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(albeit bounded) data omplexity. We thus explorethe spae between these two languages. We onsidertwo intermediate languages: the �rst extends our baselanguage with funtions that trim/add leading hara-ters, and the other extends it by adding the full powerof regular-expression pattern-mathing. We show thatboth these extensions inherit many of the attrativeproperties of the basi model: they both have orre-sponding algebras expressing safe queries, and low om-plexity of query evaluation.1 IntrodutionString manipulation failities have long been reog-nized as a ritial omponent of a realisti databasequery language. In SQL, for example, the WHERE lausean ontain string pattern-mathing expressions, suhas FACULTY.NAME LIKE 'Nyk%nen'. These expressionsan themselves be seen as queries over string relations:the above lause, for example, an be seen as a sele-tion performed on a projetion of the FACULTY relation.While the Relational Calulus gives a satisfatory for-mal model for SQL queries in the absene of built-indatatypes, there has been thus far no satisfatory modelthat fully aounts for string queries. The lak of anadequate formal model is related to the fat that SQLrestrits the interation of string operations and rela-tional operations in a number of ad-ho ways: one an-not apply the LIKE operator to a subquery to build upa new query, nor an one take the produt of two stringexpressions built with LIKE. Our goal here is to presentquery languages that extend relational alulus to in-lude string pattern-mathing in suh a way that stringqueries an be freely omposed with relational expres-sions. The resulting languages an be used as formaltools for analyzing the omplexity and expressivenessof SQL, and ould also serve as target query languagesamenable to the optimizations that result from the in-teration of relational and string operations. In this pa-



per we explore several suh languages, and study theirexpressive power, omplexity, and stati analysis prop-erties.Some approahes toward unifying string algebras withrelational algebra have been developed in the prior liter-ature. [17℄ studied the onsequenes of adding pattern-mathing features to SQL. [19, 22, 18℄ proposed an ex-tension of the relational alulus with alignment log-is and studied their omplexity and expressive power,while [11, 12℄ onsidered Datalog extended with ap-propriate transduers for string operations, proving anumber of ompleteness results. In [14℄ arbitrary re-gions (substrings) an be queried; this, when oupledwith relational alulus, gives the power of string on-atenation. Closer to our approah, [20, 26℄ study therelational alulus/algebra extended with an operationfor onatenating strings. [15℄ studies �rst-order logiover term algebras and extends expressive bounds andomplexity results from relational alulus to this set-ting. But SQL-style string pattern-mathing annot beexpressed in the language of [15℄ { indeed in this lan-guage one annot even query for strings beginning witha �xed symbol.One problem faed in any work ombining stringpattern-mathing queries with relational alulus is thatpattern-mathing expressions may return an in�nitenumber of strings. This is the standard issue of safety.The authors takle this problem by identifying safe frag-ments of their languages, using a number of syntatirestritions | see, e.g., [19, 22, 18, 20, 26℄ | but theyannot apture the safe fragment of the language syn-tatially. A seond problem onerns expressive power.Many query languages designed in the prior literatureturn out to be Turing omplete, a feature that in turnmakes many sorts of analysis and optimization impos-sible. Indeed, as noted in [20℄, adding just onatena-tion to the relational alulus already yields a querylanguage whih is Turing omplete. This immediatelyimplies that there is no e�etive syntax for the orre-sponding safe fragment [28℄.In ontrast to the above, in our work we seek languagesthat ful�ll the following riteria:1. Query evaluation is eÆient;2. There is e�etive syntax apturing safe queries;3. There is an algebra equivalent to the language.We start with the observation that LIKE expressionsorrespond to �rst-order formulae over the model Sonsisting of strings with the pre�x operation and fun-tions for onatenating alphabet symbols. We thus on-sider relational alulus, RC, over this model: the re-sulting query language aptures basi SQL with simple

LIKE pattern-mathing and lexiographi ordering. Weshow that the safe fragment of this model an be e�e-tively aptured in a natural way, and prove omplex-ity bounds for queries in this language that math theknown bounds for ordinary relational alulus. RC(S)however, is unable to express ertain natural queries,e.g., SELECT a � x FROM R, where a is a �xed hara-ter. We thus extend this language to RC(Slen) by in-troduing string length, more preisely, string lengthomparisons. This extension has muh greater expres-siveness: it enables additional operations suh as trim-ming/adding symbols on both left and right of a string,the SIMILAR pattern-mathing for heking membershipin a regular language [21℄, and pattern-mathing on setsof n-tuples. We show that this language also satis�esriteria 2 and 3 above, but in RC(Slen) one an expressNP-omplete and oNP-omplete problems.This leads us to the onsideration of two intermedi-ate languages, RC(Sleft) and RC(Sreg). The �rst oneadds operations for trimming/adding leading hara-ters (that is, haraters on the left), and the seondone gives us regular expression pattern mathing. Bothlanguages satisfy all three of the required riteria, whileonsiderably extending the expressive power of RC(S).The paper is organized as follows. The next setionpresents the notations. Setion 3 briey reviews resultson relational alulus with onatenation. Setion 4presents the sets of string operations onsidered in thepaper. In Setion 5 we explore the expressive power andomplexity of RC(S) and RC(Slen). Query safety forthese languages is investigated in Setion 6. In Setion7, we propose and study RC(Sleft) and RC(Sreg) and ex-tend the previous results to these languages. Completeproofs of all results an be found in [9℄.2 NotationsStrings and operations on them For a �nite alphabet�, we write �� for the set of all �nite strings over �,and ��n for the set of all strings of length at most n.The empty string is denoted by �. We shall onsider anumber of operations on strings; those used most oftenare:� x � y is the onatenation of two strings x and y.� x � y is true i� x is a pre�x of y. x � y is true i�x is a strit pre�x of y.� la(x), a 2 �, is a funtion that adds a as the lastsymbol: la(x) = x � a.� fa(x), a 2 �, is a funtion that adds a as the f irstsymbol: fa(x) = a � x.



� jxj is the length of string x.� x � y is de�ned to be the relative suÆx of y in x.That is, if x = y � z, then x � y = z; otherwisex� y = �.� x u y is the longest ommon pre�x of x and y.We shall onsider a number of �rst-order struturesM = h��;
i, where 
 is a olletion of prediates andfuntions on ��. Often it is onvenient to have all re-lational symbols in 
. For that purpose, we introduethe unary relation La (last symbol) whih is true of x i�the last symbol of x is a, and a binary relation Fa(x; y)whih holds i� y = fa(x) = a � x.Note that jxj does not return a string, so it is not anoperation of ��. Instead, we use the binary prediateel(x; y) (equal length) whih is true i� jxj = jyj.We write x l y to express that y extends x by exatlyone symbol. Let pre�x (C) stand for the pre�x-losureof C: fs j s � s0; s0 2 Cg. By # (C) we denote fs jjsj � js0j; s0 2 Cg. Given C � �� and x 2 ��, by x u Cwe denote the longest string among x u ;  2 C. Notethat this is well-de�ned, sine all the strings x u  arepre�xes of x.Databases and query languages A database shemaSC is a olletion of relation names R1; : : : ; Rl, Ri beingof arity pi > 0. In an instane of SC over a set U , eahRi is interpreted as a �nite subset of Upi . The ativedomain of a databaseD, adom(D), is the set of elementsfrom U that appear in D.The general setting for query languages is that of a �-nite database and an in�nite underlying strutureM =hU;
i, where 
 is a set of operations (funtions andprediates) on U . As our basi language we onsiderrelational alulus, or �rst-order logi, over the shemaSC andM, denoted by RC(SC;M). We often omit SCwhen it is understood, or irrelevant. Here we will fousexlusively on the string datatype, hene we will alwayshave U = ��. For example, if M = h��;�; (La)a2�i,the query9x R(x)^L0(x) ^9y(y � x^L1(y)^ (:9z y � z � x))tests if there is a string in the relation R whih endswith 10. Indeed, it asks if the last symbol of x is 0, andif there exists a pre�x y, whih is the largest pre�x ofx (as there is no z with y � z � x) suh that the lastsymbol of y is 1.Given a query '(x1; : : : ; xn) in RC(SC;M) and ~a 2 Un,we write D j= '(~a) when '(~a) is true in (D;M). Wewrite '(D) for the output of ' on D, that is, f~a 2 Un j

D j= '(~a)g. We say that ' is safe on D if '(D) is �nite,and that ' is safe if it is safe on every D. The safetyproblem is to determine whether a query is safe, and itis known to be undeidable even for the pure relationalalulus [1℄. The state-safety problem is to deide, fora given ' and D, if ' is safe on D.We say that safe queries in RC(M) have e�etive syntaxif there exists a reursively enumerable set  i; i < !, ofsafe queries in RC(M) suh that, for every SC, everysafe RC(SC;M) query is equivalent to one of  is. E�e-tive syntax is a �rst step towards an algebrai languageexpressing all safe queries. Indeed if suh a languageexists, safe queries must have e�etive syntax. Thate�etive syntax exists for safe queries in the pure re-lational alulus is a lassial relational theory result.Other { both positive or negative { results have beenproved reently [7, 28℄.An important restrition of queries is that to quan-ti�ation over the ative domain. We use quanti�ers9x 2 adom and 8x 2 adom, whose meaning is as fol-lows: D j= 9x 2 adom'(x; �) if D j= '(a; �) for somea 2 adom(D) (as opposed to for some a 2 U in the aseof the usual 9x quanti�er), and similarly for the univer-sal quanti�er. These restrited quanti�ers are de�nablein relational alulus, but it is often helpful to havethem available separately.A relational alulus formula is alled an ative-domainformula if all quanti�ers in it are of the form 8x 2adom; 9x2adom. We say that RC(M) admits natural-ative ollapse [6℄ if every RC(M) formula is equivalentto an ative-domain formula. We say that RC(M) ad-mits restrited quanti�er ollapse if every RC(M) for-mula is equivalent to one in whih SC-relations ap-pear only under the sope of quanti�ers 9x 2 adomand 8x 2 adom. Note that if M admits quanti�er-elimination, these two notions oinide.Complexity lasses Some omplexity results in thispaper refer to parallel omplexity lasses AC0, TC0,and NC1. AC0 is onstant parallel time; more pre-isely, the lass of languages aepted by polynomial-size onstant-depth unbounded fan-in iruits. TC0 ad-ditionally has majority gates of unbounded fan-in. InNC1, there are no majority gates, the depth is allowedto be logarithmi, but fan-in is bounded. It is knownthat AC0 � TC0 � NC1 (parity separates TC0 fromAC0). We onsider uniform versions of these lasses[4℄; uniform AC0 over �nite strutures an be hara-terized via de�nability in FO(BIT; <): �rst-order logiwith linear order and the BIT prediate (BIT(i; j) istrue i� the jth bit in the binary representation of i isone.) To apture unifom TC0 it suÆes to add ountingquanti�ers to FO(BIT; <) [4℄.



PH is the polynomial hierarhy, whih ontains, e.g.,NP and oNP and is itself inluded in PSPACE [24℄.As usual, for data omplexity, one �xes a query Qand onsiders the omplexity of fen(D)#en(t) j t 2Q(D)g. Normally in pure relational alulus the en-oding is suh that the ative domain is onsidered tobe f1; : : : ; kg, and eah number i is represented in bi-nary. When we deal with interpreted elements storedin a database, suh an enoding is not appropriate, asone needs to take into aount operations on those in-terpreted elements. In partiular, in the ase of stringsover a �nite alphabet, we onsider the enoding of astring to be itself (in the ase of an alphabet di�erentfrom f0; 1g we may have to ode letters in f0; 1g �rst).3 Problemati onatenationAs we said before, most earlier papers onsidered re-lational alulus with onatenation RConat , that is,RC(SC; h��;
i) where 
 has one operation of onate-nation, and onstant symbols for eah a 2 �. This lan-guage is extremely attrative in terms of ompositional-ity: given queriesQ andQ0 returning sets of strings, onean substitute Q and Q0 within regular-expressions toform new LIKE queries. However, as notied in [20℄, for� = f0; 1; ℄g, RConat expresses all omputable querieson databases ontaining strings from f0; 1g� (see [27℄for a proof). In fat, it is easy to show a more generalresult:Proposition 1 Let � ontain at least two letters. ThenRConat expresses all omputable queries on databasesover ��. 2In databases, we are austomed to relational alulushaving limited expressiveness; then the queries an beanalyzed and often good optimizations an be disov-ered. This is ertainly not the ase here; moreover,there is no hope of �nding a syntax for safe queries.Corollary 1 Let � ontain at least two letters. Thenthere is no e�etive syntax for safe queries in RConat .Furthermore, the state-safety problem is undeidable forRConat . 2Note that when � has one symbol, h��; �i is essentiallyhN;+i, and there exists e�etive syntax for safe queries,and state-safety is deidable [28℄.

4 Two models of basi string operationsSine RConat is omputationally omplete, it is toopowerful for use as a query language. We thus examinelanguages with stritly bounded expressivity and om-plexity. As mentioned in the introdution, we want tobe able to freely ompose the output of a string querywith a new query, just as we an ompose queries instandard relational languages. Hene when we onsidera set of operations 
, we will always lose under all �rstorder operations on the struture h��;
i.We start by looking at existing SQL string opera-tions. The most often-used operation is LIKE pattern-mathing. It allows one to say, for example, that a givenstring is a pre�x of another string (by using the % pat-tern meaning \zero or more haraters"), and also thata string has a �xed string as a substring. LIKE patternsare built from alphabet letters, and haraters % and _(whih mathes a single letter).Mathing with LIKE an be expressed in �rst-order logiover the the operations � and La; a 2 �: SQL's LIKEpatterns reognize only star-free languages, and (as weshow later) de�nable subsets of �� in h��;�; (La)a2�iare preisely star-free languages. For example, the on-dition x LIKE a_b%a_ | saying that the �rst symbol ofx is a, the third is b, and one but last is a again | anbe expressed by a formula '(x):9u; v; w0� u � v � w � x^ La(u) ^ Lb(v) ^ La(w)^  1(u) ^  3(v) ^  �1(w) 1Awhere  1(u);  3(v);  �1(w) say that u; v; w are pre�xesextending up to the �rst, third, and one but last po-sitions in the string x. Another important operation�rst-order expressible over� and La is the lexiographiordering �lex. Assume that � = fa1; : : : ; ang and anordering a1 < : : : < an is given. The lexiographiordering x �lex y is then expressed by:x � y_9z (z � x^z � y^_i<j((lai(z) � x)^(laj (z) � y)))Thus, with the basi set of operations � and La (ortheir funtional version la) we an express the twomost useful SQL string operations. We therefore be-gin by onsidering the �rst-order query language overS = h��;�; (La)a2�i. Note that S ould be equiva-lently de�ned as h��;�; (la)a2�i, as the graph of la isde�nable: x = la(y) i� y l x ^ La(x).Another SQL string operation is length LEN. Sine thisdoes not return a string, we turn it into a pure stringoperation that ompares lengths of strings: el(x; y) istrue if jxj = jyj. Adding this operation to S results inSlen = h��;�; (La)a2�; eli.



Slen is a struture well known in model theory andlanguage theory [10, 13℄. Consider a few examplesof expressibility over Slen. Clearly, other omparisonsof string length an be expressed, e.g. jxj < jyj by9z(z � y ^ el(z; x)). As a more interesting operation,onsider adding symbols on the left of a string: that is,the operation fa(x) = a � x. The graph of this funtionFa = f(x; y) j y = fa(x)g, is de�nable byjyj = jxj+ 1 ^ (9w � y jwj = 1 ^ La(w))^ 8z � x9v � y (jvj = jzj+ 1 ^Vb2� Lb(z)$ Lb(v))where jvj = juj+ 1 is de�ned by 9w(w l u ^ el(w; v)).To summarize, we are dealing with two strutures:� S = h��;�; (la)a2�i;� Slen = h��;�; (la)a2�; eli.In terms of expressing SQL string operations, S ov-ers LIKE, ordering, as well as substrings of onstantlength, and TRIM TRAILING, that removes all trailingourrenes of a given symbol. Slen is muh more pow-erful, and overs the SIMILAR pattern mathing of theSQL3 standard [21℄ (whih is essentially grep).The properties listed below an be found in [13, 10, 8℄for Slen and [8, 10℄ for S. Note that they are propertiesof the underlying strutures alone, without referene toa database.Properties of S. Every formula is equivalent to a for-mula in whih quanti�ation is restrited to pre�xes offree variables. Moreover, S has quanti�er elimination inthe signature extended with the following: a onstantsymbol, �, for the empty string, the funtion xu y, anda prediate PL(x; y) for eah star-free language, whosemeaning is x � y; y � x 2 L. That is, this signatureis in�nite, but it only ontains unary and binary pred-iates and funtions. The de�nable subsets of �� arepreisely the star-free languages. Neither the funtionfa nor the prediate el an be de�ned over S.Properties of Slen. It suÆes to restrit quanti�ationto strings whose length does not exeed the length offree variables. Slen does not have quanti�er eliminationin any reasonable relational signature (that is, in anysignature that has an upper bound on the arity of pred-iates). The lass of subsets of �� de�nable over Slenis preisely the lass of regular languages (thus, greppattern-mathing is de�nable in Slen).5 Expressive power and omplexityIn this setion we study expressiveness and omplexityover S and Slen.

5.1 Relational alulus over SOur goal here is to get bounds on the expressivenessand data omplexity for queries in RC(S). The maintool used is a ollapse result, Theorem 1, in the spirit ofthose produed for onstraint databases [6, 5℄. Reallthat relational alulus over a domain RC(M) admitsrestrited quanti�er ollapse if every RC(SC;M) for-mula '(~x) is equivalent to a formula '0(~x) in whih SC-prediates our only within the sope of ative domainquanti�ers 9x2adom and 8x2adom.To prove this, we �rst prove a simple proposition sayingthat it suÆes to quantify over pre�xes of the ativedomain. Extend RC(SC;S) with quanti�ers of the form9x�adom and 8x�adom, whose meaning is as follows.Given a formula '(x; ~y), an interpretation ~a for ~y, and adatabase D, 9x�adom '(x;~a) states that there existsa string  making '(;~a) true suh that either  � ai forai a omponent of ~a, or  � b where b is in adom(D).When there is no database, only the �rst of the previousases is relevant, and in this ase we are just saying thatbounded quanti�ation suÆes.Proposition 2 Every RC(SC;S) formula is equivalentto a formula that only uses quanti�ers 9x� adom and8x�adom.Proof sketh. We write (D1; ~s1) �k (D2; ~s2) if thedupliator has a winning strategy in the k-roundEhrenfeuht-Fra��ss�e game on S augmented with SC-relations and onstants interpreted as (D1; ~s1) and(D2; ~s2). We write (D1; ~s1) �bk (D2; ~s2) if the duplia-tor has a winning strategy in the same game restritedto pre�x(D1) [ pre�x(~s1) and pre�x (D2) [ pre�x (~s2).We then show that �bk+m+1 re�nes �k, where m is themaximum arity of a relation in SC. This is beause thewinning strategy for the dupliator over S and SC is de-termined by the winning strategy on the restrition topre�xes of the strings in SC-relations and free variables.This implies the result. 2Using this, and tehniques similar to those in [6℄, wean show (in a onstrutive way) the following result:Theorem 1 RC(S) admits restrited quanti�er ol-lapse. 2By showing that quanti�ation an be bounded by re-lations, Theorem 1 gives the intuition that an RC(S)query an be transformed into an ordinary SQL queryover LIKE: this will be made preise in Setion 6. Herewe note that a a straightforward orollary of Theorem1 shows that the data omplexity for RC(S) mathesthat of pure relational alulus.



Corollary 2 The data omplexity of RC(S) is in AC0.In partiular, neither parity nor onnetivity test is ex-pressible in RC(S).Another orollary onerns the expressive power ofgeneri queries. Reall that a query is generi if itommutes with permutations on the domain; in otherwords, it is independent of spei� elements stored ina database. Combining Theorem 1 with the ativegeneri ollapse [6℄, we obtain:Corollary 3 Every generi query expressible in RC(S)is already expressible in RC(<), relational alulus overordered databases. 2With respet to time omplexity Corollary 2 only gives apolynomial upper bound. We show next that for unarydatabases we get a muh striter omplexity result. Weall a database shema SC unary if it only ontainsunary relation names.Proposition 3 For unary SC, Boolean RC(SC;S)-queries an be evaluated in linear time in the size ofthe database. 25.2 Relational alulus over SlenWe have seen nie that query evaluation for relationalalulus over S has low omplexity. However, manyuseful queries of low omplexity, suh as the query thatappends a �xed string on the left of a given olumn, arenot expressible in S. Hene we examine the addition ofthe equal length prediate, that is, relational alulusover Slen. Throughout this setion, we assume thatthe alphabet has at least two symbols (as over the one-symbol alphabet, equal length is simply equality andthus does not give us any extra power).To analyze the expressive power and omplexity of Slen,we again make use of a normal-form result for queries.In this ase it is no longer suÆient to quantify over pre-�xes of strings in the ative domain; however a di�erentrestrited quanti�ation suÆes.We introdue quanti�ers 9 jxj � adom and 8 jxj � adomto be interpreted as follows. Given a formula '(~y), adatabase D and an interpretation ~a for ~y, a subformula9 jxj � adom �(x; �) is satis�ed if there exists a string satisfying �(; �) suh that the length of  does notexeed the length of the longest string in adom(D) and~a. We all these length-restrited quanti�ers. Note thatthey are just a notational onveniene, as they an beexpressed in RC(Slen). Moreover, they apture the ex-pressiveness of RC(Slen):

Proposition 4 Every RC(SC;Slen) formula is equiva-lent to a formula that uses only length-restrited quan-ti�ers.Proof sketh. The proof is along the lines of the proofof Proposition 2, but for a �nite struture one takes therestrition based on length rather than pre�xes. 2Pre�x-restrited quanti�ation does not suÆe forRC(Slen). Indeed, onsider the following query Q ona unary relation U : Q(U) is true i� U ontains a singleelement, whih is from 0� and of even length. This isexpressible in RC(Slen) by9!x U(x) ^ 8x(U(x)! (x 2 0�) ^ 9z 2 (01)�el(z; x)):Note that the prediates x 2 0� and z 2 (01)� an beexpressed even over S: reall that S an de�ne any star-free language and Slen any regular language. However,this query Q is inexpressible with just pre�x quanti�-ation: if it were, then over single-element databasesontained in 0�, el ould be eliminated from the query.Hene the set of strings from 0� of even length would bede�nable over S. But this language is not star-free, andthis ontradits the fat that the languages de�nableover S are exatly the star-free languages [8℄.As with Theorem 1, Proposition 4 gives us an upperbound on the omplexity of RC(Slen):Corollary 4 The data omplexity of RC(Slen) is inPH.Proof sketh. To hek if D j= '(~a), it is enoughto quantify over strings whose length does not exeedN , where N is the maximum length of a string inadom(D) [ ~a (see Proposition 4). If ' has alternationdepth k this an be done by a polynomial time alternat-ing Turing mahine with k alternations, hene in PH.2One an also derive an upper bound on generi ompu-tation, albeit not as low as for S. A relational (Boolean)query is a set of isomorphism types of SC-databases(w.r.t. the SC-relations only). A relational query is inAC0 if it is in AC0 under the usual relational enodingen0: elements of a k-element ative domain are en-oded by 1; : : : ; k, in binary (f. [1℄). A relational queryQ is expressible in RC(Slen) if there is a RC(Slen) sen-tene � suh that the SC-isomorphism type of D is inQ i� D j= �.Theorem 2 Any relational query that is expressible inRC(Slen) is in AC0. Thus, parity test and onnetivitytest are not de�nable in RC(Slen). 2



We now prove lower bounds that show the omplex-ity of Slen queries, although within PH, may be pro-hibitively high. Let MSO(SC) be the lass of queriesover SC expressible in monadi seond-order logi. Thisinludes queries of high-omplexity, namely for eahlevel of the polynomial hierarhy, PH, omplete queries[2℄, in partiular, NP-omplete and oNP-omplete ones(3-olorability and its omplement). Suh queries an-not be expressed over arbitrary databases in RC(Slen);however, they an be expressed under some additionalassumptions.We say that the width of the ative domain of a SCdatabase D (over ��) is k if k is the maximal size ofa subset of adom(D) whose elements are pairwise om-parable by the pre�x relation. It should be noted thatevery database D an be transformed into a databaseD0 of width 1 whih is isomorphi to D with respet tothe SC-prediates.Proposition 5 For every �xed k, all MSO(SC)-expressible queries an be expressed over databases ofwidth at most k in RC(SC;Slen). 2Thus, while not omputationally omplete as RConat ,RC(Slen) an express some queries that one would notnormally expet to be expressible in a �rst-order lan-guage.Reall that we had a linear time bound for the eval-uation of Boolean RC(S)-queries on unary databases.This might not be the ase for RC(Slen). Even worse,there might be even no �xed polynomial bound. Indeedit is possible to show that any graph query in RC(Slen)an be enoded by a unary query, where the input tothe unary query is omputed in polynomial time fromthe input graph.Thus, a linear (or �xed polynomial) bound for the eval-uation of Boolean RC(Slen)-queries on unary databaseswould imply a �xed polynomial bound for the dataomplexity of �rst-order sentenes on ordered graphs.It would imply further a �xed polynomial bound forthe evaluation of �rst-order sentenes on BIT-strutures(f., [3℄). This, in turn, would separate �rst-order logifrom least �xed point logi on suh strutures and there-fore imply the validity of the ordered onjeture [25℄ withvarious onsequenes in omplexity theory (see [3℄ for adisussion).6 Safe QueriesBoth RC(S) and RC(Slen) ontain queries that some-times produe in�nite output. Thus one of our goals

is to syntatially apture the safe queries in these lan-guages, and to be able to analyze safety properties ofa query { for example, given an arbitrary query anda database, to tell whether the output of the query onthat database is �nite. We saw that this annot be doneif the set of operations inludes onatenation. In on-trast, we will show that for RC(S) and RC(Slen) we ansyntatially desribe safe queries, give an algebra thataptures these queries, and extend the major deidabil-ity results for query safety analysis that hold for purerelational alulus.6.1 E�etive syntax for safe queriesThe simplest way to show that queries in RC(M) havee�etive syntax is to show that one an test if a givenquery returns a �nite result on a given database. To doso, it is enough to ensure that �niteness is de�nable inRC(M). Formally, �niteness is de�nable in RC(M) ifthere exists a sentene �safe in the language of M andSC expanded with a single new unary prediate sym-bol U suh that for any query '(x) and any databaseD, (D;'(D)) j= �safe i� '(D) is �nite. For example,�niteness is easily de�nable in RC(Slen) by9y8x(U(x)! 9z � y el(z; x)):One �niteness is de�nable, an enumeration of safequeries an easily be obtained. Given a query '(~x),let  '(x) be another relational alulus query that de-�nes the ative domain of the output of '. Let �safe'be the Boolean query obtained from �safe be replaingU(�) by  '(�). Then '(~x) ^�safe' lists all safe queries.For traditional relational alulus, and for its analogsover order onstraints, linear onstraints, and polyno-mial onstraints, �niteness an easily be shown to bede�nable [7℄. It is thus surprising that for RC(S) thisapproah does not work:Proposition 6 Finiteness is not de�nable in RC(S).Proof sketh. This is proved using an Ehrenfeuht-Fra��ss�e game argument. It shows that, for every k, thereexist K;m suh that a database ontaining all stringsof length at most K annot be distinguished with onlyk moves from a database ontaining the in�nite set ofstrings (0m1m)� together with all the strings of the form(0m1m)�w, where w has length at most K + 2m. 2While post-heking �niteness is a way to obtain e�e-tive syntax for safe queries, one often wishes to have amore expliit representation of safe queries. It turns outthat we an get natural representations for safe queries



in RC(S) and RC(Slen). The tehnique we use derivesfrom work on safe languages with linear or polynomialonstraints [7℄: for eah query Q, we e�etively on-strut another safe query Q0 that gives an upper boundon Q(D), if it is �nite. Suh expliit onstrutions areused to prove the theorem below, as well as to providerelational algebra extensions.We follow the idea of range-restrition as presentedin [7℄. A formula (x; z) over M is alled algebraiif for every b, the set fa j M j= (a; b)g is �nite.An RC(M) query in range-restrited form is a pairQ = ((x; y); '(x1; : : : ; xn)), where ' is an arbitraryquery and  is an algebrai formula over M. The se-mantis is given by '(~x) ^ 9~y 2 adom (Vi (xi; yi)).That is, Q(D) = (adom(D))n \ '(D)where (X) = fa j (a; b) for some b 2 Xg. Clearly,every query in range-restrited form is safe.Theorem 3 Let M be S or Slen. Then there is a re-ursive set � of algebrai formulae over M suh that,given a query '(~x) in RC(M), there is (x; y) 2 � withthe property that the range-restrited query Q = (; ')oinides with ' on all databases over whih ' is safe.Proof sketh. The proof is based on two lemmas, whihshow that if a query '(x) is satis�ed by an elementthat is suÆiently far from adom(D), then ' returns anin�nite result on D. The proof of these lemmas relieson a kind of pumping Lemma whih permits to derivein�nitely many strings as soon as a big enough one isfound. De�ne d(s; C) as jsj � js u Cj, and #D = fs jjsj � js0j; s0 2 adom(D)g.Lemma 1 Let '(x) be a RC(S) query. Then there ex-ists (and an be e�etively found if ' only uses pre�x-restrited quanti�ation) a number k > 0, suh thatthe following holds. Assume that D j= '(s) for somes with d(s; pre�x (D)) > k. Then there are in�nitelymany strings  suh that D j= '(). 2Lemma 2 Let '(x) be a RC(Slen) query. Then thereexists (and an be e�etively found if ' only uses lengthrestrited quanti�ation), a number k > 0 suh that thefollowing holds. Assume that D j= '(s) for some s withd(s; #D) > k. Then there are in�nitely many strings suh that D j= '().To prove the theorem, take an arbitrary query  (~y) andform '(x) that de�nes the ative domain of the outputof  . It then suÆes to prove the theorem for '(x),sine  is safe for D i� ' is safe for D, and thus for any

 suh that (; ') is equivalent to ' on all D for whih' is safe, the same would be true for (;  ) and  .Having redued the problem to queries in one variable,simply apply the orresponding lemmas. For RC(S),given '(x), �nd the number k as in Lemma 1, and let(x; y) say that x is a pre�x of the string of the formy �s with jsj � k. From Lemma 1 it follows that (; ') isequivalent to ' on any D for whih ' is safe. Finally, is learly algebrai, and expressible over S for any �xedk.For RC(Slen), given '(x), we get k from Lemma 2 andlet (x; y) be a Slen formula saying that the length ofx is at most the length of y plus k. Clearly, this isexpressible for eah �xed k, and (; ') oinides with 'on any D for whih ' is safe. This ompletes the proofof the theorem. 2Corollary 5 For both RC(S) and RC(Slen), the lassesof range-restrited and safe queries oinide, and safequeries have e�etive syntax. 2Note that for queries in RC(S) and RC(Slen) that use arestrited form of quanti�ation (pre�x or length), theproof gives us a stronger result: namely, the formula an be e�etively found for a given '.6.2 Relational algebrasIt is a lassial result of relational database theory thatthe set of safe relational alulus queries is preisely theset of relational algebra queries. This result extends tostring aluli onsidered here: safety theorems provedearlier an be used to show that safe queries in RC(S)and RC(Slen) an be aptured by appropriate exten-sions of relational algebra.Let safe RC(M) be the lass of all safe queries inRC(M). To de�ne algebras apturing safe RC(M) forthe previous two strutures, we need a number of op-erations extending the usual relational algebra (that is,�; �;�;�;[):R�: is a onstant unary relation f�g.��: for a formula �(x1; : : : ; xn). On an n-attribute re-lation R, it returns the set of tuples (s1; : : : ; sn)from R suh that �(s1; : : : ; sn) holds.prefixi: On an m-attribute relation R, it returns(m + 1)-attribute relation f(s1; : : : ; sm+1) j(s1; : : : ; sm) 2 R; sm+1 � sig.addlai , a 2 �: On an m-attribute relation R, it returnsthe (m + 1)-attribute relation f(s1; : : : ; sm+1) j(s1; : : : ; sm) 2 R; sm+1 = si � ag.



#i: Given an m-attribute relation R, #i (R) returnsf(s1; : : : ; sm+1) j (s1; : : : ; sm) 2 R; jsm+1j � jsijg.It should be pointed out that the formula � in �� doesnot refer to the database.We now de�ne the relational algebras:RA(S) extends relational algebra with R�, ��, where �ranges over FO(S) formulae, prefixi and addlai .RA(Slen) extends relational algebra with R�, ��, where� ranges over FO(Slen) formulae, # i, prefixi, andaddlai .Theorem 4 � safe RC(S) = RA(S);� safe RC(Slen) = RA(Slen).Proof sketh. Theorems 3 showed that there is a boundon outputs of safe queries. To prove the theorem, itsuÆes to notie that those bounds an be omputedby relational algebra expressions. 2One of the operations in RA(Slen), # i, is very expensive,as it may reate sets whose size is exponential in thesize of the input. It is, however, unavoidable, as thereare very expensive (e.g., NP-omplete) safe queries inRC(Slen).6.3 Deiding Safety Properties of QueriesAlthough query safety is undeidable for pure relationalalulus (and hene for any extension), state-safety(given a query ' and a database D, is '(D) �nite?)is deidable. State safety is also known to be deidablefor various extensions of the form RC(M) (for example,for the natural numbers with suessor [28℄ or the real�eld [7℄). For RC(S) and RC(Slen), this deidabilityholds as well:Proposition 7 State-safety is deidable for RC(S) andRC(Slen). 2As query safety is undeidable, one often onsiders re-stritions for whih deidability an be obtained. Herewe look at one of the most fundamental lasses ofqueries { onjuntive queries. We take their de�nitionin the ontext of interpreted operations from [7, 23℄. Aonjuntive query in RC(M) is a query of the form'(~x) � 9~y k̂i=1Si(~ui) ^ (~x; ~y);

where k � 0, eah Si is a shema relation, ~ui is a sub-tuple of (~x; ~y) of the same arity as Si, and  is an Mformula. A Datalog-like notation for suh a query wouldbe '(~x) :{ S1(~u1); : : : ; Sk(~uk); (~x; ~y).In [7℄, safety of onjuntive queries was shown deidablefor RC(M), for various strutures M on the reals withnumerial operations. We now show a general resultfrom whih the deidability results for string struturesS;Slen and those onsidered in [7℄ follow. We say that�niteness is de�nable with parameters in M if for eahformula  (~x; ~y) inM, there exists and an be e�etivelyfound another formula  �n(~y) suh that M j=  �n(~a)i� the set f~b j M j=  (~b;~a)g is �nite.Theorem 5 Assume that M an be expanded to M0suh that the theory of M0 is deidable, and �nitenessis de�nable with parameters in M0. Then safety ofBoolean ombinations of onjuntive queries in RC(M)is deidable. 2We know that Th(Slen) is deidable [10℄. Moreover,�niteness is de�nable with parameters: for  (~x; ~y), �n(~y) is 9~u(8~x (~x; ~y) ! 9~zVi zi � ui el(zi; xi)).Thus:Corollary 6 The safety of Boolean ombinations ofonjuntive queries in RC(S) and RC(Slen) is deidable.27 Tame extensions of RC(S)In the previous two setions we onsidered two di�er-ent relational aluli for databases with strings: RC(S)and RC(Slen). The former models operations suh asthe LIKE pattern-mathing and lexiographi ordering;the latter adds length omparisons, and enables ad-ditional operations suh as trimming/adding symbolson both left and right of a string, and the SIMILARpattern-mathing for heking membership in a regularlanguage. Both languages have some nie properties:for example, there is e�etive syntax, and even an al-gebra, for safe queries. However, RC(S) misses a num-ber of important string funtions, while the omplexityof RC(Slen) an be quite high: we saw how to enodeNP and oNP-omplete problems on inputs of a speialkind.Thus, a natural question is whether one an add oper-ations to RC(S) while maintaining its nie properties:e�etive syntax for safe queries and low data omplex-ity. We give here a positive answer to this question, byonsidering two extensions. The �rst one gives us oper-ations for adding/trimming symbols on the left; for ex-ample, TRIMa(s), where a 2 �, produes s0 if s = a � s0,



����������������RC(S)RC(Sleft) RC(Slen) RC(Sreg)Figure 1: Relationships between RC(S);RC(Sleft);RC(Sreg), and RC(Slen).and � if the �rst symbol of s is not a. The other ex-tension is by allowing tests for membership in a regularlanguage, without the full power of the equal lengthprediate. We show that both extensions share most ofits properties with RC(S), while adding signi�antly tothe expressiveness of the language.The �rst operation we onsider is adding one singleharater on the left: s 7! a � s, and its inverse TRIMa(s)denoted by s� a. That is, we onsider the struture:� Sleft = h��;�; (la)a2�; (fa)a2�i.This is a proper extension of S, as the graph of the fun-tion fa, f(s; fa(s)) j s 2 ��g, is not de�nable over S [8℄.The graph of the subtration operation is de�nable withfa. We also remark that while the lasses of subsets of(��)k, k > 1, de�nable in S and Sleft are di�erent, overboth strutures the lass of de�nable subsets of �� isthe same, that is, the lass of star-free languages [8℄.The seond extension we onsider allows us to modelmore general regular expression pattern-mathing. Ofourse any regular language is de�nable over Slen, andthus suh pattern-mathing an be done in the moreomplex model RC(Slen).We will add regular expression pattern-mathing di-retly to S, without adding the equal length prediate.Reall that S has quanti�er elimination in the exten-sion that inludes prediates PL(x; y), for eah star-freelanguage, whose meaning is x � y and y � x 2 L. Wenow de�ne Sreg to be the extension of S with all suhprediates when L ranges over regular languages. Notethat membership of x in any regular language L is de-�nable by PL(�; x). To summarize, we are dealing withRC(Sreg) where� Sreg = h��;�; (La)a2�; (PL)L regulari.Every set de�nable in Sreg is de�nable in Slen (as Slenexpresses all prediates PL), but the onverse is not true

sine the equal length prediate is not de�nable in Sreg[8℄. Furthermore, the lass of subsets of �� de�nable inSreg is exatly the lass of regular languages.RC(Sleft) and RC(Sreg) are inomparable in term of ex-pressive power. Indeed a simple game argument showsthat the relation f(x; y) j y = fa(x)g is not de�nablein RC(Sreg). Moreover, any language whih is not star-free is not de�nable in RC(Sleft) [8℄. Figure 1 sum-marizes the inlusion relationships between the variousrelational aluli introdued in this paper, the higherones being more expressive.We start with expressive power. Both RC(Sleft) andRC(Sreg) behave similarly to RC(S):Theorem 6 RC(Sleft) and RC(Sreg) admit the re-strited quanti�er ollapse.Proof sketh. Let S+left be the expansion of Sleft withthe following (de�nable) prediates and funtions: aonstant symbol, �, for the empty string, the binaryfuntion u for the longest ommon pre�x, the prediatePL(x; y) for eah star-free language L, and the funtionx 7! x � a, for eah a 2 �. Let S+reg be the expansionof Sreg with the (de�nable) funtion u and a onstant� for the empty string .It is shown in [8℄ that S+left and S+reg have quanti�erelimination, and the isolation property whih are knownto imply the ollapse [5, 16℄. 2Corollary 7 RC(Sleft) queries have AC0 data om-plexity, and RC(Sreg) queries have NC1 data omplex-ity. Furthermore, every generi query expressible inRC(Sleft) or RC(Sreg) is expressible in RC(<). 2As for query safety, several results extend straightfor-wardly to RC(Sleft) and RC(Sreg). Sine all operationsof Sleft and Sreg are expressible over Slen, the proof ofProposition 7 and Theorem 5 give us



Model Data omplexity Data omplexity E�etive syntax Relational Safety of CQof generi queries for safe queries algebraRC(S) AC0 FO(<) yes yes deidableRC(Slen) PH AC0 yes yes deidableRC(Sleft) AC0 FO(<) yes yes deidableRC(Sreg) NC1 FO(<) yes yes deidableRConat undeidable undeidable no no undeidableFigure 2: Summary of the resultsCorollary 8 The state-safety problem and the safety ofBoolean ombinations of onjuntive queries are deid-able for both RC(Sleft) and RC(Sreg). 2The e�etive syntax result an be proved for bothRC(Sleft) and RC(Sreg), but onsiderably more workis needed (espeially in the ase of Sleft).Theorem 7 Let M be Sleft or Sreg. There ex-ists a reursive olletion of algebrai formulae � =fi(x; y)gi2! over M suh that for every RC(M) query'(~x), there is an algebrai formula i(x; y) 2 � withthe property that the range-restrited query Q = (i; ')oinides with ' on all databases over whih ' is safe.Proof sketh. As for S and Slen, we show how to on-strut upper bounds on outputs of safe queries. Thetehnial details are rather long and are available in thefull version of the paper [9℄. 2Corollary 9 For both RC(Sleft) and RC(Sreg), thelasses of range-restrited and safe queries oinide,and safe queries have e�etive syntax. 27.1 Relational algebrasWe an likewise apture safety for RC(Sleft) andRC(Sreg) with relational algebras. For that, we needthe following operations (in addition to �; �;�;�;[,and R�; prefix; addl; # used in the de�nition of RA(S)and RA(Slen)):addfai , a 2 � : On anm-attribute relation R, it returnsan m + 1-attribute relation that holds the tuplesf(s1; : : : ; sm+1) j (s1; : : : ; sm) 2 R; sm+1 = a � sig.trimai , a 2 � : On anm-attribute relation R, it returnsan m + 1-attribute relation that holds the tuplesf(s1; : : : ; sm+1) j (s1; : : : ; sm) 2 R; sm+1 = si�ag.We now de�ne relational algebras:

RA(Sleft) is the extension of relational algebra with�� (where � ranges over Sleft formulae), prefix,addfai and trimai .RA(Sreg) extends relational algebra with R�, ��, where� ranges over FO(Sreg) formulae, prefixi andaddlai .Theorem 8 � safe RC(Sleft) = RA(Sleft);� safe RC(Sreg) = RA(Sreg).8 ConlusionWe have studied extensions of the standard relationalalulus with various sets of string operations. We wereinterested in languages that were not omputationallyomplete, but rather shared the attrative omplexity-theoreti and stati-analysis properties of relational al-ulus.The language RC(S) an be seen as a nie foundationover whih other languages should be built. It oversthe most rudimentary string operations, but its expres-sive power is quite limited. The extension RC(Slen) thatallows string-length omparisons is too powerful (butstill not omputationally omplete). We therefore on-sidered two languages in between, that an express someimportant operations found in RC(Slen), but still havelow data omplexity, e�etive syntax for safe queries,and orresponding relational algebras. The main resultson these relational aluli are summarized in Figure 2.Regarding further researh, it would be interesting tostudy an extension of RC(S) in the spirit of RC(Sleft)by allowing inserting haraters at arbitrary position ina string x, spei�ed by a pre�x of x.Aknowledgments We thank Wolfgang Thomas, SottWeinstein, and Emmanuel Waller for fruitful disussions onthe subjet.
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