
On Verifying Consisten
y of XML Spe
i�
ationsMar
elo ArenasDepartment of Computer S
ien
eUniversity of Torontomarenas�
s.toronto.edu Wenfei FanInternet Management Resear
h DeptBell Laboratorieswenfei�resear
h.bell-labs.
om Leonid Libkin�Department of Computer S
ien
eUniversity of Torontolibkin�
s.toronto.edu
Abstra
tXML spe
i�
ations often 
onsist of a type de�nition(typi
ally, a DTD) and a set of integrity 
onstraints.It has been shown previously that su
h spe
i�
ations
an be in
onsistent, and thus it is often desirable to
he
k 
onsisten
y at 
ompile-time. It is known thatfor general keys and foreign keys, and DTDs, the 
on-sisten
y problem is unde
idable; however, it be
omesNP-
omplete when all keys are one-attribute (unary),and tra
table, if no foreign keys are used.In this paper, we 
onsider a variety of 
onstraints forXML data, and study the 
omplexity of the 
onsis-ten
y problem. Our main 
on
lusion is that in thepresen
e of foreign keys, 
ompile-time veri�
ation of
onsisten
y is usually infeasible. We look at two typesof 
onstraints: absolute (that hold in the entire do
-ument), and relative (that only hold in a part of thedo
ument). For absolute 
onstraints, we extend ear-lier de
idability results to the 
ase of multi-attributekeys and unary foreign keys, and to the 
ase of 
on-straints involving regular expressions, providing lowerand upper bounds in both 
ases. For relative 
on-straints, we show that even for unary 
onstraints, the
onsisten
y problem is unde
idable. We also estab-lish a number of restri
ted de
idable 
ases.1 Introdu
tionXML data, just like relational and obje
t-orienteddata, 
an be spe
i�ed in a 
ertain data de�nition lan-guage. While the exa
t details of XML data de�ni-�Resear
h aÆliation: Bell Laboratories.

tion languages are still being worked out, it is 
learthat all of them would 
ontain a form of do
ument de-s
ription, as well as integrity 
onstraints. Constraintsare naturally introdu
ed when one 
onsiders trans-formations between XML and relational databases[16, 27, 26, 17, 20, 11℄, as well as integrating severalXML do
uments [3, 4, 13℄.Do
ument des
riptions usually 
ome in the form ofDTDs (Do
ument Type De�nition), and 
onstraintsare typi
ally natural analogs of the most 
ommonrelational integrity 
onstraints: keys and foreignkeys. Indeed, a large number of proposals (e.g.,[29, 33, 30, 5℄) support spe
i�
ations for keys andforeign keys.We investigate XML spe
i�
ations with DTDs andkeys and foreign keys. We study the 
onsisten
y,or satis�ability, of su
h spe
i�
ations: given a DTDand a set of 
onstraints, whether there are XML do
-uments 
onforming to the DTD and satisfying the
onstraints.In other words, we want to validate XML spe
i�
a-tions stati
ally, at 
ompile-time. Invalid XML spe
-i�
ations are likely to be more 
ommon than in-valid spe
i�
ations of other kinds of data, due to therather 
omplex intera
tion of DTDs and 
onstraints.Furthermore, many spe
i�
ations are not written aton
e, but rather in stages: as new requirements aredis
overed, they are added to the 
onstraints, andthus it is quite possible that at some point they maybe 
ontradi
tory.An alternative to the stati
 validation would be a dy-nami
 approa
h: simply attempt to validate a do
u-ment with respe
t to a DTD and a set of 
onstraints.This, however, would not tell us whether repeatedfailures are due to a bad spe
i�
ation, or problemswith the do
uments.The 
onsisten
y analysis for XML spe
i�
ations isnot nearly as easy as for relational data (any set ofkeys and foreign keys 
an be de
lared on a set ofrelational attributes). Indeed, [14℄ showed that for
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(b)Figure 1: Examples of XML do
umentsDTDs and arbitrary keys and foreign keys, the 
on-sisten
y problem is unde
idable. Furthermore, underthe restri
tion that all keys and foreign keys are unary(single-attribute), the problem is NP-
omplete.These results only revealed the tip of the i
eberg,as many other 
avors of XML 
onstraints exist, andare likely to be added to future standards for XMLsu
h as XML S
hema [33℄. One of our goals is tostudy su
h 
onstraints. In parti
ular, we 
on
en-trate on 
onstraints with regular expressions, andrelative 
onstraints that only hold in a part of thedo
ument. Furthermore, for 
lasses of 
onstraintswith high lower bounds, we are interested in theirtra
table, or at least de
idable restri
tions. We nowgive examples of new kinds of 
onstraints 
onsideredhere, and explain the 
onsisten
y problem for them.Constraints with regular expressions. As XML datais hierar
hi
ally stru
tured, one is often interested in
onstraints spe
i�ed by regular expressions. For ex-ample, 
onsider an XML do
ument (represented as anode-labeled tree) in Fig. 1 (a), whi
h 
onforms tothe following DTD for s
hools:<!ELEMENT r (students, 
ourses, fa
ulty, labs)><!ELEMENT students (student+)><!ELEMENT 
ourses (
s340, 
s108, 
s434)><!ELEMENT fa
ulty (prof+)><!ELEMENT labs (dbLab, p
Lab)><!ELEMENT student (re
ord)>/* similarly for prof<!ELEMENT 
s434 (takenBy+)/* similarly for 
s340, 
s108<!ELEMENT dbLab (a

+)/* similarly for p
LabHere we omit the des
riptions of elements whose typeis string (PCDATA). Assume that ea
h re
ord ele-

ment has an attribute id, ea
h takenBy has an at-tribute sid (for student id), and ea
h a

 has an at-tribute num.One may impose the following 
onstraints over theDTD of that do
ument:r: �:(student [ prof):re
ord:id !r: �:(student [ prof):re
ord,r: �:
s434:takenBy:sid � r: �:student:re
ord:id,r: �:dbLab:a

:num � r: �:
s434:takenBy:sid,r: �:
s434:takenBy:sid ! r: �:
s434:takenBy.Here is a wild
ard that mat
hes any label (tag) and� is its Kleene 
losure that mat
hes any path. The�rst 
onstraint says that id is a key for all re
ords ofstudents and professors. Furthermore, sid is a key forstudents taking 
s434. The other 
onstraints spe
-ify foreign keys, whi
h assert that 
s434 
an only betaken by students, and only students who are taking
s434 
an have an a

ount in the database lab.Clearly, there is an XML tree satisfying both theDTD and the 
onstraints. As was mentioned ear-lier, spe
i�
ations are rarely written at on
e. Nowsuppose a new requirement is dis
overed: all fa
ultymembers must have a dbLab a

ount. Consequently,one adds a new foreign key:r:fa
ulty:prof:re
ord:id � r: �:dbLab:a

:num;r: �:dbLab:a

:num ! r: �:dbLab:a

:However, this addition makes the whole spe
i�
ationin
onsistent. This is be
ause previous 
onstraintspostulate that dbLab users are students taking 
s434,and no professor 
an be a student sin
e id is a key forboth students and professors, while the new foreignkey insists upon professors also being dbLab users andthe DTD enfor
es at least one professor to be present



in the do
ument. Thus no XML do
ument both 
on-forms to the DTD and satis�es all the 
onstraints.The 
onsisten
y problem for regular expression 
on-straints is at least as hard as for 
onstraints spe
i�edfor element types with simple attributes: NP-hard inthe unary 
ase and unde
idable in general [14℄. Weuse results from [2, 14, 24℄ to show that in the unary
ase, the problem remains de
idable, but the lowerbound be
omes PSPACE.Relative integrity 
onstraints. Many types of 
on-straints are spe
i�ed for an entire do
ument. A di�er-ent kind of 
onstraints, 
alled relative, was proposedre
ently [5℄ { those 
onstraints only hold in a part ofa do
ument. As an example, 
onsider an XML do
-ument that for ea
h 
ountry lists its administrativesubdivisions (e.g., into provin
es or states), as wellas 
apitals of provin
es. A DTD is given below andan XML do
ument 
onforming to it is depi
ted inFigure 1 (b).<!ELEMENT db (
ountry+)><!ELEMENT 
ountry (provin
e+, 
apital+)><!ELEMENT provin
e (
apital, 
ity�)>Ea
h 
ountry has a nonempty sequen
e of provin
esand a nonempty sequen
e of provin
e 
apitals, and forea
h provin
e we spe
ify its 
apital and perhaps other
ities. Ea
h 
ountry and provin
e has an attributename, and ea
h 
apital has an attribute InProvin
e.Now suppose we want to de�ne keys for 
ountries andprovin
es. One 
an state that 
ountry name is a keyfor 
ountry elements. It is also tempting to say thatname is a key for provin
e, but this may not be the
ase. The example in Figure 1 (b) 
learly shows that;whi
h Limburg one is interested in probably dependson whether one's interests are in database theory, orin the history of the European Union. To over
omethis problem, we de�ne name to be a key for provin
erelative to a 
ountry; indeed, it is extremely unlikelythat two provin
es of the same 
ountry would havethe same name. Thus, our 
onstraints are:
ountry.name ! 
ountry,
ountry(provin
e.name ! provin
e),
ountry(
apital.inProvin
e ! 
apital),
ountry(
apital.inProvin
e � provin
e.name).The �rst 
onstraint is like those we have en
oun-tered before: it is an absolute key, whi
h appliesto the entire do
ument. The rest are relative 
on-straints whi
h are spe
i�ed for sub-do
uments rootedat 
ountry elements. They assert that for ea
h 
oun-try, name is a key of provin
e elements, inProvin
e isa key of all 
apital des
endants of the 
ountry elementand it is a foreign key referring to name of provin
e el-ements in the same sub-do
ument. In 
ontrast to reg-ular expression 
onstraints given earlier, these 
on-

straints are de�ned for element types, e.g., the �rst
onstraint is a key for all 
ountry elements in the en-tire do
ument, and the third 
onstraint is a (relative)key for all 
apital elements in a sub-do
ument rootedat a 
ountry node.To illustrate the intera
tion between 
onstraints andDTDs, observe that the above spe
i�
ation { whi
hmight look reasonable at �rst { is a
tually in
onsis-tent!To see this, let T be a tree that satis�es the spe
i�
a-tion. The 
onstraints say that for any sub-do
umentrooted at a 
ountry 
, the number of its 
apital el-ements is at most the number of provin
e elementsamong 
's des
endants. The DTD says that ea
hprovin
e has a 
apital element as a 
hild and thatea
h 
ountry element has at least one 
apital 
hild.Thus, the number of 
apital des
endants of 
 is largerthan the number of provin
e des
endants of 
, whi
h
ontradi
ts the previous bound. Hen
e, the spe
i�-
ation is in
onsistent.Relative 
onstraints appear to be quite useful for 
ap-turing information about XML do
uments that 
an-not possibly be spe
i�ed by absolute 
onstraints. Itturns out, however, that the 
onsisten
y problem ismu
h harder for them: it is unde
idable even forsingle-attribute keys and foreign keys.Given this negative result, we look at restri
tions thatwould give us de
idability. They 
ome in the form ofextra 
onditions on the \geometry" of foreign keysthat relate the two sides of the in
lusion in the DTDtree representing a non-re
ursive DTD. We show thatthe problem is de
idable if relative 
onstraints are\hierar
hi
al"; furthermore, if foreign keys do nottalk about attributes that are \too far" from ea
hother, the problem is PSPACE-
omplete.Tra
table and de
idable restri
tions. Sin
e expensivelower bounds, and even unde
idability, were estab-lished for most versions of the 
onsisten
y problem,we would like to see some interesting tra
table, or de-
idable, restri
tions. In 
ase of absolute 
onstraints,the results of [14℄ 
onsider either single attributes ormulti-attribute sets for both keys and foreign keys,and thus say nothing about the intermediate 
ase inwhi
h only keys are allowed to be multi-attribute.This 
lass of 
onstraints is rather 
ommon and ariseswhen relational data is translated into XML. Whileoften identi�ers are used as single-attribute keys,other sets of attributes 
an form a key as well (e.g.,via SQL unique de
laration) and those typi
ally 
on-tain more than one attribute. We show that the 
on-sisten
y problem for this 
lass of 
onstraints, whenevery key is primary (i.e., at most one key is de�nedfor ea
h element type), remains de
idable.A number of trivial restri
tions for tra
tability of ab-solute 
onstraints are known (e.g., a �xed DTD, no



foreign keys). Restri
tions on DTDs are unlikely tohelp: [14℄ showed that the 
onsisten
y problem forunary absolute 
onstraints is NP-hard for very simpleDTDs (no Kleene star, no re
ursion). There are twofurther ways to restri
t the problem: one 
an imposea bound on the number of 
onstraints, or a bound onthe depth of the DTDs. We show that neither onein isolation gives us tra
tability, but when the tworestri
tions are 
ombined, the 
onsisten
y problem isin NLOGSPACE.The main 
on
lusion of this paper is that whilemany proposals su
h as XML S
hema [33℄ and XMLData [30℄ support the fa
ilities provided by the DTDsas well as integrity 
onstraints, and while it is possibleto write in
onsistent spe
i�
ations, 
he
king 
onsis-ten
y at 
ompile-time appears to be infeasible, evenfor fairly small spe
i�
ations.Related work. Consisten
y was studied for otherdata models, su
h as obje
t-oriented and extendedrelational (e.g., with support for 
ardinality 
on-straints), see [9, 10, 19℄.A number of spe
i�
ations for XML keys and for-eign keys have been proposed, e.g., XML S
hema [33℄,XML-Data [30℄. A re
ent proposal [5℄ introdu
ed rel-ative 
onstraints, whi
h were further studied in [6℄.To the best of our knowledge, 
onsisten
y of XML
onstraints in the presen
e of s
hema spe
i�
ationswas only investigated in [14℄. However, [14℄ did not
onsider relative 
onstraints, 
onstraints de�ned withregular expressions and the 
lass of multi-attributekeys and unary foreign keys. Other 
onstraints forsemi-stru
tured data, di�erent from those 
onsideredhere, were studied in, e.g. [2, 7, 15℄. The latter alsostudies the 
onsisten
y problem; the spe
ial form of
onstraints used there makes it possible to en
ode
onsisten
y as an instan
e of 
onjun
tive query 
on-tainment.Organization. Se
tion 2 de�nes DTDs, and abso-lute keys and foreign keys for XML. Se
tion 3 studiesthe 
lass of absolute multi-attribute keys and unaryforeign keys, and the 
lass of regular expression 
on-straints whi
h is an extension of absolute 
onstraintswith regular path expressions. Se
tion 4 de�nes andinvestigates relative keys and foreign keys. We alsoprovide several 
omplexity results for impli
ation ofXML 
onstraints. Se
tion 5 summarizes the main re-sults of the paper.2 NotationsDTDs, XML trees, paths We formalize the notionof DTDs as follows (
f. [29, 8, 23, 14℄).

De�nition 2.1 A DTD (Do
ument Type De�nition)is de�ned to be D = (E; A; P; R; r), where:� E is a �nite set of element types;� A is a �nite set of attributes, disjoint from E;� for ea
h � 2 E, P (�) is a regular expression �,
alled the element type de�nition of � :� ::= S j � 0 j � j �j� j �; � j ��where S denotes the string type, � 0 2 E, � is theempty word, and \j", \;" and \�" denote union,
on
atenation, and the Kleene 
losure;� for ea
h � 2 E, R(�) is a set of attributes in A;� r 2 E and is 
alled the element type of the root.We normally denote element types by � and at-tributes by l, and assume that r does not appear inP (�) for any � 2 E. We also assume that ea
h � inEnfrg is 
onne
ted to r, i.e., either � appears in P (r),or it appears in P (� 0) for some � 0 that is 
onne
tedto r.An XML do
ument is typi
ally modeled as a node-labeled tree. Below we des
ribe valid XML do
-uments w.r.t. a DTD, along the same lines asXQuery [34℄, XML S
hema [33℄ and DOM [28℄.De�nition 2.2 Let D = (E; A; P; R; r) be a DTD.An XML tree T 
onforming to D, written T j= D, isde�ned to be (V; lab; ele; att; val; root), where� V is a �nite set of nodes;� lab is a fun
tion that maps ea
h node in V toa label in E [ A [ fSg; a node v 2 V is 
alledan element of type � if lab(v) = � and � 2 E,an attribute if lab(v) 2 A, and a text node iflab(v) = S;� ele is a fun
tion that for any � 2 E, maps ea
helement v of type � to a (possibly empty) list[v1; :::; vn℄ of elements and text nodes in V su
hthat lab(v1) : : : lab(vn) is in the regular languagede�ned by P (�);� att is a partial fun
tion from V � A to V su
hthat for any v 2 V and l 2 A, att(v; l) is de�nedi� lab(v) = � , � 2 E and l 2 R(�);� val is a partial fun
tion from V to string valuessu
h that for any node v 2 V , val(v) is de�nedi� lab(v) = S or lab(v) 2 A;� root is the root of T : root 2 V and lab(root) =r.



For any node v 2 V , if ele(v) is de�ned, then thenodes v0 in ele(v) are 
alled the subelements of v.For any l 2 A, if att(v; l) = v0, then v0 is 
alled anattribute of v. In either 
ase we say that there isa parent-
hild edge from v to v0. The subelementsand attributes of v are 
alled its 
hildren. The graphde�ned by the parent-
hild relation is required to be arooted tree.In an XML tree T , for ea
h v 2 V , there is a uniquepath of parent-
hild edges from the root to v, andea
h node has at most one in
oming edge. The rootis a unique node labeled with r. If a node x is la-beled � in E, then the fun
tions ele and att de�nethe 
hildren of x, whi
h are partitioned into subele-ments and attributes. The subelements of x are or-dered and their labels observe the regular expressionP (�). In 
ontrast, its attributes are unordered andare identi�ed by their labels (names). The fun
tionval assigns string values to attributes and to nodeslabeled S.Our model is simpler than the models of XQuery andXML S
hema as DTDs support only one basi
 type(PCDATA or string) and do not have 
omplex type
onstru
ts. Unlike the data model of XQuery, we donot 
onsider nodes representing namespa
es, pro
ess-ing instru
tions and referen
es. These simpli�
ationsdo not a�e
t the lower bounds, however.We also use the following notations. Referring to anXML tree T , if x is a � element in T and l is an at-tribute in R(�), then x:l denotes the l attribute valueof x, i.e., x:l = val(att(x; l)). If X is a list [l1; : : : ; ln℄of attributes in R(�), then x[X ℄ = [x:l1; : : : ; x:ln℄. Forany element type � 2 E, ext(�) denotes the set of allthe � elements in T . For any l 2 R(�), ext(�:l) de-notes fx:l j x 2 ext(�)g, the set of all the l-attributevalues of � nodes.Given a DTD D = (E; A; P; R; r) and element types�; � 0 2 E, a string �1:�2: � � � :�n over E is a pathin D from � to � 0 if �1 = � , �n = � 0 and forea
h i 2 [2; n℄, �i is a symbol in the alphabet ofP (�i�1). Moreover, Paths(D) = fp j there is � 2E su
h that p is a path in D from r to �g.We say that a DTD is non-re
ursive if Paths(D) is�nite, and re
ursive otherwise. We also say that Dis a no-star DTD if the Kleene star does not o

urin any regular expression P (�) (note that this is astronger restri
tion than being �-free: a regular ex-pression without the Kleene star yields a �nite lan-guage, while the language of a �-free regular expres-sion may still be in�nite as it allows boolean operatorsin
luding 
omplement).Keys and foreign keys We 
onsider two forms of
onstraints for XML: absolute 
onstraints that hold

on the entire do
ument, denoted by AC; and relative
onstraints that hold on 
ertain sub-do
uments, de-noted by RC. Below we de�ne absolute keys and for-eign keys; their variations using regular expressionswill be de�ned in Se
tion 3.2, and relative 
onstraintswill be formally de�ned in Se
tion 4. The 
onstraintsgiven in Se
tion 1 are instan
es of regular 
onstraintsand relative 
onstraints, whi
h are slightly di�erentfrom what we present in this se
tion.A 
lass of absolute keys and foreign keys, denotedby AC�;�K ;FK (we shall explain the notation shortly),is de�ned for element types as follows. An AC�;�K ;FK
onstraint ' over a DTD D = (E; A; P; R; r) hasone of the following forms:� Key. � [X ℄ ! � , where � 2 E and X is anonempty set of attributes in R(�). An XMLtree T satis�es ', denoted by T j= ', if8x; y 2 ext(�) (l̂2X(x:l = y:l)! x = y):� Foreign key. It is a 
ombination of two 
on-straints: an in
lusion 
onstraint �1[X ℄ � �2[Y ℄and a key 
onstraint �2[Y ℄! �2, where �1; �2 2E, X;Y are nonempty lists of attributes inR(�1), R(�2) of the same length. This 
onstraintis satis�ed by a tree T if T j= �2[Y ℄ ! �2, andin addition8x 2 ext(�1) 9 y 2 ext(�2) (x[X ℄ = y[Y ℄):That is, � [X ℄! � says that the X-attribute values ofa � element uniquely identify the element in ext(�),and �1[X ℄ � �2[Y ℄ says that the list of X-attributevalues of every �1 node in T must mat
h the list ofY -attribute values of some �2 node in T . We use twonotions of equality to de�ne keys: value equality isassumed when 
omparing attributes, and node iden-tity is used when 
omparing elements. We shall usethe same symbol `=' for both, as it will never lead toambiguity.Constraints of AC�;�K ;FK are generally referred to asmulti-attribute 
onstraints as they may be de�nedwith multiple attributes. An AC�;�K ;FK 
onstraint issaid to be unary if it is de�ned in terms of a singleattribute; that is, jX j=jY j= 1 in the above de�ni-tion. In that 
ase, we write �:l ! � for unary keys,and �1:l1 � �2:l2, �2:l2 ! �2 for unary foreign keys.As in relational databases, we also 
onsider primarykeys: for ea
h element type, at most one key 
an bede�ned.We shall use the following notations for sub
lassesof AC�;�K ;FK : subs
ripts K and FK denote keys andforeign keys, respe
tively. When the primary key re-stri
tion is imposed, we use subs
ript PK instead of



K. The supers
ript `�' denotes multi-attribute, and`1' means unary. When both supers
ripts are left out,we mean that both keys and foreign keys are unary.We shall be dealing with the following sub
lassesof AC�;�K ;FK : AC�;1K ;FK denotes the 
lass of multi-attribute keys and unary foreign keys; ACK ;FK is the
lass of unary keys and unary foreign keys; AC�;1PK ;FKis the 
lass of primary multi-attribute keys and unaryforeign keys; and ACPK ;FK is the 
lass of primaryunary keys and unary foreign keys.Consisten
y, or satis�ability problem We are in-terested in the 
onsisten
y, or satis�ability problemfor XML 
onstraints 
onsidered together with DTDs:that is, whether a given set of 
onstraints and a DTDare satis�able by an XML tree. Formally, for a 
lassC of integrity 
onstraints we de�ne the XML spe
i�-
ation 
onsisten
y problem SAT(C) as follows:PROBLEM: SAT(C)INPUT: A DTD D, a set � of C-
onstraints.QUESTION: Is there an XML tree T su
h thatT j= D and T j= �?It is known [14℄ that SAT(AC�;�K ;FK ) is unde
id-able, but SAT(ACK ;FK ) and SAT(ACPK ;FK ) are NP-
omplete.Constraint impli
ation Another 
lassi
al problem isthe impli
ation problem for a 
lass of 
onstraints C,denoted by Impl(C). Here, we 
onsider it in the pres-en
e of DTDs. We write (D;�) ` � if for every XMLtree T , T j= D and T j= � imply T j= �. Theimpli
ation problem Impl(C) is to determine, givenany DTD D and any set � [ f�g of C 
onstraints,whether or not (D;�) ` �. It was shown in [14℄ thatImpl(AC�;�K ;FK ) is unde
idable and Impl(ACK ;FK ) is
oNP-
omplete.3 Absolute integrity 
onstraintsIn this se
tion, we establish the de
idability andlower bounds for SAT(AC�;1PK ;FK ) and SAT(ACregK ;FK ),the 
onsisten
y problems for absolute primary multi-attribute keys and unary foreign keys, and for abso-lute regular unary keys and unary foreign keys. The
lass ACregK ;FK is an extension of ACK ;FK with regularpath expressions, whi
h will be de�ned shortly. Wealso study tra
table restri
tions of SAT(ACK ;FK ).

3.1 Multi-attribute keysWe know that SAT(ACK ;FK ), the 
onsisten
y prob-lem for unary absolute keys and foreign keys, isNP-
omplete. In 
ontrast, SAT(AC�;�K ;FK ) is unde-
idable. This leaves a rather large gap: namely,SAT(AC�;1K ;FK ), where only keys are allowed to bemulti-attribute (note that sin
e a key is part of aforeign key, the other restri
tion, to AC1;�K ;FK , doesnot make sense).The reason for the unde
idability of SAT(AC�;�K ;FK ) isthat the impli
ation problem for fun
tional and in
lu-sion dependen
ies 
an be redu
ed to it [14℄. However,this impli
ation problem is known to be de
idable { infa
t, in 
ubi
 time { for single-attribute in
lusion de-penden
ies [12℄, thus giving us hope to get de
idabil-ity for multi-attribute keys and unary foreign keys.While the de
idability of the 
onsisten
y problem forAC�;1K ;FK is still an open problem, we resolve a 
losely-related problem, SAT(AC�;1PK ;FK ). That is, the 
onsis-ten
y problem for multi-attribute primary keys andunary foreign keys. Re
all that a set � of AC�;1K ;FK
onstraints is said to be primary if for ea
h elementtype � , there is at most one key in � de�ned for �elements. We prove the de
idability by showing that
omplexity-wise, the problem is equivalent to a 
er-tain extension of integer linear programming studiedin [22℄:PROBLEM: PDE (Prequadrati
 DiophantineEquations)INPUT: An integer n �m matrix A, a ve
tor~b 2 Zn, and a set E � f1; : : : ;mg3.QUESTION: Is there a ve
tor ~x 2 Nm su
h thatA~x � ~b and xi � xj � xk for all(i; j; k) 2 E.Note that for E = ;, this is exa
tly the integer lin-ear programming problem [24℄. Thus, PDE 
an bethought of as integer linear programming extendedwith inequalities of the form x � y � z among vari-ables. It is therefore NP-hard, and [22℄ proved anNEXPTIME upper bound for PDE. The exa
t 
om-plexity of the problem remains unknown.Re
all that two problems P1 and P2 are polynomiallyequivalent if there are PTIME redu
tions from P1 toP2 and from P2 to P1. We now show the following.Theorem 3.1 SAT(AC�;1PK ;FK ) and PDE are polyno-mially equivalent.Proof sket
h. The proof is by a 
areful extension ofthe 
oding used in [14℄ for unary keys and foreignkeys; we show that 
onditions of the form x � y � zsuÆ
e to en
ode arbitrary keys. 2



It is known that the linear integer programming prob-lem is NP-hard and PDE is in NEXPTIME. Thusfrom Theorem 3.1 follows immediately:Corollary 3.2 SAT(AC�;1PK ;FK ) is NP-hard, and 
anbe solved in NEXPTIME. 2Obviously we 
annot obtain the exa
t 
omplexity ofSAT(AC�;1PK ;FK ) without resolving the 
orrespondingquestion for PDE, whi
h appears to be quite hard[22℄.The result of Theorem 3.1 
an be generalized to dis-joint AC�;1K ;FK 
onstraints: that is, a set � of AC�;1K ;FK
onstraints in whi
h for any two keys � [X ℄ ! �and � [Y ℄ ! � (on the same element type �) in �,X \Y = ;. The proof of Theorem 3.1 applies almostverbatim to show the following.Corollary 3.3 The restri
tion of SAT(AC�;1K ;FK ) todisjoint 
onstraints is polynomially equivalent toPDE.3.2 Regular expression 
onstraintsJust as in XML-Data and XML S
hema, spe
i�
a-tions of AC�;�K ;FK 
onstraints are asso
iated with el-ement types. To 
apture the hierar
hi
al nature ofXML data, 
onstraints 
an also be de�ned on a 
ol-le
tion of elements identi�ed by a regular path expres-sion. It is 
ommon to �nd path expressions in querylanguages for XML (e.g., XQuery [34℄, XSL [32℄).We de�ne a regular (path) expression over a DTDD = (E; A; P; R; r) as follows:� ::= � j � j j �:� j � [ � j ��;where � denotes the empty word, � is an element typein E, and ` ' stands for wild
ard that mat
hes anysymbol in E. We assume that � does not in
ludethe type r for the root element unless � = r:�0 where�0 does not in
lude r; thus, ` ' is just a shorthand forE n frg. A regular expression de�nes a language overthe alphabet E, whi
h will be denoted by � as well.Re
all that a path in a DTD is a list of E sym-bols, that is, a string in E�. Any pair of nodesx; y in an XML tree T with y a des
endant of xuniquely determines the path, denoted by �(x; y),from x to y. We say that y is rea
hable from xby following a regular expression � over D, denotedby T j= �(x; y), i� �(x; y) 2 �. For any �xedT , let nodes(�) stand for the set of nodes rea
hablefrom the root by following the regular expression �:nodes(�) = fy j T j= �(root; y)g. Note that for anyelement type � 2 E, nodes(r: �:�) = ext(�).

We now de�ne XML keys and foreign keys with reg-ular expressions. Let D = (E; A; P; R; r) be aDTD. Given a regular expression � over D, a keyover D is an expression ' of the form �:�:l ! �:� ,where � 2 E; l 2 R(�). For any XML tree T that
onforms to D, T satis�es ' (T j= ') if for anyx; y 2 nodes(�:�), x:l = y:l implies x = y. Giventwo regular expressions �1; �2 over D, a foreign keyover D is a 
ombination of the in
lusion 
onstraint�1:�1:l1 � �2:�2:l2 and a key �2:�2:l2 ! �2:�2, where�1; �2 2 E, li 2 R(�i); i = 1; 2. Here T j= ' ifT j= �2:�2:l2 ! �2:�2, and for every x 2 nodes(�1:�1)there exists y 2 nodes(�2:�2) su
h that x:l1 = y:l2.We use ACregK ;FK to denote the set of all unary 
on-straints de�ned with regular expressions. For exam-ple, the 
onstraints over the s
hool DTD that we haveseen in Se
tion 1 are instan
es of ACregK ;FK . We do not
onsider multi-attribute 
onstraints here, sin
e theysubsume AC�;�K ;FK (by using r: �:� for �), and thus
onsisten
y is unde
idable for them.For SAT(ACregK ;FK ), we are able to establish both anupper and a lower bound. The lower bound alreadyindi
ates that the problem is perhaps infeasible inpra
ti
e, even for very simple DTDs. Finding thepre
ise 
omplexity of the problem remains open, anddoes not appear to be easy.Theorem 3.4a) SAT(ACregK ;FK ) 
an be solved in NEXPTIME.b) For non-re
ursive no-star DTDs, SAT(ACregK ;FK )is PSPACE-hard.Proof sket
h. a) Following [14℄, we 
ode both theDTD and the 
onstraints with linear inequalities overintegers. However, 
ompared to the proof of [14℄, the
urrent proof is 
onsiderably harder due to the fol-lowing. First, regular expressions in DTDs (\hori-zontal" regular expressions) intera
t in a 
ertain waywith regular path expressions in 
onstraints (those
orrespond to \verti
al" paths through the trees). Toeliminate this intera
tion, we �rst redu
e the problemto that over 
ertain simple DTDs. The next problemis that regular path expressions in 
onstraints 
an in-tera
t with ea
h other. To model them with linearinequalities, we must introdu
e exponentially manyvariables that a

ount for all possible Boolean 
ombi-nations of those regular languages. The last problemis 
oding the DTDs in su
h a way that variables 
or-responding to ea
h node have the information aboutthe path leading to the node, and its relationship withthe regular path expressions used in 
onstraints. Forthat, we adopt the te
hnique of [2℄, and tag all thevariables in the 
oding of DTDs with states of theprodu
t automaton for all the automata 
orrespond-ing to the regular expressions in 
onstraints. Putting



everything together, we redu
e SAT(ACregK ;FK ) to theexisten
e of a solution of an (almost) instan
e of lin-ear integer programming, whi
h happens to be of ex-ponential size; hen
e the NEXPTIME bound.b) We en
ode the quanti�ed boolean formula problem(QBF) as an instan
e of SAT(ACregK ;FK ). 23.3 Restri
tions for tra
tabilitySin
e most 
avors of the 
onsisten
y problem forXML 
onstraints are intra
table, one is interested in�nding suitable restri
tions that admit polynomial-time algorithms. Some { rather severe { restri
-tions of this kind were given in [14℄: for example,SAT(ACK) (no foreign keys) is solvable in PTIME, asis SAT(ACK ;FK ) for any �xed DTD. A more naturalway of putting restri
tions appears to be by spe
i-fying what kinds of regular expressions are allowedin the DTDs. However, the hardness result 
an beproved even for DTDs with neither re
ursion nor theKleene star [14℄.We show that the hardness result for SAT(ACK ;FK )is very robust, and withstands severe restri
tions on
onstraints and DTDs: namely, a bound on the totalnumber of 
onstraints, and a bound on the depth ofthe DTD. However, imposing both of these boundssimultaneously makes SAT(ACK ;FK ) tra
table.For a non-re
ursive DTD D, the set Paths(D) is �-nite. We de�ne the depth of a non-re
ursive DTDD as Depth(D) = maxp2Paths(D) length(p). By adepth-d SAT(ACK ;FK ) we mean the restri
tion ofSAT(ACK ;FK ) to pairs (D;�) with Depth(D) � d.By a k-
onstraint SAT(ACK ;FK ) we mean the restri
-tion of the 
onsisten
y problem to pairs (D;�) wherej � j � k (
onsidering ea
h foreign key as one 
on-straint). A k-
onstraint depth-d SAT(ACK ;FK ) is arestri
tion to (D;�) with j� j� k and Depth(D) � d.Theorem 3.5 For non-re
ursive no-star DTDs:a) both k-
onstraint SAT(ACK ;FK ) and depth-dSAT(ACK ;FK ) are NP-hard, for k � 2 andd � 2.b) for any �xed k; d > 0, the k-
onstraint depth-dSAT(ACK ;FK ) is solvable in NLOGSPACE. 23.4 Lower bounds for impli
ationWe now state a simple result that gives us lowerbounds for the 
omplexity of impli
ation, if we knowthe 
omplexity of the satis�ability problem. Re-
all that for a 
omplexity 
lass K, 
oK stands forf �P j P 2 Kg.

Proposition 3.6 For any 
lass C of XML 
on-straints that 
ontains ACK ;FK , if SAT(C) is K-hard for some 
omplexity 
lass K that 
ontainsDLOGSPACE, then Impl(C) is 
oK-hard. 2It was shown in [14℄ that Impl(AC�;�K ;FK ) is unde
id-able and Impl(ACK ;FK ) is 
oNP-hard (in fa
t, 
oNP-
omplete). Now we derive:Corollary 3.7 Impl(AC�;1PK ;FK ) is 
oNP-hard, andImpl(ACregK ;FK ) is PSPACE-hard. 24 Relative integrity 
onstraintsSin
e XML do
uments are hierar
hi
ally stru
tured,one may be interested in the entire do
ument as wellas in its sub-do
uments. The latter gives rise to rela-tive integrity 
onstraints [5, 6℄, that only hold on 
er-tain sub-do
uments. Below we de�ne relative keysand foreign keys. Re
all that we use RC to denotevarious 
lasses of su
h 
onstraints. We use the nota-tion x � y when x and y are two nodes in an XMLtree and y is a des
endant of x.Let D = (E; A; P; R; r) be a DTD. A relative keyis an expression ' of the form �(�1:l ! �1), wherel 2 R(�1). It says that relative to ea
h node x ofelement type � , l is a key for all the �1 nodes that aredes
endants of x. That is, if a tree T 
onforms to D,then T j= ' if8x 2 ext(�) 8 y; z 2 ext(�1)�(x � y) ^ (x � z) ^ (y:l = z:l)�! y = z:A relative foreign key is an expression ' of the form�(�1:l1 � �2:l2) and �(�2:l2 ! �2), where li 2R(�i); i = 1; 2. This 
onstraint indi
ates that for ea
hx in ext(�), l1 is a foreign key of des
endants of x oftype �1 that referen
es a key l2 of �2-des
endants of x.That is, T j= ' i� T j= �(�2:l2 ! �2) and T satis�es8 x 2 ext(�) 8 y1 2 ext(�1) �(x � y1)!9 y2 2 ext(�2) ((x � y2) ^ y1:l1 = y2:l2)�:Here � is 
alled the 
ontext type of '. Note thatabsolute 
onstraints are a spe
ial 
ase of the rela-tive 
onstraints when � = r: i.e., r(�:l ! �) is theusual absolute key. Thus, the 
onsisten
y problemfor multi-attribute relative 
onstraints is unde
idable[14℄, and hen
e we only 
onsider unary relative 
on-straints here.Following the notations for AC, we use RCK ;FK todenote the 
lass of all unary relative keys and foreignkeys; RCPK ;FK means the primary key restri
tion.



For example, the 
onstraints given in Se
tion 1 overthe 
ountry/provin
e/
apital DTD are instan
es ofRCK ;FK .Re
all that SAT(ACK ;FK ), the 
onsisten
y problemsfor absolute unary 
onstraints, is NP-
omplete. Onewould be tempted to think that SAT(RCK ;FK ), the
onsisten
y problems for relative unary 
onstraints,is de
idable as well. We show, however, in Se
-tion 4.1, that this is not the 
ase. In light of this neg-ative result, we identify several de
idable sub
lassesof RCK ;FK , whi
h we 
all hierar
hi
al 
onstraints , inSe
tion 4.2.4.1 Unde
idability of 
onsisten
yWe now show that there is an enormous di�er-en
e between unary absolute 
onstraints, whereSAT(ACK ;FK ) is de
idable in NP, and unary relative
onstraints. We 
onsider the 
onsisten
y problem forthose, that is, SAT(RCK ;FK ). Clearly, the problem isr.e.; it turns out that one 
annot lower this bound.Theorem 4.1 SAT(RCK ;FK ) is unde
idable.Proof sket
h. By redu
tion from Hilbert's 10th prob-lem [21℄. 2In the proof of Theorem 4.1, all relative keys are pri-mary. Thus, we obtain:Corollary 4.2 SAT(RCPK ;FK ), the restri
tion ofSAT(RCK ;FK ) to primary keys, is unde
idable. 24.2 De
idable hierar
hi
al 
onstraintsOften, relative 
onstraints for XML do
uments have ahierar
hi
al stru
ture. For example, to store informa-tion about books we 
an use the stru
ture presentedin Figure 2 (a), with four relative 
onstraints:library(book :isbn ! book ); (1)book(author :name ! author); (2)book(
hapter :number ! 
hapter ); (3)
hapter (se
tion:title ! se
tion): (4)(1) says that isbn is a key for books, (2) says thattwo distin
t authors of the same book 
annot havethe same name and (3) says that two distin
t 
hap-ters of the same book 
annot have the same number.Constraint (4) asserts that two distin
t se
tions ofthe same 
hapter 
annot have the same title.This spe
i�
ation has a hierar
hi
al stru
ture: thereare three 
ontext types (library, book, and 
hapter),and if a 
onstraint restri
ts one of them, it does not

impose a restri
tion on the others. For instan
e, (1)imposes a restri
tion on the 
hildren of library, butit does not restri
t the 
hildren of book. To ver-ify if there is an XML do
ument 
onforming to thiss
hema, we 
an separately solve three 
onsisten
yproblems for absolute 
onstraints: one for the sub-s
hema 
ontaining the element types library, book andisbn; another for book, author, name, 
hapter andnumber; and the last one for 
hapter, se
tion, andtitle.On the other hand, the example in �gure 2 (b) doesnot have a hierar
hi
al stru
ture. In this 
ase, au-thor info stores information about the authors ofbooks, and, therefore, the following relative foreignkey is in
luded:library(author info:name ! author info);library(author :name � author info:name):In this 
ase, nodes of type author are restri
ted from
ontext types library and book. Thus, we 
annot sep-arate the 
onsisten
y problems for nodes of types li-brary and book.Below we formalize the notion of hierar
hi
al relative
onstraints via the notion of hierar
hi
al DTDs andsets of relative 
onstraints. We prove that the 
on-sisten
y problem for this kind of DTDs and sets of
onstraints is de
idable and show that under someadditional restri
tions, it is PSPACE-
omplete.LetD = (E; A; P; R; r) be a non-re
ursive DTD and� be a set of RCK ;FK -
onstraints over D. We saythat � 2 E is a restri
ted type if � = r or � is the
ontext type of some �-
onstraint. A restri
ted nodein an XML tree is a node whose type is a restri
tedtype. The s
ope of a restri
ted node x is the sub-tree rooted at x 
onsisting of: (1) all element nodesy that are rea
hable from x by following some path�1:�2: � � � :�n (n � 2) su
h that for every i 2 [2; n�1℄,�i is not a restri
ted type, and (2) all the attributesof the nodes mentioned in (1). For instan
e, a nodeof type book in the example shown in �gure 2 (a) is arestri
ted node and its s
ope in
ludes a node of typebook and some nodes of types author, name, 
hapterand number.Given two restri
ted types �1 and �2, we say that �1,�2 is a 
on
i
ting pair in (D;�) if the s
opes of thenodes of types �1 and �2 are related by a foreign key.Formally, �1; �2 2 E is a 
on
i
ting pair in (D;�) i��1 6= �2 and (1) there is a path in D from �1 to �2and �2 is the 
ontext type of some 
onstraint in �;and (2) there is �3 2 E su
h that �2 6= �3 and thereexists a path in D from �2 to �3 and for some �4 2 E,either �1(�3:l3 � �4:l4) or �1(�4:l4 � �3:l3) is in �.As an example, library and book in �gure 2 (b) are a
on
i
ting pair, whereas they are not in �gure 2 (a).If a spe
i�
ation (D;�) does not 
ontain 
on
i
ting
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tureFigure 2: Two s
hemas for storing data in a library.pairs, then we say that (D;�) is hierar
hi
al. If thisspe
i�
ation is 
onsistent, then we 
an 
onstru
t atree 
onforming to D and satisfying � hierar
hi
ally,never looking at more than the s
ope of a single re-stri
ted node. We prove this property in theorem 4.3.We de�ne the language HRCK ;FK as f(D;�) j D is anon-re
ursive DTD, � is a set of RCK ;FK -
onstraintsand (D;�) is hierar
hi
alg. In this 
ase, the inputof SAT(HRCK ;FK ) is (D;�) 2 HRCK ;FK , and theproblem is to determine whether there is an XMLtree 
onforming to D and satisfying �.Theorem 4.3 SAT(HRCK ;FK ) is de
idable.Proof sket
h. To prove this theorem, �rst we prove alemma stating the following. Suppose that f : N ! Nis a fun
tion su
h that for any 
onsistent (D;�) 2HRCK ;FK , there is a tree T j= D, T j= � in whi
hthe size of the s
ope of ea
h restri
ted node is atmost the value of f on the size of the DTD naturallyasso
iated with that s
ope. Then SAT(HRCK ;FK ) isin NSPACE(log(f)).Se
ond, by using the te
hniques of [14℄ we prove thatf(x) 
an be taken to be 22xk , where k � 1 is a �xed
onstant. We 
on
lude that SAT(HRCK ;FK ) is inEXPSPACE. 2The algorithm in the proof gives an exponential spa
eupper bound. We 
an lower it by imposing somefurther 
onditions on the \geometry" of 
onstraintsinvolved: namely, that for any in
lusion 
onstraint�(�1:l1 � �2:l2), �1:l1 and �2:l2 are not too far fromea
h other.Formally, let D be a non-re
ursive DTD and � a setof RCK ;FK -
onstraints over D su
h that (D;�) is hi-erar
hi
al. Given d > 1, (D;�) is d-lo
al if, whenever�1; �2 are restri
ted types, �2 is a des
endant of �1 andno other node on the path from �1 to �2 is a 
ontext

type of a �-
onstraint, then the length of that pathis at most d.Let d-HRCK ;FK be the language f(D;�) j (D;�) 2HRCK ;FK and is d-lo
alg.Theorem 4.4 For any d > 1, SAT(d-HRCK ;FK ) isPSPACE-
omplete.Proof sket
h. The membership follows from thelemma used in the proof of Theorem 4.3. For hard-ness, we use redu
tion from QBF. 24.3 Impli
ation problemNote that RCK ;FK and HRCK ;FK in
lude ACK ;FK .Thus from Proposition 3.6 we derive:Corollary 4.5 Impl(RCK ;FK ) is unde
idable, andImpl(HRCK ;FK ) is PSPACE-hard. 25 Con
lusionWe studied the problem of stati
ally 
he
king XMLspe
i�
ations, whi
h may in
lude various s
hema def-initions as well as integrity 
onstraints. As observedearlier, stati
 validation is quite desirable as an alter-native to dynami
 
he
king. Our main 
on
lusion isthat, however desirable, the stati
 
he
king is hard:even with very simple do
ument de�nitions given byDTDs, and (foreign) keys as 
onstraints, the 
om-plexity ranges from NP-hard to unde
idable.The main results are summarized in Figures 3, 4 (wealso in
luded the main results from [14℄ in those �g-ures). When one deals with absolute 
onstraints,whi
h hold in an entire do
ument, the general 
onsis-ten
y problem is unde
idable. It is solvable in NEXP-



Class AC�;�K ;FK [14℄ AC�;1PK ;FK ACregK ;FK ACK ;FK [14℄des
ription multi-attribute multi-attribute unary regular unary keys,keys and primary keys, path 
onstraints foreign keysforeign keys unary foreign keys (keys, foreign keys)Upper bound unde
idable NEXPTIME NEXPTIME NPLower bound unde
idable NP PSPACE NPFigure 3: Complexity of the 
onsisten
y problem for absolute 
onstraintsClass RC�;�K ;FK [14℄ RCK ;FK HRCK ;FK d-HRCK ;FK , d > 1des
ription multi-attribute unary keys unary hierar
hi
al unary hierar
hi
alkeys, foreign keys foreign keys 
onstraints 
onstraints, d-lo
alUpper bound unde
idable unde
idable EXPSPACE PSPACELower bound unde
idable unde
idable PSPACE PSPACEFigure 4: Complexity of the 
onsisten
y problem for relative 
onstraintsTIME if foreign keys are single-attribute, and is NP-
omplete if so are all the keys as well. However, if reg-ular expressions are allowed in single-attribute 
on-straints, the lower bounds be
omes at least PSPACE.For relative 
onstraints, whi
h are only required tohold in a part of a do
ument, the situation is quitebleak, as even the very simple 
ase of single-attribute
onstraints is unde
idable. By imposing 
ertain re-stri
tions on the \geometry" of those 
onstraints, we
an show that the problem is de
idable, althoughPSPACE-hard; further restri
tions make it PSPACE-
omplete. We also saw that these results are quite ro-bust, as hardness is often a
hieved on relatively sim-ple 
onstraints and DTDs.Although most of the results of the paper are neg-ative, the te
hniques developed in the paper helpstudy 
onsisten
y of individual XML spe
i�
ationwith type and 
onstraints. These te
hniques in-
lude, e.g., the 
onne
tion between regular expres-sion 
onstraints and integer linear programming andautomata.One open problem is to 
lose the 
omplexity gaps.However, these are by no means trivial: for exam-ple, SAT(AC�;1PK ;FK ) was proved to be equivalent toa problem related to Diophantine equations whoseexa
t 
omplexity remains unknown. In the 
ases ofSAT(ACregK ;FK ) and SAT(HRCK ;FK ), we think that itis more likely that our lower bounds 
orrespond to theexa
t 
omplexity of those problems. However, the al-gorithms are quite involved, and we do not yet seea way to simplify them to prove the mat
hing upperbounds.Another topi
 for future work is to study the inter-a
tion between more 
omplex XML 
onstraints, e.g.,those de�ned in terms of XPath [31℄, and more 
om-

plex s
hema spe
i�
ations su
h as XML S
hema [33℄and the type system of XQuery [34℄. Our lowerbounds apply to those settings, but it is open whetherupper bounds remain inta
t.A
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