
Decomposition of Domains�Achim Jung Leonid Libkin Hermann Puhlmann y
AbstractThe problem of decomposing domains into sensible factors is addressed andsolved for the case of dI-domains. A decomposition theorem is proved which allowsthe represention of a large subclass of dI-domains in a product of
at domains.Direct product decompositions of Scott-domains are studied separately.1 IntroductionThis work was initiated by Peter Buneman's interest in generalizing relational databases,see [6]. He | quite radically | dismissed the idea that a database should be forced intothe format of an n-ary relation. Instead he allowed it to be an arbitrary anti-chain in aScott-domain. The reason for this was that advanced concepts in database theory, suchas `null values', `nested relations', and `complex objects' force one to augment relationsand values with a notion of information order. Following Buneman's general approach,the question arises how to de�ne basic database theoretic concepts such as `functionaldependency' for anti-chains in Scott-domains. For this one needs a way to speak about`relational schemes' which are nothing but factors of the product of which the relation isa subset. Buneman successfully de�ned a notion of `scheme' for Scott-domains and it isthat de�nition which at the heart of this work. We show that his generalized `schemes'behave almost like factors of a product decomposition. (Consequently, we choose the wordsemi-factor for them.) In the light of our results, Peter Buneman's theory of generalizeddatabases becomes less miraculous: a large class of domains can be understood as sets oftuples.Buneman's de�nition of scheme was discussed in [17] and an alternative de�nition wasproposed. The idea of both de�nitions is that the elements of a domain are treated asobjects, and projecting an element into a scheme corresponds to losing some informationabout this object. The de�nition of [17] is based on the assumption that the same pieceof information is lost for every object. For example, if objects are records, it means thatwe lose information about some attributes' values. The idea of [6] is that every schemehas a sort of complement, and if we project one object to a scheme and the other to its�Appeared in: Proceedings of the Conference on Mathematical Foundations of Programming Semantics91, Springer Lecture Notes in Computer Science, 598 (1992), 235-258.yAddresses: Achim Jung and Hermann Puhlmann: Fachbereich Mathematik, Technische HochschuleDarmstadt, Schlo�gartenstra�e 7, D-6100 Darmstadt, Germany. Leonid Libkin: Department of Computerand Information Sciences, University of Pennsylvania, Philadelphia, PA 19104, U.S.A. L.Libkin wassupported in part by NSF Grants IRI-86-10617 and CCR-90-57570 and ONR Grant NOOO14-88-K0634.

complement, then there exists a join of two projections, i.e. every object consists of twoindependent \pieces of information". Intuitively it means that the domain itself could bedecomposed into two corresponding domains.The de�nition of [6] is stronger than the de�nition of [17]. It is the �rst de�nition thatis used in our decomposition theory while the second de�nition serves as a tool to describedirect product decompositions of domains. Combining the decomposition theorems, wewill prove a formal statement that clari�es the informal reasonings from the previousparagraph.There is also a more philosophical or pedagogical motivation for this work. A featurethat novices to domain theory frequently �nd unsettling is the profusion of di�erent def-initions it o�ers. Often these de�nitions are laid out at the beginning and the relation tothe semantics of programming languages is established only later. In particular, usefulclosure properties of the respective categories are derived. In his `Pisa Lecture Notes' [18],Gordon Plotkin chose a rather more gentle approach. The `domains' he considers are veryprimitive at the beginning, just sets, and step by step new constructs and properties areadded to them: a bottom element transforms sets into
at domains, and thus the in-formation order is introduced; next come slightly more complicated orders created byforming �nite products of
at domains; function spaces call for the de�nition of dcpoand Scott-continuous function and, via bilimits and powerdomains, he �nally arrives atbi�nite domains. Furthermore, along the way he develops a syntax which allows to denote(most of) the elements of the domains, making them available for computation: the prod-uct appears as a set of arrays, the function space as a set of �-terms, etc. (This aspectis also described elegantly and comprehensively in [1].) In this way, Plotkin creates theimpression that all (bi�nite) domains are built up from
at domains using various domainconstructors. This may be reassuring for the novice but of course it is not explicitly con-�rmed in the text. Plotkin is just very carefully expanding his de�nitions and motivatingeach new concept. But we may still ask to what extent this �rst impression could betransformed into a theorem. To be more precise, we may ask: \Is it true, that everybi�nite domain can be derived from
at domains using only lifting, product, coalescedsum, function space and convex powerdomain as constructors?" (A similar question wasin fact asked | and found di�cult | by Carl Gunter for the universal bi�nite domain.)How would one attack such a problem? We think the natural way to do it is to workbackwards and to try to decompose domains into pieces that decompose no further. If wecan show that the only irreducible domains are the
at domains then we are done.At this point the informed reader may already have become nervous because he mayknow small �nite counterexamples to the above question. But there are many variationsof it which are equally interesting. We can restrict (or augment) the number of allowedconstructions, we can change the class of domains we want to analyze, we can allowmore (or fewer) primitive (i.e. irreducible) building blocks. The choice we have madefor this paper is to consider Scott and dI-domains (cf. [4, 3]) and a single, albeit rathergeneral, constructor, and instead of prescribing the irreducible factors, we are curiouswhat they will turn out to be. The advantage of a decomposition theorem of this kindis apparent: instead of proving a property for general domains we can prove that itholds for the irreducible factors and that it is preserved under the constructions. Weallow ourselves to compare this endeavor with the similar (and only recently completed)project of decomposing �nite groups into �nite simple groups, although the comparisonis somewhat
attering: we cannot expect to �nd so much mathematically intriguing

structure in domains.What are the practical implications of our decomposition theorem? Well, in ourparticular setting we derive a very concrete representation of dI-domains as a set of`tuples' which should simplify the implementation of dI-domains as abstract data types.Of course, there is a well-developed theory of e�ective representations (see [20, 15, 22,16]), where one enumerates the set of compact elements and represents (a subset of) thein�nite elements by recursively enumerable sets of compact approximations. However,this is more theoretical work and no one expects that we really ever use domains asdata types represented this way. Instead, our representation is much more concrete.To give an example, consider a domain which is the product of two
at domains. Thetraditional e�ective domain theory simply enumerates all elements, and, if enumerationsof the elements of the two factors are already given, then these are combined with thehelp of pairing functions. We work rather in the opposite direction. For a given domainwe seek to decompose it as far as possible and we will only enumerate the bases of the(irreducible) factors in the traditional way. The representation of the original domain isthen put together as a set of `tuples'.The paper is organized as follows. In the next section we shall quickly review somebasic de�nitions from domain theory, mostly to �x notation and to remind the readerof a few less common concepts. In Section 3 we introduce semi-factors and prove basicproperties of them. We apply these ideas and get a �rst decomposition theorem. Thisrepresentation still contains a lot of redundancy and in Section 4 we show how to `factoraway' this redundancy. The resulting decomposition theorem yields a representation ofdI-domains which is very tight. (These sections report work by the �rst and the thirdauthor.)A direct product decomposition is a particular and interesting instance of our generalgoal and deserves more detailed study. In Sections 5 and 6 (which were written by the sec-ond author) this is done by establishing a relationship between these decompositions andparticular instances of congruence relations and neutral ideals. The idea to describe directproduct decompositions via neutral ideals is borrowed from lattice theory where neutralideals describe decompositions of bounded lattices. For domains we will obtain a moregeneral kind of decomposition including direct product and coalesced sum as limit cases.These decompositions are given by families of subsets of a domain such that every elementof the domain has a unique representation as the join of suitably chosen representativesof these sets. Pairs of permutable complemented congruences also describe direct productdecompositions as well as they describe decompositions of algebras. Having proved char-acterizations of decompositions, we establish the result showing the relationship betweenthe two notions of scheme.2 De�nitionsWe are using the standard de�nitions such as they can be found in [13] and in [1]. Inparticular, dcpo's are directed-complete partial orders and they have suprema for all di-rected sets. Most of the time they have a least element, which we denote by ?. Compactelements in a domain are such that they cannot be below a supremum of a directed setwithout being below some element of that set already, and if there are enough compactelements such that every element is the supremum of a directed collection of them, we

call the dcpo algebraic. More suprema than just those of directed sets can exist: if everybounded set has a join then we call the dcpo bounded-complete; if every set has a jointhen we have a complete lattice. In case a bounded-complete dcpo is also algebraic wecall it a Scott-domain. The expression `algebraic complete lattice' is shortened to alge-braic lattice. We will mostly study distributive Scott-domains, for which it is su�cient torequire the distributive law to hold in the principal ideals. (The standard textbook ondistributive lattices is [2]). Even more restrictive is the de�nition of dI-domains (cf. [4, 3]):they are distributive Scott-domains in which every principal ideal generated by a compactelement is �nite. Because of this strong �niteness property we can usually derive theo-rems about dI-domains very quickly from the same theorems stated for �nite distributiveScott-domains.All our functions are Scott-continuous, which means they carry the supremum of adirected set to the supremum of the image of the set. We do not make much use ofthem in this generality but mostly consider projections, which are in addition idempotentand below the identity. Recall that projections always preserve existing in�ma and arecompletely determined by their image. Even the order between projections can be reado� their image: it is simply inclusion. For more detailed information we refer to [8].An element x in a lattice is join{ (meet{) irreducible if from the equation y _ z = x(y ^ z = x) we can deduce that x equals y or z. (In the presence of distributivity thisis equivalent to the stronger property of join{ (meet{) primeness, but we will not makemuch use of this.)Domain theory also includes the concept of ideal which is a directed and downwardclosed subset. This is a generalization of `ideal' as it is known in lattice theory, wherethese are sets which are downward closed and closed under �nite suprema. We need ageneralization which goes in a di�erent direction:De�nition. A stable subdomain in a Scott-domain D is a downward closed subset whichis closed under all existing joins.The same concept is de�ned in [6] and in [7] where such subsets of Scott-domainsare called strong ideal and complete ideal, respectively. We �nd either expression rathermisleading as we are not dealing with a special kind of domain theoretic ideal but witha completely di�erent concept. Instead we take the viewpoint that such subsets arespecial substructures, i.e. special subdomains. As it happens, they correspond one-to-oneto images of projections p for which y � x implies p(y) = y ^ p(x). (An even strongerproperty holds, see Proposition 2 (ii) below.) In domain theory such functions are knownas stable projections, hence our terminology.Factors of products of dcpo's with bottom have the property that there is always acanonical projection onto them. This is also true for stable subdomains in Scott-domains:Lemma 1 Let A be a stable subdomain of the Scott-domain D. Then pA:D! D, de�nedby pA(x) = _(#x \ A)is a projection on D with image A.Our �rst decomposition has the form of a general categorical limit. A concrete de-scription is given in terms of certain elements of the product of the dcpo's involved.

De�nition. Let D be a set of dcpo's and let F be a set of Scott-continuous functionsbetween elements of D (in the language of category theory: a diagram in DCPO). Fur-thermore, let �x = (xD)D2D be an element (a tuple) of the cartesian product of all elementsof D. We say that �x is commuting if the equation xE = f(xD) holds for all functionsf :D! E, f 2 F , and all elements D;E in D. Similarly, it is called hyper-commuting ifthe inequality xE � f(xD) holds.The set of all commuting tuples forms the categorical limit of the diagram (D;F) andwe denote it by lim F D. The set of hyper-commuting tuples we call the hyper-limit andwe reserve the notation hyperlim F D for it. The latter construction is a special case of amore general concept developed in the theory of 2-categories, namely, lax limits. It is easyto see that DCPO is closed under limits and this kind of lax limit. Whether any of theother properties generally associated with domains is preserved depends on the structureof the diagram. For more detailed information consult [21].3 Stable subdomains, semi-factors, and the First De-composition TheoremWe begin by recalling from [6] and [19] some of the properties of stable subdomains.Proposition 2 Let D be a Scott-domain. Then the following hold:(i) f?Dg and D are stable subdomains of D.(ii) If x is an element of a stable subdomain A of D and if pA(y) is less than x thenpA(y) = x ^ y.(iii) If D is distributive then pA preserves existing suprema.(iv) The set QD of all stable subdomains of D ordered by inclusion is an algebraic lattice.(v) If D is distributive then QD is distributive.(vi) In QD, the �nite meet of stable subdomains is given by their intersection and pA\B =pA � pB = pB � pA.(vii) If D is distributive then (arbitrary) suprema in QD can be calculated pointwise, andfor A � QD; x 2 D : pWA(x) = WA2A pA(x).(Proofs can be found in [6].)The concept of `stable subdomain' is still too general to serve as a de�nition of `distin-guished piece of a domain'. For example, every element x of a domain generates a stablesubdomain #x, but in general such a principal ideal cannot be hoped to lead to a sensibledecomposition. In [6] a more restrictive de�nition is introduced, that of a scheme, and itis motivated by the database applications we had in mind there. Here we can give a newmotivation based on the desired decomposition result. Consider the following theorem:

Theorem 3 Let D be a �nite distributive Scott-domain and let A be a set of stablesubdomains the supremum of which equals D = >QD . Let F be the set of projectionspA jB :B ! A where A � B are two elements of A. Furthermore, let D̂ consist of thosecommuting tuples �x = (xA)A2A for which the set fxA j A 2 Ag is bounded in D. Then D̂is isomorphic to D with the isomorphisms	:D! D̂;	(x) = (pA(x))A2A�: D̂ ! D;�(�x) = _fxA j A 2 Ag:The proof of this theorem is straightforward, one only has to bear in mind that supremain QD are calculated pointwise. The theorem is unsatisfying, however, because in orderto represent D through a set of stable subdomains, we need to include information thatcan only be gained by looking at D itself: the boundedness of the coordinates of �x. Weshall now give a de�nition of a semi-factor, such that boundedness comes for free if onlythe tuple commutes.De�nition. A stable subdomain A of a Scott-domainD is called semi-factor if pA(x) � aimplies that x and a are bounded, for all x 2 D and a 2 A.In [6] and in [19] it is shown that this de�nition works well in the test case of directproduct decompositions: the semi-factors of a direct product D�E are in 1{1 correspon-dence with products of semi-factors of D and E. In particular, D�f?Eg and f?Dg�Eare semi-factors in D � E.We collect the basic properties of semi-factors in a fashion similar to that for stablesubdomains:Proposition 4 Let D be a distributive Scott-domain. Then the following hold:(i) f?Dg and D are semi-factors of D.(ii) The set SD of all semi-factors of D, ordered by inclusion, is a distributive, completelattice.(iii) If S and T are semi-factors of D, then so are S \ T and S _ T , where again thejoin is taken pointwise. (The latter also holds for arbitrary joins.)(iv) SD is a sublattice of QD.(For the proofs see [6].)The following lemma states that our de�nition yields the desired extension property:Lemma 5 Let S be a family of semi-factors of a �nite distributive Scott-domain D andlet F consist of all connecting projections as in Theorem 3 above. Let S be such that withS; T 2 S we also have S \ T 2 S. If �x = (xS)S2S is a commuting tuple, then the setfxS j S 2 Sg is bounded in D.

Proof. We �rst show this for the case in which S consists of just three semi-factors, S; Tand S \ T . Let �x be a commuting tuple in S � T � S \ T .xT � pS\T (xT) (pS\T � idD)= xS\T (�x is commuting)= pS\T (xS) (ditto)= pT � pS(xS) (2� vi & 4� iii)= pT (xS) (pS jT = idT)By the de�ning property of semi-factors, fxS; xTg is bounded in D.The general proof is by induction. Set S = Wni=1 Si and T = Sn+1. By the inductionhypothesis the join of fxS1 ; : : : ; xSng exists and we may set xS = Wni=1 xSi . The tuple(xS; xT ; pS\T (xS)) is commuting for the three semi-factors S; T and S \ T , because pro-jections preserve suprema by 2-(iii): pS\T (xS) = pT � pS(xS) = pT (xS) = pT (Wni=1 xSi) =Wni=1 pT (xSi) = Wni=1 xSi\T = Wni=1 pSi(xT) = pS(xT) = pS � pT (xT) = pS\T (xT): So we canapply the result for the three element case for the induction step. 2In our decomposition theorem we want to use as few semi-factors as possible, whichin turn should be as primitive as possible. As a �rst approximation we choose the setJ(SD) of semi-factors which are join-irreducible in QD. This set has two properties whichmake it attractive: every semi-factor is a join of irreducibles (in the �nite case, but it willgeneralize to dI-domains) and a join-irreducible cannot be reached by a join of strictlysmaller semi-factors, so it is in a sense unavoidable. But in order to apply the previouslemma we need a set closed under �nite intersections, and in general J(QD) will not dous this favor. We need another preparatory lemma:Lemma 6 Let D be a �nite distributive Scott-domain and let J(SD) be the set of join-irreducible semi-factors of D. Let �x = (xS)S2J(SD) be a commuting tuple for J(SD) andthe connecting projections F . Let F 0 be the appropriately extended set of connectingprojections for all of SD. Then �x can be extended uniquely to a commuting element �x0 forSD;F 0.Proof. We �rst show that for two join-irreducible semi-factors U and V we have thefollowing commutation rule: pU(xV) = pV (xU). Indeed, if U \ V is the join of thejoin-irreducible semi-factors U1; : : : ; Un then we can calculate: pU(xV) = pU � pV (xV) =pU\V (xV) = Wni=1 pUi(xV) = Wni=1 xUi = Wni=1 pUi(xU) = pU\V (xU) = pV �pU(xU) = pV (xU).We extend the tuple �x to all of SD by settingxS = _fxU j S � U 2 J(SD)g:We have to show that �x0 = (xS)S2SD is commuting, so let S � T be two semi-factors of D.Then we havepS(xT) = pS(_fxU j T � U 2 J(SD)g) (by def.)= _fpS(xU) j T � U 2 J(SD)g (2� iii)= _fpV (xU) j T � U 2 J(SD); S � V 2 J(SD)g (2� vii)= _fpU(xV) j T � U 2 J(SD); S � V 2 J(SD)g (as shown before)

= _fpT (xU) j S � V 2 J(SD)g (2� vii)= _fxV j S � V 2 J(SD)g (V � S � T)= xS (by def.) 2We can now stateTheorem 7 (The First Decomposition Theorem) Let J(SD) be the set of all join-irreducible semi-factors of the �nite distributive Scott-domain D and let F be the setof connecting projections. Then D is isomorphic to the limit of J(SD) over F . Theisomorphisms are given by 	:D ! limF J(SD)x 7! (pS(x))S2J(SD)and �: limF J(SD) ! D(xS)S2J(SD) 7! _S2J(SD) xS :The proof of this theorem is contained completely in the previous lemma, where weshowed how to extend a commuting tuple to all of SD, in particular to D 2 SD itself. 2We illustrate the First Decomposition Theorem for three �nite domains.Example 1: D =M?,M a �nite set, i.e.D is a
at domain. We �nd thatD possessesonly the trivial semifactors f?g and D, the latter being join-irreducible in SD. Hence weconclude:Observation 1: Flat domains are indecomposable.Example 2: D = 2� 2, the four-element Boolean algebra. Since D is a lattice, it isisomorphic to its lattice of semi-factors. The join-irreducibles are (>;?) and (?;>) andthe decomposition yields D ' #(>;?) � #(?;>), where #(>;?) ' #(?;>) ' 2. This isnot a coincidence:Observation 2: Direct product structure is recognized.Example 3:
D ca c bccc c dcc c

@@@@@@��� @@@ ��� @@@��������� @@@ SD cc ccc@@@��� @@@���We �nd that D is join-irreducible in SD and hence must be contained in any decom-position based on the First Decomposition Theorem. This is obviously not satisfactory

and we shall derive a better decomposition theory below. Before doing so, let us studythe situation for in�nite domains. Here we have to deal with the following complication:the intersection of an in�nite family of semi-factors is not necessarily a semi-factor again.We therefore do not know whether SD is algebraic in general. We view this as the majoropen problem in our decomposition theory. In the case of dI-domains we are �ne:Proposition 8 Let D be a dI-domain. Then SD is algebraic and co-algebraic (i.e. SopDis algebraic).Proof. We only give an outline because we don't have the space to introduce the detailsof the theory of approximation via compact elements in domains in general and in ourdecomposition theory in particular.One �rst observes that stable subdomains and semi-factors are completely determinedby the set of compact elements they contain. Also, the canonical projection onto a stablesubdomain can be seen as mapping each element onto the supremum of those compactelements of the subdomain which are below it: pA(x) = W #x \K(D) \ A. Furthermore,the canonical projection, as a Scott-continuous map, is completely determined by itsbehavior on compact elements. Since it is also su�cient to state the extension propertyof semi-factors for compact elements only, we have reduced the whole theory to K(D),the set of compact elements in D. With this in mind, it is now easy to see that thearbitrary intersection of semi-factors is again a semi-factor: below a compact element ina dI-domain there are only �nitely many elements at all and so for a particular compactelement the intersection behaves as if it were over a �nite index set.Similarly, it is easy to see that the directed union of semi-factors yields a semi-factoragain. Together this shows that the set SD of semi-factors forms an inductive hull systemon D, which implies algebraicity. A semi-factor is compact in SD if and only if it isgenerated by a �nite set of compact elements of D.The co-compact elements are found as follows: suppose a semi-factor S does notcontain a certain element x of D. By algebraicity of D it follows that there is a compactelement c of D which S does not contain. Furthermore, because #c is a �nite distributivelattice, there is a join-irreducible k below c which again does not belong to S. On theother hand, if k is join-irreducible (hence: prime) in K(D), then the join of all semi-factors which do not contain k, will again not contain this element. From this it followsalong standard lines that any �nite set of join-irreducible elements of K(D) de�nes aco-compact semi-factor and that there are enough co-compact semi-factors to generatethe whole lattice SD. So it is co-algebraic as well. 2From [8] we recall that algebraic lattices have an inf-basis of meet-irreducible ele-ments, and so for a dI-domain D the distributive lattice SD has both a sup-basis ofjoin-irreducibles and an inf-basis of meet-irreducibles. We can therefore state:Corollary 9 The First Decomposition Theorem holds for dI-domains.4 Factoring by stable subdomains and the SecondDecomposition TheoremIn group theory and in ring theory we are familiar with the following technique. For a givenstrong substructure (normal subgroup, ideal, respectively) one studies the equivalence

relation which identi�es those elements which di�er only by an amount contained in thesubstructure. A similar notion works for ideals in distributive lattices: If A is an idealin L then we can set x � y if there is an a 2 A such that x _ a = y _ a. (for detailssee [2].) Since domains lack arbitrary suprema we have to rework this de�nition a littlebit:De�nition. Let A be a stable subdomain in a distributive Scott-domain D. On D de�nea binary relation �A by setting x �A y if there is a 2 A such that y = x_a. Let �A be thesymmetric and transitive hull of � that is the smallest equivalence relation containing �A.(�A can be described concretely as Sn2N(��1A � �A)n.)This de�nition proves to be extremely fruitful. We list the following properties:Proposition 10 Let D be a �nite distributive Scott-domain and let A be a stable subdo-main in D. Then the following hold:(i) x �A y =) x � y.(ii) x �A y =) y = x _ pA(y), and for all a 2 A,if y = x _ a, then a � pA(y).(iii) �A � �A=�A.(iv) x �A y; z 2 D =) z ^ x �A z ^ y and z _ x �A z _ y. (Provided the suprema exist.)(v) �A is a congruence relation on D with respect to �nite in�ma and existing suprema.(vi) Each equivalence class of �A contains a least element.(vii) �A=�A \ �.(viii) Each equivalence class of �A is order convex.(ix) �A=��1A � �A.(x) pA is injective on every equivalence class of �A.We denote the function which maps each element onto the smallest element in itsequivalence class by qA. With this notation we can add the following clauses:(xi) qA is a projection on D.(xii) qA preserves existing suprema.Proof. (i) is trivial, for (ii) recall that pA is join-preserving by 2-(iii).(iii) x �A y �A z =) y = x _ a1 and z = y _ a2 = x _ a1 _ a2, and with a1 and a2elements of A, their join is again in A.(iv) x �A y =) y = x _ a =) z ^ y = z ^ (x _ a) = (z ^ x) _ (z ^ a), and with a 2 A,the element z^a is again in A. For suprema: x �A y =) y = x_a =) z_y = (z_x)_a.(v) It is immediate from the de�nition of �A as a union of products of �A and ��1Athat (iv) also holds for �A. Now, if x �A y and x0 �A y0 then x ^ x0 �A y ^ x0 �A y ^ y0,and analogously for suprema.(vi) follows from (v) by taking the in�mum of the equivalence class.

(vii) Suppose x � y and x �A y. Then by de�nition there is a chain x1; x2; : : : ; xnof elements such that x = x1 ��1A x2 �A x3 ��1A x4 : : : xn�1 �A xx = y. By taking thesupremum of each element of this sequence with x and then the in�mum with y we derivea new sequence which is completely contained in the interval [x; y]. x2 is then necessarilyequal to x. We further shorten the sequence as follows: x = x2 = x2 ^ x4 �A x3 ^ x4 ��1Ax4 ^ x4 = x4 �A x5 : : : Since x3 ^ x4 is below x4 and in relation ��1A it is actually equalto x4, so the sequence now reduces to x �A x4 �A x5 : : : Applying (iii) we �nd that x is in�A-relation to x5 already. Continuing in this fashion will reduce the sequence eventuallyto x �A y which is what we want.(viii) Assume x �A y and x � z � y. By (vii) we have x �A y which implies y = x _ afor some a 2 A. But then z = z^ y = (x_ z)^ (x_a) = x_ (z ^a) which gives us x �A z.The relation z �A y follows directly from y = x _ a.(ix) Combining (vi) and (vii) we �nd that the least element of an equivalence class isin �A-relation to each member.(x) A projection always preserves in�ma and so if pA maps two elements x and y tothe same image a, it will map x ^ y to a as well, and, if x �A y then x ^ y �A y andby (vii) x ^ y �A y. So consider w.l.o.g. x �A y and pA(x) = pA(y). We directly gety = x _ pA(y) = x _ pA(x) = x.(xi) We only have to show that qA is monotone. So suppose x � y. By (vii) we haveqA(y) �A y which yields with (iv): x ^ qA(y) �A x ^ y = x. But qA(x) is the smallestelement in the equivalence class of x. Hence qA(x) � x ^ qA(y) � qA(y) follows.(xii) From z = x _ y; qA(x) �A x; qA(y) �A y we conclude by (iv) that qA(x) _ qA(y) �Ax _ y = z. Since qA is monotone it follows that qA(x) _ qA(y) must be equal to qA(z). 2Given a representation of a poset P as the cartesian product of two posets R and Swe can understand P as follows: it consists of jRj many copies Sx of S, and if x � y in Rthen each element of Sx is below the corresponding element of Sy. A semi-factor S in a�nite domain leads to a similar representation: for each element x in the image R of qSwe take the principal �lter Fx = "pS(x) in S (instead of the whole semi-factor). These�lters are connected as before, that is, if x � y in R, then each element of Fx is below thecorresponding element of Fy. However, there may be elements of Fx for which there is nocorresponding element in Fy. This is the content of the following proposition. A pictureillustrating this representation is given in Figure 1.Knowing S; im qS and the action of pS on the image of qS we can reconstruct thedomain:Proposition 11 Let D be a �nite distributive domain and let S be a semi-factor in D.(i) The image of an equivalence class of �S under pS is upward closed in S.(ii) D is isomorphic to the set D̂ = f(x; s) 2 im qS � S j pS(x) � sg ordered pointwise.The isomorphism is given by qS � pS:D! D̂ and by the supremum function for theother direction.(iii) If 8x 2 D : pS � qS(x) = ?D then S is a direct factor of D.Proof. (i) If s is above pS(x) in S then by the extension property of semi-factors s _ xexists and is in ��1S -relation to x. Also, pS(s _ x) = pS(s) _ pS(x) = s _ pS(x) = s.

S` ` ` ` ` ` ` ` ` ` ` ` ` ` ```````````````` `````````` ``````````
@@@@@@ ������@@@@@ ����� @@@@@ ����� @@@ ���

bbbbbbbb bbbbbbbb bbbbbbbb
"""""""""""""""" """"""""

""""""""""""""""""""""""""""""
"""""""""""""""

Figure 1: Decomposition of a domain by a semi-factor S.(ii) For x 2 D we have qS(x) � x and therefore pS(qS(x)) � pS(x). So the pair(qS(x); pS(x)) belongs to D̂. The mapping qS � pS is injective by Proposition 10-(x). Weclaim that the inverse is given by the supremum function. First of all, the supremumexists for the pairs in D̂ because S is a semi-factor. It is clearly monotonic and it invertsqS � pS because qS � pS(x _ s) = (qS(x _ s); pS(x _ s)) = (qS(x) _ qS(s); pS(x) _ pS(s)) =(x _ ?; pS(x) _ s) = (x; s) and for the other composition: qS(x) _ pS(x) = x becauseqS(x) �S x by de�nition.(iii) This follows because for pS � qS = ?[D �! D] the condition in the de�nition ofD̂ is always satis�ed. 2This proposition works with elements of the domain. But there is also a way oflooking at this situation using congruence relations. Recall that every homomorphismf :D! E induces a canonical congruence relation on D, called the kernel of f (ker f),which identi�es exactly those elements of D which are mapped to the same element.Obviously, kerqA =�A. Let Con(D) be the complete lattice of all congruences (withrespect to �nite in�ma and existing suprema) on D.Proposition 12 Let D be a �nite distributive Scott-domain and let A be a stable subdo-main in D. Then the following is true:(i) ker pA is a congruence with respect to arbitrary in�ma and arbitrary (existing)suprema.(ii) ker pA\ �A= �D�D = 0Con(D).(iii) ker pA_ �A= D �D = 1Con(D).Proof. (i) holds because pA is a projection on a distributive domain, (ii) re-states 10-(x)and, �nally, (iii) follows because every x 2 D is related to ? in the following way:x �A qA(x) (kerpA) pA(qA(x)) �A ?. 2

The results of this section extend to dI-domains:Proposition 13 Proposition 10 and Proposition 12 hold for dI-domains, in particular,equivalence classes of �A and kerpA are closed under directed suprema and qA is Scott-continuous.Proof. The main technical di�culty is to prove that equivalence classes of �A have aleast element. For details we refer the reader to [19]. 2We use factorization to improve on our First Decomposition Theorem. We observedthat it produces representations which are redundant, namely, if two comparable semi-factors S � T are join-irreducible in SD then both take part in the representation, T re-peating the information given by S. We shall now factor out this repeated information.Given a collection S of semi-factors we de�ne for each element S 2 S its lower S-coverS 0 by S 0 = WfT 2 S j T � Sg. Also, if S � T 2 SD let S=T stand for imqT jSj. With thisnotation we are now ready to formulate:Theorem 14 (The Second Decomposition Theorem) Let D be a �nite distributiveScott-domain (a dI-domain) and let J(SD) be the set of all join-irreducible semi-factorsof D. De�ne RJ(SD) = fS=S0 j S 2 J(SD)gand F = fqS0 � pS ���T=T 0 j S � T 2 J(SD)g:Then D is isomorphic to the hyper-limit of RJ(SD) over F with the isomorphisms	:D ! hyperlimF RJ(SD)x 7! (qS0 � pS(x))S2J(SD)and �: hyperlimF RJ(SD) ! D(xS)S2J(SD) 7! _S2J(SD) xS:(The proof of this should be clear from the First Decomposition Theorem and Propo-sition 11.)We illustrate the representation of domains provided by the Second DecompositionTheorem with Example 3 from the last section. The three join-irreducible semi-factorsare #a; #b, and D itself. By factoring D through the join of #a and #b we can replace itby the three element domain f?; c; dg.Decomposition into
at domains is particularly satisfying and one may wonder whetherit is achievable for all distributive Scott-domains or for all dI-domains. The answer is `no';a counterexample is given in Figure 2.However, it turns out that the category F of those distributive Scott-domains whichare representable as hyperlimits of
at domains, is cartesian closed and contains strictlyall concrete domains (cf. [14, 23]). Indeed, the connection to concrete domains seemsto be very strong. Recent work by Geva and Brookes (see their contribution to thisvolume) suggests that every domain in F can be represented as a generalized concretedata structure.

cc c cc c c@@@@@@ ���@@@��� ���
Figure 2: A non-
at indecomposable dI-domain.5 Characterization of direct product decompositionsThere exist several nice characterizations of the direct product decompositions of arbitraryalgebras, see [5, 10]. In this section we will �nd the analogues to two of them for domains.There are several reasons to study the direct decompositions of domains. The �rst rea-son is, of course, purely theoretical. However, knowing domain decompositions may beimportant from the practical point of view. In the introduction we brie
y described theidea of generalizing relational databases that de�nes a relation as a �nite antichain in aScott domain. There are several advantages of this approach. Firstly, it gives a formalframework for having attributes of arbitrary types, perhaps admitting null values. Sec-ondly, it allows constructions more general than simply relations (matrices); for example,record and variant constructors can be applied to form very complex generalized records,see [6, 17]. Suppose that we have a Scott-domain whose �nite antichains are considered asrelations. A question arises: how far can this domain be seen as the direct product of itssubdomains? In the other words, how far can our relations be seen as \usual" relations,that is, sets of tuples, and what are the attributes of these tuples? To answer this questionwe need a characterization of the direct decompositions of Scott-domains.We will characterize direct product decompositions via complemented permutable con-gruences and neutral complemented ideals. Surprisingly, the characterization we will ob-tain is based on one of the concepts related to the domain approach to databases. In fact,all factors in the direct decompositions will be schemes as they were introduced in [17].Schemes generalize semi-factors and serve as the main tool to introduce relational algebraand dependencies in the domain model of databases [17].The decomposition theorems also enable us to prove a result which explains the othernotion of scheme proposed in [6]. In fact, the de�nition of schemes of [6] (here we callthem semi-factors) works for domains which are similar to domains of
at records. Ac-cording to the de�nition of [17], a scheme is a stable subdomain such that the associatedprojection maps the maximal elements of the domain to the maximal elements of thestable subdomain. This de�nition emphasizes the fact that schemes are signi�cant partsof domains. It is more general than the original de�nition of semi-factor which, in turn, isbased on properties that schemes of domains of
at records should satisfy. We will provethat in a certain class of domains the condition that every scheme is a semi-factor impliesthat the domain is very similar to domain of
at records. Thus, our decomposition resultsare helpful in understanding the domain-theoretic generalization of databases.This section contains �ve subsections. In the �rst we recall two well-known results from

universal algebra. The second demonstrates how domains can be treated as partial alge-bras with operations of in�nite arity, and introduces the concepts of ideal and congruencefor them, the �rst one being identical to the stable subdomains. In the third subsection wegive our basic lemma which reduces direct product decompositions of domains to those ofprincipal ideals generated by maximal elements. Neutral ideals are studied in the fourthsubsection. They give rise to so-called general decompositions which have coalesced sumand direct product decompositions as two limit cases. The �fth subsection deals withcharacterizations of direct product and general decompositions via congruences.From now on all domains are Scott-domains, and we will write domain instead ofScott-domain. We will denote the sets of maximal elements of a domain D and of a stablesubdomain A by Dmax and Amax, respectively.We will characterize only decompositions into a �nite number of factors. Notice thatin fact we do not need to consider more than two factors. Therefore, in all the resultsbelow only decompositions into two factors are characterized.For the sake of brevity, only sketches of the proofs will be given, and the technicaldetails will be omitted.5.1 Algebraic preliminariesLet us recall two techniques that are used in universal algebra and lattice theory todescribe direct decompositions.Given an algebra hA;
i, a congruence � on it is an equivalence relation on A suchthat for any ! 2
 of arity n and for any xi; yi 2 A; i 2 [1; n], 8i 2 [1; n] : xi�yiimplies !(x1; : : : ; xn)�!(y1; : : : ; yn). Congruences considered as binary relations forman algebraic lattice Con(hA;
i) in which the bottom element is the equality and thetop element is the total equivalence relation. Then direct product decompositions ofhA;
i (i.e. decompositions hA;
i ' hA1;
i � hA2;
i) are in one-to-one correspondencewith pairs (�1;�2) such that �2 is a complement of �1 in Con(hA;
i) and �1;�2 arepermutable, i.e. �1 � �2 = �2 � �1, see [5]. In fact, hA1;
i ' hA;
i=�1 and hA2;
i 'hA;
i=�2 or vice versa.Let L be a lattice. An element a 2 L is called neutral if for every x; y 2 L thesublattice hx; y; ai generated by x; y; a is distributive. If L is bounded, then every directproduct decomposition L ' L1 � L2 can be represented as L ' (a] � (a], where a isa neutral complemented element and a is its complement, see [10]. Both ideals (a] and(a] are neutral elements of the ideal-lattice, i.e. so-called neutral ideals. It is also well-known that there is a one-to-one correspondence between direct product decompositionsL ' L1�L2 and pairs (I1; I2) where I1; I2 are neutral ideals and I2 is a complement of I1in the ideal-lattice. In fact, L1 ' I1 and L2 ' I2 or vice versa.5.2 Domains as algebras. Congruences and idealsIn order to transfer the previous characterizations to domains, we have to introducealgebraic structure on domains. Let D be a domain. We consider it as a partial algebracontaining the operations of in�nite arity, namely in�ma and existing suprema for allpossible subsets X � D. Thus, D becomes a partial algebra whose operations may be ofarbitrary arity. It is well-known that the previous results about decompositions are nottrue for algebras with partial operations of in�nite arity [5].

A subalgebra of this partial algebra could be called subdomain but in semantics thisnotion has no generally accepted meaning. In lattice theory an ideal is a downward closedset which is closed under �nite joins. In our algebraic interpretation ideals are downwardclosed subsets of a domain which are closed under all existing joins, i.e. they are stablesubdomains. A congruence is an equivalence relation � such that for any xi; yi 2 D; i 2 I; Ian arbitrary set of indices, xi�yi for all i 2 I implies Vfxi : i 2 Ig�Vfyi : i 2 Ig, and ifboth x = Wfxi : i 2 Ig and y = Wfyi : i 2 Ig exist, then x�y.If D is a lattice, our de�nition of congruence coincides with the de�nition of completecongruence of a lattice introduced recently in [11, 12]. These congruences form a completelattice denoted Con(D). However, in contrast to the case of operations of �nite arity, thislattice may fail to be algebraic. It was proved in [11] that for every complete lattice Lthere exists a lattice M such that L is isomorphic to the lattice of complete congruencesof M . Moreover, M can be chosen among modular algebraic lattices [12]. Therefore, wecannot guarantee algebraicity of Con(D).If x 2 D, then �x is the restriction of � to #x, that is, � \ (#x � #x). The latticesof congruences of #x will be denoted by Con(x) if D is understood. [x]� denotes theequivalence class of x, i.e. [x]� = fy : x�yg. If � is a congruence, then [?]� is an ideal,that is, a stable subdomain.We will also also need a concept of scheme. It was introduced in [17] in order togeneralize the analogous concept of [6] known in this paper as semi-factor. A stablesubdomain A � D is called a scheme if pA(x) is a maximal element of A for everyx 2 Dmax. Any semi-factor is a scheme. Although all the factors we will decomposedomains into will be semi-factors, it is enough to require that they be schemes.5.3 The main lemmaThe following lemma generalizes the result of [10] which describes direct product decom-positions of bounded lattices. Theorem 3.4.1 of [10] says that the direct product decom-positions of a bounded lattice L into two factors are in one-to-one correspondence withneutral complemented elements a 2 L. In fact, L ' #a�"a, or equivalently L ' #a�#a.In the lemma below a pair of complemented schemes plays the role of (a; a), and it isrequired that the projections of any maximal element x into these schemes be neutral andcomplementary in #x.Notice also that according to [10] direct decompositions can be equivalently describedby pairs of neutral complementary ideals (in fact, these ideals are just #a and #a), and wecan view the pair of schemes as an analogy of these ideals rather than neutral elements.However, in contrast to the lattice case, neutral complementary elements of the lattice ofideals (stable subdomains) of a domain do not characterize direct decompositions, as wewill see in the next subsection.Lemma 15 The direct product decompositions of a domain D are given by pairs ofschemes (A1; A2) such that A1 \ A2 = f?g, and 8x 2 Amax1 ; y 2 Amax2 : x _ y ex-ists, x _ y 2 Dmax, and x is a neutral element in the principal ideal #(x _ y). In fact,D ' A1 � A2. Moreover, A1 and A2 are neutral complementary elements of the latticeQD of stable subdomains.Proof. Let D ' D1 �D2. We can think of both D1 and D2 as being subsets of D, i.e.we can associate D1 with f(x;?) : x 2 D1g and D2 with f(?; y) : y 2 D2g. Denote

these subsets by A1 and A2. Obviously, both A1 and A2 are stable subdomains. Wehave A1 \ A2 = f?Dg. If x 2 Amax1 and y 2 Amax2 , then x = hx0;?i; y = h?; y0i wherex0 2 Dmax1 ; y 2 Dmax2 . Thus, x _ y = hx0; y0i 2 Dmax. Obviously, x and y complementeach other in #(x_y). To prove that x is neutral we need to show that #(x_y) ' #x�#y[10]. This isomorphism is given by '((u; v)) = h(u;?); (?; v)i for any (u; v) �D x _ y.The fact that A1 and A2 are neutral and complement each other in QD will follow fromTheorem 17.Let, conversely, A1; A2 be stable subdomains satisfying the conditions of the lemma.We prove D ' A1�A2. Consider two mappings: ' : D! A1�A2 and : A1�A2 ! Dwhere '(x) = hpA1(x); pA2(y)i and (hu; vi) = u_ v (notice that this u_ v always exists).Then the following claims can be proved:� If x 2 A1; y 2 A2, then '(x _ y) = hx; yi;� For any z 2 D: z = pA1(z) _ pA2(z).From these two claims it can be easily concluded that ' and are mutually inversebijections. Since they are both monotone, they establish the desired isomorphism. 2Remark: We did not exploit the fact that domains are algebraic cpos in the proofof lemma. In fact, the lemma is true for any bounded poset P in which greatest lowerbounds exist for all pairs of elements and least upper bounds exist for all pairs boundedabove. Here boundedness means that P is pointed, that is, it has the smallest element?, and each x 2 P is bounded above by some maximal x0 2 Pmax.5.4 General decompositions of domainsIt is a natural question whether all neutral complemented elements of the lattice of stablesubdomains give rise to direct product decompositions, as it is the case for lattices. Theanswer, as we are going to show, is \no". In fact, neutral complemented ideals describea much more general kind of decomposition which, for example, also includes coalescedsum decomposition.De�nition. A pair of stable subdomains A1; A2 of a domain D is called a general de-composition of D, which is denoted by D = comp(A1; A2), if every element x 2 D hasunique representation as x = x1 _ x2 such that x1 2 A1 and x2 2 A2.The direct decompositions D ' A1 � A2 and the coalesced sum decompositions D 'A1 +A2, where A1; A2 are stable subdomains of D, are two main examples of the generaldecompositions; that is, in both cases D = comp(A1; A2). However, there exist generaldecompositions di�erent from the direct and coalesced sum decompositions. Consider thefollowing domain D:
@@@@����DDDDLLLL�������

�LLLL����y1 y2x1 x4x2 x3?

ThenD has several general decompositions. For example,D = comp(fx1; x3;?g; fx2; x4;?g)or D = comp(fx1; x4;?g; fx2; x3;?g).Obviously, if D = comp(A1; A2) then A1 \ A2 = f?g. Really, if x 2 A1 \ A2 andx 6= ?, we have two representations x = x _ x and x = x _ ?.Lemma 16 If D = comp(A1; A2), then the unique representation of any x 2 D as x1_x2where x1 2 A1; x2 2 A2, is x = pA1(x) _ pA2(x). 2Theorem 17 The general decompositions of a domain D are in one-to-one correspon-dence to pairs of neutral complementary elements of the lattice QD, i.e. D = comp(A1; A2)i� A1; A2 are neutral elements of QD complementing each other.Proof. Let D = comp(A1; A2). Then A1 and A2 complement each other in QD. Thus,we only need to prove that A1 is neutral in QD. To do so, we will show that there is anisomorphism ' : QD ! QA1 �QA2 such that '(A1) = h1QA1 ; 0QA2 i, where 1 and 0 standfor the top and bottom elements of a lattice. Then the neutrality will follow from [10].Given A 2 QD, let '(A) = hA \A1; A \A2i. As in the proof of Lemma 15, introduceanother map : QA1 �QA2 ! QD by (hI1; I2i) = I1 _ I2. According to Lemma 16, forany A 2 QD : A = (A \ A1) _ (A \ A2); that is, A = ('(A)).Let I1 � A1; I2 � A2 be stable subdomains. Let I = fx1 _ x2 : x1 2 I1; x2 2 I2g.Suppose x � x1 _ x2 2 I. If z = x1 _ x2, then pAi(x) � pAi(z), i = 1; 2. By Lemma 16,xi = pAi(z). Thus, pAi(x) 2 Ii, and x = pA1(x) _ pA2(x) 2 I. This shows that I is anideal. It is also easy to show that I is a stable subdomain. Now, let x = x1 _ x2 2 I \A1.Then ? = pA2(x1 _ x2) = x2, i.e. x 2 I1. This shows (I1 _ I2) \ Ai = Ii; i = 1; 2. In theother words, '((hI1; I2i)) = hI1; I2i.Therefore, ' and are mutually inverse monotone bijections, which establishes thedesired isomorphism. Since '(A1) = hA1; f?gi, A1 is neutral.Conversely, let A1; A2 be two complementary neutral elements of QD. Then, by [10]for any A 2 QD : A = (A \ A1) _ (A \ A2). If A = #x we have #x = #pA1(x) _ #pA2(x).Hence, x = pA1(x) _ pA2(x). If x = x1 _ x2, where xi 2 Ai; i = 1; 2, then #pA1(x) =#x\A1 = (#x1_#x2)\A1 = (#x1\A1)_ (#x2\A1) = #x1\A1 = #x1. Thus, x1 = pA1(x).Analogously, x2 = pA2(x). This shows that D = comp(A1; A2). The proof is complete. 2The neutral complemented elements of any lattice L form a Boolean sublattice oftendenoted Cen(L). Notice that if QD does not have in�nite chains, then Cen(QD) is a �niteBoolean lattice, and only representation ofD as the composition of indecomposable factorsis (in the sense of the operation of general decomposition) D = compA2Atoms(Cen(QD))A,where Atoms(Cen(QD)) is the set of atoms of the �nite lattice Cen(QD). For example, ifD does not have in�nite chains, then the same is true of QD, and the following corollaryholds.Corollary 18 If D does not have in�nite chains, D can be factored into indecomposablesubdomains in one and only one way. 2It was mentioned before that direct product and coalesced sum decompositions appearnow as two limit cases of general decompositions. In fact, the following holds.Proposition 19 1) A general decomposition D = comp(A1; A2) is a direct productdecomposition D ' A1 � A2 i� 8x 2 A1; y 2 A2 : x _ y exists.

2) A general decomposition D = comp(A1; A2) is a coalesced sum decomposition D =A1 + A2 i� 8x 2 A1; y 2 A2; x; y 6= ? : x _ y does not exist.Proof. 1) If D ' D1 � D2 and A1; A2 are de�ned as in the proof of lemma 15, thenD ' A1 � A2 and D = comp(A1; A2). Obviously, x _ y exists for any x 2 A1; y 2 A2.Now, suppose that D = comp(A1; A2) and the condition of 1) holds. In order to proveD ' A1 � A2 we must check the conditions of Lemma 15, i.e.a) For any x 2 Amax1 ; y 2 Amax2 : x _ y 2 Dmax;b) A1; A2 are the schemes;c) x is neutral in #(x _ y).To prove a) notice that if v � x _ y then x = pA1(v) since x 2 Amax1 . Analogouslyy = pA2(v) and by Lemma 16 v = x_y. To prove b) consider any v 2 Dmax. If w � pA1(v)and w 2 Amax1 , then since w _ pA2(v) exists, v = w _ pA2(v), i.e. pA1(v) = w 2 Amax1 , andA1 is a scheme. Analogously A2 is a scheme. To prove c) notice that for any z 2 #(x_y) :pA1(z) = z ^x and pA2(z) = z ^ y; thus z = (z ^x)_ (z ^ y). Then ' : #(x_ y)! #x�#ygiven by '(z) = hz ^ x; z ^ yi is an injective monotone map. Since hz1; z2i ! z1 _ z2 is itsmonotone inverse, ' is a lattice isomorphism, and x is neutral because '(x) = hx;?i.2) is straightforward. 2It follows from part 1) that if D is a lattice, its general decompositions are exactlydirect decompositions. Therefore, from Corollary 18 we derive the well-known fact thata lattice without in�nite chains admits exactly one representation as the direct productof nontrivial indecomposable factors (up to isomorphism and permutation of factors),see [5, 10].5.5 Characterization via congruencesWe have shown so far that, in contrast to the lattice case, the direct decompositions ofdomains are not described by their neutral complemented ideals. We had to introduceanother kind of decomposition, called general decomposition, to be in 1-1 correspondencewith these ideals.In this subsection we examine another approach to describing decompositions. Wewill try to �nd and characterize pairs of congruences such that quotient sets are exactlyfactors of a decomposition. In universal algebra it is known that pairs of permutablecomplementary congruences exactly describe direct decompositions. This result holds fordomains too, although domains are considered as algebras with partial operations of �niteand in�nite arity. Congruences also help understand the general decompositions better.It will be proved that factors of general decompositions are in 1-1 correspondence withpairs of congruences which are complementary and permutable when restricted to theprincipal ideals of maximal elements.De�ne the following two mappings between the pairs of congruences �1 and �2 andpairs of stable subdomains of a domain A1; A2 � D:(1) (�1;�2)! (A1; A2) : A1 = [?]�2; A2 = [?]�1;

(2) (A1; A2)! (�1;�2) : x�iy i� pAi(x) = pAi(y); i = 1; 2:To be more precise, if �1 and �2 are congruences, then A1; A2 de�ned in (1) are stablesubdomains, and for a pair of stable subdomains the relations de�ned in (2) are equivalencerelations. However, they are congruences in the special cases considered below.The following two theorems show that above de�ned (1) and (2) set up 1-1 corre-spondences between the factors of direct decompositions or general decompositions of adomain and the special pairs of congruences on this domain.Theorem 20 Let D be a domain. Then (1) and (2) form a one-to-one correspondencebetween the factors of the general decompositions D = comp(A1; A2) and pairs of congru-ences (�1;�2) such that, for every x 2 Dmax, the congruences �x1 and �x2 are permutable,and �x2 is a complement of �x1 in Con(x).Theorem 21 The mappings (1) and (2) (A1; A2) $ (�1;�2) form a one-to-one corre-spondence between the factors of the direct product decompositions D ' A1�A2 and pairs(�1;�2) of congruences such that �1 and �2 are permutable, and �2 is a complement of�1 in Con(D).Before going to the proof of these two theorems, we formulate and prove one corollarywhich clari�es why, in the introduction to this subsection, we spoke of quotient sets ratherthan equivalence classes of bottom element.Corollary 22 In the previous theorems the factors A1; A2 the domain D is decomposedinto are isomorphic to D=�1 and D=�2, respectively.For example, we have a perfect analogy of the congruence characterization of thedecompositions of algebras. In fact, all the decompositions of a domain D are of formD ' D=�1 �D=�2 for pairs (�1;�2) of complementary permutable congruences.Proof. Let : D=�1 ! A1 be given by ([x]�1) = pA1(x). This de�nition is correct by(2). It also follows from (2) that is injective and since 8z 2 A1 : ([z]�1) = z, it issurjective as well. Let [x]�1 � [y]�1 in D=�1. Then (x ^ y)�1x; thus pA1(x) ^ pA1(y) �pA1(x), which proves the monotonicity of . ' : A1 ! D=�1 given by '(z) = [z]�1 is theinverse of , and it is also monotone. Thus, A1 ' D=�1. The proof of A2 ' D=�2 is thesame. 2Proof. Two claims below are needed in the proofs of both theorems. After proving theseclaims, we outline the proofs of the theorems themselves.Claim 1: �1 and �2 de�ned in (2) are congruences, if D = comp(A1; A2) or D 'A1 � A2.It is enough to show �1 is a congruence. Obviously, �1 is an equivalence relation.Since pA1(Vi2I xi) = Vi2I pA1(xi) for any set of indices I, �1 preserves arbitrary meets.If x _ y exists, then pA1(x _ y) = pA1(x) _ pA1(y). Really, since A1 is a neutral elementof QD by Theorem 17, if z 2 A1, such that x _ y � z > pA1(x) _ pA1(y), then z 2A1 ^ (#x _ #y) = (A1 ^ #x) _ (A1 ^ #y) = #pA1(x) _ #pA1(y) = #pA1(x) _ pA1(y) 63 z, acontradiction. We conclude that the above equality holds and �1 preserves �nite joins.Now, let x = Wi2I xi. Then pA1(x) � Wi2I pA1(xi). To prove the reverse inequality,

suppose y � pA1(x) and y is compact. Then y � x and y � Wi2I0 xi where I0 � I is�nite. Thus, y � pA1(Wi2I0 xi) = Wi2I0 pA1(xi) � Wi2I pA1(xi). Since any element is thejoin of compact elements below it, this proves the reverse inequality. Thus, pA1 preservesarbitrary joins, and so does �1, i.e. �1 is a congruence. The claim is proved.Claim 2: Let �1;�2 be permutable congruences on a domain D. Then their join inCon(D) is �1 _�2 = �1 ��2.Since �1 � �2 �Con(D) �1 _ �2, it su�ces to show that � = �1 � �2 is a congruence.The only nontrivial part of the proof is to show that � preserves arbitrary existing joins.Assume that x = Wi2I xi and y = Wi2I yi exist, and xi�yi for all i 2 I. Then for eachi there is a zi such that xi�1zi and zi�2yi. Then xi�1xi ^ zi. From zi�2yi we havez ^ xi�2zi ^ xi ^ yi. Analogously we have yi ^ zi�1xi ^ yi ^ zi and yi�2yi ^ zi. Letv = Wi2I(xi ^ zi); w = Wi2I(xi ^ yi ^ zi); u = Wi2I(yi ^ zi) (they exist since x and y exist).Then x�1v�2w�1u�2y because �1;�2 2 Con(D). Since they are permutable, we obtainx�y. The claim is proved.Now let us come back to the proof of Theorem 20. LetD = comp(A1; A2). Then �1;�2are congruences and it is easy to show that for any x 2 Dmax : �x1 complements �x2 inCon(x). To show that they are permutable, note that if a�x1c�x2b, then d = pA2(a)_pA1(b)exists and a�x2d�x1b.Conversely, let �1;�2 be congruences de�ned in Theorem 20, and let A1; A2 be ob-tained as in (1). Then A1; A2 are stable subdomains. We need to prove D = comp(A1; A2).The idea of the proof is the following. Since �x1 � �x2 is the total relation by claim 2, forany y � x : y�x1z�x2? for some z. Then z 2 A1 and y�x1z ^ y; thus y�x1pA1(y). Similarly,y�x2pA2(y). If x; y 2 Ai and x < y, then (x; y) 62 �i. From this we can conclude thatx�iy , pAi(x) = pAi(y). Having proved this, we can use the fact that �x1 and �x2 com-plement each other to demonstrate that y = pA1(y) _ pA2(y) is the unique representationof y as the join of two elements from A1 and A2. Thus, D = comp(A1; A2), which �nishesthe proof of Theorem 20.Let us give the sketch of the proof of Theorem 21. If D ' A1�A2, then it is not hardto show that �1 and �2 de�ned in (2) are complementary and permutable.If �1 and �2 are complementary and permutable in Con(D), then so are �x1 and �x2in #x for any x 2 Dmax. Thus, for A1; A2 de�ned as in (1), we have D = comp(A1; A2)and x�iy , pAi(x) = pAi(y) by Theorem 20. Let x 2 A1; y 2 A2. Then x�2?�1y. Sincethe congruences are permutable, for some z : x�1z�2y. Thus, pA1(z) = x; pA2(z) = yand z � x; y. Therefore, x _ y exists, and by Proposition 19, D ' A1 � A2. Theorem 21is proved. 2A simpler result can be stated for qualitative domains. Recall that a domain D iscalled qualitative i� #x is a Boolean lattice for every x 2 D [9]. Since all congruences arepermutable in a Boolean lattice, we have:Corollary 23 General decompositions of a qualitative domain are given by pairs of con-gruences (�1;�2) such that �x1 and �x2 are complementary elements in Con(x) for everyx 2 Dmax. 2

6 Schemes and semi-factors in qualitative domains:a database point of viewIt has been mentioned several times before that the concepts of semi-factor and scheme�rst appeared as two di�erent attempts to de�ne an analogy of scheme for the domainmodel of databases. In this section we will apply our decomposition results to �nd outwhen these de�nitions coincide. But let us give some basic facts about the domain modelof databases �rst.For simplicity, consider the
at domain N? of natural numbers and assume that wehave a relational database which stores the information about the hotel rooms such as theroom number, number of baths in the room, telephone extension and the date it becomesfree. We further assume that all attributes' values are taken from N?. We need ? if apiece of information is unknown; for example, there might be no phone in the room, orwe might not know when the occupant is going to leave. To represent the last attribute'svalues by natural numbers we may store the di�erence between the date the occupantleaves the room and the current date, decrementing it every day. Then the examples ofrecords are:r1 = f RoomNo) '121', Bath) '1', Phone) '9510', Free) '5' gr2 = f RoomNo) '323', Bath) '2', Phone) '0752', Free) ?gr3 = f RoomNo) '323', Bath) '2', Phone) ? Free) ?gIf L is the set of attributes, i.e. L = fRoomNo;Bath;Phone;Freeg, then the recordsstored in the database can be represented as functions from L to N?. We denote thedomain of these records by L ! N?. Of course, L ! N? ' Nn?, where n = jLj. In theabove example r1 2 (L ! N?)max and r3 � r2.Since records are elements of a domain, the relations are subsets of this domain. Sincethere is no need to store two comparable records (as r2 and r3) because one of them is justa worse description of the same object, the relations in our example are �nite antichainsin L ! N?. This observation led the authors of [6] to the idea to generalize relationaldatabases as �nite antichains in Scott-domains. This idea was further developed in [17],where more complicated examples can be found. A generalized relational algebra was alsoconstructed in [17].One of the central concept of relational database theory is that of scheme. A schemeis simply a subset of attributes, but since they are used to de�ne projections, one canalternatively associate a scheme with all records that are obtained as the projections intothis scheme, that is, all records whose projections on attributes not in the scheme arebottom elements. Schemes in L ! N?, therefore, are stable subdomains.The way the de�nition of semi-factors is justi�ed in [6] is the following. If we acceptthe perfect analogy between our arbitrary domain and the domain of
at records (suchas L ! N?), we may assume that every element of a domain which is a database objectcan be represented as two subobjects, each carrying an independent piece of information.Hence, projecting into a scheme is losing a certain piece of information, and the lost piecesand the projections are independent, i.e. the lost pieces can be added to the projectionsto get the records back. If we assume that we have two records, x and y, and projectionof x into a scheme A is less than y, then adding information lost when x was projectedto y is possible, and the result is more informative than both x and y. But this is exactlythe de�nition of semi-factor: pA(x) � y 2 S implies the existence of x _ y.

An alternative approach of [17] does not make any assumption about the structureof the underlying domain. Just note that if we have a complete description, projectinginto a scheme should not result in the loss of some piece of information that the schemepreserves, that is, complete descriptions are projected into complete descriptions, i.e.pA(Dmax) = Amax. And this is the de�nition of scheme.Thus, a question arises: what are the domains in which the two concepts coincide (or,equivalently, every scheme is a semi-factor)? According to the justi�cations of the twode�nitions, we may expect these domains to be similar to the domain of
at records. Wewill prove the result for the qualitative domains. We need to de�ne the blocks (analogousto
at domains) from which these domain will be built.A domain D is called simple if it has no proper scheme, i.e. if it has no scheme butf?g and itself. Since schemes appear as equivalence classes of congruences, this de�nitionis motivated by the de�nition of a simple lattice, i.e. a lattice having no nontrivialcongruences [5, 10].Theorem 24 Let D be a qualitative domain. Then every scheme in D is a semi-factorif and only if D is isomorphic to the direct product of simple domains.Proof. The 'if ' part is easy. To prove 'only if ', suppose that any scheme is a semi-factor.Given a scheme A, de�ne A = fx 2 D : pA(x) = ?g. Then A is a scheme too [17]. SinceSD is distributive and A is a complement of A in SD, SD is a Boolean lattice. Since it isalgebraic by the corollary to the First Decomposition Theorem, it is atomistic, and J(SD)is the set of atoms of SD. It then follows from the First Decomposition Theorem thatD is isomorphic to the direct product of all elements of J(SD), since the limit over anempty set of connecting projections is the direct product. It is an easy observation thatall schemes from J(SD) are simple domains, which �nishes the proof. 2Corollary 25 Let D be a qualitative domain in which every scheme is a semi-factor.Then SD is an atomic Boolean lattice and the schemes of D are in 1-1 correspondencewith subsets of the set of atoms of SD. 2This corollary gives a mathematical description of the assumption that every databaseobject represented as an element of a domain can be decomposed into two \independent"subobjects, namely to its projection onto a scheme and its complement in SD.AcknowledgementWe would like to thank Peter Buneman for inventing the beautiful tool of semi-factors forus domain-theorists. Together with the �rst author he found a preliminary version of theFirst Decomposition Theorem while he visited Darmstadt in July 1989. We also thankKlaus Keimel for directing our attention to the classical theory of ideals in distributivelattices. He realized that our de�nition of the congruence �S generalizes the classicalde�nition to domains. G. Gr�atzer and E.T. Schmidt informed us about recent results oncomplete congruences and interrupted our vain attempts to prove algebraicity for completecongruence lattices of domains1.1While a revised version of this paper was being prepared, G. Gr�atzer and E.T. Schmidt wrote a papertitled \On a congruence lattice of a Scott-domain" in which they proved that every complete lattice isthe lattice of congruences of a Scott-domain.

References[1] S. Abramsky. Domain Theory in Logical Form. Annals of Pure and Applied Logic,51:1{77, 1991.[2] R. Balbes and P. Dwinger. Distributive Lattices. University of Missouri Press,Columbia, 1974.[3] G. Berry. Mod�eles Compl�ement Ad�equats et Stables des Lambda-calculs typ�es. Th�esede Doctorat d'Etat, Universit�e Paris VII, 1979.[4] G. Berry. Stable Models of Typed �-calculi. In Proceedings of the 5th InternationalColloquium on Automata, Languages and Programming, volume 62 of Lecture Notesin Computer Science, pages 72{89. Springer Verlag, 1978.[5] G. Birkho�. Lattice Theory, volume 25 of AMS Colloq. Publ. American MathematicalSociety, Providence, third edition, 1967.[6] P. Buneman, A. Jung, and A. Ohori. Using Powerdomains to Generalize RelationalDatabases. Theoretical Computer Science, 91:23{55, 1991.[7] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Pro-gramming. Pitman, 1986.[8] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. ACompendium of Continuous Lattices. Springer Verlag, Berlin, 1980.[9] J.-Y. Girard. The System F of Variable Types: Fifteen Years Later. TheoreticalComputer Science, 45:159{192, 1986.[10] G. Gr�atzer. General Lattice Theory. Birkh�auser Verlag, Basel, 1978.[11] G. Gr�atzer. The complete congruence lattice of a complete lattice. Proc. of Int. Conf.on Lattices, Semigroups, and Universal Algebra. Plenum Press, New York (1990),81{88.[12] G. Gr�atzer and E. T. Schmidt. A representation of m�algebraic lattices. AlgebraUniversalis, to appear.[13] A. Jung. Cartesian Closed Categories of Domains, volume 66 of CWI Tracts. Cen-trum voor Wiskunde en Informatica, Amsterdam, 1989.[14] G. Kahn and G. Plotkin. Domaines Concrets. Technical Report 336, INRIA-Laboria,1978.[15] A. Kanda. Fully E�ective Solutions of Recursive Domain Equations. In J. Be�cvar,editor, Mathematical Foundations of Computer Science, volume 74. Springer-Verlag,1979. Lecture Notes in Computer Science.[16] K. G. Larsen and G. Winskel. Using Information Systems to Solve Recursive Do-main Equations E�ectively. In G. Kahn, D. B. MacQueen, and G. Plotkin, editors,Semantics of Data Types, volume 173 of Lecture Notes in Computer Science, pages109{130. Springer-Verlag, 1984.

[17] L. Libkin. A relational algebra for complex objects based on partial information. In:J. Demetrovics and B. Thalheim, editors, Mathematical Fundamentals of DatabaseSystems { 91, volume 495 of Lecture Notes in Computer Science, pages 36{41.Springer-Verlag, 1991.[18] G. D. Plotkin. Post-Graduate Lecture Notes in Advanced Domain Theory (incorpo-rating the \Pisa Notes"). Dept. of Computer Science, Univ. of Edinburgh, 1981.[19] H. Puhlmann. Verallgemeinerung relationaler Schemata in Datenbanken mit Infor-mationsordnung, 1990. (Diplomarbeit, Technische Hochschule Darmstadt.).[20] M. B. Smyth. E�ectively Given Domains. Theoretical Computer Science, 5:257{274,1977.[21] P. Taylor. Homomorphisms, Bilimits and Saturated Domains. Some Very Basic Do-main Theory. Draft, Imperial College London, 15pp., 1987.[22] K. Weihrauch and T. Deil. Berechenbarkeit auf cpo's. Technical Report 63,Rheinisch-Westf�alische Technische Hochschule Aachen, 1980.[23] G. Winskel. Events in Computation. PhD thesis, University of Edinburgh, 1981.

