finite structures. As many fix-
point logics can be embedded into it, this result gives
many expressivity bounds for datalog-like languages.
In the presence of an order relation, it is again a clas-



sical result that various fixpoint extensions of first-
order logic capture familiar complexity classes such as
PTIME and PSPACE. See [1, 6] for an overview.

For extensions with counting and aggregate, much
less is known, especially in terms of expressive power
of languages. In an early paper [17] it was shown how
to extend both relational algebra and calculus with
aggregate constructs, but the resulting language did
not correspond naturally to any reasonable logic. It is
known how to integrate aggregation into datalog-like
languages (both recursive and nonrecursive) [30, 33],
and various aspects of such aggregate languages were
studied (e.g., query optimization [26] and handling con-
straints involving aggregation [31]).

At this point, let us give an example of a typical
aggregate query that would be supported by all com-
mercial versions of SQL, and use it to explain problems
that arise when one attempts to analyze expressiveness
of the language. Suppose we have two database rela-
tions: a relation R1 with attributes “employee” and
“department”, and a relation R2 with attributes “em-
ployee” and “salary”. Suppose we want to find the av-
erage salary for each department that pays total salary
at least $10°. In SQL, this is done as follows.

SELECT R1.Dept, AVG(R2.Salary)
FROM R1, R2

WHERE R1.Employee = R2.Employee
GROUPBY R1.Dept

HAVING SUM(R2.Salary) > 1000000

Relations R1 and R2 separate the information about
departments and salaries. This query joins them to
put together departments, employees, and salaries, and
then performs an aggregation over the salary column,
for each department in the database, followed by se-
lecting some of the resulting tuples.

While the features of the language given by the
SELECT, FROM and WHERE clauses are well-known to be
first-order, other features used in this example pose a
problem. First, we permit computation of aggregate
operators such as AVG and SUM over the entire column
of a relation. This form of counting is rather differ-
ent from the counting quantifiers or terms (see, e.g,
[7, 16, 29]), normally supported by logical formalisms.
Second, the GROUPBY clause creates an intermediate
structure which is a set of sets — for each department,
it groups together its employees. Again, this does not
get captured adequately by existing logical formalisms.

This shows why it is hard to capture aggregation in
query languages by a logic whose expressive power is
easy to analyze. Still, there exist some partial results.
For example, [27] gives some bounds based on the es-
timates on the largest number a query can produce;

clearly such bounds are not robust and do not with-
stand adding arithmetic operations. In [4] it is shown
that the transitive closure of a graph is not express-
ible in the aggregate extension of first-order logic if
DLOGSPACE # NLOGSPACE. In [24] this is proved
without any complexity assumptions; a generalization
of [24] to many other queries is given in [5]. One prob-
lem with the proofs of [24, 5] is that they are very
“syntactic” — they work for a particular presentation
of the language, and rely heavily on complicated syn-
tactic rewritings of queries, rather than on the seman-
tic properties of those. An attempt to remedy this
was made in [21] which considered a sublanguage that
only permits aggregation over columns of natural num-
bers (for example, AVG is not allowed). Then [21] gave
a somewhat complicated encoding of the language in
first-order logic with counting quantifiers, for which ex-
pressivity bounds are known [21, 28]. The encoding of
[21] was extended to aggregation over rational numbers
[25]; it did allow more aggregates (e.g., AVG) and more
arithmetic, at the expense of a very unpleasant and
complicated encoding procedure.

This shows that first-order logic with counting
quantifiers is inadequate as a logic for expressing aggre-
gate query languages. It also brings up an analogy with
the development of datalog-like languages and LY,
and raises the following question: Can we find a pow-
erful logic into which aggregate queries can be easily
embedded, and whose properties can be analyzed so
that bounds for query languages can be derived?

Our main goal is to give the positive answer to this
question. To do so, we combine a powerful infinitary
counting logic from [22] with an elegant framework of
[11] for adding aggregation. As the numerical domain,
we choose the set of rational numbers Q, although other
domains (e.g., Z, R) can be chosen. The resulting logic
Laggr defines every arithmetic operation and every ag-
gregate function. We then show that it has very nice
behavior: its formulae satisfy analogs of Hanf’s [8, 12]
and Gaifman’s [10] theorems, meaning that it can only
express local properties. In particular, properties such
as connectivity of graphs cannot be expressed.

We then consider a theoretical language RL88",
similar to those defined in [3, 24], and explain how
it models all the features of SQL. Next, we show an
embedding of RL*8" into Lagg,, which is much simpler
than those previously considered for first-order with
counting [21, 25]. This implies that the behavior of ag-
gregate queries is local over a large class of inputs, no
matter what family of aggregate and arithmetic oper-
ations the language possesses.

Not only is this result much stronger than all previ-
ous results on expressiveness of aggregation, it is also



proved in a much nicer way. Furthermore, we believe
that logics with aggregation are interesting on their
own right, as they give a rather disciplined approach
to modeling aggregation and can be used to study other
aspects of it.

Organization We give notations, including two-
sorted structures and a formal definition of aggregates
in Section 2. In Section 3 we give the definition of the
aggregate logic Lager. In Section 4 we explain the lo-
cality theorems of Hanf and Gaifman and prove that
Laggr satisfies analogs of both of them.

In Section 5, we define an aggregate query language
NRLAE" on nested relations, that models both aggre-
gation and grouping features of SQL. We show, using
standard techniques, that queries from flat relations to
flat relations in this language can be expressed in a sim-
pler language called RL*8" that does not use nested
relations even as intermediate structures, and then we
give a translation of RL™®" into Lagey. This shows
that NRL*88" queries over flat databases that do not
contain numbers are local. In Section 6 we consider a
simpler logic Lagger and show that it captures the lan-
guage RL*® . We also show that some basic questions
about expressive power of RL*8" cannot be answered
without resolving some deep problems in complexity
theory, under the assumption that input databases are
allowed to contain numbers.

2 Notation

Most logics we consider here are two-sorted, and
they are defined on two-sorted structures, with one sort
being numerical. We shall assume, throughout the pa-
per, that the numerical sort is interpreted as Q, the
set of rational numbers. A two sorted relational signa-
ture o is a finite collection {Ry(ny, J1),..., Ri(ny, J;)}
where R;s are relation names, n;s are their arities, and
Ji € {1,...,n;} is the set of indices for the first sort.
For example, {R(3,{1,2})} is a signature that consists
of a single ternary relation so that in each tuple (a, b, ¢)
in R, a,b are of the first sort and c is of the second sort.

We let U be an infinite set, disjoint from Q, to be in-
terpreted as the domain of the first sort. A structure of
signature o (or o-structure) is A = (A, Q, R{', ..., R{*),
where A C U is the universe of the first sort for A, and
R# C TIpL, dom(i, k), where dom(i, k) = A if k € J;
and dom(i, k) = Q if k ¢ J;. We shall always assume
that A is finite.

We let {{ X}, denote the set of all n-element multi-
sets (bags) over X. The multiset containing precisely
the elements z1,...,x, is denoted by {z1,...,z,[}.

Now, following [11], we define an aggregate func-
tion as a collection F = {fo, f1,f2,..., fu} where

3

fn:{Q},, = Q and f, € Q Each function f, shows
how the aggregate function behaves on an n-element
input multiset of rational numbers, and the value f, is
the result when the input is infinite.

Examples include the aggregates Y and [[: > =

{s0,81,...,80} and [[ = {po, p1, ..., } where sop =0
and Sn({‘Q177qn‘}) =q¢ + ...+ @n, and po =1
and p,({lg1,--sanl}) = @ - ... - gu. (We assume

sy = pu = 0.) Standard database languages use other
aggregates; in fact, standard ones for SQL are >, MIN,
MAX defined as the minimum (maximum) element of
the input bag, COUNT, whose ith function is the con-
stant 4, and AVG, whose ith function is s;/i for i > 0.

3 An aggregate logic

Agsume that we are given two signatures on Q : one,
denoted by (2, of functions and predicates, and one,
denoted by O, of aggregates. In addition we assume
that there is a constant symbol ¢, for each ¢ € Q.
We now define an aggregate logic Lage: (2, ©), on two-
sorted structures. We do it, similarly to [22], in two
steps. We first define a larger logic Lager (©2,0) and
then put a restriction on its formulae.

We define terms and formulae of the two-sorted
logic Lager (©2,0), over two-sorted structures, by si-
multaneous induction. Every variable of the ith sort
is a term of the ith sort, i = 1,2. Every constant
¢q € Qs a term of the second sort. Given a pair (n, J)
with J C {1,...,n}, we say that an n-tuple of terms
t'=(ty,...,t,) is of type (n,J), written & : (n, J), if t;
is a first-sort term for i € J and a second-sort term for
i ¢ J. For a formula (%), we write ¢ : (n,J) and say
that its type is (n,J) if £ = (z1,...,2z,) and 1 € J iff
x; is of the first sort.

Now for each R;(n;, J;) in o, and £ : (ng, J;), we let
R;i(#) be a formula. Formulae are then closed under
infinitary disjunctions \/ and conjunctions A, negation
=, and quantifiers over both first-sort domain A and
second-sort domain Q.

If t1,...,t, are second-sort terms, and f an n-ary

function symbol from €, then f(¢1,...,t,) is a second-
sort term. For an n-ary predicate symbol P from 2,
P(ty,...,t,) is a formula, as well as ¢; = t5 for terms
of either sort.

Next, we add counting and aggregation. For any
formula (#,7) with ¢ being variables of the first sort,
we let ¢(Z) = #7.¢0(%,7) be a second-sort term. Let
F be an aggregate from ©. Let (%, %) be a formula,
and #(Z,7) a second-sort term. Then Aggrr¥.(p,t) is
a second-sort term with free variables Z.

We now discuss the semantics. A tuple @ =



(aiy...,ay) is of type (n,J) if a; € U for i € J and
a; € Q for i ¢ J. For every two-sorted o-structure A,
a formula (%) or a term ¢(Z) of type (n,J) in the lan-
guage of o, and a tuple @ over AUQ of type (n,J), we
define the value t*(@) of the term ¢ on @ in A and the
relation A |= ¢(@). The definition is standard, with
only the case of counting terms and aggregation re-
quiring explanation. For (%) = #¢.¢(Z, ), the value
of (@) in A is the (finite) number of b over A such that
A= ¢(d,b).

Let s(Z) = Aggrz7.(p(Z,9),t(Z,7)), and let @ be of
the same type as Z. Define ¢(@, A) = {b | A |= ¢(a@,b)}.
Let t(¢(d@, A)) be the multiset {{tA(a@,b) | b € ¢(a@, A)}.
(This is a multiset since ¢ may produce identical val-
ues on several (@,b).) Let n be the cardinality of
this multiset. Then the value s (@) is defined to be
fa(t(p(@, A))), where f, is the nth component of F. If
the set (@, A) is infinite, the value of s4(@) is f..

This concludes the definition of Lagg, (€2, ©). Next,
we define the notion of a rank of formulae and terms,
rk(¢) and rk(t). For a variable or constant ¢, rk(t) = 0.
For any formula ¢ = P(ty,...,t,) with P € Q, we have
rk(p) = max; rk(t;), and similarly for a term f(#) with
f from Q. We then have rk(\/ ¢;) = sup, rk(y;) and
rk(=¢) = rk(yp).

We let rk(Fzp) = rk(p) + 1, for quantification over
the first sort, and rk(3gp) = rk(p) for quantifica-
tion over the second sort. For counting and aggregate
terms, r(#7.0) = rk(¢2)+ | 7] and rk(Aggr7.(¢.1)) =
max(rk(p), tk(8))+ | 7].

Definition 3.1 The formulae and terms  of
Lager(2,0) are precisely the formulae and terms of
Lager (2, ©) that have finite rank. If there is no restric-
tion on the signature (that is, all functions and predi-
cates are allowed), we write All. Thus, Lagg:(All, All) is
the aggregate logic in which every function, predicate,
and aggregate function on Q is available. m|

Examples First, counting terms are definable with
> #P.p(Z,9) is equivalent to Aggrs¥.(p(Z,¥),c1),
where ¢ is the symbol for constant 1.

Next, we show how to express the example from the
introduction in Lage ({<}, {>°, AVG}). The signature
o has two relations: R;(2,{1,2}) and R»2(2,{1}), as
only the last attribute of Ry — salary — is numerical.
The query is now expressed as a Lager formula ¢(z, q)
with two free variables, one of the first sort, one of the
second sort, as follows:

(Eyzz'Rl(:U:y) /\RQ(yzz))
(¢ = Aggravg 2-(3y.Ri(z,y) A Ra(y, 2),2))

A
A (Aggrs z.(Jy.Ri(z,y) A Ra(y, 2),2) > cios).

4 Aggregate logic: Expressive power

In this section we deal with expressiveness of the
aggregate logic. Our main goal is to show that it satis-
fies a very strong locality property. Locality properties
were introduced in model theory by Hanf [12] and Gaif-
man [10], and recently, following [8], they were a sub-
ject of renewed attention (see, e.g., [5, 21, 22, 24, 28]
and references therein). Intuitively, those properties
say that the behavior of logical formulae depends on the
structure of small neighborhoods. They imply strong
expressivity bounds for queries definable by logical for-
mulae. For example, if we deal with queries on graphs,
then the number of different degrees of nodes realized
in the output does not exceed a bound that is deter-
mined only by a formula defining the query, and the
maximum degree of the input graph, but not the size
of the graph [24].

As there are several ways to define locality, we want
to establish the strongest property. The relationship
between various notions of locality was investigated in
[14, 21], and it was shown that the one based on Hanf’s
theorem implies the one based on Gaifman’s theorem,
which in turn implies the property stated in the pre-
vious paragraph. Thus, our goal is to show (precise
definition will be given a bit later in this section):

Expressiveness of Lz (All,All): Ouver first-sort
structures, formulae of Laggr(All, All) are Hanf-local.

It is known that many properties requiring fixpoint
computation, such as the connectivity and acyclicity
tests for graphs, or computing the transitive closure,
violate some forms of locality. Thus, as a corollary, we
shall see that adding unlimited arithmetic and aggre-
gation to first-order logic does not enable it to express
those properties.

We start by showing how to embed Lygs: (All, All)
into a simpler logic L that does not have aggregate
operations. We then review the main notions of locality
used in finite-model theory, and prove the strongest of
them, Hanf-locality, of Lc.

4.1 LogicLc

Definition 4.1 The logic Lc is defined to be
Lager(0,0); that is, aggregate terms are not allowed.

A weaker version of this logic was studied in [22].
That logic, denoted by L%, (C), was defined as L¢
over one-sorted structures and the set N of natural
numbers as the numerical domain.

For two logics we write £1 < Lo if Lo is at least
as powerful as £;. If for every formula in £; there is
an equivalent one in Lo of the same or smaller rank,



we write £1 < L2. We use L1 ~ L5 if L1 < L5 and
Lo < L1, and likewise for £1 ~ Lo.

Theorem 4.2 Lyg. (All, All) =y Lc.

Proof idea. We first translate out aggregates using
counting terms over multi-sorted tuples, and then show
how L¢ can express those. |

4.2 Notions of locality in finite models

In this section, we only consider one-sorted finite
structures A = (4, R{*,..., R{) and two-sorted struc-
tures over signatures ¢ that only contain relation sym-
bols of the non-numerical sort (i.e., we assume that
Ji =A{1,...,n;} for every R(n;, J;) € o). We call such
two-sorted structures pure. Note that each one-sorted
finite structure A can be extended to pure two-sorted
structure simply by adding the set Q as the second
sort (and interpreting the constant symbols ¢, in the
canonical way). We denote this extension of A by A*.

Given a finite one-sorted structure A, its Gaifman
graph [6, 10, 8] G(A) is defined as (A, E) where (a,b)
is in E iff there is a tuple & € R for some i such
that both a and b are in ¢ The distance d(a,b) is
defined as the length of the shortest path from a to b
in G(A); we assume d(a,a) = 0. If @ = (ay, ..., a,) and
b= (by,...,by), then d(@,b) = min;; d(a;, b;). Given d@
over A, its r-sphere SAA(a@) is {b € A | d(d@,b) < r}. Its
r-neighborhood N7 (@) is defined as a structure in the
signature that consists of o and n constant symbols:

(SM@), RN SA@)™, ..., RANSME)™, ay,. .., an)

That is, the carrier of NA(d@) is S;4(d@), the interpreta-
tion of the o-relations is inherited from A, and the n
extra constants are the elements of d@. If 4 is under-
stood, we write S,(@) and N,(@).

Given a tuple @ of elements of A, and d > 0, by
ntp7 (@) we denote the isomorphism type of Nj(a).
Then ntp;\(d) = ntpf(g) means that there is an iso-
morphism N74(@) — Nf(l_;) that sends @ to b; in this
case we will also write @ ~7"% b. If A = B, we write
 ~7 b. Given a tuple @ = (aq,...,a,) and an element
¢, we write dc for (a,...,an,c).

For two o-structures A, B, we write AS ;B if there
exists a bijection f : A — B such that ntp7'(a) =
ntp% (f(a)) for every a € A. That is, every isomor-
phism type of a d-neighborhood of a point has equally
many realizers in A and B. We write (A, @)S 4(B,b) if
there is a bijection f : A — B such that ntp;l‘l(c‘ic) =
ntpg(gf(c)) for every c € A.

Hanf-locality has been previously defined only for
finite one-sorted structures. In the following we make

a natural extension of its definition to the case of pure
two-sorted structures.

Definition 4.3 (see [12, 8, 21, 14]) A formula ¢(%) on
pure two-sorted structures is called Hanf-local if there
exist a number d > 0 such that for all finite one-sorted

—

structures A and B, (A, @) 4(B,b) implies A* = ¢(a)
iff B = o(b).

The definition for open formulae is from [14]; most
previous papers [12, 8, 21, 28] considered its restric-
tion to sentences. It is known [8] that AS ;B implies
AS, B for r < d. Tt is also known that every (one-
sorted) first-order sentence ® is Hanf-local and d can
be taken to be 39"(®)~1 [8]. This was generalized to
various counting logics [28, 14], and the bound was im-
proved to 297(®)=1 1 [22].

Definition 4.4 (cf. [21, 22]) A formula ¢(Z) on pure
two-sorted structures is called Gaifman-local if there
exists a number r > 0 such that, for any finite one-
sorted structure A and any ('i,l_; over A, @ ~A gimplies

that A* |= o(@) iff A* = o(b).

Gaifman’s theorem [10] implies this notion of local-
ity for first-order formulae, with a (79'(¥) —1)/2 bound
for 7; in [22] a tight bound of 297(¥) — 1 is established.
Furthermore, [14, 21] show that on one-sorted finite
structures, every Hanf-local formula is Gaifman-local.
These results are not affected by the transfer to pure
two-sorted structures.

It is known that connectivity of graphs is not a
Hanf-local property [8], and that the transitive closure
of a graph is not Gaifman-local [10, 5]. Locality — ei-
ther Gaifman or Hanf — implies a number of results that
describe outputs of local queries by relating degrees of
elements in the input and output. For example, the
number of degrees realized in the output is bounded by
a number that depends on a formula defining a query
and the maximum degree in the input [5, 22].

4.3 Locality of £L¢

In [28] it was proved that the extension of first-order
logic by all unary generalized quantifiers is Hanf-local.
The proof was based on bijective Ehrenfeucht-Fraissé
games [13] which characterize equivalence of structures
with respect to unary quantifiers. We now use these
games to prove the Hanf-locality of L.
 Let A and B be two o-structures, @ € A", and
b € B". The r-round bijective game BEF, (A, d, B, b)
is played by two players, called the spoiler and the du-
plicator. In each round ¢ = 1,...,r, the duplicator
selects a bijection f; : A — B, and the spoiler selects



an element ¢; € A (if | A|#| B, then the spoiler wins).
After each round i, these moves determine the rela-
tion p; = po U {(c¢j, fi(c;)) | 1 < j < i}, where pg is
the initial relation {(a;,b;) | 1 < j < n} between the
components of @ and b. The spoiler wins the game,
if for some i, p; is not a partial isomorphism A — B;
otherwise the duplicator wins.

Lemma 4.5 Let A_’ and B be finite one-sorted o-
structures, @ € A", b € B™, and let A* and B* be the
corresponding pure two-sorted structures. If the dupli-
cator has a winning strategy in BEFT(A,d',B,E), then
for every formula ¢(xy,...,z,) in Lo, with rk(p) <7
and all free variables of the first sort, A* = ¢(@) if and
only if B* |= o(b). O
Theorem 4.6 Over pure two-sorted structures, every
formula of Lc without free second sort variables is
Hanf-local.

Proof. Let (%) be a formula of L¢, where Z are first-

sort variables and rk(¢) = r. Let A and B be finite one-
sorted o-structures, and let @ € A_? and b € B™. Tt was
proved in [28] that if (A, @) 4(B, b) for d = 3", then the
duplicator has a winning strategy in the bijective game

—

BEF,(A,d, B,b), and hence by Lemma 4.5, A* = ¢(a)

—

if and only if B* |= ¢(b). Thus ¢ is Hanf-local. O

By Theorem 4.2, we get as a consequence the Hanf-
locality of the full aggregate logic Laggr(All, All).

Corollary 4.7 Quer pure two-sorted structures, all
formulas of Laggr (All, All) without free second-sort vari-
ables are Hanf-local. O

As we said earlier, Hanf-locality is a very strong
form of locality that implies others, and consequently
it gives us many expressivity bounds. Some of them
are listed below. For a general overview of deriving
expressiveness results from locality, see [5, 8, 10, 21, 24].

Corollary 4.8 a) Over pure two-sorted structures, all
formulas of Lagg: (All, All) without free second-sort vari-
ables are Gaifman-local.

b) None of the following can be expressed in
Lager (All, All) over graphs on the universe of the
first sort: transitive closure, deterministic transitive
closure, connectivity test, acyclicity test, the same-
generation property for nodes in acyclic graphs, testing
for balanced k-ary tree, k > 1. O

Thus, despite its enormous counting power,
Lager(All, All)  cannot express nonlocal properties,
among them most properties requiring fixpoint com-
putations.

5 Database query languages and L,

The goal of this section is to show how standard
SQL features can be coded in Lagg;, thereby providing
bounds on the expressive power of database queries
with aggregation. The coding that we exhibit here is
not only more general but also much simpler and more
intuitive than that of [21, 25], thanks to the design of
Laggr that does not limit available arithmetic opera-
tions and makes it easy to code aggregation.

We define a relational query language RL8" (12, ©),
which extends standard relational query languages,
such as relational algebra and calculus, with aggrega-
tion constructs. The language is parameterized by a
collection of allowed arithmetic functions and predi-
cates Q0 and a collection of allowed aggregates ©. We
assume that the usual arithmetic operations (4, —, *,
+) and the order < on Q are always in Q and the sum-
mation aggregate (") is always in ©.

The language is defined as a suitable restriction of a
nested relational language NRL*88(Q, @), in the same
way it was done previously [24, 25]. The type system
is given by

Base = b | Q
rt = DBASE X...x BASE
ft =t [{rt}
t = Base | tx...xt | {t}

The base types are b and Q, with the domain of
b being an infinite set U, disjoint from Q. We use X
for product types; the semantics of ¢; x ... X t, is the
cartesian product of domains of types ti,...,t,. The
semantics of {¢} is the finite powerset of elements of
type t. Types rt (record types) and ft (flat types) are
used in restrictions that define RL*88",

A database schema is a list of names of database
relations (which may be nested relations) together with
their types. We are particularly interested in the case
of schemas consisting of flat relations, that is, those
of types {rt}. Such a list of names of relations and
their flat types naturally corresponds to a two-sorted
signature. Indeed, a relation of type t = {by x...x by},
with each b; being either b or Q, corresponds to R(n, J)
where J = {i | b; = b}.

We thus identify flat schemas and two-sorted sig-
natures. Also, for each relational symbol R(n,J) in a
two-sorted signature o, we write tp,(R) for its type,
that is, {b1 x ... x b,} where b; = b for i € J and
bi=Qfori ¢ J.

Expressions of the language (over a fixed schema
o) are shown in Figure 1. We adopt the convention
of omitting the explicit type superscripts in these ex-
pressions whenever they can be inferred from the con-



text. The complete definitions of the concept of a free
variable of an expression and the semantics of the lan-
guage can be found in [15]; here we explain the main
features. The set of free variables of an expression e is
defined by induction on the structure of e and we often
write e(xy,...,x,) to explicitly indicate that z, ...,
x, are free variables of e. Expressions | J{e; | € ea},
Y {e1 | x € ea}, and Aggrr{e1 | © € e2} bind the vari-
able z (furthermore, z is not allowed to be free in es
for this expression to be well-formed).

For each fixed schema ¢ and an expression
e(z1,...,z,), the value of e(x,...,z,) is defined
by induction on the structure of e and with respect
to a database (finite o-structure) A and a substi-

tution [z1:= a1,...,Zy:= ap] that assigns to each
variable z; a value a; of the appropriate type. We
write e[x1:= ay,...,Zn:= ay](A) to denote this value;
if the context is understood, we shorten this to
elz1:= ai,...,x,:= a,] or just e. For reason of econ-

omy, we use 0 and 1 to code Booleans (that is, = (eq, e2)
evaluates to 0 if the values of e; and e are equal, and
to 1 otherwise); the conditional tests for the value of
e to be 0. There is the tupling operation (ej,...,e,)
and projections m; ,, applied to tuples. The value of {e}
is the singleton set containing the value of e; e; U es
computes the union of two sets, and ) is the empty set.

To define the semantics of | J, Y~ and Aggr r, assume
that the value of ey is the set {by,...,b,}. Then the
value of J{e1 | z € ez} is defined to be

elfz1i=ay, ..., tn:=ay, v:=b;)(A).

s

Il
-

(3

The value of Aggrr{e1 | € e} is fm({lc1,--.,cml}),
where f,, is the mth function in 7 € ©, and each
c¢i is the value of ej[zi:=ay,...,z,:=a,, x:=b;], i =
1,...,m. For the case of summation aggregate _, the
valueis ¢ + ... + ¢p,.

Language RLA88T The flat language
RL8ET(Q), ©) is obtained from ARL*8E(Q, ©) by im-
posing the following type restrictions:

e each relation in o is of type {rt};

e cach expression is of type ft (flat type);

e for each rule in (1), all ¢;s are replaced by BASE;

e for each rule in (2), all occurrences of ¢ should be

replaced by rt (record types).

Thus, input databases for RL*88" expressions can
be identified with finite o-structures, when o is a two-
sorted signature. Furthermore, for a RL8'(Q), 0) ex-
pression e(z1,...,x,), all free variables are of record

types; thus, we shall write e[z1:= @;, ..., Zn:= @n](A)

3

for the value of this expression, where d; are tuples

of the same type as z;, and A is a o-structure. We
shall now assume, for the rest of the paper, that in
o-structures, all relations are finite.

Reo
R :tp,(R)

0,1:Q

e:Q e1:t ex:t
if e then ey else ea : t

e:Qx ... xQ (n times)
fle):Q Ple): Q
for f: Q" - Qand P C Q" from (2

e :t1, en tn
(e1,...,en) i t1 X ... X tp
(1)
t<n e:tp X...Xt, e1:t es:t
Tin € t; = (61,62) :Q
e:t ei: {t} ea:{t}
{e}: {t} erUes: {t} 0t {t}
()
er:{t1} e2:{t2} e1:Q es:{t}
U{81 \a:tz € 62} : {tl} Z{el ‘l‘t S 62} :Q
FeO e :Q er:{t}
xt it Aggr{ei |z €ex}: Q

Figure 1. Expressions of A'RL*8"(Q), ©) over sig-
nature o

Properties of NRL*8'(Q), ©) The relational part of
the language (without arithmetic and aggregation) is
known to have precisely the power of the nested rela-
tional algebra, the standard query language for nested
relations [3]. (The language of [3] coded Boolean values
as elements of type {unit}, where unit is a type having
one value. We code Booleans as 0 and 1, but it does
not affect expressiveness, see [25].) The flat fragment
of the language, without aggregation, has the power of
the relational algebra, that is, first-order logic [34].
When the standard arithmetic and the ) aggregate
are added, the language becomes powerful enough to
code standard SQL aggregation features such as the
GROUPBY and HAVING clauses, and aggregate functions
such as TOTAL, COUNT, AVG, MIN, MAX, present in all com-
mercial versions of SQL [32]. This was shown in [24].
The language we deal with here is a lot more power-



ful, as it puts no limitations on the class of allowed
arithmetic operations and aggregate functions.

The following observation will be very useful for
establishing expressivity bounds for NRL®8". Recall
that ] stands for the product aggregate. We write
[I{e1 | € e2} instead of Aggrp{er | « € ea}.

Lemma 5.1

NRL2EE (Al All) ~ NRCAEE(AIL {3, TT})- 0

For the following result, we let root(y,z) be any
function Q x Q — Q such that, for any n > 0,

root(n,z) = sign(z) - 3/|z| if /|| € Q

Proposition 5.2 (see [25]) Let Q include +, *, —,
+ and root(y,x). Then NRL* (Q,{>°,1]}) is con-
servative over flat types. That is, any expression
of e : ft of NRC*®(Q,{>,TI}), having only free

variables and relations of flat types, is definable in

RLME(Q, {3, 1T O
5.1 EncodingRL*®# (02, 0) IN Lagg:

Recall that any two-sorted schema ¢ naturally cor-
responds to a type of the form {rt; } x...x {rt,} where
all rt;s are record types. We denote this type by o,
too. Thus, any two-sorted o-structure can be consid-
ered as an object of type ¢ and we can speak of apply-
ing NRL*®&" queries to it. Furthermore, any tuple & of
free variables of a Lager formula has a type, say (n,J),
which corresponds to some record type rt. In this case
we say that Z has type rt. Our goal now is to show

Theorem 5.3 For any schema o, and for any ex-
pression e : {rt} of RL¥?® (0, 0) over o without free
variables, there exists a formula ©(Z) of Lager(Q,0),
with & of type rt, such that for any o-structure A,
e(A) = {a| A= (@),

Proof sketch.  We need a translation of RL*8" ex-
pressions that accounts for free variables. We define
contexts 7 as sets of variable assignments that relate
RL*E" variables to those of Laggr. Then for expres-

sion e(z]™, ..., zItm) of type {rt} and a formula ¢ we

write ? e = ¢ if for every assignment of values to
free variables on e and corresponding (by ?) tuples of
free variables of ¢ other than 2, it is the case the value
of e on A is the same as the set of all tuples Z that
make ¢ true. We also give an analogous definition of
? Fe=t x...xt, for the case when e is of type rt
(and thus produces a tuple of terms). We then define
these relations by induction on the structure RL*&8" ex-
pressions, assuming certain consistency conditions for
?, and prove their correctness. O

5.2 Expressiveness of/RL&8

Each NRL?88" expression e : t over schema o defines
a query (map) @), from finite o structures to objects
of type t. Combining Theorem 5.3, Lemma 5.1 and
Proposition 5.2, we obtain:

Corollary 5.4 For every NRL*88"(All, All) expression
e : {rt} without free variables over a schema with all
relations of flat types, the query Q. defined by e can be
expressed in Lagg: (All, All). i

We call a record type relational if it is of the form
bx...xb We call a NRL*8" expression without free
variables relational if it is of type {rt} where rt is re-
lational. Finally, a query Q. defined by a relational
expression is called relational if all relations in o are of
type {bx ... x b}. From Hanf-locality of Lagge (All, All)
we conclude:

Corollary 5.5 (Expressiveness of Aggregation)
Every relational query in NRL*88"(All, All) is Hanf-local
and Gaifman-local. m|

This implies, for example, that NRLEE(All, All)
cannot express any query listed in Corollary 4.8.

The main result on expressibility bounds — Corol-
lary 5.5 — makes the assumption that the input struc-
ture is relational, that is, only contains elements of the
base type b. One can relax this in two different ways.
First, input structures can be nested (that is, of arbi-
trary type t). Second, one can permit flat structures
of types {rt} where rt is an arbitrary record type, not
just b x ... x b. The natural question, then, is whether
one can recover Corollary 5.5 under those relaxations.

The case of nested inputs is simple (see below). The
case of numerical types is dealt with in the next section.

Proposition 5.6 There exist NRL®®  graph
queries (not wusing arithmetic and aggregation) on
graphs of type {{b} x {b}} that are neither Hanf-local
nor Gaifman-local. a

6 Restrictions of L4,

While L, subsumed SQL-like languages, and gave
us bounds on their expressive power, it is not very at-
tractive for use as a direct analog of relational calculus
for aggregate extensions, mostly because of its use of
infinitary connectives and quantification over Q. We
now consider a finitary restriction of L.z, and show
that it in a certain sense captures the language RL88".

We need a standard definition of the active do-
main of a finite database [1], slightly modified here



to deal with two base types. Given a o-structure A4,
the set of all elements of &/ that occur in A is de-
noted by adom(A), and the set of all constants from
Q that occur in A is denoted by adomg(A). Given a
record type 7t = by X ... X by, by adom;(A) we mean
A; X ... x A, where A; = adom(A) whenever b; = b
and A; = adomg(A) whenever b; = Q.

Definition 6.1 The logic Lage: (2, ©) is defined to be
the restriction of Lage:r (2, ©) that does not permit in-
finitary conjunctions and disjunctions, and 0,1 are the
only two constant terms of the rational sort. The se-
mantics is modified so that A = Jx.o(z,- ) means
that A = (xq,---) for some zo € adom,(A), where
adom, is adom for first-sort x, and adomg for second-
sort x. Furthermore, in AggrzZ.(p,t), Z ranges over
adom+(A) where rt is the type of Z. O

In contrast with Laggr, Lager formulae can be eval-
uated on finite two-sorted structures in the usual
bottom-up way, assuming effectiveness of all functions
and predicates in {2 and aggregates in ©. To connect
this logic with RL*8" we need to impose some condi-
tions on the aggregates from 0.

Definition 6.2 Let M = (Q,®,1) be a commu-
tative monoid on Q. A monoidal aggregate given
by M is defined to be Far whose nth function is
fal{z1, .. znl}) =21 @220 ... 0y forn > 0 and
fo returns v. (f, is arbitrary.) An aggregate signature
is monoidal if every aggregate in it is. O

The usual aggregates > and [] are monoidal, given
by (Q,+,0) and (Q,*, 1) respectively. In fact, most
aggregates in the database setting are either monoidal
or can be obtained from monoidal aggregates by means
of simple arithmetic operations [9].

We now have to say what it means for a logic to
capture a query language. In one direction, it is easy —
every query must be definable by a logical formula. For
the other direction, one has to deal with the standard
database problem of safety [1]: while queries always re-
turn finite results, arbitrary formulae need not, as they
may define infinite subsets of Q. We circumvent this
problem by using the following definition of capture.

Definition 6.3 We say that Lage(Q2,0) captures
RLAT(Q, ©) if the following two conditions hold for
every signature o. First, for every RL*8(Q,0) ex-
pression e : {rt} without free variables there exists
an Lagg:(Q,0) formula (&) with & of type rt such
that e(A) = {@ | A = ¢(@)}. Second, for every
Liger (2, 0) formula ¢(Z) with & of type rt there ex-
ists a RL*8 (0, 0) expression e(z™) : Q such that the
value of e[z := @] (A) is 0 if A = ¢(@) and 1 otherwise.

Theorem 6.4 Let © be monoidal. Then Lagg (All, ©)
captures RL*®E (All, ©). Moreover, Lagg:(Q2,{>_}) cap-
tures RL¥®E(Q, {D°}) if Q contains (+,—,*,<), and
Lager (A3, I1})  captures RL¥E(Q, {3211} if @

contains (+, —, *, =, root).

As a corollary, we answer the question about ex-
pressivity of RL*8" over Q. Since first-order logic
with counting quantifiers is no more expressive than
Lager ({+,%,+,<},{3_}), the results of [2] imply

Corollary 6.5 Assume that the test for connectiv-
ity of graphs of type {Q x Q} is not definable in
RLAET ({4, —, %, +,<},{D°}).  Then there ezists a
problem in NLOGSPACE for which there are no
constant-depth polynomial-size unbounded fan-in cir-
cuits with threshold gates. |

Whether the class of problems definable
with polynomial-size constant-depth threshold circuits
(called TCY) is different from NLOGSPACE (or even
NP) remains an open problem in complexity theory. It
now follows that we cannot answer questions about ex-
pressivity of aggregate query languages over Q without
separating TC" from NP. The key difference between
this situation and earlier results on expressive power
of NRL?*88" is that the domain U is unordered, whereas
over Q we do have an order. An analog of Corollary 6.5
can be proved for inputs of type {b x b} assuming that
the domain U of type b is linearly ordered. Without an
order, one retains the bounds of Corollary 5.5.

7 Conclusions

In this paper we studied the problem of adding ag-
gregate operators to logics. We were primarily moti-
vated by problems arising in database theory. Aggre-
gation is indispensable in majority of real life appli-
cations, but the foundations of query languages that
support it are not adequately studied. Here, we con-
centrated on the problem of expressive power. We first
considered adding aggregation to logics that already
have substantial counting power, and proved the re-
sulting logics have a very nice behavior: over pure rela-
tional structures, they can only define local properties.
We then considered a query language, that models all
the standard aggregation features of commercial query
languages (and, in fact, more, as it permits every well-
defined aggregate operator and every arithmetic func-
tion). We showed a simple embedding of this language
into aggregate logic, and thus proved that over a large
class of inputs, it is also local.

We believe that the use of logics like Lager and Lagg,
is not limited to studying the expressive power of lan-



guages. They provide a disciplined approach to design
of declarative languages for aggregation, and hopefully
this can be used to study other problems, such as lan-
guage design and optimization of aggregate queries.
Known techniques for optimizing aggregate queries are
quite ad hoc, and perhaps a clean theoretical frame-
work can help here. We note that [20], starting with
essentially the same motivation, designed a categorical
calculus for aggregate queries. It will be interesting
to see what are the connections between that calculus
and Lager. Among other possibilities for future work
we would like to mention, are extensions of the gen-
eral approach to other datatypes used in applications,
complexity and decidability problems for fragments of
Laggr, extensions to logics that have a fixpoint mecha-
nism as well as counting power.
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