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1 IntroductionFirst-order logic over �nite structures plays a fun-damental role in several computer science applications,perhaps most notably, in database theory. The stan-dard theoretical query languages { relational algebraand calculus { that are the backbone for the commer-cial query languages, have precisely the power of �rst-order logic. However, while this power is su�cient forwriting many useful queries, in practice one often �ndsthat it is quite limited for two reasons. Firstly, in �rst-order logic, one cannot do �xpoint computation (for ex-ample, one cannot compute the transitive closure of agraph). Secondly, one cannot express nontrivial count-ing properties (for example, one cannot compare thecardinalities of two sets).From the practical point of view, �xpoint compu-tation, although sometimes desirable, is of less impor-tance in the database context than counting. Indeed,in the de-facto standard of the commercial databaseworld, SQL, a limited recursive construct has only beenproposed for the latest language standard (SQL3). Atthe same time, constructs such as cardinality of a re-lation or the average value of a column, known as ag-gregate functions, are present in any commercial imple-mentation of SQL (they belong to what is called theentry level SQL92, which is supported by all systems).On the theory side, however, �xpoint extensionsof �rst-order logic and corresponding query languagesare much better studied than their counting counter-parts. A standard �xpoint extension considered in thedatabase literature is the query language datalog, andpractically every aspect of it { expressive power, opti-mization, adding negation, implementation techniques{ was the subject of numerous papers. For the study ofexpressive power of query languages, which will interestus most in this paper, a very nice result of [19] showedthat the in�nitary logic with �nitely many variables,L!1!, has a 0-1 law over �nite structures. As many �x-point logics can be embedded into it, this result givesmany expressivity bounds for datalog-like languages.In the presence of an order relation, it is again a clas-1



sical result that various �xpoint extensions of �rst-order logic capture familiar complexity classes such asPTIME and PSPACE. See [1, 6] for an overview.For extensions with counting and aggregate, muchless is known, especially in terms of expressive powerof languages. In an early paper [17] it was shown howto extend both relational algebra and calculus withaggregate constructs, but the resulting language didnot correspond naturally to any reasonable logic. It isknown how to integrate aggregation into datalog-likelanguages (both recursive and nonrecursive) [30, 33],and various aspects of such aggregate languages werestudied (e.g., query optimization [26] and handling con-straints involving aggregation [31]).At this point, let us give an example of a typicalaggregate query that would be supported by all com-mercial versions of SQL, and use it to explain problemsthat arise when one attempts to analyze expressivenessof the language. Suppose we have two database rela-tions: a relation R1 with attributes \employee" and\department", and a relation R2 with attributes \em-ployee" and \salary". Suppose we want to �nd the av-erage salary for each department that pays total salaryat least $106. In SQL, this is done as follows.SELECT R1.Dept, AVG(R2.Salary)FROM R1, R2WHERE R1.Employee = R2.EmployeeGROUPBY R1.DeptHAVING SUM(R2.Salary) > 1000000Relations R1 and R2 separate the information aboutdepartments and salaries. This query joins them toput together departments, employees, and salaries, andthen performs an aggregation over the salary column,for each department in the database, followed by se-lecting some of the resulting tuples.While the features of the language given by theSELECT, FROM and WHERE clauses are well-known to be�rst-order, other features used in this example pose aproblem. First, we permit computation of aggregateoperators such as AVG and SUM over the entire columnof a relation. This form of counting is rather di�er-ent from the counting quanti�ers or terms (see, e.g,[7, 16, 29]), normally supported by logical formalisms.Second, the GROUPBY clause creates an intermediatestructure which is a set of sets { for each department,it groups together its employees. Again, this does notget captured adequately by existing logical formalisms.This shows why it is hard to capture aggregation inquery languages by a logic whose expressive power iseasy to analyze. Still, there exist some partial results.For example, [27] gives some bounds based on the es-timates on the largest number a query can produce;

clearly such bounds are not robust and do not with-stand adding arithmetic operations. In [4] it is shownthat the transitive closure of a graph is not express-ible in the aggregate extension of �rst-order logic ifDLOGSPACE 6= NLOGSPACE. In [24] this is provedwithout any complexity assumptions; a generalizationof [24] to many other queries is given in [5]. One prob-lem with the proofs of [24, 5] is that they are very\syntactic" { they work for a particular presentationof the language, and rely heavily on complicated syn-tactic rewritings of queries, rather than on the seman-tic properties of those. An attempt to remedy thiswas made in [21] which considered a sublanguage thatonly permits aggregation over columns of natural num-bers (for example, AVG is not allowed). Then [21] gavea somewhat complicated encoding of the language in�rst-order logic with counting quanti�ers, for which ex-pressivity bounds are known [21, 28]. The encoding of[21] was extended to aggregation over rational numbers[25]; it did allow more aggregates (e.g., AVG) and morearithmetic, at the expense of a very unpleasant andcomplicated encoding procedure.This shows that �rst-order logic with countingquanti�ers is inadequate as a logic for expressing aggre-gate query languages. It also brings up an analogy withthe development of datalog-like languages and L!1! ,and raises the following question: Can we �nd a pow-erful logic into which aggregate queries can be easilyembedded, and whose properties can be analyzed sothat bounds for query languages can be derived?Our main goal is to give the positive answer to thisquestion. To do so, we combine a powerful in�nitarycounting logic from [22] with an elegant framework of[11] for adding aggregation. As the numerical domain,we choose the set of rational numbers Q, although otherdomains (e.g., Z;R) can be chosen. The resulting logicLaggr de�nes every arithmetic operation and every ag-gregate function. We then show that it has very nicebehavior: its formulae satisfy analogs of Hanf's [8, 12]and Gaifman's [10] theorems, meaning that it can onlyexpress local properties. In particular, properties suchas connectivity of graphs cannot be expressed.We then consider a theoretical language RLaggr,similar to those de�ned in [3, 24], and explain howit models all the features of SQL. Next, we show anembedding of RLaggr into Laggr, which is much simplerthan those previously considered for �rst-order withcounting [21, 25]. This implies that the behavior of ag-gregate queries is local over a large class of inputs, nomatter what family of aggregate and arithmetic oper-ations the language possesses.Not only is this result much stronger than all previ-ous results on expressiveness of aggregation, it is also2



proved in a much nicer way. Furthermore, we believethat logics with aggregation are interesting on theirown right, as they give a rather disciplined approachto modeling aggregation and can be used to study otheraspects of it.Organization We give notations, including two-sorted structures and a formal de�nition of aggregatesin Section 2. In Section 3 we give the de�nition of theaggregate logic Laggr. In Section 4 we explain the lo-cality theorems of Hanf and Gaifman and prove thatLaggr satis�es analogs of both of them.In Section 5, we de�ne an aggregate query languageNRLaggr, on nested relations, that models both aggre-gation and grouping features of SQL. We show, usingstandard techniques, that queries from at relations toat relations in this language can be expressed in a sim-pler language called RLaggr, that does not use nestedrelations even as intermediate structures, and then wegive a translation of RLaggr into Laggr. This showsthat NRLaggr queries over at databases that do notcontain numbers are local. In Section 6 we consider asimpler logic Laggr and show that it captures the lan-guage RLaggr. We also show that some basic questionsabout expressive power of RLaggr cannot be answeredwithout resolving some deep problems in complexitytheory, under the assumption that input databases areallowed to contain numbers.2 NotationMost logics we consider here are two-sorted, andthey are de�ned on two-sorted structures, with one sortbeing numerical. We shall assume, throughout the pa-per, that the numerical sort is interpreted as Q, theset of rational numbers. A two sorted relational signa-ture � is a �nite collection fR1(n1; J1); : : : ; Rl(nl; Jl)gwhere Ris are relation names, nis are their arities, andJi � f1; : : : ; nig is the set of indices for the �rst sort.For example, fR(3; f1; 2g)g is a signature that consistsof a single ternary relation so that in each tuple (a; b; c)in R, a; b are of the �rst sort and c is of the second sort.We let U be an in�nite set, disjoint from Q, to be in-terpreted as the domain of the �rst sort. A structure ofsignature � (or �-structure) isA = hA;Q; RA1 ; : : : ; RAl i,where A � U is the universe of the �rst sort for A, andRAi � Qnik=1 dom(i; k), where dom(i; k) = A if k 2 Jiand dom(i; k) = Q if k 62 Ji. We shall always assumethat A is �nite.We let fjX jgn denote the set of all n-element multi-sets (bags) over X . The multiset containing preciselythe elements x1; : : : ; xn is denoted by fjx1; : : : ; xnjg.Now, following [11], we de�ne an aggregate func-tion as a collection F = ff0; f1; f2; : : : ; f!g where

fn : fjQjgn ! Q, and f! 2 Q. Each function fn showshow the aggregate function behaves on an n-elementinput multiset of rational numbers, and the value f! isthe result when the input is in�nite.Examples include the aggregates P and Q: P =fs0; s1; : : : ; s!g and Q = fp0; p1; : : : ; p!g where s0 = 0and sn(fjq1; : : : ; qnjg) = q1 + : : : + qn, and p0 = 1and pn(fjq1; : : : ; qnjg) = q1 � : : : � qn. (We assumes! = p! = 0.) Standard database languages use otheraggregates; in fact, standard ones for SQL areP, MIN,MAX de�ned as the minimum (maximum) element ofthe input bag, COUNT, whose ith function is the con-stant i, and AVG, whose ith function is si=i for i > 0.3 An aggregate logicAssume that we are given two signatures on Q : one,denoted by 
, of functions and predicates, and one,denoted by �, of aggregates. In addition we assumethat there is a constant symbol cq for each q 2 Q.We now de�ne an aggregate logic Laggr(
;�), on two-sorted structures. We do it, similarly to [22], in twosteps. We �rst de�ne a larger logic Laggr (
;�) andthen put a restriction on its formulae.We de�ne terms and formulae of the two-sortedlogic Laggr (
;�), over two-sorted structures, by si-multaneous induction. Every variable of the ith sortis a term of the ith sort, i = 1; 2. Every constantcq 2 Q is a term of the second sort. Given a pair (n; J)with J � f1; : : : ; ng, we say that an n-tuple of terms~t = (t1; : : : ; tn) is of type (n; J), written ~t : (n; J), if tiis a �rst-sort term for i 2 J and a second-sort term fori 62 J . For a formula '(~x), we write ' : (n; J) and saythat its type is (n; J) if ~x = (x1; : : : ; xn) and i 2 J i�xi is of the �rst sort.Now for each Ri(ni; Ji) in �, and ~t : (ni; Ji), we letRi(~t) be a formula. Formulae are then closed underin�nitary disjunctions W and conjunctions V, negation:, and quanti�ers over both �rst-sort domain A andsecond-sort domain Q.If t1; : : : ; tn are second-sort terms, and f an n-aryfunction symbol from 
, then f(t1; : : : ; tn) is a second-sort term. For an n-ary predicate symbol P from 
,P (t1; : : : ; tn) is a formula, as well as t1 = t2 for termsof either sort.Next, we add counting and aggregation. For anyformula '(~x; ~y) with ~y being variables of the �rst sort,we let t(~x) = #~y:'(~x; ~y) be a second-sort term. LetF be an aggregate from �. Let '(~x; ~y) be a formula,and t(~x; ~y) a second-sort term. Then AggrF~y:('; t) isa second-sort term with free variables ~x.We now discuss the semantics. A tuple ~a =3



(a1; : : : ; an) is of type (n; J) if ai 2 U for i 2 J andai 2 Q for i 62 J . For every two-sorted �-structure A,a formula '(~x) or a term t(~x) of type (n; J) in the lan-guage of �, and a tuple ~a over A[Q of type (n; J), wede�ne the value tA(~a) of the term t on ~a in A and therelation A j= '(~a). The de�nition is standard, withonly the case of counting terms and aggregation re-quiring explanation. For t(~x) = #~y:'(~x; ~y), the valueof t(~a) in A is the (�nite) number of ~b over A such thatA j= '(~a;~b).Let s(~x) = AggrF~y:('(~x; ~y); t(~x; ~y)), and let ~a be ofthe same type as ~x. De�ne '(~a;A) = f~b j A j= '(~a;~b)g.Let t('(~a;A)) be the multiset fjtA(~a;~b) j ~b 2 '(~a;A)jg.(This is a multiset since t may produce identical val-ues on several (~a;~b).) Let n be the cardinality ofthis multiset. Then the value sA(~a) is de�ned to befn(t('(~a;A))), where fn is the nth component of F . Ifthe set '(~a;A) is in�nite, the value of sA(~a) is f!.This concludes the de�nition of Laggr (
;�). Next,we de�ne the notion of a rank of formulae and terms,rk(') and rk(t). For a variable or constant t, rk(t) = 0.For any formula ' � P (t1; : : : ; tn) with P 2 
, we haverk(') = maxi rk(ti), and similarly for a term f(~t) withf from 
. We then have rk(W'i) = supi rk('i) andrk(:') = rk(').We let rk(9x') = rk(') + 1, for quanti�cation overthe �rst sort, and rk(9q') = rk(') for quanti�ca-tion over the second sort. For counting and aggregateterms, rk(#~y:') = rk(')+ j~y j and rk(AggrF~y:('; t)) =max(rk('); rk(t))+ j~y j.De�nition 3.1 The formulae and terms ofLaggr(
;�) are precisely the formulae and terms ofLaggr (
;�) that have �nite rank. If there is no restric-tion on the signature (that is, all functions and predi-cates are allowed), we write All. Thus, Laggr(All;All) isthe aggregate logic in which every function, predicate,and aggregate function on Q is available. 2Examples First, counting terms are de�nable withP: #~y:'(~x; ~y) is equivalent to Aggr�~y:('(~x; ~y); c1),where c1 is the symbol for constant 1.Next, we show how to express the example from theintroduction in Laggr(f<g; fP;AVGg). The signature� has two relations: R1(2; f1; 2g) and R2(2; f1g), asonly the last attribute of R2 { salary { is numerical.The query is now expressed as a Laggr formula '(x; q)with two free variables, one of the �rst sort, one of thesecond sort, as follows:(9y; z:R1(x; y) ^ R2(y; z))^ (q = AggrAVG z:(9y:R1(x; y) ^R2(y; z); z))^ (Aggr� z:(9y:R1(x; y) ^ R2(y; z); z) > c106):

4 Aggregate logic: Expressive powerIn this section we deal with expressiveness of theaggregate logic. Our main goal is to show that it satis-�es a very strong locality property. Locality propertieswere introduced in model theory by Hanf [12] and Gaif-man [10], and recently, following [8], they were a sub-ject of renewed attention (see, e.g., [5, 21, 22, 24, 28]and references therein). Intuitively, those propertiessay that the behavior of logical formulae depends on thestructure of small neighborhoods. They imply strongexpressivity bounds for queries de�nable by logical for-mulae. For example, if we deal with queries on graphs,then the number of di�erent degrees of nodes realizedin the output does not exceed a bound that is deter-mined only by a formula de�ning the query, and themaximum degree of the input graph, but not the sizeof the graph [24].As there are several ways to de�ne locality, we wantto establish the strongest property. The relationshipbetween various notions of locality was investigated in[14, 21], and it was shown that the one based on Hanf'stheorem implies the one based on Gaifman's theorem,which in turn implies the property stated in the pre-vious paragraph. Thus, our goal is to show (precisede�nition will be given a bit later in this section):Expressiveness of Laggr(All;All): Over �rst-sortstructures, formulae of Laggr(All;All) are Hanf-local.It is known that many properties requiring �xpointcomputation, such as the connectivity and acyclicitytests for graphs, or computing the transitive closure,violate some forms of locality. Thus, as a corollary, weshall see that adding unlimited arithmetic and aggre-gation to �rst-order logic does not enable it to expressthose properties.We start by showing how to embed Laggr(All;All)into a simpler logic LC that does not have aggregateoperations. We then review the main notions of localityused in �nite-model theory, and prove the strongest ofthem, Hanf-locality, of LC.
4.1 LogicLCDe�nition 4.1 The logic LC is de�ned to beLaggr(;; ;); that is, aggregate terms are not allowed.A weaker version of this logic was studied in [22].That logic, denoted by L�1!(C), was de�ned as LCover one-sorted structures and the set N of naturalnumbers as the numerical domain.For two logics we write L1 4 L2 if L2 is at leastas powerful as L1. If for every formula in L1 there isan equivalent one in L2 of the same or smaller rank,4



we write L1 4rk L2. We use L1 t L2 if L1 4 L2 andL2 4 L1, and likewise for L1 trk L2.Theorem 4.2 Laggr(All;All) trk LC.Proof idea. We �rst translate out aggregates usingcounting terms over multi-sorted tuples, and then showhow LC can express those. 2
4.2 Notions of locality in finite modelsIn this section, we only consider one-sorted �nitestructures A = hA;RA1 ; : : : ; RAl i and two-sorted struc-tures over signatures � that only contain relation sym-bols of the non-numerical sort (i.e., we assume thatJi = f1; : : : ; nig for every R(ni; Ji) 2 �). We call suchtwo-sorted structures pure. Note that each one-sorted�nite structure A can be extended to pure two-sortedstructure simply by adding the set Q as the secondsort (and interpreting the constant symbols cq in thecanonical way). We denote this extension of A by A�.Given a �nite one-sorted structure A, its Gaifmangraph [6, 10, 8] G(A) is de�ned as hA;Ei where (a; b)is in E i� there is a tuple ~c 2 RAi for some i suchthat both a and b are in ~c. The distance d(a; b) isde�ned as the length of the shortest path from a to bin G(A); we assume d(a; a) = 0. If ~a = (a1; : : : ; an) and~b = (b1; : : : ; bm), then d(~a;~b) = minij d(ai; bj). Given ~aover A, its r-sphere SAr (~a) is fb 2 A j d(~a; b) � rg. Itsr-neighborhood NAr (~a) is de�ned as a structure in thesignature that consists of � and n constant symbols:hSAr (~a); RA1 \ SAr (~a)n1 ; : : : ; RAk \ SAr (~a)nl ; a1; : : : ; aniThat is, the carrier of NAr (~a) is SAr (~a), the interpreta-tion of the �-relations is inherited from A, and the nextra constants are the elements of ~a. If A is under-stood, we write Sr(~a) and Nr(~a).Given a tuple ~a of elements of A, and d � 0, byntpAd (~a) we denote the isomorphism type of NAd (~a).Then ntpAd (~a) = ntpBd (~b) means that there is an iso-morphism NAd (~a) ! NBd (~b) that sends ~a to ~b; in thiscase we will also write ~a �A;Bd ~b. If A = B, we write~a �Ad ~b. Given a tuple ~a = (a1; : : : ; an) and an elementc, we write ~ac for (a1; : : : ; an; c).For two �-structures A;B, we write A�dB if thereexists a bijection f : A ! B such that ntpAd (a) =ntpBd (f(a)) for every a 2 A. That is, every isomor-phism type of a d-neighborhood of a point has equallymany realizers in A and B. We write (A;~a)�d(B;~b) ifthere is a bijection f : A ! B such that ntpAd (~ac) =ntpBd (~bf(c)) for every c 2 A.Hanf-locality has been previously de�ned only for�nite one-sorted structures. In the following we make

a natural extension of its de�nition to the case of puretwo-sorted structures.De�nition 4.3 (see [12, 8, 21, 14]) A formula '(~x) onpure two-sorted structures is called Hanf-local if thereexist a number d � 0 such that for all �nite one-sortedstructures A and B, (A;~a)�d(B;~b) implies A� j= '(~a)i� B� j= '(~b).The de�nition for open formulae is from [14]; mostprevious papers [12, 8, 21, 28] considered its restric-tion to sentences. It is known [8] that A�dB impliesA�rB for r � d. It is also known that every (one-sorted) �rst-order sentence � is Hanf-local and d canbe taken to be 3qr(�)�1 [8]. This was generalized tovarious counting logics [28, 14], and the bound was im-proved to 2qr(�)�1 � 1 [22].De�nition 4.4 (cf. [21, 22]) A formula '(~x) on puretwo-sorted structures is called Gaifman-local if thereexists a number r � 0 such that, for any �nite one-sorted structure A and any ~a;~b over A, ~a �Ar ~b impliesthat A� j= '(~a) i� A� j= '(~b).Gaifman's theorem [10] implies this notion of local-ity for �rst-order formulae, with a (7qr(')�1)=2 boundfor r; in [22] a tight bound of 2qr(') � 1 is established.Furthermore, [14, 21] show that on one-sorted �nitestructures, every Hanf-local formula is Gaifman-local.These results are not a�ected by the transfer to puretwo-sorted structures.It is known that connectivity of graphs is not aHanf-local property [8], and that the transitive closureof a graph is not Gaifman-local [10, 5]. Locality { ei-ther Gaifman or Hanf { implies a number of results thatdescribe outputs of local queries by relating degrees ofelements in the input and output. For example, thenumber of degrees realized in the output is bounded bya number that depends on a formula de�ning a queryand the maximum degree in the input [5, 22].
4.3 Locality of LCIn [28] it was proved that the extension of �rst-orderlogic by all unary generalized quanti�ers is Hanf-local.The proof was based on bijective Ehrenfeucht-Fra��ss�egames [13] which characterize equivalence of structureswith respect to unary quanti�ers. We now use thesegames to prove the Hanf-locality of LC.Let A and B be two �-structures, ~a 2 An, and~b 2 Bn. The r-round bijective game BEFr(A;~a;B;~b)is played by two players, called the spoiler and the du-plicator. In each round i = 1; : : : ; r, the duplicatorselects a bijection fi : A ! B, and the spoiler selects5



an element ci 2 A (if jA j6=jB j, then the spoiler wins).After each round i, these moves determine the rela-tion pi = p0 [ f(cj ; fj(cj)) j 1 � j � ig, where p0 isthe initial relation f(aj ; bj) j 1 � j � ng between thecomponents of ~a and ~b. The spoiler wins the game,if for some i, pi is not a partial isomorphism A ! B;otherwise the duplicator wins.Lemma 4.5 Let A and B be �nite one-sorted �-structures, ~a 2 An, ~b 2 Bn, and let A� and B� be thecorresponding pure two-sorted structures. If the dupli-cator has a winning strategy in BEFr(A;~a;B;~b), thenfor every formula '(x1; : : : ; xn) in LC, with rk(') � rand all free variables of the �rst sort, A� j= '(~a) if andonly if B� j= '(~b). 2Theorem 4.6 Over pure two-sorted structures, everyformula of LC without free second sort variables isHanf-local.Proof. Let '(~x) be a formula of LC, where ~x are �rst-sort variables and rk(') = r. Let A and B be �nite one-sorted �-structures, and let ~a 2 An and ~b 2 Bn. It wasproved in [28] that if (A;~a)�d(B;~b) for d = 3r, then theduplicator has a winning strategy in the bijective gameBEFr(A;~a;B;~b), and hence by Lemma 4.5, A� j= '(~a)if and only if B� j= '(~b). Thus ' is Hanf-local. 2By Theorem 4.2, we get as a consequence the Hanf-locality of the full aggregate logic Laggr(All;All).Corollary 4.7 Over pure two-sorted structures, allformulas of Laggr(All;All) without free second-sort vari-ables are Hanf-local. 2As we said earlier, Hanf-locality is a very strongform of locality that implies others, and consequentlyit gives us many expressivity bounds. Some of themare listed below. For a general overview of derivingexpressiveness results from locality, see [5, 8, 10, 21, 24].Corollary 4.8 a) Over pure two-sorted structures, allformulas of Laggr(All;All) without free second-sort vari-ables are Gaifman-local.b) None of the following can be expressed inLaggr(All;All) over graphs on the universe of the�rst sort: transitive closure, deterministic transitiveclosure, connectivity test, acyclicity test, the same-generation property for nodes in acyclic graphs, testingfor balanced k-ary tree, k � 1. 2Thus, despite its enormous counting power,Laggr(All;All) cannot express nonlocal properties,among them most properties requiring �xpoint com-putations.

5 Database query languages and LaggrThe goal of this section is to show how standardSQL features can be coded in Laggr, thereby providingbounds on the expressive power of database querieswith aggregation. The coding that we exhibit here isnot only more general but also much simpler and moreintuitive than that of [21, 25], thanks to the design ofLaggr that does not limit available arithmetic opera-tions and makes it easy to code aggregation.We de�ne a relational query languageRLaggr(
;�),which extends standard relational query languages,such as relational algebra and calculus, with aggrega-tion constructs. The language is parameterized by acollection of allowed arithmetic functions and predi-cates 
 and a collection of allowed aggregates �. Weassume that the usual arithmetic operations (+, �, �,�) and the order < on Q are always in 
 and the sum-mation aggregate (P) is always in �.The language is de�ned as a suitable restriction of anested relational language NRLaggr(
;�), in the sameway it was done previously [24, 25]. The type systemis given byBase := b j Qrt := Base� : : :�Baseft := rt j frtgt := Base j t� : : :� t j ftgThe base types are b and Q, with the domain ofb being an in�nite set U , disjoint from Q. We use �for product types; the semantics of t1 � : : :� tn is thecartesian product of domains of types t1; : : : ; tn. Thesemantics of ftg is the �nite powerset of elements oftype t. Types rt (record types) and ft (at types) areused in restrictions that de�ne RLaggr.A database schema is a list of names of databaserelations (which may be nested relations) together withtheir types. We are particularly interested in the caseof schemas consisting of at relations, that is, thoseof types frtg. Such a list of names of relations andtheir at types naturally corresponds to a two-sortedsignature. Indeed, a relation of type t = fb1� : : :�bng,with each bi being either b or Q, corresponds to R(n; J)where J = fi j bi = bg.We thus identify at schemas and two-sorted sig-natures. Also, for each relational symbol R(n; J) in atwo-sorted signature �, we write tp�(R) for its type,that is, fb1 � : : : � bng where bi = b for i 2 J andbi = Q for i 62 J .Expressions of the language (over a �xed schema�) are shown in Figure 1. We adopt the conventionof omitting the explicit type superscripts in these ex-pressions whenever they can be inferred from the con-6



text. The complete de�nitions of the concept of a freevariable of an expression and the semantics of the lan-guage can be found in [15]; here we explain the mainfeatures. The set of free variables of an expression e isde�ned by induction on the structure of e and we oftenwrite e(x1; : : : ; xn) to explicitly indicate that x1, ...,xn are free variables of e. Expressions Sfe1 j x 2 e2g,Pfe1 j x 2 e2g, and AggrFfe1 j x 2 e2g bind the vari-able x (furthermore, x is not allowed to be free in e2for this expression to be well-formed).For each �xed schema � and an expressione(x1; : : : ; xn), the value of e(x1; : : : ; xn) is de�nedby induction on the structure of e and with respectto a database (�nite �-structure) A and a substi-tution [x1:= a1; : : : ; xn:= an] that assigns to eachvariable xi a value ai of the appropriate type. Wewrite e[x1:= a1; : : : ; xn:= an](A) to denote this value;if the context is understood, we shorten this toe[x1:= a1; : : : ; xn:= an] or just e. For reason of econ-omy, we use 0 and 1 to code Booleans (that is, = (e1; e2)evaluates to 0 if the values of e1 and e2 are equal, andto 1 otherwise); the conditional tests for the value ofe to be 0. There is the tupling operation (e1; : : : ; en)and projections �i;n applied to tuples. The value of fegis the singleton set containing the value of e; e1 [ e2computes the union of two sets, and ; is the empty set.To de�ne the semantics of S,P and AggrF , assumethat the value of e2 is the set fb1; : : : ; bmg. Then thevalue of Sfe1 j x 2 e2g is de�ned to bem[i=1 e1[x1:=a1; : : : ; xn:=an; x:=bi](A):The value of AggrFfe1 j x 2 e2g is fm(fjc1; : : : ; cmjg),where fm is the mth function in F 2 �, and eachci is the value of e1[x1:=a1; : : : ; xn:=an; x:=bi], i =1; : : : ;m. For the case of summation aggregateP, thevalue is c1 + : : :+ cm.Language RLaggr The at languageRLaggr(
;�) is obtained from NRLaggr(
;�) by im-posing the following type restrictions:� each relation in � is of type frtg;� each expression is of type ft (at type);� for each rule in (1), all tis are replaced by Base;� for each rule in (2), all occurrences of t should bereplaced by rt (record types).Thus, input databases for RLaggr expressions canbe identi�ed with �nite �-structures, when � is a two-sorted signature. Furthermore, for a RLaggr(
;�) ex-pression e(x1; : : : ; xn), all free variables are of recordtypes; thus, we shall write e[x1:= ~ai; : : : ; xn:= ~an](A)for the value of this expression, where ~ai are tuples

of the same type as xi, and A is a �-structure. Weshall now assume, for the rest of the paper, that in�-structures, all relations are �nite.0; 1 : Q R 2 �R : tp�(R)e : Q e1 : t e2 : tif e then e1 else e2 : te : Q � : : :� Q (n times)f(e) : Q P (e) : Qfor f : Qn ! Q and P � Qn from 
e1 : t1; : : : en : tn(e1; : : : ; en) : t1 � : : :� tn (1)i � n e : t1 � : : :� tn�i;n e : ti e1 : t e2 : t= (e1; e2) : Qe : tfeg : ftg e1 : ftg e2 : ftge1 [ e2 : ftg ;t : ftg (2)e1 : ft1g e2 : ft2gSfe1 j xt2 2 e2g : ft1g e1 : Q e2 : ftgPfe1 j xt 2 e2g : Qxt : t F 2 � e1 : Q e2 : ftgAggrFfe1 j xt 2 e2g : Q
Figure 1. Expressions of NRLaggr(
;�) over sig-nature �Properties of NRLaggr(
;�) The relational part ofthe language (without arithmetic and aggregation) isknown to have precisely the power of the nested rela-tional algebra, the standard query language for nestedrelations [3]. (The language of [3] coded Boolean valuesas elements of type funitg, where unit is a type havingone value. We code Booleans as 0 and 1, but it doesnot a�ect expressiveness, see [25].) The at fragmentof the language, without aggregation, has the power ofthe relational algebra, that is, �rst-order logic [34].When the standard arithmetic and theP aggregateare added, the language becomes powerful enough tocode standard SQL aggregation features such as theGROUPBY and HAVING clauses, and aggregate functionssuch as TOTAL, COUNT, AVG, MIN, MAX, present in all com-mercial versions of SQL [32]. This was shown in [24].The language we deal with here is a lot more power-7



ful, as it puts no limitations on the class of allowedarithmetic operations and aggregate functions.The following observation will be very useful forestablishing expressivity bounds for NRLaggr. Recallthat Q stands for the product aggregate. We writeQfe1 j x 2 e2g instead of Aggr�fe1 j x 2 e2g.Lemma 5.1NRLaggr(All;All) t NRLaggr(All; fP;Qg). 2For the following result, we let root(y; x) be anyfunction Q � Q ! Q such that, for any n > 0,root(n; x) = sign(x) � npjx j if npjx j 2 Q.Proposition 5.2 (see [25]) Let 
 include +, �, �,� and root(y; x). Then NRLaggr(
; fP;Qg) is con-servative over at types. That is, any expressionof e : ft of NRLaggr(
; fP;Qg), having only freevariables and relations of at types, is de�nable inRLaggr(
; fP;Qg). 2
5.1 EncodingRLaggr(
;�) in LaggrRecall that any two-sorted schema � naturally cor-responds to a type of the form frt1g�: : :�frtng whereall rt is are record types. We denote this type by �,too. Thus, any two-sorted �-structure can be consid-ered as an object of type � and we can speak of apply-ing NRLaggr queries to it. Furthermore, any tuple ~x offree variables of a Laggr formula has a type, say (n; J),which corresponds to some record type rt . In this casewe say that ~x has type rt . Our goal now is to showTheorem 5.3 For any schema �, and for any ex-pression e : frtg of RLaggr(
;�) over � without freevariables, there exists a formula '(~x) of Laggr(
;�),with ~x of type rt, such that for any �-structure A,e(A) = f~a j A j= '(~a)g.Proof sketch. We need a translation of RLaggr ex-pressions that accounts for free variables. We de�necontexts � as sets of variable assignments that relateRLaggr variables to those of Laggr. Then for expres-sion e(xrt11 ; : : : ; xrtmm ) of type frtg and a formula ' wewrite � ` e ~z=) ' if for every assignment of values tofree variables on e and corresponding (by �) tuples offree variables of ' other than ~z, it is the case the valueof e on A is the same as the set of all tuples ~z thatmake ' true. We also give an analogous de�nition of� ` e =) t1 � : : : � tp for the case when e is of type rt(and thus produces a tuple of terms). We then de�nethese relations by induction on the structureRLaggr ex-pressions, assuming certain consistency conditions for�, and prove their correctness. 2

5.2 Expressiveness ofNRLaggrEachNRLaggr expression e : t over schema � de�nesa query (map) Qe from �nite � structures to objectsof type t. Combining Theorem 5.3, Lemma 5.1 andProposition 5.2, we obtain:Corollary 5.4 For every NRLaggr(All;All) expressione : frtg without free variables over a schema with allrelations of at types, the query Qe de�ned by e can beexpressed in Laggr(All;All). 2We call a record type relational if it is of the formb� : : :� b. We call a NRLaggr expression without freevariables relational if it is of type frtg where rt is re-lational. Finally, a query Qe de�ned by a relationalexpression is called relational if all relations in � are oftype fb� : : :� bg. From Hanf-locality of Laggr(All;All)we conclude:Corollary 5.5 (ExpressivenessofAggregation)Every relational query in NRLaggr(All;All) is Hanf-localand Gaifman-local. 2This implies, for example, that NRLaggr(All;All)cannot express any query listed in Corollary 4.8.The main result on expressibility bounds { Corol-lary 5.5 { makes the assumption that the input struc-ture is relational, that is, only contains elements of thebase type b. One can relax this in two di�erent ways.First, input structures can be nested (that is, of arbi-trary type t). Second, one can permit at structuresof types frtg where rt is an arbitrary record type, notjust b� : : :� b. The natural question, then, is whetherone can recover Corollary 5.5 under those relaxations.The case of nested inputs is simple (see below). Thecase of numerical types is dealt with in the next section.Proposition 5.6 There exist NRLaggr graphqueries (not using arithmetic and aggregation) ongraphs of type ffbg � fbgg that are neither Hanf-localnor Gaifman-local. 26 Restrictions of LaggrWhile Laggr subsumed SQL-like languages, and gaveus bounds on their expressive power, it is not very at-tractive for use as a direct analog of relational calculusfor aggregate extensions, mostly because of its use ofin�nitary connectives and quanti�cation over Q. Wenow consider a �nitary restriction of Laggr, and showthat it in a certain sense captures the languageRLaggr.We need a standard de�nition of the active do-main of a �nite database [1], slightly modi�ed here8



to deal with two base types. Given a �-structure A,the set of all elements of U that occur in A is de-noted by adom(A), and the set of all constants fromQ that occur in A is denoted by adomQ(A). Given arecord type rt = b1 � : : :� bn, by adomrt(A) we meanA1 � : : : � An where Ai = adom(A) whenever bi = band Ai = adomQ(A) whenever bi = Q.De�nition 6.1 The logic Laggr(
;�) is de�ned to bethe restriction of Laggr(
;�) that does not permit in-�nitary conjunctions and disjunctions, and 0; 1 are theonly two constant terms of the rational sort. The se-mantics is modi�ed so that A j= 9x:'(x; � � �) meansthat A j= '(x0; � � �) for some x0 2 adom�(A), whereadom� is adom for �rst-sort x, and adomQ for second-sort x. Furthermore, in AggrF~z:('; t), ~z ranges overadomrt (A) where rt is the type of ~z. 2In contrast with Laggr, Laggr formulae can be eval-uated on �nite two-sorted structures in the usualbottom-up way, assuming e�ectiveness of all functionsand predicates in 
 and aggregates in �. To connectthis logic with RLaggr, we need to impose some condi-tions on the aggregates from �.De�nition 6.2 Let M = hQ;�; �i be a commu-tative monoid on Q. A monoidal aggregate givenby M is de�ned to be FM whose nth function isfn(fjx1; : : : ; xnjg) = x1 � x2 � : : : � xn for n > 0 andf0 returns �. (f! is arbitrary.) An aggregate signatureis monoidal if every aggregate in it is. 2The usual aggregatesP and Q are monoidal, givenby hQ;+; 0i and hQ; �; 1i respectively. In fact, mostaggregates in the database setting are either monoidalor can be obtained from monoidal aggregates by meansof simple arithmetic operations [9].We now have to say what it means for a logic tocapture a query language. In one direction, it is easy {every query must be de�nable by a logical formula. Forthe other direction, one has to deal with the standarddatabase problem of safety [1]: while queries always re-turn �nite results, arbitrary formulae need not, as theymay de�ne in�nite subsets of Q. We circumvent thisproblem by using the following de�nition of capture.De�nition 6.3 We say that Laggr(
;�) capturesRLaggr(
;�) if the following two conditions hold forevery signature �. First, for every RLaggr(
;�) ex-pression e : frtg without free variables there existsan Laggr(
;�) formula '(~x) with ~x of type rt suchthat e(A) = f~a j A j= '(~a)g. Second, for everyLaggr(
;�) formula '(~x) with ~x of type rt there ex-ists a RLaggr(
;�) expression e(xrt ) : Q such that thevalue of e[xrt := ~a](A) is 0 if A j= '(~a) and 1 otherwise.

Theorem 6.4 Let � be monoidal. Then Laggr(All;�)captures RLaggr(All;�). Moreover, Laggr(
; fPg) cap-tures RLaggr(
; fPg) if 
 contains (+;�; �;�), andLaggr(
; fP;Qg) captures RLaggr(
; fP;Qg) if 
contains (+;�; �;�; root).As a corollary, we answer the question about ex-pressivity of RLaggr over Q. Since �rst-order logicwith counting quanti�ers is no more expressive thanLaggr(f+; �;�; <g; fPg), the results of [2] implyCorollary 6.5 Assume that the test for connectiv-ity of graphs of type fQ � Qg is not de�nable inRLaggr(f+;�; �;�; <g; fPg). Then there exists aproblem in NLOGSPACE for which there are noconstant-depth polynomial-size unbounded fan-in cir-cuits with threshold gates. 2Whether the class of problems de�nablewith polynomial-size constant-depth threshold circuits(called TC0) is di�erent from NLOGSPACE (or evenNP) remains an open problem in complexity theory. Itnow follows that we cannot answer questions about ex-pressivity of aggregate query languages over Q withoutseparating TC0 from NP. The key di�erence betweenthis situation and earlier results on expressive powerof NRLaggr is that the domain U is unordered, whereasover Q we do have an order. An analog of Corollary 6.5can be proved for inputs of type fb� bg assuming thatthe domain U of type b is linearly ordered. Without anorder, one retains the bounds of Corollary 5.5.7 ConclusionsIn this paper we studied the problem of adding ag-gregate operators to logics. We were primarily moti-vated by problems arising in database theory. Aggre-gation is indispensable in majority of real life appli-cations, but the foundations of query languages thatsupport it are not adequately studied. Here, we con-centrated on the problem of expressive power. We �rstconsidered adding aggregation to logics that alreadyhave substantial counting power, and proved the re-sulting logics have a very nice behavior: over pure rela-tional structures, they can only de�ne local properties.We then considered a query language, that models allthe standard aggregation features of commercial querylanguages (and, in fact, more, as it permits every well-de�ned aggregate operator and every arithmetic func-tion). We showed a simple embedding of this languageinto aggregate logic, and thus proved that over a largeclass of inputs, it is also local.We believe that the use of logics like Laggr and Laggris not limited to studying the expressive power of lan-9
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