An Information-Theoretic Approach to Normal Forms for
Relational and XML Data

Marcelo Arenas Leonid Libkin
University of Toronto University of Toronto
marenas@cs.toronto.edu libkin@cs.toronto.edu
ABSTRACT Several papers [13, 28, 18] attempted a more formal eval-

uation of normal forms, by relating it to the elimination

Normalization as a way of producing good database de- Of update anomalies. Another criterion is the existence
signs is a well-understood topic. However, the same prob- 0f algorithms that produce good designs: for example, we
lem of distinguishing well-designed databases from poorly know that every database scheme can be losslessly decom-
designed ones arises in other data models, in particular,Posed into one in BCNF, but some constraints may be lost
XML. While in the relational world the criteria for be- along the way.

ing well-designed are usually very intuitive and clear to

state, they become more obscure when one moves to mord N€ previous work was specific for the relational model.
complex data models. As new data formats such as XML are becoming critically

important, classical database theory problems have to be

Our goal is to provide a set of tools for testing when a revisited in the new context [26, 24]. However, there is
condition on a database design, specified byoamal as yet no consensus on how to address the problem of
form, corresponds to a good design. We use techniquesWell-designed data in the XML setting [10, 3].

of information theory, and define a measure of informa- i

tion content of elements in a database with respect to a setlt i problematic to evaluate XML normal forms based
of constraints. We first test this measure in the relational 0 update anomalies; while some proposals for update
context, providing information-theoretic justificationrf ~ languages exist [25], no XML update language has been
familiar normal forms such as BCNF, 4NF, PJ/NF, 5SNFR, Standardized. Likewise, using the existence of good de-
DK/NF. We then show that the same measure applies in theCOmMpPosition algorithms as a criterion is problematic: for
XML context, which gives us a characterization of a re- €xample, to formulate losslessness, one needs to fix a
cently introduced XML normal form called XNF. Finally, ~Small set of operations in some language, that would play

malization algorithms. Stating dependency preservation and testing normal forms
is even more problematic: while in the relational world,
we have well-understood procedures for doing this, for
. XML we do not even know if implication of functional
1. Introduction dependencies is decidable.

. . . . This suggests that one needs a different approach to the
What constitutes a good database design? This question)sification of normal forms and good designs. Such an
has been studied extensively, with well-known solutions approach must be applicable to new data mobigis-e the
presented in practically all database I%th' But what'is jsqes of query/update/constraint languages for them are
it that makes a database design good? This question is;ompletely understood and resolved. Therefore, such an
usually addressed atamuch less formal level. Forlnstance,approach must be based on some intrinsic characteristics

we know that BCNF is an example of a good design, and ¢ the dat dt Jundate | f
we usually say that this is because BCNF eliminates updategartismaar gégsn?gggfe 0 querylupdate languages for a

anomalies. Most of the time this is sufficient, given the

simplicity of the relational model and our good intuition |, this paper we suggest such an approach based on
aboutit. information-theoretic concepts, more specifically, on mea
suring the information content of the data. Our goal here is
twofold. First, we presentinformation-theoretic measure
Permission to make digital or hard copies of all or part o thiork for of “goodness” of a des'Q”’ and test them in the relational
personal or classroom use is granted without fee providatidbpies are World. To be appllcable_ n othe_r_contexts, we expect these
not made or distributed for profit or commercial advantage tat copies measures to characterize familiar normal forms. Second,
bear this notice and the full citation on the first page. Toycotherwise, to we apply them in the XML context, and show that they
republish, to post on servers or to redistribute to listguiees prior specific justify a normal form XNF proposed in [3]. We also use
permission and/or a fee. our measures to reason about normalization algorithms,

PODS 2003, June 9-12, 2003, San Diego, CA. ; o .
Copyright 2003 ACM 1-58113-670-6/03/06%5.00. by showing that standard decomposition algorithms never

decrease the information content of any piece of data in a constraintsY* denotes the set of all constraints implied
database/document. by it, that is, constraint® such that for every instance

I, I = ¥ impliesI E ¢. We defineinst(S,X) as
The rest of the paper is organized as follows. In Section 2 the set of all database instances %fsatisfying > and
we give the notations, and review the basics of information inst, (S, %) as {I € nst(S,%) | adom(I) C [1,k]},
theory (entropy and conditional entropy). where[l,k] = {1,...,k

Section 3 is an “appetizer” for the main part of the paper: Constraints and normal forms. Here we
we present a particularly simple information-theoretigwa briefly review the most common normal forms BCNF,
of measuring the information content of a database, and 4NF, PJ/NF, 5NFR, and DK/NF. For more information,
show how it characterizes BCNF and 4NF. The measure, the reader is referred to [4, 15, 1, 5].
however, is too coarse, and, furthermore, cannot be used
to reason about normalization algorithms. The most widely used among those are BCNF and 4NF,
defined in terms of functional dependencies (FD) and mul-
In Section 4 we present our main information-theoretic tivalued dependencies (MVD), respectively. We shall use
measure of the information content of a database. Un- the standard notations§ — Y and X —— Y for FDs
like the measure studied before [16, 6, 8, 17], our mea- and MVDs. Given a sekE of FDs overS, (S,X) is
sure takes into account both database instance and schemia@ BCNF if for every nontrivial FDX — Y € ¥,
constraints, and defines the content with respect to a setX is a key (that is, ifX — Y is defined overR, then
of constraints. A well-designed database is one in which X — sort(R) € ©*). If X is a set of FDs and MVDs
the content of each datum is the maximum possible. We over S, then 4NF is defined analogously [11]: for every
use this measure to characterize BCNF and 4NF as thenontrivial MVD X —— Y € ©*, X must be a key. Re-
best way to design schemas under FDs and MVDs, andcall that in the case of FDs nontrivial meakis ¢ X,
to justify normal forms involving JDs (PJ/NF, 5NFR) and and in the case of MVDs nontrivial meais ¢ X and
other types of integrity constraints (DK/NF). X UY G sort(R).

In Section 5, we show that the main measure of Section The normal forms PJ/NF (projection-join normal form)
4 straightforwardly extends to the XML setting, giving [12] and 5NFR [27] deal with FDs and join dependencies
us a definition of well-designed XML specifications. We (JDs). Recall that a JD ovét € S is an expression of the
prove that for constraints given by FDs, well-designed formi[X;,..., X,], whereX; U---U X,, = sort(R).
XML specifications are precisely those in XNF. A database instance of S satisfies[X7, ..., X,], if
I(R) = nx,(I(R)) > --- < 7yx, (I(R)). Given a set
In Section 6, we use the measures of Sections 4 and 5 toy; of FDs and JDs ovef, (S,%) is in PJINF ifA =
reason about normalization algorithms, by showing that 53, whereA is the set of key dependenciesiht (that
good normalization algorithms do not decrease the infor- is, dependencies of the fordf — sort(R) for X C
mation content of each datum at every step. sort(R)). In other words, every instance §tthat satisfies
. all the keys inx* must satisfy>: as well.
Finally, Section 7 presents the conclusions. All proofs can
be found in the full version of this paper. PJ/INF is an extension of both 4NF and BCNF. Since an
MVD X —— Y overRis a JDx<([XY, X (sort(R) —Y)],
when only FDs and MVDs are presentinthe definition
. of PJ/NF coincides with 4NF. If no JDs are present at alll,
2. Notations it reduces to the definition of BCNF [12].

An alternative normal form for FDs and JDs was intro-

Schemas and instances. A database schemféiisa quced in [27]. Given a set of FDs and JRover S, a JD
finite set of relation names, with a set of attributes, dethote = q[X1,..., X,] in ¥ is strong-reduced if for every

by sort(R), associated with eadk € S. We shallidentify i€ [1,n], =[X1, ..., Xi—1, Xit1,..., X,] is notins+
sort(R) of cardinalitym with {1,...,m}. Throughout or x| U...UX;, ;UX;11U --UX, C sort(R). (S,%)is
the paper, we assume that the domain of each attribute isin 5NFR (reduced 5th normal form) if for every nontrivial,

N, the set of positive integers. An instantef schema strong-reduced join dependensy{Xi,...,X,] € ©*

S assigns to each symb&l € S with m = [sort(R)| @ andeveryi € [1,n], X; is a key. PJINF is strictly stronger
relation I(R) which is a finite set ofn-tuples overN ™. than 5NER.

By adom(I) we mean the active domain &f that is, the

set of all elements dfi* that occurinl. The size of (R) The “ultimate” normal form for relational databases was
is defined a§I(R)| = |sort(R)|-[I(R)|, and the size of jntroduced in [13]. In our setting it says the following.
Lis|[I]| = X ges (R Given any set of integrity constraints over S, (S, %) is

,) I in DK/NF (domain-key normal form) it is implied by
If I'is an instance of, the set ofpositions in I, denoted tne set of key dependenciesit.

by Pos(I), is the sef{(R,t,A) | R € S, t € I(R) and
A € sort(R)}. Note that| Pos(I)| = ||I]|.

We shall deal withintegrity constraints which are
first-order sentences ovét. Given a se: of integrity '"When domain dependencies [13] are not considered.

2.1 Basics of Information Theory Y = {A — B}, then(S,%) is not in BCNF (4 is not

a key) and some instances can contain redundant informa-
tion: in Figure 1 (a), the value of the gray cell must be
The main concept of information theory is that of entropy, equal to the value below it. We do not need to store this

which measures the amount of information provided by a value as it can be inferred from the remaining values and

certain event. Assume that an event can hawkfferent
outcomesy, . . ., s,, each with probability;, 1 < n. How
much information is gained by knowing thatoccurred?
This is clearly a function of;. Suppose measures this
information; then it must be continuous and decreasing
function with domair(0, 1] (the higher the probability, the

the constraints.

We now use the concept of entropy to measure the infor-
mation content of every position in an instancesofThe
basic idea is as follows: we measure how much informa-
tion we gain if we lose the value in a given position, and

less information gained) ang(1) = 0 (no information is then someone restores it (either to the original, or to some
gained if the outcome is known in advance). Furthermore, other value, not necessarily from the active domain). For
g is additive: if outcomes are independent, the amount of instance, if we lose the value in the gray cell in figure 1
information gained by knowing two successive outcomes (a), we gain zero information if it gets restored, since we
must be the sum of the two individuals amounts, that is, know from the rest of the instance and the constraints that

g9(pi - pj) = g(pi) + g(p;). The only function satisfying
these conditions ig(z) = —clnz, wherec is an arbi-
trary positive constant [23]. It is customary to use base 2
logarithms:g(z) = —log .

The entropy of a probability distribution represents the
average amount of information gained by knowing that a
particular event occurred. Let = ({s1,...,sn}, Pa) be

a probability space. Ip;, = Pa(s;), then the entropy of
A, denoted by (A), is defined to be

n
— " pilogp.
1=1

Observe that some of the probabilities in the spate

- 1
H(A) = > p; log -
i=1 v

it equals2.

Formally, letl € inst,(S,X) (thatis,adom(I) C [1, k])
and letp € Pos(I) be a position in/. For any value

a, let I, , be a database instance constructed frbm
by replacing the value in position by a. We define a
probability spacef (1, p) = ([1,k + 1], P) and use its
entropy as the measure of informationzir(we define it
on[1,k + 1] to guarantee that there is at least one value
outside of the active domain). The functidhis:

_J0 Inco L,
/b | Iy E B} otherwise.

In other words, letn be the number of € [1, k£ + 1] such

P(a)

can be zero. For that case, we adopt the convention thatthat,, [= ¥ (note thatm > 0 since! |=). For each

0log & = 0, sincelim, o zlog 2 = 0. Itis known that
0 < H(A) < logn, with H(A) = logn only for the
uniform distributionP4(s;) = 1/n [7].

We shall also useonditional entropy. Assume that we
are given two probability spaces= ({s1,...,sn}, Pa),
B=({s},...,s,}, Pg)and, furthermore, we know prob-
abilities P(s, s;) of all the eventss’, s;) (thatis,P4 and

P need not be independent). Then the conditional en-
tropy of B given A, denoted byH (B | A), gives the
average amount of information provided 8 if A is
known [7]. It is defined using conditional probabilities
P(s} | i) = P(s},8i)/Pa(s:):

n

HB|A) =Y

i=1

m

(PA<si>ZP<s; | 51)log ﬁ)

j=1
3.

Information theory and normal forms:
an appetizer

We will now see a particularly simple way to provide
information-theoretic characterization of normal forms.
Although it is very easy to present, it has a number of

shortcomings, and a more elaborate measure will be pre-

sented in the next section.

Violating a normal form, e.g., BCNF, implies having re-
dundancies. For example, § = {R(A,B,C)} and

suchb, P(b) = 1/m, and elsewher® = 0.

For the instance in figure 1, (a)fis the position of the
gray cell, then the probability distribution is as follows:
P(2) = 1 and P(a) = 0, for all othera € [1,k + 1].
Thus, the entropy of% (1, p) for positionp is zero, as we
expect. More generally, we can show the following.

Theorem 1 Let 3 be a set of FDs (or FDs and
MVDs) over a schema S. Then (S,%) is in BCNF
(or 4NF, resp.) if and only if for every k > 1,
I € inst(S,X) and p € Pos(I),

H(EX(1.p)) > 0.

Proof: We give the proof for the case of FDs; for FDs
and MVDs the proof is almost identical.

(=) Assume that(S,X) is in BCNF. Fixk > 0, I €
insti(S,X) andp € Pos(I). Assume that is the pth
element in/. We show thatl,_,.: = X, from which
we conclude thatf (EX(1,p)) > 0, since€L (I, p) is uni-
formly distributed, and”(a), P(k + 1) # 0.

Towards a contradiction, assume that 1 = X. Then,
thereexist? € S,t),t, € I, 41 (R)andX — A e X

such thatt| [X] = t,[X] andt;[A] # t5[A]. Assume
thatt}, ¢, were generated from tuplées, to € I(R), re-
spectively. Note that)[X] = ¢,[X] (if t:1[X] # t}[X],

then ¢} [B] k + 1 for some B € X; given that
k+1 ¢ adom(I), only one position in,_x+1 mentions

P >
NN O
SwO
N| | >
W = @

AN O
R P | >
N N No| T
G ENIN T

(b)

Figure 1: Database instances.

this value and, thereforé, [X| # ¢4[X], a contradiction).
Similarly, t4[X] = t2[X] and, thereforet; [X] = t2[X].
Given that(S,Y) is in BCNF, X must be a key inR.
Hence,t; = to, sincel = . We conclude that] = ¢},
and, thust) [A] = t4[A], a contradiction.

(<) Assume that .S, X)) is not in BCNF. We show that
there exists: > 0, I € inst,(S,X) andp € Pos(I) such

that H (E(1, p)) = 0.

Since (S,%) is not in BCNF, there exisk € S and

X — AeXtsuchthatd ¢ X, X U{A} G sort(R) and

X is notakey inR. Thus, there exists a database instance
I of S suchthatl = X and’ £ X — sort(R). We can
assume thak(R) contains only two tuples, say, ¢». Let

k be the greatest value in i = ¢1[A] andp be the position

of t1[A] in I. Itis easy to see that € inst;(S,X) and
P(j) = 0, for everyj # iin [1,k + 1], sincet;[A] must

be equal taz[A] = i. Therefore H(E4(I,p)) =0. O

Thatis, a schemais in BCNF or 4NF iff for every instance,
each position carries non-zero amount of information.

This is a clean characterization of BCNF and 4NF, but the
measure (££(1, p)) is not accurate enough for a number
of reasons.

For example, le2; = {A — B} and¥y; = {A ——
B}. The instancel in figure 1 (a) satisfiesZ; and
Yo. Let p be the position of the gray cell in. Then
H(EE (I,p)) = H(EE (I,p)) = 0. Butintuitively, the
information content op must be higher undei; thanX,
sinceX; says that the value inmust be equal to the value
below it, andX; says that this should only happen if the
values of the~-attribute are distinct.

Next, consider/; and I, shown in figures 1 (a) and (c),
respectively. Le® = {A — B}, and letp; andp, de-
note the positions of the gray cells in andI,. Then,
H(EE(I,p1)) = H(EE(I, p2)) = 0. But again we
would like them to have different values, as the amount of
redundancy is higher i, than ini;.

Finally, let S = R(A,B), ¥ = {0 — A}, and

I = {1,2} x {1,2} € inst(S,%). For each position,
the entropy would be zero. However, consider both posi-
tions in attributeA corresponding to the value If they
both disappear, then we know that no matter how they

In the next section we will present a measure that over-
comes these problems.

4. Ageneral definition of well-designed data

Let S be a schemay a set of constraints, and Iét €
inst(S,X) be an instance withlI|| = n. Recall that
Pos(I)isthe set of positions i, thatis,{(R,t,A) | R €

S, t € I(R) andA € sort(R)}. Our goal is to define a
functionInr; (p |), the information content of a position
p € Pos(I) with respect to the set of constrair¥s For

a general definition of well-designed data, we want to say
that this measure has the maximum possible value. This is
a bit problematic for the case of an infinite domali¥1),
since we only know what the maximum value of entropy
is for a discrete distribution overelementsilog k.

To overcome this, we define, for eagh> 0, a function
INF’; (p | X) that would only apply to instances whose
active domain is contained i, k], and then consider the

ratio IN’Igé"klz) This ratio tells us how close the given

positionp is to having the maximum possible information
content, for databases with active domaiflirk]. As our
final measurdnr;(p | ¥) we then take the limit of this
sequence ak goes to infinity.

Informally, INF¥(p | %) is defined as follows. LeX C
Pos(I)—{p}. Supposethe values in those positiGhare

lost, and then someone restores them from thelséd;

we measure how much information about the value in
this gives us. This measure is defined as the entropy of

a suitably chosen distribution. Thénr%(p |) is the
average such entropy over all sets C Pos(I) — {p}.
Note that this is much more involved than the definition of
the previous section, as it takes into account all possible
interactions between different positions in an instanae an
the constraints.

We now present this measure formally. Anumeration

of I with ||I]] = n, n > 0, is a bijection f; between
Pos(I) and[1,n]. From now on, we assume that every
instance has an associated enumeratidve say that the
position of(R,t, A) € Pos(I)ispin I ifthe enumeration
of I assignsp to (R,t, A), and if R is clear from the
context, we say that the position©#] is p. We normally

are restored, the values must be the same. The measur@ssociate positions with their rank in the enumerafipn

presented in this section cannot possibly talk about inter-
dependencies of this kind.

2The choice of a particular enumeration will not affect
the measures we define.

w| o
N o1 &
R ANQ
P s
N~
NwQ

(a) An enumeration of 0) I7,a,) = 01(L(7,a,))

A B C A B C

ve | 7| 3 81713
112]|wv 11214
(©) I(7,a5) (d) o2((7,a,))

Figure 2: Defining INF}(p | 2).

Fix a positionp € Pos(I). As the first step, we need

is defined as the set of all substitutions: a — [1, k|

to describe all possible ways of removing values in a set such thatr (1, a)) = X and||o(I,.a))| = ||| (the latter

of positions X, different fromp. To do this, we shall
be placing variables from a sv; | « > 1} in positions

ensuresthat no two tuples collapse as the result of applying
o). With this, we define’(a | a) as:

where values are to be removed. Furthermore, we assume

that each set of positions is equally likely to be removed.
To model this, let2(7,p) be the set of alk”~! vectors
(a1, ..., Gp—1, Gpt1, --., ay) such that for every e
[1,n]—{p}, a;is eitherv; orthe value in the-th position of

I. A probability spaceA(I,p) = (2(I,p), P) is defined

by taking P to be the uniform distribution.

Example 1: Let I be the database instance shown in
Figure 1 (a). An enumeration of the positions inis
shown in Figure 2 (a). Assume thatis the position of
the gray cell shown in Figure 1 (a), that js= 5. Then,

a = (4,2,1,3,1) anday = (v1,2,1,3,vs) are among
the 32 vectors if2(I, p). For each of these vectors, we
defineP as;. O

Our measurdnry(p |), for I € inst(S,), will be
defined as the conditional entropy of a distribution on
[1, k], given the above distribution di(1, p). Forthat, we
define conditional probabilitieB(a | a) that characterize
how likely @ is to occur in positiorp, if some values are
removed froml according to the tupla from (7, p)3.
We need a couple of technical definitions first.

If @ = (a;)izp IS a vector inNQ(I,p) anda > 0, then
I(4,4) is a table obtained from by puttinga in positionp,
anda; in positioni, i # p. If k > 0, then asubstitution
o :a — [1, k] assigns a value from, k| to eachu; which
is a variable, and leaves othess intact. We can extend
to J(,,a) and thus talk about(/(,,)).

Example 2: (example 1 continued) Letk = 8 and
o1 be an arbitrary substitution fromm; to [1,8]. Note
that oy is the identity substitution, sincg, contains no
variables. Figure 2 (b) showg; ;,), which is equal to

o1(I(7,a))-

Letos be a substitution frora, to [1, 8] defined as follows:
o(v1) = 4 ando(vs) = 8. Figure 2 (c) showsd 7 5,) and

Figure 2 (d) shows the database instance generated by

applyingos t0 I(7 5, O

If ¥ is a set of constraints ove§, then SAT’;(I(a,a))

3We use the same letter P here, but this will never lead
to confusion. Furthermore, all probability distributions
depend on I, p, k and X, but we omit them as parameters
of P since they will always be clear from the context.

|SATS (Ia,0)))

> ISATE(Iq)]
be(1,k]

Pla|a)

We remark that this corresponds to conditional probabil-
ities with respect to a distributio®’ on [1, k] x Q(I,p)
defined byP’(a,a) = P(a | a) - (1/2"71), and thatP’ is
indeed a probability distribution for evelye inst (S, X)
andp € Pos(I).

Example 3: (example 2 continued) Assume that

Y = {A — B}. Given that the only substitution from

ay to [1, 8] is the identity, for everyu € [1,8], a # 2,
o(I(aa) # S, and, therefore, SATS (I1yq,)) = 0.
Thus,P(2 | a1) = 1 sinceo(l(2,3,)) F X. This value
reflects the intuition that if the value in the gray cell of the
instance shown in Figure 1 (a) is removed, then it can be
inferred from the remaining values and the AD— B.

There are 64 substitutions with domainand rangel, 8].

A substitutions is in SATS, (117 4,)) if and only if o (vg) #
1,and, thereford SATS,(I(7,4,))| = 56. The same can be
proved for everys € [1, 8], a # 2. On the other hand, the
only substitution thatis notiSATS, (12 4,)) iso(v1) = 3
ando(vs) = 1, sinceo(l(25,)) contains only one tuple.
Thus,[SATS,(I(2,4,))| = 63 and, therefore,

B ifa=2,
Plalag)=1{
% otherwise. 0O
We define a probability spacB%(I,p) = ([1,k], P)

where

5= > Plala).

a€Q(I,p)

and, again, omif, p, k andX as parameters, and overload
the letterP since this will never lead to confusion.

The measure of the amount of information in positign
INFY (p | 32, is the conditional entropy d8% (1, p) given
A(I,p), that is, the average information provided by
given all possible ways of removing values in the instance

I:
INFE(p | S) ' H(BE(I,p) | A(IL,p)) =
1
P(a) P(a|a)log =——).
aeﬂz(;,p)(ae%;k] P(a | a))

Note that fora € Q(1,p), X ,cpiu Pla | a)log 575
measures the amount of information in positigngiven
a set of constraints and some missing values in rep-

resented by the variables in Thus,INFf(p | ¥) is the
average such amount over ale Q(7,p).

From the definition of conditional entropy, < INv¥% (p |
) < log k, and the measurir’ (p |) depends on the
domain sizek. We now consider the ratio % (p | 3)

and the maximum entropipg k. It turns out that this
seguence converges:

Lemma 1 If X is a set of first-order constraints over
a schema S, then for every I € inst(S,X) and p €

Pos(I), limy_.o INF§(p | £)/logk exists.

In fact, Lemma 1 shows that such a limit exists for any
set of generic constraints, that is, constraints that do not
depend on the domain. This finally gives us the definition
of INF;(p |).

Definition 1. For I € inst(S,X) and p € Pos(I), the
measure INF;(p | X) is defined as
INF} (p | B)

I
- log k

k—o0

INF;(p | ¥) measures how much information is contained
in positionp, and0 < INF;(p | ¥) < 1. A well-designed

I, butthe measure used in Section 3 could not distinguish
them. Figure 3 (c) shows the valueslof} (p | ¥3) and
INF’;2 (p| X3) fork =5,6,7. As expected, the values are

smaller forl,. FurthermorelNFy, (p | 3¥3) = 0.875 and
INF, (p | £3) = 0.78125. m

4.1 Basic properties

It is clear from the definitions thdtnr;(p | 3) does not
depend on a particular enumeration of positions. Two
other basic properties that we can expect from the mea-
sure of information content are as follows: first, it should
not depend on a particular representation of constraints,
and second, a schema without constraints must be well-
designed (as there is nothing to tell us that it is not). Both
are indeed true.

Proposition 1.

(1) Let 31 and ¥y be two sets of constraints over a
schema S. If they are equivalent (that is, Ei” =
E;), then for any instance I satisfying ¥1 and
any p € Pos(I), INFr(p | 1) = INFz(p | 32).

(2) If X =0, then (S,Y) is well-designed.

The definition of being well-designed states that
limy, oo (INFY(p | ¥)/logk) = 1. This leaves open
the possibility thaiiNes (p | ¥) exhibits sub-logarithmic
growth, e.g.Jog k£ — log log k which results in almost, but
not completely perfect information in positign It turns

out that such behavior is impossibleiiifiy, ., o (INF¥ (p |

%)/logk) = 1, thenINFi(p | %) cannot grow sub-
logarithmically. We show this by establishing a structural

schema should not have an instance with a position thatcriterion forInr;(p | ¥) = 1.

has less than maximum information:

Definition 2. A database specification (S,X) is well-
designed if for every I € inst(S,X) and every p €
Pos(I), INrs(p | X) = 1.

Example 4: Let S be adatabase schefiB(A, B, C)}.
Let¥; = {A — BC}. Figure 1 (b) shows an instance
I of S satisfyingX; and figure 3 (a) shows the value of
INF(p | ¥1) for k = 5,6, 7, wherep is the position of
the gray cell. As expected, the valuelofrt (p | 1) is
maximal, since.S, 1) is in BCNF.

The next two examples show that the measve} (p |

¥)) can distinguish cases that were indistinguishable with
the measure of Section 3. L&, = {A — B} and

¥4 = {A — B}. Figure 1 (a) shows an instanéef S
satisfying both>, andX. Figure 3 (b) shows the value
of INF§(p |) andINFi(p | 34) for k = 5,6,7. As
expected, the values are smaller foy.

Finally, let¥; = {A — B}. Figures 1 (a) and 1 (c) show
instanced, I, of S satisfying>;. We expect the infor-
mation content of the gray cell to be smallerlinthan in

Proposition 2. Let S be a schema and X a set of con-
straints over S. Then the following are equivalent.

(1) (S,%) is well-designed.

(2) For every I € inst(S,%X) and p € Pos(I),
limy_ o [log k — INF¥(p | £)] = 0.

(3) For every I € inst(S,X), p € Pos(I) and a €
Nt — adom(I), I,—q E 3.

A natural question at this point is whether the problem
of checking if a relational schema is well-designed is de-
cidable. It is not surprising that for arbitrary first-order
constraints, the problem is undecidable:

Proposition 3. The problem of verifying whether a re-
lational schema containing first-order constraints is
well-designed is undecidable.

However, integrity constraints used in database schema
design are most commontyiversal, that is, of the form

vz (z), wherey(z) is a quantifier-free formula. FDs,
MVDs and JDs are universal constraints as well as more

(% A= BC logk | [A—B A— B % L I

5 23219 2.3219 5 20299 22180 5 20299 1.8092

6 25850 2.585(6 2.2608 2.4637 6 22608 2.0167

7 2.8074 2.8074 7 24558 2.6708 7 24558 2.1914
@) (b) (©)

Figure 3: Value of conditional entropy.

elaborated dependencies such as equality generating de- 1. = C (J,c,, Z:-
pendencies and full tuple generating dependencies [1]. For . _ _
universal constraints, the problem of testing if a relagion 2. For every W+ € M, V(R(Z1) A+ N R(Zm) —
schema is well-designed can be reduced to the problem Ti=x;) € BT

of verifying whether a Sabnfinkel-Bernays sentence is

inconsistent. Using complexity bounds for the latter [22], This justifies various normal forms proposed for JDs and
we obtain the following result. FDs [12, 27].

s o Corollary 2. Let 3 be a set of FDs and JDs over a
Proposition 4. The problem of deciding whether a . o
schema containing only universal constraints is well- rzlatzgnql sc}ltlezm S I(J;(S ,X) is in PJ/NF or SNFR,
designed is in co-NEXPTIME. Furthermore, if for a then it is well-designed.
fized m, each relation in S has at most m attributes,))
then the problem is in PSPACE. However, neither of these normal forms characterizes pre-
cisely the notion of being well-defined:

Proposition 6. There exists a schema S and a set of
JDs and FDs X such that (S,X) is well-designed,
but it violates all of the following: DK/NF, PJ/NF,
S5NFR.

For specific kinds of constraints, e.g., FDs, MVDs, lower
complexity bounds will follow from the results in the next
section.

4.2 Justification of relational normal forms Proof: LetS = {R(A,B,C)} andX = {AB — C,
AC — B, <[AB, AC, BC|}. This specification is not in
DK/NF and PJ/NF since the set of keys implied BHyis
We now apply the criterion of being well-designed to var- {AB — ABC, AC — ABC, ABC — ABC'} and this
ious relational normal forms. We show that all of them set does not imply<[AB, AC, BC]. Furthermore, this
lead to well-designed specifications, and some precisely specification is not in 5NFR sincel[AB, AC, BC] is a
characterize the well-designed specifications that can bestrong-reduced join dependency aRd' is not a key inz.
obtained with a class of constraints.
Join dependenay[AB, AC, BC] corresponds to the fol-
We start by finding constraints that always give rise towell- lowing first order sentence:
designed schemas. Astended-key over a relational
schemas is a constraing of the form: VaVyVzVuiVuaVus (R(z, y, u1) A R(z,uz,2) A

Y (R(Z1) A - A R(&m) — & = &), R(us,y,z) = R(z,y,2)).

wherei, j € [1,m], ¥ represents the universal closure ofa From Theorem 2, we conclude tha X) is well designed
formula, and there is an assignment of variables to columnsSinceX implies the sentence

such that each variable occurs only in one column (that is,

an extended-key is a typed constraint [1]). Note that every VoYV 2VurYuaVus (R(z, y, u1) A R(, uz, 2) A

key is an extended-key. R(us,y,z) =y =1u2 Az =uq).
Proposition 5. If S is a schema and ¥ a set of and(z,y,2) C (z,y,u1) U (z,uz, 2). o
extended-keys over S, then (S,X) is well-designed.

Corollary 1. A relational specification (S,%) in By restricting Theorem 2 to the case of specifications con-
DK/NF is well-designed. taining only FDs and MVDs (or only FDs), we obtain

the equivalence between well-designed databases and 4NF

Next, we characterize well-designed schemas with FDs (respectively, BENF).

and JDs. Theorem 3.Let Y be a set of integrity constraints
over a relational schema S.
Theorem 2 Let ¥ be a set of FDs and JDs over a 1. If $ contains only FDs and MVDs, then (S,Y)

relational schema S. (S,X) is well-designed if and
only if for every R € S and every nontrivial join _ '
dependency Y(R(Z,) A - A R(Z,,) — R(Z)) in 27, 2. If ¥ contains only FDs, then (S,X) is well-
there exists M C {1,...,m} such that: designed if and only if it is in BCNF.

is well-designed if and only if it is in 4NF.

5. Normalizing XML data

In this section we give a quick overview of the XML nor-
mal form called XNF, and show that the notion of being
well-designed straightforwardly extends from relations t
XML. Furthermore, if all constraints are specified as func-

that consists of the labels of its children belongs to the
language denoted by?,, and for everyx € N with
AMz) = a, QI € R(a) if and only if the functionpa
is defined onx (and thus provides the value of attribé).

FDs for XML. An element path ¢ is a word in
L*, and anattribute path is a word of the formg.Ql,

tional dependencies, this notion precisely characterizeswhereq € L* and @/ € A. An element pathy is

XNF.

5.1 Overview of XML constraints and normalization

DTDs and XML trees. We shall use a somewhat
simplified model of XML trees in order to keep the nota-
tion simple. We assume a countably infinite set of labels
L, a countably infinite set of attributes(we shall use the
notation@(,, @i, etc for attributes to distinguish them
from labels), and a countably infinite s&t of values of
attributes. Furthermore, we do not consi#@€DATA ele-

consistent with a DTDD if there is a treel’ = D that
contains a node reachable ky(in particular, all such
paths must have as the first letter); if in addition the
nodes reachable hyhave attribute@l, then the attribute
path ¢.@Q!l is consistent withD. The set of all paths
(element or attribute) consistent with is denoted by
paths(D). This set is finite for a non-recursiv® and
infinite if D is recursive.

A functional dependency over DTD D [3] is an expres-
sion of the form{q1,...,¢,} — q, whereq,q1,...,q, €
paths(D).

ments in XML trees since they can always be representedTg define the notion of satisfaction for FDs, we use a

by attributes.

A DTD (Document Type Definition)D is a 4-tuple
(Lo, P, R,r) whereL, is a finite subset of, P is a set of
rulesa — P, for eacha € Ly, whereP, is a regular ex-
pression ovel, — {r}, R assigns to each € L a finite
subset ofA (possibly empty;R(a) is the set of attributes
of a), andr € Ly (the root).

Example 5: The DTD below is a part of DBLP [9] that
stores conference data.

<!ELEMENT db (confx*)>
<!ELEMENT conf (issue+)>
<IATTLIST conf
title CDATA #REQUIRED>
<!ELEMENT issue (inproceedings+)>
<!ELEMENT inproceedings EMPTY>
<!ATTLIST inproceedings
author CDATA #REQUIRED
title CDATA #REQUIRED
pages CDATA #REQUIRED
year CDATA #REQUIRED>

This DTD is represented a$L,, P, R, r), where
r = db, Lo = {db, conf, issue, inproceedings},
P = {db — conf*, conf — issuet, issue —
inproceedings™t, inproceedings — €}, R(conf) =
{Qtitle}, R(inproceedings) {Qauthor, Qtitle,
Q@pages, Qyear} andR(db) = R(issue) = (). O

An XML tree is a finite rooted directed tré€ = (N, E)
where N is the set of nodes an# is the set of edges,
together with the labeling function: N — L and partial
attribute value functiongg; : N — V for each@l € A.
We furthermore assume that for every nadén N, its
childrenz, ..., x, are ordered angda; () is defined for
a finite set of attribute$/. We say thafl’ conforms to
DTD D, written asT' = D, if the root of T' is labeledr,
foreveryz € N with A(z) = a, the wordA(z1) - - - A(xy,)

relational representation of XML trees from [3]. Given
T = D, atree tuple in D is a mapping : paths(D) —

N UV U{L} suchthatifg is an element path whose last
letter isa andt(q) # L, then

e t(q) € N and its label\(t(q)), is a;

e if ¢’ is a prefix ofq, thent(¢’) # L and the node
t(¢') lies on the path from the root tdq) in T';

e if @[is defined fort(¢) and its value is) € V, then
t(q.Ql) = v.

Intuitively, a tree tuple assigns nodes or attribute values
or nulls (L) to paths in a consistent manner. A tree tuple
is maximal if it cannot be extended to another one by
changing some nulls to values froM U V. The set of
maximal tree tuples is denoted byples , (7).

Now we say that FQ(qz, - .., qn} — q is true inT'if for
anyty,to € tuplesp(T), whenevett;(g;) = ta(q;) # L
forall i < n, thent;(q) = t2(¢) holds.

Example 6: Let D be the DTD from Example 5. Among
the set of FDs over this DTD are:

db.conf .Qtitle — db.conf,
db.conf .issue — db.conf .issue.inproceedings.Qyear.

The first FD specifies that two distinct conferences must
have distinct titles. The second one specifies that any two
inproceedings children of the saméssue must have the
same value of@year. a

XML normal form. Suppose we are given a DTD
and a set of FDs overD. The set of all FDs implied by
(D,Y) is denoted by D, X)), and an FD is calledrivial

if it belongsto(D, ()™, that s, implied by the DTD alone.
For exampleg — r, wherer is the root, oy — ¢.QI, are
trivial FDs.

We say that D, X2) is in thenormal form XNF [3]if for BE(T, p) given A(T, p):
any nontrivial FDX — ¢.@Ql in (D,X)", whereX is a e
set of paths, the FIX — ¢isin (D,%)* as well. INFR(p | B) = H(BE(T,p) | A(T,p)) .

Intuitively, a violation of XNF means that there is some As in the relational how that the limit
redundancy in the document: we may have many nodes”S ' the refational case, we can show that the imi
reachable by patly but all of them will have the same INF]%(p)

value of attribute@/ (provided they agree oX). klggo log

Example 7: The DBLP example 5 seen earlier may €Xists, and we denote it biwry(p | X). Following the
contain redundant information: year is stored multiple rélational case, we introduce

times for a conference. Itisot in XNF since Definition 3. An XML specification (D,) is well
db.conf .issue — db.conf .issue.inproceedings %E;S;%;“gfilgFfTogpefggy:Tl.e inst(D,X) and every p €

isnotin(D, ¥)T. Thissuggests makin@yearan attribute

of issue, and indeed, such a revised specification can easily

be shown to be in XNE. Note that the information-theoretic definition of well-

designed schema presented in Section 4 for relational data
proved to be extremely robust, as it extended straight-
5.2 Well-designed XML data forwardly to a different data model: we only needed a
new definition of Pos(T) to use in place ofos(I), and
Pos(T') is simply an enumeration of all the places in a

We do not need to introduce a new notion of being well- documentwhere attribute values occur.
designed specifically for XML: the definition that we for- . .
mulated in Section 4 for relational data will apply. We Now we show the connection between well-designed

only have to define the notion of positions in a tree, and XML and XNF:

then reuse the relational definition. Theorem 4 An XML specification (D,S), where ¥

. .) FDs, i -desi ff it is in XNF.
For relational databases, positions correspond to the”® ¢ set of FDs, is well-designed i it is in

“shape” of relations, and each position contains a value.

Likewise, for XML, positions will correspond to the shape The theory of XML constraints and normal forms is not
(that is more complex, since documents are modeled asnearly as advanced as its relational counterparts, but we
trees), and they must have values associated with them.demonstrated here that the definition of well-designed
Consequently, we formally define the set of positions schemas works well for the existing normal form based
Pos(T) inatreel = (N, E) as on FDs; thus, it can be used to test other design criteria for

XML when they are proposed.
{(z,@l) |z € N, @l € R(\(x))}. y are prop

As before, we assume that there is an enumeration of posi- . .
tions (a bijection betweeRos(T) and{1,...,n} where ~ 6. Normalization algorithms
n = |Pos(T)|) and we shall associate positions with their

numbers in the enumeration. We defindom (T') as the)))
set of all values of attributes if. We now show how the information-theoretic measure of

Section 4 can be used for reasoning about normalization
As in the relational case, we take the domain of values algorithms at the instance level. For this section, we as-
V to beNT. LetY be a set of FDs over a DTID and sume that is a set of FDs, both for the relational and
k > 0. Defineinst(D,Y) as the set of all XML trees the XML cases. The results shown here state that after
that conform toD and satisfy> andinst,(D,Y) as its each step of a decomposition algorithm, the amount of
restriction to tree§” with adom(T") C [1, k]. information in each position does not decrease.

Now fix T' € insty(D,X) andp € Pos(T). With the
above definitions, we define the probability spadés’, p)
andB& (T, p) exactly as we defined (1, p) andB&(1, p)
for a relational instancé. That is, (7, p) is the set of

6.1 Relational Databases

~ Let I’ be the result of applying one step of a normalization
all t;]thlr?sta of the form.t(ﬁl’ e “.P—bll’ %Ht’h. o ?eri% algorithm toZ; we need to show how to associate positions
suc _ at everyy; is e|. er a y_ana ek, or the vai in I and!’. SinceX contains FDs, we deal with BCNF, and
has in the corresponding positioHAT's;(T(4,a)) s the standard BCNF decomposition algorithms use the steps
set of all possible ways to assign values fromk]| to of the following kind: pick a relation? with the set of
variables inz that result in a tree satisfying, and the rest attributesi?’, and letiV be the disjoint union ofX, Y, Z,
of the definition repeats the relational case one verbatim, such thatX — Y € X*. Then an instancé = I(R)
substitutingT for 1. of R gets decomposed intbyy = 7xy (I) andIxy =

mx z(I), with the sets of FDX xy andX x z, whereX;
We use these to definerl.(p |) as the entropy of standsfo{fC — D e X+ |CD CU C W}.

This decomposition gives rise to two partial mapsy :
Pos(I) — Pos(Ixy)andrxy : Pos(I) — Pos(Ixz).
If pisthe position of[A] forsomeA € XY, thenrxy (p)
is defined, and equals the positionofy (t)[A] in Ixy;
the mappingry ~ is defined analogously. Note thaty
and rx» can map different positions i to the same
position of [xy or Ix z.

We now show that the amount of information in each
position does not decrease in the normalization process.

Theorem 5 Let (X,Y,Z) partition the attributes of
R, and let X — Y € T, Let I € inst(R,X) and
p € Pos(I). If U is either XY or XZ and 7y is
defined on p, then INFr(p |) < INFp, (7 (p) | Zv)-

A decomposition algorithm igffective in I if for one of

its basic steps, and for sormpethe inequality in Theorem

5 is strict: that is, the amount of information increases.
This notion leads to another characterization of BCNF.

Proposition 7. (R,X) is in BCNF if and only if no
decomposition algorithm is effective in (R,X).

6.2 XML data

We now treat the XML case. We shall prove a result
similar to Theorem 5. However, to state the result, we
first need to review the normalization algorithm for XML
data, and explain how each step of the algorithm induces
a mapping between positions in two XML trees.

Throughoutthe section, we assume thatthe DTDs are non-
recursive and that all FDs contain at most one element path
on the left-hand side.

We start with an XNF normalization algorithm proposedin
[3]. To present this algorithm we need to introduce some
terminology. Given a DTOD and a set of FD&, a non-
trivial FD X — ¢.Ql is calledanomalous, over (D,),

if it violates XNF; that is,X — ¢.@Ql € (D,%)" but

X — ¢ ¢ (D,%)*. The algorithm eliminates anomalous
functional dependencies by using two basic steps: moving
an attribute, and creating a new element type.

Moving attributes. Let D = (Lo, P, R, r) be a
DTD, ¢.@l an attribute path iD, ¢’ an element path in
D and@m an attribute not used i. Assume that, o’
are the last elements gfand¢’, respectively. The DTD
Dlq.@l := ¢'.@m] is constructed by moving the attribute
@[from the set of attributes af to the set of attributes
of @/, and changing its name t@m, as shown in the
following figure.

Formally, D[p.@Ql := ¢q.@Qm)] is (Lo, P, R', r), where
R'(a ’) R(a) U {@m} R'(a) = R(a) — {Ql} and
R'(b) = R(b) foreachb € Ly — {a,a’}.

Given a set of FDS over D, a set of FDsX[¢q.Q] :=
q'.@Qm] over D[q.Ql := ¢'.@m] consists of all FDsY —

Y € (D,)" with X UY C paths(D[q.Ql := ¢’.@Qm]).
Creating new element types. LetD = (Lo, P, R,
r) be a DTD,q.Ql € paths(D), S = {¢, 1.Qly, ...,

Gn-Ql,} C paths(D) such that > 1 andq’ is an element
pathinD. Assume that, a’ are the last elements gfand
q', respectively. We construct a new DT by creating
anew element type” as a child ofz’, makingay, . .., a,
its children,@] its attribute, andQi, ..., @[, attributes
of ai, ..., a,, respectively. Furthermore, we removgé
from the set of attributes af, as shown in the following
figure.

Formally, if {a", a1, ..., a,} are element types which
are not in Ly, the new DTD denoted by[q.Ql :

q.a"a1.Qly, ..., a,.Ql,,Ql),is (L, P', R, 1), Where
LO =LoU{d’, a1, ..., a,} andP’, R are defined as
follows.

1. Assume that’ — P, € P. Then,P' = (P —
{a" — Py}) U{d = (a")*Pu, d" — af--aj,
a) — €, ...,Qy — €f.

2. R'(a") = {Ql}, R'(a;) = {Ql;}, for eachi €
[1,n], R'(a) = R(a) — {@I} andR’(b) = R(b) for
eachb € Ly — {a}.

Given D' = DJq.Ql := ¢'.d"[a1.Ql4,...,a,.Ql,, Q[]]

and a se® of FDs overD, we define a seE[q.Ql :=
q.d"[a1.Qly, ..., a,.Ql,, @l]] of FDs overD’ as the set
that contains the following:

1. X - Y e (D,)" with X UY C paths(D’);

2. ForeachFDX — Y € (D,X)* with X UY C {¢,
1y -5 Gn, (1-Qly, ..., q,.Ql,, ¢.Ql}, we include
an FD obtained from it by changing to ¢’.a”.a;,
¢;.Ql; 10 g.a”.a;.Ql;, andq.@[to ¢q.a”.Ql;

3. {ql7 q'.a”.al.@ll, ey ql,a”.an.@ln} — q'.a”,
and{q".a”, ¢'.a".a;.Ql;} — ¢".a".a; fori € [1,n].

The algorithm does not apply this transformation to an
arbitrary FD, but rather to aninimal one. In the re-
lational context, a minimal FD isX — A such that
X" /4 Aforany X’ & X. Inthe XML context the
definition is a bit more complex to account for paths used
in FDs. We say thafq, ¢1.Ql4, ..., ¢,.Ql,} — go.Qly

is (D, X)-minimal if there is no anomalous FIX —
¢;-Ql; € (D,%)* such thati € [0,n] and X is a subset
of {qv qis---,0n, q0~@l(); cee Qn@ln} such thaﬂ X |§ n
and X contains at most one element path.

Given an XML specification D, ¥), the normalization

algorithm applies the two transformations until the schema
is in XNF. The algorithm always terminates and produces

atree in XNF [3].

Let (D, X) be an XML specification an@ € inst(D, X).
Assume that(D, X)) is not in XNF. Let(D’,¥’) be an
XML specification obtained by executing one step of the
normalization algorithm. Every step of this algorithm
induces a natural transformation on XML documents.
One of the properties of the algorithm is that for each
normalization step that transfornis € inst(D, X)) into

T’ € inst(D’,¥), one canfindamapy 1 : Pos(T") —
2Pos(T) that associates each position in the new ffée
with one or more positions in the old trée, as shown
below.

1. Assume thaD’ = DJ[q.Ql := ¢’.@m] and, there-
fore, ¢’ — ¢.@[is an anomalous FD ifiD, X). In
this case, an XML tre@” is constructed fromT" as
follows. For everyt € tuplesp(T'), define a tree
tuple ¢’ by using the following rule:t’(¢’.@m) =
t(¢.@l) and for everyq” € paths(D) — {q.Ql},
t'(¢") =t(¢"). ThenI"is an XML tree whose tree
tuples are{t’ | t € tuples,(T')}. Furthermore, po-
sitions int’ are associated to positionstias follows:
it p' = ('(¢'), @m), thenmr r(p') = {(t(g), QL)};
otherwisesr v (p') = {p'}.

2. Assume tha{D’,%’) was generated by consider-
ing a (D, X)-minimal anomalous FO ¢, ¢;.Ql4,
.oy qn.Ql,} — ¢.Ql. Thus, D’ = DI[g.Ql :=
¢ .alar.Qly, ..., a,.Ql,, @]]. Inthis case, an XML
tree T’ is constructed froni" as follows. For ev-
ery t € tuplesp(T), define a tree tupl¢’ by us-
ing the following rule: ¢'(¢'.a) is a fresh node
identifier, t'(¢'.a.Ql) = t(q.Ql), t'(¢ .a.a;) is a
fresh node identifieri(e [1,n)), t'(g.a.¢;.Ql;) =
t(¢;.Ql;) and for everyq” € paths(D) — {q.Ql},
t'(¢") = t(¢"). Then, T’ is an XML tree whose
tree tuples are{t’ | t € tuplesp(T)}. Fur-
thermore, positions in’ are associated to posi-
tions int as follows. Ifp’ = (¢'(¢'.a),Ql), then
mr r(p') = {(t(g),Q)}. If p’ = (¥ (¢ .a.a;), Ql;),

then(t(¢;), @Ql;) € mp 7(p") (note that in this case
w1 r(p) may contain more than one position). For
any other position’ in ¢/, 7/ 7(p') = {p'}.

Similarly to the relational case, we can now show the
following.

Theorem 6. Let T be a tree that conforms to a DTD
D and satisfies a set of FDs X, and let T' €
inst(D',X) result from T by applying one step of the
normalization algorithm. Let p’ € Pos(T"). Then

INFp (p' | X)) > max INFr(p | X).
pETs (p')

Just like in the relational case, one can define effective
steps of the algorithm as those in which the above inequal-
ity is strict for at least one position, and show tiiax, X2)

is in XNF iff no decomposition algorithm is effective in
(D,Y).

7. Conclusion

Our goal was to find criteria for good data design, based
on the intrinsic properties of a data model rather than tools
built on top of it, such as query and update languages.
We were motivated by the justification of normal forms
for XML, where usual criteria based on update anomalies
or existence of lossless decompositions are not applicable
until we have standard and universally acceptable query
and update languages.

We proposed to use techniques from information theory,
and measure the information content of elements in a
database with respect to a set of constraints. We tested
this approach in the relational case and showed that it
works: that is, it characterizes the familiar normal forms
such as BCNF and 4NF as precisely those corresponding
to good designs, and justifies others, more complicated
ones, involving join dependencies. We then showed that
the approach straightforwardly extends to the XML set-
ting, and for the case of constraints given by functional
dependencies, equates the normal form XNF of [3] with
good designs. In general, the approach is very robust: al-
though we do not show it here due to space limitations, it
can be easily adapted to the nested relational model, where
it justifies a normal form NNF [20, 21].

Future work. It would be interesting to characterize
3NF by using the measure developed in this paper. So far,
a little bit is known about 3NF. For example, as in the case
of BCNF, itis possible to prove that the synthesis approach
forgenerating 3NF databases does not decrease the amount
of information in each position. Furthermore, given that
3NF does not necessarily eliminate all redundancies, one
can find 3NF databases where the amount of information
in some positions is not maximal.

We would like to consider more complex XML constraints
and characterize good designs they give rise to. We also
would like to connect this approach with that of [14],

where information capacities of two schemas can be com- [19] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing
pared based on the existence of queries in some standard
language that translate between them. For two classes of
well-designed schemas (those with no constraints, and[20]

with keys only), being information-capacity equivalent
means being isomorphic [2, 14], and we would like to see

if this connection extends beyond the classes of schemag2i]
studied in [2, 14].

Acknowledgment We thank Pablo Barcel and

Michael Benedikt for helpful comments.

8.

(1]
2]

3]

[4]

[5

[6

7]

B

[9

[10]

[11]

[15]

[16]

[17]

18]

References

S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

J. Albert, Y. Ioannidis, and R. Ramakrishnan.
Equivalence of keyed relational schemas by conjunctive
queries. JCSS, 58(3):512-534, 1999.

M. Arenas and L. Libkin. A normal form for XML
documents. In PODS’02, pages 85-96.

C. Beeri, P. Bernstein, and N. Goodman. A
sophisticate’s introduction to database normalization
theory. In VLDB’78, pages 113-124.

J. Biskup. Achievements of relational database schema
design theory revisited. In Semantics in Databases,
LNCS 1358, pages 29-54. Springer-Verlag, 1995.

R. Cavallo and M. Pittarelli. The theory of probabilistic
databases. In VLDB’87, pages 71-81.

T. Cover and J. Thomas. Elements of Information
Theory. Wiley-Interscience, 1991.

M. Dalkilic and E. Robertson. Information dependencies.
In PODS’00, pages 245-253.

DBLP. http://wuw.informatik.uni-trier.de/
“ley/db/.

D. W. Embley and W. Y. Mok. Developing XML
documents with guaranteed “good” properties. In
ER’01, pages 426—441.

R. Fagin. Multivalued dependencies and a new normal
form for relational databases. ACM TODS,
2(3):262-278, 1977.

R. Fagin. Normal forms and relational database
operators. In SIGMOD’79, pages 153-160.

R. Fagin. A normal form for relational databases that is
based on domains and keys. ACM TODS, 6(3):387-415,
1981.

R. Hull. Relative information capacity of simple
relational database schemata. SIAM J. Comput.,
15(3):856-886, 1986.

P. Kanellakis. Elements of Relational Database Theory,
In Handbook of TCS, vol. B, pages 1075-1144. 1990.

T. T. Lee. An information-theoretic analysis of relational
databases - Part I: Data dependencies and information
metric. IEEE Trans. on Software Engineering,
13(10):1049-1061, 1987.

M. Levene and G. Loizou. Why is the snowflake schema
a good data warehouse design? Information Systems, to
appear.

M. Levene and M. W. Vincent. Justification for inclusion
dependency normal form. IEEE TKDE, 12(2):281-291,
2000.

22]

23]

implications of data dependencies. ACM TODS,
4(4):455-469, 1979.
W.Y. Mok, Y. K. Ng, D. Embley. A normal form for

precisely characterizing redundancy in nested relations.
ACM TODS 21 (1996), 77-106.

Z. M. Ozsoyoglu, L.-Y. Yuan. A new normal form for
nested relations. ACM TODS 12(1): 111-136, 1987.

C. H. Papadimitriou. Computational Complexity
Addison-Wesley, 1994.

C.E. Shannon. A mathematical theory of
communication. Bell System Technical Journal,
27:379-423 (Part 1), 623-656 (Part IT), 1948.

D. Suciu. On database theory and XML. SIGMOD
Record, 30(3):39-45, 2001.

I. Tatarinov, Z. Ives, A. Halevy, and D. Weld. Updating
XML. In SIGMOD’01, pages 413—-424.

V. Vianu. A Web Odyssey: from Codd to XML. In
PODS’01, pages 1-15.

M. W. Vincent. A corrected 5NF definition for relational
database design. T'C'S, 185(2):379-391, 1997.

M. W. Vincent. Semantic foundations of 4NF in
relational database design. Acta Informatica,
36(3):173-213, 1999.

