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AbstratXML spei�ations often onsist of a type de�nition(typially, a DTD) and a set of integrity onstraints.It has been shown previously that suh spei�ationsan be inonsistent, and thus it is often desirable tohek onsisteny at ompile-time. It is known thatfor general keys and foreign keys, and DTDs, the on-sisteny problem is undeidable; however, it beomesNP-omplete when all keys are one-attribute (unary),and tratable, if no foreign keys are used.In this paper, we onsider a variety of onstraints forXML data, and study the omplexity of the onsis-teny problem. Our main onlusion is that in thepresene of foreign keys, ompile-time veri�ation ofonsisteny is usually infeasible. We look at two typesof onstraints: absolute (that hold in the entire do-ument), and relative (that only hold in a part of thedoument). For absolute onstraints, we extend ear-lier deidability results to the ase of multi-attributekeys and unary foreign keys, and to the ase of on-straints involving regular expressions, providing lowerand upper bounds in both ases. For relative on-straints, we show that even for unary onstraints, theonsisteny problem is undeidable. We also estab-lish a number of restrited deidable ases.1 IntrodutionXML data, just like relational and objet-orienteddata, an be spei�ed in a ertain data de�nition lan-guage. While the exat details of XML data de�ni-�Researh aÆliation: Bell Laboratories.

tion languages are still being worked out, it is learthat all of them would ontain a form of doument de-sription, as well as integrity onstraints. Constraintsare naturally introdued when one onsiders trans-formations between XML and relational databases[16, 27, 26, 17, 20, 11℄, as well as integrating severalXML douments [3, 4, 13℄.Doument desriptions usually ome in the form ofDTDs (Doument Type De�nition), and onstraintsare typially natural analogs of the most ommonrelational integrity onstraints: keys and foreignkeys. Indeed, a large number of proposals (e.g.,[29, 33, 30, 5℄) support spei�ations for keys andforeign keys.We investigate XML spei�ations with DTDs andkeys and foreign keys. We study the onsisteny,or satis�ability, of suh spei�ations: given a DTDand a set of onstraints, whether there are XML do-uments onforming to the DTD and satisfying theonstraints.In other words, we want to validate XML spei�a-tions statially, at ompile-time. Invalid XML spe-i�ations are likely to be more ommon than in-valid spei�ations of other kinds of data, due to therather omplex interation of DTDs and onstraints.Furthermore, many spei�ations are not written atone, but rather in stages: as new requirements aredisovered, they are added to the onstraints, andthus it is quite possible that at some point they maybe ontraditory.An alternative to the stati validation would be a dy-nami approah: simply attempt to validate a dou-ment with respet to a DTD and a set of onstraints.This, however, would not tell us whether repeatedfailures are due to a bad spei�ation, or problemswith the douments.The onsisteny analysis for XML spei�ations isnot nearly as easy as for relational data (any set ofkeys and foreign keys an be delared on a set ofrelational attributes). Indeed, [14℄ showed that for
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(b)Figure 1: Examples of XML doumentsDTDs and arbitrary keys and foreign keys, the on-sisteny problem is undeidable. Furthermore, underthe restrition that all keys and foreign keys are unary(single-attribute), the problem is NP-omplete.These results only revealed the tip of the ieberg,as many other avors of XML onstraints exist, andare likely to be added to future standards for XMLsuh as XML Shema [33℄. One of our goals is tostudy suh onstraints. In partiular, we onen-trate on onstraints with regular expressions, andrelative onstraints that only hold in a part of thedoument. Furthermore, for lasses of onstraintswith high lower bounds, we are interested in theirtratable, or at least deidable restritions. We nowgive examples of new kinds of onstraints onsideredhere, and explain the onsisteny problem for them.Constraints with regular expressions. As XML datais hierarhially strutured, one is often interested inonstraints spei�ed by regular expressions. For ex-ample, onsider an XML doument (represented as anode-labeled tree) in Fig. 1 (a), whih onforms tothe following DTD for shools:<!ELEMENT r (students, ourses, faulty, labs)><!ELEMENT students (student+)><!ELEMENT ourses (s340, s108, s434)><!ELEMENT faulty (prof+)><!ELEMENT labs (dbLab, pLab)><!ELEMENT student (reord)>/* similarly for prof<!ELEMENT s434 (takenBy+)/* similarly for s340, s108<!ELEMENT dbLab (a+)/* similarly for pLabHere we omit the desriptions of elements whose typeis string (PCDATA). Assume that eah reord ele-

ment has an attribute id, eah takenBy has an at-tribute sid (for student id), and eah a has an at-tribute num.One may impose the following onstraints over theDTD of that doument:r: �:(student [ prof):reord:id !r: �:(student [ prof):reord,r: �:s434:takenBy:sid � r: �:student:reord:id,r: �:dbLab:a:num � r: �:s434:takenBy:sid,r: �:s434:takenBy:sid ! r: �:s434:takenBy.Here is a wildard that mathes any label (tag) and� is its Kleene losure that mathes any path. The�rst onstraint says that id is a key for all reords ofstudents and professors. Furthermore, sid is a key forstudents taking s434. The other onstraints spe-ify foreign keys, whih assert that s434 an only betaken by students, and only students who are takings434 an have an aount in the database lab.Clearly, there is an XML tree satisfying both theDTD and the onstraints. As was mentioned ear-lier, spei�ations are rarely written at one. Nowsuppose a new requirement is disovered: all faultymembers must have a dbLab aount. Consequently,one adds a new foreign key:r:faulty:prof:reord:id � r: �:dbLab:a:num;r: �:dbLab:a:num ! r: �:dbLab:a:However, this addition makes the whole spei�ationinonsistent. This is beause previous onstraintspostulate that dbLab users are students taking s434,and no professor an be a student sine id is a key forboth students and professors, while the new foreignkey insists upon professors also being dbLab users andthe DTD enfores at least one professor to be present



in the doument. Thus no XML doument both on-forms to the DTD and satis�es all the onstraints.The onsisteny problem for regular expression on-straints is at least as hard as for onstraints spei�edfor element types with simple attributes: NP-hard inthe unary ase and undeidable in general [14℄. Weuse results from [2, 14, 24℄ to show that in the unaryase, the problem remains deidable, but the lowerbound beomes PSPACE.Relative integrity onstraints. Many types of on-straints are spei�ed for an entire doument. A di�er-ent kind of onstraints, alled relative, was proposedreently [5℄ { those onstraints only hold in a part ofa doument. As an example, onsider an XML do-ument that for eah ountry lists its administrativesubdivisions (e.g., into provines or states), as wellas apitals of provines. A DTD is given below andan XML doument onforming to it is depited inFigure 1 (b).<!ELEMENT db (ountry+)><!ELEMENT ountry (provine+, apital+)><!ELEMENT provine (apital, ity�)>Eah ountry has a nonempty sequene of provinesand a nonempty sequene of provine apitals, and foreah provine we speify its apital and perhaps otherities. Eah ountry and provine has an attributename, and eah apital has an attribute InProvine.Now suppose we want to de�ne keys for ountries andprovines. One an state that ountry name is a keyfor ountry elements. It is also tempting to say thatname is a key for provine, but this may not be thease. The example in Figure 1 (b) learly shows that;whih Limburg one is interested in probably dependson whether one's interests are in database theory, orin the history of the European Union. To overomethis problem, we de�ne name to be a key for provinerelative to a ountry; indeed, it is extremely unlikelythat two provines of the same ountry would havethe same name. Thus, our onstraints are:ountry.name ! ountry,ountry(provine.name ! provine),ountry(apital.inProvine ! apital),ountry(apital.inProvine � provine.name).The �rst onstraint is like those we have enoun-tered before: it is an absolute key, whih appliesto the entire doument. The rest are relative on-straints whih are spei�ed for sub-douments rootedat ountry elements. They assert that for eah oun-try, name is a key of provine elements, inProvine isa key of all apital desendants of the ountry elementand it is a foreign key referring to name of provine el-ements in the same sub-doument. In ontrast to reg-ular expression onstraints given earlier, these on-

straints are de�ned for element types, e.g., the �rstonstraint is a key for all ountry elements in the en-tire doument, and the third onstraint is a (relative)key for all apital elements in a sub-doument rootedat a ountry node.To illustrate the interation between onstraints andDTDs, observe that the above spei�ation { whihmight look reasonable at �rst { is atually inonsis-tent!To see this, let T be a tree that satis�es the spei�a-tion. The onstraints say that for any sub-doumentrooted at a ountry , the number of its apital el-ements is at most the number of provine elementsamong 's desendants. The DTD says that eahprovine has a apital element as a hild and thateah ountry element has at least one apital hild.Thus, the number of apital desendants of  is largerthan the number of provine desendants of , whihontradits the previous bound. Hene, the spei�-ation is inonsistent.Relative onstraints appear to be quite useful for ap-turing information about XML douments that an-not possibly be spei�ed by absolute onstraints. Itturns out, however, that the onsisteny problem ismuh harder for them: it is undeidable even forsingle-attribute keys and foreign keys.Given this negative result, we look at restritions thatwould give us deidability. They ome in the form ofextra onditions on the \geometry" of foreign keysthat relate the two sides of the inlusion in the DTDtree representing a non-reursive DTD. We show thatthe problem is deidable if relative onstraints are\hierarhial"; furthermore, if foreign keys do nottalk about attributes that are \too far" from eahother, the problem is PSPACE-omplete.Tratable and deidable restritions. Sine expensivelower bounds, and even undeidability, were estab-lished for most versions of the onsisteny problem,we would like to see some interesting tratable, or de-idable, restritions. In ase of absolute onstraints,the results of [14℄ onsider either single attributes ormulti-attribute sets for both keys and foreign keys,and thus say nothing about the intermediate ase inwhih only keys are allowed to be multi-attribute.This lass of onstraints is rather ommon and ariseswhen relational data is translated into XML. Whileoften identi�ers are used as single-attribute keys,other sets of attributes an form a key as well (e.g.,via SQL unique delaration) and those typially on-tain more than one attribute. We show that the on-sisteny problem for this lass of onstraints, whenevery key is primary (i.e., at most one key is de�nedfor eah element type), remains deidable.A number of trivial restritions for tratability of ab-solute onstraints are known (e.g., a �xed DTD, no



foreign keys). Restritions on DTDs are unlikely tohelp: [14℄ showed that the onsisteny problem forunary absolute onstraints is NP-hard for very simpleDTDs (no Kleene star, no reursion). There are twofurther ways to restrit the problem: one an imposea bound on the number of onstraints, or a bound onthe depth of the DTDs. We show that neither onein isolation gives us tratability, but when the tworestritions are ombined, the onsisteny problem isin NLOGSPACE.The main onlusion of this paper is that whilemany proposals suh as XML Shema [33℄ and XMLData [30℄ support the failities provided by the DTDsas well as integrity onstraints, and while it is possibleto write inonsistent spei�ations, heking onsis-teny at ompile-time appears to be infeasible, evenfor fairly small spei�ations.Related work. Consisteny was studied for otherdata models, suh as objet-oriented and extendedrelational (e.g., with support for ardinality on-straints), see [9, 10, 19℄.A number of spei�ations for XML keys and for-eign keys have been proposed, e.g., XML Shema [33℄,XML-Data [30℄. A reent proposal [5℄ introdued rel-ative onstraints, whih were further studied in [6℄.To the best of our knowledge, onsisteny of XMLonstraints in the presene of shema spei�ationswas only investigated in [14℄. However, [14℄ did notonsider relative onstraints, onstraints de�ned withregular expressions and the lass of multi-attributekeys and unary foreign keys. Other onstraints forsemi-strutured data, di�erent from those onsideredhere, were studied in, e.g. [2, 7, 15℄. The latter alsostudies the onsisteny problem; the speial form ofonstraints used there makes it possible to enodeonsisteny as an instane of onjuntive query on-tainment.Organization. Setion 2 de�nes DTDs, and abso-lute keys and foreign keys for XML. Setion 3 studiesthe lass of absolute multi-attribute keys and unaryforeign keys, and the lass of regular expression on-straints whih is an extension of absolute onstraintswith regular path expressions. Setion 4 de�nes andinvestigates relative keys and foreign keys. We alsoprovide several omplexity results for impliation ofXML onstraints. Setion 5 summarizes the main re-sults of the paper.2 NotationsDTDs, XML trees, paths We formalize the notionof DTDs as follows (f. [29, 8, 23, 14℄).

De�nition 2.1 A DTD (Doument Type De�nition)is de�ned to be D = (E; A; P; R; r), where:� E is a �nite set of element types;� A is a �nite set of attributes, disjoint from E;� for eah � 2 E, P (�) is a regular expression �,alled the element type de�nition of � :� ::= S j � 0 j � j �j� j �; � j ��where S denotes the string type, � 0 2 E, � is theempty word, and \j", \;" and \�" denote union,onatenation, and the Kleene losure;� for eah � 2 E, R(�) is a set of attributes in A;� r 2 E and is alled the element type of the root.We normally denote element types by � and at-tributes by l, and assume that r does not appear inP (�) for any � 2 E. We also assume that eah � inEnfrg is onneted to r, i.e., either � appears in P (r),or it appears in P (� 0) for some � 0 that is onnetedto r.An XML doument is typially modeled as a node-labeled tree. Below we desribe valid XML do-uments w.r.t. a DTD, along the same lines asXQuery [34℄, XML Shema [33℄ and DOM [28℄.De�nition 2.2 Let D = (E; A; P; R; r) be a DTD.An XML tree T onforming to D, written T j= D, isde�ned to be (V; lab; ele; att; val; root), where� V is a �nite set of nodes;� lab is a funtion that maps eah node in V toa label in E [ A [ fSg; a node v 2 V is alledan element of type � if lab(v) = � and � 2 E,an attribute if lab(v) 2 A, and a text node iflab(v) = S;� ele is a funtion that for any � 2 E, maps eahelement v of type � to a (possibly empty) list[v1; :::; vn℄ of elements and text nodes in V suhthat lab(v1) : : : lab(vn) is in the regular languagede�ned by P (�);� att is a partial funtion from V � A to V suhthat for any v 2 V and l 2 A, att(v; l) is de�nedi� lab(v) = � , � 2 E and l 2 R(�);� val is a partial funtion from V to string valuessuh that for any node v 2 V , val(v) is de�nedi� lab(v) = S or lab(v) 2 A;� root is the root of T : root 2 V and lab(root) =r.



For any node v 2 V , if ele(v) is de�ned, then thenodes v0 in ele(v) are alled the subelements of v.For any l 2 A, if att(v; l) = v0, then v0 is alled anattribute of v. In either ase we say that there isa parent-hild edge from v to v0. The subelementsand attributes of v are alled its hildren. The graphde�ned by the parent-hild relation is required to be arooted tree.In an XML tree T , for eah v 2 V , there is a uniquepath of parent-hild edges from the root to v, andeah node has at most one inoming edge. The rootis a unique node labeled with r. If a node x is la-beled � in E, then the funtions ele and att de�nethe hildren of x, whih are partitioned into subele-ments and attributes. The subelements of x are or-dered and their labels observe the regular expressionP (�). In ontrast, its attributes are unordered andare identi�ed by their labels (names). The funtionval assigns string values to attributes and to nodeslabeled S.Our model is simpler than the models of XQuery andXML Shema as DTDs support only one basi type(PCDATA or string) and do not have omplex typeonstruts. Unlike the data model of XQuery, we donot onsider nodes representing namespaes, proess-ing instrutions and referenes. These simpli�ationsdo not a�et the lower bounds, however.We also use the following notations. Referring to anXML tree T , if x is a � element in T and l is an at-tribute in R(�), then x:l denotes the l attribute valueof x, i.e., x:l = val(att(x; l)). If X is a list [l1; : : : ; ln℄of attributes in R(�), then x[X ℄ = [x:l1; : : : ; x:ln℄. Forany element type � 2 E, ext(�) denotes the set of allthe � elements in T . For any l 2 R(�), ext(�:l) de-notes fx:l j x 2 ext(�)g, the set of all the l-attributevalues of � nodes.Given a DTD D = (E; A; P; R; r) and element types�; � 0 2 E, a string �1:�2: � � � :�n over E is a pathin D from � to � 0 if �1 = � , �n = � 0 and foreah i 2 [2; n℄, �i is a symbol in the alphabet ofP (�i�1). Moreover, Paths(D) = fp j there is � 2E suh that p is a path in D from r to �g.We say that a DTD is non-reursive if Paths(D) is�nite, and reursive otherwise. We also say that Dis a no-star DTD if the Kleene star does not ourin any regular expression P (�) (note that this is astronger restrition than being �-free: a regular ex-pression without the Kleene star yields a �nite lan-guage, while the language of a �-free regular expres-sion may still be in�nite as it allows boolean operatorsinluding omplement).Keys and foreign keys We onsider two forms ofonstraints for XML: absolute onstraints that hold

on the entire doument, denoted by AC; and relativeonstraints that hold on ertain sub-douments, de-noted by RC. Below we de�ne absolute keys and for-eign keys; their variations using regular expressionswill be de�ned in Setion 3.2, and relative onstraintswill be formally de�ned in Setion 4. The onstraintsgiven in Setion 1 are instanes of regular onstraintsand relative onstraints, whih are slightly di�erentfrom what we present in this setion.A lass of absolute keys and foreign keys, denotedby AC�;�K ;FK (we shall explain the notation shortly),is de�ned for element types as follows. An AC�;�K ;FKonstraint ' over a DTD D = (E; A; P; R; r) hasone of the following forms:� Key. � [X ℄ ! � , where � 2 E and X is anonempty set of attributes in R(�). An XMLtree T satis�es ', denoted by T j= ', if8x; y 2 ext(�) (l̂2X(x:l = y:l)! x = y):� Foreign key. It is a ombination of two on-straints: an inlusion onstraint �1[X ℄ � �2[Y ℄and a key onstraint �2[Y ℄! �2, where �1; �2 2E, X;Y are nonempty lists of attributes inR(�1), R(�2) of the same length. This onstraintis satis�ed by a tree T if T j= �2[Y ℄ ! �2, andin addition8x 2 ext(�1) 9 y 2 ext(�2) (x[X ℄ = y[Y ℄):That is, � [X ℄! � says that the X-attribute values ofa � element uniquely identify the element in ext(�),and �1[X ℄ � �2[Y ℄ says that the list of X-attributevalues of every �1 node in T must math the list ofY -attribute values of some �2 node in T . We use twonotions of equality to de�ne keys: value equality isassumed when omparing attributes, and node iden-tity is used when omparing elements. We shall usethe same symbol `=' for both, as it will never lead toambiguity.Constraints of AC�;�K ;FK are generally referred to asmulti-attribute onstraints as they may be de�nedwith multiple attributes. An AC�;�K ;FK onstraint issaid to be unary if it is de�ned in terms of a singleattribute; that is, jX j=jY j= 1 in the above de�ni-tion. In that ase, we write �:l ! � for unary keys,and �1:l1 � �2:l2, �2:l2 ! �2 for unary foreign keys.As in relational databases, we also onsider primarykeys: for eah element type, at most one key an bede�ned.We shall use the following notations for sublassesof AC�;�K ;FK : subsripts K and FK denote keys andforeign keys, respetively. When the primary key re-strition is imposed, we use subsript PK instead of



K. The supersript `�' denotes multi-attribute, and`1' means unary. When both supersripts are left out,we mean that both keys and foreign keys are unary.We shall be dealing with the following sublassesof AC�;�K ;FK : AC�;1K ;FK denotes the lass of multi-attribute keys and unary foreign keys; ACK ;FK is thelass of unary keys and unary foreign keys; AC�;1PK ;FKis the lass of primary multi-attribute keys and unaryforeign keys; and ACPK ;FK is the lass of primaryunary keys and unary foreign keys.Consisteny, or satis�ability problem We are in-terested in the onsisteny, or satis�ability problemfor XML onstraints onsidered together with DTDs:that is, whether a given set of onstraints and a DTDare satis�able by an XML tree. Formally, for a lassC of integrity onstraints we de�ne the XML spei�-ation onsisteny problem SAT(C) as follows:PROBLEM: SAT(C)INPUT: A DTD D, a set � of C-onstraints.QUESTION: Is there an XML tree T suh thatT j= D and T j= �?It is known [14℄ that SAT(AC�;�K ;FK ) is undeid-able, but SAT(ACK ;FK ) and SAT(ACPK ;FK ) are NP-omplete.Constraint impliation Another lassial problem isthe impliation problem for a lass of onstraints C,denoted by Impl(C). Here, we onsider it in the pres-ene of DTDs. We write (D;�) ` � if for every XMLtree T , T j= D and T j= � imply T j= �. Theimpliation problem Impl(C) is to determine, givenany DTD D and any set � [ f�g of C onstraints,whether or not (D;�) ` �. It was shown in [14℄ thatImpl(AC�;�K ;FK ) is undeidable and Impl(ACK ;FK ) isoNP-omplete.3 Absolute integrity onstraintsIn this setion, we establish the deidability andlower bounds for SAT(AC�;1PK ;FK ) and SAT(ACregK ;FK ),the onsisteny problems for absolute primary multi-attribute keys and unary foreign keys, and for abso-lute regular unary keys and unary foreign keys. Thelass ACregK ;FK is an extension of ACK ;FK with regularpath expressions, whih will be de�ned shortly. Wealso study tratable restritions of SAT(ACK ;FK ).

3.1 Multi-attribute keysWe know that SAT(ACK ;FK ), the onsisteny prob-lem for unary absolute keys and foreign keys, isNP-omplete. In ontrast, SAT(AC�;�K ;FK ) is unde-idable. This leaves a rather large gap: namely,SAT(AC�;1K ;FK ), where only keys are allowed to bemulti-attribute (note that sine a key is part of aforeign key, the other restrition, to AC1;�K ;FK , doesnot make sense).The reason for the undeidability of SAT(AC�;�K ;FK ) isthat the impliation problem for funtional and inlu-sion dependenies an be redued to it [14℄. However,this impliation problem is known to be deidable { infat, in ubi time { for single-attribute inlusion de-pendenies [12℄, thus giving us hope to get deidabil-ity for multi-attribute keys and unary foreign keys.While the deidability of the onsisteny problem forAC�;1K ;FK is still an open problem, we resolve a losely-related problem, SAT(AC�;1PK ;FK ). That is, the onsis-teny problem for multi-attribute primary keys andunary foreign keys. Reall that a set � of AC�;1K ;FKonstraints is said to be primary if for eah elementtype � , there is at most one key in � de�ned for �elements. We prove the deidability by showing thatomplexity-wise, the problem is equivalent to a er-tain extension of integer linear programming studiedin [22℄:PROBLEM: PDE (Prequadrati DiophantineEquations)INPUT: An integer n �m matrix A, a vetor~b 2 Zn, and a set E � f1; : : : ;mg3.QUESTION: Is there a vetor ~x 2 Nm suh thatA~x � ~b and xi � xj � xk for all(i; j; k) 2 E.Note that for E = ;, this is exatly the integer lin-ear programming problem [24℄. Thus, PDE an bethought of as integer linear programming extendedwith inequalities of the form x � y � z among vari-ables. It is therefore NP-hard, and [22℄ proved anNEXPTIME upper bound for PDE. The exat om-plexity of the problem remains unknown.Reall that two problems P1 and P2 are polynomiallyequivalent if there are PTIME redutions from P1 toP2 and from P2 to P1. We now show the following.Theorem 3.1 SAT(AC�;1PK ;FK ) and PDE are polyno-mially equivalent.Proof sketh. The proof is by a areful extension ofthe oding used in [14℄ for unary keys and foreignkeys; we show that onditions of the form x � y � zsuÆe to enode arbitrary keys. 2



It is known that the linear integer programming prob-lem is NP-hard and PDE is in NEXPTIME. Thusfrom Theorem 3.1 follows immediately:Corollary 3.2 SAT(AC�;1PK ;FK ) is NP-hard, and anbe solved in NEXPTIME. 2Obviously we annot obtain the exat omplexity ofSAT(AC�;1PK ;FK ) without resolving the orrespondingquestion for PDE, whih appears to be quite hard[22℄.The result of Theorem 3.1 an be generalized to dis-joint AC�;1K ;FK onstraints: that is, a set � of AC�;1K ;FKonstraints in whih for any two keys � [X ℄ ! �and � [Y ℄ ! � (on the same element type �) in �,X \Y = ;. The proof of Theorem 3.1 applies almostverbatim to show the following.Corollary 3.3 The restrition of SAT(AC�;1K ;FK ) todisjoint onstraints is polynomially equivalent toPDE.3.2 Regular expression onstraintsJust as in XML-Data and XML Shema, spei�a-tions of AC�;�K ;FK onstraints are assoiated with el-ement types. To apture the hierarhial nature ofXML data, onstraints an also be de�ned on a ol-letion of elements identi�ed by a regular path expres-sion. It is ommon to �nd path expressions in querylanguages for XML (e.g., XQuery [34℄, XSL [32℄).We de�ne a regular (path) expression over a DTDD = (E; A; P; R; r) as follows:� ::= � j � j j �:� j � [ � j ��;where � denotes the empty word, � is an element typein E, and ` ' stands for wildard that mathes anysymbol in E. We assume that � does not inludethe type r for the root element unless � = r:�0 where�0 does not inlude r; thus, ` ' is just a shorthand forE n frg. A regular expression de�nes a language overthe alphabet E, whih will be denoted by � as well.Reall that a path in a DTD is a list of E sym-bols, that is, a string in E�. Any pair of nodesx; y in an XML tree T with y a desendant of xuniquely determines the path, denoted by �(x; y),from x to y. We say that y is reahable from xby following a regular expression � over D, denotedby T j= �(x; y), i� �(x; y) 2 �. For any �xedT , let nodes(�) stand for the set of nodes reahablefrom the root by following the regular expression �:nodes(�) = fy j T j= �(root; y)g. Note that for anyelement type � 2 E, nodes(r: �:�) = ext(�).

We now de�ne XML keys and foreign keys with reg-ular expressions. Let D = (E; A; P; R; r) be aDTD. Given a regular expression � over D, a keyover D is an expression ' of the form �:�:l ! �:� ,where � 2 E; l 2 R(�). For any XML tree T thatonforms to D, T satis�es ' (T j= ') if for anyx; y 2 nodes(�:�), x:l = y:l implies x = y. Giventwo regular expressions �1; �2 over D, a foreign keyover D is a ombination of the inlusion onstraint�1:�1:l1 � �2:�2:l2 and a key �2:�2:l2 ! �2:�2, where�1; �2 2 E, li 2 R(�i); i = 1; 2. Here T j= ' ifT j= �2:�2:l2 ! �2:�2, and for every x 2 nodes(�1:�1)there exists y 2 nodes(�2:�2) suh that x:l1 = y:l2.We use ACregK ;FK to denote the set of all unary on-straints de�ned with regular expressions. For exam-ple, the onstraints over the shool DTD that we haveseen in Setion 1 are instanes of ACregK ;FK . We do notonsider multi-attribute onstraints here, sine theysubsume AC�;�K ;FK (by using r: �:� for �), and thusonsisteny is undeidable for them.For SAT(ACregK ;FK ), we are able to establish both anupper and a lower bound. The lower bound alreadyindiates that the problem is perhaps infeasible inpratie, even for very simple DTDs. Finding thepreise omplexity of the problem remains open, anddoes not appear to be easy.Theorem 3.4a) SAT(ACregK ;FK ) an be solved in NEXPTIME.b) For non-reursive no-star DTDs, SAT(ACregK ;FK )is PSPACE-hard.Proof sketh. a) Following [14℄, we ode both theDTD and the onstraints with linear inequalities overintegers. However, ompared to the proof of [14℄, theurrent proof is onsiderably harder due to the fol-lowing. First, regular expressions in DTDs (\hori-zontal" regular expressions) interat in a ertain waywith regular path expressions in onstraints (thoseorrespond to \vertial" paths through the trees). Toeliminate this interation, we �rst redue the problemto that over ertain simple DTDs. The next problemis that regular path expressions in onstraints an in-terat with eah other. To model them with linearinequalities, we must introdue exponentially manyvariables that aount for all possible Boolean ombi-nations of those regular languages. The last problemis oding the DTDs in suh a way that variables or-responding to eah node have the information aboutthe path leading to the node, and its relationship withthe regular path expressions used in onstraints. Forthat, we adopt the tehnique of [2℄, and tag all thevariables in the oding of DTDs with states of theprodut automaton for all the automata orrespond-ing to the regular expressions in onstraints. Putting



everything together, we redue SAT(ACregK ;FK ) to theexistene of a solution of an (almost) instane of lin-ear integer programming, whih happens to be of ex-ponential size; hene the NEXPTIME bound.b) We enode the quanti�ed boolean formula problem(QBF) as an instane of SAT(ACregK ;FK ). 23.3 Restritions for tratabilitySine most avors of the onsisteny problem forXML onstraints are intratable, one is interested in�nding suitable restritions that admit polynomial-time algorithms. Some { rather severe { restri-tions of this kind were given in [14℄: for example,SAT(ACK) (no foreign keys) is solvable in PTIME, asis SAT(ACK ;FK ) for any �xed DTD. A more naturalway of putting restritions appears to be by spei-fying what kinds of regular expressions are allowedin the DTDs. However, the hardness result an beproved even for DTDs with neither reursion nor theKleene star [14℄.We show that the hardness result for SAT(ACK ;FK )is very robust, and withstands severe restritions ononstraints and DTDs: namely, a bound on the totalnumber of onstraints, and a bound on the depth ofthe DTD. However, imposing both of these boundssimultaneously makes SAT(ACK ;FK ) tratable.For a non-reursive DTD D, the set Paths(D) is �-nite. We de�ne the depth of a non-reursive DTDD as Depth(D) = maxp2Paths(D) length(p). By adepth-d SAT(ACK ;FK ) we mean the restrition ofSAT(ACK ;FK ) to pairs (D;�) with Depth(D) � d.By a k-onstraint SAT(ACK ;FK ) we mean the restri-tion of the onsisteny problem to pairs (D;�) wherej � j � k (onsidering eah foreign key as one on-straint). A k-onstraint depth-d SAT(ACK ;FK ) is arestrition to (D;�) with j� j� k and Depth(D) � d.Theorem 3.5 For non-reursive no-star DTDs:a) both k-onstraint SAT(ACK ;FK ) and depth-dSAT(ACK ;FK ) are NP-hard, for k � 2 andd � 2.b) for any �xed k; d > 0, the k-onstraint depth-dSAT(ACK ;FK ) is solvable in NLOGSPACE. 23.4 Lower bounds for impliationWe now state a simple result that gives us lowerbounds for the omplexity of impliation, if we knowthe omplexity of the satis�ability problem. Re-all that for a omplexity lass K, oK stands forf �P j P 2 Kg.

Proposition 3.6 For any lass C of XML on-straints that ontains ACK ;FK , if SAT(C) is K-hard for some omplexity lass K that ontainsDLOGSPACE, then Impl(C) is oK-hard. 2It was shown in [14℄ that Impl(AC�;�K ;FK ) is undeid-able and Impl(ACK ;FK ) is oNP-hard (in fat, oNP-omplete). Now we derive:Corollary 3.7 Impl(AC�;1PK ;FK ) is oNP-hard, andImpl(ACregK ;FK ) is PSPACE-hard. 24 Relative integrity onstraintsSine XML douments are hierarhially strutured,one may be interested in the entire doument as wellas in its sub-douments. The latter gives rise to rela-tive integrity onstraints [5, 6℄, that only hold on er-tain sub-douments. Below we de�ne relative keysand foreign keys. Reall that we use RC to denotevarious lasses of suh onstraints. We use the nota-tion x � y when x and y are two nodes in an XMLtree and y is a desendant of x.Let D = (E; A; P; R; r) be a DTD. A relative keyis an expression ' of the form �(�1:l ! �1), wherel 2 R(�1). It says that relative to eah node x ofelement type � , l is a key for all the �1 nodes that aredesendants of x. That is, if a tree T onforms to D,then T j= ' if8x 2 ext(�) 8 y; z 2 ext(�1)�(x � y) ^ (x � z) ^ (y:l = z:l)�! y = z:A relative foreign key is an expression ' of the form�(�1:l1 � �2:l2) and �(�2:l2 ! �2), where li 2R(�i); i = 1; 2. This onstraint indiates that for eahx in ext(�), l1 is a foreign key of desendants of x oftype �1 that referenes a key l2 of �2-desendants of x.That is, T j= ' i� T j= �(�2:l2 ! �2) and T satis�es8 x 2 ext(�) 8 y1 2 ext(�1) �(x � y1)!9 y2 2 ext(�2) ((x � y2) ^ y1:l1 = y2:l2)�:Here � is alled the ontext type of '. Note thatabsolute onstraints are a speial ase of the rela-tive onstraints when � = r: i.e., r(�:l ! �) is theusual absolute key. Thus, the onsisteny problemfor multi-attribute relative onstraints is undeidable[14℄, and hene we only onsider unary relative on-straints here.Following the notations for AC, we use RCK ;FK todenote the lass of all unary relative keys and foreignkeys; RCPK ;FK means the primary key restrition.



For example, the onstraints given in Setion 1 overthe ountry/provine/apital DTD are instanes ofRCK ;FK .Reall that SAT(ACK ;FK ), the onsisteny problemsfor absolute unary onstraints, is NP-omplete. Onewould be tempted to think that SAT(RCK ;FK ), theonsisteny problems for relative unary onstraints,is deidable as well. We show, however, in Se-tion 4.1, that this is not the ase. In light of this neg-ative result, we identify several deidable sublassesof RCK ;FK , whih we all hierarhial onstraints , inSetion 4.2.4.1 Undeidability of onsistenyWe now show that there is an enormous di�er-ene between unary absolute onstraints, whereSAT(ACK ;FK ) is deidable in NP, and unary relativeonstraints. We onsider the onsisteny problem forthose, that is, SAT(RCK ;FK ). Clearly, the problem isr.e.; it turns out that one annot lower this bound.Theorem 4.1 SAT(RCK ;FK ) is undeidable.Proof sketh. By redution from Hilbert's 10th prob-lem [21℄. 2In the proof of Theorem 4.1, all relative keys are pri-mary. Thus, we obtain:Corollary 4.2 SAT(RCPK ;FK ), the restrition ofSAT(RCK ;FK ) to primary keys, is undeidable. 24.2 Deidable hierarhial onstraintsOften, relative onstraints for XML douments have ahierarhial struture. For example, to store informa-tion about books we an use the struture presentedin Figure 2 (a), with four relative onstraints:library(book :isbn ! book ); (1)book(author :name ! author); (2)book(hapter :number ! hapter ); (3)hapter (setion:title ! setion): (4)(1) says that isbn is a key for books, (2) says thattwo distint authors of the same book annot havethe same name and (3) says that two distint hap-ters of the same book annot have the same number.Constraint (4) asserts that two distint setions ofthe same hapter annot have the same title.This spei�ation has a hierarhial struture: thereare three ontext types (library, book, and hapter),and if a onstraint restrits one of them, it does not

impose a restrition on the others. For instane, (1)imposes a restrition on the hildren of library, butit does not restrit the hildren of book. To ver-ify if there is an XML doument onforming to thisshema, we an separately solve three onsistenyproblems for absolute onstraints: one for the sub-shema ontaining the element types library, book andisbn; another for book, author, name, hapter andnumber; and the last one for hapter, setion, andtitle.On the other hand, the example in �gure 2 (b) doesnot have a hierarhial struture. In this ase, au-thor info stores information about the authors ofbooks, and, therefore, the following relative foreignkey is inluded:library(author info:name ! author info);library(author :name � author info:name):In this ase, nodes of type author are restrited fromontext types library and book. Thus, we annot sep-arate the onsisteny problems for nodes of types li-brary and book.Below we formalize the notion of hierarhial relativeonstraints via the notion of hierarhial DTDs andsets of relative onstraints. We prove that the on-sisteny problem for this kind of DTDs and sets ofonstraints is deidable and show that under someadditional restritions, it is PSPACE-omplete.LetD = (E; A; P; R; r) be a non-reursive DTD and� be a set of RCK ;FK -onstraints over D. We saythat � 2 E is a restrited type if � = r or � is theontext type of some �-onstraint. A restrited nodein an XML tree is a node whose type is a restritedtype. The sope of a restrited node x is the sub-tree rooted at x onsisting of: (1) all element nodesy that are reahable from x by following some path�1:�2: � � � :�n (n � 2) suh that for every i 2 [2; n�1℄,�i is not a restrited type, and (2) all the attributesof the nodes mentioned in (1). For instane, a nodeof type book in the example shown in �gure 2 (a) is arestrited node and its sope inludes a node of typebook and some nodes of types author, name, hapterand number.Given two restrited types �1 and �2, we say that �1,�2 is a oniting pair in (D;�) if the sopes of thenodes of types �1 and �2 are related by a foreign key.Formally, �1; �2 2 E is a oniting pair in (D;�) i��1 6= �2 and (1) there is a path in D from �1 to �2and �2 is the ontext type of some onstraint in �;and (2) there is �3 2 E suh that �2 6= �3 and thereexists a path in D from �2 to �3 and for some �4 2 E,either �1(�3:l3 � �4:l4) or �1(�4:l4 � �3:l3) is in �.As an example, library and book in �gure 2 (b) are aoniting pair, whereas they are not in �gure 2 (a).If a spei�ation (D;�) does not ontain oniting
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(b) A non-hierarhial strutureFigure 2: Two shemas for storing data in a library.pairs, then we say that (D;�) is hierarhial. If thisspei�ation is onsistent, then we an onstrut atree onforming to D and satisfying � hierarhially,never looking at more than the sope of a single re-strited node. We prove this property in theorem 4.3.We de�ne the language HRCK ;FK as f(D;�) j D is anon-reursive DTD, � is a set of RCK ;FK -onstraintsand (D;�) is hierarhialg. In this ase, the inputof SAT(HRCK ;FK ) is (D;�) 2 HRCK ;FK , and theproblem is to determine whether there is an XMLtree onforming to D and satisfying �.Theorem 4.3 SAT(HRCK ;FK ) is deidable.Proof sketh. To prove this theorem, �rst we prove alemma stating the following. Suppose that f : N ! Nis a funtion suh that for any onsistent (D;�) 2HRCK ;FK , there is a tree T j= D, T j= � in whihthe size of the sope of eah restrited node is atmost the value of f on the size of the DTD naturallyassoiated with that sope. Then SAT(HRCK ;FK ) isin NSPACE(log(f)).Seond, by using the tehniques of [14℄ we prove thatf(x) an be taken to be 22xk , where k � 1 is a �xedonstant. We onlude that SAT(HRCK ;FK ) is inEXPSPACE. 2The algorithm in the proof gives an exponential spaeupper bound. We an lower it by imposing somefurther onditions on the \geometry" of onstraintsinvolved: namely, that for any inlusion onstraint�(�1:l1 � �2:l2), �1:l1 and �2:l2 are not too far fromeah other.Formally, let D be a non-reursive DTD and � a setof RCK ;FK -onstraints over D suh that (D;�) is hi-erarhial. Given d > 1, (D;�) is d-loal if, whenever�1; �2 are restrited types, �2 is a desendant of �1 andno other node on the path from �1 to �2 is a ontext

type of a �-onstraint, then the length of that pathis at most d.Let d-HRCK ;FK be the language f(D;�) j (D;�) 2HRCK ;FK and is d-loalg.Theorem 4.4 For any d > 1, SAT(d-HRCK ;FK ) isPSPACE-omplete.Proof sketh. The membership follows from thelemma used in the proof of Theorem 4.3. For hard-ness, we use redution from QBF. 24.3 Impliation problemNote that RCK ;FK and HRCK ;FK inlude ACK ;FK .Thus from Proposition 3.6 we derive:Corollary 4.5 Impl(RCK ;FK ) is undeidable, andImpl(HRCK ;FK ) is PSPACE-hard. 25 ConlusionWe studied the problem of statially heking XMLspei�ations, whih may inlude various shema def-initions as well as integrity onstraints. As observedearlier, stati validation is quite desirable as an alter-native to dynami heking. Our main onlusion isthat, however desirable, the stati heking is hard:even with very simple doument de�nitions given byDTDs, and (foreign) keys as onstraints, the om-plexity ranges from NP-hard to undeidable.The main results are summarized in Figures 3, 4 (wealso inluded the main results from [14℄ in those �g-ures). When one deals with absolute onstraints,whih hold in an entire doument, the general onsis-teny problem is undeidable. It is solvable in NEXP-



Class AC�;�K ;FK [14℄ AC�;1PK ;FK ACregK ;FK ACK ;FK [14℄desription multi-attribute multi-attribute unary regular unary keys,keys and primary keys, path onstraints foreign keysforeign keys unary foreign keys (keys, foreign keys)Upper bound undeidable NEXPTIME NEXPTIME NPLower bound undeidable NP PSPACE NPFigure 3: Complexity of the onsisteny problem for absolute onstraintsClass RC�;�K ;FK [14℄ RCK ;FK HRCK ;FK d-HRCK ;FK , d > 1desription multi-attribute unary keys unary hierarhial unary hierarhialkeys, foreign keys foreign keys onstraints onstraints, d-loalUpper bound undeidable undeidable EXPSPACE PSPACELower bound undeidable undeidable PSPACE PSPACEFigure 4: Complexity of the onsisteny problem for relative onstraintsTIME if foreign keys are single-attribute, and is NP-omplete if so are all the keys as well. However, if reg-ular expressions are allowed in single-attribute on-straints, the lower bounds beomes at least PSPACE.For relative onstraints, whih are only required tohold in a part of a doument, the situation is quitebleak, as even the very simple ase of single-attributeonstraints is undeidable. By imposing ertain re-stritions on the \geometry" of those onstraints, wean show that the problem is deidable, althoughPSPACE-hard; further restritions make it PSPACE-omplete. We also saw that these results are quite ro-bust, as hardness is often ahieved on relatively sim-ple onstraints and DTDs.Although most of the results of the paper are neg-ative, the tehniques developed in the paper helpstudy onsisteny of individual XML spei�ationwith type and onstraints. These tehniques in-lude, e.g., the onnetion between regular expres-sion onstraints and integer linear programming andautomata.One open problem is to lose the omplexity gaps.However, these are by no means trivial: for exam-ple, SAT(AC�;1PK ;FK ) was proved to be equivalent toa problem related to Diophantine equations whoseexat omplexity remains unknown. In the ases ofSAT(ACregK ;FK ) and SAT(HRCK ;FK ), we think that itis more likely that our lower bounds orrespond to theexat omplexity of those problems. However, the al-gorithms are quite involved, and we do not yet seea way to simplify them to prove the mathing upperbounds.Another topi for future work is to study the inter-ation between more omplex XML onstraints, e.g.,those de�ned in terms of XPath [31℄, and more om-
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