
A Relational Algebra for Complex Objects Based on PartialInformation�Leonid LibkinyDepartment of Computer and Information ScienceUniversity of Pennsylvania, Philadelphia, PA 19104, USAAbstractWe study an approach to relational databases whichtreats relations not as subsets of a Cartesian productbut as subsets of some domain { a partially orderedspace of descriptions. This approach permits general-izations of relations that admit null values and variants.In previous work it was shown how to de�ne the notionof a relation scheme in such a setting. Here we providea characterization of a scheme that is more general,and show that operations analogous to projection, se-lection and join retain the desired properties. Schemesalso allow us to develop dependency theory for suchgeneralized relations. An extension of this model is de-scribed which admits a set constructor and is thereforeuseful for the study of higher-order relations and theirgeneralizations.1 IntroductionIt has recently been discovered [5] that a repre-sentation of the underlying principles of relationaldatabase theory can be found in the theory of do-mains which is the basis of the denotational se-mantics of programming languages. This repre-sentation does not take into account the details of�This paper was published in the Proceedings of the 3rdSymposium on Mathematical Fundamentals of Databaseand Knowledge Base Systems, Rostock, Germany, May1991, Springer Lecture Notes in Computer Science, 495(1991), 29-43.ySupported in part by NSF Grants IRI-86-10617 andCCR-90-57570 and ONR Grant NOOO14-88-K0634.

the data structure and, therefore, allows us to ex-tend the main principles of relational databases tomuch more general constructions. Use of domaintheory in the generalization of relational databasesmay also help to establish the connection betweendata models and types, i.e. to represent databaseobjects (not necessarily relational databases) astyped objects in programming languages.There have been made a number of attempts togeneralize relational databases giving up the �rst-normal-form assumption, see [1, 4, 6, 9, 10, 13,16, 17, 18, 20]. They can be divided into two cat-egories. The �rst one consists of models that donot contain sets. Usually it means that they admitnull-values and/or record structures, the latter in-cluding also case, or discriminated union. In thiscase [5] provides us with the idea how to developthe relational theory. We will discuss in detailsthe main de�nition of scheme which was used tointroduce projections. The de�nition of schemealong with the idea to represent database objectsas antichains in domains is the main tool to gener-alize relational databases that was used in [5]. Butthe de�nition of scheme in that paper was chosenrather arbitrarily in order to make certain proper-ties of the �rst-normal-form relational databasesgeneralize smoothly.Another de�nition of scheme will be introducedwhich seems to be more natural and then it willbe proved that the main results of [5] remain cor-rect if we substitute the de�nition of scheme. Wewill also show that the de�nition of [5] assumesthat a database is like-�rst-normal-form, that is,the domains in which the two de�nitions coincide,1

behave like domains of relations that do not admitrelation-valued attributes.For the structures that do not contain sets wewill discuss the concept of the complement of ascheme. This concept is necessary in order tointroduce multivalued dependencies. Multivalueddependencies having been introduced, we may tryto de�ne join to generalize the result that estab-lishes connection between joins and multivalueddependencies [24, 16]. The concept of join for thedomain model was introduced in [5] as a supre-mum in the Smyth powerdomain ordering [22].We will show that in a certain type of domainsmultivalued dependencies are in one-to-one corre-spondence with the decompositions of relations.The model proposed in [5] does not admit con-structions containing sets. However, they are nec-essary in order to describe some models whichare being widely studied now, namely nested re-lations [6, 13, 16, 17, 18, 20] and complex objects[1, 13] which play an essential role in the theory ofobject-oriented databases [2]. By complex objectswe mean objects constructed from the basis onesby using the operations of forming records (includ-ing discriminated union) and sets, i.e. record, vari-ant and set constructors. This concept will coverall the structures that do not contain sets, and alsonested relations and complex objects as they werede�ned in [1]. However, constructions containingsets can not be modeled by domains. In fact, wecan not guarantee directedness. In this paper wewill introduce a new concept generalizing domains(i.e. locally behaving as domains) which allows usto model complex objects. The schemes will bede�ned recursively.When the concept of scheme is de�ned, we caneasily de�ne projection onto this scheme and se-lection. This is the crucial step in extending theideas of relational algebra to generalized relationsand complex objects.This paper can be viewed as an extension ofideas of [5], that is, as the further development ofdomain-theoretic model of databases. The maincontribution of [5] is the idea that relations can

be generalized as �nite antichains in domains. Forsuch generalized relations a concept of scheme wasintroduced which allowed the development of somedependency theory (in fact, the analogy of func-tional dependency was introduced). A generaliza-tion of the join operation was also given.In this paper we �rst examine the concept ofscheme and give a new de�nition of scheme whichexpresses the fact that projections of complete de-scriptions onto a scheme are maximal among allpossible projections. This de�nition is more gen-eral than that of [5] and, although the two de�-nitions coincide if we speak of the domains of atrecords (that is, of usual relations), there are someimportant cases when we need this new, more gen-eral de�nition. Moreover, the new de�nition satis-�es almost all properties that were proved in [5].When the concept of scheme is de�ned, we canintroduce the operations of relational algebra forthe generalized relations and prove some resultsabout these operations. Then we de�ne comple-ments of schemes and use them to introduce mul-tivalued dependencies for our domain model. Theapproach of [5] did not provide tools to work withcomplex objects or nested relations since they maycontain sets whose sizes are not bounded a priori.We will extend the ideas of [5] to handle such con-structions.The paper is organized in �ve sections. The nextsection contains necessary de�nitions from domaintheory [8, 21] and shows how relational databasescan be represented and generalized in domains.The third section deals with schemes in domains.Two ways to introduce this concept will be dis-cussed and the properties of schemes will be stud-ied. In particular, we will characterize domains inwhich the two de�nitions coincide. Section 4 dealswith structures that do not contain sets. We char-acterize schemes in these structures and introduceprojection, selection and join. Having done this,we develop some dependency theory in section 5.Section 6 deals with the extension of our approachto complex objects. We will generalize the conceptof domain in order to model these structures andthen recursively de�ned schemes.2

2 Powerdomain model of rela-tional databases : GeneralizedrelationsIn denotational semantics of programming lan-guages expressions denote values, and the domainsof values are partially ordered. A database is a col-lection of objects having descriptions and mean-ings. The meaning is the set of all possible objectsdescribed by a description. The meaning havingbeen de�ned as sets, we can order descriptions bysaying that a description d1 is better than a de-scription d2 if it describes less objects, i.e. if it isa more precise description.Let [[d]] stand for the meaning of d. Suppose thatd1 and d2 are the records in a relational databaseand d1 = fDept) 0CIS0;O�ce) 01760g;d2 = fName) 0Howard0;Dept) 0CIS0;O�ce)01760g:Assume that there are no attributes except forname, department and o�ce. Then the meaningof d1 is the set of all possible records that refer toCIS people in o�ce 176, in particular, d2. There-fore, d2 is better than d1 because [[d2]] � [[d1]].The above ordering corresponds to the usual onein the theory of databases with incomplete infor-mation, in fact, to the ordering of tuples of Coddtables [10]. This approach is based on the assump-tion that we do not distinguish two di�erent occur-rences of null values in contrast to the approachof [4]. The same idea of ordering was used forcomplex objects in [1].Suppose that the records in a relational databaseare described as functions from L to V? whereL is a set of attributes (in the above exampleL = fName;Dept;O�ceg) and V? is a domainof values which is partially ordered. Then therecords are also partially ordered by d1 � d2 i�d1(l) � d2(l) for all l 2 L where d1; d2 : L ! V?.Let V? = V [f?g where ? corresponds to in-complete information and 8v 2 V : ? � v while

all elements of V are incomparable. The set offunctions from L to V?, denoted by L ! V?, isordered according to the above rule. For exam-ple, if d1 and d2 are as in the above example, L= fName;Dept;O�ceg and V contains names ofdepartments, people and numbers of o�ces, thend1; d2 2 L ! V? sinced1 = fName) ?;Dept) 0CIS0;O�ce) 01760g.Obviously d1 � d2.Let D = L ! V?. Then the ordering of D satis�esthe following properties:1) Every nonempty subset of D has a greatestlower bound;2) Every directed subset of D has a least upperbound;3) The set K(D) of compact elements of D formsa countable basis of D.1A poset (partially ordered set) satisfying 1)-3) iscalled a Scott-domain [8, 21]. We do not use anyother kind of domain, and we will write simplydomain instead of Scott-domain.Least upper and greatest lower bounds will be de-noted by _ and ^ respectively. "x and #x are theprincipal �lter and ideal of x 2 D, i.e. the set ofall elements of D which are greater (less) than x.Given a domain D, every element of D is boundedabove by some element of Dmax, the set of maxi-mal elements of D [8, 21]. Elements of Dmax arethought of as being complete descriptions. There-fore [[d]] = "d \ Dmax.A domain is called distributive i� every #x is a dis-tributive lattice. We will call a domain qualitativei� every #x is a Boolean lattice2.A number of ways have been described in [5] toconstruct domains representing certain kinds ofdata structures. Consider the domain L ! V?.Its elements are records whose attributes are ele-ments of L and values are taken from V?. It means1A subset of a poset is called directed if all its �nitesubsets have least upper bounds. An element a is calledcompact if a � WX implies a � x for some x 2 X forany directed X. A subset K � D is called a basis if everyelement of D is a supremum of some elements from K [3].2It is not hard to show that this de�nition is equivalentto the usual de�nition of a qualitative domain [7].3

that there are a countable number of values and aspecial symbol ? corresponding to incomplete in-formation. The ordering of V? is given by letting? be less than any other value. The relations are�nite sets of records, i.e. �nite subsets of L ! V?.However, not every �nite subset of L ! V? corre-sponds to a relation. If we have a subset contain-ing both d1 and d2 from our example, d1 is lessinformative than d1 and should be removed. Lessinformative here means that d1 � d2. Therefore,relations correspond to �nite subsets of domainsthat do not contain comparable elements, i.e. toantichains. This gives us the main idea of the gen-eralization of relational databases proposed in [5]:Generalized relations are antichains in domains.Example 1 Let L and V be as in the above ex-amples. Letd3 = fName) 0Katherine0;Dept) 0SL0;O�ce)06280g;d4 = fName) 0Katherine0;Dept) 0SL0;O�ce) ?g;(d4 shows that the person has not been assignedan o�ce yet). Then fd2; d3g is a generalized rela-tion but both fd1; d2g and fd3; d4g are not sinced1 � d2 and d4 � d3. 2We will call �nite antichains in domains relations.By relations without incomplete information wemean �nite antichains of maximal elements, i.e.relations containing only complete descriptions.We have shown so far how to order records of re-lations. The next problem is to order relationsthemselves, i.e. to order �nite antichains of do-mains. In domain theory three ways to do thishave been proposed:A v[B i� 8a 2 A 9b 2 B : a � bA v] B i� 8b 2 B 9a 2 A : a � bA v\ B i� A v[B and A v] Bcalled respectively Hoare, Smyth and Egli-Milnerorderings3. Sets of �nite antichains of a domain3The orderings v[and v] are known from lattice the-ory [3].

ordered by v[or v] are distributive lattices (how-ever, they are not complete).The orderingv[was used in the theory of relationswith incomplete information to construct so-calledrepresentation systems, see [10]. When applied toan element of domain and a relation, this orderingexpresses the notion of \x-belong" used for repre-sentation relations with null values by extendedrelations, see [25]. It was also used to order com-plex objects in [1].A downward closed subset of a domain D which isclosed under existing joins is called a strong ideal4.If I � D is a strong ideal, then pI de�ned bypI(x) =_fy : y � x and y 2 Igis a projection, i.e. it satis�es the following prop-erties: for all x; y 2 D : pI(x) � x, pI(pI(x)) =pI(x) and x � y implies pI(x) � pI(y). Moreover,pI is the unique projection on D with image I.Strong ideals can be equivalently described viaprojections onto them or their sets of maximalelements. In the other words, there are one-to-one correspondences between sets of strong idealsI � D, projections pI and antichains of maximalelements of I.Example 2 Let L, V and di's be as in the aboveexamples. LetI1 = ffName) v;Dept) ?;O�ce) ?g j v 2 V?g:Then I1 is a strong ideal and for anyd = fName) v1;Dept) v2;O�ce) v3gits projection onto I1 ispI1(d) = fName) v1;Dept) ?;O�ce) ?g:The set of maximal elements of I1 is ffName)v;Dept) ?;O�ce) ?g j v 2 Vg.Let I2 = #d where d 2 L ! V?. Then I2 is astrong ideal with unique maximal element d andfor any d0 2 L ! V? : pI2(d0) = d ^ d0. 24The term strong ideal was used in [5]. A more precisename would be downward closed subdomain, suggested byCarl Gunter. However, we follow the terminology of [5]here.4

We need more for the analogy of projection in rela-tional algebra than being a projection onto strongideal. In fact, this ideal must satisfy some ad-ditional properties. In domain L ! V? schemescorrespond to subsets of L, i.e. a projectiononto scheme corresponding to S � L is givenby pS(x) = x0 where x0(l) = x(l) if l 2 S andx0(l) = ? otherwise. These projections will becalled canonical. It is a natural requirement forthe de�nition of scheme and projection in an ar-bitrary domain that the projections be canonicalfor domain L ! V?. One can easily see that forevery x 2 L ! V? the ideal #x is strong while theprojection p#x is not canonical.The slide condition was introduced in [5] in orderto give a de�nition of scheme. A strong ideal I issaid to satisfy the slide condition if for any x 2 Dand y 2 I, pI(x) � y implies that x_y exists. Thisproperty obviously holds for canonical projectionsin L ! V?.An antichain S � D was called a scheme in [5]if #S = Sx2S #x is a strong ideal satisfying theslide condition. It can be easily concluded fromthe results of [5] that all schemes of L ! V? aredetermined by canonical projections. In [5] themain properties of schemes were studied and theschemes were used to develop some dependencytheory.In the next sections we discuss in detail the con-cept of scheme and introduce an alternative def-inition which will allow us to prove most of theresults from [5] and further develop the ideas ofthat paper. This will allow us to introduce themain operations of the relational algebra for gen-eralized relations, the latter being generalizationsof relations admitting null values, records and dis-criminated unions. Then we show how to gener-alize our main concepts for structures containingsets, i.e. complex objects.

3 Schemes in domainsThe main aim of this section is to discuss the de�-nition of scheme in domains. The relations havingbeen interpreted as antichains in Scott-domains,the concept of scheme is necessary in order to in-troduce an operation analogous to projection inthe relational algebra.In the domain L ! V? schemes correspond to thesubsets of L and projections to the canonical pro-jections. It is natural to de�ne the concept ofscheme such that, being applied to L ! V?, it willgive rise exactly to canonical projections. Also,schemes should be signi�cant parts of a domainwhich reect the structure of the whole domain. Itmeans that if the elements of a domain are treatedas database objects (for example, records of rela-tions) then projection into an ideal generated bya scheme should correspond to loosing some pieceof information and the same pieces of informationare lost for all the elements of the domain. Thismeans that projections generated by schemes arein a way homogeneous.If we have two maximal elements of a domain(complete descriptions) and they are projectedinto a scheme (i.e. the same pieces of informa-tion are ignored) then the projections can not becomparable. This observation leads us to the fol-lowing de�nition.De�nition Let D be a domain and S an antichainin D such that #S is a strong ideal. Then S iscalled a scheme in D if projection p#S(x) of anyelement of x 2 Dmax is a maximal element in #S.It is not hard to see that it is enough to requirethat projection of two maximal elements of D beincomparable instead of requiring that they bemaximal in the corresponding ideal. We needsome more concepts.De�nition Let S � D be a scheme. Then #S iscalled a scheme-ideal and p#S is called a scheme-projection. We will write pS instead of p#S .In the reasonings that led us to the above de�ni-5

tion we took into account only how we loose infor-mation projecting into a scheme. In [5] anotheraspect of the problem was considered : what canbe said about the lost information? Can we con-sider it independently and \add" to another object(element of domain)?The idea of [5] was that, given a scheme, there isits complement (as there is a complement L � Sfor every S � L for the domain L ! V?), andprojecting into scheme S is simply loosing infor-mation corresponding to the complement of S 5.Assuming that the pieces of information containedin projections into the scheme and its complementare independent, we can combine them. To bemore precise, if we have an object and its pro-jection into a scheme is less than an element ofthis scheme, we can add lost information to thelatter element. This is the idea of P.Buneman'sde�nition of scheme. Since we have already usedthe word \scheme", we will use term semi-factorproposed in [12].De�nition [5, 12] Let D be a domain and S anantichain such that #S is a strong ideal. ThenS is called a semi-factor if #S satis�es the slidecondition, that is, given x 2 D and y 2 #S suchthat pS(x) � y, then x _ y exists. #S is calleda semi-factor ideal, and pS is called a semi-factorprojection.Every semi-factor is a scheme; the converse is nottrue in general. If it were true, it would mean(informally) that for all the schemes their comple-ments exist, because we could consider the para-graph before the de�nition of semi-factor as aninformal proof. In a certain class of domains thiscan be formally proved, and we will �nish this sec-tion with such a result.Example 3 Let d2; d3 be as in the examples 1 and2. Letr1 = fName) 0Howard0;Dept) ?;O�ce) ?g;r2 = fName) ?;Dept) 0CIS0;O�ce) 01760g;r3 = fName) 0Katherine0;Dept) 0SL0;O�ce) ?g;5In fact, it was not stated in [5] explicitly, but it seemsto be the most natural interpretation of the slide condition.

r4 = fName) ?;Dept) ?;O�ce) 06280g:Let D = fd2; d3; r1; r2; r3; r4;?g where ? is thetuple with all null values. The diagram of D isshown below:
@@@@@@@@
�������

�DDDDDDDDLLLLLLLL�������
�������

��LLLLLLLL
��������

d2 d3
r1 r4r2 r3

?This domain has no semi-factors but f?g andDmax while it has eight proper schemes: fr1; r3g,fr2; r3g, fr1; r4g, fr2; r4g, fd2; r3g, fd2; r4g,fd3; r1g, fd3; r2g. 2In order to justify both de�nitions we must provethat they describe exactly canonical projectionswhen applied to the domain L ! V?.Proposition 1 S is a scheme (or a semi-factor)of L ! V? i� pS is a canonical projection. 2If L is �nite, L ! V? is isomorphic to Vn?, wheren = jLj. Therefore, in direct products of at do-mains all schemes are semi-factors. Theorem 3below will generalize this fact.We shall mostly use schemes rather than semi-factors because the de�nition of schemes is moregeneral and does not make use of any addi-tional assumptions, and, as we are going to show,schemes satisfy almost all properties that wereproved in order to justify the de�nition of semi-factor in [5]. In the rest of the section we establishsome necessary properties of schemes and state a6

result characterizing qualitative domains in whichthe concepts of scheme and semi-factor coincide.Let A;B � D be two sets. We de�ne A _ B aspointwise supremum, i.e. A _ B = fa _ b : a 2A; b 2 Bg.Proposition 2 Let D be a distributive domain.Then1) If A;B are scheme-ideals, then so is A _B;2) The set of scheme-ideals over D is a completelattice. 2The same results have been proved for semi-factorsin [5]. Notice that scheme-ideals may not be closedunder intersection in contrast to the case of semi-factor ideals. Proposition 2(2) says that schemesordered by v[form a lattice if D is distributive.A question arises : what can be said about otherpowerdomain orderings v] and v\? The follow-ing result shows that these orderings coincide forschemes in any domain. The same result for semi-factors was proved in [5].Theorem 1 Let D be an arbitrary domain andA;B two schemes. Then A v[B i� A v] B i�A v\ B. 2Direct product (�) and separated sum (+) are twoimportant operations over domains. Direct prod-uct is de�ned as usual. Given two domains D1 andD2, D = D1 +D2 is de�ned as follows : the set ofits element is (D1 � f1g) [(D2 � f2g) [f?g, theordering is inherited from the orderings of D1 andD2 and ? is the new bottom element. For exam-ple, a subdomain fd2; d3; r2; r3;?g of the domainin example 3 (see the picture above) is isomorphicto D1+D2 where D1 = fd2; r2g and D2 = fd3; r3g.This construction corresponds to case, or discrim-inated union, while direct product corresponds toforming records. It is, therefore, important to de-scribe schemes in products and sums.Theorem 2 Let D = D1�D2 (or D = D1+D2).Then S is a scheme in D i� S = S1 � S2 (or

S = S1 + S2) for some schemes S1 and S2 in D1and D2, respectively. 2In another paper I shall go further into mathe-matics of schemes; for our current purposes we donot need any more. We �nish this section by theresult describing qualitative domains in which theconcepts of scheme and semi-factor coincide.Theorem 3 (see also [12]). Let D be a qualitativedomain. Every scheme of D is a semi-factor i�D 'Yi2I Diwhere each Di has no proper scheme; the schemesof D are in 1-1 correspondence with subsets of I.24 Relational algebra for general-ized relationsIn this section we �nd the analogies of the mainoperations of relational algebra for generalized re-lations. Schemes introduced in the previous sec-tion will be used to de�ne projections. The projec-tions having been de�ned, we can introduce selec-tion. The join operation will be borrowed from [5].In order to construct generalized relations we canuse the idea of [1]: starting with basic objects weuse constructors such as record and variant (in thissection we do not use set). Basic objects are ele-ments of given domains, i.e. domains correspond-ing to basic types such as integers, characters etc.Generalized records are elements of domains ob-tained from the basic ones by using operation �for record constructor and + for variant construc-tor. Generalized relations are �nite sets of gener-alized records.Let B be a set of domains. We now can re-cursively de�ne domains of generalized records(equivalently, their types).De�nition (Database Domains)1) Any D 2 B is a database domain;7

2) (record constructor) If D1; : : : ;Dn are databasedomains, then D1� : : :�Dn is a database domain;3) (variant constructor) IfD1; : : : ;Dn are databasedomains, the D1 + : : :+Dn is a database domain.Example 4 Let B contain three domains: D,whose elements are people's names, N? =f?; n1; n2; :::g representing natural numbers, andBool = f?; 0; 1g representing booleans (in theabove domains ? � ni for all i and ? � 0; 1).Suppose a database contains records with variantsthat have name and age �elds for each person. Ifa person is a faculty member, the record containshis/her salary, and if he/she is a a student, it con-tains a subrecord indicating whether a student issupported and the amount of support. Below arethe examples of such records:r1 = fName) 0John0;Age) 0350; Status)hFaculty) fSalary) 040; 0000gig;r2 = fName) 0Mary0;Age) 0220; Status)hStudent) fSupported) 000;Amount) 000gig;r3 = fName) 0Peter0;Age) 0240; Status)hStudent) fSupported) 010;Amount)012; 0000gig:These records are elements of a database domainD �N? � (N? + (Bool �N?)). 2De�nition A generalized record is an element of adatabase domain. A generalized relation is a �niteantichain in a database domain6. As we statedbefore, we will often omit the word \generalized".For example, r1; r2; r3 de�ned above are general-ized records and R = fr1; r2; r3g is a (generalized)relation.It is not hard to describe a type system usingthe given de�nition of database domains as it was6Therefore a generalized relation consists of objects ofthe same type as it is in the case of relational databases ifa database is just a relation. It is not, however, a restric-tion for if we have objects of di�erent types we can alwaysuse either variant or record constructor and consider theseobjects as having the same type.

done in [14, 15]. Suppose we have basic types �0iwhose domains of values D0i are exactly domainsfrom B. Let L be a set of labels. Denote the do-main of values of type � by [[�]]. Then if �1; : : : ; �nare types, then so are fl1) �1; : : : ; ln) �ng andhl1) �1; : : : ; ln) �ni, where l1; : : : ; ln 2 L, and[[fl1) �1; : : : ; ln) �ng]] = [[�1]]� : : :� [[�n]];[[hl1) �1; : : : ln) �ni]] = [[�1]] + : : : + [[�n]]:Since domains are closed under direct productand separated sum, all database domains are do-mains. Therefore, we can speak of schemes in thedatabase domains. There exists another way tode�ne schemes using our recursive de�nition ofdatabase domains. Schemes in domains from Bare just schemes as they were de�ned in the previ-ous section; schemes inD1�: : :�Dn are S1�: : : Snand schemes in D1 + : : : + Dn are S1 + : : : + Snwhere Si is a scheme in Di. According to theorem2 these two de�nitions are equivalent.Now we can de�ne the operations of relational al-gebra for generalized relations. We will need onemore de�nition: by minX and maxX we will meanthe sets of minimal and maximal elements of anordered set X, respectively.1. Union. Let D be a domain and R1; R2 tworelations. Then their union R1~[R2 is max(R1 [R2).We need the max operation because R1 [R2 mayfail to be an antichain, but R1~[R2 always is.R1~[R2 can be interpreted as the set of the mostinformative elements from R1 and R2.2. Di�erence. Let D be a domain and R1; R2 tworelations. Then R1�R2 is the usual set di�erence.Since R1 �R2 � R1, it is a relation.Intersection can be expressed as R1 \ R2 = R1 �(R1 �R2).3. Cartesian (direct) product. Let D1;D2 be twodomains and R1; R2 relations in D1;D2 respec-tively. Then R1 � R2 is a relation in D1 � D2de�ned as fhr1; r2i j r1 2 R1; r2 2 R2g.8

4. Projection. Given a (database) domain D, wede�ne projection as projection into a scheme-ideal#S in D. If D is L ! V?, then projections thusde�ned coincide with projections in relational al-gebra.If R � D is a relation and S is a scheme, pS(R)may fail to be an antichain. Therefore, we needtwo operations of projection:pminS (R) = min pS(R); pmaxS (R) = max pS(R):If R is a one-element relation, these two projec-tions coincide and we will write simply pS(R). Theabove de�ned operations also coincide for relationswithout incomplete information, i.e. subsets ofDmax.5. Selection. We can also de�ne selection usingthe concept of scheme. First we have to de�neconditions. As usually, if c1, c2 are conditions,then so are c1 _ c2; c1&c2 and :c1. Schemes arenecessary to de�ne conditions we start with. LetS; S0 � D be schemes, a 2 #S, x 2 D. Then theelementary conditions are pS(x)�a, pS(x)�pS0(x),where � 2 f<;�;=; 6=;�; >g.Let R � D be a relation. i.e. an antichain in D. Ifc : D ! fT;Fg is a condition, then the selectionis de�ned as �c(R) = fx 2 R : c(x) = Tg.If we do not know what the basic domains fromB are and how D was constructed from them, theabove de�ned selection is all we can get. However,if we know a concrete procedure of construction ofD (i.e. a term in signature h�;+i with variablesfrom B) then we can de�ne more complex con-ditions. For example, if the database domain isD � D � D we may want to select those elementwhose �rst and third projections coincide.We can give the selection more power if we in-troduce binary relations on domains from B. Forexample, if P is a binary relation on D1 2 B and#S = D1, then we can introduce conditions like(pS(x); a) 2 P . This is necessary because, for ex-ample, domain of natural numbers is representedin domain theory as N? = f?; n0; n1; n2; : : :gwhere ni corresponds to the natural number i, and

the ordering of N? is given by letting ? be lessthan all ni's: @@@AAA��� : : :? N?n0 n1 n2 n3
We can not conclude that 1 < 2 from this infor-mation, therefore, we need a binary relation P onN? describing the ordering of natural numbers.To de�ne such powerful selection we �rst need thede�nition of similar schemes and a 1-1 correspon-dence between their scheme-ideals. In the aboveexample of D�D�D schemes D�f?g�f?g andf?g � f?g � D should be similar and 1-1 corre-spondence between their scheme-ideals associatesthe �rst and the third projections of any record.This gives us possibility to compare projections ondi�erent schemes. As it was said earlier, we maywant, for example, to select records with coincid-ing �rst and third projections.Given a database domain D, it can be representedas t(D1; : : : ;Dn) where t is a term of signatureh�;+i and D1; : : : ;Dn 2 B (e.g. the databasedomain in example 4 is D�N?� (N?+(Bool�N?))). We now de�ne similarity of two schemesS; S0 and mapping 'S!S0 : #S ! #S0.If S is a scheme in D 2 B, then S is similar toitself and 'S!S is the identical mapping on #S.Let D = t(D1; : : : ;Dn), where Di 2 B, i =1; : : : ; n. Suppose S; S0 are two schemes in D.Let the last operation of t be �, i.e. t(�; : : : ; �) =t1(�; : : : ; �) � : : : � tk(�; : : : ; �) and the last opera-tion of each ti is not �. Then S = S1 � : : : � Skand S0 = S01 � : : : � S0k where Si; S0i are schemesin ti(D1; : : : ;Dn), see theorem 2. S is similar toS0 i� there are such i and j that ti = tj, Si issimilar to S0j in ti(D1; : : : ;Dn) = tj(D1; : : : ;Dn)and Sl = f?tl(D1;:::;Dn)g, S0p = f?tp(D1;:::;Dn)g,l 6= i; p 6= j. 'S!S0 maps a record x 2 #S withonly nonbottom ith component xi 2 #Si to therecord whose only nonbottom jth component is9

'Si!S0j (xi).If the last operation of the term is +, then S =S1+ :::+Sk and S0 = S01+ :::+S0k where Si; S0i areschemes in ti(D1; : : : ;Dn). Then S is similar to S0i� each Si is similar to S0i in ti(D1; : : : ;Dn), andfor any x 2 #S : 'S!S0(x) = 'Si!S0i(x) if x 2 Si.Example 5 Let S = f?g � f?g � D and S0 =D � f?g � f?g be two schemes in D � D � D.Then S and S0 are similar and 'S!S0(f?;?; xg) =fx;?;?g.Schemes D + (f?g � D) and D + (D � f?g) aresimilar in D + (D �D). 2Now we can extend the list of possible elemen-tary conditions by adding the conditions of form'S!S0(pS(x))�pS0(x) where S; S0 are two similarschemes in a database domain D.As we said before, one may also want to de-�ne some binary relations on basic domains. LetP ki ; k 2 Ii be a family of binary relations onDi 2 B, where Ii is (possibly empty) set of in-dices. We say that a scheme S of a database do-main D = t(D1; : : : ;Dn) is also a scheme in a basicdomain Di if S = t(f?g; : : : ; Si; : : : ; f?g) whereSi � Di is a scheme. In this case we can identifyelements of #S and #Si.The third type of elementary conditions in-cludes the conditions (pS(x); a) 2 P ki and(pS(x); pS0(x)) 2 P ki where S; S0 are schemes inDi identi�ed with Si, a 2 Si and k 2 Ii.With such extensions being added, selection cov-ers usual selection in relational algebra.Example 6. Consider a relation with variantsdescribing companies. Each record contain thefollowing information: name, total donations fornon-pro�t companies, gross revenue and costs forpro�t companies. Below are the examples ofrecords:r1 = fName) 0X0; Status) hNon� pro�t)fDonations) 01; 000; 0000gig;

r2 = fName) 0Y0; Status) hPro�t) fRevenue)02; 000; 0000;Costs) 01; 000; 0000gig:Let D be a domain of names. Then the aboverecords are elements of a database domain D �(N? + (N? � N?)). Consider the followingschemes:S1 = f?Dg � (N? + (f?N?g � f?N?g));S2 = f?Dg � (f?N?g+ (N? � f?N?g));S3 = f?Dg � (f?N?g+ (f?N?g �N?)):Then S1; S2; S3 are also schemes in N? and S2 issimilar to S3.Let P be a binary relation on N? such that(ni; nj) 2 P i� i � j, (?; x) 2 P for all x 2 N?.Consider the following conditions: c1 � (pS1(x) 6=?N?) 7, c2 � ((pS3(x); pS2(x)) 2 P). Let R bea relation in the above database domain. Then�c1(R) selects non-pro�t companies from R while�c2(R) selects companies working well, that is,whose gross revenue exceeds costs. 26. Join. Join was introduced in [5] as the supre-mum in Smyth powerdomain ordering, i.e., giventwo relations (antichains) R1; R2 � D, their join isR1 t] R2. It was proved that for domain L ! V?the above de�ned operation coincides with theusual join in relational algebra, see [5]. We willwrite more convenient and customary symbol 1instead of t].There is another way to think of the join opera-tion. Given two generalized relations R1; R2 � D,their join R1 1 R2 is the set of minimal (in D)elements which are greater than some element ofR1 and some element of R2 : R1 1 R2 = minfx 2D j 9r1 2 R1; r2 2 R2 : r1 � x; r2 � xg.Several conditions were given in [23] that the anal-ogy of the natural join in object-oriented modelshould satisfy. Informally, they are: 1) if thereare no common attributes of two relations, theresult of join is isomorphic to their direct (Carte-sian) product; 2) if two relations are de�ned over7To be more precise, we should compare pS1(x) with anelement of #S1, that is, with f?D;?N? � f1gg.10

the same sets of attributes, the result of join istheir intersection; 3) the join of two relations canbe obtained as the union of pairwise joins of itselements(where these exist). Join is also knownto be associative in relational algebra, see [24].Let us formalize the above properties.1) Let R1 � D1; R2 � D2 be two relations, andD1 \ D2 = ;. Let R01 = R1 � f?2g and R02 =R2 � f?1g be two relations in D1 � D2. ThenR01 1 R02 = R1 �R2.2) Let R1; R2 � Dmax be two relations. Then R1 1R2 = R1 \R2.Formalizing property 3) we must keep in mindthat the union of pairwise joins may contain com-parable elements while relations are antichains.Therefore, after �nding union of joins we have toeliminate some elements in order to obtain an an-tichain. According to [10], there is no \semanti-cally correct" way to do it. Since joining relationswith null values may often yield counter-intuitiveresults (cf. [10, 14]) we think that formalizing thethird property we have to eliminate nonminimalelements, i.e. to leave the least informative ele-ments among pairwise joins.3) Let R;R0 � D be two relations, and R =fr1; : : : ; rng; R0 = fr01; : : : ; r0mg. Then R 1 R0 =min(S(frig 1 fr0jg : i = 1; :::; n; j = 1; :::;m)).4) If R1; R2; R3 � D are three relations, then R1 1(R2 1 R3) = (R1 1 R2) 1 R3.Proposition 3 The above de�ned join operationt] satis�es 1) - 4). 2It is known that in relational algebra join can beexpressed via projection, selection and Cartesianproduct. This is not true for generalized relations.However, if the underlying domain is the directproduct of domains then such a representation forjoin exists. Let D = D1 � : : : � Dn and R1; R2be two relations in D. For any x 2 D by xi wemean its ith component, i.e. projection to Di.Let R � D be a relation, and I(R) = fi j 9r 2 R :

ri 6= ?Dig. Let Si = f?g� : : :�Dk(i)� : : :�f?gwhere k(i) = i if i � n and n � i otherwise andDk(i) is the ith factor among 2n factors. Then Si isa scheme in D�D. Let S be the direct product ofsuch Sis that i 2 I(R1) for i � n and i�n 62 I(R1)for i > n. Let c be the conjunction of conditionspSi(x) = pSn+i(x) for all i 2 I(R1) \ I(R2). ThenR1 1 R2 = pminS (�c(R1 �R2)):We �nish this section by showing that the abovede�ned operations form an algebra, that is, gen-eralized relations are closed under union ~[, dif-ference, Cartesian product, projections, selectionand join.Theorem 4 Generalized relations are closed un-der the operations ~[;�;�; pmin; pmax; �;1. 25 Dependency theory for gener-alized relationsHaving introduced the notion of scheme, we cande�ne functional dependencies. If S1; S2 areschemes in a domain D, then a functional depen-dency is an expression of the form S1 ! S2. Usu-ally in the theory of databases with incompleteinformation dependencies are de�ned only on theschemes projections on which do not contain tu-ples with null values. This condition can be equiv-alently expressed as: for any record in a relationthere is a record in a scheme which is less infor-mative than the relation record. In other words,if R is a relation and S is a scheme, then S v] R.Now we can de�ne satis�ability for functional de-pendencies. Let R � D be a relation. We saythat R satis�es functional dependency S1 ! S2if S1; S2 v] R and pS2(x) = pS2(y) wheneverpS1(x) = pS1(y) for every x; y 2 R.Functional dependencies in distributive domainshave been investigated in [5] for the particular caseof semi-factors, and the following analogies of theArmstrong axioms are due to [5], where F is a set11

of functional dependencies, Schemes(D) the com-plete lattice of schemes over distributive domainD (cf. proposition 2).(a) If S1; S2 2 Schemes(D) and S1 � S2 thenS2 ! S1 2 F ;(b) If for any i 2 I : S ! Si 2 F where S; Si 2Schemes(D) then S ! Wi2I Si 2 F ;(c) If S1 ! S2 2 F and S2 ! S3 2 F , whereS1; S2; S3 2 Schemes(D) then S1 ! S3 2 F .The result of [5] proved for semi-factors is also truefor schemes:Proposition 4 The Armstrong Axioms (a){(c)are consistent and complete for relations in dis-tributive domains. 2Now our purpose is to introduce multivalued de-pendencies for generalized relations. A multival-ued dependency X !! Y , where X;Y are sets,appeals to projection onto the set X [Y . While[corresponds to _ for domain model, there is noanalogy for complement. More precisely, the posetof schemes is a lattice if the domain is distributive,but schemes may fail to have complements in con-trast to the case of L ! V?. Thus, two problemswill be discussed in the rest of this section. The�rst one is how we can de�ne complements. Thecomplements having been de�ned, we introducemultivalued dependencies and prove a decomposi-tion theorem.Consider the domain L ! V?. Its schemes cor-respond to subsets of L, with scheme-projectionsbeing canonical projections. The complement ofa scheme corresponds to projecting onto the com-plementary subset of L.Suppose that we have de�ned the concept of com-plement, p is a scheme-projection and p the pro-jection corrsponding to the scheme's complement.What should the properties of p be? First, if wehave any element x 2 D, then p(x) ^ p(x) = ?.Suppose that x 2 Dmax. Then p(x) \forgets"

about information contained in p(x). The factthat p is the complement of p means that all infor-mation contained in x can be reconstructed fromp(x) and p(x), i.e. x = p(x) _ p(x). That meansthat in order to introduce complements, we haveto require that all principal ideals #x in D becomplemented lattices. Moreover, they must beuniquely complemented since we want to speakabout the complement. The next result easily fol-lows from [19].Proposition 5 Any principal ideal of a domainD is a uniquely complemented lattice i� D is aqualitative domain. 2Let D be a qualitative domain and S � D bea scheme. Consider the set IS = fpS(x) : x 2Dmaxg, where pS(x) is the complement of pS(x)in #x. We would like IS to be the complement ofS. However, it can be easily shown that IS mayfail to be a scheme although #IS is always a strongideal.There is another elegant way to de�ne complementproposed by A. Jung [11]. Let S � D be a schemein any domain D . We de�ne IS as the set ofmaximal elements of fx 2 D : pS(x) = ?g. It alsocan be shown that IS is not generally a scheme.In order to be able to operate with complements,we have to make two observations.Proposition 6 Let D be a qualitative domainand S any scheme. Then #IS = #IS, i.e. ISis the set of maximal elements of IS. 2Given a scheme S in a qualitative domain, we cancorrectly de�ne its complement as IS . As we men-tioned above, the complement of a scheme maynot be a scheme. However, complements of semi-factors are schemes, as the following result shows.Proposition 7 The complement of a semi-factoris a scheme in any qualitative domain. 212

If IS is a scheme, we say that S has a complement(which is IS) and denote it by S.De�nition Let D be a qualitative domain and Sa scheme having the complement S. Let S0 bea scheme. We say that a relation R � D satis�esmultivalued dependency S0 !! S if for every x; y 2R with pS0(x) = pS0(y) there exists z 2 R suchthat pS0(z) _ pS(z) = pS0(x) _ pS(x) and pS0(z) _pS(z) = pS0(y) _ pS(y).If D is L ! V?, we obtain the usual de�nition ofmultivalued dependency in a relational database.Notice that, like functional dependencies, multi-valued dependencies should be considered only onschemes the projections into which do not containnull values. As it was shown above, it means thata scheme is less than a relation in Smyth power-domain ordering v]. Therefore in the above def-inition the following should hold: S0 _ S v] Rand S0 _ S v] R. It can be easily concluded fromthe above inclusions that R � Dmax. Thereforewe will consider only relations without incompleteinformation when speaking of multivalued depen-dencies.The above introduced functional and multivalueddependencies satisfy two well-known properties:Proposition 8 Let D be a qualitative domain,and S a scheme having complement S. Let S0 bea scheme, and R a relation without incomplete in-formation, i.e. a �nite subset of Dmax. Then1) If R satis�es S0 ! S then R satis�es S0 !! S;2) If R satis�es S0 !! S, then R satis�es S0 !!S. 2We have de�ned so far multivalued dependenciesand the join operation. We also have shown thatthe complement of a semi-factor in a qualitativedomain is a scheme. Now we are ready to formu-late a decomposition theorem.Theorem 5 Let D be a qualitative domain, andR a relation without incomplete information (thatis, a �nite subset of Dmax). Let S0 be a scheme

and S a semi-factor of D. Then R satis�es multi-valued dependency S0 !! S i� R = [pS0_pS(R)] 1[pS0 _ pS(R)], where join 1 is t]. 2We did not indicate which operation of projection{ pmin or pmax { was used because they coincidefor generalized relations without incomplete infor-mation.6 Extending relational algebrato complex objectsThe standard approach to constructing complexobjects is to apply record, variant and set con-structors to basic types. The crucial point is thatwe admit set constructor, i.e. given any type � ,there is a type ff�gg whose instances are �nitesets of objects of type � . Thus, we can not use do-mains anymore, because we may have an increas-ing in�nite chain of �nite sets, which itself is notdirected. In order to develop a \domain-like" the-ory for complex objects, we need to generalize theconcept of domain. This new concept should bemore general than that of domain. Moreover, thenew objects we are going to de�ne must be closedwith respect to application of record, variant andset constructors.Due to the limitations set up for the papers inthis volume we are unable to present all details ofthe extension of the algebra from section 4 to con-structions containing sets. Instead, we will givehere the analogies of the main de�nitions whichwere in the focus of the �rst three sections, thatis, the de�nitions of local domains, which are thegeneralization of domains that we are going to use,database domains, schemes and projections. No-tice that the crucial steps in the de�ning algebrafor generalized relations were to de�ne generalizedrelations as �nite antichains in domains, schemesand projections. In this section these main stepswill be gone through in the case of complex ob-jects.If we allow a type ff�gg, then we allow anin�nite sequence of sets fx1g v[fx1; x2g v[13

fx1; x2; x3g v[: : :, where all xi 2 [[�]]. This se-quence is a directed set but it does not have theleast upper bound among instances of type ff�gg.For example, � may be a record type and the in-stances of ff�gg are relations, i.e. �nite sets ofrecords. If ff�gg is used as a constructor for an-other record type, that is, if we deal with nestedrelations, then we may have in�nite increasing se-quence of higher-order records. However, if we aregiven any higher-order relation, i.e. a �nite set ofhigher-order records, and a directed set below thisrelation, then this directed set has the least upperbound. Therefore, the higher-order records rangeover the poset which locally behaves as a domain.The following de�nition captures this property.De�nition A poset D is called a local domain ifit satis�es the following properties:1) D does not have in�nite decreasing chains;2) The set K(D) of compact elements of D formsa countable basis of D;3) For any �nite antichain A � D, #A is a domain.We changed the requirement that D be directed inthe de�nition of domain to the requirement thatD be locally directed, i.e. every �nite antichainshould generate a domain. We also require thatD be a poset without in�nite decreasing chains.This condition guarantees that D is a completesemilattice, that is, every nonempty subset of Dhas the greatest lower bound. This condition isnot a severe limitation since usually domains ofbasic types satisfy it and, as we are going to showin this section, it is preserved when record, variantand set constructors are applied (see theorem 6below).De�nition (Database Domain) Let B be a setof basic local domains. The database domains arede�ned as follows:1) Any local domain from B is a database domain;2) If D1; : : : ;Dn are database domains, then so isD1 � : : :�Dn;3) If D1; : : : ;Dn are database domains, then so isD1 + : : :+Dn;4) If D is a database domain, then so is P(D)which is the set of �nite subset of D ordered byv[, i.e. hPf (D);v[i.

A complex object (to be more precise, generalizedcomplex object) is de�ned as a �nite antichain ina local domain.This de�nition is more general than that usedin [17, 18] where algebra, calculus and null valuesfor nested relations were discussed. The �rst gen-eralization is that we start with arbitrary local do-mains or domains. The variant constructor is alsoallowed, and each attribute can be relation-valued,that is, each domain used for forming records canbe obtained as P(D) for some D, while in [17, 18]it is assumed that the nested relations must be inpartitioned normal form8.We need the following result about local domains.Theorem 6 Any domain without in�nite de-creasing chains is a local domain. If D1;D2 arelocal domains, then so are D1 �D2, D1 +D2 andP(D1). 2Corollary 1 Any database domain is a local do-main. 2We are ready to de�ne scheme-ideals and scheme-projections if B consists only of domains (whichare local domains). This is a natural assumption,because elements of B are domains we start with,i.e. domains of basic types like integers, charactersetc.De�nition (Projections and Ideals inDatabase Domains)1) Scheme-ideals and scheme-projections in ele-ments of B are just those in domains D 2 B.2) If I1 � D1 and I2 � D2 are scheme-ideals in local domains D1 and D2 and p1; p2are corresponding scheme-projections, thenI1 � I2 is a scheme-ideal in D1 � D2, withp(hx1; x2i) = hp1(x1); p2(x2)i being the corre-sponding scheme-projection.8It means that zero order attributes form a key, and eachnested subrelation of a less order must also be in partitionednormal form. In our model it can be the case that thereare no zero order attributes.14

3) If I1 � D1 and I2 � D2 are two scheme-idealswith the corresponding scheme-projections p1and p2, then I1 + I2 is a scheme-ideal inD1 + D2, and for the corresponding scheme-projection p we have: p(x) = pi(xi) if x 2 Ii,i = 1; 2.4) Scheme-projections in P(D) are given by pro-jections P (fx1; : : : ; xng) = fp(x1); : : : ; p(xn)gwhere p is a scheme-projection in D. Thecorresponding scheme-ideal is fP (X) jX 2Pf (D)g.Notice that we have not de�ned the schemes sincea scheme-ideal in P(D) may not have the set ofmaximal elements. However, it was the conceptof projection onto a scheme and not the one ofscheme which was crucial for de�ning the opera-tions of projection and selection in algebra.If elements of a database domains are records of anested relations, then the above de�ned scheme-projections are projections in the recursive algebrafor nested relations of [6].The de�nition of scheme-projections and idealsdoes take into account the way the database do-main has been constructed, i.e. a term in sig-nature h�;+;Pi over variables from B. Noticethat the grammar-based approach to de�ning suchterms and instances of the domains they corre-spond to was studied in [9].7 ConclusionIn this paper we have been studying the new ap-proach to generalization of relational datamodelthat treats relations as subsets of domains, whichare partially ordered sets of descriptions [5]. Thisapproach allows us, for example, to model di�er-ent ways of working with null values and recordswith variants.In the paper we have described relational algebraoperations for such generalized relations and out-lined the ways of their extending to complex ob-jects. We did it by de�ning schemes in domains

and projections associated with the schemes. Joinwas de�ned as the supremum in a powerdomainordering and it was shown to satisfy the analo-gies of the properties of natural join in relationalalgebra.Functional and multivalued dependencies havebeen introduced and decomposition theorem es-tablishing the relationship between join and mul-tivalued dependencies has been proved for the gen-eralized relations. In the case of complex objects ithas been argued that domains can not serve as thebasis of the model, and local domains have beende�ned to replace domains in the model and tomake it possible to work with set constructor forcomplex objects. Recursive de�nitions of scheme-ideals and projections have been given.Some of the open problems to which we would liketo dedicate the further research are: construct-ing calculus associated with introduced algebra forgeneralized relations and complex objects; �nd-ing analogies of the basic concepts of relationaldatabase theory (for example, such as normaliza-tion) in our domain model; investigation of thedi�erent ways of treatment of null values from thedomain theory point of view; extending the basicmodel in order to be able to operate with sets.Acknowledgements This work was inspired bythe idea of Peter Buneman to attract domain the-ory to generalize relational databases. I am verygrateful to Peter Buneman and Achim Jung forvery helpful discussions and suggestions. I alsowould like to thank Carl Gunter, Anthony Koskyand Val Tannen for their comments on this paper.References[1] F. Bancilhon, S. Khosha�n. A calculus for com-plex objects. In PODS 1986.[2] C. Beeri. Formal models for object orienteddatabases. In : Proc. of Int. Conf. on Deductiveand Object-Oriented Databases, Kyoto, December1989.[3] G. Birkho�. Lattice Theory. 3rd ed., AMS, Prov-idence, RI, 1967.15

[4] J. Biskup. A formal approach to null values indatabase relations. In : Advances in DatabaseTheory (H. Gallaire, J. Minker, J.M.. Nicolas,Eds.), Plenum Press, New York, 1981, pp.299{341.[5] P. Buneman, A. Jung, A. Ohori. Using powerdo-mains to generalize relational databases. Theoret-ical Computer Science, 1991, to appear.[6] L.S. Colby. A recursive algebra and query opti-mization for nested relations. In SIGMOD 89.[7] J.-Y. Girard. The system F of variable types :�fteen years later. Theoretical Computer Science45:159{192, 1986.[8] C. Gunter, D. Scott. Semantic domains. In\Handbook on Theoretical Computer Science", J.van Leeuwen, ed., North Holland, 1990, pp. 633{674.[9] M. Gyssens, J. Paredaens, D. Van Gucht. Agrammar-based approach towards unifying hier-archical databases. In SIGMOD 89.[10] T. Imielinski, W. Lipski. Incomplete informationin relational databases. J. of ACM 31(4):761{791,1984.[11] A. Jung. Personal communication. June 1990.[12] A. Jung, L. Libkin, H. Puhlmann. Decomposi-tion of domains. In Proc. of the Conf. on Math.Foundations of Programming Semantics - 91, toappear. Available as Technical Report MS-CIS-90-84, University of Pennsylvania, 1990.[13] Nested relations and ComplexObjects in Databases (S.Abiteboul, P.Fischer andH.-J.Schek eds.) Springer LNCS, Vol. 361, 1989.[14] A. Ohori. A study on semantics, types andlanguages for databases and object-oriented pro-gramming. PhD Thesis, University of Pennsylva-nia, 1989.[15] A. Ohori. Semantics of types for database ob-jects. 2nd International Conference on DatabaseTheory, 1988.[16] J. Paredaens, P. De Bra, M. Gyssens, D. VanGucht. The Structure of the Relational Data-model. Springer-Verlag, Berlin, 1989.[17] M.A. Roth, H.F. Korth, A. Silberschatz. Ex-tended algebra and calculus for nested relationaldatabases. ACM TODS, 13(4):389{417, 1988.[18] M.A. Roth, H.F. Korth, A. Silberschatz. Null val-ues in nested relational databases. Acta Informat-ica, 26(7):615{642, 1989.

[19] V.N. Salii. Lattices with Unique Complements.AMS, Providence, RI, 1988.[20] H.-J. Schek, M. Scholl. The relational modelwith relation-valued attributes. Inform. Systems,11(2):137{147, 1986.[21] D.S. Scott. Domains for denotational semantics.In ICALP, July 1982.[22] M.B. Smyth. Power domains. Journal of Com-puter and System Sciences 16(1):23{36, 1978.[23] K. Tanaka, T.-S. Chang. On natural join inobject-oriented databases. In : Proc. of Int. Conf.on Deductive and Object-Oriented Databases, Ky-oto, December 1989.[24] J.D. Ullman. Principles of Database Systems.Pittman, 2nd ed., 1982.[25] C. Zaniolo. Database relations with null val-ues. Journal of Computer and System Sciences28(1):142{166, 1984.

16

