On Verifying Consistency of XML Specifications

Marcelo Arenas
Department of Computer Science
University of Toronto

marenas@cs.toronto.edu

Abstract

XML specifications often consist of a type definition
(typically, a DTD) and a set of integrity constraints.
It has been shown previously that such specifications
can be inconsistent, and thus it is often desirable to
check consistency at compile-time. It is known that
for general keys and foreign keys, and DTDs, the con-
sistency problem is undecidable; however, it becomes
NP-complete when all keys are one-attribute (unary),
and tractable, if no foreign keys are used.

In this paper, we consider a variety of constraints for
XML data, and study the complexity of the consis-
tency problem. Our main conclusion is that in the
presence of foreign keys, compile-time verification of
consistency is usually infeasible. We look at two types
of constraints: absolute (that hold in the entire doc-
ument), and relative (that only hold in a part of the
document). For absolute constraints, we extend ear-
lier decidability results to the case of multi-attribute
keys and unary foreign keys, and to the case of con-
straints involving regular expressions, providing lower
and upper bounds in both cases. For relative con-
straints, we show that even for unary constraints, the
consistency problem is undecidable. We also estab-
lish a number of restricted decidable cases.

1 Introduction

XML data, just like relational and object-oriented
data, can be specified in a certain data definition lan-
guage. While the exact details of XML data defini-

*Research affiliation: Bell Laboratories.

Wenfei Fan
Internet Management Research Dept
Bell Laboratories

wenfei@research.bell-labs.com

Leonid Libkin*

Department of Computer Science
University of Toronto

libkin@cs.toronto.edu

tion languages are still being worked out, it is clear
that all of them would contain a form of document de-
scription, as well as integrity constraints. Constraints
are naturally introduced when one considers trans-
formations between XML and relational databases
[16, 27, 26, 17, 20, 11], as well as integrating several
XML documents [3, 4, 13].

Document descriptions usually come in the form of
DTDs (Document Type Definition), and constraints
are typically natural analogs of the most common
relational integrity constraints: keys and foreign
keys. Indeed, a large number of proposals (e.g.,
[29, 33, 30, 5]) support specifications for keys and
foreign keys.

We investigate XML specifications with DTDs and
keys and foreign keys. We study the consistency,
or satisfiability, of such specifications: given a DTD
and a set of constraints, whether there are XML doc-
uments conforming to the DTD and satisfying the
constraints.

In other words, we want to validate XML specifica-
tions statically, at compile-time. Invalid XML spec-
ifications are likely to be more common than in-
valid specifications of other kinds of data, due to the
rather complex interaction of DTDs and constraints.
Furthermore, many specifications are not written at
once, but rather in stages: as new requirements are
discovered, they are added to the constraints, and
thus it is quite possible that at some point they may
be contradictory.

An alternative to the static validation would be a dy-
namic approach: simply attempt to validate a docu-
ment with respect to a DTD and a set of constraints.
This, however, would not tell us whether repeated
failures are due to a bad specification, or problems
with the documents.

The consistency analysis for XML specifications is
not nearly as easy as for relational data (any set of
keys and foreign keys can be declared on a set of
relational attributes). Indeed, [14] showed that for

r

N

students courses faculty labs

/NN NN

student student ¢s340 cs108cs434 prof prof

record takenBy ' 'takenBy

L

@id @sid @sid

(a)

record acc acc

L]

@id @num @num

db

/\

country s country

@name province " capitl province capitdl @name
"Belgium" cee "Holland"
@name capital capital @name

“Limburg" /l [\ “Limburg"

@inProvincgtassalt @inProvinceMaastricht”
"Limburg" "Limburg"

(b)

Figure 1: Examples of XML documents

DTDs and arbitrary keys and foreign keys, the con-
sistency problem is undecidable. Furthermore, under
the restriction that all keys and foreign keys are unary
(single-attribute), the problem is NP-complete.

These results only revealed the tip of the iceberg,
as many other flavors of XML constraints exist, and
are likely to be added to future standards for XML
such as XML Schema [33]. One of our goals is to
study such constraints. In particular, we concen-
trate on constraints with regular expressions, and
relative constraints that only hold in a part of the
document. Furthermore, for classes of constraints
with high lower bounds, we are interested in their
tractable, or at least decidable restrictions. We now
give examples of new kinds of constraints considered
here, and explain the consistency problem for them.

Constraints with reqular expressions. As XML data
is hierarchically structured, one is often interested in
constraints specified by regular expressions. For ex-
ample, consider an XML document (represented as a
node-labeled tree) in Fig. 1 (a), which conforms to
the following DTD for schools:

<!ELEMENT r (students, courses, faculty, labs)>
<IELEMENT students (student™)>
<!ELEMENT courses (cs340, cs108, cs434)>

<!ELEMENT faculty (proft)>
<IELEMENT labs (dbLab, pcLab)>
<!ELEMENT student (record)>

/* similarly for prof
<I|ELEMENT cs434 (takenBy™)

/* similarly for cs340, cs108
<IELEMENT dbLab (acct)

/* similarly for pcLab

Here we omit the descriptions of elements whose type
is string (PCDATA). Assume that each record ele-

ment has an attribute id, each tekenBy has an at-
tribute sid (for student id), and each acc has an at-
tribute num.

One may impose the following constraints over the
DTD of that document:

r._*.(student U prof).record.id —
r._*.(student U prof).record,

r._*.cs434.takenBy.sid C r._*.student.record.id,
r._*.dbLab.accnum C r._*.cs434.takenBy.sid,
r._*.cs434.takenBy.sid — r._*.cs434.takenBy.

Here _ is a wildcard that matches any label (tag) and
_* is its Kleene closure that matches any path. The
first constraint says that id is a key for all records of
students and professors. Furthermore, sid is a key for
students taking cs434. The other constraints spec-
ify foreign keys, which assert that cs434 can only be
taken by students, and only students who are taking

cs434 can have an account in the database lab.

Clearly, there is an XML tree satisfying both the
DTD and the constraints. As was mentioned ear-
lier, specifications are rarely written at once. Now
suppose a new requirement is discovered: all faculty
members must have a dbLab account. Consequently,
one adds a new foreign key:

r.faculty.prof.record.id C r._*.dbLab.acc.num,
r._*.dbLab.acc.num — r._*.dbLab.acc.

However, this addition makes the whole specification
inconsistent. This is because previous constraints
postulate that dbLab users are students taking cs434,
and no professor can be a student since id is a key for
both students and professors, while the new foreign
key insists upon professors also being dbLab users and
the DTD enforces at least one professor to be present

in the document. Thus no XML document both con-
forms to the DTD and satisfies all the constraints.

The consistency problem for regular expression con-
straints is at least as hard as for constraints specified
for element types with simple attributes: NP-hard in
the unary case and undecidable in general [14]. We
use results from [2, 14, 24] to show that in the unary
case, the problem remains decidable, but the lower
bound becomes PSPACE.

Relative integrity constraints. Many types of con-
straints are specified for an entire document. A differ-
ent kind of constraints, called relative, was proposed
recently [5] — those constraints only hold in a part of
a document. As an example, consider an XML doc-
ument that for each country lists its administrative
subdivisions (e.g., into provinces or states), as well
as capitals of provinces. A DTD is given below and
an XML document conforming to it is depicted in
Figure 1 (b).

<!ELEMENT db (country™)>
<!ELEMENT country (province®, capital®)>
<!ELEMENT province (capital, city*)>

Each country has a nonempty sequence of provinces
and a nonempty sequence of province capitals, and for
each province we specify its capital and perhaps other
cities. Each country and province has an attribute
name, and each capital has an attribute InProvince.

Now suppose we want to define keys for countries and
provinces. One can state that country name is a key
for country elements. It is also tempting to say that
name is a key for province, but this may not be the
case. The example in Figure 1 (b) clearly shows that;
which Limburg one is interested in probably depends
on whether one’s interests are in database theory, or
in the history of the European Union. To overcome
this problem, we define name to be a key for province
relative to a country; indeed, it is extremely unlikely
that two provinces of the same country would have
the same name. Thus, our constraints are:

country.name — country,
country(province.name — province),
country(capital.inProvince — capital),
country(capital.inProvince C province.name).

The first constraint is like those we have encoun-
tered before: it is an absolute key, which applies
to the entire document. The rest are relative con-
straints which are specified for sub-documents rooted
at country elements. They assert that for each coun-
try, name is a key of province elements, inProvince is
a key of all capital descendants of the country element
and it is a foreign key referring to name of province el-
ements in the same sub-document. In contrast to reg-
ular expression constraints given earlier, these con-

straints are defined for element types, e.g., the first
constraint is a key for all country elements in the en-
tire document, and the third constraint is a (relative)
key for all capital elements in a sub-document rooted
at a country node.

To illustrate the interaction between constraints and
DTDs, observe that the above specification — which
might look reasonable at first — is actually inconsis-
tent!

To see this, let T be a tree that satisfies the specifica-
tion. The constraints say that for any sub-document
rooted at a country ¢, the number of its capital el-
ements is at most the number of province elements
among c’s descendants. The DTD says that each
province has a capital element as a child and that
each country element has at least one capital child.
Thus, the number of capital descendants of ¢ is larger
than the number of province descendants of ¢, which
contradicts the previous bound. Hence, the specifi-
cation is inconsistent.

Relative constraints appear to be quite useful for cap-
turing information about XML documents that can-
not possibly be specified by absolute constraints. It
turns out, however, that the consistency problem is
much harder for them: it is undecidable even for
single-attribute keys and foreign keys.

Given this negative result, we look at restrictions that
would give us decidability. They come in the form of
extra conditions on the “geometry” of foreign keys
that relate the two sides of the inclusion in the DTD
tree representing a non-recursive DTD. We show that
the problem is decidable if relative constraints are
“hierarchical”; furthermore, if foreign keys do not
talk about attributes that are “too far” from each
other, the problem is PSPACE-complete.

Tractable and decidable restrictions. Since expensive
lower bounds, and even undecidability, were estab-
lished for most versions of the consistency problem,
we would like to see some interesting tractable, or de-
cidable, restrictions. In case of absolute constraints,
the results of [14] consider either single attributes or
multi-attribute sets for both keys and foreign keys,
and thus say nothing about the intermediate case in
which only keys are allowed to be multi-attribute.
This class of constraints is rather common and arises
when relational data is translated into XML. While
often identifiers are used as single-attribute keys,
other sets of attributes can form a key as well (e.g.,
via SQL unique declaration) and those typically con-
tain more than one attribute. We show that the con-
sistency problem for this class of constraints, when
every key is primary (i.e., at most one key is defined
for each element type), remains decidable.

A number of trivial restrictions for tractability of ab-
solute constraints are known (e.g., a fixed DTD, no

foreign keys). Restrictions on DTDs are unlikely to
help: [14] showed that the consistency problem for
unary absolute constraints is NP-hard for very simple
DTDs (no Kleene star, no recursion). There are two
further ways to restrict the problem: one can impose
a bound on the number of constraints, or a bound on
the depth of the DTDs. We show that neither one
in isolation gives us tractability, but when the two
restrictions are combined, the consistency problem is

in NLOGSPACE.

The main conclusion of this paper is that while
many proposals such as XML Schema [33] and XML
Data [30] support the facilities provided by the DTDs
as well as integrity constraints, and while it is possible
to write inconsistent specifications, checking consis-
tency at compile-time appears to be infeasible, even
for fairly small specifications.

Related work. Consistency was studied for other
data models, such as object-oriented and extended
relational (e.g., with support for cardinality con-
straints), see [9, 10, 19].

A number of specifications for XML keys and for-
eign keys have been proposed, e.g., XML Schema [33],
XML-Data [30]. A recent proposal [5] introduced rel-
ative constraints, which were further studied in [6].
To the best of our knowledge, consistency of XML
constraints in the presence of schema specifications
was only investigated in [14]. However, [14] did not
consider relative constraints, constraints defined with
regular expressions and the class of multi-attribute
keys and unary foreign keys. Other constraints for
semi-structured data, different from those considered
here, were studied in, e.g. [2, 7, 15]. The latter also
studies the consistency problem; the special form of
constraints used there makes it possible to encode
consistency as an instance of conjunctive query con-
tainment.

Organization. Section 2 defines DTDs, and abso-
lute keys and foreign keys for XML. Section 3 studies
the class of absolute multi-attribute keys and unary
foreign keys, and the class of regular expression con-
straints which is an extension of absolute constraints
with regular path expressions. Section 4 defines and
investigates relative keys and foreign keys. We also
provide several complexity results for implication of
XML constraints. Section 5 summarizes the main re-
sults of the paper.

2 Notations

DTDs, XML trees, paths We formalize the notion
of DTDs as follows (cf. [29, 8, 23, 14]).

Definition 2.1 A DTD (Document Type Definition)
is defined to be D = (E, A, P, R, 1), where:

e E is a finite set of element types;

e A is a finite set of attributes, disjoint from E;

e for each T € E, P(71) is a regular expression a,
called the element type definition of 7:

a == S| 7| €] aa]| aal a*
where S denotes the string type, 7' € E, € is the
empty word, and “|”, “” and “¢” denote union,
concatenation, and the Kleene closure;

e for each 7 € E, R(7) is a set of attributes in A;

e 7 € E and is called the element type of the root.

We normally denote element types by 7 and at-
tributes by [, and assume that r does not appear in
P(7) for any 7 € E. We also assume that each 7 in
E\{r} is connected to r, i.e., either T appears in P(r),
or it appears in P(7') for some 7' that is connected
to r.

An XML document is typically modeled as a node-
labeled tree. Below we describe valid XML doc-
uments w.r.t. a DTD, along the same lines as
XQuery [34], XML Schema [33] and DOM [28].

Definition 2.2 Let D = (E, A, P, R, r) be a DTD.
An XML tree T conforming to D, written T |= D, is
defined to be (V, lab, ele, att, val, root), where

V' is a finite set of nodes;

e lab is a function that maps each node in V to
a label in EU AU {S}; a node v € V is called
an element of type 7 if lab(v) = 7 and 7 € E,
an attribute if lab(v) € A, and a text node if
lab(v) =S;

e ele is a function that for any T € E, maps each
element v of type T to a (possibly empty) list
[v1, ..., Uy] of elements and text nodes in V such
that lab(vy) ... lab(vy,) is in the regular language
defined by P(1);

e att is a partial function fromV x A to V such
that for anyv € V andl € A, att(v, 1) is defined
iff lab(v) =7, 7 € E and | € R(7);

e val is a partial function from V to string values
such that for any node v € V, val(v) is defined
iff lab(v) = S or lab(v) € A;

e root is the root of T: root € V and lab(root) =
T

For any node v € V, if ele(v) is defined, then the
nodes v' in ele(v) are called the subelements of v.
For any 1l € A, if att(v, 1) = v, then v' is called an
attribute of v. In either case we say that there is
a parent-child edge from v to v'. The subelements
and attributes of v are called its children. The graph
defined by the parent-child relation is required to be a
rooted tree.

In an XML tree T', for each v € V, there is a unique
path of parent-child edges from the root to v, and
each node has at most one incoming edge. The root
is a unique node labeled with r. If a node z is la-
beled 7 in E, then the functions ele and att define
the children of z, which are partitioned into subele-
ments and attributes. The subelements of = are or-
dered and their labels observe the regular expression
P(7). In contrast, its attributes are unordered and
are identified by their labels (names). The function
val assigns string values to attributes and to nodes
labeled S.

Our model is simpler than the models of XQuery and
XML Schema as DTDs support only one basic type
(PCDATA or string) and do not have complex type
constructs. Unlike the data model of XQuery, we do
not consider nodes representing namespaces, process-
ing instructions and references. These simplifications
do not affect the lower bounds, however.

We also use the following notations. Referring to an
XML tree T, if z is a 7 element in 7" and [is an at-
tribute in R(7), then 2.l denotes the I attribute value
of z, i.e., z.l = wval(att(z,l)). If X isalist [l,...,1,]
of attributes in R(7), then z[X] = [z.l1, ..., z.l,]. For
any element type 7 € E, ext(r) denotes the set of all
the 7 elements in 7. For any | € R(7), ext(r.l) de-
notes {z.l | x € ext(r)}, the set of all the [-attribute
values of 7 nodes.

Givena DTD D = (E, A, P, R, r) and element types
7,7 € E, a string 11.7. - .7, over E is a path
in D from T to T f m = 7, 7, = 7 and for
each i € [2,n], 7; is a symbol in the alphabet of

P(7i_1). Moreover, Paths(D) = {p | thereis 1 €
E such that p is a path in D from r to 7}.

We say that a DTD is non-recursive if Paths(D) is
finite, and recursive otherwise. We also say that D
is a no-star DTD if the Kleene star does not occur
in any regular expression P(7) (note that this is a
stronger restriction than being x-free: a regular ex-
pression without the Kleene star yields a finite lan-
guage, while the language of a *-free regular expres-
sion may still be infinite as it allows boolean operators
including complement).

Keys and foreign keys We consider two forms of
constraints for XML: absolute constraints that hold

on the entire document, denoted by AC; and relative
constraints that hold on certain sub-documents, de-
noted by RC. Below we define absolute keys and for-
eign keys; their variations using regular expressions
will be defined in Section 3.2, and relative constraints
will be formally defined in Section 4. The constraints
given in Section 1 are instances of regular constraints
and relative constraints, which are slightly different
from what we present in this section.

A class of absolute keys and foreign keys, denoted
by ACy'pr (we shall explain the notation shortly),

is defined for element types as follows. An ACy rx

constraint ¢ over a DTD D = (E, A, P, R, r) has
one of the following forms:

e Key. 7[X] — 7, where 7 € E and X is a
nonempty set of attributes in R(7). An XML
tree T' satisfies ¢, denoted by T' = ¢, if

Va,y € ext(r) (/\ (zl=yl) >z =y).
lex

e Foreign key. It is a combination of two con-
straints: an inclusion constraint 71[X] C m[Y]
and a key constraint 7[Y] — 72, where 7,7 €
E, X,Y are nonempty lists of attributes in
R(7), R(72) of the same length. This constraint
is satisfied by a tree T' if T |= m[Y] — 7, and
in addition

Va € ext(r) Iy € ext(m) (z[X] = y[Y]).

That is, 7[X] — 7 says that the X-attribute values of
a 7 element uniquely identify the element in ext(r),
and 7 [X] C m[Y] says that the list of X-attribute
values of every 7 node in T must match the list of
Y-attribute values of some 75 node in T'. We use two
notions of equality to define keys: value equality is
assumed when comparing attributes, and node iden-
tity is used when comparing elements. We shall use
the same symbol ‘=" for both, as it will never lead to
ambiguity.

Constraints of ACg s, are generally referred to as
multi-attribute constraints as they may be defined
with multiple attributes. An ACg"sx constraint is
said to be unary if it is defined in terms of a single
attribute; that is, | X |=|Y |= 1 in the above defini-
tion. In that case, we write 7.l — 7 for unary keys,
and 7.l C 7.2, T2.ls = T for unary foreign keys.
As in relational databases, we also consider primary

keys: for each element type, at most one key can be
defined.

We shall use the following notations for subclasses
of AC¥ sy subscripts K and FK denote keys and
foreign keys, respectively. When the primary key re-
striction is imposed, we use subscript PK instead of

K. The superscript ‘«’ denotes multi-attribute, and
‘1’ means unary. When both superscripts are left out,
we mean that both keys and foreign keys are unary.

We shall be dealing with the following subclasses
of AC;(’TFK: AC;{’}FK denotes the class of multi-

attribute keys and unary foreign keys; ACk rk is the

class of unary keys and unary foreign keys; AC;’}(’FK

is the class of primary multi-attribute keys and unary
foreign keys; and ACpg rr is the class of primary
unary keys and unary foreign keys.

Consistency, or satisfiability problem We are in-
terested in the consistency, or satisfiability problem
for XML constraints considered together with DTDs:
that is, whether a given set of constraints and a DTD
are satisfiable by an XML tree. Formally, for a class
C of integrity constraints we define the XML specifi-
cation consistency problem SAT(C) as follows:

PROBLEM: SAT(C)
INPUT: A DTD D, a set ¥ of C-constraints.
QUESTION: Isthere an XML tree T such that

TEDandTEX?

It is known [14] that SAT(ACK'mg) is undecid-

able, but SAT(ACk rr) and SAT(ACpk rk) are NP-
complete.

Constraint implication Another classical problem is
the implication problem for a class of constraints C,
denoted by Impl(C). Here, we consider it in the pres-
ence of DTDs. We write (D, X) F ¢ if for every XML
tree T, T = D and T = ¥ imply T' = ¢. The
implication problem Impl(C) is to determine, given
any DTD D and any set ¥ U {¢} of C constraints,
whether or not (D, X) F ¢. It was shown in [14] that
Impl(AC% rf) is undecidable and Impl(ACk rr) is
coNP-complete.

3 Absolute integrity constraints

In this section, we establish the decidability and
lower bounds for SAT(ACE) and SAT(ACK),
the consistency problems for absolute primary multi-
attribute keys and unary foreign keys, and for abso-
lute regular unary keys and unary foreign keys. The
class ACy %z is an extension of ACk px with regular
path expressions, which will be defined shortly. We
also study tractable restrictions of SAT(ACk ri).

3.1 Multi-attribute keys

We know that SAT(ACk. rk), the consistency prob-
lem for unary absolute keys and foreign keys, is
NP-complete. In contrast, SAT(ACE rg) is unde-
cidable. This leaves a rather large gap: namely,
SAT(AC}}’}FK), where only keys are allowed to be
multi-attribute (note that since a key is part of a
foreign key, the other restriction, to AC}(’TFK, does
not make sense).

The reason for the undecidability of SAT(ACg) is
that the implication problem for functional and inclu-
sion dependencies can be reduced to it [14]. However,
this implication problem is known to be decidable —in
fact, in cubic time — for single-attribute inclusion de-
pendencies [12], thus giving us hope to get decidabil-

ity for multi-attribute keys and unary foreign keys.

While the decidability of the consistency problem for
.AC;(’?FK is still an open problem, we resolve a closely-

related problem, SAT(ACI*;}(_FK). That is, the consis-
tency problem for multi-attribute primary keys and
unary foreign keys. Recall that a set ¥ of AC}}’}FK
constraints is said to be primary if for each element
type 7, there is at most one key in X defined for 7
elements. We prove the decidability by showing that
complexity-wise, the problem is equivalent to a cer-
tain extension of integer linear programming studied
in [22]:

PROBLEM: PDE (Prequadratic Diophantine
Equations)
An integer n X m matrix A, a vector
beZm and aset EC{1,...,m}3.
QUESTION: Is there _a vector # € N™ such that
AZ < b and z; < z; -z for all
(1.3, k) € E.

INPUT:

Note that for E = (), this is exactly the integer lin-
ear programming problem [24]. Thus, PDE can be
thought of as integer linear programming extended
with inequalities of the form x < y - z among vari-
ables. It is therefore NP-hard, and [22] proved an
NEXPTIME upper bound for PDE. The exact com-
plexity of the problem remains unknown.

Recall that two problems P, and P, are polynomially
equivalent if there are PTIME reductions from P, to
P, and from P, to P;. We now show the following.

Theorem 3.1 SAT(AC;’}(’FK) and PDE are polyno-
mially equivalent.

Proof sketch. The proof is by a careful extension of
the coding used in [14] for unary keys and foreign
keys; we show that conditions of the form z < y - z
suffice to encode arbitrary keys. |

It is known that the linear integer programming prob-
lem is NP-hard and PDE is in NEXPTIME. Thus
from Theorem 3.1 follows immediately:

Corollary 3.2 SAT(AC;’II(,7FK) is NP-hard, and can
be solved in NEXPTIME. O

Obviously we cannot obtain the exact complexity of
SAT(AC;’II(,7FK) without resolving the corresponding

question for PDE, which appears to be quite hard
[22].

The result of Theorem 3.1 can be generalized to dis-
joint AC}}’}FK constraints: that is, a set ¥ of AC}’IFK
constraints in which for any two keys 7[X] — 7
and 7[Y] — 7 (on the same element type 7) in X,
X NY = (. The proof of Theorem 3.1 applies almost

verbatim to show the following.

Corollary 3.3 The restriction of SAT(AC}}’?FK) to

disjoint constraints is polynomially equivalent to
PDE.

3.2 Regular expression constraints

Just as in XML-Data and XML Schema, specifica-
tions of ACy i constraints are associated with el-
ement types. To capture the hierarchical nature of
XML data, constraints can also be defined on a col-
lection of elements identified by a regular path expres-
sion. It is common to find path expressions in query
languages for XML (e.g., XQuery [34], XSL [32]).

We define a regular (path) expression over a DTD
D= (E, A, P, R, r) as follows:

pou= el | [BB [AUB| B,

where e denotes the empty word, 7 is an element type
in E, and ‘_’ stands for wildcard that matches any
symbol in E. We assume that § does not include
the type r for the root element unless 8 = r.3" where
B’ does not include r; thus, ¢’ is just a shorthand for
E\ {r}. A regular expression defines a language over
the alphabet E, which will be denoted by S as well.

Recall that a path in a DTD is a list of E sym-
bols, that is, a string in E*. Any pair of nodes
z,y in an XML tree T with y a descendant of x
uniquely determines the path, denoted by p(z,y),
from z to y. We say that y is reachable from x
by following a regular expression 8 over D, denoted
by T E Bz, y), iff p(xz,y) € B. For any fixed
T, let nodes(B) stand for the set of nodes reachable
from the root by following the regular expression j:
nodes(fB) = {y | T = B(root, y)}. Note that for any
element type 7 € E, nodes(r._*.7) = ext(r).

We now define XML keys and foreign keys with reg-
ular expressions. Let D = (E, A, P, R,r) be a
DTD. Given a regular expression § over D, a key
over D is an expression ¢ of the form g.7.l — S.7,
where 7 € E,l € R(7). For any XML tree T that
conforms to D, T satisfies ¢ (T | ¢) if for any
x,y € nodes(f.7), xz.l = y.l implies z = y. Given
two regular expressions (1, 82 over D, a foreign key
over D is a combination of the inclusion constraint
ﬂl-Tl-ll - ﬂ2.7’2.l2 and a key ﬂ2.7’2.l2 — /82.7-2, where
1,72 € E, l; € R(ry),i = 1,2. Here T | ¢ if
T |= Ba.12.lo = P2.72, and for every x € nodes(f1.71)
there exists y € nodes(f2.72) such that z.l; = y.ls.

We use ACj’r to denote the set of all unary con-
straints defined with regular expressions. For exam-
ple, the constraints over the school DTD that we have
seen in Section 1 are instances of ACjy ;. We do not
consider multi-attribute constraints here, since they
subsume ACy"pi (by using r.*.7 for 7), and thus
consistency is undecidable for them.

For SAT(ACk’r), we are able to establish both an
upper and a lower bound. The lower bound already
indicates that the problem is perhaps infeasible in
practice, even for very simple DTDs. Finding the
precise complexity of the problem remains open, and
does not appear to be easy.

Theorem 3.4

a) SAT(ACK rx) can be solved in NEXPTIME.

b) For non-recursive no-star DTDs, SAT (ACgry)
is PSPACE-hard.

Proof sketch. a) Following [14], we code both the
DTD and the constraints with linear inequalities over
integers. However, compared to the proof of [14], the
current proof is considerably harder due to the fol-
lowing. First, regular expressions in DTDs (“hori-
zontal” regular expressions) interact in a certain way
with regular path expressions in constraints (those
correspond to “vertical” paths through the trees). To
eliminate this interaction, we first reduce the problem
to that over certain simple DTDs. The next problem
is that regular path expressions in constraints can in-
teract with each other. To model them with linear
inequalities, we must introduce exponentially many
variables that account for all possible Boolean combi-
nations of those regular languages. The last problem
is coding the DTDs in such a way that variables cor-
responding to each node have the information about
the path leading to the node, and its relationship with
the regular path expressions used in constraints. For
that, we adopt the technique of [2], and tag all the
variables in the coding of DTDs with states of the
product automaton for all the automata correspond-
ing to the regular expressions in constraints. Putting

everything together, we reduce SAT(ACk %z) to the
existence of a solution of an (almost) instance of lin-

ear integer programming, which happens to be of ex-
ponential size; hence the NEXPTIME bound.

b) We encode the quantified boolean formula problem
(QBF) as an instance of SAT(ACy g). O

3.3 Restrictions for tractability

Since most flavors of the consistency problem for
XML constraints are intractable, one is interested in
finding suitable restrictions that admit polynomial-
time algorithms. Some — rather severe — restric-
tions of this kind were given in [14]: for example,
SAT(ACk) (no foreign keys) is solvable in PTIME, as
is SAT(ACk rk) for any fixed DTD. A more natural
way of putting restrictions appears to be by speci-
fying what kinds of regular expressions are allowed
in the DTDs. However, the hardness result can be
proved even for DTDs with neither recursion nor the
Kleene star [14].

We show that the hardness result for SAT(ACk, rk)
is very robust, and withstands severe restrictions on
constraints and DTDs: namely, a bound on the total
number of constraints, and a bound on the depth of
the DTD. However, imposing both of these bounds
simultaneously makes SAT(ACk rk) tractable.

For a non-recursive DTD D, the set Paths(D) is fi-
nite. We define the depth of a non-recursive DTD
D as Depth(D) = maX,c pains(p) length(p). By a
depth-d SAT(ACk rr) we mean the restriction of
SAT(ACk rK) to pairs (D, X) with Depth(D) < d.

By a k-constraint SAT(ACk rk) we mean the restric-
tion of the consistency problem to pairs (D, X) where
| ¥ | < k (considering each foreign key as one con-
straint). A k-constraint depth-d SAT(ACk rk) is a
restriction to (D,) with |X|< k and Depth(D) < d.

Theorem 3.5 For non-recursive no-star DTDs:

a) both k-constraint SAT(ACk rx) and depth-d
SAT(ACk rx) are NP-hard, for k > 2 and
d> 2.

b) for any fixed k,d > 0, the k-constraint depth-d
SAT(ACk rK) is solvable in NLOGSPACE. O

3.4 Lower bounds for implication

We now state a simple result that gives us lower
bounds for the complexity of implication, if we know
the complexity of the satisfiability problem. Re-
call that for a complexity class K, coK stands for
{P| P eK}.

Proposition 3.6 For any class C of XML con-
straints that contains ACk rr, if SAT(C) is K-

hard for some complexity class K that contains
DLOGSPACE, then Impl(C) is coK-hard. |

It was shown in [14] that Impl(ACy rx) is undecid-

able and Impl(ACk rk) is coNP-hard (in fact, coNP-
complete). Now we derive:

Corollary 3.7 ImpI(AC}Q}(’FK) is coNP-hard, and
Impl(AC rc) is PSPACE-hard. O

4 Relative integrity constraints

Since XML documents are hierarchically structured,
one may be interested in the entire document as well
as in its sub-documents. The latter gives rise to rela-
tive integrity constraints [5, 6], that only hold on cer-
tain sub-documents. Below we define relative keys
and foreign keys. Recall that we use RC to denote
various classes of such constraints. We use the nota-
tion £ < y when z and y are two nodes in an XML
tree and y is a descendant of .

Let D = (E, A, P, R, r) be a DTD. A relative key
is an expression ¢ of the form 7(r.l — 71), where
I € R(m). It says that relative to each node = of
element type 7, [is a key for all the 71 nodes that are
descendants of x. That is, if a tree T conforms to D,
then T = ¢ if

Va € ext(t)Vy,z € ext(m)
(z<y)A(@=<2)A(yl=21) > y=-=z

A relative foreign key is an expression ¢ of the form
7(m.lhy C m2.ls) and 7(7m2.ls — T»), where [; €
R(7;),i =1,2. This constraint indicates that for each
x in ext(7), l; is a foreign key of descendants of z of
type 71 that references a key I of 5-descendants of z.
That is, T = ¢ iff T |= 7(72.ly = 72) and T satisfies

Vaeext(r)Vy €ext(n) ((z <y1) —
Jys € ext(ma) ((x <y2) Ayr.l = yg.lg)).

Here 7 is called the context type of ¢. Note that
absolute constraints are a special case of the rela-
tive constraints when 7 = r: ie., r(r.l — 7) is the
usual absolute key. Thus, the consistency problem
for multi-attribute relative constraints is undecidable
[14], and hence we only consider unary relative con-

straints here.

Following the notations for AC, we use RCk rx to
denote the class of all unary relative keys and foreign
keys; RCpk,rx means the primary key restriction.

For example, the constraints given in Section 1 over
the country/province/capital DTD are instances of
RCk . FK -

Recall that SAT(ACk rk), the consistency problems
for absolute unary constraints, is NP-complete. One
would be tempted to think that SAT(RCk rk), the
consistency problems for relative unary constraints,
is decidable as well. We show, however, in Sec-
tion 4.1, that this is not the case. In light of this neg-
ative result, we identify several decidable subclasses
of RCx rk, which we call hierarchical constraints, in
Section 4.2.

4.1 Undecidability of consistency

We now show that there is an enormous differ-
ence between unary absolute constraints, where
SAT(ACk rk) is decidable in NP, and unary relative
constraints. We consider the consistency problem for
those, that is, SAT(RCk rk). Clearly, the problem is
r.e.; it turns out that one cannot lower this bound.

Theorem 4.1 SAT(RCk rk) is undecidable.
Proof sketch. By reduction from Hilbert’s 10th prob-
lem [21]. O

In the proof of Theorem 4.1, all relative keys are pri-
mary. Thus, we obtain:

Corollary 4.2 SAT(RCpk rr), the restriction of
SAT(RCxk ri) to primary keys, is undecidable. O

4.2 Decidable hierarchical constraints

Often, relative constraints for XML documents have a
hierarchical structure. For example, to store informa-
tion about books we can use the structure presented
in Figure 2 (a), with four relative constraints:

library (book.isbn — book), (1)
book (author.name — author), (2)
book(chapter.number — chapter), (3)
chapter(section.title — section). (4)

(1) says that isbn is a key for books, (2) says that
two distinct authors of the same book cannot have
the same name and (3) says that two distinct chap-
ters of the same book cannot have the same number.
Constraint (4) asserts that two distinct sections of
the same chapter cannot have the same title.

This specification has a hierarchical structure: there
are three context types (library, book, and chapter),
and if a constraint restricts one of them, it does not

impose a restriction on the others. For instance, (1)
imposes a restriction on the children of library, but
it does not restrict the children of book. To ver-
ify if there is an XML document conforming to this
schema, we can separately solve three consistency
problems for absolute constraints: one for the sub-
schema containing the element types library, book and
isbn; another for book, author, mame, chapter and
number; and the last one for chapter, section, and
title.

On the other hand, the example in figure 2 (b) does
not have a hierarchical structure. In this case, au-
thor_info stores information about the authors of
books, and, therefore, the following relative foreign
key is included:

library (author _info.name — author_info),
library (author.name C author_info.name).

In this case, nodes of type author are restricted from
context types library and book. Thus, we cannot sep-
arate the consistency problems for nodes of types li-
brary and book.

Below we formalize the notion of hierarchical relative
constraints via the notion of hierarchical DTDs and
sets of relative constraints. We prove that the con-
sistency problem for this kind of DTDs and sets of
constraints is decidable and show that under some
additional restrictions, it is PSPACE-complete.

Let D = (E, A, P, R, r) be a non-recursive DTD and
Y be a set of RCk rr-constraints over D. We say
that 7 € F is a restricted type if 7 = r or 7 is the
context type of some Y-constraint. A restricted node
in an XML tree is a node whose type is a restricted
type. The scope of a restricted node z is the sub-
tree rooted at x consisting of: (1) all element nodes
y that are reachable from z by following some path
T1.T2. -+ .Tp (n > 2) such that for every i € [2,n— 1],
7; is not a restricted type, and (2) all the attributes
of the nodes mentioned in (1). For instance, a node
of type book in the example shown in figure 2 (a) is a
restricted node and its scope includes a node of type
book and some nodes of types author, name, chapter
and number.

Given two restricted types 71 and 72, we say that 7,
7o is a conflicting pair in (D,) if the scopes of the
nodes of types 7, and 7y are related by a foreign key.
Formally, 71,72 € E is a conflicting pair in (D,X) iff
71 # 72 and (1) there is a path in D from 71 to 7
and 75 is the context type of some constraint in X;
and (2) there is 73 € E such that 7 # 73 and there
exists a path in D from 75 to 73 and for some 74, € F,
either 71 (73.l3 C 74.l4) or 71 (14.ly C 713.03) is in X.
As an example, library and book in figure 2 (b) are a
conflicting pair, whereas they are not in figure 2 (a).

If a specification (D,) does not contain conflicting

library

|

book*

/N

@isbn author* chapter*

LN

@name @number section*

l

@title

(a) A hierarchical structure

M\

@isbn author*

library
book* author_info*

N

chapter* @name @affiliation

N

@name @number section*

|

@title

(b) A non-hierarchical structure

Figure 2: Two schemas for storing data in a library.

pairs, then we say that (D, X) is hierarchical. If this
specification is consistent, then we can construct a
tree conforming to D and satisfying ¥ hierarchically,
never looking at more than the scope of a single re-
stricted node. We prove this property in theorem 4.3.

We define the language HRCk rx as {(D,X) | Disa
non-recursive DTD, ¥ is a set of RCk rx-constraints
and (D,X) is hierarchical}. In this case, the input
of SAT(/H'RCK,FK) is (D,E) € /H’RCK’FK, and the
problem is to determine whether there is an XML
tree conforming to D and satisfying X.

Theorem 4.3 SAT(HRCxk rx) is decidable.

Proof sketch. To prove this theorem, first we prove a
lemma stating the following. Suppose that f : N - N
is a function such that for any consistent (D,X) €
HRCk ri, there is a tree T |= D, T = ¥ in which
the size of the scope of each restricted node is at
most the value of f on the size of the DTD naturally
associated with that scope. Then SAT(HRCk rk) is
in NSPACE(log(f)).

Second, by using the techniques of [14] we prove that

2k
f(x) can be taken to be 22° , where k > 1 is a fixed
constant. We conclude that SAT(HRCk rx) is in
EXPSPACE. O

The algorithm in the proof gives an exponential space
upper bound. We can lower it by imposing some
further conditions on the “geometry” of constraints
involved: namely, that for any inclusion constraint
7(11.ly C 72.l2), 71.l; and 75.ls are not too far from
each other.

Formally, let D be a non-recursive DTD and ¥ a set
of RCk rk-constraints over D such that (D, X) is hi-
erarchical. Given d > 1, (D, X) is d-local if, whenever
T1, To are restricted types, 7 is a descendant of 7 and
no other node on the path from 7, to 75 is a context

type of a Y-constraint, then the length of that path
is at most d.

Let d-HRCk rr be the language {(D,%) | (D,X) €
HRCk rr and is d-local}.

Theorem 4.4 For any d > 1, SAT(d-HRCk rk) is
PSPACE-complete.

Proof sketch. The membership follows from the
lemma used in the proof of Theorem 4.3. For hard-
ness, we use reduction from QBF. |

4.3 Implication problem

Note that RCk,rx and HRCk rx include ACk rik.
Thus from Proposition 3.6 we derive:

Corollary 4.5 Impl(RCk rr) is undecidable, and
Impl(HRCk rr) is PSPACE-hard. O

5 Conclusion

We studied the problem of statically checking XML
specifications, which may include various schema def-
initions as well as integrity constraints. As observed
earlier, static validation is quite desirable as an alter-
native to dynamic checking. Our main conclusion is
that, however desirable, the static checking is hard:
even with very simple document definitions given by
DTDs, and (foreign) keys as constraints, the com-
plexity ranges from NP-hard to undecidable.

The main results are summarized in Figures 3, 4 (we
also included the main results from [14] in those fig-
ures). When one deals with absolute constraints,
which hold in an entire document, the general consis-
tency problem is undecidable. It is solvable in NEXP-

Class ACH o [14] | AChk ric ACK ACx pi [14]

description multi-attribute | multi-attribute unary regular unary keys,
keys and primary keys, path constraints foreign keys
foreign keys unary foreign keys | (keys, foreign keys)

Upper bound | undecidable NEXPTIME NEXPTIME NP

Lower bound | undecidable NP PSPACE NP

Figure 3: Complexity of the consistency problem for absolute constraints

Class RC;(;,*FK [14] RCK7FK /HRCKQFK d—HRCK7FK, d>1

description multi-attribute unary keys | unary hierarchical | unary hierarchical
keys, foreign keys | foreign keys | constraints constraints, d-local

Upper bound | undecidable undecidable | EXPSPACE PSPACE

Lower bound | undecidable undecidable | PSPACE PSPACE

Figure 4: Complexity of the consistency problem for relative constraints

TIME if foreign keys are single-attribute, and is NP-
complete if so are all the keys as well. However, if reg-
ular expressions are allowed in single-attribute con-
straints, the lower bounds becomes at least PSPACE.

For relative constraints, which are only required to
hold in a part of a document, the situation is quite
bleak, as even the very simple case of single-attribute
constraints is undecidable. By imposing certain re-
strictions on the “geometry” of those constraints, we
can show that the problem is decidable, although
PSPACE-hard; further restrictions make it PSPACE-
complete. We also saw that these results are quite ro-
bust, as hardness is often achieved on relatively sim-
ple constraints and DTDs.

Although most of the results of the paper are neg-
ative, the techniques developed in the paper help
study consistency of individual XML specification
with type and constraints. These techniques in-
clude, e.g., the connection between regular expres-
sion constraints and integer linear programming and
automata.

One open problem is to close the complexity gaps.
However, these are by no means trivial: for exam-
ple, SAT(AC;’}(’FK) was proved to be equivalent to
a problem related to Diophantine equations whose
exact complexity remains unknown. In the cases of
SAT(AC;;?FK) and SAT(HRCk rk), we think that it
is more likely that our lower bounds correspond to the
exact complexity of those problems. However, the al-
gorithms are quite involved, and we do not yet see
a way to simplify them to prove the matching upper
bounds.

Another topic for future work is to study the inter-
action between more complex XML constraints, e.g.,
those defined in terms of XPath [31], and more com-

plex schema specifications such as XML Schema [33]
and the type system of XQuery [34]. Our lower
bounds apply to those settings, but it is open whether
upper bounds remain intact.

Acknowledgments We thank Michael Benedikt for his
comments. M. Arenas and L. Libkin are supported in
part by grants from the Natural Sciences and Engineer-
ing Research Council of Canada and from Bell University
Laboratories. W. Fan is currently on leave from Temple
University, and is supported in part by NSF grant IIS
00-93168.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] S. Abiteboul and V. Vianu. Regular path queries
with constraints. JCSS, 58(4):428-452, 1999.

[3] C. Baru et al. XML-based information mediation
with MIX. In SIGMOD’99, pages 597-599.

[4] C. Beeri and T. Milo. Schemas for integration and
translation of structured and semi-structured data.
In ICDT’99, pages 296-313.

[5] P. Buneman, S. Davidson, W. Fan, C. Hara, and
W. Tan. Keys for XML. In WWW’10, 2001.

[6] P. Buneman, S. Davidson, W. Fan, C. Hara, and

W. Tan. Reasoning about keys for XML. In
DBPL01.

[7] P. Buneman, W. Fan, and S. Weinstein. Path
constraints in semistructured databases. JCSS,

61(2):146-193, 2000.
[8] D. Calvanese, G. De Giacomo, and M. Lenzerini.

Representing and reasoning on XML documents: A
description logic approach. JLC 9 (1999), 295-318.

[9] D. Calvanese, M. Lenzerini. Making object-oriented
schemas more expressive. In PODS’9/, pages 243—
254.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[20]

[21]
[22]

[23]

[30]
31]
[32]

D. Calvanese and M. Lenzerini. On the interac-
tion between ISA and cardinality constraints. In
ICDE’94, pages 204-213.

M. Carey et al. XPERANTO: Publishing object-
relational data as XML. In WebDB 2000.

S. S. Cosmadakis, P. C. Kanellakis, and M. Y. Vardi.
Polynomial-time implication problems for unary in-
clusion dependencies. J. ACM, 37(1):15-46, Jan.
1990.

A. Eyal and T. Milo. Integrating and customiz-
ing heterogeneous e-commerce applications. VLDB
Journal, 10(1):16-38, 2001.

W. Fan and L. Libkin. On XML integrity constraints
in the presence of DTDs. In PODS’01, pages 114—
125.

M. Fernandez, D. Florescu, A. Levy, and D. Suciu.
Verifying integrity constraints on web sites. In IJ-
CAI’99, pages 614-619.

M. Fernandez, A. Morishima, D. Suciu, and W. Tan.
Publishing relational data in XML: the SilkRoute ap-
proach. IEEE Data Eng. Bull., 24(2):12-19, 2001.

D. Florescu and D. Kossmann. Storing and querying
XML data using an RDMBS. IEEE Data Eng. Bull.,
22(3):27-34, 1999.

M. Garey and D. Johnson. Computers and

Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

P. C. Kanellakis. On the computational complex-
ity of cardinality constraints in relational databases.
Information Processing Letters, 11(2):98-101, 1980.

D. Lee and W. W. Chu. Constraints-preserving
transformation from XML document type definition
to relational schema. In ER’2000.

Y. Matiyasevich. Hilbert’s 10th Problem. MIT Press,
1993.

D. McAllester, R. Givan, C. Witty, and D. Kozen.
Tarskian set constraints. In LICS’96, pages 138-147.

F. Neven. Extensions of attribute grammars for
structured document queries. In DBPL’99, pages 99—
116.

C. H. Papadimitriou. On the complexity of integer
programming. J. ACM, 28(4):765-768, 1981.

C. H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

J. Shanmugasundaram et al. Efficiently publishing
relational data as XML documents. In VLDB’2000.

J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational
databases for querying XML documents: Limitations
and opportunities. In VLDB’1999.

W3C. Document Object Model (DOM) Level 1 Spec-
ification. W3C Recommendation, Oct. 1998.

W3C. Extensible Markup Language (XML) 1.0.
W3C Recommendation, Feb. 1998.

W3C. XML-Data. W3C Note, Jan. 1998.
W3C. XML Path Language (XPath). Nov. 1999.
W3C. XSL Transformations (XSLT). Nov. 1999.

[33] W3C. XML Schema. W3C Working Draft, May
2001.

[34] W3C. XQuery 1.0: An XML Query Language. W3C
Working Draft, June 2001.

