An elementary proof that upper and lower powerdomain constructions commute

Leonid Libkin

Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA 19104, USA

1 Introduction

It was proved in [1] that lower and upper powerdomain constructions commute on all domains. In that proof, domains were represented as information systems. In [2] a rather complicated algebraic proof was given which relied on universality properties of powerdomains proved in the previous works of the author of [2]. Here we give an elementary algebraic proof that upper and lower powerdomain constructions commute. The proof is essentially a reduction of the problem to establishing a 1-1 correspondence between certain disjunctive and conjunctive normal forms.

2 Definitions

A subset X of a partially ordered set is called directed if a common upper bound exists for any two elements of X, i.e. given $x_1, x_2 \in X$, there exists $x \in X$ such that $x \geq x_1, x_2$. A poset is called complete (abbreviated - cpo) if every directed subset has a least upper bound. An element of a cpo is called compact if it can not be below a least upper bound of a directed set X without being below an element of X. A cpo is called algebraic if every element is the least upper bound of compact elements below it, see [3].

A domain in this paper is an algebraic cpo with bottom. Given a domain D, \leq denotes its order and KD is the set of its compact elements. Given $A, B \subseteq D$, lower and upper powerdomain orderings are given by

$$A \sqsubseteq^1 B \iff \forall a \in A \exists b \in B : \ a \leq b$$
$$A \sqsubseteq^1 B \iff \forall b \in B \exists a \in A : \ a \leq b$$

A subset of an ordered set is called an antichain if no two elements in it are comparable. If (X, \leq) is an ordered set and $Y \subseteq X$, then $\max_{\leq} Y$ and $\min_{\leq} Y$ are sets of maximal and minimal elements of Y. We will use just $\max Y$ and $\min Y$ if the ordering is understood. $A_{\text{fin}}(X)$ stands for the

\footnote{Supported in part by NSF Grants IRI-86-10617 and CCR-90-57570 and ONR Grant N00014-88-K0634.}
set of all finite antichains of X. The lower and upper powerdomains are defined to be the ideal completions of $(\mathcal{A}_{fin}(KD), \sqsubseteq^1)$ and $(\mathcal{A}_{fin}(KD), \sqsubseteq^1)$ respectively. They are denoted by $\mathcal{P}'(D)$ and $\mathcal{P}^i(D)$. $(\mathcal{A}_{fin}(KD), \sqsubseteq^1)$ and $(\mathcal{A}_{fin}(KD), \sqsubseteq^1)$ are posets of compact elements of $\mathcal{P}'(D)$ and $\mathcal{P}^i(D)$ [3].

Remark: A traditional definition of the powerdomain construction is the ideal completion of $P_{fin}(KD)$, the set of all finite subsets of KD. The two can be easily shown to be equivalent. We prefer to work with antichains because \sqsubseteq^1 and \sqsubseteq^1 are partial orders on $A_{fin}(KD)$ but only preorders on $P_{fin}(KD)$.

Our goal is to prove

Theorem For any domain D, $\mathcal{P}'(\mathcal{P}'(D))$ and $\mathcal{P}^i(\mathcal{P}^i(D))$ are isomorphic.

The proof is constructive, i.e. an isomorphism and its inverse are explicitly described.

3 Proof

To prove that two domains D_1 and D_2 are isomorphic, i.e. that there exists a pair of continuos mutually inverse maps between D_1 and D_2, it is enough to prove that KD_1 and KD_2 are isomorphic as posets, i.e. that there exists a pair of monotone mutually inverse maps between KD_1 and KD_2.

A compact element of $\mathcal{P}'(\mathcal{P}'(D))$ is a finite antichain, w.r.t. \sqsubseteq^1, of finite antichains of compact elements of D, and a compact element of $\mathcal{P}^i(\mathcal{P}^i(D))$ is a finite antichain, w.r.t. \sqsubseteq^1, of finite antichains of compact elements of D. Given a finite set of finite sets $\mathcal{A} = \{A_1, \ldots, A_n\}$ where $A_i = \{a^i_1, \ldots, a^i_{k_i}\}$, let $F_{\mathcal{A}}$ be the set of functions $f : \{1, \ldots, n\} \to \mathbb{N}$ such that for any i: $1 \leq f(i) \leq k_i$. For $f \in F_{\mathcal{A}}$, let $f(\mathcal{A}) = \{a^i_{f(i)} \mid i = 1, \ldots, n\}$. If all A_i’s are subsets of D, define two maps ϕ and ψ as follows:

$$\phi(\mathcal{A}) = \min_{f \in F_{\mathcal{A}}} (\max f(\mathcal{A}))$$

$$\psi(\mathcal{A}) = \max_{f \in F_{\mathcal{A}}} (\min f(\mathcal{A}))$$

Now, we claim that ϕ maps KD_1 to KD_2 and ψ maps KD_2 to KD_1 and, moreover, these maps establish the desired isomorphism, i.e. they are mutually inverse and monotone. The first claim follows immediately from the definitions of ϕ and ψ. To complete the proof, it is enough to show that ϕ is monotone and $\phi \circ \psi = \text{id}$. The proof of monotonicity of ψ and $\psi \circ \phi = \text{id}$ is dual. We start with two easy observations:

Lemma Let Y_1, Y_2 be finite subsets of an arbitrary poset X. Then

1) $Y_1 \sqsubseteq^1 Y_2$ iff $\max Y_1 \sqsubseteq \max Y_2$;
2) $Y_1 \sqsubseteq^1 Y_2$ iff $\min Y_1 \sqsubseteq \min Y_2$. \hfill \square

Claim 1: ϕ is monotone.

Proof of claim 1: Let $\mathcal{A}, \mathcal{B} = \{B_1, \ldots, B_m\} \in KD_1$ and $\mathcal{A} \sqsubseteq \mathcal{B}$. We must prove $\phi(\mathcal{A}) \sqsubseteq \phi(\mathcal{B})$. In view of lemma, it is enough to show that for any $f \in F_{\mathcal{B}}$ there exists $g \in F_{\mathcal{A}}$ such that $g(\mathcal{A}) \sqsubseteq \mathcal{B}$. Since for each $i = 1, \ldots, n$ there exists j_i such that $A_i \sqsubseteq B_{j_i}$, there is an element $a^i_{p_i} \in A_i$ such that $a^i_{p_i} \leq b^j_{f(i)}$. Let $g(i) = p_i$. Then for this function g one has $\{a^i_{g(i)} \mid i = 1, \ldots, n\} \sqsubseteq \{b^j_{f(i)} \mid i = 1, \ldots, m\}$, i.e. $g(\mathcal{A}) \sqsubseteq \mathcal{B}$. Claim 1 is proved.
Let $A \in \mathcal{K}P^i(\mathcal{P}^i(D))$ and $B = \{B_1, \ldots, B_m\} = \phi(A) \in \mathcal{K}P^i(\mathcal{P}^i(D))$. In view of lemma, to show that $\psi \circ \phi = \text{id}$, i.e. that $\psi(B) = A$, it suffices to prove

Claim 2: For any $f \in F_B$ there exists $A_i \in A$ such that $f(B) \sqsubseteq^i A_i$.

Claim 3: Every A_i is in $\psi(B)$.

Proof of claim 2: Let C be the collection of all sets $f(A)$ where $f \in F_A$; $C = \{C_1, \ldots, C_k\}$. Then for any $g \in F_C$, there exists $A_i \in A$ such that A_i is contained in $g(C)$ because, if this is not the case, for any $A_i \in A$ there exists $j_i \leq k_i$ such that $A_{j_i} \in A$ and, for any $f \in F_A$, g on $f(A)$ picks an element different from $a^{j_i}_{j_i}$. If we define f_0 such that $f_0(i) = j_i$, g may pick only elements of form $a^{j_i}_{j_i}$ on $f_0(A)$, a contradiction. Therefore, $g(C) \sqsubseteq^i A_i$ for some i.

Let $f \in F_B$. Let H be the set of functions in F_A that correspond to elements of $B = \phi(A)$ or, in other words, max $h(A) \in B$ for $h \in H$. Then, for any $h' \in F_A - H$, there exists a function $h \in H$ such that max $h(A) \sqsubseteq^i$ max $h'(A)$, i.e. $h(A) \sqsubseteq^i h'(A)$. Since $h \in H$, max $h(A) \in B$, i.e. max $h(A) = B_i$. If $f(i) = j$, then there is an element in $h'(A)$ that is greater than b^i_j. Define a function $g \in F_C$ to coincide with f on those C_i’s that are given by functions in H. On C_i that corresponds to $f \in F_A - H$, let g pick an element which is greater than some b^i_j where $f(i) = j$ (we have just shown it can be done). Then $f(B) \sqsubseteq^i \{c_{g(i)}^{i,j} \mid i = 1, \ldots, k\} = g(C)$. We know that there exists $A_i \in A$ such that $g(C) \sqsubseteq^i A_i$. Thus, $f(B) \sqsubseteq^i A_i$. Claim 2 is proved.

Proof of claim 3: Prove that for any $a^i_j \in A_i$ there exists $B_i \in B$ such that $a^i_j \in B_i$. Consider the set $F_{A_i}^i$ of functions $f \in F_A$ such that $f(i) = j$. If for no $f \in F_{A_i}^i$, $a^i_j \in \text{max} f(A)$, then there exists $A_p \in A$ such that all elements of A_p are greater than a^i_j, i.e. $A_i \sqsubseteq^i A_p$ which contradicts our assumption that A is an antichain w.r.t. \sqsubseteq^i. Hence, $a^i_j \in \text{max} f(A)$ for at least one function in $F_{A_i}^i$. Since A is an antichain, for any $p \neq i$ there exists $a^i_p \in A_p$ which is not greater than any element of A_i. Change f to pick such an element for any $p \neq i$. Then a^i_j is still in $\text{max} f(A)$. There exists a function $f' \in F_A$ such that $\text{max} f'(A) \sqsubseteq^i \text{max} f(A)$ and $\text{max} f'(A) \in \phi(A)$. If $f'(i) = j'$, then, since $f'(A) \sqsubseteq^i f(A)$ and A_i is an antichain, $a^j_{j'} \leq a^i_p$ for some p and j', where $p \neq i$. But this contradicts the definition of f. Hence, $f'(i) = j$ and $a^i_j \in \text{max} f'(A)$ because $a^i_j \in \text{max} f(A)$. Since $\text{max} f'(A) = B_i$ for some index l, $a^i_j \in B_i$.

Let B' be the collection of elements of B that contain elements of A_i. Then we can define a function $f \in F_B$ on elements of B' to pick all elements of A_i. Each $B_j \in B - B'$ either contains an element of A_i or contains an element which is greater than some $a^i_p \in A_i$. Let f pick any such element. Then $\min f(B) = A_i$. Suppose $A_i \notin \psi(B)$. Then $A_i \sqsubseteq^i \min g(B)$ for some function $g \in F_B$ such that $\min g(B) \in \psi(B)$. By claim 2, $g(B) \sqsubseteq^i A_j$ for some A_j. Hence, $\min g(B) \sqsubseteq^i A_j$ and since A is an antichain w.r.t. \sqsubseteq^i, $A_i = A_j = \min g(B) \in \psi(B)$. This finishes the proof of claim 3 and the theorem.

References
