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Abstract

We study relational calculi with support for string op-
erations. While SQL restricts the ability to mix string
pattern-matching and relational operations, prior pro-
posals for embedding SQL in a compositional calculus
were based on adding the operation of concatenation
to first-order logic. These latter proposals yield com-
positional query languages extending SQL, but are un-
fortunately computationally complete. The unbounded
expressive power in turn implies strong limits on the
ability to perform optimization and static analysis of
properties such as query safety in these languages.

In contrast, we look at compositional extensions of re-
lational calculus that have nice expressiveness, decid-
ability, and safety properties, while capturing string-
matching queries used in SQL. We start with an exten-
sion based on the string ordering and LIKE predicates.
This extension shares some of the attractive proper-
ties of relational calculus (e.g. effective syntax for safe
queries, low data complexity), but lacks the full power
of regular-expression pattern-matching. When we ex-
tend this basic model to include string length compar-
ison, we get a natural string language with great ex-
pressiveness, but one which includes queries with high
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(albeit bounded) data complexity. We thus explore
the space between these two languages. We consider
two intermediate languages: the first extends our base
language with functions that trim/add leading charac-
ters, and the other extends it by adding the full power
of regular-expression pattern-matching. We show that
both these extensions inherit many of the attractive
properties of the basic model: they both have corre-
sponding algebras expressing safe queries, and low com-
plexity of query evaluation.

1 Introduction

String manipulation facilities have long been recog-
nized as a critical component of a realistic database
query language. In SQL, for example, the WHERE clause
can contain string pattern-matching expressions, such
as FACULTY.NAME LIKE ’Nyk’nen’. These expressions
can themselves be seen as queries over string relations:
the above clause, for example, can be seen as a selec-
tion performed on a projection of the FACULTY relation.
While the Relational Calculus gives a satisfactory for-
mal model for SQL queries in the absence of built-in
datatypes, there has been thus far no satisfactory model
that fully accounts for string queries. The lack of an
adequate formal model is related to the fact that SQL
restricts the interaction of string operations and rela-
tional operations in a number of ad-hoc ways: one can-
not apply the LIKE operator to a subquery to build up
a new query, nor can one take the product of two string
expressions built with LIKE. Our goal here is to present
query languages that extend relational calculus to in-
clude string pattern-matching in such a way that string
queries can be freely composed with relational expres-
sions. The resulting languages can be used as formal
tools for analyzing the complexity and expressiveness
of SQL, and could also serve as target query languages
amenable to the optimizations that result from the in-
teraction of relational and string operations. In this pa-



per we explore several such languages, and study their
expressive power, complexity, and static analysis prop-
erties.

Some approaches toward unifying string algebras with
relational algebra have been developed in the prior liter-
ature. [17] studied the consequences of adding pattern-
matching features to SQL. [19, 22, 18] proposed an ex-
tension of the relational calculus with alignment log-
ics and studied their complexity and expressive power,
while [11, 12] considered Datalog extended with ap-
propriate transducers for string operations, proving a
number of completeness results. In [14] arbitrary re-
gions (substrings) can be queried; this, when coupled
with relational calculus, gives the power of string con-
catenation. Closer to our approach, [20, 26] study the
relational calculus/algebra extended with an operation
for concatenating strings. [15] studies first-order logic
over term algebras and extends expressive bounds and
complexity results from relational calculus to this set-
ting. But SQL-style string pattern-matching cannot be
expressed in the language of [15] — indeed in this lan-
guage one cannot, even query for strings beginning with
a fixed symbol.

One problem faced in any work combining string
pattern-matching queries with relational calculus is that
pattern-matching expressions may return an infinite
number of strings. This is the standard issue of safety.
The authors tackle this problem by identifying safe frag-
ments of their languages, using a number of syntactic
restrictions — see, e.g., [19, 22, 18, 20, 26] — but they
cannot capture the safe fragment of the language syn-
tactically. A second problem concerns expressive power.
Many query languages designed in the prior literature
turn out to be Turing complete, a feature that in turn
makes many sorts of analysis and optimization impos-
sible. Indeed, as noted in [20], adding just concatena-
tion to the relational calculus already yields a query
language which is Turing complete. This immediately
implies that there is no effective syntax for the corre-
sponding safe fragment [28].

In contrast to the above, in our work we seek languages
that fulfill the following criteria:

1. Query evaluation is efficient;
2. There is effective syntax capturing safe queries;

3. There is an algebra equivalent to the language.

We start with the observation that LIKE expressions
correspond to first-order formulae over the model S
consisting of strings with the prefix operation and func-
tions for concatenating alphabet symbols. We thus con-
sider relational calculus, RC, over this model: the re-
sulting query language captures basic SQL with simple

LIKE pattern-matching and lexicographic ordering. We
show that the safe fragment of this model can be effec-
tively captured in a natural way, and prove complex-
ity bounds for queries in this language that match the
known bounds for ordinary relational calculus. RC(S)
however, is unable to express certain natural queries,
e.g., SELECT a -  FROM R, where a is a fixed charac-
ter. We thus extend this language to RC(Sjen) by in-
troducing string length, more precisely, string length
comparisons. This extension has much greater expres-
siveness: it enables additional operations such as trim-
ming/adding symbols on both left and right of a string,
the SIMILAR pattern-matching for checking membership
in a regular language [21], and pattern-matching on sets
of n-tuples. We show that this language also satisfies
criteria 2 and 3 above, but in RC(Sien) one can express
NP-complete and coNP-complete problems.

This leads us to the consideration of two intermedi-
ate languages, RC(Sief¢) and RC(Syez). The first one
adds operations for trimming/adding leading charac-
ters (that is, characters on the left), and the second
one gives us regular expression pattern matching. Both
languages satisfy all three of the required criteria, while

considerably extending the expressive power of RC(S).

The paper is organized as follows. The next section
presents the notations. Section 3 briefly reviews results
on relational calculus with concatenation. Section 4
presents the sets of string operations considered in the
paper. In Section 5 we explore the expressive power and
complexity of RC(S) and RC(Sien). Query safety for
these languages is investigated in Section 6. In Section
7, we propose and study RC(Sie;) and RC(Syeg) and ex-
tend the previous results to these languages. Complete
proofs of all results can be found in [9].

2 Notations

Strings and operations on them For a finite alphabet
Y, we write ¥* for the set of all finite strings over X,
and Y= for the set of all strings of length at most n.
The empty string is denoted by e. We shall consider a
number of operations on strings; those used most often
are:

e -y is the concatenation of two strings z and y.

e z <y is true iff z is a prefix of y. = < y is true iff
x is a strict prefix of y.

e [, (z), a € T, is a function that adds a as the last
symbol: l,(z) = z - a.

e f.(x), a € X, is a function that adds a as the first
symbol: f,(z) =a-x.



e |z| is the length of string z.

e 1 — y is defined to be the relative suffix of y in z.
That is, if ¢ = y - z, then x — y = z; otherwise
T—y =F¢

e z My is the longest common prefix of x and y.

We shall consider a number of first-order structures
M = (¥*,Q), where Q is a collection of predicates and
functions on ¥*. Often it is convenient to have all re-
lational symbols in €. For that purpose, we introduce
the unary relation L, (last symbol) which is true of z iff
the last symbol of z is a, and a binary relation F,(z,y)
which holds iff y = fo(z) = a- 2.

Note that |z| does not return a string, so it is not an
operation of ¥*. Instead, we use the binary predicate
el(z,y) (equal length) which is true iff |z| = |y|.

We write x < y to express that y extends z by exactly
one symbol. Let prefiz(C) stand for the prefiz-closure
of C: {s|s X s',s € C}. Byl (C) we denote {s |
Is| < |s'|,s" € C}. Given C C ¥* and z € ¥*, by z N C
we denote the longest string among xz M¢,c € C. Note
that this is well-defined, since all the strings x M ¢ are
prefixes of z.

Databases and query languages A database schema
SC is a collection of relation names Ry, ..., R;, R; being
of arity p; > 0. In an instance of SC over a set U, each
R; is interpreted as a finite subset of UP:. The active
domain of a database D, adom (D), is the set of elements
from U that appear in D.

The general setting for query languages is that of a fi-
nite database and an infinite underlying structure M =
(U,Q), where Q is a set of operations (functions and
predicates) on U. As our basic language we consider
relational calculus, or first-order logic, over the schema
SC and M, denoted by RC(SC, M). We often omit SC
when it is understood, or irrelevant. Here we will focus
exclusively on the string datatype, hence we will always
have U = ¥*. For example, if M = (¥*, <, (Ls)eex),
the query

Jz R(z) AN Lo(z) NJy(y < 2 ANLi(y) AN(—3Fzy < 2z < z))

tests if there is a string in the relation R which ends
with 10. Indeed, it asks if the last symbol of z is 0, and
if there exists a prefix y, which is the largest prefix of
x (as there is no z with y < z < x) such that the last
symbol of y is 1.

Given a query p(z1,...,2,) in RC(SC, M) and @ € U",
we write D |= ¢(d@) when (@) is true in (D, M). We
write (D) for the output of ¢ on D, that is, {@ € U™ |

D E o(@)}. We say that ¢ is safe on D if p(D) is finite,
and that ¢ is safe if it is safe on every D. The safety
problem is to determine whether a query is safe, and it
is known to be undecidable even for the pure relational
calculus [1]. The state-safety problem is to decide, for
a given ¢ and D, if ¢ is safe on D.

We say that safe queries in RC(M) have effective syntaz
if there exists a recursively enumerable set 1;,i < w, of
safe queries in RC(M) such that, for every SC, every
safe RC(SC, M) query is equivalent to one of ¢;s. Effec-
tive syntax is a first step towards an algebraic language
expressing all safe queries. Indeed if such a language
exists, safe queries must have effective syntax. That
effective syntax exists for safe queries in the pure re-
lational calculus is a classical relational theory result.
Other — both positive or negative — results have been
proved recently [7, 28].

An important restriction of queries is that to quan-
tification over the active domain. We use quantifiers
Jz € adom and Vz € adom, whose meaning is as fol-
lows: D E 3z € adomy(z,-) if D = ¢(a,-) for some
a € adom(D) (as opposed to for some a € U in the case
of the usual 3z quantifier), and similarly for the univer-
sal quantifier. These restricted quantifiers are definable
in relational calculus, but it is often helpful to have
them available separately.

A relational calculus formula is called an active-domain
formula if all quantifiers in it are of the form Vz €
adom, 3z € adom. We say that RC(M) admits natural-
active collapse [6] if every RC(M) formula is equivalent
to an active-domain formula. We say that RC(M) ad-
mits restricted quantifier collapse if every RC(M) for-
mula is equivalent to one in which SC-relations ap-
pear only under the scope of quantifiers 3z € adom
and Vx € adom. Note that if M admits quantifier-
elimination, these two notions coincide.

Complexity classes Some complexity results in this
paper refer to parallel complexity classes AC?, TC?,
and NC'. AC° is constant parallel time; more pre-
cisely, the class of languages accepted by polynomial-
size constant-depth unbounded fan-in circuits. TC® ad-
ditionally has majority gates of unbounded fan-in. In
NC!, there are no majority gates, the depth is allowed
to be logarithmic, but fan-in is bounded. It is known
that AC® ¢ TC® C NC' (parity separates TC® from
AC%). We consider uniform versions of these classes
[4); uniform AC® over finite structures can be charac-
terized via definability in FO(BIT, <): first-order logic
with linear order and the BIT predicate (BIT(i,7) is
true iff the jth bit in the binary representation of i is
one.) To capture unifom TCY it suffices to add counting
quantifiers to FO(BIT, <) [4].



PH is the polynomial hierarchy, which contains, e.g.,
NP and coNP and is itself included in PSPACE [24].

As usual, for data complexity, one fixes a query @
and considers the complexity of {enc(D)#enc(t) | t €
Q(D)}. Normally in pure relational calculus the en-
coding is such that the active domain is considered to
be {1,...,k}, and each number i is represented in bi-
nary. When we deal with interpreted elements stored
in a database, such an encoding is not appropriate, as
one needs to take into account operations on those in-
terpreted elements. In particular, in the case of strings
over a finite alphabet, we consider the encoding of a
string to be itself (in the case of an alphabet different
from {0,1} we may have to code letters in {0, 1} first).

3 Problematic concatenation

As we said before, most earlier papers considered re-
lational calculus with concatenation RC,pncat, that is,
RC(SC, (X*,Q)) where Q has one operation of concate-
nation, and constant symbols for each a € ¥. This lan-
guage is extremely attractive in terms of compositional-
ity: given queries Q and Q' returning sets of strings, one
can substitute ) and @' within regular-expressions to
form new LIKE queries. However, as noticed in [20], for
¥ ={0,1,4}, RCeoncat expresses all computable queries
on databases containing strings from {0,1}* (see [27]
for a proof). In fact, it is easy to show a more general
result:

Proposition 1 Let X contain at least two letters. Then
RC oncat €xpresses all computable queries on databases
over ¥*. a

In databases, we are accustomed to relational calculus
having limited expressiveness; then the queries can be
analyzed and often good optimizations can be discov-
ered. This is certainly not the case here; moreover,
there is no hope of finding a syntax for safe queries.

Corollary 1 Let ¥ contain at least two letters. Then
there is no effective syntazx for safe queries in RC coneat-
Furthermore, the state-safety problem is undecidable for
RCconcat- |

Note that when ¥ has one symbol, (X*,-) is essentially
(N, +), and there exists effective syntax for safe queries,
and state-safety is decidable [28].

4 Two models of basic string operations

Since RC.yneqr is computationally complete, it is too
powerful for use as a query language. We thus examine
languages with strictly bounded expressivity and com-
plexity. As mentioned in the introduction, we want to
be able to freely compose the output of a string query
with a new query, just as we can compose queries in
standard relational languages. Hence when we consider
a set of operations 2, we will always close under all first
order operations on the structure (X*, ).

We start by looking at existing SQL string opera-
tions. The most often-used operation is LIKE pattern-
matching. It allows one to say, for example, that a given
string is a prefix of another string (by using the % pat-
tern meaning “zero or more characters”), and also that
a string has a fixed string as a substring. LIKE patterns
are built from alphabet letters, and characters % and _
(which matches a single letter).

Matching with LIKE can be expressed in first-order logic
over the the operations < and L,,a € ¥: SQL’s LIKE
patterns recognize only star-free languages, and (as we
show later) definable subsets of * in (X*, <, (Ls)aex)
are precisely star-free languages. For example, the con-
dition = LIKE a_b%a_ — saying that the first symbol of
x is a, the third is b, and one but last is @ again — can
be expressed by a formula ¢(z):

u<v<w-<=zT
A Lo(u) A Ly(v) A Ly (w)
A thi(u) Aps(v) A o1 (w)

where 1 (u),¥3(v),1_1 (w) say that u,v,w are prefixes
extending up to the first, third, and one but last po-
sitions in the string z. Another important operation
first-order expressible over < and L, is the lezicographic
ordering <jex. Assume that ¥ = {ay,...,a,} and an
ordering a; < ... < a, is given. The lexicographic
ordering x <jex ¥ is then expressed by:

Ju, v, w

2 2yv3z (2 < oAz < YA\ (Lo, (2) 2 2)A (Lo, (2) 2 1))
i<j

Thus, with the basic set of operations < and L, (or
their functional version l,) we can express the two
most useful SQL string operations. We therefore be-
gin by considering the first-order query language over
S = (¥*,<,(Ly)eex). Note that S could be equiva-
lently defined as (X*, <, (l4)qex), as the graph of [, is
definable: = =1,(y) iff y <z A Ly ().

Another SQL string operation is length LEN. Since this
does not return a string, we turn it into a pure string
operation that compares lengths of strings: el(x,y) is
true if |z] = |y|. Adding this operation to S results in
Sien = <Z*, =<, (La)aEEa el).



Sien is a structure well known in model theory and
language theory [10, 13]. Consider a few examples
of expressibility over Sje,. Clearly, other comparisons
of string length can be expressed, e.g. |z| < |y| by
3z(z < y Ael(z,z)). As a more interesting operation,
consider adding symbols on the left of a string: that is,
the operation f,(z) = a - z. The graph of this function
Fy = {(@,y) | y = fa(®)}, is definable by

yl =lz/ + 1A (Fw <y [w| = 1A Le(w))
AN Vz<zv <y (jv] = 2]+ 1A Ay Lo(2) & Le(v))

where |v| = |u| + 1 is defined by Jw(w < u A el(w, v)).

To summarize, we are dealing with two structures:

o S= (<, (la)aes);
L Slen = <E*: =<, (la)a627el>'

In terms of expressing SQL string operations, S cov-
ers LIKE, ordering, as well as substrings of constant
length, and TRIM TRAILING, that removes all trailing
occurrences of a given symbol. Sje, is much more pow-
erful, and covers the SIMILAR pattern matching of the
SQL3 standard [21] (which is essentially grep).

The properties listed below can be found in [13, 10, §]
for Sien and [8, 10] for S. Note that they are properties
of the underlying structures alone, without reference to
a database.

Properties of S. Every formula is equivalent to a for-
mula in which quantification is restricted to prefixes of
free variables. Moreover, S has quantifier elimination in
the signature extended with the following: a constant
symbol, €, for the empty string, the function z My, and
a predicate P (z,y) for each star-free language, whose
meaning is * < y,y —z € L. That is, this signature
is infinite, but it only contains unary and binary pred-
icates and functions. The definable subsets of ¥* are
precisely the star-free languages. Neither the function
fa nor the predicate el can be defined over S.

Properties of Sie,. It suffices to restrict quantification
to strings whose length does not exceed the length of
free variables. Sjen does not have quantifier elimination
in any reasonable relational signature (that is, in any
signature that has an upper bound on the arity of pred-
icates). The class of subsets of £* definable over Sje,
is precisely the class of regular languages (thus, grep
pattern-matching is definable in Sy, ).

5 Expressive power and complexity

In this section we study expressiveness and complexity
over S and Sien.-

5.1 Relational calculus over S

Our goal here is to get bounds on the expressiveness
and data complexity for queries in RC(S). The main
tool used is a collapse result, Theorem 1, in the spirit of
those produced for constraint databases [6, 5]. Recall
that relational calculus over a domain RC(M) admits
restricted quantifier collapse if every RC(SC, M) for-
mula ¢(Z) is equivalent to a formula ¢'(Z) in which SC-
predicates occur only within the scope of active domain
quantifiers 3z € adom and Vz € adom.

To prove this, we first prove a simple proposition saying
that it suffices to quantify over prefixes of the active
domain. Extend RC(SC, S) with quantifiers of the form
Jx <adom and Vz <adom, whose meaning is as follows.
Given a formula ¢(z, %), an interpretation @ for ¢, and a
database D, 3z <adom ¢(z, @) states that there exists
a string ¢ making ¢(c, @) true such that either ¢ < a; for
a; a component of @, or ¢ < b where b is in adom (D).
When there is no database, only the first of the previous
cases is relevant, and in this case we are just saying that
bounded quantification suffices.

Proposition 2 Fvery RC(SC,S) formula is equivalent
to a formula that only uses quantifiers 3z < adom and
Vx <adom.

Proof sketch. We write (D1,51) =, (D2, 82) if the
duplicator has a winning strategy in the k-round
Ehrenfeucht-Fraissé game on S augmented with SC-
relations and constants interpreted as (Di,8;) and
(DQ, 52) We write (Dl, 51) EZ (DQ, 52) if the duplica—
tor has a winning strategy in the same game restricted
to prefixr(Dy) U prefiz(s1) and prefix(Dsy) U prefiz(Ss).
We then show that =}, ., refines =, where m is the
maximum arity of a relation in SC. This is because the
winning strategy for the duplicator over S and SC is de-
termined by the winning strategy on the restriction to
prefixes of the strings in SC-relations and free variables.
This implies the result. O

Using this, and techniques similar to those in [6], we
can show (in a constructive way) the following result:

Theorem 1 RC(S) admits restricted quantifier col-
lapse. O

By showing that quantification can be bounded by re-
lations, Theorem 1 gives the intuition that an RC(S)
query can be transformed into an ordinary SQL query
over LIKE: this will be made precise in Section 6. Here
we note that a a straightforward corollary of Theorem
1 shows that the data complexity for RC(S) matches
that of pure relational calculus.



Corollary 2 The data complexity of RC(S) is in ACP.
In particular, neither parity nor connectivity test is ex-
pressible in RC(S).

Another corollary concerns the expressive power of
generic queries. Recall that a query is generic if it
commutes with permutations on the domain; in other
words, it is independent of specific elements stored in
a database.  Combining Theorem 1 with the active
generic collapse [6], we obtain:

Corollary 3 Every generic query expressible in RC(S)
is already expressible in RC(<), relational calculus over
ordered databases. a

With respect to time complexity Corollary 2 only gives a
polynomial upper bound. We show next that for unary
databases we get a much stricter complexity result. We
call a database schema SC wnary if it only contains
unary relation names.

Proposition 3 For unary SC, Boolean RC(SC,S)-
queries can be evaluated in linear time in the size of
the database. a

5.2 Relational calculus over S,

We have seen nice that query evaluation for relational
calculus over S has low complexity. However, many
useful queries of low complexity, such as the query that
appends a fixed string on the left of a given column, are
not expressible in S. Hence we examine the addition of
the equal length predicate, that is, relational calculus
over Sien. Throughout this section, we assume that
the alphabet has at least two symbols (as over the one-
symbol alphabet, equal length is simply equality and
thus does not give us any extra power).

To analyze the expressive power and complexity of Sjep,
we again make use of a normal-form result for queries.
In this case it is no longer sufficient to quantify over pre-
fixes of strings in the active domain; however a different
restricted quantification suffices.

We introduce quantifiers 3 [z| < adom and V |z| < adom
to be interpreted as follows. Given a formula (%), a
database D and an interpretation d for ¢, a subformula
3 |z| < adom a(z,-) is satisfied if there exists a string
¢ satisfying a(c,-) such that the length of ¢ does not
exceed the length of the longest string in adom (D) and
d. We call these length-restricted quantifiers. Note that
they are just a notational convenience, as they can be
expressed in RC(Sien). Moreover, they capture the ex-

pressiveness of RC(Sien):

Proposition 4 Every RC(SC, Sien) formula is equiva-
lent to a formula that uses only length-restricted quan-
tifiers.

Proof sketch. The proof is along the lines of the proof
of Proposition 2, but for a finite structure one takes the
restriction based on length rather than prefixes. a

Prefix-restricted quantification does not suffice for
RC(Sien). Indeed, consider the following query @ on
a unary relation U: Q(U) is true iff U contains a single
element, which is from 0* and of even length. This is
expressible in RC(Sjen) by

Az U(z) AVz(U(z) = (x € 0*) AJz € (01)%el(z, x)).

Note that the predicates z € 0* and z € (01)* can be
expressed even over S: recall that S can define any star-
free language and Sje,, any regular language. However,
this query @ is inexpressible with just prefix quantifi-
cation: if it were, then over single-element databases
contained in 0*, el could be eliminated from the query.
Hence the set of strings from 0* of even length would be
definable over S. But this language is not star-free, and
this contradicts the fact that the languages definable
over S are exactly the star-free languages [8].

As with Theorem 1, Proposition 4 gives us an upper
bound on the complexity of RC(Sjen):

Corollary 4 The data complexity of RC(Sien) is in
PH.

Proof sketch. To check if D = (@), it is enough
to quantify over strings whose length does not exceed
N, where N is the maximum length of a string in
adom (D) U @ (see Proposition 4). If ¢ has alternation
depth k this can be done by a polynomial time alternat-
ing Turing machine with k& alternations, hence in PH.
|

One can also derive an upper bound on generic compu-
tation, albeit not as low as for S. A relational (Boolean)
query is a set of isomorphism types of SC-databases
(w.r.t. the SC-relations only). A relational query is in
ACY if it is in AC® under the usual relational encoding
encg: elements of a k-element active domain are en-
coded by 1,...,k, in binary (cf. [1]). A relational query
Q is expressible in RC(Sjen) if there is a RC(Sien) sen-
tence ® such that the SC-isomorphism type of D is in
Qiff D= 9.

Theorem 2 Any relational query that is expressible in
RC(Sien) is in AC®. Thus, parity test and connectivity
test are not definable in RC(Sjen). O



We now prove lower bounds that show the complex-
ity of Sjen queries, although within PH, may be pro-
hibitively high. Let MSO(SC) be the class of queries
over SC expressible in monadic second-order logic. This
includes queries of high-complexity, namely for each
level of the polynomial hierarchy, PH, complete queries
[2], in particular, NP-complete and coNP-complete ones
(3-colorability and its complement). Such queries can-
not be expressed over arbitrary databases in RC(Sjen);
however, they can be expressed under some additional
assumptions.

We say that the width of the active domain of a SC
database D (over ¥*) is k if k is the maximal size of
a subset of adom (D) whose elements are pairwise com-
parable by the prefix relation. It should be noted that
every database D can be transformed into a database
D' of width 1 which is isomorphic to D with respect to
the SC-predicates.

Proposition 5 For every fized k, all MSO(SC)-
expressible queries can be expressed over databases of
width at most k in RC(SC, Sien)- O

Thus, while not computationally complete as RC .oneat;
RC(Sien) can express some queries that one would not
normally expect to be expressible in a first-order lan-
guage.

Recall that we had a linear time bound for the eval-
uation of Boolean RC(S)-queries on unary databases.
This might not be the case for RC(Sjen). Even worse,
there might be even no fixed polynomial bound. Indeed
it is possible to show that any graph query in RC(Sjen)
can be encoded by a unary query, where the input to
the unary query is computed in polynomial time from
the input graph.

Thus, a linear (or fixed polynomial) bound for the eval-
uation of Boolean RC(Sjen)-queries on unary databases
would imply a fixed polynomial bound for the data
complexity of first-order sentences on ordered graphs.
It would imply further a fixed polynomial bound for
the evaluation of first-order sentences on BIT-structures
(cf., [3]). This, in turn, would separate first-order logic
from least fixed point logic on such structures and there-
fore imply the validity of the ordered conjecture [25] with
various consequences in complexity theory (see [3] for a
discussion).

6 Safe Queries

Both RC(S) and RC(Sjen) contain queries that some-
times produce infinite output. Thus one of our goals

is to syntactically capture the safe queries in these lan-
guages, and to be able to analyze safety properties of
a query — for example, given an arbitrary query and
a database, to tell whether the output of the query on
that database is finite. We saw that this cannot be done
if the set of operations includes concatenation. In con-
trast, we will show that for RC(S) and RC(Sjen) we can
syntactically describe safe queries, give an algebra that
captures these queries, and extend the major decidabil-
ity results for query safety analysis that hold for pure
relational calculus.

6.1 Effective syntax for safe queries

The simplest way to show that queries in RC(M) have
effective syntax is to show that one can test if a given
query returns a finite result on a given database. To do
so, it is enough to ensure that finiteness is definable in
RC(M). Formally, finiteness is definable in RC(M) if
there exists a sentence ®2f in the language of M and
SC expanded with a single new unary predicate sym-
bol U such that for any query ¢(x) and any database
D, (D,¢(D)) |= ®%¢ iff ©(D) is finite. For example,
finiteness is easily definable in RC(Sjen) by

yVz(U(z) — 3z < y el(z,z)).

Once finiteness is definable, an enumeration of safe
queries can easily be obtained. Given a query ¢(Z),
let ¢, (x) be another relational calculus query that de-
fines the active domain of the output of . Let Qfoafe
be the Boolean query obtained from ®%* be replacing
U(:) by 94(-). Then (&) A tbfffe lists all safe queries.

For traditional relational calculus, and for its analogs
over order constraints, linear constraints, and polyno-
mial constraints, finiteness can easily be shown to be
definable [7]. It is thus surprising that for RC(S) this
approach does not work:

Proposition 6 Finiteness is not definable in RC(S).

Proof sketch. This is proved using an Ehrenfeucht-
Fraissé game argument. It shows that, for every k, there
exist K, m such that a database containing all strings
of length at most K cannot be distinguished with only
k moves from a database containing the infinite set of
strings (0™1™)* together with all the strings of the form
(0m1™)*w, where w has length at most K + 2m. O

While post-checking finiteness is a way to obtain effec-
tive syntax for safe queries, one often wishes to have a
more explicit representation of safe queries. It turns out
that we can get natural representations for safe queries



in RC(S) and RC(Sjen). The technique we use derives
from work on safe languages with linear or polynomial
constraints [7]: for each query @, we effectively con-
struct another safe query @)’ that gives an upper bound
on Q(D), if it is finite. Such explicit constructions are
used to prove the theorem below, as well as to provide
relational algebra extensions.

We follow the idea of range-restriction as presented
in [7]. A formula 7y(z,z) over M is called algebraic
it for every b, the set {a | M = ~(a,b)} is finite.
An RC(M) query in range-restricted form is a pair
Q = (y(z,y),p(z1,...,2,)), where ¢ is an arbitrary
query and « is an algebraic formula over M. The se-
mantics is given by ¢(&) A 3§ € adom (A; v(zi, ys))-
That is,

Q(D) = ~(adom(D))" Ne(D)

where v(X) = {a | v(a,b) for some b € X}. Clearly,
every query in range-restricted form is safe.

Theorem 3 Let M be S or Sien. Then there is a re-
cursive set I of algebraic formulae over M such that,
given a query (&) in RC(M), there is y(x,y) € T with
the property that the range-restricted query @ = (v, )
coincides with ¢ on all databases over which p is safe.

Proof sketch. The proof is based on two lemmas, which
show that if a query ¢(z) is satisfied by an element
that is sufficiently far from adom (D), then ¢ returns an
infinite result on D. The proof of these lemmas relies
on a kind of pumping Lemma which permits to derive
infinitely many strings as soon as a big enough one is
found. Define d(s,C) as |s| — [sM C|, and | D = {s |
|s| < |s'|,s" € adom(D)}.

Lemma 1 Let p(z) be a RC(S) query. Then there ex-
ists (and can be effectively found if ¢ only uses prefiz-
restricted quantification) a number k > 0, such that
the following holds. Assume that D = ¢(s) for some
s with d(s,prefit(D)) > k. Then there are infinitely
many strings ¢ such that D = ¢(c). O

Lemma 2 Let () be a RC(Sien) query. Then there
exists (and can be effectively found if ¢ only uses length
restricted quantification), a number k > 0 such that the
following holds. Assume that D |= ¢(s) for some s with
d(s,} D) > k. Then there are infinitely many strings ¢
such that D = ¢(c).

To prove the theorem, take an arbitrary query () and
form ¢(z) that defines the active domain of the output
of ¢. It then suffices to prove the theorem for ¢(z),
since 1 is safe for D iff ¢ is safe for D, and thus for any

v such that (v, ) is equivalent to ¢ on all D for which
 is safe, the same would be true for (y,) and .

Having reduced the problem to queries in one variable,
simply apply the corresponding lemmas. For RC(S),
given ¢(z), find the number £ as in Lemma 1, and let
v(z,y) say that z is a prefix of the string of the form
y-s with |s| < k. From Lemma 1 it follows that (v, ¢) is
equivalent to ¢ on any D for which ¢ is safe. Finally, ~
is clearly algebraic, and expressible over S for any fixed
k.

For RC(Sien), given ¢(z), we get k from Lemma 2 and
let v(z,y) be a Sje, formula saying that the length of
x is at most the length of y plus k. Clearly, this is
expressible for each fixed k, and (v, ) coincides with ¢
on any D for which ¢ is safe. This completes the proof
of the theorem. a

Corollary 5 For both RC(S) and RC(Sien), the classes
of range-restricted and safe queries coincide, and safe
queries have effective syntazx. |

Note that for queries in RC(S) and RC(Sjep) that use a
restricted form of quantification (prefix or length), the
proof gives us a stronger result: namely, the formula ~
can be effectively found for a given .

6.2 Relational algebras

It is a classical result of relational database theory that
the set of safe relational calculus queries is precisely the
set of relational algebra queries. This result extends to
string calculi considered here: safety theorems proved
earlier can be used to show that safe queries in RC(S)
and RC(Sjen) can be captured by appropriate exten-
sions of relational algebra.

Let safe_ RC(M) be the class of all safe queries in
RC(M). To define algebras capturing safe_ RC(M) for
the previous two structures, we need a number of op-
erations extending the usual relational algebra (that is,
o,m, X, —,U):

R,: is a constant unary relation {e}.

04 for a formula a(z1,...,z,). On an n-attribute re-
lation R, it returns the set of tuples (s1,...,8)
from R such that a(sy,...,s,) holds.

prefix;: On an m-attribute relation R, it returns
(m + 1)-attribute relation {(sq,..
(S1y--y8m) € R, Smy1 =X 8i}.

addly, a € ¥: On an m-attribute relation R, it returns
the (m + 1)-attribute relation {(s1,...,8m+1) |
(S1y.--s8m) € R, Smy1 = 8; - a}.

':Sm+1) ‘



lit Given an me-attribute relation R, |; (R) returns
{(Sl, e ,Sm+1) | (Sl, e ,Sm) S R, |5m+1| S |Sl|}

It should be pointed out that the formula « in o, does
not refer to the database.

We now define the relational algebras:

RA(S) extends relational algebra with R, 0., where o
ranges over FO(S) formulae, prefix; and addl{.

RA(Sien) extends relational algebra with R, o4, where
« ranges over FO(Sien) formulae, | ;, prefix;, and
add1?.

Theorem 4 o safe RC(S) = RA(S);

e safe_RC(Sien) = RA(Sien)-

Proof sketch. Theorems 3 showed that there is a bound
on outputs of safe queries. To prove the theorem, it
suffices to notice that those bounds can be computed
by relational algebra expressions. O

One of the operations in RA(Sjen), 44, is very expensive,
as it may create sets whose size is exponential in the
size of the input. It is, however, unavoidable, as there
are very expensive (e.g., NP-complete) safe queries in

RC(Sien)-

6.3 Deciding Safety Properties of Queries

Although query safety is undecidable for pure relational
calculus (and hence for any extension), state-safety
(given a query ¢ and a database D, is (D) finite?)
is decidable. State safety is also known to be decidable
for various extensions of the form RC(M) (for example,
for the natural numbers with successor [28] or the real
field [7]). For RC(S) and RC(Sjen), this decidability
holds as well:

Proposition 7 State-safety is decidable for RC(S) and
RC(S]en). Oa

As query safety is undecidable, one often considers re-
strictions for which decidability can be obtained. Here
we look at one of the most fundamental classes of
queries — conjunctive queries. We take their definition
in the context of interpreted operations from [7, 23]. A
conjunctive query in RC(M) is a query of the form

k
e(@) = 3§ N Sili;) A A5,
i=1

where k£ > 0, each S; is a schema relation, #; is a sub-
tuple of (#,y) of the same arity as S;, and 7 is an M
formula. A Datalog-like notation for such a query would
be (&) = Si(a@1), ..., Sk(tk), v(Z,9).

In [7], safety of conjunctive queries was shown decidable
for RC(M), for various structures M on the reals with
numerical operations. We now show a general result
from which the decidability results for string structures
S, Sien and those considered in [7] follow. We say that
finiteness is definable with parameters in M if for each
formula ¢ (Z, §) in M, there exists and can be effectively
found another formula g, (%) such that M = 1g,(a)
iff the set {b | M |= ¢ (b,@)} is finite.

Theorem 5 Assume that M can be expanded to M’
such that the theory of M' is decidable, and finiteness
is definable with parameters in M'. Then safety of
Boolean combinations of conjunctive queries in RC(M)
is decidable. a

We know that Th(Sien) is decidable [10]. Moreover,
finiteness is definable with parameters: for ¥(&,),
Yan(¥) is FaA(VIY(Z,9) — FZNA, 2z < u; el(zi,z5)).
Thus:

Corollary 6 The safety of Boolean combinations of
conjunctive queries in RC(S) and RC(Sjen) is decidable.
O

7 Tame extensions of RC(S)

In the previous two sections we considered two differ-
ent relational calculi for databases with strings: RC(S)
and RC(Sjen). The former models operations such as
the LIKE pattern-matching and lexicographic ordering;
the latter adds length comparisons, and enables ad-
ditional operations such as trimming/adding symbols
on both left and right of a string, and the SIMILAR
pattern-matching for checking membership in a regular
language. Both languages have some nice properties:
for example, there is effective syntax, and even an al-
gebra, for safe queries. However, RC(S) misses a num-
ber of important string functions, while the complexity
of RC(Sjen) can be quite high: we saw how to encode
NP and coNP-complete problems on inputs of a special
kind.

Thus, a natural question is whether one can add oper-
ations to RC(S) while maintaining its nice properties:
effective syntax for safe queries and low data complex-
ity. We give here a positive answer to this question, by
considering two extensions. The first one gives us oper-
ations for adding/trimming symbols on the left; for ex-
ample, TRIM,(s), where a € X, produces s’ if s =a - ¢/,
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Figure 1: Relationships between RC(S), RC(Siett); RC(Sreg), and RC(Sien).

and e if the first symbol of s is not a. The other ex-
tension is by allowing tests for membership in a regular
language, without the full power of the equal length
predicate. We show that both extensions share most of
its properties with RC(S), while adding significantly to
the expressiveness of the language.

The first operation we consider is adding one single
character on the left: s — a-s, and its inverse TRIM,(s)
denoted by s — a. That is, we consider the structure:

L Sleft = <E*: <, (la)an= (fa)a€Z>-

This is a proper extension of S, as the graph of the func-
tion fo, {(s, fa(s)) | s € £*}, is not definable over S [8].
The graph of the subtraction operation is definable with
fa- We also remark that while the classes of subsets of
()%, k > 1, definable in S and Sjeg are different, over
both structures the class of definable subsets of ¥* is
the same, that is, the class of star-free languages [8].

The second extension we consider allows us to model
more general regular expression pattern-matching. Of
course any regular language is definable over Sje,, and
thus such pattern-matching can be done in the more
complex model RC(Sjen)-

We will add regular expression pattern-matching di-
rectly to S, without adding the equal length predicate.
Recall that S has quantifier elimination in the exten-
sion that includes predicates Pr,(x,y), for each star-free
language, whose meaning is x < y and y — z € L. We
now define S;.; to be the extension of S with all such
predicates when L ranges over regular languages. Note
that membership of z in any regular language L is de-
finable by Pp(e,x). To summarize, we are dealing with
RC(Sreg) where

L4 Sreg - <E*7 =<, (La)aeih (PL)L regular)-

Every set definable in S,¢, is definable in Sien (as Sien
expresses all predicates Pr,), but the converse is not true

since the equal length predicate is not definable in S,
[8]. Furthermore, the class of subsets of £* definable in
Sreg is exactly the class of regular languages.

RC(Siest) and RC(S;eg) are incomparable in term of ex-
pressive power. Indeed a simple game argument shows
that the relation {(z,y) | y = fa(x)} is not definable
in RC(S;eg). Moreover, any language which is not star-
free is not definable in RC(Sjest) [8]. Figure 1 sum-
marizes the inclusion relationships between the various
relational calculi introduced in this paper, the higher
ones being more expressive.

We start with expressive power. Both RC(Sier;) and
RC(S;eg) behave similarly to RC(S):

Theorem 6 RC(Siert) and RC(Sieq) admit the re-
stricted quantifier collapse.

Proof sketch. Let Sf:ﬁ be the expansion of Sie, with
the following (definable) predicates and functions: a
constant symbol, €, for the empty string, the binary
function M for the longest common prefix, the predicate
Pp,(z,y) for each star-free language L, and the function
z — x —a, for each a € ¥. Let S, be the expansion
of Syeg with the (definable) function M and a constant
e for the empty string .

It is shown in [8] that S and S have quantifier
elimination, and the isolation property which are known

to imply the collapse [5, 16]. O

Corollary 7 RC(Siert) queries have ACY data com-
plexity, and RC(Syeg) queries have NC! data complea-

ity. Furthermore, every generic query erpressible in
RC(Siert) or RC(Syeg) is expressible in RC(<). i

As for query safety, several results extend straightfor-
wardly to RC(Sierc) and RC(S;eg). Since all operations
of Siery and Sreg are expressible over Sien, the proof of
Proposition 7 and Theorem 5 give us



Model | Data complexity | Data complexity | Effective syntax | Relational | Safety of CQ
of generic queries | for safe queries algebra
RC(S) AC’ FO(<) yes yes decidable
RC(Sien) PH ACO yes yes decidable
RC(Sett) AC’ FO(<) yes yes decidable
RC(Sreg) NC! FO(<) yes yes decidable
RC concat undecidable undecidable no no undecidable

Figure 2: Summary of the results

Corollary 8 The state-safety problem and the safety of
Boolean combinations of conjunctive queries are decid-
able for both RC(Sierr) and RC(S;eg). O

The effective syntax result can be proved for both
RC(Siet) and RC(S;eg), but considerably more work
is needed (especially in the case of Sief).

Theorem 7 Let M be Siert 07 Sreg. There ex-
ists a recursive collection of algebraic formulae T' =
{vi(z,y)}icw over M such that for every RC(M) query
p(T), there is an algebraic formula ~v;(xz,y) € T with
the property that the range-restricted query Q = (Vi, ¥)
coincides with ¢ on all databases over which ¢ is safe.

Proof sketch. As for S and Sjen, we show how to con-
struct upper bounds on outputs of safe queries. The
technical details are rather long and are available in the
full version of the paper [9]. O

Corollary 9 For both RC(Siert) and RC(Sieq), the
classes of range-restricted and safe queries coincide,
and safe queries have effective syntax. a

7.1 Relational algebras

We can likewise capture safety for RC(Sier;) and
RC(S;eg) with relational algebras. For that, we need
the following operations (in addition to w0, x,—,U,
and R.,prefix,addl, | used in the definition of RA(S)
and RA(Sjen)):

addf{, a € ¥ : On an m-attribute relation R, it returns
an m + l-attribute relation that holds the tuples

{(s15-+-y8m+1) | (S1,-..,8m) € R, Smy1 =a- s;}.

trim¢, a € ¥ : On an m-attribute relation R, it returns
an m + l-attribute relation that holds the tuples

{(s15---ySm+1) | (S1,-..,8m) € R, Smy1 = $;—a}.

We now define relational algebras:

RA(Sjert) is the extension of relational algebra with
0o (Where a ranges over Sier formulae), prefix,
addf{ and trim{.

RA(S;eg) extends relational algebra with R, oo, where
a ranges over FO(S,¢) formulae, prefix; and
add1?.

Theorem 8 o safe RC(Siert) = RA(Siert);
° Safe_RC(Sreg) = R'A(Sreg)'

8 Conclusion

We have studied extensions of the standard relational
calculus with various sets of string operations. We were
interested in languages that were not computationally
complete, but rather shared the attractive complexity-
theoretic and static-analysis properties of relational cal-
culus.

The language RC(S) can be seen as a nice foundation
over which other languages should be built. It covers
the most rudimentary string operations, but its expres-
sive power is quite limited. The extension RC(Sie,) that
allows string-length comparisons is too powerful (but
still not computationally complete). We therefore con-
sidered two languages in between, that can express some
important operations found in RC(Sien), but still have
low data complexity, effective syntax for safe queries,
and corresponding relational algebras. The main results
on these relational calculi are summarized in Figure 2.

Regarding further research, it would be interesting to
study an extension of RC(S) in the spirit of RC(Sjes;)
by allowing inserting characters at arbitrary position in
a string x, specified by a prefix of z.
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