
String Operations in Query Languages�Mi
hael BenediktyBell Labs Leonid LibkinxU. Toronto Thomas S
hwenti
k{U. Mainz Lu
 Segou�nkINRIA
Abstra
tWe study relational
al
uli with support for string op-erations. While SQL restri
ts the ability to mix stringpattern-mat
hing and relational operations, prior pro-posals for embedding SQL in a
ompositional
al
uluswere based on adding the operation of
on
atenationto �rst-order logi
. These latter proposals yield
om-positional query languages extending SQL, but are un-fortunately
omputationally
omplete. The unboundedexpressive power in turn implies strong limits on theability to perform optimization and stati
 analysis ofproperties su
h as query safety in these languages.In
ontrast, we look at
ompositional extensions of re-lational
al
ulus that have ni
e expressiveness, de
id-ability, and safety properties, while
apturing string-mat
hing queries used in SQL. We start with an exten-sion based on the string ordering and LIKE predi
ates.This extension shares some of the attra
tive proper-ties of relational
al
ulus (e.g. e�e
tive syntax for safequeries, low data
omplexity), but la
ks the full powerof regular-expression pattern-mat
hing. When we ex-tend this basi
 model to in
lude string length
ompar-ison, we get a natural string language with great ex-pressiveness, but one whi
h in
ludes queries with high�Part of this work was done while the se
ond and the third authorsvisited INRIA, and the se
ond and the fourth authors visited Mainz.yBell Laboratories, 263 Shuman Blvd, Naperville, IL 60566, USA.E-mail: benedikt�resear
h.bell-labs.
om.xDepartment of Computer S
ien
e, University of Toronto, 6King's College Road, Toronto, Ontario M5S 3H5, Canada. E-mail:libkin�
s.toronto.edu. Resear
h aÆliation: Bell Labs.{Johannes Gutenberg-Universit�at Mainz, Institut f�ur Informatik,55099 Mainz, Germany. Email: ti
k�informatik.uni-mainz.de.kINRIA-Ro
quen
ourt, B.P. 105, 78153 Le Chesnay Cedex,Fran
e. E-mail: Lu
.Segou�n�inria.fr.

(albeit bounded) data
omplexity. We thus explorethe spa
e between these two languages. We
onsidertwo intermediate languages: the �rst extends our baselanguage with fun
tions that trim/add leading
hara
-ters, and the other extends it by adding the full powerof regular-expression pattern-mat
hing. We show thatboth these extensions inherit many of the attra
tiveproperties of the basi
 model: they both have
orre-sponding algebras expressing safe queries, and low
om-plexity of query evaluation.1 Introdu
tionString manipulation fa
ilities have long been re
og-nized as a
riti
al
omponent of a realisti
 databasequery language. In SQL, for example, the WHERE
lause
an
ontain string pattern-mat
hing expressions, su
has FACULTY.NAME LIKE 'Nyk%nen'. These expressions
an themselves be seen as queries over string relations:the above
lause, for example,
an be seen as a sele
-tion performed on a proje
tion of the FACULTY relation.While the Relational Cal
ulus gives a satisfa
tory for-mal model for SQL queries in the absen
e of built-indatatypes, there has been thus far no satisfa
tory modelthat fully a

ounts for string queries. The la
k of anadequate formal model is related to the fa
t that SQLrestri
ts the intera
tion of string operations and rela-tional operations in a number of ad-ho
 ways: one
an-not apply the LIKE operator to a subquery to build upa new query, nor
an one take the produ
t of two stringexpressions built with LIKE. Our goal here is to presentquery languages that extend relational
al
ulus to in-
lude string pattern-mat
hing in su
h a way that stringqueries
an be freely
omposed with relational expres-sions. The resulting languages
an be used as formaltools for analyzing the
omplexity and expressivenessof SQL, and
ould also serve as target query languagesamenable to the optimizations that result from the in-tera
tion of relational and string operations. In this pa-

per we explore several su
h languages, and study theirexpressive power,
omplexity, and stati
 analysis prop-erties.Some approa
hes toward unifying string algebras withrelational algebra have been developed in the prior liter-ature. [17℄ studied the
onsequen
es of adding pattern-mat
hing features to SQL. [19, 22, 18℄ proposed an ex-tension of the relational
al
ulus with alignment log-i
s and studied their
omplexity and expressive power,while [11, 12℄
onsidered Datalog extended with ap-propriate transdu
ers for string operations, proving anumber of
ompleteness results. In [14℄ arbitrary re-gions (substrings)
an be queried; this, when
oupledwith relational
al
ulus, gives the power of string
on-
atenation. Closer to our approa
h, [20, 26℄ study therelational
al
ulus/algebra extended with an operationfor
on
atenating strings. [15℄ studies �rst-order logi
over term algebras and extends expressive bounds and
omplexity results from relational
al
ulus to this set-ting. But SQL-style string pattern-mat
hing
annot beexpressed in the language of [15℄ { indeed in this lan-guage one
annot even query for strings beginning witha �xed symbol.One problem fa
ed in any work
ombining stringpattern-mat
hing queries with relational
al
ulus is thatpattern-mat
hing expressions may return an in�nitenumber of strings. This is the standard issue of safety.The authors ta
kle this problem by identifying safe frag-ments of their languages, using a number of synta
ti
restri
tions | see, e.g., [19, 22, 18, 20, 26℄ | but they
annot
apture the safe fragment of the language syn-ta
ti
ally. A se
ond problem
on
erns expressive power.Many query languages designed in the prior literatureturn out to be Turing
omplete, a feature that in turnmakes many sorts of analysis and optimization impos-sible. Indeed, as noted in [20℄, adding just
on
atena-tion to the relational
al
ulus already yields a querylanguage whi
h is Turing
omplete. This immediatelyimplies that there is no e�e
tive syntax for the
orre-sponding safe fragment [28℄.In
ontrast to the above, in our work we seek languagesthat ful�ll the following
riteria:1. Query evaluation is eÆ
ient;2. There is e�e
tive syntax
apturing safe queries;3. There is an algebra equivalent to the language.We start with the observation that LIKE expressions
orrespond to �rst-order formulae over the model S
onsisting of strings with the pre�x operation and fun
-tions for
on
atenating alphabet symbols. We thus
on-sider relational
al
ulus, RC, over this model: the re-sulting query language
aptures basi
 SQL with simple

LIKE pattern-mat
hing and lexi
ographi
 ordering. Weshow that the safe fragment of this model
an be e�e
-tively
aptured in a natural way, and prove
omplex-ity bounds for queries in this language that mat
h theknown bounds for ordinary relational
al
ulus. RC(S)however, is unable to express
ertain natural queries,e.g., SELECT a � x FROM R, where a is a �xed
hara
-ter. We thus extend this language to RC(Slen) by in-trodu
ing string length, more pre
isely, string length
omparisons. This extension has mu
h greater expres-siveness: it enables additional operations su
h as trim-ming/adding symbols on both left and right of a string,the SIMILAR pattern-mat
hing for
he
king membershipin a regular language [21℄, and pattern-mat
hing on setsof n-tuples. We show that this language also satis�es
riteria 2 and 3 above, but in RC(Slen) one
an expressNP-
omplete and
oNP-
omplete problems.This leads us to the
onsideration of two intermedi-ate languages, RC(Sleft) and RC(Sreg). The �rst oneadds operations for trimming/adding leading
hara
-ters (that is,
hara
ters on the left), and the se
ondone gives us regular expression pattern mat
hing. Bothlanguages satisfy all three of the required
riteria, while
onsiderably extending the expressive power of RC(S).The paper is organized as follows. The next se
tionpresents the notations. Se
tion 3 brie
y reviews resultson relational
al
ulus with
on
atenation. Se
tion 4presents the sets of string operations
onsidered in thepaper. In Se
tion 5 we explore the expressive power and
omplexity of RC(S) and RC(Slen). Query safety forthese languages is investigated in Se
tion 6. In Se
tion7, we propose and study RC(Sleft) and RC(Sreg) and ex-tend the previous results to these languages. Completeproofs of all results
an be found in [9℄.2 NotationsStrings and operations on them For a �nite alphabet�, we write �� for the set of all �nite strings over �,and ��n for the set of all strings of length at most n.The empty string is denoted by �. We shall
onsider anumber of operations on strings; those used most oftenare:� x � y is the
on
atenation of two strings x and y.� x � y is true i� x is a pre�x of y. x � y is true i�x is a stri
t pre�x of y.� la(x), a 2 �, is a fun
tion that adds a as the lastsymbol: la(x) = x � a.� fa(x), a 2 �, is a fun
tion that adds a as the f irstsymbol: fa(x) = a � x.

� jxj is the length of string x.� x � y is de�ned to be the relative suÆx of y in x.That is, if x = y � z, then x � y = z; otherwisex� y = �.� x u y is the longest
ommon pre�x of x and y.We shall
onsider a number of �rst-order stru
turesM = h��;
i, where
 is a
olle
tion of predi
ates andfun
tions on ��. Often it is
onvenient to have all re-lational symbols in
. For that purpose, we introdu
ethe unary relation La (last symbol) whi
h is true of x i�the last symbol of x is a, and a binary relation Fa(x; y)whi
h holds i� y = fa(x) = a � x.Note that jxj does not return a string, so it is not anoperation of ��. Instead, we use the binary predi
ateel(x; y) (equal length) whi
h is true i� jxj = jyj.We write x l y to express that y extends x by exa
tlyone symbol. Let pre�x (C) stand for the pre�x-
losureof C: fs j s � s0; s0 2 Cg. By # (C) we denote fs jjsj � js0j; s0 2 Cg. Given C � �� and x 2 ��, by x u Cwe denote the longest string among x u
;
 2 C. Notethat this is well-de�ned, sin
e all the strings x u
 arepre�xes of x.Databases and query languages A database s
hemaSC is a
olle
tion of relation names R1; : : : ; Rl, Ri beingof arity pi > 0. In an instan
e of SC over a set U , ea
hRi is interpreted as a �nite subset of Upi . The a
tivedomain of a databaseD, adom(D), is the set of elementsfrom U that appear in D.The general setting for query languages is that of a �-nite database and an in�nite underlying stru
tureM =hU;
i, where
 is a set of operations (fun
tions andpredi
ates) on U . As our basi
 language we
onsiderrelational
al
ulus, or �rst-order logi
, over the s
hemaSC andM, denoted by RC(SC;M). We often omit SCwhen it is understood, or irrelevant. Here we will fo
usex
lusively on the string datatype, hen
e we will alwayshave U = ��. For example, if M = h��;�; (La)a2�i,the query9x R(x)^L0(x) ^9y(y � x^L1(y)^ (:9z y � z � x))tests if there is a string in the relation R whi
h endswith 10. Indeed, it asks if the last symbol of x is 0, andif there exists a pre�x y, whi
h is the largest pre�x ofx (as there is no z with y � z � x) su
h that the lastsymbol of y is 1.Given a query '(x1; : : : ; xn) in RC(SC;M) and ~a 2 Un,we write D j= '(~a) when '(~a) is true in (D;M). Wewrite '(D) for the output of ' on D, that is, f~a 2 Un j

D j= '(~a)g. We say that ' is safe on D if '(D) is �nite,and that ' is safe if it is safe on every D. The safetyproblem is to determine whether a query is safe, and itis known to be unde
idable even for the pure relational
al
ulus [1℄. The state-safety problem is to de
ide, fora given ' and D, if ' is safe on D.We say that safe queries in RC(M) have e�e
tive syntaxif there exists a re
ursively enumerable set i; i < !, ofsafe queries in RC(M) su
h that, for every SC, everysafe RC(SC;M) query is equivalent to one of is. E�e
-tive syntax is a �rst step towards an algebrai
 languageexpressing all safe queries. Indeed if su
h a languageexists, safe queries must have e�e
tive syntax. Thate�e
tive syntax exists for safe queries in the pure re-lational
al
ulus is a
lassi
al relational theory result.Other { both positive or negative { results have beenproved re
ently [7, 28℄.An important restri
tion of queries is that to quan-ti�
ation over the a
tive domain. We use quanti�ers9x 2 adom and 8x 2 adom, whose meaning is as fol-lows: D j= 9x 2 adom'(x; �) if D j= '(a; �) for somea 2 adom(D) (as opposed to for some a 2 U in the
aseof the usual 9x quanti�er), and similarly for the univer-sal quanti�er. These restri
ted quanti�ers are de�nablein relational
al
ulus, but it is often helpful to havethem available separately.A relational
al
ulus formula is
alled an a
tive-domainformula if all quanti�ers in it are of the form 8x 2adom; 9x2adom. We say that RC(M) admits natural-a
tive
ollapse [6℄ if every RC(M) formula is equivalentto an a
tive-domain formula. We say that RC(M) ad-mits restri
ted quanti�er
ollapse if every RC(M) for-mula is equivalent to one in whi
h SC-relations ap-pear only under the s
ope of quanti�ers 9x 2 adomand 8x 2 adom. Note that if M admits quanti�er-elimination, these two notions
oin
ide.Complexity
lasses Some
omplexity results in thispaper refer to parallel
omplexity
lasses AC0, TC0,and NC1. AC0 is
onstant parallel time; more pre-
isely, the
lass of languages a

epted by polynomial-size
onstant-depth unbounded fan-in
ir
uits. TC0 ad-ditionally has majority gates of unbounded fan-in. InNC1, there are no majority gates, the depth is allowedto be logarithmi
, but fan-in is bounded. It is knownthat AC0 � TC0 � NC1 (parity separates TC0 fromAC0). We
onsider uniform versions of these
lasses[4℄; uniform AC0 over �nite stru
tures
an be
hara
-terized via de�nability in FO(BIT; <): �rst-order logi
with linear order and the BIT predi
ate (BIT(i; j) istrue i� the jth bit in the binary representation of i isone.) To
apture unifom TC0 it suÆ
es to add
ountingquanti�ers to FO(BIT; <) [4℄.

PH is the polynomial hierar
hy, whi
h
ontains, e.g.,NP and
oNP and is itself in
luded in PSPACE [24℄.As usual, for data
omplexity, one �xes a query Qand
onsiders the
omplexity of fen
(D)#en
(t) j t 2Q(D)g. Normally in pure relational
al
ulus the en-
oding is su
h that the a
tive domain is
onsidered tobe f1; : : : ; kg, and ea
h number i is represented in bi-nary. When we deal with interpreted elements storedin a database, su
h an en
oding is not appropriate, asone needs to take into a

ount operations on those in-terpreted elements. In parti
ular, in the
ase of stringsover a �nite alphabet, we
onsider the en
oding of astring to be itself (in the
ase of an alphabet di�erentfrom f0; 1g we may have to
ode letters in f0; 1g �rst).3 Problemati

on
atenationAs we said before, most earlier papers
onsidered re-lational
al
ulus with
on
atenation RC
on
at , that is,RC(SC; h��;
i) where
 has one operation of
on
ate-nation, and
onstant symbols for ea
h a 2 �. This lan-guage is extremely attra
tive in terms of
ompositional-ity: given queriesQ andQ0 returning sets of strings, one
an substitute Q and Q0 within regular-expressions toform new LIKE queries. However, as noti
ed in [20℄, for� = f0; 1; ℄g, RC
on
at expresses all
omputable querieson databases
ontaining strings from f0; 1g� (see [27℄for a proof). In fa
t, it is easy to show a more generalresult:Proposition 1 Let �
ontain at least two letters. ThenRC
on
at expresses all
omputable queries on databasesover ��. 2In databases, we are a

ustomed to relational
al
ulushaving limited expressiveness; then the queries
an beanalyzed and often good optimizations
an be dis
ov-ered. This is
ertainly not the
ase here; moreover,there is no hope of �nding a syntax for safe queries.Corollary 1 Let �
ontain at least two letters. Thenthere is no e�e
tive syntax for safe queries in RC
on
at .Furthermore, the state-safety problem is unde
idable forRC
on
at . 2Note that when � has one symbol, h��; �i is essentiallyhN;+i, and there exists e�e
tive syntax for safe queries,and state-safety is de
idable [28℄.

4 Two models of basi
 string operationsSin
e RC
on
at is
omputationally
omplete, it is toopowerful for use as a query language. We thus examinelanguages with stri
tly bounded expressivity and
om-plexity. As mentioned in the introdu
tion, we want tobe able to freely
ompose the output of a string querywith a new query, just as we
an
ompose queries instandard relational languages. Hen
e when we
onsidera set of operations
, we will always
lose under all �rstorder operations on the stru
ture h��;
i.We start by looking at existing SQL string opera-tions. The most often-used operation is LIKE pattern-mat
hing. It allows one to say, for example, that a givenstring is a pre�x of another string (by using the % pat-tern meaning \zero or more
hara
ters"), and also thata string has a �xed string as a substring. LIKE patternsare built from alphabet letters, and
hara
ters % and _(whi
h mat
hes a single letter).Mat
hing with LIKE
an be expressed in �rst-order logi
over the the operations � and La; a 2 �: SQL's LIKEpatterns re
ognize only star-free languages, and (as weshow later) de�nable subsets of �� in h��;�; (La)a2�iare pre
isely star-free languages. For example, the
on-dition x LIKE a_b%a_ | saying that the �rst symbol ofx is a, the third is b, and one but last is a again |
anbe expressed by a formula '(x):9u; v; w0� u � v � w � x^ La(u) ^ Lb(v) ^ La(w)^ 1(u) ^ 3(v) ^ �1(w) 1Awhere 1(u); 3(v); �1(w) say that u; v; w are pre�xesextending up to the �rst, third, and one but last po-sitions in the string x. Another important operation�rst-order expressible over� and La is the lexi
ographi
ordering �lex. Assume that � = fa1; : : : ; ang and anordering a1 < : : : < an is given. The lexi
ographi
ordering x �lex y is then expressed by:x � y_9z (z � x^z � y^_i<j((lai(z) � x)^(laj (z) � y)))Thus, with the basi
 set of operations � and La (ortheir fun
tional version la) we
an express the twomost useful SQL string operations. We therefore be-gin by
onsidering the �rst-order query language overS = h��;�; (La)a2�i. Note that S
ould be equiva-lently de�ned as h��;�; (la)a2�i, as the graph of la isde�nable: x = la(y) i� y l x ^ La(x).Another SQL string operation is length LEN. Sin
e thisdoes not return a string, we turn it into a pure stringoperation that
ompares lengths of strings: el(x; y) istrue if jxj = jyj. Adding this operation to S results inSlen = h��;�; (La)a2�; eli.

Slen is a stru
ture well known in model theory andlanguage theory [10, 13℄. Consider a few examplesof expressibility over Slen. Clearly, other
omparisonsof string length
an be expressed, e.g. jxj < jyj by9z(z � y ^ el(z; x)). As a more interesting operation,
onsider adding symbols on the left of a string: that is,the operation fa(x) = a � x. The graph of this fun
tionFa = f(x; y) j y = fa(x)g, is de�nable byjyj = jxj+ 1 ^ (9w � y jwj = 1 ^ La(w))^ 8z � x9v � y (jvj = jzj+ 1 ^Vb2� Lb(z)$ Lb(v))where jvj = juj+ 1 is de�ned by 9w(w l u ^ el(w; v)).To summarize, we are dealing with two stru
tures:� S = h��;�; (la)a2�i;� Slen = h��;�; (la)a2�; eli.In terms of expressing SQL string operations, S
ov-ers LIKE, ordering, as well as substrings of
onstantlength, and TRIM TRAILING, that removes all trailingo

urren
es of a given symbol. Slen is mu
h more pow-erful, and
overs the SIMILAR pattern mat
hing of theSQL3 standard [21℄ (whi
h is essentially grep).The properties listed below
an be found in [13, 10, 8℄for Slen and [8, 10℄ for S. Note that they are propertiesof the underlying stru
tures alone, without referen
e toa database.Properties of S. Every formula is equivalent to a for-mula in whi
h quanti�
ation is restri
ted to pre�xes offree variables. Moreover, S has quanti�er elimination inthe signature extended with the following: a
onstantsymbol, �, for the empty string, the fun
tion xu y, anda predi
ate PL(x; y) for ea
h star-free language, whosemeaning is x � y; y � x 2 L. That is, this signatureis in�nite, but it only
ontains unary and binary pred-i
ates and fun
tions. The de�nable subsets of �� arepre
isely the star-free languages. Neither the fun
tionfa nor the predi
ate el
an be de�ned over S.Properties of Slen. It suÆ
es to restri
t quanti�
ationto strings whose length does not ex
eed the length offree variables. Slen does not have quanti�er eliminationin any reasonable relational signature (that is, in anysignature that has an upper bound on the arity of pred-i
ates). The
lass of subsets of �� de�nable over Slenis pre
isely the
lass of regular languages (thus, greppattern-mat
hing is de�nable in Slen).5 Expressive power and
omplexityIn this se
tion we study expressiveness and
omplexityover S and Slen.

5.1 Relational
al
ulus over SOur goal here is to get bounds on the expressivenessand data
omplexity for queries in RC(S). The maintool used is a
ollapse result, Theorem 1, in the spirit ofthose produ
ed for
onstraint databases [6, 5℄. Re
allthat relational
al
ulus over a domain RC(M) admitsrestri
ted quanti�er
ollapse if every RC(SC;M) for-mula '(~x) is equivalent to a formula '0(~x) in whi
h SC-predi
ates o

ur only within the s
ope of a
tive domainquanti�ers 9x2adom and 8x2adom.To prove this, we �rst prove a simple proposition sayingthat it suÆ
es to quantify over pre�xes of the a
tivedomain. Extend RC(SC;S) with quanti�ers of the form9x�adom and 8x�adom, whose meaning is as follows.Given a formula '(x; ~y), an interpretation ~a for ~y, and adatabase D, 9x�adom '(x;~a) states that there existsa string
 making '(
;~a) true su
h that either
 � ai forai a
omponent of ~a, or
 � b where b is in adom(D).When there is no database, only the �rst of the previous
ases is relevant, and in this
ase we are just saying thatbounded quanti�
ation suÆ
es.Proposition 2 Every RC(SC;S) formula is equivalentto a formula that only uses quanti�ers 9x� adom and8x�adom.Proof sket
h. We write (D1; ~s1) �k (D2; ~s2) if thedupli
ator has a winning strategy in the k-roundEhrenfeu
ht-Fra��ss�e game on S augmented with SC-relations and
onstants interpreted as (D1; ~s1) and(D2; ~s2). We write (D1; ~s1) �bk (D2; ~s2) if the dupli
a-tor has a winning strategy in the same game restri
tedto pre�x(D1) [pre�x(~s1) and pre�x (D2) [pre�x (~s2).We then show that �bk+m+1 re�nes �k, where m is themaximum arity of a relation in SC. This is be
ause thewinning strategy for the dupli
ator over S and SC is de-termined by the winning strategy on the restri
tion topre�xes of the strings in SC-relations and free variables.This implies the result. 2Using this, and te
hniques similar to those in [6℄, we
an show (in a
onstru
tive way) the following result:Theorem 1 RC(S) admits restri
ted quanti�er
ol-lapse. 2By showing that quanti�
ation
an be bounded by re-lations, Theorem 1 gives the intuition that an RC(S)query
an be transformed into an ordinary SQL queryover LIKE: this will be made pre
ise in Se
tion 6. Herewe note that a a straightforward
orollary of Theorem1 shows that the data
omplexity for RC(S) mat
hesthat of pure relational
al
ulus.

Corollary 2 The data
omplexity of RC(S) is in AC0.In parti
ular, neither parity nor
onne
tivity test is ex-pressible in RC(S).Another
orollary
on
erns the expressive power ofgeneri
 queries. Re
all that a query is generi
 if it
ommutes with permutations on the domain; in otherwords, it is independent of spe
i�
 elements stored ina database. Combining Theorem 1 with the a
tivegeneri

ollapse [6℄, we obtain:Corollary 3 Every generi
 query expressible in RC(S)is already expressible in RC(<), relational
al
ulus overordered databases. 2With respe
t to time
omplexity Corollary 2 only gives apolynomial upper bound. We show next that for unarydatabases we get a mu
h stri
ter
omplexity result. We
all a database s
hema SC unary if it only
ontainsunary relation names.Proposition 3 For unary SC, Boolean RC(SC;S)-queries
an be evaluated in linear time in the size ofthe database. 25.2 Relational
al
ulus over SlenWe have seen ni
e that query evaluation for relational
al
ulus over S has low
omplexity. However, manyuseful queries of low
omplexity, su
h as the query thatappends a �xed string on the left of a given
olumn, arenot expressible in S. Hen
e we examine the addition ofthe equal length predi
ate, that is, relational
al
ulusover Slen. Throughout this se
tion, we assume thatthe alphabet has at least two symbols (as over the one-symbol alphabet, equal length is simply equality andthus does not give us any extra power).To analyze the expressive power and
omplexity of Slen,we again make use of a normal-form result for queries.In this
ase it is no longer suÆ
ient to quantify over pre-�xes of strings in the a
tive domain; however a di�erentrestri
ted quanti�
ation suÆ
es.We introdu
e quanti�ers 9 jxj � adom and 8 jxj � adomto be interpreted as follows. Given a formula '(~y), adatabase D and an interpretation ~a for ~y, a subformula9 jxj � adom �(x; �) is satis�ed if there exists a string
 satisfying �(
; �) su
h that the length of
 does notex
eed the length of the longest string in adom(D) and~a. We
all these length-restri
ted quanti�ers. Note thatthey are just a notational
onvenien
e, as they
an beexpressed in RC(Slen). Moreover, they
apture the ex-pressiveness of RC(Slen):

Proposition 4 Every RC(SC;Slen) formula is equiva-lent to a formula that uses only length-restri
ted quan-ti�ers.Proof sket
h. The proof is along the lines of the proofof Proposition 2, but for a �nite stru
ture one takes therestri
tion based on length rather than pre�xes. 2Pre�x-restri
ted quanti�
ation does not suÆ
e forRC(Slen). Indeed,
onsider the following query Q ona unary relation U : Q(U) is true i� U
ontains a singleelement, whi
h is from 0� and of even length. This isexpressible in RC(Slen) by9!x U(x) ^ 8x(U(x)! (x 2 0�) ^ 9z 2 (01)�el(z; x)):Note that the predi
ates x 2 0� and z 2 (01)�
an beexpressed even over S: re
all that S
an de�ne any star-free language and Slen any regular language. However,this query Q is inexpressible with just pre�x quanti�-
ation: if it were, then over single-element databases
ontained in 0�, el
ould be eliminated from the query.Hen
e the set of strings from 0� of even length would bede�nable over S. But this language is not star-free, andthis
ontradi
ts the fa
t that the languages de�nableover S are exa
tly the star-free languages [8℄.As with Theorem 1, Proposition 4 gives us an upperbound on the
omplexity of RC(Slen):Corollary 4 The data
omplexity of RC(Slen) is inPH.Proof sket
h. To
he
k if D j= '(~a), it is enoughto quantify over strings whose length does not ex
eedN , where N is the maximum length of a string inadom(D) [~a (see Proposition 4). If ' has alternationdepth k this
an be done by a polynomial time alternat-ing Turing ma
hine with k alternations, hen
e in PH.2One
an also derive an upper bound on generi

ompu-tation, albeit not as low as for S. A relational (Boolean)query is a set of isomorphism types of SC-databases(w.r.t. the SC-relations only). A relational query is inAC0 if it is in AC0 under the usual relational en
odingen
0: elements of a k-element a
tive domain are en-
oded by 1; : : : ; k, in binary (
f. [1℄). A relational queryQ is expressible in RC(Slen) if there is a RC(Slen) sen-ten
e � su
h that the SC-isomorphism type of D is inQ i� D j= �.Theorem 2 Any relational query that is expressible inRC(Slen) is in AC0. Thus, parity test and
onne
tivitytest are not de�nable in RC(Slen). 2

We now prove lower bounds that show the
omplex-ity of Slen queries, although within PH, may be pro-hibitively high. Let MSO(SC) be the
lass of queriesover SC expressible in monadi
 se
ond-order logi
. Thisin
ludes queries of high-
omplexity, namely for ea
hlevel of the polynomial hierar
hy, PH,
omplete queries[2℄, in parti
ular, NP-
omplete and
oNP-
omplete ones(3-
olorability and its
omplement). Su
h queries
an-not be expressed over arbitrary databases in RC(Slen);however, they
an be expressed under some additionalassumptions.We say that the width of the a
tive domain of a SCdatabase D (over ��) is k if k is the maximal size ofa subset of adom(D) whose elements are pairwise
om-parable by the pre�x relation. It should be noted thatevery database D
an be transformed into a databaseD0 of width 1 whi
h is isomorphi
 to D with respe
t tothe SC-predi
ates.Proposition 5 For every �xed k, all MSO(SC)-expressible queries
an be expressed over databases ofwidth at most k in RC(SC;Slen). 2Thus, while not
omputationally
omplete as RC
on
at ,RC(Slen)
an express some queries that one would notnormally expe
t to be expressible in a �rst-order lan-guage.Re
all that we had a linear time bound for the eval-uation of Boolean RC(S)-queries on unary databases.This might not be the
ase for RC(Slen). Even worse,there might be even no �xed polynomial bound. Indeedit is possible to show that any graph query in RC(Slen)
an be en
oded by a unary query, where the input tothe unary query is
omputed in polynomial time fromthe input graph.Thus, a linear (or �xed polynomial) bound for the eval-uation of Boolean RC(Slen)-queries on unary databaseswould imply a �xed polynomial bound for the data
omplexity of �rst-order senten
es on ordered graphs.It would imply further a �xed polynomial bound forthe evaluation of �rst-order senten
es on BIT-stru
tures(
f., [3℄). This, in turn, would separate �rst-order logi
from least �xed point logi
 on su
h stru
tures and there-fore imply the validity of the ordered
onje
ture [25℄ withvarious
onsequen
es in
omplexity theory (see [3℄ for adis
ussion).6 Safe QueriesBoth RC(S) and RC(Slen)
ontain queries that some-times produ
e in�nite output. Thus one of our goals

is to synta
ti
ally
apture the safe queries in these lan-guages, and to be able to analyze safety properties ofa query { for example, given an arbitrary query anda database, to tell whether the output of the query onthat database is �nite. We saw that this
annot be doneif the set of operations in
ludes
on
atenation. In
on-trast, we will show that for RC(S) and RC(Slen) we
ansynta
ti
ally des
ribe safe queries, give an algebra that
aptures these queries, and extend the major de
idabil-ity results for query safety analysis that hold for purerelational
al
ulus.6.1 E�e
tive syntax for safe queriesThe simplest way to show that queries in RC(M) havee�e
tive syntax is to show that one
an test if a givenquery returns a �nite result on a given database. To doso, it is enough to ensure that �niteness is de�nable inRC(M). Formally, �niteness is de�nable in RC(M) ifthere exists a senten
e �safe in the language of M andSC expanded with a single new unary predi
ate sym-bol U su
h that for any query '(x) and any databaseD, (D;'(D)) j= �safe i� '(D) is �nite. For example,�niteness is easily de�nable in RC(Slen) by9y8x(U(x)! 9z � y el(z; x)):On
e �niteness is de�nable, an enumeration of safequeries
an easily be obtained. Given a query '(~x),let '(x) be another relational
al
ulus query that de-�nes the a
tive domain of the output of '. Let �safe'be the Boolean query obtained from �safe be repla
ingU(�) by '(�). Then '(~x) ^�safe' lists all safe queries.For traditional relational
al
ulus, and for its analogsover order
onstraints, linear
onstraints, and polyno-mial
onstraints, �niteness
an easily be shown to bede�nable [7℄. It is thus surprising that for RC(S) thisapproa
h does not work:Proposition 6 Finiteness is not de�nable in RC(S).Proof sket
h. This is proved using an Ehrenfeu
ht-Fra��ss�e game argument. It shows that, for every k, thereexist K;m su
h that a database
ontaining all stringsof length at most K
annot be distinguished with onlyk moves from a database
ontaining the in�nite set ofstrings (0m1m)� together with all the strings of the form(0m1m)�w, where w has length at most K + 2m. 2While post-
he
king �niteness is a way to obtain e�e
-tive syntax for safe queries, one often wishes to have amore expli
it representation of safe queries. It turns outthat we
an get natural representations for safe queries

in RC(S) and RC(Slen). The te
hnique we use derivesfrom work on safe languages with linear or polynomial
onstraints [7℄: for ea
h query Q, we e�e
tively
on-stru
t another safe query Q0 that gives an upper boundon Q(D), if it is �nite. Su
h expli
it
onstru
tions areused to prove the theorem below, as well as to providerelational algebra extensions.We follow the idea of range-restri
tion as presentedin [7℄. A formula
(x; z) over M is
alled algebrai
if for every b, the set fa j M j=
(a; b)g is �nite.An RC(M) query in range-restri
ted form is a pairQ = (
(x; y); '(x1; : : : ; xn)), where ' is an arbitraryquery and
 is an algebrai
 formula over M. The se-manti
s is given by '(~x) ^ 9~y 2 adom (Vi
(xi; yi)).That is, Q(D) =
(adom(D))n \ '(D)where
(X) = fa j
(a; b) for some b 2 Xg. Clearly,every query in range-restri
ted form is safe.Theorem 3 Let M be S or Slen. Then there is a re-
ursive set � of algebrai
 formulae over M su
h that,given a query '(~x) in RC(M), there is
(x; y) 2 � withthe property that the range-restri
ted query Q = (
; ')
oin
ides with ' on all databases over whi
h ' is safe.Proof sket
h. The proof is based on two lemmas, whi
hshow that if a query '(x) is satis�ed by an elementthat is suÆ
iently far from adom(D), then ' returns anin�nite result on D. The proof of these lemmas relieson a kind of pumping Lemma whi
h permits to derivein�nitely many strings as soon as a big enough one isfound. De�ne d(s; C) as jsj � js u Cj, and #D = fs jjsj � js0j; s0 2 adom(D)g.Lemma 1 Let '(x) be a RC(S) query. Then there ex-ists (and
an be e�e
tively found if ' only uses pre�x-restri
ted quanti�
ation) a number k > 0, su
h thatthe following holds. Assume that D j= '(s) for somes with d(s; pre�x (D)) > k. Then there are in�nitelymany strings
 su
h that D j= '(
). 2Lemma 2 Let '(x) be a RC(Slen) query. Then thereexists (and
an be e�e
tively found if ' only uses lengthrestri
ted quanti�
ation), a number k > 0 su
h that thefollowing holds. Assume that D j= '(s) for some s withd(s; #D) > k. Then there are in�nitely many strings
su
h that D j= '(
).To prove the theorem, take an arbitrary query (~y) andform '(x) that de�nes the a
tive domain of the outputof . It then suÆ
es to prove the theorem for '(x),sin
e is safe for D i� ' is safe for D, and thus for any

 su
h that (
; ') is equivalent to ' on all D for whi
h' is safe, the same would be true for (
;) and .Having redu
ed the problem to queries in one variable,simply apply the
orresponding lemmas. For RC(S),given '(x), �nd the number k as in Lemma 1, and let
(x; y) say that x is a pre�x of the string of the formy �s with jsj � k. From Lemma 1 it follows that (
; ') isequivalent to ' on any D for whi
h ' is safe. Finally,
is
learly algebrai
, and expressible over S for any �xedk.For RC(Slen), given '(x), we get k from Lemma 2 andlet
(x; y) be a Slen formula saying that the length ofx is at most the length of y plus k. Clearly, this isexpressible for ea
h �xed k, and (
; ')
oin
ides with 'on any D for whi
h ' is safe. This
ompletes the proofof the theorem. 2Corollary 5 For both RC(S) and RC(Slen), the
lassesof range-restri
ted and safe queries
oin
ide, and safequeries have e�e
tive syntax. 2Note that for queries in RC(S) and RC(Slen) that use arestri
ted form of quanti�
ation (pre�x or length), theproof gives us a stronger result: namely, the formula

an be e�e
tively found for a given '.6.2 Relational algebrasIt is a
lassi
al result of relational database theory thatthe set of safe relational
al
ulus queries is pre
isely theset of relational algebra queries. This result extends tostring
al
uli
onsidered here: safety theorems provedearlier
an be used to show that safe queries in RC(S)and RC(Slen)
an be
aptured by appropriate exten-sions of relational algebra.Let safe RC(M) be the
lass of all safe queries inRC(M). To de�ne algebras
apturing safe RC(M) forthe previous two stru
tures, we need a number of op-erations extending the usual relational algebra (that is,�; �;�;�;[):R�: is a
onstant unary relation f�g.��: for a formula �(x1; : : : ; xn). On an n-attribute re-lation R, it returns the set of tuples (s1; : : : ; sn)from R su
h that �(s1; : : : ; sn) holds.prefixi: On an m-attribute relation R, it returns(m + 1)-attribute relation f(s1; : : : ; sm+1) j(s1; : : : ; sm) 2 R; sm+1 � sig.addlai , a 2 �: On an m-attribute relation R, it returnsthe (m + 1)-attribute relation f(s1; : : : ; sm+1) j(s1; : : : ; sm) 2 R; sm+1 = si � ag.

#i: Given an m-attribute relation R, #i (R) returnsf(s1; : : : ; sm+1) j (s1; : : : ; sm) 2 R; jsm+1j � jsijg.It should be pointed out that the formula � in �� doesnot refer to the database.We now de�ne the relational algebras:RA(S) extends relational algebra with R�, ��, where �ranges over FO(S) formulae, prefixi and addlai .RA(Slen) extends relational algebra with R�, ��, where� ranges over FO(Slen) formulae, # i, prefixi, andaddlai .Theorem 4 � safe RC(S) = RA(S);� safe RC(Slen) = RA(Slen).Proof sket
h. Theorems 3 showed that there is a boundon outputs of safe queries. To prove the theorem, itsuÆ
es to noti
e that those bounds
an be
omputedby relational algebra expressions. 2One of the operations in RA(Slen), # i, is very expensive,as it may
reate sets whose size is exponential in thesize of the input. It is, however, unavoidable, as thereare very expensive (e.g., NP-
omplete) safe queries inRC(Slen).6.3 De
iding Safety Properties of QueriesAlthough query safety is unde
idable for pure relational
al
ulus (and hen
e for any extension), state-safety(given a query ' and a database D, is '(D) �nite?)is de
idable. State safety is also known to be de
idablefor various extensions of the form RC(M) (for example,for the natural numbers with su

essor [28℄ or the real�eld [7℄). For RC(S) and RC(Slen), this de
idabilityholds as well:Proposition 7 State-safety is de
idable for RC(S) andRC(Slen). 2As query safety is unde
idable, one often
onsiders re-stri
tions for whi
h de
idability
an be obtained. Herewe look at one of the most fundamental
lasses ofqueries {
onjun
tive queries. We take their de�nitionin the
ontext of interpreted operations from [7, 23℄. A
onjun
tive query in RC(M) is a query of the form'(~x) � 9~y k̂i=1Si(~ui) ^
(~x; ~y);

where k � 0, ea
h Si is a s
hema relation, ~ui is a sub-tuple of (~x; ~y) of the same arity as Si, and
 is an Mformula. A Datalog-like notation for su
h a query wouldbe '(~x) :{ S1(~u1); : : : ; Sk(~uk);
(~x; ~y).In [7℄, safety of
onjun
tive queries was shown de
idablefor RC(M), for various stru
tures M on the reals withnumeri
al operations. We now show a general resultfrom whi
h the de
idability results for string stru
turesS;Slen and those
onsidered in [7℄ follow. We say that�niteness is de�nable with parameters in M if for ea
hformula (~x; ~y) inM, there exists and
an be e�e
tivelyfound another formula �n(~y) su
h that M j= �n(~a)i� the set f~b j M j= (~b;~a)g is �nite.Theorem 5 Assume that M
an be expanded to M0su
h that the theory of M0 is de
idable, and �nitenessis de�nable with parameters in M0. Then safety ofBoolean
ombinations of
onjun
tive queries in RC(M)is de
idable. 2We know that Th(Slen) is de
idable [10℄. Moreover,�niteness is de�nable with parameters: for (~x; ~y), �n(~y) is 9~u(8~x (~x; ~y) ! 9~zVi zi � ui el(zi; xi)).Thus:Corollary 6 The safety of Boolean
ombinations of
onjun
tive queries in RC(S) and RC(Slen) is de
idable.27 Tame extensions of RC(S)In the previous two se
tions we
onsidered two di�er-ent relational
al
uli for databases with strings: RC(S)and RC(Slen). The former models operations su
h asthe LIKE pattern-mat
hing and lexi
ographi
 ordering;the latter adds length
omparisons, and enables ad-ditional operations su
h as trimming/adding symbolson both left and right of a string, and the SIMILARpattern-mat
hing for
he
king membership in a regularlanguage. Both languages have some ni
e properties:for example, there is e�e
tive syntax, and even an al-gebra, for safe queries. However, RC(S) misses a num-ber of important string fun
tions, while the
omplexityof RC(Slen)
an be quite high: we saw how to en
odeNP and
oNP-
omplete problems on inputs of a spe
ialkind.Thus, a natural question is whether one
an add oper-ations to RC(S) while maintaining its ni
e properties:e�e
tive syntax for safe queries and low data
omplex-ity. We give here a positive answer to this question, by
onsidering two extensions. The �rst one gives us oper-ations for adding/trimming symbols on the left; for ex-ample, TRIMa(s), where a 2 �, produ
es s0 if s = a � s0,

����������������RC(S)RC(Sleft) RC(Slen) RC(Sreg)Figure 1: Relationships between RC(S);RC(Sleft);RC(Sreg), and RC(Slen).and � if the �rst symbol of s is not a. The other ex-tension is by allowing tests for membership in a regularlanguage, without the full power of the equal lengthpredi
ate. We show that both extensions share most ofits properties with RC(S), while adding signi�
antly tothe expressiveness of the language.The �rst operation we
onsider is adding one single
hara
ter on the left: s 7! a � s, and its inverse TRIMa(s)denoted by s� a. That is, we
onsider the stru
ture:� Sleft = h��;�; (la)a2�; (fa)a2�i.This is a proper extension of S, as the graph of the fun
-tion fa, f(s; fa(s)) j s 2 ��g, is not de�nable over S [8℄.The graph of the subtra
tion operation is de�nable withfa. We also remark that while the
lasses of subsets of(��)k, k > 1, de�nable in S and Sleft are di�erent, overboth stru
tures the
lass of de�nable subsets of �� isthe same, that is, the
lass of star-free languages [8℄.The se
ond extension we
onsider allows us to modelmore general regular expression pattern-mat
hing. Of
ourse any regular language is de�nable over Slen, andthus su
h pattern-mat
hing
an be done in the more
omplex model RC(Slen).We will add regular expression pattern-mat
hing di-re
tly to S, without adding the equal length predi
ate.Re
all that S has quanti�er elimination in the exten-sion that in
ludes predi
ates PL(x; y), for ea
h star-freelanguage, whose meaning is x � y and y � x 2 L. Wenow de�ne Sreg to be the extension of S with all su
hpredi
ates when L ranges over regular languages. Notethat membership of x in any regular language L is de-�nable by PL(�; x). To summarize, we are dealing withRC(Sreg) where� Sreg = h��;�; (La)a2�; (PL)L regulari.Every set de�nable in Sreg is de�nable in Slen (as Slenexpresses all predi
ates PL), but the
onverse is not true

sin
e the equal length predi
ate is not de�nable in Sreg[8℄. Furthermore, the
lass of subsets of �� de�nable inSreg is exa
tly the
lass of regular languages.RC(Sleft) and RC(Sreg) are in
omparable in term of ex-pressive power. Indeed a simple game argument showsthat the relation f(x; y) j y = fa(x)g is not de�nablein RC(Sreg). Moreover, any language whi
h is not star-free is not de�nable in RC(Sleft) [8℄. Figure 1 sum-marizes the in
lusion relationships between the variousrelational
al
uli introdu
ed in this paper, the higherones being more expressive.We start with expressive power. Both RC(Sleft) andRC(Sreg) behave similarly to RC(S):Theorem 6 RC(Sleft) and RC(Sreg) admit the re-stri
ted quanti�er
ollapse.Proof sket
h. Let S+left be the expansion of Sleft withthe following (de�nable) predi
ates and fun
tions: a
onstant symbol, �, for the empty string, the binaryfun
tion u for the longest
ommon pre�x, the predi
atePL(x; y) for ea
h star-free language L, and the fun
tionx 7! x � a, for ea
h a 2 �. Let S+reg be the expansionof Sreg with the (de�nable) fun
tion u and a
onstant� for the empty string .It is shown in [8℄ that S+left and S+reg have quanti�erelimination, and the isolation property whi
h are knownto imply the
ollapse [5, 16℄. 2Corollary 7 RC(Sleft) queries have AC0 data
om-plexity, and RC(Sreg) queries have NC1 data
omplex-ity. Furthermore, every generi
 query expressible inRC(Sleft) or RC(Sreg) is expressible in RC(<). 2As for query safety, several results extend straightfor-wardly to RC(Sleft) and RC(Sreg). Sin
e all operationsof Sleft and Sreg are expressible over Slen, the proof ofProposition 7 and Theorem 5 give us

Model Data
omplexity Data
omplexity E�e
tive syntax Relational Safety of CQof generi
 queries for safe queries algebraRC(S) AC0 FO(<) yes yes de
idableRC(Slen) PH AC0 yes yes de
idableRC(Sleft) AC0 FO(<) yes yes de
idableRC(Sreg) NC1 FO(<) yes yes de
idableRC
on
at unde
idable unde
idable no no unde
idableFigure 2: Summary of the resultsCorollary 8 The state-safety problem and the safety ofBoolean
ombinations of
onjun
tive queries are de
id-able for both RC(Sleft) and RC(Sreg). 2The e�e
tive syntax result
an be proved for bothRC(Sleft) and RC(Sreg), but
onsiderably more workis needed (espe
ially in the
ase of Sleft).Theorem 7 Let M be Sleft or Sreg. There ex-ists a re
ursive
olle
tion of algebrai
 formulae � =f
i(x; y)gi2! over M su
h that for every RC(M) query'(~x), there is an algebrai
 formula
i(x; y) 2 � withthe property that the range-restri
ted query Q = (
i; ')
oin
ides with ' on all databases over whi
h ' is safe.Proof sket
h. As for S and Slen, we show how to
on-stru
t upper bounds on outputs of safe queries. Thete
hni
al details are rather long and are available in thefull version of the paper [9℄. 2Corollary 9 For both RC(Sleft) and RC(Sreg), the
lasses of range-restri
ted and safe queries
oin
ide,and safe queries have e�e
tive syntax. 27.1 Relational algebrasWe
an likewise
apture safety for RC(Sleft) andRC(Sreg) with relational algebras. For that, we needthe following operations (in addition to �; �;�;�;[,and R�; prefix; addl; # used in the de�nition of RA(S)and RA(Slen)):addfai , a 2 � : On anm-attribute relation R, it returnsan m + 1-attribute relation that holds the tuplesf(s1; : : : ; sm+1) j (s1; : : : ; sm) 2 R; sm+1 = a � sig.trimai , a 2 � : On anm-attribute relation R, it returnsan m + 1-attribute relation that holds the tuplesf(s1; : : : ; sm+1) j (s1; : : : ; sm) 2 R; sm+1 = si�ag.We now de�ne relational algebras:

RA(Sleft) is the extension of relational algebra with�� (where � ranges over Sleft formulae), prefix,addfai and trimai .RA(Sreg) extends relational algebra with R�, ��, where� ranges over FO(Sreg) formulae, prefixi andaddlai .Theorem 8 � safe RC(Sleft) = RA(Sleft);� safe RC(Sreg) = RA(Sreg).8 Con
lusionWe have studied extensions of the standard relational
al
ulus with various sets of string operations. We wereinterested in languages that were not
omputationally
omplete, but rather shared the attra
tive
omplexity-theoreti
 and stati
-analysis properties of relational
al-
ulus.The language RC(S)
an be seen as a ni
e foundationover whi
h other languages should be built. It
oversthe most rudimentary string operations, but its expres-sive power is quite limited. The extension RC(Slen) thatallows string-length
omparisons is too powerful (butstill not
omputationally
omplete). We therefore
on-sidered two languages in between, that
an express someimportant operations found in RC(Slen), but still havelow data
omplexity, e�e
tive syntax for safe queries,and
orresponding relational algebras. The main resultson these relational
al
uli are summarized in Figure 2.Regarding further resear
h, it would be interesting tostudy an extension of RC(S) in the spirit of RC(Sleft)by allowing inserting
hara
ters at arbitrary position ina string x, spe
i�ed by a pre�x of x.A
knowledgments We thank Wolfgang Thomas, S
ottWeinstein, and Emmanuel Waller for fruitful dis
ussions onthe subje
t.

Referen
es[1℄ S. Abiteboul, R. Hull and V. Vianu. Foundations ofDatabases. Addison-Wesley, 1995.[2℄ M. Ajtai, R. Fagin and L. Sto
kmeyer. The
losure ofmonadi
 NP. In STOC '98, pages 309{318.[3℄ A. Atserias, Ph. Kolaitis. First-order logi
 vs. �xed-point logi
 in �nite set theory. In LICS'98, pages 275{284.[4℄ D.A. Barrington, N. Immerman, H. Straubing. On uni-formity within NC1. JCSS, 41:274{306,1990.[5℄ O. Belegradek, A. Stolboushkin, M. Taitslin. Extendedorder-generi
 queries. Annals of Pure and Applied Logi
97 (1999), 85{125.[6℄ M. Benedikt, L. Libkin. Relational queries over inter-preted stru
tures. J. ACM 47 (2000), 644{680.[7℄ M. Benedikt, L. Libkin. Safe
onstraint queries. SIAMJ. Comput. 29 (2000), 1652{1682.[8℄ M. Benedikt, L. Libkin, T. S
hwenti
k, L. Segou�n.A model-theoreti
 approa
h to regular string relations.Te
hni
al report, INRIA, 2000.[9℄ M. Benedikt, L. Libkin, T. S
hwenti
k, L. Segou�n.String operations in query languages. Te
hni
al report,INRIA, 2000.[10℄ A. Blumensath and E. Gr�adel. Automati
 stru
tures.In LICS'00, pages 51{62.[11℄ A. Bonner and G. Me

a. Sequen
es, datalog, andtransdu
ers. JCSS 57 (1998), 234{259.[12℄ A. Bonner and G. Me

a. Querying string databaseswith transdu
ers. In DBPL'97, pages 118{135.[13℄ V. Bruy�ere, G. Hansel, C. Mi
haux, R. Villemaire.Logi
 and p-re
ognizable sets of integers. Bull. Belg.Math. So
. 1 (1994), 191{238.[14℄ M. Consens and T. Milo. Algebras for querying textregions: expressive power and optimization. JCSS 57(1998), 272{288.[15℄ E. Dantsin, A. Voronkov. Expressive power and data
omplexity of query languages for trees and lists. InPODS'2000, pages 157{165.[16℄ J. Flum and M. Ziegler. Pseudo-�nite homogeneity andsaturation. Preprint, Freiburg University, 1998.[17℄ S. Ginsburg and X.S. Wang. Pattern mat
hing by rs-operations: toward a uni�ed approa
h to querying se-quen
ed data. In PODS'92, pages 293{300.[18℄ G. Grahne and M. Nyk�anen. Safety, translation andevaluation of alignment
al
ulus. In ABDIS'97, pages295{304.[19℄ G. Grahne, M. Nyk�anen, E. Ukkonen. Reasoning aboutstrings in databases. JCSS 59 (1999), 116{162.[20℄ G. Grahne, E. Waller. How to make SQL stand forstring query language. In DBPL'99.[21℄ P. Gulutzan and S. Pelzer. SQL-99 Complete, Really.R&D Books, 1999.[22℄ R. Hakli, M. Nyk�anen, H. Tamm, and E. Ukkonen.Implementing a de
larative string query language withstring restru
turing. In PADL'99, pages 179{195.[23℄ O. Ibarra, J. Su. A te
hnique for proving de
idabil-ity of
ontainment and equivalen
e of linear
onstraintqueries. JCSS 59 (1999), 1{28.

[24℄ N. Immerman. Des
riptive Complexity. Springer, 1999.[25℄ Ph. Kolaitis and M. Vardi. Fixpoint logi
 vs. in�nitarylogi
 in �nite-model theory. In LICS'92, pages 46{57.[26℄ A. Rajasekar. String-oriented databases.SPIRE/CRIWG'99, pages 158{167.[27℄ A. Salomaa. Formal Languages. A
ademi
 Press, 1973.[28℄ A. Stolboushkin, M. Taitslin. Finite queries do not havee�e
tive syntax. Information and Computation, 153(1)(1999), 99{116.

