Decomposition of Domains*

Achim Jung Leonid Libkin Hermann Puhlmann T

Abstract

The problem of decomposing domains into sensible factors is addressed and
solved for the case of dI-domains. A decomposition theorem is proved which allows
the represention of a large subclass of dI-domains in a product of flat domains.
Direct product decompositions of Scott-domains are studied separately.

1 Introduction

This work was initiated by Peter Buneman’s interest in generalizing relational databases,
see [6]. He — quite radically — dismissed the idea that a database should be forced into
the format of an n-ary relation. Instead he allowed it to be an arbitrary anti-chain in a
Scott-domain. The reason for this was that advanced concepts in database theory, such
as ‘null values’, ‘nested relations’, and ‘complex objects’ force one to augment relations
and values with a notion of information order. Following Buneman’s general approach,
the question arises how to define basic database theoretic concepts such as ‘functional
dependency’ for anti-chains in Scott-domains. For this one needs a way to speak about
‘relational schemes’ which are nothing but factors of the product of which the relation is
a subset. Buneman successfully defined a notion of ‘scheme’ for Scott-domains and it is
that definition which at the heart of this work. We show that his generalized ‘schemes’
behave almost like factors of a product decomposition. (Consequently, we choose the word
semi-factor for them.) In the light of our results, Peter Buneman’s theory of generalized
databases becomes less miraculous: a large class of domains can be understood as sets of
tuples.

Buneman’s definition of scheme was discussed in [17] and an alternative definition was
proposed. The idea of both definitions is that the elements of a domain are treated as
objects, and projecting an element into a scheme corresponds to losing some information
about this object. The definition of [17] is based on the assumption that the same piece
of information is lost for every object. For example, if objects are records, it means that
we lose information about some attributes’ values. The idea of [6] is that every scheme
has a sort of complement, and if we project one object to a scheme and the other to its

*Appeared in: Proceedings of the Conference on Mathematical Foundations of Programming Semantics
91, Springer Lecture Notes in Computer Science, 598 (1992), 235-258.

tAddresses: Achim Jung and Hermann Puhlmann: Fachbereich Mathematik, Technische Hochschule
Darmstadt, Schlo8gartenstrafie 7, D-6100 Darmstadt, Germany. Leonid Libkin: Department of Computer
and Information Sciences, University of Pennsylvania, Philadelphia, PA 19104, U.S.A. L.Libkin was
supported in part by NSF Grants IRI-86-10617 and CCR-90-57570 and ONR Grant NOOO14-88-K0634.

complement, then there exists a join of two projections, i.e. every object consists of two
independent “pieces of information”. Intuitively it means that the domain itself could be
decomposed into two corresponding domains.

The definition of [6] is stronger than the definition of [17]. It is the first definition that
is used in our decomposition theory while the second definition serves as a tool to describe
direct product decompositions of domains. Combining the decomposition theorems, we
will prove a formal statement that clarifies the informal reasonings from the previous
paragraph.

There is also a more philosophical or pedagogical motivation for this work. A feature
that novices to domain theory frequently find unsettling is the profusion of different def-
initions it offers. Often these definitions are laid out at the beginning and the relation to
the semantics of programming languages is established only later. In particular, useful
closure properties of the respective categories are derived. In his ‘Pisa Lecture Notes’ [18],
Gordon Plotkin chose a rather more gentle approach. The ‘domains’ he considers are very
primitive at the beginning, just sets, and step by step new constructs and properties are
added to them: a bottom element transforms sets into flat domains, and thus the in-
formation order is introduced; next come slightly more complicated orders created by
forming finite products of flat domains; function spaces call for the definition of dcpo
and Scott-continuous function and, via bilimits and powerdomains, he finally arrives at
bifinite domains. Furthermore, along the way he develops a syntax which allows to denote
(most of) the elements of the domains, making them available for computation: the prod-
uct appears as a set of arrays, the function space as a set of A-terms, etc. (This aspect
is also described elegantly and comprehensively in [1].) In this way, Plotkin creates the
impression that all (bifinite) domains are built up from flat domains using various domain
constructors. This may be reassuring for the novice but of course it is not explicitly con-
firmed in the text. Plotkin is just very carefully expanding his definitions and motivating
each new concept. But we may still ask to what extent this first impression could be
transformed into a theorem. To be more precise, we may ask: “Is it true, that every
bifinite domain can be derived from flat domains using only lifting, product, coalesced
sum, function space and convex powerdomain as constructors?” (A similar question was
in fact asked — and found difficult — by Carl Gunter for the universal bifinite domain.)

How would one attack such a problem? We think the natural way to do it is to work
backwards and to try to decompose domains into pieces that decompose no further. If we
can show that the only irreducible domains are the flat domains then we are done.

At this point the informed reader may already have become nervous because he may
know small finite counterexamples to the above question. But there are many variations
of it which are equally interesting. We can restrict (or augment) the number of allowed
constructions, we can change the class of domains we want to analyze, we can allow
more (or fewer) primitive (i.e. irreducible) building blocks. The choice we have made
for this paper is to consider Scott and dI-domains (cf. [4, 3]) and a single, albeit rather
general, constructor, and instead of prescribing the irreducible factors, we are curious
what they will turn out to be. The advantage of a decomposition theorem of this kind
is apparent: instead of proving a property for general domains we can prove that it
holds for the irreducible factors and that it is preserved under the constructions. We
allow ourselves to compare this endeavor with the similar (and only recently completed)
project of decomposing finite groups into finite simple groups, although the comparison
is somewhat flattering: we cannot expect to find so much mathematically intriguing

structure in domains.

What are the practical implications of our decomposition theorem? Well, in our
particular setting we derive a very concrete representation of dI-domains as a set of
‘tuples’ which should simplify the implementation of dI-domains as abstract data types.
Of course, there is a well-developed theory of effective representations (see [20, 15, 22,
16]), where one enumerates the set of compact elements and represents (a subset of) the
infinite elements by recursively enumerable sets of compact approximations. However,
this is more theoretical work and no one expects that we really ever use domains as
data types represented this way. Instead, our representation is much more concrete.
To give an example, consider a domain which is the product of two flat domains. The
traditional effective domain theory simply enumerates all elements, and, if enumerations
of the elements of the two factors are already given, then these are combined with the
help of pairing functions. We work rather in the opposite direction. For a given domain
we seek to decompose it as far as possible and we will only enumerate the bases of the
(irreducible) factors in the traditional way. The representation of the original domain is
then put together as a set of ‘tuples’.

The paper is organized as follows. In the next section we shall quickly review some
basic definitions from domain theory, mostly to fix notation and to remind the reader
of a few less common concepts. In Section 3 we introduce semi-factors and prove basic
properties of them. We apply these ideas and get a first decomposition theorem. This
representation still contains a lot of redundancy and in Section 4 we show how to ‘factor
away’ this redundancy. The resulting decomposition theorem yields a representation of
dI-domains which is very tight. (These sections report work by the first and the third
author.)

A direct product decomposition is a particular and interesting instance of our general
goal and deserves more detailed study. In Sections 5 and 6 (which were written by the sec-
ond author) this is done by establishing a relationship between these decompositions and
particular instances of congruence relations and neutral ideals. The idea to describe direct
product decompositions via neutral ideals is borrowed from lattice theory where neutral
ideals describe decompositions of bounded lattices. For domains we will obtain a more
general kind of decomposition including direct product and coalesced sum as limit cases.
These decompositions are given by families of subsets of a domain such that every element
of the domain has a unique representation as the join of suitably chosen representatives
of these sets. Pairs of permutable complemented congruences also describe direct product
decompositions as well as they describe decompositions of algebras. Having proved char-
acterizations of decompositions, we establish the result showing the relationship between
the two notions of scheme.

2 Definitions

We are using the standard definitions such as they can be found in [13] and in [1]. In
particular, dcpo’s are directed-complete partial orders and they have suprema for all di-
rected sets. Most of the time they have a least element, which we denote by L. Compact
elements in a domain are such that they cannot be below a supremum of a directed set
without being below some element of that set already, and if there are enough compact
elements such that every element is the supremum of a directed collection of them, we

call the dcpo algebraic. More suprema than just those of directed sets can exist: if every
bounded set has a join then we call the dcpo bounded-complete; if every set has a join
then we have a complete lattice. In case a bounded-complete dcpo is also algebraic we
call it a Scott-domain. The expression ‘algebraic complete lattice’ is shortened to alge-
braic lattice. We will mostly study distributive Scott-domains, for which it is sufficient to
require the distributive law to hold in the principal ideals. (The standard textbook on
distributive lattices is [2]). Even more restrictive is the definition of dI-domains (cf. [4, 3]):
they are distributive Scott-domains in which every principal ideal generated by a compact
element is finite. Because of this strong finiteness property we can usually derive theo-
rems about dI-domains very quickly from the same theorems stated for finite distributive
Scott-domains.

All our functions are Scott-continuous, which means they carry the supremum of a
directed set to the supremum of the image of the set. We do not make much use of
them in this generality but mostly consider projections, which are in addition idempotent
and below the identity. Recall that projections always preserve existing infima and are
completely determined by their image. Even the order between projections can be read
off their image: it is simply inclusion. For more detailed information we refer to [8].

An element z in a lattice is join— (meet-) irreducible if from the equation y V z =z
(y A z = x) we can deduce that x equals y or z. (In the presence of distributivity this
is equivalent to the stronger property of join— (meet-) primeness, but we will not make
much use of this.)

Domain theory also includes the concept of ideal which is a directed and downward
closed subset. This is a generalization of ‘ideal’ as it is known in lattice theory, where
these are sets which are downward closed and closed under finite suprema. We need a
generalization which goes in a different direction:

Definition. A stable subdomain in a Scott-domain D is a downward closed subset which
is closed under all existing joins.

The same concept is defined in [6] and in [7] where such subsets of Scott-domains
are called strong ideal and complete ideal, respectively. We find either expression rather
misleading as we are not dealing with a special kind of domain theoretic ideal but with
a completely different concept. Instead we take the viewpoint that such subsets are
special substructures, i.e. special subdomains. As it happens, they correspond one-to-one
to images of projections p for which y < z implies p(y) = y A p(z). (An even stronger
property holds, see Proposition 2 (ii) below.) In domain theory such functions are known
as stable projections, hence our terminology.

Factors of products of dcpo’s with bottom have the property that there is always a
canonical projection onto them. This is also true for stable subdomains in Scott-domains:

Lemma 1 Let A be a stable subdomain of the Scott-domain D. Then ps: D — D, defined
by
pa(@) =\ (zNA)

is a projection on D with image A.

Our first decomposition has the form of a general categorical limit. A concrete de-
scription is given in terms of certain elements of the product of the dcpo’s involved.

Definition. Let D be a set of dcpo’s and let F be a set of Scott-continuous functions
between elements of D (in the language of category theory: a diagram in DCPO). Fur-
thermore, let Z = (2p)pep be an element (a tuple) of the cartesian product of all elements
of D. We say that T is commuting if the equation zp = f(xp) holds for all functions
f:D— FE, feF,and all elements D, E in D. Similarly, it is called hyper-commuting if
the inequality xg > f(zp) holds.

The set of all commuting tuples forms the categorical limit of the diagram (D, F) and
we denote it by lim #D. The set of hyper-commuting tuples we call the hyper-limit and
we reserve the notation hyperlim D for it. The latter construction is a special case of a
more general concept developed in the theory of 2-categories, namely, lax limits. It is easy
to see that DCPO is closed under limits and this kind of lax limit. Whether any of the
other properties generally associated with domains is preserved depends on the structure
of the diagram. For more detailed information consult [21].

3 Stable subdomains, semi-factors, and the First De-
composition Theorem

We begin by recalling from [6] and [19] some of the properties of stable subdomains.

Proposition 2 Let D be a Scott-domain. Then the following hold:
(i) {Lp} and D are stable subdomains of D.

(ii) If = is an element of a stable subdomain A of D and if pa(y) is less than = then
pa(y) =z Ay.

(iii) If D is distributive then pa preserves ezisting suprema.
(iv) The set Qp of all stable subdomains of D ordered by inclusion is an algebraic lattice.
(v) If D is distributive then Qp is distributive.

)
(vi) In Qp, the finite meet of stable subdomains is given by their intersection and panp =
PA©SPB =PBCPA.

(vii) If D is distributive then (arbitrary) suprema in Qp can be calculated pointwise, and
for AC Qp,x € D:pya(x) =Vacapa().

(Proofs can be found in [6].)

The concept of ‘stable subdomain’ is still too general to serve as a definition of ‘distin-
guished piece of a domain’. For example, every element = of a domain generates a stable
subdomain |z, but in general such a principal ideal cannot be hoped to lead to a sensible
decomposition. In [6] a more restrictive definition is introduced, that of a scheme, and it
is motivated by the database applications we had in mind there. Here we can give a new
motivation based on the desired decomposition result. Consider the following theorem:

Theorem 3 Let D be a finite distributive Scott-domain and let A be a set of stable
subdomains the supremum of which equals D = Tg,. Let F be the set of projections
palp: B — A where A C B are two elements of A. Furthermore, let D consist of those
commuting tuples T = (x.4) aca for which the set {x4 | A € A} is bounded in D. Then D
18 1somorphic to D with the isomorphisms

U:D— D, U(z) = (pa(x))ica
&:D— D,®(7) = \[{za|Ac A}

The proof of this theorem is straightforward, one only has to bear in mind that suprema
in Qp are calculated pointwise. The theorem is unsatisfying, however, because in order
to represent D through a set of stable subdomains, we need to include information that
can only be gained by looking at D itself: the boundedness of the coordinates of z. We
shall now give a definition of a semi-factor, such that boundedness comes for free if only
the tuple commutes.

Definition. A stable subdomain A of a Scott-domain D is called semi-factorif pa(z) < a
implies that z and a are bounded, for all x € D and a € A.

In [6] and in [19] it is shown that this definition works well in the test case of direct
product decompositions: the semi-factors of a direct product D x E are in 1-1 correspon-
dence with products of semi-factors of D and E. In particular, D x { Lgy} and {1Lp} x E
are semi-factors in D x F.

We collect the basic properties of semi-factors in a fashion similar to that for stable
subdomains:

Proposition 4 Let D be a distributive Scott-domain. Then the following hold:
(i) {Lp} and D are semi-factors of D.

(ii) The set Sp of all semi-factors of D, ordered by inclusion, is a distributive, complete
lattice.

(iii) If S and T are semi-factors of D, then so are SNT and SV T, where again the
join is taken pointwise. (The latter also holds for arbitrary joins.)

(iv) Sp is a sublattice of Qp.

(For the proofs see [6].)
The following lemma states that our definition yields the desired extension property:

Lemma 5 Let S be a family of semi-factors of a finite distributive Scott-domain D and
let F consist of all connecting projections as in Theorem 3 above. Let S be such that with
S, T € § we also have SNT € S. If & = (x5)ses is a commuting tuple, then the set
{zs | S € 8} is bounded in D.

Proof. We first show this for the case in which S consists of just three semi-factors, S,T
and SNT. Let £ be a commuting tuple in S x T"x SNT.

zp > psar(zr) (psnr <idp)
= Zsnr (Z is commuting)
= psar(zs) (ditto)
= props(zs) (2 Lvi& 4 Liii)
= pr(zs) (ps |r = idr)

By the defining property of semi-factors, {xg, x7} is bounded in D.

The general proof is by induction. Set S = V;_, S; and T' = S,;;. By the induction
hypothesis the join of {zg,,...,zs,} exists and we may set x5 = V., xs,. The tuple
(zs, 21, psar(zs)) is commuting for the three semi-factors S, T and S N T, because pro-
jections preserve suprema by 2-(iii): psar(zs) = pr o ps(zs) = pr(zs) = pr(Vi, xs,) =
Vicipr(zs;) = Viti s, = Visy ps; (27) = ps(zr) = ps o pr(2r) = psar(zr). So we can
apply the result for the three element case for the induction step. 0O

In our decomposition theorem we want to use as few semi-factors as possible, which
in turn should be as primitive as possible. As a first approximation we choose the set
J(Sp) of semi-factors which are join-irreducible in @) . This set has two properties which
make it attractive: every semi-factor is a join of irreducibles (in the finite case, but it will
generalize to dI-domains) and a join-irreducible cannot be reached by a join of strictly
smaller semi-factors, so it is in a sense unavoidable. But in order to apply the previous
lemma we need a set closed under finite intersections, and in general J(Qp) will not do
us this favor. We need another preparatory lemma:

Lemma 6 Let D be a finite distributive Scott-domain and let J(Sp) be the set of join-
irreducible semi-factors of D. Let & = (zs)seci(sp) be a commuting tuple for J(Sp) and
the connecting projections F. Let F' be the appropriately extended set of connecting
projections for all of Sp. Then & can be extended uniquely to a commuting element &' for

Sp, F'.

Proof. We first show that for two join-irreducible semi-factors U and V we have the
following commutation rule: py(xy) = py(zy). Indeed, if U NV is the join of the
join-irreducible semi-factors Uy, ..., U, then we can calculate: py(xy) = py o py(xy) =

pUmV(DEV) = V?zl Pu; (xv) = V?zl Ty, = V?zl Pu; (xU) = pUmV(HCU) = Pv OPU(xU) = pv(DCU)-
We extend the tuple z to all of Sp by setting

Tg = \/{l‘U | S D) U e J(SD)}

We have to show that &’ = (25)ses, is commuting, so let S C T be two semi-factors of D.
Then we have

ps(zr) = pg(\/{mU ' TDOUe€J(Sp)}) (by def.)
= \Vips(zv) | T2 U € J(Sp)} (2 Liii)
= V{pv(zv) I T2U € J(Sp),S2V € J(Sp)} (2Lvii)

),
= \{pv(zv) | T2U € J(Sp),S 2V € J(Sp)} (as shown before)

= Vpr(zp) | S22V € J(Sp)} (2L vii)
= xg (by def.) O

We can now state

Theorem 7 (The First Decomposition Theorem) Let J(Sp) be the set of all join-
irreducible semi-factors of the finite distributive Scott-domain D and let F be the set
of connecting projections. Then D is isomorphic to the limit of J(Sp) over F. The
1somorphisms are given by

D — Ii}n J(Sp)
r = (ps(®))sersp)
and
OF Ii}n J(Sp) — D

(IS)SEJ(SD) = \/ Ts.
SeJ(Sp)

The proof of this theorem is contained completely in the previous lemma, where we
showed how to extend a commuting tuple to all of Sp, in particular to D € Sp itself. O

We illustrate the First Decomposition Theorem for three finite domains.

Example 1: D = M, M a finite set, i.e. D is a flat domain. We find that D possesses
only the trivial semifactors { L} and D, the latter being join-irreducible in Sp. Hence we
conclude:

Observation 1: Flat domains are indecomposable.

Example 2: D = 2 x 2, the four-element Boolean algebra. Since D is a lattice, it is
isomorphic to its lattice of semi-factors. The join-irreducibles are (T, L) and (L, T) and
the decomposition yields D ~ (T, L) x [(L, T), where {(T, 1) ~ |(L, T) ~ 2. This is
not a coincidence:

Observation 2: Direct product structure is recognized.

Example 3:

o
U

D Sp

We find that D is join-irreducible in Sp and hence must be contained in any decom-
position based on the First Decomposition Theorem. This is obviously not satisfactory

and we shall derive a better decomposition theory below. Before doing so, let us study
the situation for infinite domains. Here we have to deal with the following complication:
the intersection of an infinite family of semi-factors is not necessarily a semi-factor again.
We therefore do not know whether Sp is algebraic in general. We view this as the major
open problem in our decomposition theory. In the case of dI-domains we are fine:

Proposition 8 Let D be a dI-domain. Then Sp is algebraic and co-algebraic (i.e. S7¥
is algebraic).

Proof. We only give an outline because we don’t have the space to introduce the details
of the theory of approximation via compact elements in domains in general and in our
decomposition theory in particular.

One first observes that stable subdomains and semi-factors are completely determined
by the set of compact elements they contain. Also, the canonical projection onto a stable
subdomain can be seen as mapping each element onto the supremum of those compact
elements of the subdomain which are below it: p4(z) = Vo N K(D) N A. Furthermore,
the canonical projection, as a Scott-continuous map, is completely determined by its
behavior on compact elements. Since it is also sufficient to state the extension property
of semi-factors for compact elements only, we have reduced the whole theory to K (D),
the set of compact elements in D. With this in mind, it is now easy to see that the
arbitrary intersection of semi-factors is again a semi-factor: below a compact element in
a dI-domain there are only finitely many elements at all and so for a particular compact
element the intersection behaves as if it were over a finite index set.

Similarly, it is easy to see that the directed union of semi-factors yields a semi-factor
again. Together this shows that the set Sp of semi-factors forms an inductive hull system
on D, which implies algebraicity. A semi-factor is compact in Sp if and only if it is
generated by a finite set of compact elements of D.

The co-compact elements are found as follows: suppose a semi-factor S does not
contain a certain element x of D. By algebraicity of D it follows that there is a compact
element ¢ of D which S does not contain. Furthermore, because |c is a finite distributive
lattice, there is a join-irreducible k£ below ¢ which again does not belong to S. On the
other hand, if k is join-irreducible (hence: prime) in K (D), then the join of all semi-
factors which do not contain £, will again not contain this element. From this it follows
along standard lines that any finite set of join-irreducible elements of K (D) defines a
co-compact semi-factor and that there are enough co-compact semi-factors to generate
the whole lattice Sp. So it is co-algebraic as well. O

From [8] we recall that algebraic lattices have an inf-basis of meet-irreducible ele-
ments, and so for a dl-domain D the distributive lattice Sp has both a sup-basis of
join-irreducibles and an inf-basis of meet-irreducibles. We can therefore state:

Corollary 9 The First Decomposition Theorem holds for dI-domains.

4 Factoring by stable subdomains and the Second
Decomposition Theorem

In group theory and in ring theory we are familiar with the following technique. For a given
strong substructure (normal subgroup, ideal, respectively) one studies the equivalence

relation which identifies those elements which differ only by an amount contained in the
substructure. A similar notion works for ideals in distributive lattices: If A is an ideal
in L then we can set ~ y if there is an a € A such that x Va = y V a. (for details
see [2].) Since domains lack arbitrary suprema we have to rework this definition a little
bit:

Definition. Let A be a stable subdomain in a distributive Scott-domain D. On D define
a binary relation 64 by setting x 6, y if there is a € A such that y = xVa. Let ©4 be the
symmetric and transitive hull of f that is the smallest equivalence relation containing 6.
(©4 can be described concretely as U, en (05" © 04)™.)

This definition proves to be extremely fruitful. We list the following properties:

Proposition 10 Let D be a finite distributive Scott-domain and let A be a stable subdo-
main in D. Then the following hold:

i) 20sy=2x<y.
(ii) 204y = y=2xVpaly), and for alla € A,if y =z V a, then a < ps(y).
(iii) 04 0 04=04.
(iv) z0ay,2€ D= 2Ax0s2ANy and zV x 04 2V y. (Provided the suprema ezist.)
(v) ©4 is a congruence relation on D with respect to finite infima and existing suprema.
(vi) Each equivalence class of © 4 contains a least element.
(vii) 04=0,4 N <.
(viii) Each equivalence class of © 4 is order convez.
(ix) ©4=0y" 0 0,.
(x)

We denote the function which maps each element onto the smallest element in its
equivalence class by ¢4. With this notation we can add the following clauses:

pa s injective on every equivalence class of © 4.

(xi) qa is a projection on D.
(xii) ga preserves existing suprema.

Proof. (i) is trivial, for (ii) recall that p, is join-preserving by 2-(iii).
(i) 204 ybs 2= y=2xVa and 2z = yVay =z Va Vay, and with a; and ay
elements of A, their join is again in A.
(iv)zlpy=—y=2xVa=zAy=2zA(xVa)=(2Az)V(2Aa), and with a € A,
the element z A is again in A. For suprema: 2 04y =y =xVa = zVy = (2Vz)Va.
(v) It is immediate from the definition of ©, as a union of products of #, and 65"
that (iv) also holds for © 4. Now, if x ©4 y and 2’ ©4 ¢ then x A2’ Oay A2’ O4y Ay,
and analogously for suprema.
(vi) follows from (v) by taking the infimum of the equivalence class.

(vii) Suppose x < y and x ©4 y. Then by definition there is a chain zy,,..., 2,
of elements such that z = x; Hjl To 04 x5 Hjl Tg...Tpi1 04 xp, = y. By taking the
supremum of each element of this sequence with x and then the infimum with y we derive
a new sequence which is completely contained in the interval [z, y]. xo is then necessarily
equal to x. We further shorten the sequence as follows: © = x9 = 29 A2y 04 23 A 24 Hjl
Ty Ny = 24 04 x5... Since z3 A 24 is below z4 and in relation Gjl it is actually equal
to x4, so the sequence now reduces to z 04 x4 04 x5 ... Applying (iii) we find that z is in
f 4-relation to x5 already. Continuing in this fashion will reduce the sequence eventually
to x 0, y which is what we want.

(viii) Assume x © 4 y and x < z < y. By (vii) we have x 6,4 y which implies y =z V a
for some a € A. But then z = zAy = (zVz)A(xVa) =2z V(zAa) which gives us z 0, z.
The relation z 64 y follows directly from y = z V a.

(ix) Combining (vi) and (vii) we find that the least element of an equivalence class is
in A 4-relation to each member.

(x) A projection always preserves infima and so if py maps two elements = and y to
the same image a, it will map x Ay to a as well, and, if x ©4 y then x Ay ©4 y and
by (vii) x Ay 04 y. So consider w.l.o.g. x 04 y and pa(z) = pa(y). We directly get
y=xzVpaly) =z Vpalz) =z

(xi) We only have to show that g4 is monotone. So suppose = < y. By (vii) we have
qa(y) 04 y which yields with (iv): x A qa(y) 04 x Ay = z. But ga(z) is the smallest
element in the equivalence class of z. Hence ga(x) < 2 A qa(y) < ga(y) follows.

(xii) From z = x V y,qa(x) 04 x,q4(y) 04 y we conclude by (iv) that ga(z) V ga(y) 024
x Vy = z. Since ¢4 is monotone it follows that ¢4(z) V ¢4(y) must be equal to ga(z). O

Given a representation of a poset P as the cartesian product of two posets R and S
we can understand P as follows: it consists of |R| many copies S, of S, and if z < y in R
then each element of S, is below the corresponding element of S,. A semi-factor S in a
finite domain leads to a similar representation: for each element z in the image R of ¢g
we take the principal filter F,, = tpg(z) in S (instead of the whole semi-factor). These
filters are connected as before, that is, if x < y in R, then each element of F), is below the
corresponding element of F,. However, there may be elements of F, for which there is no
corresponding element in F,. This is the content of the following proposition. A picture
illustrating this representation is given in Figure 1.

Knowing S,im ¢s and the action of pg on the image of g5 we can reconstruct the
domain:

Proposition 11 Let D be a finite distributive domain and let S be a semi-factor in D.
(i) The image of an equivalence class of ©g under ps is upward closed in S.

(i) D is isomorphic to the set D = {(x,s) € im qs x S | ps(x) < s} ordered pointwise.
The isomorphism is given by qs X ps: D — D and by the supremum function for the
other direction.

(i) If Vo € D :pgoqs(x) = Lp then S is a direct factor of D.

Proof. (i) If s is above pg(z) in S then by the extension property of semi-factors s V z
exists and is in @3 -relation to z. Also, ps(s V z) = ps(s) V ps(z) = 5V ps(x) = s.

Figure 1: Decomposition of a domain by a semi-factor S.

(ii) For z € D we have gs(z) < z and therefore pg(gs(z)) < ps(z). So the pair
(gs(z), ps(x)) belongs to D. The mapping ¢g X ps is injective by Proposition 10-(x). We
claim that the inverse is given by the supremum function. First of all, the supremum
exists for the pairs in D because S is a semi-factor. It is clearly monotonic and it inverts
gs X ps because qs X ps(x V s) = (qgs(z V s),ps(z V s)) = (gs(x) V qs(s), ps(z) V ps(s)) =
(zV L,ps(z) Vs) = (z,s) and for the other composition: ¢s(z) V ps(xz) = x because
qs(z) Os x by definition.

(iii) This follows because for pg o g5 = J‘[D 15 D] the condition in the definition of

D is always satisfied. a

This proposition works with elements of the domain. But there is also a way of
looking at this situation using congruence relations. Recall that every homomorphism
f: D — E induces a canonical congruence relation on D, called the kernel of f (ker f),
which identifies exactly those elements of D which are mapped to the same element.
Obviously, kerga =0©4. Let Con(D) be the complete lattice of all congruences (with
respect to finite infima and existing suprema) on D.

Proposition 12 Let D be a finite distributive Scott-domain and let A be a stable subdo-
main in D. Then the following is true:

(1) ker ps is a congruence with respect to arbitrary infima and arbitrary (existing)
suprema.

(ii) ker paN © 4= Apyp = Ocon(D)-
(iii) ker paV O4=D x D = 1C’on(D)-

Proof. (i) holds because p4 is a projection on a distributive domain, (ii) re-states 10-(x)
and, finally, (iii) follows because every = € D is related to L in the following way:

x ©4 qa(x) (kerpa) palga(z)) O L. O

The results of this section extend to dI-domains:

Proposition 13 Proposition 10 and Proposition 12 hold for dI-domains, in particular,
equivalence classes of © 4 and kerpy are closed under directed suprema and q4 is Scott-
continuous.

Proof. The main technical difficulty is to prove that equivalence classes of ©, have a
least element. For details we refer the reader to [19]. O

We use factorization to improve on our First Decomposition Theorem. We observed
that it produces representations which are redundant, namely, if two comparable semi-
factors S C T are join-irreducible in Sp then both take part in the representation, T re-
peating the information given by S. We shall now factor out this repeated information.
Given a collection S of semi-factors we define for each element S € S its lower S-cover
S'by S"'=V{T € S|T cCS}. Also, if SC T € Sp let S/r stand for imgr |s|. With this

notation we are now ready to formulate:

Theorem 14 (The Second Decomposition Theorem) Let D be a finite distributive
Scott-domain (a dI-domain) and let J(Sp) be the set of all join-irreducible semi-factors
of D. Define

RJ(Sp) ={5/s | S € J(Sp)}

and
F ={as ops|r | SCT € J(Sp)}.

Then D is isomorphic to the hyper-limit of RJ(Sp) over F with the isomorphisms
U:D — hyperlim RJ(Sp)
F

T = (qS'0p5($))SEJ(sD)

and

®: hyperlim RJ(Sp) — D
f

(JES)SeJ(sD) = \/ Ts.
ScJ(Sp)

(The proof of this should be clear from the First Decomposition Theorem and Propo-
sition 11.)

We illustrate the representation of domains provided by the Second Decomposition
Theorem with Example 3 from the last section. The three join-irreducible semi-factors
are la, b, and D itself. By factoring D through the join of |a and |b we can replace it
by the three element domain {_L, ¢, d}.

Decomposition into flat domains is particularly satisfying and one may wonder whether
it is achievable for all distributive Scott-domains or for all dI-domains. The answer is ‘no’;
a counterexample is given in Figure 2.

However, it turns out that the category F of those distributive Scott-domains which
are representable as hyperlimits of flat domains, is cartesian closed and contains strictly
all concrete domains (cf. [14, 23]). Indeed, the connection to concrete domains seems
to be very strong. Recent work by Geva and Brookes (see their contribution to this
volume) suggests that every domain in F can be represented as a generalized concrete
data structure.

Figure 2: A non-flat indecomposable dI-domain.

5 Characterization of direct product decompositions

There exist several nice characterizations of the direct product decompositions of arbitrary
algebras, see [5, 10]. In this section we will find the analogues to two of them for domains.
There are several reasons to study the direct decompositions of domains. The first rea-
son is, of course, purely theoretical. However, knowing domain decompositions may be
important from the practical point of view. In the introduction we briefly described the
idea of generalizing relational databases that defines a relation as a finite antichain in a
Scott domain. There are several advantages of this approach. Firstly, it gives a formal
framework for having attributes of arbitrary types, perhaps admitting null values. Sec-
ondly, it allows constructions more general than simply relations (matrices); for example,
record and variant constructors can be applied to form very complex generalized records,
see [6, 17]. Suppose that we have a Scott-domain whose finite antichains are considered as
relations. A question arises: how far can this domain be seen as the direct product of its
subdomains? In the other words, how far can our relations be seen as “usual” relations,
that is, sets of tuples, and what are the attributes of these tuples? To answer this question
we need a characterization of the direct decompositions of Scott-domains.

We will characterize direct product decompositions via complemented permutable con-
gruences and neutral complemented ideals. Surprisingly, the characterization we will ob-
tain is based on one of the concepts related to the domain approach to databases. In fact,
all factors in the direct decompositions will be schemes as they were introduced in [17].
Schemes generalize semi-factors and serve as the main tool to introduce relational algebra
and dependencies in the domain model of databases [17].

The decomposition theorems also enable us to prove a result which explains the other
notion of scheme proposed in [6]. In fact, the definition of schemes of [6] (here we call
them semi-factors) works for domains which are similar to domains of flat records. Ac-
cording to the definition of [17], a scheme is a stable subdomain such that the associated
projection maps the maximal elements of the domain to the maximal elements of the
stable subdomain. This definition emphasizes the fact that schemes are significant parts
of domains. It is more general than the original definition of semi-factor which, in turn, is
based on properties that schemes of domains of flat records should satisfy. We will prove
that in a certain class of domains the condition that every scheme is a semi-factor implies
that the domain is very similar to domain of flat records. Thus, our decomposition results
are helpful in understanding the domain-theoretic generalization of databases.

This section contains five subsections. In the first we recall two well-known results from

universal algebra. The second demonstrates how domains can be treated as partial alge-
bras with operations of infinite arity, and introduces the concepts of ideal and congruence
for them, the first one being identical to the stable subdomains. In the third subsection we
give our basic lemma which reduces direct product decompositions of domains to those of
principal ideals generated by maximal elements. Neutral ideals are studied in the fourth
subsection. They give rise to so-called general decompositions which have coalesced sum
and direct product decompositions as two limit cases. The fifth subsection deals with
characterizations of direct product and general decompositions via congruences.

From now on all domains are Scott-domains, and we will write domain instead of
Scott-domain. We will denote the sets of maximal elements of a domain D and of a stable
subdomain A by D™ and A™* respectively.

We will characterize only decompositions into a finite number of factors. Notice that
in fact we do not need to consider more than two factors. Therefore, in all the results
below only decompositions into two factors are characterized.

For the sake of brevity, only sketches of the proofs will be given, and the technical
details will be omitted.

5.1 Algebraic preliminaries

Let us recall two techniques that are used in universal algebra and lattice theory to
describe direct decompositions.

Given an algebra (A,), a congruence © on it is an equivalence relation on A such
that for any w € Q of arity n and for any z;,y; € A,i € [1,n], Vi € [1,n] : 2,0y;
implies w(z1,...,2,)Ow(y1,...,yn). Congruences considered as binary relations form
an algebraic lattice Con((4,€)) in which the bottom element is the equality and the
top element is the total equivalence relation. Then direct product decompositions of
(A, Q) (i.e. decompositions (A4, Q) ~ (A1, Q) x (A,)) are in one-to-one correspondence
with pairs (01, 09) such that ©, is a complement of ©; in Con((A,Q)) and O, O, are
permutable, i.e. ©; 00y = Oy 00y, see [5]. In fact, (4, Q) ~ (4,Q)/0; and (A,, Q) ~
(A, Q) /O, or vice versa.

Let L be a lattice. An element a € L is called neutral if for every z,y € L the
sublattice (x,y, a) generated by z,y, a is distributive. If L is bounded, then every direct
product decomposition L ~ L; x Ly can be represented as L ~ (a] x (@], where a is
a neutral complemented element and @ is its complement, see [10]. Both ideals (a] and
(@] are neutral elements of the ideal-lattice, i.e. so-called neutral ideals. It is also well-
known that there is a one-to-one correspondence between direct product decompositions
L ~ Ly x Ly and pairs (I, I5) where Iy, I are neutral ideals and I, is a complement of I;
in the ideal-lattice. In fact, L, ~ Iy and Ly ~ I, or vice versa.

5.2 Domains as algebras. Congruences and ideals

In order to transfer the previous characterizations to domains, we have to introduce
algebraic structure on domains. Let D be a domain. We consider it as a partial algebra
containing the operations of infinite arity, namely infima and existing suprema for all
possible subsets X C D. Thus, D becomes a partial algebra whose operations may be of
arbitrary arity. It is well-known that the previous results about decompositions are not
true for algebras with partial operations of infinite arity [5].

A subalgebra of this partial algebra could be called subdomain but in semantics this
notion has no generally accepted meaning. In lattice theory an ideal is a downward closed
set which is closed under finite joins. In our algebraic interpretation ideals are downward
closed subsets of a domain which are closed under all existing joins, i.e. they are stable
subdomains. A congruenceis an equivalence relation © such that for any x;,y; € D,i € I, 1
an arbitrary set of indices, z;0y; for all i € I implies A{z; :i € I}© A{y; : i € I}, and if
both z = \/{z; :i € I} and y = \V{y; : i € I} exist, then xOy.

If D is a lattice, our definition of congruence coincides with the definition of complete
congruence of a lattice introduced recently in [11, 12]. These congruences form a complete
lattice denoted C'on(D). However, in contrast to the case of operations of finite arity, this
lattice may fail to be algebraic. It was proved in [11] that for every complete lattice L
there exists a lattice M such that L is isomorphic to the lattice of complete congruences
of M. Moreover, M can be chosen among modular algebraic lattices [12]. Therefore, we
cannot guarantee algebraicity of Con(D).

If x € D, then ©7 is the restriction of © to |z, that is, © N (Jz x Jz). The lattices
of congruences of |z will be denoted by Con(z) if D is understood. [z]© denotes the
equivalence class of z, i.e. [2]© = {y: zOy}. If © is a congruence, then [L]O is an ideal,
that is, a stable subdomain.

We will also also need a concept of scheme. It was introduced in [17] in order to
generalize the analogous concept of [6] known in this paper as semi-factor. A stable
subdomain A C D is called a scheme if py(z) is a maximal element of A for every
x € D™ Any semi-factor is a scheme. Although all the factors we will decompose
domains into will be semi-factors, it is enough to require that they be schemes.

5.3 The main lemma

The following lemma generalizes the result of [10] which describes direct product decom-
positions of bounded lattices. Theorem 3.4.1 of [10] says that the direct product decom-
positions of a bounded lattice L into two factors are in one-to-one correspondence with
neutral complemented elements a € L. In fact, L ~ |a X Ta, or equivalently L ~ |a X |a.
In the lemma below a pair of complemented schemes plays the role of (a,@), and it is
required that the projections of any maximal element x into these schemes be neutral and
complementary in Jx.

Notice also that according to [10] direct decompositions can be equivalently described
by pairs of neutral complementary ideals (in fact, these ideals are just Ja and |@), and we
can view the pair of schemes as an analogy of these ideals rather than neutral elements.
However, in contrast to the lattice case, neutral complementary elements of the lattice of
ideals (stable subdomains) of a domain do not characterize direct decompositions, as we
will see in the next subsection.

Lemma 15 The direct product decompositions of a domain D are given by pairs of
schemes (Ay, Ag) such that Ay N Ay = {L}, and Vo € AP,y € AP : x Vy ex-
ists, xtVy € D™ and x is a neutral element in the principal ideal L(x V y). In fact,
D ~ A; x Ay. Moreover, Ay and Ay are neutral complementary elements of the lattice
Qp of stable subdomains.

Proof. Let D ~ Dy x Dy. We can think of both D; and D, as being subsets of D, i.e.
we can associate Dy with {(z, 1) : = € Dy} and D, with {(L,y) : y € Dy}. Denote

these subsets by A; and A,. Obviously, both A; and A, are stable subdomains. We
have A, N Ay = {Lp}. If v € AP and y € AP**, then x = (2, L),y = (L,y') where
¥ € D" y € D, Thus, x Vy = (z',y') € D™*. Obviously, z and y complement
each other in [(z Vy). To prove that x is neutral we need to show that [(zVy) ~ |z x |y
[10]. This isomorphism is given by ¢((u,v)) = ((u, L), (L,v)) for any (u,v) <p z Vy.
The fact that A; and A, are neutral and complement each other in @ will follow from
Theorem 17.

Let, conversely, Ay, As be stable subdomains satisfying the conditions of the lemma.
We prove D ~ Ay x A,. Consider two mappings: ¢ : D — A; X Ay and ¢ : Ay x Ay = D
where p(z) = (pa, (), pa,(y)) and ¥ ({(u,v)) = u Vv (notice that this u V v always exists).
Then the following claims can be proved:

o If x € Aj,y € Ay, then p(z Vy) = (z,y);
e Forany z € D: z=pa,(2) Vpa,(2).

From these two claims it can be easily concluded that ¢ and ¢ are mutually inverse
bijections. Since they are both monotone, they establish the desired isomorphism. O

Remark: We did not exploit the fact that domains are algebraic cpos in the proof
of lemma. In fact, the lemma is true for any bounded poset P in which greatest lower
bounds exist for all pairs of elements and least upper bounds exist for all pairs bounded
above. Here boundedness means that P is pointed, that is, it has the smallest element
1, and each z € P is bounded above by some maximal ' € P™%*,

5.4 General decompositions of domains

It is a natural question whether all neutral complemented elements of the lattice of stable
subdomains give rise to direct product decompositions, as it is the case for lattices. The
answer, as we are going to show, is “no”. In fact, neutral complemented ideals describe
a much more general kind of decomposition which, for example, also includes coalesced
sum decomposition.

Definition. A pair of stable subdomains A;, A; of a domain D is called a general de-
composition of D, which is denoted by D = comp(A;, As), if every element & € D has
unique representation as = x; V x5 such that z; € A; and x4 € A,.

The direct decompositions D ~ A; x A, and the coalesced sum decompositions D ~
Ay + Ay, where Ay, A, are stable subdomains of D, are two main examples of the general
decompositions; that is, in both cases D = comp(A;, As). However, there exist general
decompositions different from the direct and coalesced sum decompositions. Consider the
following domain D:

U1 Y2

x To T3 X4

Then D has several general decompositions. For example, D = comp({z, x3, L}, {xo, x4, L})
or D = comp({z1, 24, L}, {72, 3, L}).

Obviously, if D = comp(A;, Ay) then A; N Ay = {L}. Really, if z € A; N Ay and
x # 1, we have two representations r =xVr and zr =2V L.

Lemma 16 If D = comp(A;, As), then the unique representation of any x € D as x1V x9
where 1 € Ay, x9 € Ag, is & = pa,(z) V pa,(z). O

Theorem 17 The general decompositions of a domain D are in one-to-one correspon-
dence to pairs of neutral complementary elements of the lattice Qp, i.e. D = comp(A;, As)
iff Ay, As are neutral elements of Qp complementing each other,

Proof. Let D = comp(A;, A2). Then A; and Ay complement each other in @p. Thus,
we only need to prove that A; is neutral in ()p. To do so, we will show that there is an
isomorphism ¢ : Qp — Qa, X Q4, such that ¢(4,) = (1q, ,0q,,), where 1 and 0 stand
for the top and bottom elements of a lattice. Then the neutrality will follow from [10].

Given A € Qp, let p(A) = (AN A, AN As). As in the proof of Lemma 15, introduce
another map 1 : Q4, X Qa, — Qp by ¥({[1,5)) = I; V I,. According to Lemma 16, for
any A€ Qp: A= (ANA) V(AN Ay); that is, A = (p(A)).

Let I} C Ay, I, C A, be stable subdomains. Let I = {x; V3 : 21 € I1,29 € L},
Suppose © < xy Vg € I. If z = 11 V 29, then py,(x) < pa,(2), i = 1,2. By Lemma 16,
z; = pa,(z). Thus, pa,(z) € I;, and © = pa,(x) V pa,(z) € I. This shows that I is an
ideal. It is also easy to show that I is a stable subdomain. Now, let x = x; Vo € I N A;.
Then L = pa,(z; V 33) = @y, i.e. & € I;. This shows (I, V 1)) N A; = I;,i = 1,2. In the
other WOFdS, QO(’QZ}(<]1,IQ>)) = <Il, IQ>

Therefore, ¢ and v are mutually inverse monotone bijections, which establishes the
desired isomorphism. Since ¢(A4;) = (A1, {L}), Ay is neutral.

Conversely, let A;, As be two complementary neutral elements of QQp. Then, by [10]
forany A€ Qp: A= (ANA)V (AN A). If A= |z we have |z = |pa, (z) V Ipa,(x).
Hence, © = pa,(z) V pa,(z). If 2 = 21 V 29, where x; € A;;i = 1,2, then |py, (z) =
ixﬂAl = (\Ll'l \/\Ll'g) ﬁAl = (\Ll'l ﬂAl) V (\l,l'gmAl) = \Ll'l ﬁAl = \Ll'l. ThllS, T1 = Pa, (l‘ .
Analogously, 9 = pa,(x). This shows that D = comp(A;, As). The proof is complete. O

The neutral complemented elements of any lattice L form a Boolean sublattice often
denoted Cen(L). Notice that if @ does not have infinite chains, then Cen(Qp) is a finite
Boolean lattice, and only representation of D as the composition of indecomposable factors
is (in the sense of the operation of general decomposition) D = compacatoms(cen(@p)) A4,
where Atoms(Cen(Qp)) is the set of atoms of the finite lattice Cen(Qp). For example, if
D does not have infinite chains, then the same is true of (Jp, and the following corollary
holds.

Corollary 18 If D does not have infinite chains, D can be factored into indecomposable
subdomains in one and only one way. a

It was mentioned before that direct product and coalesced sum decompositions appear
now as two limit cases of general decompositions. In fact, the following holds.

Proposition 19 1) A general decomposition D = comp(A;, As) is a direct product
decomposition D ~ Ay X As iff Vo € A,y € Ay : x V y exists.

2) A general decomposition D = comp(A;, Ag) is a coalesced sum decomposition D =
A4+ Ay iff Ve € Ay € As, e,y # L 2 oV y does not exist.

Proof. 1) If D ~ D; x D, and Ay, Ay are defined as in the proof of lemma 15, then
D ~ Ay x Ay and D = comp(A;, As). Obviously, = V y exists for any = € A,y € As.

Now, suppose that D = comp(A;, Ay) and the condition of 1) holds. In order to prove
D ~ A; x Ay we must check the conditions of Lemma 15, i.e.

a) For any x € AT* y € A . x Vy € D™,
b) Aj, Ay are the schemes;
¢) x is neutral in |(z V y).

To prove a) notice that if v > xV y then x = p4,(v) since z € AP*®. Analogously
y = pa,(v) and by Lemma 16 v = 2Vy. To prove b) consider any v € D™, If w > py, (v)
and w € A7 then since w V pa,(v) exists, v = w V pa,(v), i.e. pa,(v) =w € AP** and
A; is a scheme. Analogously A, is a scheme. To prove c¢) notice that for any z € [(zVy) :
pa,(2) = zAxand pa,(2) = zAy; thus z = (zAz) V(2 Ay). Then ¢ : [(zVy) — Jz x|y
given by ¢(z) = (z Az, z Ay) is an injective monotone map. Since (z1, z9) — 21 V 2y is its
monotone inverse, ¢ is a lattice isomorphism, and z is neutral because ¢(z) = (z, L).

2) is straightforward. O

It follows from part 1) that if D is a lattice, its general decompositions are exactly
direct decompositions. Therefore, from Corollary 18 we derive the well-known fact that
a lattice without infinite chains admits exactly one representation as the direct product
of nontrivial indecomposable factors (up to isomorphism and permutation of factors),
see [5, 10].

5.5 Characterization via congruences

We have shown so far that, in contrast to the lattice case, the direct decompositions of
domains are not described by their neutral complemented ideals. We had to introduce
another kind of decomposition, called general decomposition, to be in 1-1 correspondence
with these ideals.

In this subsection we examine another approach to describing decompositions. We
will try to find and characterize pairs of congruences such that quotient sets are exactly
factors of a decomposition. In universal algebra it is known that pairs of permutable
complementary congruences exactly describe direct decompositions. This result holds for
domains too, although domains are considered as algebras with partial operations of finite
and infinite arity. Congruences also help understand the general decompositions better.
It will be proved that factors of general decompositions are in 1-1 correspondence with
pairs of congruences which are complementary and permutable when restricted to the
principal ideals of maximal elements.

Define the following two mappings between the pairs of congruences ©; and ©, and
pairs of stable subdomains of a domain A, A, C D:

(1) (@1, @2) — (Al,AQ) : Al = [J_}(—)Q,AQ = [J_](‘)l,

(2) (A1, Ay) = (01,0,) : 20,y iff py,(x) =pa,(y), i=1,2.

To be more precise, if ©; and O, are congruences, then A;, A defined in (1) are stable
subdomains, and for a pair of stable subdomains the relations defined in (2) are equivalence
relations. However, they are congruences in the special cases considered below.

The following two theorems show that above defined (1) and (2) set up 1-1 corre-
spondences between the factors of direct decompositions or general decompositions of a
domain and the special pairs of congruences on this domain.

Theorem 20 Let D be a domain. Then (1) and (2) form a one-to-one correspondence
between the factors of the general decompositions D = comp(Ay, As) and pairs of congru-
ences (©1,0s) such that, for every x € D™, the congruences ©F and O3 are permutable,
and ©3% is a complement of ©F in Con(z).

Theorem 21 The mappings (1) and (2) (A1, A2) <> (0©1,02) form a one-to-one corre-
spondence between the factors of the direct product decompositions D ~ Ay x Ay and pairs
(©1,05) of congruences such that ©1 and Oy are permutable, and ©y is a complement of

©, in Con(D).

Before going to the proof of these two theorems, we formulate and prove one corollary
which clarifies why, in the introduction to this subsection, we spoke of quotient sets rather
than equivalence classes of bottom element.

Corollary 22 In the previous theorems the factors Ay, Ay the domain D is decomposed
into are isomorphic to D/©¢ and D/©,, respectively.

For example, we have a perfect analogy of the congruence characterization of the
decompositions of algebras. In fact, all the decompositions of a domain D are of form
D ~ D/©; x D/O, for pairs (©1,03) of complementary permutable congruences.

Proof. Let ¢ : D/©; — Ay be given by ¢([2]©1) = pa, (x). This definition is correct by
(2). Tt also follows from (2) that ¢ is injective and since Vz € Ay : ¢([2]©1) = z, it is
surjective as well. Let [2]©; < [y]©; in D/O;. Then (z A y)©1z; thus pa, (z) A pa, (y) <
pa, (), which proves the monotonicity of ¢. ¢ : Ay — D/©; given by ¢(z) = [2]O; is the
inverse of ¢, and it is also monotone. Thus, A; ~ D/O;. The proof of Ay ~ D/O, is the
same. O

Proof. Two claims below are needed in the proofs of both theorems. After proving these
claims, we outline the proofs of the theorems themselves.

Claim 1: ©1 and Oy defined in (2) are congruences, if D = comp(Ay, Ag) or D ~
Al X AQ.

It is enough to show ©; is a congruence. Obviously, ©; is an equivalence relation.
Since pa, (Aicr i) = Nierpa,(x;) for any set of indices I, ©; preserves arbitrary meets.
If x Vy exists, then pa, (x Vy) = pa,(z) V pa,(y). Really, since A; is a neutral element
of @Qp by Theorem 17, if z € Ay, such that x Vy > 2z > pa,(z) V pa,(y), then z €
A A (e vily) = (A Adx) V(A A Ly) = dpa (@) Vdpa, (y) = Ipa,(2) Vpa, (y) 2 2, a
contradiction. We conclude that the above equality holds and ©; preserves finite joins.
Now, let & = V,;crz;. Then pa,(x) > Vicrpa,(x;). To prove the reverse inequality,

suppose ¥y < pa,(z) and y is compact. Then y < x and y < V,;c7 x; where Iy C T is
finite. Thus, y < pa,(Vier, ©i) = Vier, Pa, (2i) < Vierpa, (z:). Since any element is the
join of compact elements below it, this proves the reverse inequality. Thus, p4, preserves
arbitrary joins, and so does Oy, i.e. ©; is a congruence. The claim is proved.

Claim 2: Let ©1,0, be permutable congruences on a domain D. Then their join in
COTL(D) 18 @1 V @2 = @1 : @2.

Since ©1 - O3 <copp) O1 V Oy, it suffices to show that © = ©; - O, is a congruence.
The only nontrivial part of the proof is to show that © preserves arbitrary existing joins.
Assume that © = V;c;2; and y = V¢ y; exist, and x;0y; for all i € I. Then for each
1 there is a z; such that z;0,2; and 2;05y;. Then x;0.x; A z;. From 2z;0,5y; we have
z A 1;052; A x; A y;. Analogously we have y; A z,01x; A y; A z; and y;09y; A z;. Let
v =\Vier(@i A zi),w = Vier (@i ANy A zi),u = Vier(yi A 2;) (they exist since z and y exist).
Then x0,v0,wOuO9y because ©1, 05 € Con(D). Since they are permutable, we obtain
x0Oy. The claim is proved.

Now let us come back to the proof of Theorem 20. Let D = comp(A;, As). Then Oy, ©,
are congruences and it is easy to show that for any z € D™* : ©f complements ©F in
Con(z). To show that they are permutable, note that if a©7cO3b, then d = pa,(a)Vpa, ()
exists and a©3dO7b.

Conversely, let ©1, 05 be congruences defined in Theorem 20, and let A;, A; be ob-
tained as in (1). Then A;, Ay are stable subdomains. We need to prove D = comp(A;, As).
The idea of the proof is the following. Since ©7 - ©F is the total relation by claim 2, for
any y < z: y©7z03% L for some z. Then z € A; and y©Tz Ay; thus yOJpa, (y). Similarly,
yOIpa,(y). If z,y € A; and x < y, then (z,y) ¢ ©;. From this we can conclude that
10,y < pa,(x) = pa,(y). Having proved this, we can use the fact that ©7 and ©% com-
plement each other to demonstrate that y = pa, () V pa,(y) is the unique representation
of y as the join of two elements from A; and Ay. Thus, D = comp(A;, As), which finishes
the proof of Theorem 20.

Let us give the sketch of the proof of Theorem 21. If D ~ A; x A, then it is not hard
to show that ©; and ©, defined in (2) are complementary and permutable.

If ©; and ©, are complementary and permutable in Con(D), then so are ©7 and ©3
in Jx for any x € D™ Thus, for Ay, Ay defined as in (1), we have D = comp(A;, As)
and z0;y < pa,(x) = pa,(y) by Theorem 20. Let x € Ay, y € Ay. Then 20,1 0;y. Since
the congruences are permutable, for some z : £01209y. Thus, pa,(2) = x,pa,(2) =y
and z > x,y. Therefore, z V y exists, and by Proposition 19, D ~ A; x A;. Theorem 21
is proved. O

A simpler result can be stated for qualitative domains. Recall that a domain D is
called qualitative iff |« is a Boolean lattice for every x € D [9]. Since all congruences are
permutable in a Boolean lattice, we have:

Corollary 23 General decompositions of a qualitative domain are given by pairs of con-
gruences (01, 03) such that ©F and ©F are complementary elements in Con(z) for every
xr € D™=, (Il

6 Schemes and semi-factors in qualitative domains:
a database point of view

It has been mentioned several times before that the concepts of semi-factor and scheme
first appeared as two different attempts to define an analogy of scheme for the domain
model of databases. In this section we will apply our decomposition results to find out
when these definitions coincide. But let us give some basic facts about the domain model
of databases first.

For simplicity, consider the flat domain N of natural numbers and assume that we
have a relational database which stores the information about the hotel rooms such as the
room number, number of baths in the room, telephone extension and the date it becomes
free. We further assume that all attributes’ values are taken from N ;. We need L if a
piece of information is unknown; for example, there might be no phone in the room, or
we might not know when the occupant is going to leave. To represent the last attribute’s
values by natural numbers we may store the difference between the date the occupant
leaves the room and the current date, decrementing it every day. Then the examples of
records are:

r1 = { RoomNo = ’121’, Bath = ’1’, Phone = '9510’, Free = ’5’ }
ry = { RoomNo = ’323’, Bath = ’2’, Phone = '0752’, Free = 1}
r3 = { RoomNo = '323’, Bath = ’2’, Phone = | Free = 1}

If £ is the set of attributes, i.e. £ = {RoomNo, Bath, Phone, Free}, then the records
stored in the database can be represented as functions from £ to IN;. We denote the
domain of these records by £ — N . Of course, L — N, ~ N/, where n = |£|. In the
above example 1 € (£ — N)™ and r3 < ry.

Since records are elements of a domain, the relations are subsets of this domain. Since
there is no need to store two comparable records (as ry and r3) because one of them is just
a worse description of the same object, the relations in our example are finite antichains
in £ — N . This observation led the authors of [6] to the idea to generalize relational
databases as finite antichains in Scott-domains. This idea was further developed in [17],
where more complicated examples can be found. A generalized relational algebra was also
constructed in [17].

One of the central concept of relational database theory is that of scheme. A scheme
is simply a subset of attributes, but since they are used to define projections, one can
alternatively associate a scheme with all records that are obtained as the projections into
this scheme, that is, all records whose projections on attributes not in the scheme are
bottom elements. Schemes in £ — N |, therefore, are stable subdomains.

The way the definition of semi-factors is justified in [6] is the following. If we accept
the perfect analogy between our arbitrary domain and the domain of flat records (such
as L — N), we may assume that every element of a domain which is a database object
can be represented as two subobjects, each carrying an independent piece of information.
Hence, projecting into a scheme is losing a certain piece of information, and the lost pieces
and the projections are independent, i.e. the lost pieces can be added to the projections
to get the records back. If we assume that we have two records, x and y, and projection
of x into a scheme A is less than y, then adding information lost when = was projected
to y is possible, and the result is more informative than both = and y. But this is exactly
the definition of semi-factor: p4(z) <y € S implies the existence of = V y.

An alternative approach of [17] does not make any assumption about the structure
of the underlying domain. Just note that if we have a complete description, projecting
into a scheme should not result in the loss of some piece of information that the scheme
preserves, that is, complete descriptions are projected into complete descriptions, i.e.
pa(D™*) = A™e* And this is the definition of scheme.

Thus, a question arises: what are the domains in which the two concepts coincide (or,
equivalently, every scheme is a semi-factor)? According to the justifications of the two
definitions, we may expect these domains to be similar to the domain of flat records. We
will prove the result for the qualitative domains. We need to define the blocks (analogous
to flat domains) from which these domain will be built.

A domain D is called simple if it has no proper scheme, i.e. if it has no scheme but
{L} and itself. Since schemes appear as equivalence classes of congruences, this definition
is motivated by the definition of a simple lattice, i.e. a lattice having no nontrivial
congruences [5, 10].

Theorem 24 Let D be a qualitative domain. Then every scheme in D is a semi-factor
if and only iof D 1s isomorphic to the direct product of simple domains.

Proof. The if " part is easy. To prove ’only if ’, suppose that any scheme is a semi-factor.
Given a scheme A, define A = {x € D : pa(z) = L}. Then A is a scheme too [17]. Since
Sp is distributive and A is a complement of A in Sp, Sp is a Boolean lattice. Since it is
algebraic by the corollary to the First Decomposition Theorem, it is atomistic, and J(Sp)
is the set of atoms of Sp. It then follows from the First Decomposition Theorem that
D is isomorphic to the direct product of all elements of J(Sp), since the limit over an
empty set of connecting projections is the direct product. It is an easy observation that
all schemes from J(Sp) are simple domains, which finishes the proof. O

Corollary 25 Let D be a qualitative domain in which every scheme is a semi-factor.
Then Sp is an atomic Boolean lattice and the schemes of D are in 1-1 correspondence
with subsets of the set of atoms of Sp. a

This corollary gives a mathematical description of the assumption that every database
object represented as an element of a domain can be decomposed into two “independent”
subobjects, namely to its projection onto a scheme and its complement in Sp,.

Acknowledgement

We would like to thank Peter Buneman for inventing the beautiful tool of semi-factors for
us domain-theorists. Together with the first author he found a preliminary version of the
First Decomposition Theorem while he visited Darmstadt in July 1989. We also thank
Klaus Keimel for directing our attention to the classical theory of ideals in distributive
lattices. He realized that our definition of the congruence ©g generalizes the classical
definition to domains. G. Grétzer and E.T. Schmidt informed us about recent results on
complete congruences and interrupted our vain attempts to prove algebraicity for complete
congruence lattices of domains!.

!'While a revised version of this paper was being prepared, G. Gritzer and E.T. Schmidt wrote a paper
titled “On a congruence lattice of a Scott-domain” in which they proved that every complete lattice is
the lattice of congruences of a Scott-domain.

References

1]

2]

S. Abramsky. Domain Theory in Logical Form. Annals of Pure and Applied Logic,
51:1-77, 1991.

R. Balbes and P. Dwinger. Distributive Lattices. University of Missouri Press,
Columbia, 1974.

G. Berry. Modeles Complement Adéquats et Stables des Lambda-calculs typés. These
de Doctorat d'Etat, Université Paris VII, 1979.

G. Berry. Stable Models of Typed A-calculi. In Proceedings of the 5th International
Colloquium on Automata, Languages and Programming, volume 62 of Lecture Notes
in Computer Science, pages 72-89. Springer Verlag, 1978.

G. Birkhoff. Lattice Theory, volume 25 of AMS Colloq. Publ. American Mathematical
Society, Providence, third edition, 1967.

P. Buneman, A. Jung, and A. Ohori. Using Powerdomains to Generalize Relational
Databases. Theoretical Computer Science, 91:23-55, 1991.

P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Pro-
gramming. Pitman, 1986.

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. A
Compendium of Continuous Lattices. Springer Verlag, Berlin, 1980.

J.-Y. Girard. The System F' of Variable Types: Fifteen Years Later. Theoretical
Computer Science, 45:159-192, 1986.

G. Gratzer. General Lattice Theory. Birkhauser Verlag, Basel, 1978.

G. Gratzer. The complete congruence lattice of a complete lattice. Proc. of Int. Conf.
on Lattices, Semigroups, and Universal Algebra. Plenum Press, New York (1990),
81-88.

G. Grétzer and E. T. Schmidt. A representation of m_Lalgebraic lattices. Algebra
Universalis, to appear.

A. Jung. Cartesian Closed Categories of Domains, volume 66 of CWI Tracts. Cen-
trum voor Wiskunde en Informatica, Amsterdam, 1989.

G. Kahn and G. Plotkin. Domaines Concrets. Technical Report 336, INRIA-Laboria,
1978.

A. Kanda. Fully Effective Solutions of Recursive Domain Equations. In J. Begvar,
editor, Mathematical Foundations of Computer Science, volume 74. Springer-Verlag,
1979. Lecture Notes in Computer Science.

K. G. Larsen and G. Winskel. Using Information Systems to Solve Recursive Do-
main Equations Effectively. In G. Kahn, D. B. MacQueen, and G. Plotkin, editors,
Semantics of Data Types, volume 173 of Lecture Notes in Computer Science, pages
109-130. Springer-Verlag, 1984.

[17] L. Libkin. A relational algebra for complex objects based on partial information. In:
J. Demetrovics and B. Thalheim, editors, Mathematical Fundamentals of Database
Systems — 91, volume 495 of Lecture Notes in Computer Science, pages 36-41.
Springer-Verlag, 1991.

[18] G. D. Plotkin. Post-Graduate Lecture Notes in Advanced Domain Theory (incorpo-
rating the “Pisa Notes”). Dept. of Computer Science, Univ. of Edinburgh, 1981.

[19] H. Puhlmann. Verallgemeinerung relationaler Schemata in Datenbanken mit Infor-
mationsordnung, 1990. (Diplomarbeit, Technische Hochschule Darmstadst.).

[20] M. B. Smyth. Effectively Given Domains. Theoretical Computer Science, 5:257-274,
1977.

[21] P. Taylor. Homomorphisms, Bilimits and Saturated Domains. Some Very Basic Do-
main Theory. Draft, Imperial College London, 15pp., 1987.

[22] K. Weihrauch and T. Deil. Berechenbarkeit auf cpo’s. Technical Report 63,
Rheinisch-Westfalische Technische Hochschule Aachen, 1980.

23] G. Winskel. Events in Computation. PhD thesis, University of Edinburgh, 1981.

