Bulletin of the EATCS 48 (1992), 175–177

An elementary proof that upper and lower powerdomain constructions commute

Leonid Libkin

Department of Computer and Information Science University of Pennsylvania, Philadelphia, PA 19104, USA

1 Introduction

It was proved in [1] that lower and upper powerdomain constructions commute on all domains. In that proof, domains were represented as information systems. In [2] a rather complicated algebraic proof was given which relied on universality properties of powerdomains proved in the previous works of the author of [2]. Here we give an elementary algebraic proof that upper and lower powerdomain constructions commute. The proof is essentially a reduction of the problem to establishing a 1-1 correspondence between certain disjunctive and conjunctive normal forms.

2 Definitions

A subset X of a partially ordered set is called *directed* if a common upper bound exists for any two elements of X, i.e. given $x_1, x_2 \in X$, there exists $x \in X$ such that $x \ge x_1, x_2$. A poset is called complete (abbreviated - cpo) if every directed subset has a least upper bound. An element of a cpo is called *compact* if it can not be below a least upper bound of a directed set X without being below an element of X. A cpo is called algebraic if every element is the least upper bound of compact elements below it, see [3].

A domain in this paper is an algebraic cpo with bottom. Given a domain D, \leq denotes its order and **K**D is the set of its compact elements. Given $A, B \subseteq D$, lower and upper powerdomain orderings are given by

$$A \sqsubseteq^{\flat} B \Leftrightarrow \forall a \in A \exists b \in B : a \le b$$
$$A \sqsubset^{\sharp} B \Leftrightarrow \forall b \in B \exists a \in A : a \le b$$

A subset of an ordered set is called an antichain if no two elements in it are comparable. If $\langle X, \leq \rangle$ is an ordered set and $Y \subseteq X$, then $\max_{\leq} Y$ and $\min_{\leq} Y$ are sets of maximal and minimal elements of Y. We will use just $\max Y$ and $\min Y$ if the ordering is understood. $A_{fin}(X)$ stands for the

¹Supported in part by NSF Grants IRI-86-10617 and CCR-90-57570 and ONR Grant NOOO14-88-K0634.

set of all finite antichains of X. The lower and upper powerdomains are defined to be the ideal completions of $\langle A_{fin}(\mathbf{K}D), \sqsubseteq^{\flat} \rangle$ and $\langle A_{fin}(\mathbf{K}D), \sqsubseteq^{\sharp} \rangle$ respectively. They are denoted by $\mathcal{P}^{\flat}(D)$ and $\mathcal{P}^{\sharp}(D)$. $\langle A_{fin}(\mathbf{K}D), \sqsubseteq^{\flat} \rangle$ and $\langle A_{fin}(\mathbf{K}D), \sqsubseteq^{\sharp} \rangle$ are posets of compact elements of $\mathcal{P}^{\flat}(D)$ and $\mathcal{P}^{\sharp}(D)$ [3].

Remark: A traditional definition of the powerdomain construction is the ideal completion of $P_{fin}(\mathbf{K}D)$, the set of all finite subsets of $\mathbf{K}D$. The two can be easily shown to be equivalent. We prefer to work with antichains because \Box^{\flat} and \Box^{\sharp} are partial orders on $A_{fin}(\mathbf{K}D)$ but only preorders on $P_{fin}(\mathbf{K}D)$.

Our goal is to prove

Theorem For any domain D, $\mathcal{P}^{\sharp}(\mathcal{P}^{\flat}(D))$ and $\mathcal{P}^{\flat}(\mathcal{P}^{\sharp}(D))$ are isomorphic.

The proof is constructive, i.e. an isomorphism and its inverse are explicitly described.

3 Proof

To prove that two domains D_1 and D_2 are isomorphic, i.e. that there exists a pair of continuos mutually inverse maps between D_1 and D_2 , it is enough to prove that $\mathbf{K}D_1$ and $\mathbf{K}D_2$ are isomorphic as posets, i.e. that there exists a pair of monotone mutually inverse maps between $\mathbf{K}D_1$ and $\mathbf{K}D_2$.

A compact element of $\mathcal{P}^{\sharp}(\mathcal{P}^{\flat}(D))$ is a finite antichain, w.r.t. \sqsubseteq^{\flat} , of finite antichains of compact elements of D, and a compact element of $\mathcal{P}^{\flat}(\mathcal{P}^{\sharp}(D))$ is a finite antichain, w.r.t. \sqsubseteq^{\sharp} , of finite antichains of compact elements of D. Given a finite set of finite sets $\mathcal{A} = \{A_1, \ldots, A_n\}$ where $A_i = \{a_1^i, \ldots, a_{k_i}^i\}$, let $F_{\mathcal{A}}$ be the set of functions $f : \{1, \ldots, n\} \to \mathbb{N}$ such that for any $i: 1 \leq f(i) \leq k_i$. For $f \in F_{\mathcal{A}}$, let $f(\mathcal{A}) = \{a_{f(i)}^i \mid i = 1, \ldots, n\}$. If all A_i 's are subsets of D, define two maps ϕ and ψ as follows:

$$\phi(\mathcal{A}) = \min_{f \in F_{\mathcal{A}}} \mathop{\sqsubseteq}_{F_{\mathcal{A}}} \left(\max f(\mathcal{A}) \right)$$
$$\psi(\mathcal{A}) = \max_{f \in F_{\mathcal{A}}} \mathop{\sum}_{F_{\mathcal{A}}} \left(\min f(\mathcal{A}) \right)$$

Now, we claim that ψ maps $\mathbf{K}\mathcal{P}^{\sharp}(\mathcal{P}^{\flat}(D))$ to $\mathbf{K}\mathcal{P}^{\flat}(\mathcal{P}^{\sharp}(D))$ and ϕ maps $\mathbf{K}\mathcal{P}^{\flat}(\mathcal{P}^{\sharp}(D))$ to $\mathbf{K}\mathcal{P}^{\sharp}(\mathcal{P}^{\flat}(D))$ and, moreover, these maps establish the desired isomorphism, i.e. they are mutually inverse and monotone. The first claim follows immediately from the definitions of ϕ and ψ . To complete the proof, it is enough to show that ϕ is monotone and $\phi \circ \psi = \operatorname{id}$. The proof of monotonicity of ψ and $\psi \circ \phi = \operatorname{id}$ is dual. We start with two easy observations:

Lemma Let Y_1, Y_2 be finite subsets of an arbitrary poset X. Then 1) $Y_1 \sqsubseteq^{\flat} Y_2$ iff max $Y_1 \sqsubseteq^{\flat} \max Y_2$; 2) $Y_1 \sqsubseteq^{\ddagger} Y_2$ iff min $Y_1 \sqsubseteq^{\ddagger} \min Y_2$.

Claim 1: ϕ is monotone.

Proof of claim 1: Let $\mathcal{A}, \mathcal{B} = \{B_1, ..., B_m\} \in \mathbf{K}\mathcal{P}^{\flat}(\mathcal{P}^{\sharp}(D))$ and $\mathcal{A} \sqsubseteq^{\flat} \mathcal{B}$. We must prove $\phi(\mathcal{A}) \sqsubseteq^{\sharp} \phi(\mathcal{B})$. In view of lemma, it is enough to show that for any $f \in F_{\mathcal{B}}$ there exists $g \in F_{\mathcal{A}}$ such that $g(\mathcal{A}) \sqsubseteq^{\flat} f(\mathcal{B})$. Since for each i = 1, ..., n there exists j_i such that $A_i \sqsubseteq^{\sharp} B_{j_i}$, there is an element $a_{p_i}^i \in A_i$ such that $a_{p_i}^i \leq b_{f(j_i)}^{j_i}$. Let $g(i) = p_i$. Then for this function g one has $\{a_{g(i)}^i \mid i = 1, ..., n\} \sqsubseteq^{\flat} \{b_{f(i)}^i \mid i = 1, ..., n\}$ $1, ..., m\}$, i.e. $g(\mathcal{A}) \sqsubseteq^{\flat} f(\mathcal{B})$. Claim 1 is proved. Let $\mathcal{A} \in \mathbf{K}\mathcal{P}^{\flat}(\mathcal{P}^{\sharp}(D))$ and $\mathcal{B} = \{B_1, \ldots, B_m\} = \phi(\mathcal{A}) \in \mathbf{K}\mathcal{P}^{\sharp}(\mathcal{P}^{\flat}(D))$. In view of lemma, to show that $\psi \circ \phi = \operatorname{id}$, i.e. that $\psi(\mathcal{B}) = \mathcal{A}$, it suffices to prove *Claim 2:* For any $f \in F_{\mathcal{B}}$ there exists $A_i \in \mathcal{A}$ such that $f(\mathcal{B}) \sqsubseteq^{\sharp} A_i$.

Claim 3: Every A_i is in $\psi(\mathcal{B})$.

Proof of claim 2: Let \mathcal{C} be the collection of all sets $f(\mathcal{A})$ where $f \in F_{\mathcal{A}}$; $\mathcal{C} = \{C_1, \ldots, C_k\}$. Then for any $g \in F_{\mathcal{C}}$, there exists $A_i \in \mathcal{A}$ such that A_i is contained in $g(\mathcal{C})$ because, if this is not the case, for any $A_i \in \mathcal{A}$ there exists $j_i \leq k_i$ such that $a_{j_i}^i \in A_i$ and, for any $f \in F_{\mathcal{A}}$, g on $f(\mathcal{A})$ picks an element different from $a_{j_i}^i$. If we define f_0 such that $f_0(i) = j_i$, g may pick only elements of form $a_{j_i}^i$ on $f_0(\mathcal{A})$, a contradiction. Therefore, $g(\mathcal{C}) \sqsubseteq^{\sharp} A_i$ for some i.

Let $f \in F_{\mathcal{B}}$. Let H be the set of functions in $F_{\mathcal{A}}$ that correspond to elements of $\mathcal{B} = \phi(\mathcal{A})$ or, in other words, $\max h(\mathcal{A}) \in \mathcal{B}$ for $h \in H$. Then, for any $h' \in F_{\mathcal{A}} - H$, there exists a function $h \in H$ such that $\max h(\mathcal{A}) \sqsubseteq^{\flat} \max h'(\mathcal{A})$, i.e. $h(\mathcal{A}) \sqsubseteq^{\flat} h'(\mathcal{A})$. Since $h \in H$, $\max h(\mathcal{A}) \in \mathcal{B}$, i.e. $\max h(\mathcal{A}) = B_i$. If f(i) = j, then there is an element in $h'(\mathcal{A})$ that is greater than b_j^i . Define a function $g \in F_{\mathcal{C}}$ to coincide with f on those C_i 's that are given by functions in H. On C_i that corresponds to $f \in F_{\mathcal{A}} - H$, let gpick an element which is greater than some b_j^i where f(i) = j (we have just shown it can be done). Then $f(\mathcal{B}) \sqsubseteq^{\sharp} \{c_{g(i)}^i \mid i = 1, \dots, k\} = g(\mathcal{C})$. We know that there exists $A_i \in \mathcal{A}$ such that $g(\mathcal{C}) \sqsubseteq^{\sharp} A_i$. Thus, $f(\mathcal{B}) \sqsubseteq^{\sharp} A_i$. Claim 2 is proved.

Proof of claim 3: Prove that for any $a_j^i \in A_i$ there exists $B_l \in \mathcal{B}$ such that $a_j^i \in B_l$. Consider the set $F_{\mathcal{A}}^{ij}$ of functions $f \in F_{\mathcal{A}}$ such that f(i) = j. If for no $f \in F_{\mathcal{A}}^{ij}$: $a_j^i \in \max f(\mathcal{A})$, then there exists $A_p \in \mathcal{A}$ such that all elements of A_p are greater than a_j^i , i.e. $A_i \sqsubseteq^{\sharp} A_p$ which contradicts our assumption that \mathcal{A} is an antichain w.r.t. \sqsubseteq^{\sharp} . Hence, $a_j^i \in \max f(\mathcal{A})$ for at least one function in $F_{\mathcal{A}}^{ij}$. Since \mathcal{A} is an antichain, for any $p \neq i$ there exists $a_q^p \in A_p$ which is not greater than any element of A_i . Change f to pick such an element for any $p \neq i$. Then a_j^i is still in $\max f(\mathcal{A})$. There exists a function $f' \in F_{\mathcal{A}}$ such that $\max f'(\mathcal{A}) \sqsubseteq^{\flat} \max f(\mathcal{A})$ and $\max f'(\mathcal{A}) \in \phi(\mathcal{A})$. If $f'(i) = j' \neq j$, then, since $f'(\mathcal{A}) \sqsubseteq^{\flat} f(\mathcal{A})$ and A_i is an antichain, $a_{j'}^i \leq a_q^p$ for some p and q, where $p \neq i$. But this contradicts the definition of f. Hence, f'(i) = j and $a_j^i \in \max f'(\mathcal{A})$ because $a_j^i \in \max f(\mathcal{A})$. Since $\max f'(\mathcal{A}) = B_l$ for some index $l, a_j^i \in B_l \in \mathcal{B}$.

Let \mathcal{B}' be the collection of elements of \mathcal{B} that contain elements of A_i . Then we can define a function $f \in F_{\mathcal{B}}$ on elements of \mathcal{B}' to pick all elements of A_i . Each $B_j \in \mathcal{B} - \mathcal{B}'$ either contains an element of A_i or contains an element which is greater than some $a_p^i \in A_i$. Let f pick any such element. Then $\min f(\mathcal{B}) = A_i$. Suppose $A_i \notin \psi(\mathcal{B})$. Then $A_i \sqsubseteq^{\sharp} \min g(\mathcal{B})$ for some function $g \in F_{\mathcal{B}}$ such that $\min g(\mathcal{B}) \in \psi(\mathcal{B})$. By claim 2, $g(\mathcal{B}) \sqsubseteq^{\sharp} A_j$ for some A_j . Hence, $\min g(\mathcal{B}) \sqsubseteq^{\sharp} A_j$ and since \mathcal{A} is an antichain w.r.t. $\sqsubseteq^{\sharp}, A_i = A_j = \min g(\mathcal{B}) \in \psi(\mathcal{B})$. This finishes the proof of claim 3 and the theorem.

References

- K.E. Flannery, J.J. Martin, Hoare and Smyth power domain constructors commute under composition, J. Comput. Syst. Sci. 40 (1990), 125-135.
- [2] R. Heckmann, Lower and upper power domain constructions commute on all cpos, Inform. Process. Letters 40 (1991), 7-11.

[3] C.A. Gunter and D.S. Scott. Semantic domains, In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 633–674. North Holland, 1990.