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2 � Wenfei Fan and Leonid Libkin1. INTRODUCTIONAlthough a number of dependeny formalisms were developed for relational databases, fun-tional and inlusion dependenies are the ones used most often. More preisely, only two sub-lasses of funtional and inlusion dependenies, namely, keys and foreign keys, are ommonlyfound in pratie. Both are fundamental to oneptual database design, and are supported bythe SQL standard [30℄. They provide a mehanism by whih one an uniquely identify a tuplein a relation and refer to a tuple from another relation. They have proved useful in updateanomaly prevention, query optimization and index design [1; 37℄.XML (eXtensible Markup Language [6℄) has beome the prime standard for data exhange onthe Web. XML data typially originates in databases. If XML is to represent data urrentlyresiding in databases, it should support keys and foreign keys, whih are an essential part ofthe semantis of the data. A number of key and foreign key spei�ations have been proposedfor XML, e.g., the XML standard (DTD) [6℄, XML Data [27℄ and XML Shema [36℄. Keysand foreign keys for XML are important in, among other things, query optimization [34℄, dataintegration [21℄, and in data transformations between XML and database formats [28℄.XML data usually omes with a DTD1 that spei�es how a doument is organized. Thus, aspei�ation of an XML doument may onsist of both a DTD and a set of integrity onstraints,suh as keys and foreign keys. A legitimate question then is whether suh a spei�ation isonsistent, or meaningful: that is, whether there exists a (�nite) XML doument that bothsatis�es the onstraints and onforms to the DTD.In the relational database setting, suh a question would have a trivial answer: one an writearbitrary (primary) key and foreign key spei�ations in SQL, without worrying about on-sisteny. However, DTDs (and other shema spei�ations for XML) are more omplex thanrelational shema: in fat, XML douments are typially modeled as node-labeled trees, e.g.,in XSL [15℄, XQL [35℄, XML Shema [36℄, XPath [16℄ and DOM [3℄. Consequently, DTDs mayinterat with keys and foreign keys in a rather nontrivial way, as will be seen shortly. Thus, weshall study the following family of problems, where C ranges over lasses of integrity onstraints:XML SPECIFICATION CONSISTENCY (C)INPUT: A DTD D, a set � of C-onstraints.QUESTION: Is there an XML doument that onforms to D and satis�es �?In other words, we want to validate XML spei�ations statially. The main reason is twofold:1Throughout the paper, by a DTD we mean its type spei�ation; we ignore its ID/IDREF onstraints sinetheir limitations have been well reognized [7; 19℄. We shall only onsider �nite XML douments (trees).Journal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 3�rst, omplex interations between DTDs and onstraints are likely to result in inonsistentspei�ations, and seond, an alternative dynami approah to validation (simply hek a do-ument to see if it onforms to the DTD and satis�es the onstraints) would not tell us whetherrepeated failures are due to a bad spei�ation, or problems with the douments.The onept of onsisteny of spei�ations was studied for other data models, suh as objet-oriented [12; 13℄ and extended relational (e.g., with support for ardinality onstraints [26℄).We shall study the following four lasses of onstraints de�ned in terms of XML attributes:|CK ;FK : a lass of keys and foreign keys;|CUnaryK ;FK : unary keys and foreign keys in CK ;FK , i.e., those de�ned in terms of a single attribute;|CUnaryK:;IC : unary keys, unary inlusion onstraints and negations of unary keys;|CUnaryK:;IC:: unary keys, unary inlusion onstraints and their negations.Keys and foreign keys of CK ;FK are a natural generalization of their relational ounterpart,and are apable of apturing those relational onstraints. A foreign key is a ombination oftwo onstraints: an inlusion onstraint and a key. The CUnaryK ;FK onstraints are a speial aseof CK ;FK onstraints, whih involve a single attribute. These unary keys and foreign keys aresimilar to but more general than XML ID and IDREF spei�ations. The study on simpleonstraints de�ned with XML attributes is a �rst step towards understanding the interationbetween integrity onstraints and shema spei�ations for XML. As will be seen shortly, theanalyses of these simple onstraints are already very intriate in the presene of DTDs.As generalizations of CUnaryK ;FK onstraints, CUnaryK:;IC and CUnaryK:;IC: both allow the presene of unaryinlusion onstraints independent of keys. In addition, CUnaryK:;IC inludes negations of unary keys,and CUnaryK:;IC: further permits negations of unary inlusion onstraints. Negation is onsideredmainly for the study of impliation of CUnaryK ;FK onstraints, whih is the omplement of a speialase of the onsisteny problem for CUnaryK:;IC (resp. CUnaryK:;IC:): given any DTD D and any �niteset � of unary keys and inlusion onstraints, is it the ase that all XML trees satisfying � andonforming to D also satisfy some other unary key (resp. unary key or inlusion onstraint)?This question is important in, among other things, data integration. For example, one maywant to know whether a onstraint ' holds in a mediator interfae, whih may use XML as auniform data format [4; 33℄. This annot be veri�ed diretly sine the mediator interfae doesnot ontain data. One way to verify ' is to show that it is implied by onstraints that areknown to hold [21℄.These problems, however, turn out to be far more intriguing than their ounterparts in rela-tional databases. In the XML setting, DTDs do interat with keys and foreign keys, and thisinteration may lead to problems with XML spei�ations. Journal of the ACM



4 � Wenfei Fan and Leonid LibkinExamples. To illustrate the interation between XML DTDs and key/foreign key onstraints,onsider a DTD D1, whih spei�es a (nonempty) olletion of teahers:<!ELEMENT teahers (teaher+)><!ELEMENT teaher (teah, researh)><!ELEMENT teah (subjet, subjet)>It says that a teaher teahes two subjets. Here we omit the desriptions of elements whosetype is string (e.g., PCDATA in XML).Assume that eah teaher has an attribute name and eah subjet has an attribute taught by.Attributes are single-valued. That is, if an attribute l is de�ned for an element type � in aDTD, then in a doument onforming to the DTD, eah element of type � must have a uniquel attribute with a string value. Consider a set of unary key and foreign key onstraints, �1:teaher:name ! teaher;subjet:taught by ! subjet;subjet:taught by � teaher:name:That is, name is a key of teaher elements, taught by is a key of subjet elements and itis also a foreign key referening name of teaher elements. More spei�ally, referring to anXML tree T , the �rst onstraint asserts that two distint teaher nodes in T annot have thesame name attribute value: the (string) value of name attribute uniquely identi�es a teahernode. It should be mentioned that two notions of equality are used in the de�nition of keys: weassume string value equality when omparing name attribute values, and node identity whenit omes to omparing teaher elements. The seond key states that taught by attributeuniquely identi�es a subjet node in T . The third onstraint asserts that for any subjetnode x, there is a teaher node y in T suh that the taught by attribute value of x equalsthe name attribute value of y. Sine name is a key of teaher, the taught by attribute of anysubjet node refers to a unique teaher node.Obviously, there exists an XML tree onforming to D1, as shown in Figure 1. However, thereis no XML tree that both onforms to D1 and satis�es �1. To see this, let us �rst de�ne somenotations. Given an XML tree T and an element type � , we use ext(�) to denote the set of allthe nodes labeled � in T . Similarly, given an attribute l of � , we use ext(�:l) to denote the setof l attribute values of all � elements. Then immediately from �1 follows a set of dependenies:jext(teaher:name)j = jext(teaher)j;jext(subjet:taught by)j = jext(subjet)j;jext(subjet:taught by)j � jext(teaher:name)j;Journal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 5
teachers

teacher teacher

@name
"Joe"

teach

subject

research

"Web DB"subject

@taught_by
"Joe"

"XML" @taught_by
"Joe"

"DB"Fig. 1. An XML tree onforming to D1where j � j is the ardinality of a set. Therefore, we havejext(subjet)j � jext(teaher)j: (1)On the other hand, the DTD D1 requires that eah teaher must teah two subjets. Sine nosharing of nodes is allowed in XML trees and the olletion of teaher elements is nonempty,from D1 follows: 1 < 2 jext(teaher)j = jext(subjet)j: (2)Thus jext(teaher)j < jext(subjet)j. Obviously, (1) and (2) ontradit with eah other andtherefore, there exists no XML tree that both satis�es �1 and onforms to D1. In partiular,the XML tree in Figure 1 violates the key subjet:taught by ! subjet.This example demonstrates that a DTD may impose dependenies on the ardinalities of ertainsets of objets in XML trees. These ardinality onstraints interat with keys and foreign keys.More spei�ally, keys and foreign keys also enfore ardinality onstraints that interat withthose imposed by DTD. This makes the onsisteny analysis of keys and foreign keys for XMLfar more intriguing than that for relational databases. Beause of the interation, simple keyand foreign key onstraints (e.g., �1) may not be satis�able by XML trees onforming to ertainDTDs (e.g., D1).As another example, onsider the DTD D2 given below:<!ELEMENT db (foo)><!ELEMENT foo (foo)>Observe that there exists no �nite XML tree onforming to D2. This demonstrates that there isneed for studying onsisteny of XML spei�ations even in the absene of integrity onstraints.Journal of the ACM



6 � Wenfei Fan and Leonid LibkinContributions. The main ontributions of the paper are the following:(1) For the lass CK ;FK of keys and foreign keys, we show that both the onsisteny and theimpliation problems are undeidable.(2) These negative results suggest that we look at the restrition CUnaryK ;FK of unary keys andforeign keys (whih are most typial in XML douments). We provide a oding of DTDsand these unary onstraints by linear onstraints on the integers. This enables us to showthat the onsisteny problem for CUnaryK ;FK (even under the restrition to primary keys, i.e., atmost one key for eah element type) is NP-omplete. We further show that the problem isstill in NP for an extension CUnaryK:;IC , whih also allows negations of key onstraints.(3) Using a di�erent oding of onstraints, we show that the onsisteny problem remains inNP for CUnaryK:;IC:, the lass of unary keys, unary inlusion onstraints and their negations.Among other things, this shows that the impliation problem for unary keys and foreignkeys is oNP-omplete.(4) We also identify several tratable ases of the onsisteny problem, i.e., pratial situationswhere the onsisteny problem is deidable in PTIME.The undeidability of the onsisteny problem ontrasts sharply with its trivial ounterpart inrelational databases. The oding of DTDs and unary onstraints with linear integer onstraintsreveals some insight into the interation between DTDs and unary onstraints. Moreover, it al-lows us to use the tehniques from linear integer programming in the study of XML onstraints.It should be mentioned that as XML Shema and XML Data both subsume DTDs and theysupport keys and foreign keys whih are more general than those onsidered here, the unde-idability and NP-hardness results arry over to these shema spei�ations and onstraintlanguages for XML.Related work. Keys, foreign keys and the more general inlusion and funtional dependenieshave been well studied for relational databases (f. [1℄). In partiular, the impliation problemfor unary inlusion and funtional dependenies is in linear time [17℄. In ontrast, we shallshow that the XML ounterpart of this problem is oNP-omplete.The interation between ardinality onstraints and database shemas has been studied forobjet-oriented [12; 13℄ and extended relational data models [26℄. These interations are quitedi�erent from what we explore in this paper beause XML DTDs are de�ned in terms ofextended ontext free grammars and they yield ardinality onstraints more omplex thanthose studied for databases.Key and foreign key spei�ations for XML have been proposed in the XML standard [6℄,XML Data [27℄, XML Shema [36℄ and in a reent proposal for XML keys [7℄. The need forJournal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 7studying XML onstraints has also been advoated in [38℄. DTDs in the XML standard allowone to speify limited (primary) unary keys and foreign keys with ID and IDREF attributes.However, they are not soped: one has no ontrol over what IDREF attributes point to. XMLData and XML Shema support more expressive spei�ations for keys and foreign keys with,e.g., XPath expressions. However, the onsisteny problems assoiated with onstraints de�nedin these languages have not been studied. We onsider simple XML keys and foreign keys in thispaper to fous on the nature of the interation between DTDs and onstraints. The impliationproblem for a lass of keys and foreign keys was investigated in [19℄, but in the absene of DTDs(in a graph model for XML), whih trivializes the onsisteny analysis. For keys of [7℄, theimpliation problem was studied [8℄ in the tree model for XML, but DTDs were not onsideredthere. To the best of our knowledge, no previous work has onsidered the interation betweenDTDs and keys and foreign keys for XML (in the tree model). This paper is a full version of[18℄, providing the details and the proofs omitted there.A variety of onstraints have been studied for semistrutured data [2; 10; 20℄. In partiular,[20℄ also studies the onsisteny problem; the speial form of onstraints used there makes itpossible to enode onsisteny as an instane of onjuntive query ontainment. The interationbetween path onstraints and database shemas was investigated in [9℄. These onstraintstypially speify inlusions among ertain sets of objets in edge-labeled graphs, and are notapable of expressing keys. Various generalizations of funtional dependenies have also beenstudied [23; 25℄. But these generalizations were investigated in database settings, whih arequite di�erent from the tree model for XML data. Moreover, they annot express foreign keys.Appliation of onstraints in data transformations was studied in [28℄; usefulness of keys andforeign keys in query optimization has also been reognized [34℄.Organization. The rest of the paper is organized as follows. Setion 2 de�nes four lassesof XML onstraints, namely, CK ;FK , CUnaryK ;FK , CUnaryK:;IC and CUnaryK:;IC:. Setion 3 establishes theundeidability of the onsisteny problem for CK ;FK , the lass of keys and foreign keys. Setion 4provides an enoding for DTDs and unary onstraints with linear integer onstraints, and showsthat the onsisteny problems are NP-omplete for CUnaryK ;FK and CUnaryK:;IC . Setion 5 further showsthat the problem remains in NP for CUnaryK:;IC:, the lass of unary keys, inlusion onstraints andtheir negations. Setion 6 summarizes the main results of the paper and identi�es diretionsfor further work.2. DTDS, KEYS AND FOREIGN KEYSIn this setion, we �rst present a formalism of XML DTDs [6℄ and the XML tree model. Wethen de�ne four lasses of XML onstraints. Journal of the ACM



8 � Wenfei Fan and Leonid Libkin2.1 DTDs and XML treesWe extend the usual formalism of DTDs (as extended ontext free grammars [5; 11; 31℄) byinorporating attributes.Definition 2.1. A DTD (Doument Type De�nition) is de�ned to be D = (E; A; P; R; r),where:|E is a �nite set of element types;|A is a �nite set of attributes, disjoint from E;|P is a mapping from E to element type de�nitions: for eah � 2 E, P (�) is a regularexpression � de�ned as follows:� ::= S j � 0 j � j �j� j �; � j ��where S denotes string type, � 0 2 E, � is the empty word, and \j", \;" and \�" denote union,onatenation, and the Kleene losure, respetively;|R is a mapping from E to P(A), the power-set of A; if l 2 R(�) then we say l is de�ned for� ;|r 2 E and is alled the element type of the root.We normally denote element types by � and attributes by l. Without loss of generality, assumethat r does not our in P (�) for any � 2 E. We also assume that eah � in Enfrg is onnetedto r, i.e., either � ours in P (r), or it appears in P (� 0) for some � 0 that is onneted to r.As an example, let us onsider the teaher DTD D1 given in Setion 1. In our formalism, D1an be represented as (E1; A1; P1; R1; r1), whereE1 = fteahers; teaher; teah; researh; subjetgA1 = fname; taught bygP1(teahers) = teaher; teaher�P1(teaher) = teah; researhP1(teah) = subjet; subjetP1(subjet) = P1(researh) = SR1(teaher) = fnamegR1(subjet) = ftaught bygR1(teahers) = R1(teah) = R1(researh) = ;r1 = teahersSimilarly, we represent the DTD D2 given in Setion 1 as (E2; A2; P2; R2; r2), whereJournal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 9E2 = fdb; foogA2 = ;P2(db) = P2(foo) = fooR2(db) = R2(foo) = ;r2 = dbAn XML doument is typially modeled as a node-labeled ordered tree. Given a DTD, wede�ne the notion of its valid douments as follows.Definition 2.2. Let D = (E; A; P; R; r) be a DTD. An XML tree T valid w.r.t. D (on-forming to D) is de�ned to be T = (V; lab; ele; att; val; root), where|V is a �nite set of nodes (verties);|lab is a funtion that maps eah node in V to a label in E [A [ fSg; a node v 2 V is alledan element of � if lab(v) = � and � 2 E, an attribute if lab(v) 2 A, and a text node iflab(v) = S;|ele is a partial funtion de�ned on elements in V ; for any � 2 E, it maps eah elementv of type � to a (possibly empty) list [v1; :::; vn℄ of elements and text nodes in V suh thatlab(v1) : : : lab(vn) is in the regular language de�ned by P (�);|att is a partial funtion from V � A to V suh that for any v 2 V and l 2 A, att(v; l) isde�ned i� lab(v) = � , � 2 E and l 2 R(�);|val is a partial funtion from V to string values suh that for any node v 2 V , val(v) isde�ned i� lab(v) = S or lab(v) 2 A;|root is the unique node in V suh that lab(root) = r, alled the root of T .For any element v 2 V , the nodes v0 in ele(v) are alled the subelements of v. For any l 2 A, ifatt(v; l) = v0 then v0 is alled an attribute of v. In either ase we say that there is a parent-hildedge from v to v0. The subelements and attributes of v are alled its hildren. An XML treehas a tree struture, i.e., for eah v 2 V , there is a unique path of parent-hild edges from rootto v. We write T j= D when T is valid w.r.t. D.Intuitively, V is the set of nodes of the tree T . The mapping lab labels every node of V witha symbol from E [A [ fSg. Text nodes and attributes are leaves. For an element x of type � ,the funtions ele and att de�ne the hildren of x, whih are partitioned into subelements andattributes aording to P (�) and R(�) in the DTD D. The subelements of x are ordered andtheir labels satisfy the regular expression P (�). In ontrast, its attributes are unordered andare identi�ed by their labels (names). The funtion val assigns string values to attributes andtext nodes. We onsider single-valued attributes. That is, if l 2 R(�) then every element oftype � has a unique l attribute with a string value. Sine T has a tree struture, sharing ofnodes is not allowed in T . Journal of the ACM



10 � Wenfei Fan and Leonid LibkinFor example, Figure 1 depits an XML tree valid w.r.t. the DTD D1 given in Setion 1.Our model is simpler than the models of XQuery [14℄ and XML Shema [36℄ as DTDs supportonly one basi type (PCDATA or string) and do not have omplex type onstruts. Furthermore,we do not have nodes representing namespaes, proessing instrutions and referenes. Thesesimpli�ations allow us to onentrate on the essene of the DTD/onstraint interation. Itshould further be notied that they do not a�et the lower bounds results in the paper.We need the following notations throughout the paper: for any � 2 E [ fSg, ext(�) denotesthe set of all the nodes in T labeled � . For any node x in T labeled by � and for any attributel 2 R(�), we write x:l for val(att(x; l)), i.e., the value of the attribute l of node x. We de�neext(�:l) to be fx:l j x 2 ext(�)g, whih is a set of strings. For eah � element x in T and a listX = [l1; : : : ; ln℄ of attributes in R(�), we use x[X℄ to denote the list of X-attribute values of x,i.e., x[X℄ = [x:l1; : : : ; x:ln℄. For a set S, jSj denotes its ardinality.2.2 XML onstraintsWe next de�ne our onstraint languages for XML.We onsider three types of onstraints. Let D = (E; A; P; R; r) be a DTD, and T be an XMLtree valid w.r.t. D. A onstraint ' over D has one of the following forms:|Key: � [X℄! � , where � 2 E and X is a set of attributes in R(�). The XML tree T satis�es', denoted by T j= ', i� in T ,8 x y 2 ext(�) (l̂2X(x:l = y:l)! x = y):|Inlusion onstraint: �1[X℄ � �2[Y ℄, where �1; �2 2 E, and X; Y are nonempty lists ofattributes in R(�1); R(�2) of the same length. We write T j= ' i� in T ,8 x 2 ext(�1) 9 y 2 ext(�2) (x[X℄ = y[Y ℄):|Foreign key: a ombination of two onstraints, namely, an inlusion onstraint �1[X℄ � �2[Y ℄and a key �2[Y ℄ ! �2. We write T j= ' i� T satis�es both the key and the inlusiononstraint.That is, a key � [X℄ ! � indiates that the set X of attributes is a key of elements of � , i.e.,two distint � nodes in T annot have the same X-attribute values; an inlusion onstraint�1[X℄ � �2[Y ℄ says that the list of X-attribute values of every �1 node in T must math thelist of Y -attribute values of some �2 node in T ; and an foreign key �1[X℄ � �2[Y ℄, �2[Y ℄ ! �2indiates that X is a foreign key of �1 elements referening key Y of �2 elements.Journal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 11Over a DTD D, the lass CK ;FK of onstraints onsists of all the keys and foreign keys overD. They are alled multi-attribute keys and foreign keys as they may be de�ned in terms ofmultiple attributes.To illustrate keys and foreign keys of CK ;FK , let us onsider a DTD D3 = (E3; A3; P3; R3; r3),whereE3 = fshool; student; ourse; enroll; name; subjetgA3 = fstudent id; ourse no; deptgP3(shool) = ourse�; student�; enroll�P3(ourse) = subjetP3(student) = nameP3(enroll) = P3(name) = P3(subjet) = SR3(ourse) = fdept; ourse nogR3(student) = fstudent idgR3(enroll) = fstudent id; dept; ourse nogR3(shool) = R3(name) = R3(subjet) = ;r3 = shoolTypial CK ;FK onstraints over D3 inlude:(1) student[student id℄ ! student,(2) ourse[dept; ourse no℄ ! ourse,(3) enroll[student id; dept; ourse no℄ ! enroll,(4) enroll[student id℄ � student[student id℄,(5) enroll[dept; ourse no℄ � ourse[dept; ourse no℄.The �rst three onstraints are keys in CK ;FK , and the pairs (4, 1) and (5, 2) are foreign keys inCK ;FK . The last two onstraints are inlusion onstraints.It is worth mentioning that two notions of equality are used to de�ne keys: string value equalityis assumed in x:l = y:l (when omparing attribute values), and x = y is true if and only if xand y are the same node (when omparing elements). This is di�erent from the semantis ofkeys in relational databases. Note that a foreign key requires the presene of a key in additionto an inlusion onstraint.The lass of unary keys and foreign keys for XML, denoted by CUnaryK ;FK , is a sublanguage of CK ;FK .A CUnaryK ;FK onstraint is a CK ;FK onstraint de�ned with a single attribute. More spei�ally, aonstraint ' of CUnaryK ;FK over the DTD D is either Journal of the ACM



12 � Wenfei Fan and Leonid Libkin|key: �:l! � , where � 2 E and l 2 R(�); or|foreign key: �1:l1 � �2:l2 and �2:l2 ! �2, where �1; �2 2 E, l1 2 R(�1), and l2 2 R(�2).For example, the onstraints of �1 given in Setion 1 are CUnaryK ;FK onstraints over the DTD D1.We shall also onsider the following types of unary onstraints over D:|inlusion onstraint : �1:l1 � �2:l2; unlike a foreign key, it does not require the presene of akey;|the negation of an inlusion onstraint: � = �1:l1 6� �2:l2; for an XML tree T , T j= � i� thereis a �1 element x in T suh that for all �2 element y in T , x:l1 6= y:l2;|the negation of a key: ' = �:l 6! � ; T j= ' i� there are � elements x1; x2 in T suh thatx1:l = x2:l, i.e., the value of the l attribute of a � element annot uniquely identify it inext(�).With these we de�ne two extensions of CUnaryK ;FK as follows. One is CUnaryK:;IC , the lass onsistingof unary keys, unary inlusion onstraints and negations of unary keys. The other, CUnaryK:;IC:,onsists of unary keys, unary inlusion onstraints and their negations. As mentioned earlier,we onsider these lasses mostly for the study of the impliation problem for CUnaryK ;FK onstraints.Finally, we desribe the onsisteny and impliation problems assoiated with XML onstraints.Let C be one of CK ;FK , CUnaryK ;FK , CUnaryK:;IC or CUnaryK:;IC:, D a DTD, � a set of C onstraints over Dand T an XML tree valid w.r.t. D. We write T j= � when T j= � for all � 2 �. Let ' beanother C onstraint. We say that � implies ' over D, denoted by (D;�) ` ', if for any XMLtree T suh that T j= D and T j= �, it must be the ase that T j= '. It should be noted when' is a foreign key, ' onsists of an inlusion onstraint �1 and a key �2. In this ase (D;�) ` 'in fat means that (D;�) ` �1 ^ �2.The entral tehnial problem investigated in this paper is the onsisteny problem. The on-sisteny problem for C is to determine, given any DTD D and any set � of C onstraints overD, whether there is an XML tree T suh that T j= � and T j= D.The impliation problem for C is to determine, given any DTD D, any set � and ' of Constraints over D, whether (D;�) ` '.3. GENERAL KEYS AND FOREIGN KEYSIn this setion we study CK ;FK , the lass of multi-attribute keys and foreign keys. We show thatthe onsisteny and impliation problems for CK ;FK are undeidable, but we identify severalspeial ases of the problems and show that these ases are deidable in PTIME.Journal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 133.1 Undeidability of onsisteny analysisOur main result is negative:Theorem 3.1. The onsisteny problem for CK ;FK onstraints is undeidable.Proof: We �rst show that an impliation problem assoiated with keys and foreign keys inrelational databases is undeidable, and then present a redution from (the omplement of) theimpliation problem to the onsisteny problem for CK ;FK onstraints.Let us �rst review keys, foreign keys and their assoiated impliation problems in relationaldatabases (f. [1℄). Let R = (R1; : : : ; Rn) be a relational shema. For eah relation (shema)Ri in R, we write Att(Ri) for the set of all attributes of Ri, and Inst(Ri) for the set of �niteinstanes of Ri. By database instanes we mean �nite instanes. An instane I of R has theform (I1; : : : ; In), where Ii 2 Inst(Ri) for all i 2 [1; n℄. For an instane Ii 2 Inst(Ri), a tuplet 2 Ii and an attribute l 2 Att(Ri), we use t:l to denote the l attribute value of t. Keys andforeign keys over R are de�ned as follows:|key: R[l1; :::; lk℄ ! R, where R 2 R, and for any i 2 [1; k℄, li 2 Att(R). An instane I of Rsatis�es the key onstraint ', denoted by I j= ', if8 t1 t2 2 I ( ^1�i�k(t1:li = t2:li)! ^l2Att(R)(t1:l = t2:l));where I is the instane of R in I;|foreign key: R[l1; :::; lk℄ � R0[l01; :::; l0k℄ and R0[l01; :::; l0k℄ ! R0, where R, R0 are in R,[l1; :::; lk℄ and [l01; :::; l0k℄ are lists of attributes in Att(R) and in Att(R0), respetively. In ad-dition, the set onsisting of l01; :::; l0k is a key of R0. We write I j= ' if I j= R0[l01; :::; l0k℄! R0and moreover, 8 t1 2 I 9 t2 2 I 0 ( ^1�j�kt1:lj = t2:l0j);where I and I 0 are the instanes of R and R0 in I, respetively.Let � [ f'g be a set of keys and foreign keys over R. We use � ` ' to denote that � implies', i.e., for any instane I of R, if I j= �, then I j= '.In relational databases, the impliation problem for keys and foreign keys is the problem ofdetermining, given a relational shema R, any set � and ' of keys and foreign keys over R,whether � ` '. A speial ase of the problem is the impliation problem for keys by keys andforeign keys, whih is to determine whether � ` ' where ' is a key and � is a set of keys andforeign keys over R. Journal of the ACM



14 � Wenfei Fan and Leonid LibkinIt was shown in [19℄ that the impliation problem for keys and foreign keys in relationaldatabases is undeidable. The lemma below shows a stronger result.Lemma 3.2. In relational databases, the impliation problem for keys by keys and foreignkeys is undeidable.Proof: We prove this by redution from the impliation problem for funtional dependenies byfuntional and inlusion dependenies, whih is undeidable. Before we give the redution, we�rst review funtional and inlusion dependenies in relational databases. Let R be a relationalshema. Funtional dependenies (FDs) and inlusion dependenies (IDs) over R are de�nedas follows.|FD. R : X ! Y , where R 2 R, and X and Y are subsets of attributes in Att(R). An instaneI of R satis�es the FD �, denoted by I j= �, if 8 t1 t2 2 I (l̂2X(t1:l = t2:l)! ^l02Y (t1:l0 = t2:l0)),where I is the instane of R in I. Observe that keys are a speial ase of FDs in whihY = Att(R).|ID. R[l1; :::; lk℄ � R0[l01; :::; l0k℄, where R;R0 2 R, [l1; :::; lk℄ is a list of attributes in Att(R),and [l01; :::; l0k℄ is a list of attributes in Att(R0). In ontrast to foreign keys, the set onsistingof l01; :::; l0k is not neessarily a key of R0. An instane I of R satis�es the ID �, denoted byI j= �, if 8 t1 2 I 9 t2 2 I 0 ( ^1�j�kt1:lj = t2:l0j), where I; I 0 are the instanes of R;R0 in I,respetively.Let � [ f�g be a set of FDs and IDs over R. We use � ` � to denote that � implies � as forkeys and foreign keys. The impliation problem for FDs by FDs and IDs is the problem todetermine, given any relational shema R, any set � of FDs and IDs over R and a FD � overR, whether � ` �. This is a well-known undeidable problem (see, e.g., [1℄ for a proof).We enode FDs and IDs in terms of keys and foreign keys as follows.(1) FD  = R : X ! Y .Note that every relation R has a key. In partiular, Att(R), the set of all attributes of R,is a key of R. Let Z be a key for R, i.e., R[Z℄ ! R. We de�ne a new (fresh) relationshema Rnew suh that Att(Rnew) = XY Z, i.e., the union of X, Y and Z. Intuitively, given aninstane I of R, an instane Inew of Rnew is to be onstruted as a subset of �XY Z(I) suh that�XY (I) = �XY (Inew) and Inew satis�es the key Rnew[XY ℄ ! Rnew, where �W (I) denotes theprojetion of I on attributes W . That is, we eliminate tuples in �XY Z(I) that violate the key.Observe that XY Z is a key for both Rnew and R sine it is the set of all attributes of Rnew,Journal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 15and it ontains the key Z of R (i.e., it is a superkey of R). Thus we enode  with:�1 = Rnew[X℄! Rnew; �2 = R[XY ℄ � Rnew[XY ℄;�3 = Rnew[XY Z℄ � R[XY Z℄; �4 = Rnew[XY ℄! Rnew:(2) ID  = R1[X℄ � R2[Y ℄.Let Z be a key for R2, i.e., R2[Z℄! R2. We de�ne a new shema Rnew suh that Att(Rnew) =Y Z. Intuitively, given an instane I2 of R2, an instane Inew of Rnew is to be onstruted asa subset of �Y Z(I2) by eliminating tuples that violate the key Rnew[Y ℄ ! Rnew, suh that�Y (I2) = �Y (Inew) and Inew satis�es the key. Observe that Y Z is a key for R2 sine it ontainsthe key Z of R2, i.e., it is a superkey of R2. Thus we enode  with:�1 = Rnew[Y ℄! Rnew; �2 = R1[X℄ � Rnew[Y ℄; �3 = Rnew[Y Z℄ � R2[Y Z℄:We next show that the enoding is indeed a redution from the impliation problem for FDs byFDs and IDs to the impliation problem for keys by keys and foreign keys. Given a relationalshema R, a set � of FDs and IDs over R, and a FD � = R� : X ! Y over R, as desribedabove we enode � with a set �1 of keys and foreign keys, and enode � with�1 = R�new[X℄! R�new; �2 = R�[XY ℄ � R�new[XY ℄;�3 = R�new[XY Z℄ � R�[XY Z℄; �4 = R�new[XY ℄! R�new:Let �0 = �1 [ f�2; �3; �4g. It suÆes to show that � ` � i� �0 ` �1.Let R' be the relational shema that inludes all relation shemas in R as well as new relationsreated in the enoding. We show the laim as follows.(1) Suppose that there is an instane I of R suh that I j= V� ^ :�. We show that there isan instane I' of R' suh that I' j= V�0 ^ :�1. We onstrut I' suh that for any R in R, theinstane of R in I' is the same as the instane of R in I. We populate instanes of new relationsRnew reated in the enoding as mentioned above. (a) If Rnew is introdued in the enoding ofa FD R : X ! Y then we let the instane Inew of Rnew in I' be a subset of �XY Z(I) suh that�XY (I) = �XY (Inew) and Inew j= Rnew[XY ℄ ! Rnew, where I is the instane of R in I. (b) IfRnew is introdued in the enoding of an ID R1[X℄ � R2[Y ℄ then let the instane Inew of Rnewin I' be a subset of �Y Z(I2) suh that �Y (I2) = �Y (Inew) and Inew j= Rnew[Y ℄ ! Rnew, whereI2 is the instane of R2 in I. It is easy to verify that I' j= V�0 ^ :�1.(2) Suppose that there is an instane I' of R' suh that I' j= V�0 ^ :�1. We onstrut aninstane I of R by removing from I' all instanes of new relations introdued in the enoding.It is easy to verify that I j= V� ^ :�. Journal of the ACM



16 � Wenfei Fan and Leonid LibkinTherefore, the enoding is indeed a redution from the impliation problem for FDs by FDs andIDs. This shows that the impliation problem for keys by keys and foreign keys is undeidable.2From Lemma 3.2 follows that the omplement of the impliation problem for keys by keys andforeign keys is also undeidable. That is to determine, given a relational shema R, a set � ofkeys and foreign keys over R and a key ' over R, whether there is an instane of R satisfyingV� ^ :'.We now ontinue with the proof of Theorem 3.1, i.e., the onsisteny problem for CK ;FK on-straints is undeidable. Given Lemma 3.2, it suÆes to give a redution from the omplementof the impliation problem for keys by keys and foreign keys. Let R = (R1; : : : ; Rn) be arelational shema, � be a set of keys and foreign keys over R, and ' = R[X℄ ! R be a keyover R. Let Y = Att(R) n X. We enode R, � and ' in terms of a DTD D and a set � ofCK ;FK onstraints over D as follows. Let D = (E; A; P; RA; r), whereE = fRi j i 2 [1; n℄g [ fti j i 2 [1; n℄g [ fr; DY ; EXgA = [i2[1;n℄Att(Ri)P (r) = R1; : : : ; Rn; DY ; DY ; EXP (Ri) = t�i for i 2 [1; n℄P (ti) = � for i 2 [1; n℄P (DY ) = P (EX) = �RA(ti) = Att(Ri) for i 2 [1; n℄RA(DY ) = X [ YRA(EX) = XRA(r) = RA(Ri) = ; for i 2 [1; n℄We denote P (R) = t�' for the relation R in '. Note that R = Rs and t' = ts for some s 2 [1; n℄.We enode � and ' with � = �� [ �', where �� is de�ned as follows:|�� inludes ti[Z℄! ti if � inludes a key Ri[Z℄! Ri;|�� inludes ti[Z℄ � tj[Z 0℄, tj[Z 0℄! tj if � has a foreign key Ri[Z℄ � Rj[Z 0℄, Rj[Z 0℄! Rj.The set �' onsists of the following:DY [Y ℄! DY ; EX [X℄! EX ; DY [X℄ � EX [X℄; DY [X; Y ℄ � t'[X; Y ℄; t'[XY ℄! t';where [X; Y ℄ stands for the onatenation of list X and list Y , and t' is the grammar symbolin P (R) = t�'. Observe that Att(R) = X [ Y and thus XY is a key of t'.Journal of the ACM
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Fig. 2. A tree used in the proof of Theorem 3.1
As depited in Figure 2, in any XML tree valid w.r.t. D, there are two distint DY nodes d1and d2 that have all the attributes in X [ Y , and a single EX node having all attributes in X.If T j= �', then (1) d1[X℄ = d2[X℄ by DY [X℄ � EX [X℄ and the fat jext(EX)j = 1; and (2)d1[Y ℄ 6= d2[Y ℄ by DY [Y ℄! DY . These nodes will serve as a witness for :'.Given these, we show that V� ^ :' an be satis�ed by an instane of R if and only if � anbe satis�ed by an XML tree valid w.r.t. D. Assume that there is an instane I of R satisfyingV� ^ :'. We onstrut an XML tree T from I as follows. Let T have a root node r and a Rinode for eah Ri in R. For any Ri 2 R and eah tuple p in the instane of Ri in I, we reatea distint ti node x suh that p:l = x:l for all l 2 Att(Ri). Sine I j= :', there are two tuplesp and p0 in the instane of R in I suh that p[X℄ = p0[X℄ and p[Y ℄ 6= p0[Y ℄. We reate twodistint DY nodes d1 and d2 suh that d1:l = p:l and d2:l = p0:l for all l 2 Att(R). In addition,we reate a single EX node e suh that e:l = p:l for all l 2 X. We de�ne the edge relation ofT suh that T has the form shown in Figure 2. It is easy to verify that T j= D. By I j= �it is easy to verify that T j= ��. By the de�nition of T , it is also easy to see that T j= �'.In partiular, sine Att(R) = X [ Y and the set of all attributes of a relation is a key of therelation, we have T j= t'[XY ℄ ! t', where t' is the symbol in P (R) = t�'. Therefore, T j= �.Conversely, suppose that D has a valid XML tree T that satis�es �. We de�ne an instaneI of shema R as follows. For eah ti node x, let (l1 = x:l1; : : : ; lm = x:lm) be a tuple inthe instane of Ri in I, where l1; : : : ; lm are an enumeration of Att(Ri). Obviously I is aninstane of R. By T j= ��, it is easy to verify that I j= �. Moreover, by T j= �' and thede�nition of I, we have I j= :' sine there must be two tuples d1 and d2 in the instane of Rin I suh that d1[X℄ = d2[X℄ but d1[Y ℄ 6= d2[Y ℄. Thus the enoding is indeed a redution fromthe omplement of the impliation problem for keys by keys and foreign keys.This ompletes the proof of Theorem 3.1. 2Journal of the ACM
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@K @K @KFig. 3. A tree used in the proof of Lemma 3.33.2 Undeidability of impliationWe next onsider the impliation problem.Lemma 3.3. The following problems are undeidable: given any DTD D, any set � of CK ;FKonstraints over D, any unary key '1 and unary inlusion onstraint '2 over D, whether (1)(D;�) ` '1; (2) (D;�) ` '2.Proof: It suÆes to establish a redution from the onsisteny problem for CK ;FK to the om-plement of the impliation problem for CK ;FK . Let the DTD D be (E; A; P; R; r). We de�neanother DTD D0 = (E 0; A0; P 0; R0; r), whereE 0 = E [ fDY ; EXg where DY , EX are fresh element typesA0 = A [ fKg where K is a fresh attributeP 0(r) = P (r); DY ; DY ; EX i.e., P (r) followed by two DY elements and an EX elementP 0(�) = P (�) for all � 2 E n frgP 0(DY ) = P 0(EX) = �R0(DY ) = fKgR0(EX) = fKgR0(�) = R(�) for all � 2 EWe de�ne a unary key '1, a unary inlusion onstraint '2 and another key � over D0 as follows:'1 = DY :K ! DY ; '2 = DY :K � EX :K; � = EX :K ! EX :Clearly, � is also a set of CK ;FK onstraints over D0. We next show that (1) � is satis�able overD i� V�^�^'2 ^:'1 is satis�able over D0; (2) � is satis�able over D i� V�^ �^'1 ^:'2is satis�able over D0. For if these hold, then the enoding is a redution from the onsistenyproblem for CK ;FK to the omplements of the impliation problems desribed in Lemma 3.3.We prove (1) as follows. If there exists a tree T j= D0 and T j= V� ^ � ^ '2 ^ :'1, thenwe onstrut another tree T 0 by removing DY , EX elements from T . Obviously, T 0 j= D andJournal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 19T 0 j= �. Conversely, suppose that there is a tree T j= D and T j= �. We onstrut anothertree T 0 from T as shown in Figure 3. Let us refer to the two DY elements in T 0 as d1; d2, andthe EX element as e. Let d1:K = d2:K = e:K. Then it is easy to see that T 0 j= D0, T 0 j= �and T 0 j= � ^ '2 ^ :'1.We now prove (2). As above, we an show that if there is a tree T j= D0 and T j= V� ^� ^ '1 ^ :'2, then there exists another tree T 0 suh that T 0 j= D and T 0 j= �. Conversely,suppose that there is a tree T j= D and T j= �. We onstrut a tree T 0 from T as shown inFigure 3. Again we refer to the two DY elements in T 0 as d1; d2, and the EX element as e. Nowlet d1:K 6= d2:K. Then it is easy to see that T 0 j= D0, T 0 j= � and T 0 j= � ^ '1 ^ :'2. 2From Lemma 3.3 we immediately obtain:Corollary 3.4. For CK ;FK onstraints, the impliation problem is undeidable.3.3 PTIME deidable asesWhile the general onsisteny and impliation problems are undeidable, it is possible to identifysome deidable ases of low omplexity. The �rst one is heking whether a DTD has a validXML tree. This is a speial ase of the onsisteny problem, namely, when the given set ofCK ;FK onstraints is empty. A more interesting speial ase involves keys only. Let CK denotethe set of all keys in CK ;FK . The onsisteny problem for CK is to determine, given any DTDD and any set � of keys in CK over D, whether there exists an XML tree valid w.r.t. D andsatisfying �. Similarly, we onsider the impliation problem for CK ;FK : given any DTD D, anyset � and ' of keys in CK over D, whether (D;�) ` '. The next theorem tells that all theseases are deidable.Theorem 3.5. The following problems are deidable in linear time:(1) Given any DTD D, whether there exists an XML tree valid w.r.t. D.(2) The onsisteny problem for CK .(3) The impliation problem for CK .Proof: (1) The �rst problem of the theorem an be redued to the emptiness problem for aontext free grammar (CFG). Observe that a DTD D = (E;A; P;R; r) an be viewed as anextended CFG GD with r as its start symbol, S as a nonterminal with a prodution rule, say,S ! 0, and with attributes (A and R) ignored. It is easy to verify that D has a valid XMLtree if and only if GD is nonempty, i.e., it generates a terminal string (equivalently, a parsetree). Indeed, given an XML tree T valid w.r.t. D, one an onstrut a parse tree of GD byJournal of the ACM



20 � Wenfei Fan and Leonid Libkinmodifying T , i.e., by removing attributes from T and modifying its text nodes. Conversely,given a parse tree T 0 of GD one an onstrut a valid XML tree of D by modifying T 0, i.e.,by adding attributes to T 0 and removing hildren of S nodes from T 0. It is straightforward toonvert the extended CFG GD to a CFG G in linear time, by introduing new nonterminalsand their (reursive) prodution rules to represent Kleene losures. Moreover, GD is nonemptyif and only if G is nonempty. It is well known that the emptiness problem for a CFG anbe determined in linear time (f. [24℄). Putting everything together, a linear algorithm forheking the validity of D works as follows: it �rst generates in linear time the CFG G fromD, and then heks in linear time whether G is empty; it onludes that D has a valid XMLtree if and only if G is nonempty. Thus the validity of DTDs an be deided in linear time.(2) We next prove the seond statement of Theorem 3.5. That is, the onsisteny problem forCK is deidable in linear time. Given any DTD D and any set � of keys in CK over D, it suÆesto show that � an be satis�ed by an XML tree valid w.r.t. D if and only if D has a valid XMLtree. For if it holds, then the seond statement follows immediately from the �rst statement ofTheorem 3.5.We now show the laim. Suppose that there exists an XML tree T1 = (V; lab; ele; att; val; root)valid w.r.t. D. We onstrut another XML tree T2 by modifying the val funtion in T1 suh thatfor any key � [X℄ ! � in �, jext(�)j = jext(�:l)j in T2 for every l 2 X. That is, T2 j= �:l ! �for all l 2 X. More spei�ally, let T2 = (V; lab; ele; att; val0; root). Observe that the onlydi�erene between T1 and T2 is the de�nition of the funtion val0. For any v1; v2 in V withlab(v1) = � and lab(v2) = � , we an make val0(att(v1; l)) 6= val0(att(v2; l)) for any l 2 X. Letval0(v) = val(v) for all other verties in V . It is easy to verify that T2 is valid w.r.t. D sineT1 is valid w.r.t. D. In addition, T2 j= � [X℄! � sine for any x; y 2 ext(�), x[X℄ 6= y[X℄. Theother diretion is immediate.(3) Finally, we prove the last statement of Theorem 3.5. That is, the impliation problem forCK is deidable in linear time. To show this, we need the following lemma.Lemma 3.6. For any DTD D and element type � in D, it is deidable in linear time whetherthere is an XML tree T suh that T j= D and moreover, jext(�)j > 1 in T .Proof: As in the proof of the �rst statement of the theorem, it is easy to show that given aDTD D, one an �nd in linear time a CFG G suh that D has a valid XML tree in whihjext(�)j > 1 if and only if the start symbol r of G derives a terminal string w whose parse treehas at least two � nodes. This an be transformed in linear time to the problem of heking if agiven CFG derives a string with at least two ourrenes of a given terminal symbol, whih inturn an be solved in linear time by a minor modi�ation of the emptiness test for CFG from[24℄. 2Journal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 21Let � be a set of keys in CK over D, and ' = � [X℄! � be another key in CK over D. We saythat � subsumes ' if there is � = � [Y ℄ ! � in � suh that Y � X, i.e., ' is a superkey of �.Using this and Lemma 3.6 we an prove the following:Lemma 3.7. Let D be a DTD, � a set of keys in CK over D, and ' = � [X℄! � another keyin CK over D. There is an XML tree T suh that T j= D, T j= � but T j= :' if and only if �does not subsume ' and moreover, there is an XML tree T 0 suh that T 0 j= D and jext(�)j > 1in T 0. In addition, this is deidable in linear time in the sizes of D and � [ f'g.Proof: We �rst show that there is an XML tree T suh that T j= D, T j= � but T j= :' i� �does not subsume ' and moreover, there is an XML tree T 0 suh that T 0 j= D and jext(�)j > 1in T 0. Suppose that there is an XML tree T suh that T j= D, T j= � and T j= :'. Thenobviously, T is valid w.r.t. D, and moreover, there must be at least two � elements d1; d2 inT suh that d1[X℄ = d2[X℄ but d1 6= d2 sine T j= :'. Thus there must be jext(�)j > 1 inT . In addition, � annot ontain � [Y ℄ ! � with Y � X, sine otherwise it would ontraditT j= :' and T j= �. Conversely, let T 0 be a tree suh that T 0 j= D and jext(�)j > 1 in T 0.Thus there are at least two � elements d1; d2 in T 0. We onstrut a new tree T by modifyingthe string values assoiated with the attributes of T 0, while leaving the other funtions of T 0unhanged. More spei�ally, we let d1[X℄ = d2[X℄ in T but all other attributes have di�erentstring values. It is easy to verify that T j= D and T j= :' by the de�nition of T . To showT j= �, suppose by ontradition that there were � 2 � suh that T j= :�. Then � must beof the form � [Y ℄ ! � where Y � X, i.e., ' is a superkey of �, sine exept d1[X℄ = d2[X℄,distint nodes in T have the di�erent attribute values by the de�nition of T . This ontraditsthe assumption that � does not subsume '. Thus the �rst statement of the lemma holds.To show that this an be done in linear time, observe that by Lemma 3.6, it an be deided inlinear time in the size of D whether there is a tree T suh that T j= D and jext(�)j > 1 in T .In addition, it is deidable in linear time in the size of �[f'g whether ' is a superkey of somekey in � (see e.g., [1℄ for disussions about a linear time algorithm for heking impliation offuntional dependenies). Thus it is deidable in linear time in the sizes of D and � [ f'gwhether these onditions hold. 2This suÆes to prove the third statement of Theorem 3.5 beause (D;�) ` ' i� there is noXML tree T suh that T j= D, T j= � but T j= :'. By Lemma 3.7, the latter an be deidedin linear time.This ompletes the proof of Theorem 3.5. 2Given Theorem 3.5, one would be tempted to think that when only foreign keys are onsidered,the analyses of onsisteny and impliation ould also be simpler. However, it is not the ase.Journal of the ACM



22 � Wenfei Fan and Leonid LibkinReall that a foreign key of CK ;FK onsists of an inlusion onstraint and a key. Thus weannot exlude keys in the presene of foreign keys. It is not hard to show that onsistenyand impliation of foreign keys in CK ;FK remain undeidable.4. UNARY KEYS AND FOREIGN KEYSThe undeidability of the onsisteny problem for general keys and foreign keys motivates usto look for restrited lasses of onstraints. One important lass is CUnaryK ;FK , the lass of unarykeys and foreign keys. A ursory examination of existing XML spei�ations reveals that mostkeys and foreign keys are single-attribute onstraints, i.e., unary. In partiular, in XML DTDs,one an only speify unary onstraints with ID and IDREF attributes.In this setion, we �rst investigate the onsisteny problem for CUnaryK ;FK . To simplify the disussionand to establish a (slightly) stronger result, we onsider a larger lass of onstraints, namely,CUnaryK ;IC , the lass of unary keys and unary inlusion onstraints. In ontrast to CUnaryK ;FK , CUnaryK ;ICallows the presene of unary inlusion onstraints independent of keys. We develop an enodingof DTDs and CUnaryK ;IC onstraints with linear integer onstraints. This enables us to redue theonsisteny problem for CUnaryK ;IC (and thus for CUnaryK ;FK ) to the linear integer programming problem,one of the most studied NP-omplete problems. We then use the same tehnique to show thatthe onsisteny problem remains in NP when negations of keys are allowed, i.e., the problem forCUnaryK:;IC onstraints is also in NP. Finally, we identify several tratable ases of the onsistenyproblems.4.1 Coding DTDs, unary onstraintsWe show that CUnaryK ;IC onstraints and DTDs an be enoded with linear equalities and in-equalities on the integers, alled ardinality onstraints. The enoding allows us to redue theonsisteny problem for CUnaryK ;IC onstraints in PTIME to the linear integer programming (LIP)problem:LINEAR INTEGER PROGRAMMING (LIP)INPUT: An m� n matrix A of integers and a olumn vetor ~b of m integers.QUESTION: Does there exist a olumn vetor ~x of n integers suh that A~x � ~b?That is, for i 2 [1; m℄, Xj2[1;n℄aij xj � bi;Journal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 23where aij is the jth element of the ith row of A, xj is the jth entry of ~x and bi is the ithentry of ~b. It is known that LIP is NP-omplete in the strong sense [22℄. In partiular, whennonnegative integer solutions are onsidered, [32℄ has shown that if the problem has a solution,then it has another solution in whih for all j 2 [1; n℄, xj is no larger than n (ma)2m+1, wherea is the largest absolute value of elements in A and ~b.More spei�ally, we show the following:Theorem 4.1. There is a polynomial (O(s2 � log s)) time algorithm that, given a DTD Dand a set � of CUnaryK ;IC onstraints, onstruts an integer matrix A and an integer vetor ~b suhthat there exists an XML tree valid w.r.t. D and satisfying � if and only if A~x � ~b has aninteger solution.As an immediate result, we have:Corollary 4.2. The onsisteny problem for CUnaryK ;FK onstraints is in NP.The proof of Theorem 4.1 is a bit involved. A road map of the proof is as follows. Given aDTD D and a set � of CUnaryK ;IC onstraints over D, we de�ne in O(s2 � log s) time (in the sizes ofD and �, denoted by jDj and j�j, respetively) the following:|another DTD DN , referred to as the simpli�ed DTD of D, in whih regular expressions arerestrited to have at most one operator: either \j" (union) or \," (onatenation)2; we reduethe onsisteny of D and � to that of DN and �, i.e., there exists an XML tree valid w.r.t.D and satisfying � if and only if there exists an XML tree valid w.r.t. DN and satisfying �;|a set C� of linear integer onstraints suh that there is an XML tree valid w.r.t. DN andsatisfying � if and only if there is an XML tree valid w.r.t. DN and satisfying C�;|a system 	DN of linear integer onstraints suh that there exists an XML tree valid w.r.t.DN if and only if 	DN admits an integer solution; the ardinality onstraints in 	DN aremore omplex than those studied in the ontext of objet-oriented and relational databases[12; 13; 26℄;|�nally, a system of integer onstraints 	(D;�) from C� and 	DN suh that there exists anXML tree valid w.r.t. D and satisfying � if and only if 	(D;�) admits an integer solution.Putting everything together, we redue the onsisteny problem for CUnaryK ;IC to the existene ofa solution of an instane of LIP, and thus obtain the NP bound.2We are grateful to one of the referees for suggesting this simpli�ation of DTDs. Journal of the ACM



24 � Wenfei Fan and Leonid LibkinProof of Theorem 4.1: We start by desribing the proess of simplifying DTDs. We shall thenpresent an enoding of unary onstraints and DTDs. Finally, we develop a haraterization ofXML spei�ations with both DTDs and unary onstraints in terms of linear integer onstraints.Simplifying DTDs. We �rst explain how to redue the onsisteny problem for CUnaryK ;IC tothat over simple DTDs. Intuitively, we replae long regular expressions in P (�) by shorterones. Formally, onsider a DTD D = (E; A; P; R; r). For eah � 2 E, P (�) is a regularexpression �. A DTD is basially an extended regular grammar (f. [11; 31℄); thus � ! � anbe viewed as the prodution rule for � . We rewrite the regular expression � by introduinga set N of new element types (nonterminals) suh that the prodution rules of the new DTDhave one of the following forms:� ! �1; �2 � ! �1 j �2 � ! �1 � ! S � ! �where �; �1; �2 are element types in E [N , S is the string type and � denotes the empty word.More spei�ally, we ondut the following \simplifying" proess on the prodution rule � ! �:(1) If � = (�1; �2), then we introdue two new element types �1; �2 and replae � ! � with anew rule � ! �1; �2. We proeed to proess �1 ! �1 and �2 ! �2 in the same way.(2) If � = (�1j�2), then we introdue two new element types �1; �2 and replae � ! � with anew rule � ! �1 j �2. We proeed to proess �1 ! �1 and �2 ! �2 in the same way.(3) If � = ��1, then we introdue a new element type �1 and replae � ! � with � ! �1. Weproeed to proess �1 ! � j �1; �1 in the same way.(4) If � is one of � 0 2 E, S or �, then the rule for � remains unhanged.To avoid introduing unneessary new element types, in the �rst two ases above, if �1 (resp.�2) is a symbol of E [ fSg, we do not introdue a new element type for �1 (resp. �2).We refer to the set of new element types introdued when proessing � ! P (�) as N� and theset of prodution rules generated/revised as P� . Note that N� \ E = ; for any � 2 E.We de�ne a new DTD DN = (EN ; A; PN ; RN ; r), referred to as the simpli�ed DTD of D (orjust a simple DTD if D is lear from the ontext), where|EN = E [ [�2EN� , i.e., E plus those new element types introdued in the simplifying proess;|PN = [�2EP� , i.e., prodution rules generated/revised in the simplifying proess;|RN(�) = R(�) for eah � 2 E, and RN(�) = ; for eah � 2 EN n E.Journal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 25Note that the root element type r and the set A of attributes remain unhanged. Moreover,elements of any type in EN nE do not have any attribute. Note that DN does not ontain theKleene star \�".For example, the simpli�ed DTD of D1 given in Setion 1 is DN1 = (EN1 ; A1; PN1 ; RN1 ; r),whereEN1 = fteahers; teaher; teah; researh; subjet; � 1t ; � 2t ; ��gA1 = fname; taught bygPN1 (teahers) = teaher; � 1tPN1 (� 1t ) = �� j � 2tPN1 (��) = �PN1 (� 2t ) = teaher; � 1tPN1 (teaher) = teah; researhPN1 (teah) = subjet; subjetPN1 (subjet) = PN1 (researh) = SRN1 (teaher) = fnamegRN1 (subjet) = ftaught bygRN1 (teahers) = RN1 (teah) = RN1 (researh) = RN1 (� 1t ) = RN1 (� 2t ) = RN1 (��) = ;r1 = teahersHere � 1t ; � 2t ; �� are the new element types introdued.The simpli�ed DTD DN2 of D2 in Setion 1 is the same as D2 itself.Obviously, any set � of CUnaryK ;IC onstraints over D is also a set of CUnaryK ;IC onstraints over thesimpli�ed DTD DN of D. The next lemma establishes the onnetion between D and DN ,whih allows us to onsider only simple DTDs from now on.Lemma 4.3. Let D be a DTD, DN be the simpli�ed DTD of D and � be a set of CUnaryK ;IConstraints over D. Then there exists an XML tree T1 suh that T1 j= D and T1 j= � i� thereexists an XML tree T2 suh that T2 j= DN and T2 j= �.Proof: It suÆes to show the following laim. For any XML tree T1 j= D one an onstrutan XML tree T2 j= DN , and for any T2 j= DN one an onstrut T1 j= D, suh that for anyelement type � in D and l 2 R(�), jext(�)j in T2 equals jext(�)j in T1, and ext(�:l) in T2 equalsext(�:l) in T1.We �rst prove the lemma assuming that the laim is true. Assume that there exists an XMLtree T1 suh that T1 j= D and T1 j= �. Find the tree T2 j= DN as in the laim. Suppose thatJournal of the ACM



26 � Wenfei Fan and Leonid Libkinthere is ' 2 � suh that T2 6j= '. If ' is a key �:l ! �:� , then there are two distint nodesx; y 2 ext(�) in T1 suh that x:l = y:l. Thus jext(�:l)j < jext(�)j in T2 sine every � elementhas a single l attribute. Sine T1 j= ', it must be the ase that jext(�:l)j = jext(�)j in T1sine the value x:l of eah x 2 ext(�) uniquely identi�es x among all the nodes in ext(�). Thisontradits the laim that jext(�)j in T2 equals jext(�)j in T1 and ext(�:l) in T2 equals ext(�:l)in T1. If ' is an inlusion onstraint �1:l1 � �2:l2, then there is x 2 ext(�1) suh that for ally 2 ext(�2) in T2, x:l1 6= y:l2. That is, x:l1 62 ext(�2:l2). By the laim, x:l1 2 ext(�1:l1) in T1.Sine T1 j= ', we have x:l1 2 ext(�2:l2) in T1. Again by the laim, we have x:l1 2 ext(�2:l2) inT2, whih ontradits the assumption. The proof for the other diretion is similar.We next verify the laim. Given an XML tree T1 = (V1; lab1; ele1; att; val; root) suh thatT1 j= D, we onstrut an XML tree T2 by modifying T1 suh that T2 j= DN . Consider a �element v in T1. Let ele1(v) = [v1; :::; vn℄ and w = lab1(v1) : : : lab1(vn). Reall N� and P� , theset of nonterminals and the set of prodution rules generated when simplifying � ! P (�). LetQ� be the set of E symbols that appear in P� plus S. We an view G = (Q� ; N� [ f�g; P� ; �)as a ontext free grammar, where Q� is the set of terminals, N� [ f�g the set of nonterminals,P� the set of prodution rules and � the start symbol. Sine T1 j= D, we have w 2 P (�). By astraightforward indution on the struture of PN(�) it an be veri�ed that w is in the languagede�ned by G. Thus there is a parse tree T (w) of the grammar G for w, and w is the frontier(the list of leaves from left to right) of T (w). Without loss of generality, assume that the root ofT (w) is v, and the leaves are v1; : : : ; vn. Intuitively, we onstrut T2 by replaing eah elementv in T1 by suh a parse tree. More spei�ally, let T2 = (V2; lab2; ele2; att; val; root). Here V2onsists of nodes in V1 and the internal nodes introdued in the parse trees. For eah x in V2,let lab2(x) = lab1(x) if x 2 V1, and otherwise let lab2(x) be the node label of x in the parse treewhere x belongs. Note that nodes in V2 n V1 are elements of some type in EN nE. If lab2(x) isan element type, let ele2(x) be the list of its hildren in the parse tree. Note that att and valremain unhanged. By the onstrution of T2 it an be veri�ed that T2 j= DN . Moreover, forany � 2 E and l 2 R(�), jext(�)j in T2 equals jext(�)j in T1 and ext(�:l) in T2 equals ext(�:l)in T1 beause none of the new nodes, i.e., nodes in V2 n V1, is labeled with an E type, and thefuntion att remains unhanged.Conversely, assume that there is T2 = (V2; lab2; ele2; att; val; root) suh that T2 j= DN . Weonstrut T1 by modifying T2 suh that T1 j= D. For any node v 2 V2 with lab(v) = �and � 2 EN n E, we substitute the subelements of v for v in ele(v0), where v0 is the parentof v. In addition, we remove v from V2, lab2(v) from lab2, and ele2(v) from ele2. Observethat by the de�nition of DN , no attributes are de�ned for elements of any type in EN n E.We repeat the proess until there is no node labeled with element type in EN n E. Now letT1 = (V1; lab1; ele1; att; val; root), where V1, lab1 and ele1 are V2, lab2 and ele2 at the end ofthe proess, respetively. Observe that att, val and root remain unhanged. By the de�nitionof T1 it an be veri�ed that T1 j= D; and in addition, for any � 2 E and l 2 R(�), jext(�)jJournal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 27in T1 equals jext(�)j in T2, and ext(�:l) in T1 equals ext(�:l) in T2, beause none of the nodesremoved is labeled with a type of E and the funtions att and val are unhanged. 2It is easy to see that DN is omputable in linear time in the size of D.Enoding unary onstraints. We now give a oding of CUnaryK ;IC onstraints. Let � be a setof CUnaryK ;IC onstraints over DTD D and DN be simpli�ed DTD of D. Referring to an arbitraryXML tree T valid w.r.t. D, we derive from � a lass of linear integer onstraints on T , denotedby C� and referred to the ardinality onstraints determined by �, as follows. For any ' 2 �,|if ' is a key onstraint �:l! � , then jext(�:l)j = jext(�)j is in C�;|if ' is an inlusion onstraint �1:l1 � �2:l2, then jext(�1:l1)j � jext(�2:l2)j is in C�.|jext(�:l)j � jext(�)j and 0 � jext(�:l)j are in C� for any � 2 E and l 2 R(�).We use T j= C� to denote that T satis�es all onstraints of C�.For example, reall the set �1 of CUnaryK ;FK onstraints over the DTD D1 given in Setion 1. Theset of ardinality onstraints determined by �1, denoted by C�1, onsists of:jext(teaher:name)j = jext(teaher)jjext(subjet:taught by)j = jext(subjet)jjext(subjet:taught by)j � jext(teaher:name)j0 � jext(teaher:name)j0 � jext(subjet:taught by)jIt is worth mentioning that jext(�:l)j = jext(�)j haraterizes a key �:l ! � . Indeed, for anyXML tree T valid w.r.t. DN , T j= jext(�:l)j = jext(�)j i� T j= �:l ! � . However, thingsan go wrong when it omes to inlusion onstraints. Although T j= �1:l1 � �2:l2 impliesT j= jext(�1:l1)j � jext(�2:l2)j, the other diretion does not neessarily hold. This does not losegenerality as we do not intend to apture negations of inlusion onstraints with this oding.Indeed, the lemma below shows that we are able to onsider C� instead of � when studyingthe onsisteny of �.Lemma 4.4. Let DN be a simpli�ed DTD of D, � be a set of CUnaryK ;IC onstraints over D, andC� be the set of ardinality onstraints determined by �. Then there exists an XML tree T1suh that T1 j= DN and T1 j= � if and only if there exists an XML tree T2 suh that T2 j= DNand T2 j= C�. In addition, any XML tree valid w.r.t. DN and satisfying � also satis�es C�.Proof: It is easy to see that for any XML tree T1 that satis�es �, it must be the ase thatT1 j= C�. Conversely, we show that if there exists an XML tree T2 = (V; lab; ele; att; val; root)Journal of the ACM



28 � Wenfei Fan and Leonid Libkinsuh that T2 j= DN and T2 j= C�, then we an onstrut an XML tree T1 suh that T1 j= DNand T1 j= �.We onstrut T1 from T2 by modifying the funtion val while leaving V; lab; ele; att and rootunhanged. As ardinality onstraints of C� do not involve text nodes, we hange val forattributes only. More spei�ally, we modify val(v) if lab(v) 2 A, i.e., if v is an attribute,and leave val(v) unhanged otherwise. Let S = f�:l j � 2 E; l 2 R(�)g. To de�ne thenew funtion, denoted by val0, we �rst assoiate a set V�:l of string values with eah �:l inS. Let N be the maximum ardinality of ext(�:l) in T2, i.e., N � jext(�:l)j in T2 for all�:l 2 S. Let VS = fai j i 2 [1; N ℄g be a set of distint string values. For eah �:l 2 S, letV�:l = fai j i 2 [1; jext(�:l)j℄g, and for eah x 2 ext(�), let val0(att(x; l)) be a string value inV�:l suh that in T1, ext(�:l) = V�:l. In addition, for eah key �:l! � in �, let x:l be a distintstring value in V�:l. This is possible beause by the de�nition of T1, (1) ext(�) in T1 equalsext(�) in T2; (2) jext(�:l)j in T1 equals jext(�:l)j in T2; and (3) T2 j= C� and jext(�)j = jext(�:l)jis in C�. We next show that T1 is indeed what we want. It is easy to verify that T1 j= DNgiven the onstrution of T1 from T2 and the assumption that T2 j= DN . To show that T1 j= �,we onsider ' 2 � in the following ases. (1) If ' is a key �:l ! � , it is immediate from thede�nition of T1 that T1 j= ' sine for any x 2 ext(�), x:l is a distint string value in V�:l.(2) If ' is �1:l1 � �2:l2, then T2 j= jext(�1:l1)j � jext(�2:l2)j by T2 j= C�. Reall that by thede�nition of val0, for i 2 [1; 2℄, V�i:li = fai j i 2 [1; jext(�i:li)j℄g and in T1, ext(�i:li) = V�i:li.Thus ext(�1:l1) � ext(�2:l2) in T1. That is, T1 j= '. Therefore, T1 j= DN and T1 j= �. 2Observe that in the onstrution of T1 above, it is possible that ext(�1:l1) � ext(�2:l2) even if� does not imply �1:l1 � �2:l2. This does not have an impat on the onsisteny analysis, asnegations of inlusion onstraints are not involved in the analysis.It is straightforward to verify that given any set � of CUnaryK ;IC onstraints over a DTD D, the setC� of ardinality onstraints determined by � an be omputed in linear time in j�j and jDj.Enoding DTDs. We next move to a oding of DTDs. By Lemma 4.3 we an onsider simpleDTDs only. Given any simple DTD D = (E; A; P; R; r), we enode it in linear time with asystem 	D of linear integer onstraints suh that D has a valid XML tree if and only if 	D hasan integer solution.We �rst desribe the variables used in the system 	D. For eah symbol � 2 E [ fSg, jext(�)jis a distint variable. Intuitively, in an XML tree T onforming to D, jext(�)j keeps trakof the number of all � elements. In addition, for eah ourrene of � in the de�nition P (� 0)of some element type � 0, we also reate a distint variable. More spei�ally, we reate suhvariables as follows: if P (� 0) = �1 for �1 2 E [ fSg, then we reate a distint variable x1�1;� 0;if P (� 0) = (�1; �2) or P (� 0) = (�1j�2), then we reate two distint variables x1�1;� 0 and x2�1;� 0.Journal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 29Intuitively, for i 2 [1; 2℄, xi�1;� 0 keeps trak of the number of �i subelements at position i underall � 0 elements in T . For example, given an element type de�nition P(teah) = subjet,subjet, we reate two distint variables x1(subjet; teah) and x2(subjet; teah). Let X� be the setof all variables of the form xi�;� 0.Using these variables, for eah � 2 E, we de�ne a set  � of linear integer onstraints thatharaterizes P (�) quantitatively, as follows:|If P (�) = �1 for �1 2 E [ fSg, then  � inludes jext(�)j = x1�1;� . Referring to the XML treeT , this assures that eah � element has a unique �1 subelement.|If P (� 0) = (�1; �2), then  � inludes jext(�)j = x1�1;� and jext(�)j = x2�2;� . These assure thateah � element in T must have a unique �1 subelement and a unique �2 subelement.|If P (� 0) = (�1j�2), then  � inludes jext(�)j = x1�1;� + x2�2;� . These assure that eah � elementin T must have either a �1 subelement or a �2 subelement, and thus the sum of the numberof these �1 subelements and the number of �2 subelements equals the number of � elementsin T .The set of ardinality onstraints determined by DTD D, denoted by 	D, onsists of the fol-lowing:|jext(r)j = 1; i.e., there is a unique root in any XML tree valid w.r.t. D;|onstraints of  � for eah � 2 E; these assure that P (�) is satis�ed;|jext(�)j = Xxi�;� 02X�xi�;� 0 for eah � 2 (Enfrg)[fSg; this indiates that the set ext(�) inludesall � elements no matter where they our in an XML tree;|x � 0 for any variable x used above; i.e., the number of elements (subelements) is nonnegative.We say that 	D is onsistent if and only if 	D admits an integer solution. That is, there is aninteger assignment to the variables of 	D suh that all the linear integer onstraints in 	D aresatis�ed.As an example, let us onsider the simple DTDs DN1 and DN2 given above. The ardinalityonstraints determined by these DTDs are given below:	DN1 : teahers: jext(teahers)j = x1(teaher; teahers) jext(teahers)j = x2(�1t ; teahers) �1t : jext(� 1t )j = x1(��; �1t ) + x2(�2t ; �1t ) �2t : jext(� 2t )j = x1(teaher; �2t ) jext(� 2t )j = x2(�1t ; �2t ) teaher: jext(teaher)j = x1(teah; teaher) jext(teaher)j = x2(researh; teaher)Journal of the ACM



30 � Wenfei Fan and Leonid Libkin teah: jext(teah)j = x1(subjet; teah) jext(teah)j = x2(subjet; teah) subjet: jext(subjet)j = x1(S; subjet) researh: jext(researh)j = x1(S; researh)moreover,jext(teahers)j = 1 jext(teaher)j = x1(teaher; teahers) + x1(teaher; �2t )jext(� 1t )j = x2(�1t ; teahers) + x2(�1t ; �2t ) jext(� 2t )j = x2(�2t ; �1t )jext(��)j = x1(��; �1t ) jext(teah)j = x1(teah; teaher)jext(subjet)j = x1(subjet; teah) + x2(subjet; teah)jext(researh)j = x2(researh; teaher) jext(S)j = x1(S; subjet) + x1(S; researh)all variables � 0.For example, x1(teaher; teahers) indiates the number of teaher hildren of all teahers nodes,and x1(teaher; �2t ) stands for the number of teaher hildren of nodes labeled � 2t . The ardinalityof ext(teaher) equals the sum of x1(teaher; teahers) and x1(teaher; �2t ). Obviously, there is a uniquenode labeled teahers, i.e., the root. Hene we have x1(teaher; teahers) = 1 sine the root has aunique teaher hild. Thus jext(teaher)j = 1 + x1(teaher; �2t ).	D2: db: jext(db)j = x1(foo; db) foo: jext(foo)j = x1(foo; foo)moreover, jext(db)j = 1 jext(foo)j = x1(foo; db) + x1(foo; foo) all variables � 0.It is easy to hek that 	DN1 is onsistent, whereas 	DN2 is not.We next show that 	D indeed haraterizes the DTD D.Lemma 4.5. Let D be a simple DTD and 	D be the set of ardinality onstraints determinedby D. Then 	D is onsistent if and only if there is an XML tree T suh that T j= D. Inaddition, for eah � 2 E, jext(�)j in T equals the value of the variable jext(�)j given by thesolution of 	D.Proof: First, assume that there is an XML tree T valid w.r.t. D. We de�ne an integer solutionof 	D as follows. For eah � 2 E [ fSg, let the value of the variable jext(�)j be the numberof � nodes in T . We proeed to assign integer values (number of ertain subelements) to othervariables by onsidering the struture of P (�) for eah � 2 E. (1) If P (�) = �1 for some�1 2 E [ fSg, then let the value of the variable x1�1;� be the number of �1 subelements of all �elements in T . (2) If P (� 0) = (�1; �2), then let the value of the variable x1�1 ;� (resp. x2�2;� ) bethe number of the �1 (resp. �2) subelements of all � elements. In partiular, if �1 = �2, thenJournal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 31x1�1;� (resp. x2�2 ;�) has the number of the �rst (resp. seond) subelements of all � elements.(3) If P (� 0) = (�1j�2), then let the value of the variable x1�1 ;� (resp. x2�2;�) be the number of �1(resp. �2) subelements. If �1 = �2, then x1�1;� and x2�2;� may have any value as long as jext(�)j =x1�1;� +x2�2;� . We next show that this assignment is an integer solution of 	D. First, the value ofany variable is nonnegative, as it is the number of ertain elements (subelements) in T . Seond,jext(r)j = 1 as T has a unique root. Third, for eah � 2 E, by indution on the struture ofP (�), it an be veri�ed that the assignment satis�es  � sine T j= D and  � desribes P (�)quantitatively. Finally, the value of the variable jext(�)j is equal to the sum of all variables ofthe form xi�; � 0 (i 2 [1; 2℄) sine it ounts all the � elements in T no matter where they are. Thisan be easily veri�ed by ontradition. Thus the assignment is indeed a solution of 	D. Notethat by the de�nition of the solution, the value of the variable jext(�)j given by the solutionequals jext(�)j in T .Conversely, assume that 	D admits an integer solution. Observe that all these variables havenonnegative integer values beause of the inequalities in 	D. We show that there is an XMLtree T = (V; lab; ele; att; val; root) valid w.r.t. D. To do so, for eah � 2 E [ fSg, we reatejext(�)j many distint nodes and label them with � . We refer to this set of nodes as ext(�).In addition, for eah v 2 ext(�) and l 2 R(�), we reate a distint node, referred to as vl, andlabel it with l. Let V = [�2E[fSgext(�) [ [�2Efvl j v 2 ext(�); l 2 R(�)glab(v) = � � if v 2 ext(�) and � 2 E [ fSgl if v = vl for some vlatt(v; l) = � vl if vl 2 Vunde�ned otherwiseval(v) = � empty string if lab(v) is S or l, where l 2 Aunde�ned otherwiseIt is easy to verify that these funtions are well de�ned. Let root be the node labeled r, whih isunique by jext(r)j = 1 in 	D. Finally, to de�ne the funtion ele, we �rst mark nodes in ext(�)with variables in X� so that they an be grouped as subelements of ertain elements. For eahvariable xi�; � 0 in X� , we hoose xi�; � 0 many distint nodes labeled � and mark them with xi�; � 0 .Note that for eah � 2 E [ fSg, every � node in V n frootg an be marked one and onlyone by jext(�)j = Xxi�;� 02X�xi�;� 0 in 	D. Given these marked elements, starting at root, for eah� 2 E and eah � node v, we de�ne ele(v) as follows. If P (�) is �1 2 E [ fSg, then we hoosea distint �1 node y marked with x1�1;� and let ele(v) = [y℄. If P (�) = (�1; �2), then we hoosea �1 node y1 marked with x1�1;� and a �2 node y2 marked with x2�2 ;� , and let ele(v) = [y1; y2℄. IfJournal of the ACM



32 � Wenfei Fan and Leonid LibkinP (�) = (�1j�2), then we hoose a node y marked with either x1�1;� or x2�2 ;� and let ele(y) = [y℄.By 	D onstraints, eah element or text node in V n frootg an be hosen one and only oneas a subelement of some other element. By indution on the struture of P (�), one an verifythat T de�ned in this way is indeed an XML tree and T j= D. Finally, by the de�nition of T ,jext(�)j in T equals the value of the variable jext(�)j given by the solution of 	D. 2It is straightforward to show that given any simple DTDD, the set 	D of ardinality onstraintsdetermined by D an be omputed in linear time. As a result, the size of 	D is linear in jDj.Charaterizing DTDs and unary onstraints. To omplete our haraterization, given aDTD D = (E; A; P; R; r) and a �nite set � of CUnaryK ;IC onstraints over D, we de�ne a system	(D; �) of integer onstraints. The system 	(D; �), referred to as the set of ardinalityonstraints determined by D and �, is de�ned to be:	DN [ C� [ f(jext(�)j > 0)! (jext(�:l)j > 0) j � 2 E; l 2 R(�)g;where DN is the simpli�ed DTD of D, 	DN and C� are the sets of ardinality onstraintsdetermined by DN and �, respetively. In 	(D; �) we treat jext(�:l)j as a variable.We say that 	(D; �) is onsistent if and only if 	(D; �) admits an integer solution.For example, reall the DTDs D1 and D2, and the onstraint sets �1 and �2 (the empty set)given in Setion 1. It is easy to verify that neither 	(D1; �1) nor 	(D2; �2) is onsistent. Thisis onsistent with the observations made in Setion 1.Observe that 	(D; �) an be partitioned into two sets: 	(D; �) = 	l(D; �)[	(D; �), where	l(D; �) onsists of linear integer onstraints, and 	(D; �) onsists of onstraints of the form(jext(�)j > 0 ! jext(�:l)j > 0), whih are to ensure that every � element has an l attribute.Note that jext(�:l)j � jext(�)j is already in C�.It is easy to verify that 	(D; �) an be omputed in linear time in jDj and j�j, and thus itssize is also linear in jDj and j�j.We next show that 	(D; �) indeed haraterizes D and �.Lemma 4.6. Let D be a DTD, � be a �nite set of CUnaryK ;IC onstraints over D, and 	(D; �)be the set of ardinality onstraints determined by D and �. Then 	(D; �) is onsistent if andonly if there exists an XML tree T suh that T j= D and T j= �.Proof: Let DN be the simpli�ed DTD of D. By Lemma 4.3, it suÆes to show that 	(D; �)is onsistent if and only if there is an XML tree T suh that T j= DN and T j= �.Suppose that there exists an XML tree T suh that T j= DN and T j= �. We show thatJournal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 33	(D; �) admits an integer solution. By Lemma 4.4, we have T j= C�, where C� is the set ofardinality onstraints determined by �. By Lemma 4.5, one an de�ne an integer solution of	DN . The assignment assures that for eah � 2 E, the value of the variable jext(�)j equalsthe number of all the � nodes in T . We extend the assignment as follows: for eah � 2 E andl 2 R(�), let the value of the variable jext(�:l)j be the number of distint l attribute values ofall the � nodes in T . Thus by T j= C�, this extended assignment satis�es C�. In addition, ifjext(�)j > 0 then jext(�:l)j > 0 as every � element in T has an l attribute. Hene the assignmentis indeed a solution to 	(D; �). Thus 	(D; �) is onsistent.Conversely, suppose that 	(D; �) admits an integer solution. We show that there is an XMLtree T suh that T j= DN and T j= �. Observe that an integer solution to 	(D; �) is alsoa solution to 	DN . Thus by Lemma 4.5, there is T 0 = (V; lab; ele; att; val; root) suh thatT 0 j= DN . Moreover, for eah � 2 E, jext(�)j in T 0 is equal to the value of the variable jext(�)jgiven by the assignment. We onstrut another XML tree T 00 by modifying the de�nition ofthe funtion val of T 0 suh that for eah � 2 E and l 2 R(�), jext(�:l)j in T 00 equals the valueassigned to the variable jext(�:l)j by the assignment. This is possible sine jext(�:l)j � jext(�)j isin C�, and the assignment is also a solution to C�. Moreover, by (jext(�)j > 0! jext(�:l)j > 0)in 	(D; �), every � element in T 00 an have an l attribute. It is straightforward to verify thatT 00 j= C� and T 00 j= DN . Hene by Lemma 4.4, there exists an XML tree T suh that T j= DNand T j= �. 2Given these lemmas, we proeed to prove Theorem 4.1.Proof of Theorem 4.1 (ontinued): We enode an instane (D;�) of the onsisteny problem forCUnaryK ;FK as an instane of LIP. By Lemma 4.6, it suÆes to enode 	(D; �) as an instane of LIP.Reall that 	(D; �) an be partitioned into two sets: 	l(D; �) of linear integer onstraints,and 	(D; �) of onstraints of the form (x > 0 ! y > 0). We �rst enode 	(D; �) witha set of linear integer onstraints. Let S be the set of all the pairs (x; y) for eah onstraint(x > 0! y > 0) in 	(D; �). For eah subset X of S, we de�ne 	X to be	l(D; �) [ fx = 0; y = 0 j (x; y) 2 Xg [ fx � 1; y � 1 j (x; y) 2 S nXg:It is easy to see that 	(D; �) admits an integer solution if and only if there is some 	X thathas an integer solution. Observe that 	X an be represented as an instane of LIP sine anequality F1 = F2 is equivalent to inequalities F1 � F2 and F2 � F1. In addition, for all variablesx in 	(D; �), we have x � 0 in 	(D; �). Thus any solution of 	X is nonnegative. Hene wean apply the result of [32℄ here, whih says that if 	X has an integer solution, then it hasone in whih the values of all variables are no larger than n (ma)2m+1, where a is the largestabsolute value of the onstants in 	X . In other words, 	X has an integer solution in whih thevalue of eah variable has a length in binary of at most 1 + dlogn+ (2m+ 1) � log(ma)e manybits, and the bounds on solutions for all 	X 's are the same. Let  be a number that in binaryJournal of the ACM



34 � Wenfei Fan and Leonid Libkinnotation has 1 + dlogn + (2m + 1) � log(ma)e many 1's. Observe that  an be omputed inO(s logs) time. Thus we de�ne a new system � of linear integer onstraints that is the sameas 	l(D; �) exept it also inludes  y � x for all (x > 0)! (y > 0) in 	(D; �). It is easy toverify that 	(D; �) has an integer solution i� � has an integer solution. Indeed, if 	(D; �)has an integer solution then it has one bounded by . Thus the solution satis�es  y � x, i.e.,it is an integer solution to �. Conversely, if � has an integer solution, then it is also an integersolution of 	l(D; �) and moreover, if x > 0 then y > 0 by  y � x in �; that is, it is aninteger solution to 	(D; �). As � an be represented as an instane of LIP, we an de�ne anmatrix A	 and a vetor ~b	 of integers suh that 	(D; �) has an integer solution if and only ifA	 ~x � ~b	 has an integer solution. Reall that 	(D; �) an be omputed in linear time andits size, denoted by s, is linear in jDj and j�j. Thus the instane of LIP an be omputed inO(s2 � log s) time in jDj and j�j.This ompletes the proof of Theorem 4.1. 2The enoding is not only interesting in its own right, but also useful in the onsisteny analysesof CUnaryK ;FK and CUnaryK:;IC onstraints, as well as in resolving a speial ase of CUnaryK ;FK onstraintimpliation.4.2 CUnaryK ;FK and CUnaryK:;IC onstraintsWe next establish the preise omplexity bound on the onsisteny problem for unary keys andforeign keys:Theorem 4.7. The onsisteny problem for CUnaryK ;FK onstraints is NP-omplete.Proof: Corollary 4.2 has shown that the problem is in NP. We show that it is NP-hard byredution from a variant of LIP, namely, A~x = ~b;where for all i 2 [1; m℄, j 2 [1; n℄, aij oeÆients are in f0; 1g, all bi elements are 1, and all xjomponents are binary, i.e., in f0; 1g. It is known that the variant is also NP-omplete [22℄.Given suh an instane A~x = ~b, we de�ne a DTD D and a set � of CUnaryK ;FK onstraints overD suh that there is an XML tree valid w.r.t. D and satisfying � if and only if A~x = ~badmits a binary solution. For i 2 [1; m℄, we use Fi to denote Xj2[1;n℄aij xj. We de�ne D to be(E; A; P; R; r), whereE = frg [ fFi j i 2 [1; m℄g [ fbi j i 2 [1; m℄g [ fV Fi j i 2 [1; m℄gJournal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 35[ fXij j i 2 [1; m℄; j 2 [1; n℄g [ fZij j i 2 [1; m℄; j 2 [1; n℄gA = fvg [ fAij j i 2 [1; m℄; j 2 [1; n℄gP (r) = F1; :::; Fm; b1; :::; bmP (Fi) = Xij1; :::; Xijl for i 2 [1; m℄, where Xij1; :::; Xijl is a sub-list of Xi1; :::; Ximsuh that Xij is in P (Fi) i� ai j in A is 1P (Xij) = Zij j � for i 2 [1; m℄ and j 2 [1; n℄P (Zij) = V Fi for i 2 [1; m℄ and j 2 [1; n℄P (V Fi) = P (bi) = � for i 2 [1; m℄R(Zij) = fAijg for i 2 [1; m℄ and j 2 [1; n℄R(V Fi) = R(bi) = fvg for i 2 [1; m℄R(r) = R(Fi) = R(Xij) = ;An XML tree valid w.r.t. D has the form shown in Figure 4. Intuitively, Xij enodes xj inFi, and Zij enodes the value of Xij: Xij has value 1 if and only if Xij has a Zij hild. Theelement type V Fi is to ode the value of Fi. Observe that A~x = ~b has a solution if and only iffor eah row i 2 [1; m℄ there is exatly one olumn j 2 [1; n℄ suh that aij = 1 and xj = 1. Inthe XML tree T representing the instane, this means that for every i there is exatly one Xijelement with a Zij hild. This is ahieved by restriting Fi to have a unique V Fi desendant,and thus to have value 1, by means of the attribute v of V Fi and onstraints. More spei�ally,we inlude the following in the set �:V Fi:v ! V Fi; bi:v ! bi; V Fi:v � bi:v; bi:v � V Fi:v:These ensure that Fi = bi = 1 as T has a unique bi node. In addition, to ensure that allourrenes of xj have the same value, the following are in �: for j 2 [1; n℄ and i; l 2 [1; m℄,Zij:Aij ! Zij; Zij:Aij � Zlj:Alj:These assert that Xij has value 1 if and only if Xlj equals 1. It is easy to see that the enodingan be done in PTIME in m and n. Moreover, A~x = ~b admits a binary solution if and only ifD has a valid XML tree satisfying �. Thus this is indeed a PTIME redution from the variantof LIP. 2Reall that in relational databases, it is ommon to onsider primary keys. That is, for eahrelation one an speify at most one key, namely, the primary key of the relation. In the XMLsetting, the primary key restrition requires that for eah element type one an speify at mostone key. This is the ase for \keys" spei�ed with ID attributes, sine in a DTD, at most oneID attribute an be spei�ed for eah element type. Under the primary key restrition, theonsisteny problem for a lass C of XML onstraints is to determine, given any DTD D andJournal of the ACM
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Fig. 4. A tree used in the proof of Theorem 4.7�nite set � of C onstraints in whih there is at most one key for eah element type (giveneither as keys or as part of foreign keys), whether there is an XML tree valid w.r.t. D andsatisfying �; similarly for impliation.One might think that the primary key restrition would simplify the onsisteny analysis ofCUnaryK ;FK onstraints. However, it is not the ase.Corollary 4.8. Under the primary key restrition, the onsisteny problem for CUnaryK ;FK re-mains NP-omplete.Proof: The redution from LIP given in the proof of Theorem 4.7 de�nes at most one key foreah element type. 2A mild generalization of the enoding above an establish the omplexity of the onsistenyproblem for CUnaryK:;IC , the lass of unary keys, inlusion onstraints and negations of keys. As weshall see shortly, the result for CUnaryK:;IC helps us study impliation of CUnaryK ;FK onstraints.Corollary 4.9. The onsisteny problem for CUnaryK:;IC onstraints is NP-omplete.Proof: Sine CUnaryK ;FK is a sub-language of CUnaryK:;IC , from Theorem 4.7 follows immediately thatthe onsisteny problem for CUnaryK:;IC is NP-hard. We next show that the problem remains in NP.Let D be a DTD and � be a set of CUnaryK:;IC onstraints over D. We write � as �1 [ �2, where�1 is a set of unary keys and unary inlusion onstraints over D, and �2 is a set of negations ofunary keys over D. Let 	(D;�1) be the system of linear inequalities determined by D and �1,as de�ned in the proof of Theorem 4.1. It admits an integer solution i� there exists an XMLJournal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 37tree T suh that T j= �1 and T j= D. We de�ne another system of linear inequalities, denotedby 	(D;�) and referred to as the system determined by D and �, to be	(D;�) = 	(D;�1) [ fjext(�:l)j < jext(�)j j :(�:l! �) 2 �2g:As 	(D;�) an be omputed in PTIME, it suÆes to show the following laim.Claim: There is an XML tree T suh that T j= � and T j= D i� 	(D;�) has an integersolution.For if it holds, then the problem is in NP by redution to LIP as in the proof of Theorem 4.1.We show the laim as follows. Assume that there exists a tree T suh that T j= � and T j= D.Sine T j= �1, by Lemmas 4.5 and 4.6 and Theorem 4.1, it an be veri�ed that there is aninteger solution to 	(D;�1), the system of linear inequalities determined by D and �1, suhthat the values of the variables jext(�)j and jext(�:l)j in 	(D;�1) given by the solution are theardinalities jext(�)j and jext(�:l)j in T . Note that for all element type � and attribute l of� in D, jext(�)j and jext(�:l)j are variables in 	(D;�1). Thus for eah �:l 6! � , the solutionalso assigns values to jext(�)j and jext(�:l)j. We laim that it is also a solution to 	(D;�).To see this, observe that it is always true that jext(�)j � jext(�:l)j in T sine every � elementin T ontributes at most one distint �:l value. Thus by T j= �2, there must be two distint� elements d1 and d2 in T suh that d1:l = d2:l. Thus jext(�)j > jext(�:l)j. Therefore, allinequalities in 	(D;�) are satis�ed by the solution.Conversely, assume that 	(D;�) has an integer solution. Sine it is also a solution to 	(D;�1),again by Lemma 4.5 and 4.6 and Theorem 4.1, it an be veri�ed that there is a tree T suhthat T j= D, T j= �1 and moreover, the ardinalities jext(�)j and jext(�:l)j in T are the valuesof the variables jext(�)j and jext(�:l)j in 	(D;�1) given by the solution. We laim that T j= �.Indeed, for any �:l 6! � in �2, we have jext(�)j > jext(�:l)j in T . Thus there must be twodistint � elements d1 and d2 in T suh that d1:l = d2:l. That is, T j= �:l 6! � . Hene T j= Dand T j= �. 2It should be mentioned that the problem remains NP-hard under the primary key restrition.This an be veri�ed along the same lines as the proof of Corollary 4.8.Corollary 4.9 also tells us the omplexity of a speial ase of the impliation problem for CUnaryK ;FK ,referred to as impliation problem for unary keys by CUnaryK ;FK onstraints:Theorem 4.10. The following is oNP-omplete, even under the primary key restrition:given any DTD D, any set � of CUnaryK ;FK onstraints and any unary key ' over D, whether(D;�) ` '. Journal of the ACM



38 � Wenfei Fan and Leonid LibkinProof: Observe that (D;�) ` ' i� �[f:'g and D are not onsistent, i.e., there exists no XMLtree T suh that T j= D, T j= � and T j= :'. Sine � [ f:'g is a set of CUnaryK:;IC onstraints,the impliation problem for unary keys by CUnaryK ;FK onstraints is in oNP by Corollary 4.9. Tosee that the problem is oNP-hard, reall the enoding given in the proof of Lemma 3.3. Ifthe set � of onstraints given is a set of CUnaryK ;FK onstraints, then that enoding also serves asa redution from the onsisteny problem for CUnaryK ;FK to the omplement of (D;�) ` '. Thusfrom Theorem 4.1 follows that the impliation problem for unary keys by CUnaryK ;FK onstraints isoNP-hard. Observe that the redution in the proof of Lemma 3.3 de�nes at most one key foreah element type. Thus given a set � of onstraints, if � satis�es the primary key restrition,then so does the set of all onstraints used in the redution. Hene it remains oNP-hard evenunder the primary key restrition. 2Finally, we identify some PTIME deidable ases of the onsisteny and impliation problems.First, these problems for unary keys only are deidable in linear time, by Theorem 3.5. We nextshow that given a �xed DTD D, the onsisteny and impliation analyses beome simpler. Themotivation for onsidering a �xed DTD is beause in pratie, one often de�nes the DTD of aspei�ation at one time, but writes onstraints in stages: onstraints are added inrementallywhen new requirements are disovered.Corollary 4.11. For a �xed DTD, the following problems are deidable in PTIME:|The onsisteny problems for CUnaryK ;FK and CUnaryK:;IC .|Impliation of unary keys by CUnaryK ;FK onstraints.Proof: By Theorems 4.1, 4.10 and Corollary 4.9, an instane (D;�) of these problems an beenoded as a system � of linear integer onstraints. That is, these problems an be reduedto heking whether � admits an integer solution. The system � onsists of onstraints of C�(derived from �) and 	DN (derived from the simpli�ed DTD DN of D), and an be omputedin PTIME in jDj. Given a �xed DTD D, the number of variables in C� is bounded by the sizeof D (O(jDj2)), and the number of variables in 	DN is also �xed. Thus the number of variablesin � is bounded. It is known that when the number of variables in a system of linear integeronstraints is bounded, heking whether the system admits an integer solution an be done inPTIME [29℄. Putting these together, we have Corollary 4.11. 25. UNARY KEYS, INCLUSION CONSTRAINTS AND NEGATIONSIn Setion 4, we have shown that the onsisteny problem for unary keys and foreign keys isNP-omplete. In this setion, we extend the result by showing that the problem remains in NPwhen negations of these unary onstraints are allowed. That is, the problem is NP-ompleteJournal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 39for CUnaryK:;IC:, the lass of unary keys, inlusion onstraints and their negations. This helps ussettle the impliation problems for CUnaryK ;FK and the more general CUnaryK ;IC , the lass of unary keysand foreign keys, and the lass of unary keys and inlusion onstraints, respetively. This isone of the reasons that we are interested in the onsisteny problem for CUnaryK:;IC:.Theorem 5.1. The onsisteny problem for CUnaryK:;IC: is NP-omplete.While this theorem subsumes Theorem 4.7, the redution is quite di�erent from the nie en-oding with instanes of LIP that we used for CUnaryK ;FK . In fat, while typially NP-ompleteproblems are easily shown to be in NP, and only the redution from a known NP-ompleteproblem is diÆult, for the onsisteny problem for CUnaryK:;IC:, the opposite is the ase, and theproof of membership in NP is a little involved (even assuming the enoding of keys and inlusiononstraints by instanes of LIP given in the previous setion). We annot redue the problemdiretly to LIP as before, beause there is no diret onnetion between �i:li 6� �j:lj and theardinalities jext(�i)j, jext(�j)j, jext(�i:li)j and jext(�j :lj)j in an XML tree.Proof: We develop an NP algorithm for determining the onsisteny of CUnaryK:;IC: onstraints.The algorithm takes advantage of another enoding of CUnaryK:;IC: onstraints with linear integeronstraints, whih haraterizes a set interpretation of unary inlusion onstraints and theirnegations. Let D be a DTD and � be a set of CUnaryK:;IC: onstraints over D. We partition �into �1 and �2, where �1 is a set of CUnaryK:;IC onstraints, and �2 onsists of negations of unaryinlusion onstraints over D. Let 	(D;�1) be the system of linear inequalities determined byD and �1, as desribed in the proof of Corollary 4.9. Let l1; : : : ; ln be an enumeration of allattributes in D. Without loss of generality, assume that li is an attribute of element type �i(note that �i's need not be distint). Let U = (uij)ni;j=1 and V = (vij)ni;j=1 be two matrieswhose elements are nonnegative integers. We say that they admit a set representation if thereis a family of �nite sets A1; : : : ; An suh thatuij = jAi \ Aj j; vij = jAi n Aj j :We extend 	(D;�1) with new variables uij; vij, and equalities:|jext(�i:li)j = uii = uij + vij for all i; j 2 [1; n℄;|vij = 0 for all �i:li � �j:lj in �1, and moreover, vii = 0;|vij > 0 for all �i:li 6� �j:lj in �2.Let us denote the new system by 	(D;�) and refer to it as the system determined by D and �.Observe that 	(D;�) an be simply onverted to a system of linear inequalities (by treatingan equality as two inequalities). Journal of the ACM



40 � Wenfei Fan and Leonid LibkinThe intended interpretation for the variable uij is j ext(�i:li) \ ext(�j:lj) j, and j ext(�i:li) next(�j :lj) j for vij. Thus vij > 0 in 	(D;�) says that ext(�i:lj) 6� ext(�j :lj) for all �i:li 6� �j:lj in�2.The lemma below reveals the onnetion between the enoding and the onsisteny problemwe are investigating.Lemma 5.2. The linear system 	(D;�) determined by DTD D and onstraints � has aninteger solution with U;V having a set representation if and only if there is an XML tree Tsuh that T j= D and T j= �.Proof: Let D be a DTD, �1 be a set of CUnaryK:;IC onstraints over D, �2 be a set of negationsof unary inlusion onstraints over D, � = �1 [ �2, and 	(D;�) be the system of linearinequalities determined by D and � as desribed above. We show that 	(D;�) has an integersolution with U;V having a set representation i� there is an XML tree T suh that T j= � andT j= D.Assume that there exists an XML tree T suh that T j= � and T j= D. Sine T j= �1,as in the proof of Corollary 4.9 we an de�ne an integer solution to 	(D;�1), the system oflinear inequalities determined by D and �1. We extend the solution as follows: let uij bejext(�i:li) \ ext(�j :lj) j, and vij be jext(�i:li) n ext(�j:lj) j. It is easy to verify that this is indeeda solution to 	(D;�) with U;V having a set representation.Conversely, assume that 	(D;�) has an integer solution with U;V having a set representation.Then there are �nite sets A1; : : : ; An suh thatuij = jAi \ Aj j; vij = jAi n Aj j :Again as in the proof of Corollary 4.9, we reate a tree T suh that T j= �1 and T j= D. Inaddition, we de�ne the val funtion in T suh that ext(�i:li) = Ai for i 2 [1; n℄. This is possiblesine jext(�i:li)j = uii = uij + vij is in 	(D;�) for all i; j 2 [1; n℄. Beause vij > 0 is in 	(D;�)for all �i:li 6� �j:lj in �2, we have j ext(�i:li) n ext(�j:lj) j> 0. That is, T j= �i:li 6� �j:lj. ThusT j= �2. This ompletes the proof of the lemma. 2It remains to show that one an hek in NP whether the system 	(D;�) has an integer solutionwith U;V having a set representation. We start with a lemma.Lemma 5.3. Given 	(D;�), one an ompute, in polynomial time, a number M suh that	(D;�) has an integer solution with U;V having a set representation if and only if it admitssuh a solution with all variables being bounded by M .Proof: To prove the lemma, we need to extend 	(D;�). Let � be the set of funtions � :f1; : : : ; ng ! f0; 1g whih are not identially 0, where n is the number of attributes in D. ForJournal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 41every �, we introdue a new variable z� (note that the number of variables is now exponentialin the size of the problem). The intended interpretation of z� is the ardinality of\i:�(i)=1 ext(�i:li) n [j:�(j)=0 ext(�j :lj):We now extend 	(D;�) to 	0(D;�) by adding the following equalities:uij = X�:�(i)=�(j)=1 z�; vij = X�:�(i)=1;�(j)=0 z�:Clearly, 	(D;�) has an integer solution with U;V having a set representation i� 	0(D;�) hasan integer solution, as the variables z� desribe all possible intersetions of ext(�i:li) and theiromplements, and the equalities above show how to reonstrut uij and vij from them. Wethus must show that if 	0(D;�) has an integer solution then it must have one with a boundon uij; vij, whih is polynomial (in terms of the size of 	(D;�)). For that, reall [32℄ that ifa system of k linear inequalities with l variables and all oeÆients at most  has an integersolution, then it has an integer solution in whih none of the variables exeeds l(k)2k+1. Thus,M an be taken to be a number that in binary notation has 1 + dlog l + (2k + 1) � log(k)emany 1's. Note that the number of variables, l, of 	0(D;�) is at most exponential in the sizeof 	(D;�), and the number of equalities, k, is at most polynomial. This shows that M an befound in polynomial time, and thus proves the lemma. 2Given Lemmas 5.2 and 5.3, let us go bak to the proof of that onsisteny analysis of � overD is in NP. We present an NP algorithm for determining the onsisteny of � over D. Ournondeterministi mahine omputes M given by Lemma 5.3, and then guesses a solution withall the omponents bounded by M . It then tests if the U;V part has a set representation.To do so, we transform U;V, in polynomial time, into another matrix W, and then run anondeterministi polynomial time mahine on W. If it returns `yes', then U;V have a setrepresentation, and thus by Lemma 5.2 the answer to whether � is onsistent over D is `yes'.Let K =M � n, where n is the number of all attributes in D. We now de�ne the matrix W. Itis a 2n� 2n matrix, withwij = 8>><>>: uij if i; j � nvi;j�n if i � n; j > nvi�n;j if i > n; j � nK � ui�n;j�n � vi�n;j�n � vj�n;i�n if i; j > nReall the INTERSECTION PATTERN problem: Given an m � m matrix A, are there setsY1; : : : ; Ym suh that aij =jYi\Yj j? This problem is known to be NP-omplete (see, e.g., [22℄).Journal of the ACM



42 � Wenfei Fan and Leonid LibkinWe now show the following: The INTERSECTION PATTERN problem returns `yes' on inputW i� U;V have a set representation.First, assume U;V have a set representation. That is, there are �nite sets A1; : : : ; An suh thatuij = jAi \ Aj j; vij = jAi n Aj j :By the assumption, all entries in U;V are bounded by M , and hene we may assume that allsets in the representation are subsets of a set U of ardinality K. Let m = 2n and de�ne Yi tobe Ai for i � n, and U n Ai�n for i > n. Then W is the intersetion pattern for this family ofsets, and thus the INTERSECTION PATTERN problem returns `yes' on W.Next, assume that the INTERSECTION PATTERN returns `yes' on W, so we have a familyof sets Y1; : : : ; Y2n for whih W is the intersetion pattern. Let U be the union of all Yj's. Weshow Yn+i = U n Yi for all i � n. We have wi;n+i = vii = 0, and thus Yn+i � U n Yi. Moreover,we have jYi [ Yn+i j= wii + wn+i;n+i = K. We next show that for every i; j � n it is the asethat Yi [ Yn+i = Yj [ Yn+j (and thus equals U). Note that both Yi [ Yn+i and Yj [ Yn+j areK-element sets. Furthermore,(Yi [ Yn+i) \ (Yj [ Yn+j) = (Yi \ Yj) [ (Yi \ Yn+j) [ (Yn+i \ Yj) [ (Yn+i \ Yn+j):Observe that these four sets are pairwise disjoint, and their ardinalities are wij = uij; wi;j+n =vij; wi+n;j = vji and wi+n;j+n = K �uij � vij � vji, respetively. Thus, the ardinality of the set(Yi [ Yn+i) \ (Yj [ Yn+j) is K, and sine the ardinality of eah Yi [ Yn+i and Yj [ Yn+j is K,we onlude Yi [ Yn+i = Yj [ Yn+j. This �nally shows that U has ardinality K, and thus eahYn+i is U n Yi for all i � n. This immediately gives us a set representation for U;V.To onlude, one we guessed a bounded solution to 	(D;�) (all omponents are at most M),we proeed to ompute in polynomial time the matrix W from U and V, and then run a non-deterministi polynomial time algorithm on it to hek ifW is an intersetion pattern. Puttingeverything together, we see that this nondeterministi polynomial time algorithm returns `yes'i� there is a bounded solution (and thus, there is a solution) to 	(D;�) for whih U;V havea set representation. By Lemma 5.2, this happens if and only if there exists an XML tree Tsuh that T j= D and T j= �.This ompletes the proof of Theorem 5.1. 2We next investigate impliation problems.Theorem 5.4. For eah of CUnaryK ;IC and CUnaryK ;FK , the impliation problem is oNP-omplete,even under the primary key restrition.Journal of the ACM



On XML Integrity Constraints in the Presene of DTDs � 43Proof: The impliation problem for CUnaryK ;IC is to determine, for a DTD D, a set � of CUnaryK ;IConstraints, and a onstraint ' (unary key or unary inlusion onstraint), whether (D;�) ` '.Note that (D;�) ` ' i� there is no XML tree T with T j= D ^ V� ^ :', and � [ f:'g isa set of CUnaryK:;IC: onstraints. Thus by Theorem 5.1, the impliation problem for CUnaryK ;IC is inoNP. One an show that it is oNP-hard under the primary key restrition using an argumentsimilar to the proof of Theorem 4.10. Similarly for the impliation problem for CUnaryK ;FK . 2Finally, along the same lines as Corollary 4.11, we show the following:Corollary 5.5. For a �xed DTD, the following problems an be determined in PTIME:|The impliation problem for CUnaryK ;FK .|The onsisteny problem for CUnaryK:;IC:.Proof: Let D be a DTD and � be a set of CUnaryK:;IC: onstraints over D. Let 	0(D;�) be thesystem of linear inequalities determined by D and �, as de�ned in the proof of Theorem 5.1.As in the proof of Corollary 4.11, one an show that the number of variables in 	0(D;�) isbounded by a funtion on the size of D. Therefore, when D is �xed, the number of variables in	0(D;�) is bounded by a onstant. It is known that when the number of variables in a systemof linear inequalities is bounded, it an be determined in PTIME whether the system admitsan integer solution [29℄. By the proofs of Lemma 5.2 and Theorem 5.1, 	0(D;�) admits aninteger solution if and only if there is an XML tree T suh that T j= D and T j= �. ThusCorollary 5.5 follows from Theorems 5.1 and 5.4. 26. CONCLUSIONWe have studied the onsisteny problems assoiated with four lasses of integrity onstraintsfor XML. We have shown that in ontrast to its trivial ounterpart in relational databases, theonsisteny problem is undeidable for CK ;FK , the lass of multi-attribute keys and foreign keys.This demonstrates that the interation between DTDs and key/foreign key onstraints is ratherintriate. This negative result motivated us to study CUnaryK ;FK , the lass of unary keys and foreignkeys, whih are ommonly used in pratie. We have developed a haraterization of DTDs andunary onstraints in terms of linear integer onstraints. This establishes a onnetion betweenDTDs, unary onstraints and linear integer programming, and allows us to use tehniquesfrom ombinatorial optimization in the study of XML onstraints. We have shown that theonsisteny problem for CUnaryK ;FK is NP-omplete. Furthermore, the problem remains in NP forCUnaryK:;IC:, the lass of unary keys, unary inlusion onstraints and their negations.We have also investigated the impliation problems for XML keys and foreign keys. In par-Journal of the ACM



44 � Wenfei Fan and Leonid Libkinmulti-attribute unary primary, unary DTD �xed, unary multi-attributekeys, foreign keys keys, foreign keys keys, foreign keys keys, foreign keys keys onlyonsisteny undeidable NP-omplete NP-omplete PTIME linear timeimpliation undeidable oNP-omplete oNP-omplete PTIME linear timeFig. 5. The main results of the papertiular, we have shown that the problem is undeidable for CK ;FK and it is oNP-omplete forCUnaryK ;FK onstraints. Several PTIME deidable ases of the impliation and onsisteny problemshave also been identi�ed. The main results of the paper are summarized in Figure 5.It is worth remarking that the undeidability and NP-hardness results also hold for other shemaspei�ations beyond DTDs, suh as XML Data [27℄, XML Shema [36℄ and the generalizationof DTDs proposed in [33℄. It remains open, however, whether the upper bounds (i.e., thedeidability and NP membership results) are still intat in these settings.This work is a �rst step towards understanding the interation between DTDs and integrityonstraints. A number of questions remain open. First, we have only onsidered keys andforeign keys de�ned with XML attributes. We expet to extend tehniques developed herefor more general shema and onstraint spei�ations. Seond, other onstraints ommonlyfound in databases, e.g., inverse onstraints, deserve further investigation. Third, a lot of workremains to be done on identifying tratable yet pratial lasses of onstraints and on developingheuristis for onsisteny analysis. Finally, a related projet is to use integrity onstraints todistinguish good XML design (spei�ation) from bad design, along the lines as normalizationof relational shemas. Coding with linear integer onstraints gives us deidability for someimpliation problems for XML onstraints, whih is a �rst step towards a design theory forXML spei�ations.Aknowledgments. We thank Mihael Benedikt, Alberto Mendelzon, Frank Neven and DanSuiu for helpful disussions. We are grateful to the referees for valuable suggestions on sim-plifying the proofs and on improving the paper.REFERENCES[1℄ S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.[2℄ S. Abiteboul and V. Vianu. Regular path queries with onstraints. JCSS, 58(4):428{452, 1999.[3℄ V. Apparao et al. Doument Objet Model (DOM) Level 1 Spei�ation. W3C Reommendation, Ot.1998. http://www.w3.org/TR/REC-DOM-Level-1/.Journal of the ACM
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