
Reasoning about XML with Temporal Logics

and Automata

Leonid Libkin1 and Cristina Sirangelo1,2

1 University of Edinburgh
2 LSV, ENS–Cachan, INRIA

Abstract. We show that problems arising in static analysis of XML
specifications and transformations can be dealt with using techniques
similar to those developed for static analysis of programs. Many proper-
ties of interest in the XML context are related to navigation, and can be
formulated in temporal logics for trees. We choose a logic that admits
a simple single-exponential translation into unranked tree automata, in
the spirit of the classical LTL-to-Buchi automata translation. Automata
arising from this translation have a number of additional properties; in
particular, they are convenient for reasoning about unary node-selecting
queries, which are important in the XML context. We give two appli-
cations of such reasoning: one deals with a classical XML problem of
reasoning about navigation in the presence of schemas, and the other
relates to verifying security properties of XML views.
Keywords Query automata, static analysis, temporal logics, XML

1 Introduction

Static analysis of XML specifications and transformations has been the focus of
many recent papers (see, e.g., [1, 4, 6, 8, 10, 13, 16, 24, 25, 35]). Typical examples
include consistency of type declarations and constraints, or of schema specifica-
tions and navigational properties, or containment of XPath expressions. They
found application in query optimization, access control, data exchange, and rea-
soning about security properties of views, among others.

Many XML specifications – for example, various schema formalisms – are
automata-based. Furthermore, there is a close connection between XML navi-
gation, which is a key component of query languages, and temporal logics used
in the field of verification [5, 26, 25, 22, 16]. Thus, it is very natural to adapt
automata-based techniques developed by the verification community (cf. [11])
for XML static analysis problems involving schemas and navigation.

Examples of such usage exist, but by and large they take existing verification
tools, and attempt to reshape the problem at hand so that those tools would
be applicable to it. For example, [25] shows how to reason about XML navi-
gation language XPath and XML schemas by encoding them in PDL. While it
achieves provably optimal EXPTIME-bound, it does so by a rather complicated
algorithm (for example, it uses, as a black box for one of its steps, a translation

from PDL into a certain type of tree automata [40], for which no efficient imple-
mentations exist). Another example of such reasoning [16] goes via much better
implementable µ-calculus, but the technique only guarantees nO(n) algorithms
for problems for which 2O(n) algorithms exist.

We propose an alternative approach: instead of using verification techniques
as-is in the XML context, we adapt them to get better static analysis algorithms.
The present paper can be viewed as a proof-of-concept paper: we demonstrate
one logic-to-automata translation targeted to XML applications, which closely
resembles the standard Vardi-Wolper’s LTL-to-Büchi translation [39], and show
that it is easily applicable in two typical XML reasoning tasks.

Typically, temporal logic formulae are translated into either nondeterministic
or alternating automata; for LTL, both are possible [39, 37]. We believe that both
should be explored in the XML context. For this paper, we concentrate on the
former. A recent workshop paper [10] developed an alternating-automata based
approach; it handled a more expressive navigation language, but did not work
out connections with XML schemas, as we do here.

Our goal is to find a clean direct translation from a logical formalism suit-
able for expressing many XML reasoning tasks, into an automata model. To-
wards that end, we use a simple LTL-like logic for trees, which we call TLtree,
rather than a W3C-designed language (but we shall show that such languages
can be easily translated into TLtree). This logic was defined in [34], and it was
recently used in the work on XPath extensions [26], and as a key ingredient for
an expressively-complete logic for reasoning about procedural programs [2, 3].

The translation will produce a bit more than automata rejecting or accepting
trees; instead it will produce query automata [30, 28, 15] which can also select
nodes from trees in their successful runs. The ability to produce such automata
is not surprising at all (since in the Vardi-Wolper construction states are sets
of formulae and successful runs tell us which formulae hold in which positions).
Nonetheless, it is a very useful feature for XML reasoning, since many XML
data processing tasks are about node-selecting queries [18, 30, 36, 29]. Further-
more, additional properties of query automata arising in the translation make
operations such as complementation and testing containment very easy for them.
Consequently, it becomes easier to combine several reasoning tasks.

Organization In Section 2 we give examples of XML reasoning where the
logic/automata connection would be useful. Section 3 describes unranked trees
and automata for them. In Section 4 we present the logic TLtree and various
XPath formalisms, and give an easy translation of XPath into TLtree. In Section
5 we give a translation from TLtree to query automata. Section 6 applies this
translation in complex reasoning tasks involving schemas and navigation in XML
documents, and Section 7 gives an application to reasoning about XML views.

2 Motivating examples

We now consider two examples of XML static analysis problems that will later
be handled by restating these problems with the help of TLtree and the automata

translation. While formal definitions will be given later, for the reader not flu-
ent in XML the following abstractions will be sufficient. First, XML documents
themselves are labeled unranked trees (that is, different nodes can have a differ-
ent number of children). XML schemas describe how documents are structured;
they may be given by several formalisms that are all subsumed by tree automata.
The most common of such formalisms is referred to as DTDs (document type
definitions). And finally XPath is a navigational language; an XPath expression
for now can be thought of as selecting a set of nodes in a tree.

Reasoning about schemas and navigation A common static analysis prob-
lem in the XML context, arising in query optimization and consistency check-
ing, is the interaction of navigational properties (expressed, for example, in
XPath) with schemas (often given as DTDs). Known results about the complex-
ity of problems such as XPath containment [35], or XPath/DTD consistency [6],
are typically stated in terms of completeness for various intractable complexity
classes. They imply unavoidability of exponential-time algorithms, but they do
not necessarily lead to reasonable algorithms that can be used in practice.

To illustrate this, consider the containment problem of XPath expressions
under a DTD, i.e., checking whether for all trees satisfying a DTD d, the set
of nodes selected by e1 is contained in the set selected by e2 (written as d |=
e1 ⊆ e2). Automata-based algorithms would either translate XPath directly into
automata (which could depend heavily on a particular syntactic class [31]), or
attempt a generic translation via an existing logic. The second approach, taken
by [25, 6, 16], translates e1, e2, and d into formulae of expressive logics such as
PDL (in [25]) or µ-calculus (in [16]). Then one uses techniques of [40, 38] to
check if there exists a finite tree T satisfying d and a node s in T witnessing
e1(s) ∧ ¬e2(s), i.e., a counterexample to the containment. PDL and µ-calculus
have been chosen because of their ability to encode XML schemas, e.g., DTDs,
but, as we shall see, this is easy to avoid.

While this is very much in the spirit of the traditional logic/automata connec-
tion used so extensively in static analysis of programs, there are some problems
with this approach as currently used. The logics used were chosen because of
their ability to encode DTDs, but this makes the constructions apply several al-
gorithms as black-boxes. For example, the PDL construction of [25] combines a
translation into PDL with converse on binary trees, a rather complex automata
model of [40] together with an extra automaton that restricts it to finite trees.
Second, we do not get a concise description of the set of all possible counterex-
amples, rather a yes or no answer. And third, the high expressiveness of logics
comes at a cost. The running time of algorithms that go via µ-calculus is nO(n)

[16]. For the PDL approach [25], the running time is 2O(‖e1‖+‖e2‖+‖d‖), where
‖ · ‖ denotes the size. In several applications, we would rather avoid the 2O(‖d‖)

factor, since many DTDs are computer-generated from database schemas and
could be very large, while XPath expressions tend to be small.

The translation we propose is a direct and simple construction, and does
not rely on complicated algorithms such as the PDL-to-automata translation.

It produces a concise description of all possible counterexamples, which can be
reused later. Finally, it exhibits an exponential blowup in the size of e1 and e2,
but remains polynomial in the size of the schema.

Reasoning about views and query answers Often the user sees not a whole
XML document, but just a portion of it, V (called a view), generated by a query.
Such a query typically specifies a set of nodes selected from a source document,
and thus can be represented by a query automaton QAV : i.e., an extension of a
tree automaton that can select nodes in trees; a formal definition will be given
shortly.

If we only have access to V , we do not know the source document that
produced it, as there could be many trees T satisfying V = QAV(T). We may
know, however, that every such source has to satisfy some schema requirements,
presented by a tree automaton A. A common problem is to check whether V
may reveal some information about the source. If Q is a Boolean (yes/no) query,
one defines the certain answer to Q over V to be true iff Q is true in every
possible T that generates V :

certain
A
QAV

(Q;V) =
∧

{Q(T) | V = QAV(T), T is accepted by A}

Now if by looking at V , we can conclude that certain
A
QAV

(Q;V) is true, then V
reveals that Q is true in an unknown source. If Q is a containment statement
e1 ⊆ e2, such an inclusion could be information that needs to be kept secret
(e.g., it may relate two different groups of people). For more on this type of
applications, see [13, 14].

Suppose Q itself is definable by an automaton AQ. If we can convert au-
tomata AQ, A, and the query automaton QAV into a new automaton A∗ that
accepts V iff certain

A
QAV

(Q;V) is false, then acceptance by A∗ gives us some
assurances that the secret is not revealed. Furthermore, since views are often
given by XPath expressions, and e1 and e2 are often XPath expressions too, an
efficient algorithm for constructing A∗ would give us a verification algorithm
exponential in (typically short) XPath expressions defining e1, e2, and V , and
polynomial in a (potentially large) expression defining the schema.

In fact, we shall present a polynomial-time construction for A∗ for the case of
subtree- (or upward-closed) queries [7]. In that case, combining it with previous
efficient translations from logical formulae into query automata, we get efficient
algorithms for verifying properties of views.

3 Unranked trees and automata

Unranked trees XML documents are normally abstracted as labeled unranked
trees. We now recall the standard definitions, see [29, 22, 36]. Nodes in unranked
trees are elements of N

∗, i.e. strings of natural numbers. We write s · s′ for the
concatenation of strings, and ε for the empty string. The basic binary relations
on N

∗ are the child relation: s ≺ch s′ if s′ = s · i, for some i ∈ N, and the

next-sibling relation: s′ ≺ns s
′′ if s′ = s · i and s′′ = s · (i + 1) for some s ∈ N

∗

and i ∈ N. The descendant relation ≺∗
ch and the younger sibling relation ≺∗

ns are
the reflexive-transitive closures of ≺ch and ≺ns.

An unranked tree domain D is a finite prefix-closed subset of N
∗ such that

s · i ∈ D implies s · j ∈ D for all j < i. If Σ is a finite alphabet, an unranked
tree is a pair T = (D,λ), where D is a tree domain and λ is a labeling function
λ : D → Σ.

Unranked tree automata and XML schemas A nondeterministic unranked
tree automaton (cf. [29, 36]) over Σ-labeled trees is a triple A = (Q,F, δ) where
Q is a finite set of states, F ⊆ Q is the set of final states, and δ is a mapping
Q×Σ → 2Q∗

such that each δ(q, a) is a regular language over Q. We assume that
each δ(q, a) is given as an NFA. A run of A on a tree T = (D,λ) is a function
ρA : D → Q such that if s ∈ D is a node with n children, and λ(s) = a, then
the string ρA(s · 0) · · · ρA(s · (n− 1)) is in δ(ρA(s), a). Thus, if s is a leaf labeled
a, then ρA(s) = q implies that ε ∈ δ(q, a). A run is accepting if ρA(ε) ∈ F ,
and a tree is accepted by A if an accepting run exists. Sets of trees accepted by
automata A are called regular and denoted by L(A).

There are multiple notions of schemas for XML documents, DTDs being the
most popular one. What is common for them is that they are subsumed by
the power of unranked tree automata, and each specific formalism has a simple
(often linear time) translation into an automaton [36]. So when we speak of XML
schemas, we shall assume that they are given by unranked tree automata.

Query automata It is well known that automata capture the expressiveness
of MSO sentences over finite and infinite strings and trees. The model of query
automata [30] captures the expressiveness of MSO formulae ϕ(x) with one free
first-order variable – that is, MSO-definable unary queries. We present here a
nondeterministic version, as in [28, 15].

A query automaton (QA) for Σ-labeled unranked trees is a tuple QA =
(Q,F,Qs, δ), where (Q,F, δ) is an unranked tree automaton, and Qs ⊆ Q is the
set of selecting states. Each run ρ of QA on a tree T = (D,λ) defines the set
Sρ(T) = {s ∈ D | ρ(s) ∈ Qs} of nodes assigned a selecting state. The unary
query defined by QA is then, under the existential semantics,

QA∃(T) =
⋃

{Sρ(T) | ρ is an accepting run of QA on T }.

Dually, one can define QA∀(T) under the universal semantics as the intersection
of Sρ(T)’s. Both semantics capture the class of unary MSO queries [28].

These notions are not very convenient for reasoning tasks, as many runs need
to be taken into account – different nodes may be selected in different runs. Also,
it makes operations on query automata hard computationally: for example, a
natural notion of complement for an existential-semantics QA will be expressed
as a universal semantics QA, requiring an exponential time algorithm to convert
it back into an existential QA.

To remedy this, we define a notion of single-run query automata as QAs
(Q,F,Qs, δ) satisfying two conditions:

1. For every tree T , and accepting runs ρ1 and ρ2, we have Sρ1
(T) = Sρ2

(T);
and

2. The automaton (Q,F, δ) accepts every tree.

For such QAs, we can unambiguously define the set of selected nodes as QA(T) =
Sρ(T), where ρ is an arbitrarily chosen accepting run.

While the conditions are fairly strong, they do not restrict the power of QAs:

Fact 1 (see [15, 32, 33]) For every query automaton QA, there exists an equiva-
lent single-run query automaton, that is, a single-run query automaton QA′ such
that QA∃(T) = QA′(T) for every tree T .

Remarks: the construction in [15] needs a slight modification to produce such
QA; also it needs to be extended to unranked trees which is straightforward. This
was also noticed in [33]. One can also get this result by slightly adapting the
construction of [32].

We now make a few remarks about closure properties and decision problems
for single-run QAs. It is known [29] that nonemptiness problem for existential-
semantics QAs is solvable in polynomial time; hence the same is true for single-
run QAs. Single-run QAs are easily closed under intersection: the usual product
construction works. Moreover, if one takes a product A×QA of a tree automaton
and a single-run QA (where selecting states are pairs containing a selecting state
of QA), the result is a QA satisfying 1) above, and the nonemptiness problem
for it is solvable in polynomial time too.

We define the complement of a single-run QA as QA = (Q,F,Q − Qs, δ),
where QA = (Q,F,Qs, δ). It follows immediately from the definition that for
every tree T with domain D, we have QA(T) = D−QA(T), if QA is single-run.
This implies that the containment problem QA1 ⊆ QA2 (i.e., checking whether
QA1(T) ⊆ QA2(T) for all T) for single-run QAs is solvable in polynomial time,
since it is equivalent to checking emptiness of QA1 ×QA2.

4 Logics on trees: TL
tree and XPath

TLtree An unranked tree T = (D,λ) can be viewed as a structure
〈D,≺∗

ch,≺
∗
ns,(Pa)a∈Σ〉, where Pa’s are labeling predicates: Pa = {s ∈ D | λ(s) =

a}. Thus, when we talk about first-order logic (FO), or monadic second-order
logic (MSO), we interpret them on these representations of unranked trees. Re-
call that MSO extends FO with quantification over sets.

We shall use a tree temporal logic [26, 34], denoted here by TLtree [22]. It can
be viewed as a natural extension of LTL with the past operators to unranked
trees [20, 38], with next, previous, until, and since operators for both child and
next-sibling relations. The syntax of TLtree is defined by:

ϕ,ϕ′ := ⊤ | ⊥ | a | ϕ ∨ ϕ′ | ¬ϕ | X∗ϕ | X−
∗ ϕ | ϕU∗ϕ

′ | ϕS∗ϕ
′,

where ⊤ and ⊥ are true and false, a ranges over Σ, and ∗ is either ’ch’ (child)
or ’ns’ (next sibling). The semantics is defined with respect to a tree T = (D,λ)
and a node s ∈ D:

– (T, s) |= ⊤; (T, s) 6|= ⊥;
– (T, s) |= a iff λ(s) = a;
– (T, s) |= ϕ ∨ ϕ′ iff (T, s) |= ϕ or (T, s) |= ϕ′;
– (T, s) |= ¬ϕ iff (T, s) 6|= ϕ;
– (T, s) |= Xchϕ if there exists a node s′ ∈ D such that s ≺ch s

′ and (T, s′) |= ϕ;
– (T, s) |= X−

chϕ if there exists a node s′ ∈ D such that s′ ≺ch s and (T, s′) |= ϕ;
– (T, s) |= ϕUchϕ

′ if there is a node s′ such that s ≺∗
ch s

′, (T, s′) |= ϕ′, and for
all s′′ 6= s′ satisfying s ≺∗

ch s
′′ ≺∗

ch s
′ we have (T, s′′) |= ϕ.

– (T, s) |= ϕSchϕ
′ if there is a node s′ such that s′ ≺∗

ch s, (T, s′) |= ϕ′, and for
all s′′ 6= s′ satisfying s′ ≺∗

ch s
′′ ≺∗

ch s we have (T, s′′) |= ϕ.

The semantics of Xns,X
−
ns,Uns, and Sns is analogous by replacing the child

relation with the next-sibling relation.
A TLtree formula ϕ defines a unary query T 7→ {s | (T, s) |= ϕ}. It is known

that TLtree is expressively complete for FO: the class of such unary queries is
precisely the class of queries defined by FO formulae with one free variable [26,
34].

XPath We present a first-order complete extension of XPath, called conditional
XPath, or CXPath [26]. We introduce very minor modifications to the syntax
(e.g., we use an existential quantifier E instead of the usual XPath node test
brackets []) to make the syntax resemble that of temporal logics. CXPath has
node formulae α and path formulae β given by:

α, α′ := a | ¬α | α ∨ α′ | Eβ
β, β′ := ?α | step | step∗ | (step/?α)∗ | β/β′ | β ∨ β′

where a ranges over Σ and step is one of the following: ≺ch, ≺−
ch, ≺ns, or ≺−

ns.
The language without the (step/?α)∗ is known as “core XPath”.

Intuitively Eβ states the existence of a path starting in a given node and
satisfying β, the path formula ?α tests if the node formula α is true in the initial
node of a path, and / is the composition of paths.

Given a tree T = (D,λ), the semantics of a node formula is a set of nodes
[[α]]T ⊆ D, and the semantics of a path formula is a binary relation [[β]]T ⊆ D×D
given by the following rules. We use R∗ to denote the reflexive-transitive closure
of relation R, and π1(R) to denote its first projection.

[[a]]T = {s ∈ D | λ(s) = a} [[?α]]T = {(s, s) | s ∈ [[α]]T }
[[¬α]]T = D − [[α]]T [[step]]T = {(s, s′) | s, s′ ∈ D and (s, s′) ∈ step}
[[α ∨ α′]]T = [[α]]T ∪ [[α′]]T [[β ∨ β′]]T = [[β]]T ∪ [[β′]]T
[[Eβ]]T = π1([[β]]T) [[step∗]]T = [[step]]∗T

[[β/β′]]T = [[β]]T ◦ [[β′]]T
[[(step/?α)∗]]T = [[(step/?α)]]∗T

CXPath defines two kinds of unary queries: those given by node formulae,
and those given by path formulae β, selecting [[β]]rootT = {s ∈ D | (ε, s) ∈ [[β]]T }.
Both classes capture precisely unary FO queries on trees [26].

XPath and TLtree XPath expressions can be translated into TLtree. For ex-
ample, consider an expression in the “traditional” XPath syntax: e = /a//b[//c].
It says: start at the root, find children labeled a, their descendants labeled b, and
select those which have a c-descendant. It can be viewed as both a path formula
and a node formula of XPath. An equivalent path formula is

β = ≺ch /?a/ ≺
∗
ch /?(b ∧ E(≺∗

ch /?c)).

The set [[β]]rootT = {s | (ε, s) ∈ [[β]]T } is precisely the set of nodes selected by e in
T . Alternatively we can view it as a node formula

α = b ∧ E(≺∗
ch /?c) ∧ E

(

(≺−
ch)∗/?(a ∧E(≺−

ch /root))
)

.

Here root is an abbreviation for a formula that tests for the root node. Then
[[α]]T generates the set of nodes selected by e. It is known [27] that for every
path formula β, one can construct in linear time a node formula α so that
[[β]]rootT = [[α]]T . Thus, from now on we deal with node XPath formulae.

The above formulae can be translated into an equivalent TLtree expression

b ∧ Fchc ∧ F−
ch

(

a ∧ X−
chroot

)

Here Fchϕ is ⊤Uchϕ, and F−
chϕ is ⊤Schϕ; we also use root as a shorthand for

¬X−
ch⊤. This formula selects b-labeled nodes with c-labeled descendants, and an

a-ancestor which is a child of the root – this is of course equivalent to the original
expression.

Since both TLtree and CXPath are first-order expressively-complete [26], each
core or conditional XPath expression is equivalent to a formula of TLtree; how-
ever, no direct translation has previously been produced. We now give such a
direct translation that, together with the translation from TLtree to QAs, will
guarantee single-exponential bounds on QAs equivalent to XPath formulae.

Lemma 1. There is a translation of node formulae α of core or conditional
XPath into formulae α′ of TLtree such that the number of subformulae of α′ is
at most linear in the size of α. Moreover, if α does not use any disjunctions of
path formulae, then the size of α′ is at most linear in the size of α.

In particular, even if α′ is exponential in the size of α, the size of its Fischer-
Ladner closure is at most linear in the size of the original formula α.

We now sketch the proof. Given two TLtree formulae ϕ and ϕ′ and a CXPath
path formula β, we write ϕ′ ≡ Xβϕ if for each tree T and each node s, one has
that (T, s) |= ϕ′ iff there is a node s′, with (s, s′) ∈ [[β]]T , such that (T, s′) |= ϕ.
Now each CXPath node formula α is translated into a TLtree formula ϕα such
that (T, s) |= ϕα iff s ∈ [[α]]T . Each path formula β is translated into a mapping

xβ from TLtree formulae to TLtree formulae such that xβ(ϕ) ≡ Xβϕ. The rules
are:

α ϕα

a a
¬α′ ¬ϕα′

α′ ∨ α′′ ϕα′ ∨ ϕα′′

Eβ xβ(⊤)

β xβ(ϕ)

?α ϕα ∧ ϕ
≺ch Xchϕ
≺∗

ch ⊤Uchϕ
(≺ch /?α)∗ (Xchϕα)Uchϕ
β′/β′′ xβ′ ◦ xβ′′(ϕ)
β ∨ β′ xβ′(ϕ) ∨ xβ′′(ϕ)

5 Tree logic into query automata: a translation

Our goal is to translate TLtree into single-run QAs. We do a direct translation
into unranked QAs, as opposed to coding of unranked trees into binary (which is
a common technique). Such coding is problematic for two reasons. First, simple
navigation over unranked trees may look unnatural when coded into binary,
resulting in more complex formulae (child, for example, becomes ‘left successor
followed by zero or more right successors’). Second, coding into binary trees
makes reasoning about views much harder. The property of being upward-closed,
which is essential for decidability of certain answers, is not even preserved by
the translation. Thus, we do a direct translation into unranked QAs, and then
apply it to XML specifications.

Since values of transitions δ(q, a) in unranked QAs are not sets of states but
rather NFAs representing regular languages over states, we measure the size of
QA = (Q,F,Qs, δ) not as the number |Q| of states, but rather as

‖QA‖ = |Q| +
∑

q∈Q,a∈Σ

‖δ(q, a)‖,

where ‖δ(q, a)‖ is the number of states of the NFA. We then show:

Theorem 1. Every TLtree formula ϕ of size n can be translated, in exponential
time, into an equivalent single-run query automaton QAϕ of size 2O(n), i.e. a
query automaton such that QAϕ(T) = {s | (T, s) |= ϕ} for every tree T .

We now sketch the construction. First, as is common with translations into
nondeterministic automata [39], we need to work with a version of TLtree in
which all negations are pushed to propositions. To deal with until and since
operators, we shall introduce four operators R∗ and I∗ for ∗ being ’ch’ or ’ns’
so that ¬(αU∗β) ↔ ¬αR∗¬β and ¬(αS∗β) ↔ ¬αI∗¬β; this part is completely
standard. However, trees do not have a linear structure and we cannot just push
negation inside the X operators: for example, ¬Xchϕ is not Xch¬ϕ. Since our
semantics of the next operators is existential (there is a successor node in which
the formula is true), we need to add their universal analogs. For example, X∀

chϕ

is true in s if for every successor s′ of s in the domain of the tree, ϕ is true
in s′. Then of course we have ¬Xchϕ ↔ X∀

ch¬ϕ. We add four such operators
(X∀

ch,X
∀
ns,X

−∀
ch ,X

−∀
ns). Other axes have a linear structure, so one could alterna-

tively add tests for the root, first, and last child of a node to deal with them.
For example, ¬X−

chϕ↔ X−
ch¬ϕ∨αroot, where αroot is a test for the root. But for

symmetry we prefer to deal with the four universal versions of the next/previous
operators, since it is unavoidable for Xch.

With these additions, we can push negations to propositions, so we assume
negations only occur in subformulae ¬a for a ∈ Σ. The states of QAϕ will be
maximally consistent subsets of the Fischer-Ladner closure of ϕ (in particular,
for each state q and a subformula ψ, exactly one of ψ and ¬ψ is in q).

The transitions have to ensure that all “horizontal” temporal connectives
behave properly, and that “vertical” transitions are consistent. The alphabet of
each automaton δ(q, a) is the set of states of QAϕ; that is, letters of δ(q, a) are sets
of formulae. Each δ(q, a) is a product of three automata. The first guarantees
that eventualities αUnsβ and αSnsβ are fulfilled in the oldest and youngest
siblings. For that, we impose conditions on the initial states δ(q, a)’s that they
need to read a letter (which is a state of QAϕ) that may not contain αSnsβ
without containing β, and on their final state guaranteeing that in the last letter
we do not have a subformula αUnsβ without having β.

The second automaton enforces horizontal transitions, and it behaves very
similarly to the standard LTL-to-Büchi construction; it only deals with next-
sibling connectives. For example, if Xnsα is the current state of QA for a node
s · i, then the state for s · (i + 1) contains α, and that if αUnsβ is in the state
for s · i but β is not, then αUnsβ is propagated into the state for s · (i+ 1).

The third automaton enforces vertical transitions. We give a few sample rules.
If q contains the negation of αSchβ, then the automaton rejects after seeing a
state which contains αSchβ but does not contain β (since in this case αSchβ
must propagate to the parent). If q contains αUchβ and does not contain β,
then the automaton only accepts if one of its input letters contains αUchβ. And
if q contains Xchα, then it only accepts if one of its input letters contains α. In
addition, we have to enforce eventualities αUchβ by disallowing these automata
to accept ε if q contains αUchβ and does not contain β.

The final states of QAϕ at the root must enforce correctness of αSchβ for-
mulae: with each such formula, states from F must contain β as well. This
completes the construction. When all automata δ(q, a) are properly coded, the
2O(n) bound follows. We then show a standard lemma that in an accepting run,
a node is assigned a state that contains a subformula α iff α is true in that node.
This guarantees that for every tree, there is an accepting run. Since each state
has either α or ¬α in it, it follows that the resulting QA is single-run.

6 An application: reasoning about document navigation

As mentioned in Section 2, typical XML static analysis tasks include consis-
tency of schema and navigational properties (e.g., is a given XPath expression

consistent with a given DTD?), or query optimization (e.g., is a given XPath
expression e contained in a another expression e′ for all trees that conform to
a DTD d?). We now show two applications of our results for such analyses of
XML specifications.

Satisfiability algorithms for sets of XPath expressions The exponential-time com-
plexity for satisfiability of XPath expressions in the presence of a schema is al-
ready known [25, 6]. We now show how we can verify satisfiability of multiple sets
of XPath expressions, in a uniform way, using translation into query automata.

Given an arbitrary set E = {e1, . . . , en} of XPath (core or conditional) ex-
pressions and a subset E′ ⊆ E, let Q(E′) be a unary query defining the inter-
section of queries given by all the e ∈ E′. That is, Q(E′) selects nodes that
satisfy every expression e ∈ E′. We can capture all (exponentially many) such
queries Q(E′)s by a single automaton, that is instantiated into different QAs by
different selecting states.

Corollary 1. One can construct, in time 2O(‖E‖) (that is, 2O(‖e1‖+...+‖en‖)), an
unranked tree automaton A(E) = (Q,F, δ) and a relation σ ⊆ E ×Q such that,
for every E′ ⊆ E,

QAE′ = (Q, F,
⋂

{σ(e) | e ∈ E′}, δ)

is a single-run QA defining the unary query Q(E′).

The construction simply takes the product of all the QAe′

i
s, produced by Theo-

rem 1, where e′i is a TLtree translation of ei, produced by Lemma 1. The relation
σ relates tuples of states that include selecting states of QAe′

i
with ei ∈ E.

Then checking nonemptiness of QAE′ , we see if all e ∈ E′ are simultaneously
satisfiable.

The containment problem for XPath expressions is a special case of the prob-
lem we consider. To check whether d |= e1 ⊆ e2, we construct QA{e1,¬e2} as in
Corollary 1, and take the product of it with the automaton for d. This results in
a QA of size ‖d‖·2O(‖e1‖+‖e2‖) that finds counterexamples to containment under
d. This is precisely the construction that was promised in the introduction.

Verifying complex containment statements under DTDs We can now extend the
previous example and check not a single containment, as is usually done [35],
but arbitrary Boolean combinations of XPath containment statements, without
additional complexity. Assume that we are given a DTD d (or any other schema
specification presented by an automaton), a set {e1, . . . , en} of XPath expres-
sions, and a Boolean combination C of inclusions ei ⊆ ej. We now want to check
whether d |= C, that is, whether C is true in every tree T that conforms to d.
We shall refer to size of C as ‖C‖; the definition is extended in the natural way
from the definition of ‖e‖.

Theorem 2. In the above setting, one can construct an unranked tree automa-
ton of size ‖d‖ · 2O(‖C‖) whose language is empty iff d |= C.

This is achieved by replacing ei ⊆ ej in C with the formula ¬Fch(e′i ∧ ¬e′j) and

ei 6⊆ ej in C with the formula Fch(e
′
i ∧ ¬e′j), where e′i, e

′
j are TLtree translations

of ei and ej produced by Lemma 1. Thus we can view C as a TLtree formula αC .
Now construct a QA for ¬αC , by Theorem 1, and turn it into an automaton that
checks whether the root gets selected. Now we take the product of this automaton
with the automaton for d. The result accepts counterexamples to C under d, and
the result follows. The construction of the automaton is polynomial-time in ‖d‖
and single-exponential time in ‖C‖.

7 An application: reasoning about views

Recall the problem outlined in the introduction. We have a view definition given
by a query automaton QAV . For each source tree T , it selects a set of nodes
V = QAV(T) which can also be viewed as a tree (we can assume, for example,
that QAV always selects the root). Source trees are required to satisfy a schema
constraint (e.g., a DTD). Since all schema formalisms for XML are various re-
strictions or reformulations of tree automata, we assume that the schema is given
by an automaton A.

If we only have access to V , we would like to be sure that secret information
about an unknown source T is not revealed. This information, which we assume
to be coded by a Boolean query Q, would be revealed by V if the answer to
Q were true in all source trees T that conform to the schema and generate V
– that is, if certain

A
QAV

(Q;V) were true. Thus, we would like to construct a

new automaton A∗ that accepts V iff certain
A
QAV

(Q;V) is false, giving us some
security assurances about the view.

In general, such an automaton construction is impossible: if QAV generates
the yield of a tree, views essentially code context-free languages. Combining
multiple CFLs with the help of DTDs, we get an undecidability result:

Proposition 1. The problem of checking, for source and view schemas As and
Av, a view definition QAV , and a Boolean first-order query Q, whether there
exists a view V that conforms to Av and satisfies certain

As

QAV
(Q;V) = true, is

undecidable.

Schemas and queries required for this result are very simple, so to ensure the
existence of the automaton A∗, we need to put restrictions on the class of views.
We assume that they are upward-closed as in [7]: if a node is selected, then so is
the entire path to it from the root.

Note that the upward-closure QA↑ of a query automaton QA can be obtained
in linear time by adding a bit to the state indicating whether a selecting state
has been seen and propagating it up. Thus, we shall assume without loss of
generality that QAs defining views are upward-closed: if s ∈ QA(T) and s′ is an
ancestor of s, then s′ ∈ QA(T).

The key observation that we need is that for an upward-closed QA, satisfying
the single-run condition, its image is regular. Furthermore, it can be accepted
by a small tree automaton:

Lemma 2. Let QA be an upward-closed query automaton that satisfies condition
1) of the definition of single-run QAs. Then one can construct, in cubic time,
an unranked tree automaton A∗ that accepts trees V for which there exists a tree
T satisfying V = QA(T). Moreover, the number of states of A∗ is at most the
number of states of QA.

Proof sketch. The automaton A∗ has to guess a tree T and its run so that
the selecting states would be assigned precisely to the elements of V . So one
first needs to analyze non-selecting runs: that is, runs that can be extended to
an accepting run but never hit a selecting state. Trees admitting such runs may
be inserted under leaves of V , and in between two consecutive siblings of a node
in V . We then need to modify the horizontal transition to allow for guesses of
words consisting of final states of non-selecting runs in between two states.

To apply Lemma 2 to the problem of finding certain answers
certain

A
QAV

(Q;V), we now take the product of QAV with A and the automa-
ton for ¬Q (the selecting states in the product will be determined by QAV), and
obtain:

Theorem 3. Let QAV be upward-closed and single-run, A an unranked tree au-
tomaton defining a schema, and A¬Q an automaton accepting trees for which Q

is false. Then one can construct, in polynomial time, an unranked tree automaton
A∗ such that

1. ‖A∗‖ = O(‖QAV‖ · ‖A‖ · ‖A¬Q‖), and
2. A∗ accepts V ⇔ certain

A
QAV

(Q;V) = false.

Combining Theorem 3 with previous translations into single-run QAs and
properties of the latter, we obtain algorithms for verifying properties of views
given by XPath expressions. Revisiting our motivating example from Section 2,
we make the following assumptions:

– The view definition is given by an XPath (conditional or core) expression
eV ; the view V of a source tree T has all the nodes selected by eV and their
ancestors;

– The schema definition is given by a DTD d;
– The query Q is an arbitrary Boolean combination of containment statements
e ⊆ e′, where e, e′ come from a set E of XPath expressions.

Then, for a given V , we want to check if certain
d
eV

(Q;V) is false: that is, the
secret encoded by Q cannot be revealed by V , since not all source trees T that
conform to d and generate V satisfy Q. We then have the following:

Corollary 2. In the above setting, one can construct in time polynomial in
‖d‖ and exponential in ‖E‖ + ‖eV ‖ an unranked tree automaton A∗ of size
‖d‖ · 2O(‖eV ‖+‖E‖) that accepts a view V iff certain

d
eV

(Q;V) is false.

Note that again the exponent contains the size of typically small XPath
expressions, and not the potentially large schema definition d.

8 Conclusion

There are several extensions we would like to consider. One concerns relative
specifications often used in the XML context – these apply to subtrees. Results
of [21, 2] on model-checking of now and within operators on words and nested
words indicate that an exponential blowup is unavoidable, but there could well be
relevant practical cases that do not exhibit it. We would like to see how LTL-to-
Büchi optimization techniques (e.g., in [12, 17]) could be adapted in our setting,
to produce automata of smaller size. We also would like to see if automata can be
used for reasoning about views without imposing upward-closeness of [7], which
does not account for some of the cases of secure XML views [13]. One could look
beyond first-order at logics having the power of MSO or ambient logics with
known translations into automata, and investigate their translations into QAs
[9, 18, 15]. Another possible direction has to do with a SAX representation of
XML which corresponds to its linear structure (in the paper we dealt with the
tree structure, i.e., the DOM representation). The connection between the linear
structure of XML and nested words already found some applications [19, 23].

Acknowledgment We thank Pablo Barceló and Floris Geerts for their comments.

This work was done while the second author was at the University of Edinburgh.

The authors were supported by EPSRC grant E005039, the first author also by the

European Commission Marie Curie Excellence grant MEXC-CT-2005-024502.

References

1. S. Abiteboul, B. Cautis, T. Milo. Reasoning about XML update constraints. In
PODS’07, pages 195–204.

2. R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, L. Libkin. First-order
and temporal logics for nested words. In LICS’07, pages 151–160.

3. R. Alur, K. Etessami and P. Madhusudan. A temporal logic of nested calls and
returns. In TACAS’04, pages 467–481.

4. M. Arenas, W. Fan, L. Libkin. Consistency of XML specifications. In Inconsistency

Tolerance, Springer, 2005, pages 15–41.

5. P. Barceló, L. Libkin. Temporal logics over unranked trees. In LICS’05, pages
31–40.

6. M. Benedikt, W. Fan, F. Geerts. XPath satisfiability in the presence of DTDs. In
PODS’05, pages 25–36.

7. M. Benedikt and I. Fundulaki. XML subtree queries: specification and composition.
In DBPL’05, pages 138–153.

8. M. Bojanczyk, C. David, A. Muscholl, Th. Schwentick, L. Segoufin. Two-variable
logic on data trees and XML reasoning. In PODS’06, pages 10–19.

9. I. Boneva, J.-M. Talbot, S. Tison. Expressiveness of a spatial logic for trees. In
LICS 2005, pages 280–289.

10. D. Calvanese, G. De Giacomo, M. Lenzerini, M. Y. Vardi. Regular XPath: con-
straints, query containment and view-based answering for XML documents. In
Logic in Databases, 2008.

11. E. Clarke, O. Grumberg, D. Peled. Model Checking, MIT Press, 1999.

12. M. Daniele, F. Giunchiglia, M.Y. Vardi. Improved automata generation for linear
temporal logic. In CAV’99, pages 249–260.

13. W. Fan, F. Geerts, X. Jia, A. Kementsietsidis. Rewriting regular XPath queries
on XML views. In ICDE’07, pages 666–675.

14. W. Fan, C.Y. Chan, M. Garofalakis. Secure XML querying with security views.
In SIGMOD’04, pages 587–598.

15. M. Frick, M. Grohe, C. Koch. Query evaluation on compressed trees. In LICS’03,
pages 188-197.

16. P. Genevés and N. Layaida. A system for the static analysis of XPath. ACM TOIS

24 (2006), 475–502.
17. R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-

cation of linear temporal logic. In PSTV 1995, pages 3–18.
18. G. Gottlob, C. Koch. Monadic datalog and the expressive power of languages for

web information extraction. J. ACM 51 (2004), 74–113.
19. V. Kumar, P. Madhusudan, M. Viswanathan. Visibly pushdown automata for

streaming XML. In WWW 2007, pages 1053–1062.
20. O. Kupferman, A. Pnueli. Once and for all. In LICS’95, pages 25–35.
21. F. Laroussinie, N. Markey, Ph. Schnoebelen. Temporal logic with forgettable past.

In LICS’02, pages 383–392.
22. L. Libkin. Logics for unranked trees: an overview. In ICALP’05, pages 35-50.
23. P. Madhusudan, M. Viswanathan. Query automata for nested words. Manuscript,

2008.
24. S. Maneth, T. Perst, H. Seidl. Exact XML type checking in polynomial time. In

ICDT 2007, pages 254–268.
25. M. Marx. XPath with conditional axis relations. In EDBT 2004, pages 477–494.
26. M. Marx. Conditional XPath. ACM TODS 30 (2005), 929–959.
27. M. Marx, M. de Rijke. Semantic characterizations of navigational XPath. SIGMOD

Record 34 (2005), 41–46.
28. F. Neven. Design and Analysis of Query Languages for Structured Documents.

PhD Thesis, U. Limburg, 1999.
29. F. Neven. Automata, logic, and XML. In CSL 2002, pages 2–26.
30. F. Neven, Th. Schwentick. Query automata over finite trees. TCS, 275 (2002),

633–674.
31. F. Neven, Th. Schwentick. On the complexity of XPath containment in the presence

of disjunction, DTDs, and variables. LMCS, 2(3): (2006).
32. F. Neven, J. Van den Bussche. Expressiveness of structured document query lan-

guages based on attribute grammars. J. ACM 49(1): 56–100 (2002).
33. J. Niehren, L. Planque, J.-M. Talbot, S. Tison. N-ary queries by tree automata.

In DBPL 2005, pages 217–231.
34. B.-H. Schlingloff. Expressive completeness of temporal logic of trees. Journal of

Applied Non-Classical Logics 2 (1992), 157–180.
35. Th. Schwentick. XPath query containment. SIGMOD Record 33 (2004), 101–109.
36. Th. Schwentick. Automata for XML – a survey. JCSS 73 (2007), 289–315.
37. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. Banff

Higher Order Workshop, 1996.
38. M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP’98,

pages 628–641.
39. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf.& Comput.

115 (1994), 1–37.
40. M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of

programs. JCSS 33 (1986), 183–221.

