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An elementary proof that upper and lower powerdomainconstructions commuteLeonid LibkinDepartment of Computer and Information ScienceUniversity of Pennsylvania, Philadelphia, PA 19104, USA1 IntroductionIt was proved in [1] that lower and upper powerdomain constructions commute on all domains. Inthat proof, domains were represented as information systems. In [2] a rather complicated algebraicproof was given which relied on universality properties of powerdomains proved in the previous worksof the author of [2]. Here we give an elementary algebraic proof that upper and lower powerdomainconstructions commute. The proof is essentially a reduction of the problem to establishing a 1-1correspondence between certain disjunctive and conjunctive normal forms.2 De�nitionsA subset X of a partially ordered set is called directed if a common upper bound exists for any twoelements of X, i.e. given x1; x2 2 X, there exists x 2 X such that x � x1; x2. A poset is calledcomplete (abbreviated { cpo) if every directed subset has a least upper bound. An element of a cpo iscalled compact if it can not be below a least upper bound of a directed set X without being below anelement of X. A cpo is called algebraic if every element is the least upper bound of compact elementsbelow it, see [3].A domain in this paper is an algebraic cpo with bottom. Given a domain D, � denotes its order andKD is the set of its compact elements. Given A;B � D, lower and upper powerdomain orderings aregiven by A v[ B , 8a 2 A9b 2 B : a � bA v] B , 8b 2 B9a 2 A : a � bA subset of an ordered set is called an antichain if no two elements in it are comparable. If hX;�iis an ordered set and Y � X, then max� Y and min� Y are sets of maximal and minimal elementsof Y . We will use just maxY and minY if the ordering is understood. Afin(X) stands for the1Supported in part by NSF Grants IRI-86-10617 and CCR-90-57570 and ONR Grant NOOO14-88-K0634.1



set of all �nite antichains of X. The lower and upper powerdomains are de�ned to be the idealcompletions of hAfin(KD);v[i and hAfin(KD);v]i respectively. They are denoted by P[(D) andP](D). hAfin(KD);v[i and hAfin(KD);v]i are posets of compact elements of P[(D) and P](D) [3].Remark: A traditional de�nition of the powerdomain construction is the ideal completion of Pfin(KD),the set of all �nite subsets of KD. The two can be easily shown to be equivalent. We prefer to workwith antichains because v[ and v] are partial orders on Afin(KD) but only preorders on Pfin(KD).Our goal is to proveTheorem For any domain D, P](P[(D)) and P[(P](D)) are isomorphic.The proof is constructive, i.e. an isomorphism and its inverse are explicitly described.3 ProofTo prove that two domainsD1 andD2 are isomorphic, i.e. that there exists a pair of continuos mutuallyinverse maps between D1 and D2, it is enough to prove that KD1 and KD2 are isomorphic as posets,i.e. that there exists a pair of monotone mutually inverse maps between KD1 and KD2.A compact element of P](P[(D)) is a �nite antichain, w.r.t. v[, of �nite antichains of compactelements of D, and a compact element of P[(P](D)) is a �nite antichain, w.r.t. v], of �nite antichainsof compact elements of D. Given a �nite set of �nite sets A = fA1; : : : ; Ang where Ai = fai1; : : : ; aikig,let FA be the set of functions f : f1; :::; ng ! NI such that for any i: 1 � f(i) � ki. For f 2 FA, letf(A) = faif(i) j i = 1; : : : ; ng. If all Ai's are subsets of D, de�ne two maps � and  as follows:�(A) = minf2FAv[(max f(A)) (A) = maxf2FAv](min f(A))Now, we claim that  maps KP](P[(D)) to KP[(P](D)) and � maps KP[(P](D)) to KP](P[(D))and, moreover, these maps establish the desired isomorphism, i.e. they are mutually inverse andmonotone. The �rst claim follows immediately from the de�nitions of � and  . To complete theproof, it is enough to show that � is monotone and � �  = id. The proof of monotonicity of  and � � = id is dual. We start with two easy observations:Lemma Let Y1; Y2 be �nite subsets of an arbitrary poset X. Then1) Y1 v[ Y2 i� max Y1 v[ maxY2;2) Y1 v] Y2 i� minY1 v] minY2. 2Claim 1: � is monotone.Proof of claim 1: Let A;B = fB1; :::; Bmg 2 KP[(P](D)) and A v[ B. We must prove �(A) v] �(B).In view of lemma, it is enough to show that for any f 2 FB there exists g 2 FA such that g(A) v[ f(B).Since for each i = 1; : : : ; n there exists ji such that Ai v] Bji , there is an element aipi 2 Ai such thataipi � bjif(ji). Let g(i) = pi. Then for this function g one has faig(i) j i = 1; : : : ; ng v[ fbif(i) j i =1; : : : ;mg, i.e. g(A) v[ f(B). Claim 1 is proved. 2



Let A 2KP[(P](D)) and B = fB1; : : : ; Bmg = �(A) 2 KP](P[(D)). In view of lemma, to show that � � = id, i.e. that  (B) = A, it su�ces to proveClaim 2: For any f 2 FB there exists Ai 2 A such that f(B) v] Ai.Claim 3: Every Ai is in  (B).Proof of claim 2: Let C be the collection of all sets f(A) where f 2 FA; C = fC1; : : : ; Ckg. Then forany g 2 FC , there exists Ai 2 A such that Ai is contained in g(C) because, if this is not the case, forany Ai 2 A there exists ji � ki such that aiji 2 Ai and, for any f 2 FA, g on f(A) picks an elementdi�erent from aiji . If we de�ne f0 such that f0(i) = ji, g may pick only elements of form aiji on f0(A),a contradiction. Therefore, g(C) v] Ai for some i.Let f 2 FB. Let H be the set of functions in FA that correspond to elements of B = �(A) or, in otherwords, maxh(A) 2 B for h 2 H. Then, for any h0 2 FA � H, there exists a function h 2 H suchthat maxh(A) v[ max h0(A), i.e. h(A) v[ h0(A). Since h 2 H, maxh(A) 2 B, i.e. maxh(A) = Bi. Iff(i) = j, then there is an element in h0(A) that is greater than bij. De�ne a function g 2 FC to coincidewith f on those Ci's that are given by functions in H. On Ci that corresponds to f 2 FA �H, let gpick an element which is greater than some bij where f(i) = j (we have just shown it can be done).Then f(B) v] fcig(i) j i = 1; : : : ; kg = g(C). We know that there exists Ai 2 A such that g(C) v] Ai.Thus, f(B) v] Ai. Claim 2 is proved.Proof of claim 3: Prove that for any aij 2 Ai there exists Bl 2 B such that aij 2 Bl. Consider the setF ijA of functions f 2 FA such that f(i) = j. If for no f 2 F ijA : aij 2 max f(A), then there exists Ap 2 Asuch that all elements of Ap are greater than aij , i.e. Ai v] Ap which contradicts our assumption thatA is an antichain w.r.t. v]. Hence, aij 2 max f(A) for at least one function in F ijA . Since A is anantichain, for any p 6= i there exists apq 2 Ap which is not greater than any element of Ai. Change fto pick such an element for any p 6= i. Then aij is still in max f(A). There exists a function f 0 2 FAsuch that max f 0(A) v[ max f(A) and max f 0(A) 2 �(A). If f 0(i) = j0 6= j, then, since f 0(A) v[ f(A)and Ai is an antichain, aij0 � apq for some p and q, where p 6= i. But this contradicts the de�nition off . Hence, f 0(i) = j and aij 2 max f 0(A) because aij 2 max f(A). Since max f 0(A) = Bl for some indexl, aij 2 Bl 2 B.Let B0 be the collection of elements of B that contain elements of Ai. Then we can de�ne a functionf 2 FB on elements of B0 to pick all elements of Ai. Each Bj 2 B � B0 either contains an element ofAi or contains an element which is greater than some aip 2 Ai. Let f pick any such element. Thenmin f(B) = Ai. Suppose Ai 62  (B). Then Ai v] min g(B) for some function g 2 FB such thatmin g(B) 2  (B). By claim 2, g(B) v] Aj for some Aj . Hence, min g(B) v] Aj and since A is anantichain w.r.t. v], Ai = Aj = min g(B) 2  (B). This �nishes the proof of claim 3 and the theorem.References[1] K.E. Flannery, J.J. Martin, Hoare and Smyth power domain constructors commute under com-position, J. Comput. Syst. Sci. 40 (1990), 125-135.[2] R. Heckmann, Lower and upper power domain constructions commute on all cpos, Inform. Pro-cess. Letters 40 (1991), 7-11. 3



[3] C.A. Gunter and D.S. Scott. Semantic domains, In J. van Leeuwen, editor, Handbook of Theo-retical Computer Science, pages 633{674. North Holland, 1990.
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