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ABSTRACT

Normalization as a way of producing good database de-
signs is a well-understood topic. However, the same prob-
lem of distinguishing well-designed databases from poorly
designed ones arises in other data models, in particular,
XML. While in the relational world the criteria for be-
ing well-designed are usually very intuitive and clear to
state, they become more obscure when one moves to more
complex data models.

Our goal is to provide a set of tools for testing when a
condition on a database design, specified by anormal
form, corresponds to a good design. We use techniques
of information theory, and define a measure of informa-
tion content of elements in a database with respect to a set
of constraints. We first test this measure in the relational
context, providing information-theoretic justification for
familiar normal forms such as BCNF, 4NF, PJ/NF, 5NFR,
DK/NF. We then show that the same measure applies in the
XML context, which gives us a characterization of a re-
cently introduced XML normal form called XNF. Finally,
we look at information-theoreticcriteria for justifying nor-
malization algorithms.

1. Introduction

What constitutes a good database design? This question
has been studied extensively, with well-known solutions
presented in practically all database texts. But what is
it that makes a database design good? This question is
usually addressed at a much less formal level. For instance,
we know that BCNF is an example of a good design, and
we usually say that this is because BCNF eliminates update
anomalies. Most of the time this is sufficient, given the
simplicity of the relational model and our good intuition
about it.
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Several papers [13, 28, 18] attempted a more formal eval-
uation of normal forms, by relating it to the elimination
of update anomalies. Another criterion is the existence
of algorithms that produce good designs: for example, we
know that every database scheme can be losslessly decom-
posed into one in BCNF, but some constraints may be lost
along the way.

The previous work was specific for the relational model.
As new data formats such as XML are becoming critically
important, classical database theory problems have to be
revisited in the new context [26, 24]. However, there is
as yet no consensus on how to address the problem of
well-designed data in the XML setting [10, 3].

It is problematic to evaluate XML normal forms based
on update anomalies; while some proposals for update
languages exist [25], no XML update language has been
standardized. Likewise, using the existence of good de-
composition algorithms as a criterion is problematic: for
example, to formulate losslessness, one needs to fix a
small set of operations in some language, that would play
the same role for XML as relational algebra for relations.
Stating dependency preservation and testing normal forms
is even more problematic: while in the relational world,
we have well-understood procedures for doing this, for
XML we do not even know if implication of functional
dependencies is decidable.

This suggests that one needs a different approach to the
justification of normal forms and good designs. Such an
approach must be applicable to new data modelsbefore the
issues of query/update/constraint languages for them are
completely understood and resolved. Therefore, such an
approach must be based on some intrinsic characteristics
of the data, as opposed to query/update languages for a
particular data model.

In this paper we suggest such an approach based on
information-theoreticconcepts, more specifically, on mea-
suring the information content of the data. Our goal here is
twofold. First, we present information-theoretic measures
of “goodness” of a design, and test them in the relational
world. To be applicable in other contexts, we expect these
measures to characterize familiar normal forms. Second,
we apply them in the XML context, and show that they
justify a normal form XNF proposed in [3]. We also use
our measures to reason about normalization algorithms,
by showing that standard decomposition algorithms never



decrease the information content of any piece of data in a
database/document.

The rest of the paper is organized as follows. In Section 2
we give the notations, and review the basics of information
theory (entropy and conditional entropy).

Section 3 is an “appetizer” for the main part of the paper:
we present a particularly simple information-theoretic way
of measuring the information content of a database, and
show how it characterizes BCNF and 4NF. The measure,
however, is too coarse, and, furthermore, cannot be used
to reason about normalization algorithms.

In Section 4 we present our main information-theoretic
measure of the information content of a database. Un-
like the measure studied before [16, 6, 8, 17], our mea-
sure takes into account both database instance and schema
constraints, and defines the content with respect to a set
of constraints. A well-designed database is one in which
the content of each datum is the maximum possible. We
use this measure to characterize BCNF and 4NF as the
best way to design schemas under FDs and MVDs, and
to justify normal forms involving JDs (PJ/NF, 5NFR) and
other types of integrity constraints (DK/NF).

In Section 5, we show that the main measure of Section
4 straightforwardly extends to the XML setting, giving
us a definition of well-designed XML specifications. We
prove that for constraints given by FDs, well-designed
XML specifications are precisely those in XNF.

In Section 6, we use the measures of Sections 4 and 5 to
reason about normalization algorithms, by showing that
good normalization algorithms do not decrease the infor-
mation content of each datum at every step.

Finally, Section 7 presents the conclusions. All proofs can
be found in the full version of this paper.

2. Notations

Schemas and instances. A database schemaS is a
finite set of relation names, with a set of attributes, denoted
bysort(R), associated with eachR ∈ S. We shall identify
sort(R) of cardinalitym with {1, . . . ,m}. Throughout
the paper, we assume that the domain of each attribute is
N+, the set of positive integers. An instanceI of schema
S assigns to each symbolR ∈ S with m = |sort(R)| a
relationI(R) which is a finite set ofm-tuples overN+.
By adom(I) we mean the active domain ofI, that is, the
set of all elements ofN+ that occur inI. The size ofI(R)
is defined as‖I(R)‖ = |sort(R)| · |I(R)|, and the size of
I is ‖I‖ =

∑

R∈S ‖I(R)‖.

If I is an instance ofS, the set ofpositions in I, denoted
by Pos(I), is the set{(R, t, A) | R ∈ S, t ∈ I(R) and
A ∈ sort(R)}. Note that|Pos(I)| = ‖I‖.

We shall deal with integrity constraints which are
first-order sentences overS. Given a setΣ of integrity

constraints,Σ+ denotes the set of all constraints implied
by it, that is, constraintsϕ such that for every instance
I, I |= Σ implies I |= ϕ. We defineinst(S,Σ) as
the set of all database instances ofS satisfyingΣ and
instk(S,Σ) as {I ∈ inst(S,Σ) | adom(I) ⊆ [1, k]},
where[1, k] = {1, . . . , k}.

Constraints and normal forms. Here we
briefly review the most common normal forms BCNF,
4NF, PJ/NF, 5NFR, and DK/NF. For more information,
the reader is referred to [4, 15, 1, 5].

The most widely used among those are BCNF and 4NF,
defined in terms of functional dependencies (FD) and mul-
tivalued dependencies (MVD), respectively. We shall use
the standard notationsX → Y andX →→ Y for FDs
and MVDs. Given a setΣ of FDs overS, (S,Σ) is
in BCNF if for every nontrivial FDX → Y ∈ Σ+,
X is a key (that is, ifX → Y is defined overR, then
X → sort(R) ∈ Σ+). If Σ is a set of FDs and MVDs
overS, then 4NF is defined analogously [11]: for every
nontrivial MVD X →→ Y ∈ Σ+, X must be a key. Re-
call that in the case of FDs nontrivial meansY 6⊆ X ,
and in the case of MVDs nontrivial meansY 6⊆ X and
X ∪ Y $ sort(R).

The normal forms PJ/NF (projection-join normal form)
[12] and 5NFR [27] deal with FDs and join dependencies
(JDs). Recall that a JD overR ∈ S is an expression of the
form ⊲⊳[X1, . . . , Xn], whereX1 ∪ · · · ∪Xn = sort(R).
A database instanceI of S satisfies⊲⊳[X1, . . . , Xn], if
I(R) = πX1

(I(R)) ⊲⊳ · · · ⊲⊳ πXn
(I(R)). Given a set

Σ of FDs and JDs overS, (S,Σ) is in PJ/NF if ∆ |=
Σ, where∆ is the set of key dependencies inΣ+ (that
is, dependencies of the formX → sort(R) for X ⊆
sort(R)). In other words, every instance ofS that satisfies
all the keys inΣ+ must satisfyΣ as well.

PJ/NF is an extension of both 4NF and BCNF. Since an
MVD X →→ Y overR is a JD⊲⊳[XY,X(sort(R)−Y )],
when only FDs and MVDs are present inΣ, the definition
of PJ/NF coincides with 4NF. If no JDs are present at all,
it reduces to the definition of BCNF [12].

An alternative normal form for FDs and JDs was intro-
duced in [27]. Given a set of FDs and JDsΣ overS, a JD
ϕ = ⊲⊳[X1, . . . , Xn] in Σ is strong-reduced if for every
i ∈ [1, n], ⊲⊳[X1, . . . , Xi−1, Xi+1, . . . , Xn] is not inΣ+

orX1∪· · ·∪Xi−1∪Xi+1∪· · ·∪Xn $ sort(R). (S,Σ) is
in 5NFR (reduced 5th normal form) if for every nontrivial,
strong-reduced join dependency⊲⊳[X1, . . . , Xn] ∈ Σ+

and everyi ∈ [1, n],Xi is a key. PJ/NF is strictly stronger
than 5NFR.

The “ultimate” normal form for relational databases was
introduced in [13]. In our setting1, it says the following.
Givenany set of integrity constraintsΣ overS, (S,Σ) is
in DK/NF (domain-key normal form) ifΣ is implied by
the set of key dependencies inΣ+.

1When domain dependencies [13] are not considered.



2.1 Basics of Information Theory

The main concept of information theory is that of entropy,
which measures the amount of information provided by a
certain event. Assume that an event can haven different
outcomess1, . . ., sn, each with probabilitypi, i ≤ n. How
much information is gained by knowing thatsi occurred?
This is clearly a function ofpi. Supposeg measures this
information; then it must be continuous and decreasing
function with domain(0, 1] (the higher the probability, the
less information gained) andg(1) = 0 (no information is
gained if the outcome is known in advance). Furthermore,
g is additive: if outcomes are independent, the amount of
information gained by knowing two successive outcomes
must be the sum of the two individuals amounts, that is,
g(pi · pj) = g(pi) + g(pj). The only function satisfying
these conditions isg(x) = −c lnx, wherec is an arbi-
trary positive constant [23]. It is customary to use base 2
logarithms:g(x) = − log x.

The entropy of a probability distribution represents the
average amount of information gained by knowing that a
particular event occurred. LetA = ({s1, . . . , sn}, PA) be
a probability space. Ifpi = PA(si), then the entropy of
A, denoted byH(A), is defined to be

H(A) =

n
∑

i=1

pi log
1

pi

= −
n

∑

i=1

pi log pi.

Observe that some of the probabilities in the spaceA
can be zero. For that case, we adopt the convention that
0 log 1

0 = 0, sincelimx→0 x log 1
x

= 0. It is known that
0 ≤ H(A) ≤ logn, with H(A) = logn only for the
uniform distributionPA(si) = 1/n [7].

We shall also useconditional entropy. Assume that we
are given two probability spacesA = ({s1, . . . , sn}, PA),
B = ({s′1, . . . , s

′
m}, PB) and, furthermore, we know prob-

abilitiesP (s′j , si) of all the events(s′j , si) (that is,PA and
PB need not be independent). Then the conditional en-
tropy of B given A, denoted byH(B | A), gives the
average amount of information provided byB if A is
known [7]. It is defined using conditional probabilities
P (s′j | si) = P (s′j , si)/PA(si):

H(B | A) =

n
∑

i=1

(

PA(si)

m
∑

j=1

P (s′j | si) log
1

P (s′j | si)

)

.

3. Information theory and normal forms:
an appetizer

We will now see a particularly simple way to provide
information-theoretic characterization of normal forms.
Although it is very easy to present, it has a number of
shortcomings, and a more elaborate measure will be pre-
sented in the next section.

Violating a normal form, e.g., BCNF, implies having re-
dundancies. For example, ifS = {R(A,B,C)} and

Σ = {A → B}, then(S,Σ) is not in BCNF (A is not
a key) and some instances can contain redundant informa-
tion: in Figure 1 (a), the value of the gray cell must be
equal to the value below it. We do not need to store this
value as it can be inferred from the remaining values and
the constraints.

We now use the concept of entropy to measure the infor-
mation content of every position in an instance ofS. The
basic idea is as follows: we measure how much informa-
tion we gain if we lose the value in a given position, and
then someone restores it (either to the original, or to some
other value, not necessarily from the active domain). For
instance, if we lose the value in the gray cell in figure 1
(a), we gain zero information if it gets restored, since we
know from the rest of the instance and the constraints that
it equals2.

Formally, letI ∈ instk(S,Σ) (that is,adom(I) ⊆ [1, k])
and letp ∈ Pos(I) be a position inI. For any value
a, let Ip←a be a database instance constructed fromI
by replacing the value in positionp by a. We define a
probability spaceEk

Σ(I, p) = ([1, k + 1], P ) and use its
entropy as the measure of information inp (we define it
on [1, k + 1] to guarantee that there is at least one value
outside of the active domain). The functionP is:

P (a) =

{

0 Ip←a 6|= Σ,

1/|{b | Ip←b |= Σ}| otherwise.

In other words, letm be the number ofb ∈ [1, k+ 1] such
thatIp←b |= Σ (note thatm > 0 sinceI |= Σ). For each
suchb, P (b) = 1/m, and elsewhereP = 0.

For the instance in figure 1, (a) ifp is the position of the
gray cell, then the probability distribution is as follows:
P (2) = 1 andP (a) = 0, for all othera ∈ [1, k + 1].
Thus, the entropy ofEk

Σ(I, p) for positionp is zero, as we
expect. More generally, we can show the following.

Theorem 1. Let Σ be a set of FDs (or FDs and
MVDs) over a schema S. Then (S,Σ) is in BCNF
(or 4NF, resp.) if and only if for every k > 1,
I ∈ instk(S,Σ) and p ∈ Pos(I),

H(Ek
Σ(I, p)) > 0.

Proof: We give the proof for the case of FDs; for FDs
and MVDs the proof is almost identical.

(⇒) Assume that(S,Σ) is in BCNF. Fix k > 0, I ∈
instk(S,Σ) andp ∈ Pos(I). Assume thata is thepth
element inI. We show thatIp←k+1 |= Σ, from which
we conclude thatH(Ek

Σ(I, p)) > 0, sinceEk
Σ(I, p) is uni-

formly distributed, andP (a), P (k + 1) 6= 0.

Towards a contradiction, assume thatIp←k+1 6|= Σ. Then,
there existR ∈ S, t′1, t

′
2 ∈ Ip←k+1(R) andX → A ∈ Σ+

such thatt′1[X ] = t′2[X ] and t′1[A] 6= t′2[A]. Assume
that t′1, t

′
2 were generated from tuplest1, t2 ∈ I(R), re-

spectively. Note thatt′1[X ] = t1[X ] (if t1[X ] 6= t′1[X ],
then t′1[B] = k + 1 for someB ∈ X ; given that
k + 1 6∈ adom(I), only one position inIp←k+1 mentions



A B C
1 2 3
1 2 4

A B C
1 1 2
2 3 4

A B C
1 2 3
1 2 4
1 2 5

(a) (b) (c)

Figure 1: Database instances.

this value and, therefore,t′1[X ] 6= t′2[X ], a contradiction).
Similarly, t′2[X ] = t2[X ] and, therefore,t1[X ] = t2[X ].
Given that(S,Σ) is in BCNF,X must be a key inR.
Hence,t1 = t2, sinceI |= Σ. We conclude thatt′1 = t′2
and, thus,t′1[A] = t′2[A], a contradiction.

(⇐) Assume that(S,Σ) is not in BCNF. We show that
there existsk > 0, I ∈ instk(S,Σ) andp ∈ Pos(I) such
thatH(Ek

Σ(I, p)) = 0.

Since (S,Σ) is not in BCNF, there existR ∈ S and
X → A ∈ Σ+ such thatA 6∈ X ,X ∪{A} $ sort(R) and
X is not a key inR. Thus, there exists a database instance
I of S such thatI |= Σ andI 6|= X → sort(R). We can
assume thatI(R) contains only two tuples, sayt1, t2. Let
k be the greatest value inI, i = t1[A] andp be the position
of t1[A] in I. It is easy to see thatI ∈ instk(S,Σ) and
P (j) = 0, for everyj 6= i in [1, k + 1], sincet1[A] must
be equal tot2[A] = i. Therefore,H(Ek

Σ(I, p)) = 0. 2

That is, a schema is in BCNF or 4NF iff for every instance,
each position carries non-zero amount of information.

This is a clean characterization of BCNF and 4NF, but the
measureH(Ek

Σ(I, p)) is not accurate enough for a number
of reasons.

For example, letΣ1 = {A → B} and Σ2 = {A →→
B}. The instanceI in figure 1 (a) satisfiesΣ1 and
Σ2. Let p be the position of the gray cell inI. Then
H(Ek

Σ1
(I, p)) = H(Ek

Σ2
(I, p)) = 0. But intuitively, the

information content ofpmust be higher underΣ2 thanΣ1,
sinceΣ1 says that the value inpmust be equal to the value
below it, andΣ2 says that this should only happen if the
values of theC-attribute are distinct.

Next, considerI1 andI2 shown in figures 1 (a) and (c),
respectively. LetΣ = {A → B}, and letp1 andp2 de-
note the positions of the gray cells inI1 andI2. Then,
H(Ek

Σ(I1, p1)) = H(Ek
Σ(I2, p2)) = 0. But again we

would like them to have different values, as the amount of
redundancy is higher inI2 than inI1.

Finally, let S = R(A,B), Σ = {∅ →→ A}, and
I = {1, 2} × {1, 2} ∈ inst(S,Σ). For each position,
the entropy would be zero. However, consider both posi-
tions in attributeA corresponding to the value1. If they
both disappear, then we know that no matter how they
are restored, the values must be the same. The measure
presented in this section cannot possibly talk about inter-
dependencies of this kind.

In the next section we will present a measure that over-
comes these problems.

4. A general definition of well-designed data

Let S be a schema,Σ a set of constraints, and letI ∈
inst(S,Σ) be an instance with‖I‖ = n. Recall that
Pos(I) is the set of positions inI, that is,{(R, t, A) | R ∈
S, t ∈ I(R) andA ∈ sort(R)}. Our goal is to define a
functionInfI(p | Σ), the information content of a position
p ∈ Pos(I) with respect to the set of constraintsΣ. For
a general definition of well-designed data, we want to say
that this measure has the maximum possible value. This is
a bit problematic for the case of an infinite domain (N+),
since we only know what the maximum value of entropy
is for a discrete distribution overk elements:log k.

To overcome this, we define, for eachk > 0, a function
Inf

k
I (p | Σ) that would only apply to instances whose

active domain is contained in[1, k], and then consider the

ratio Inf
k
I (p|Σ)
log k

. This ratio tells us how close the given
positionp is to having the maximum possible information
content, for databases with active domain in[1, k]. As our
final measureInfI(p | Σ) we then take the limit of this
sequence ask goes to infinity.

Informally, Inf
k
I (p | Σ) is defined as follows. LetX ⊆

Pos(I)−{p}. Suppose the values in those positionsX are
lost, and then someone restores them from the set[1, k];
we measure how much information about the value inp
this gives us. This measure is defined as the entropy of
a suitably chosen distribution. ThenInf

k
I (p | Σ) is the

average such entropy over all setsX ⊆ Pos(I) − {p}.
Note that this is much more involved than the definition of
the previous section, as it takes into account all possible
interactions between different positions in an instance and
the constraints.

We now present this measure formally. Anenumeration
of I with ‖I‖ = n, n > 0, is a bijectionfI between
Pos(I) and [1, n]. From now on, we assume that every
instance has an associated enumeration2. We say that the
position of(R, t, A) ∈ Pos(I) isp in I if the enumeration
of I assignsp to (R, t, A), and if R is clear from the
context, we say that the position oft[A] is p. We normally
associate positions with their rank in the enumerationfI .

2The choice of a particular enumeration will not affect
the measures we define.



A B C
6 5 4
3 2 1

A B C
1 7 3
1 2 4

A B C
v6 7 3
1 2 v1

A B C
8 7 3
1 2 4

(a) An enumeration ofI (b) I(7,ā1) = σ1(I(7,ā1)) (c) I(7,ā2) (d) σ2(I(7,ā2))

Figure 2: Defining Inf
k
I (p | Σ).

Fix a positionp ∈ Pos(I). As the first step, we need
to describe all possible ways of removing values in a set
of positionsX , different from p. To do this, we shall
be placing variables from a set{vi | i ≥ 1} in positions
where values are to be removed. Furthermore, we assume
that each set of positions is equally likely to be removed.
To model this, letΩ(I, p) be the set of all2n−1 vectors
(a1, . . . , ap−1, ap+1, . . . , an) such that for everyi ∈
[1, n]−{p},ai is eithervi or the value in thei-th position of
I. A probability spaceA(I, p) = (Ω(I, p), P ) is defined
by takingP to be the uniform distribution.

Example 1: Let I be the database instance shown in
Figure 1 (a). An enumeration of the positions inI is
shown in Figure 2 (a). Assume thatp is the position of
the gray cell shown in Figure 1 (a), that is,p = 5. Then,
ā1 = (4, 2, 1, 3, 1) and ā2 = (v1, 2, 1, 3, v6) are among
the 32 vectors inΩ(I, p). For each of these vectors, we
defineP as 1

32 . 2

Our measureInf
k
I (p | Σ), for I ∈ instk(S,Σ), will be

defined as the conditional entropy of a distribution on
[1, k], given the above distribution onΩ(I, p). For that, we
define conditional probabilitiesP (a | ā) that characterize
how likely a is to occur in positionp, if some values are
removed fromI according to the tuplēa from Ω(I, p)3.
We need a couple of technical definitions first.

If ā = (ai)i6=p is a vector inΩ(I, p) and a > 0, then
I(a,ā) is a table obtained fromI by puttinga in positionp,
andai in positioni, i 6= p. If k > 0, then asubstitution
σ : ā→ [1, k] assigns a value from[1, k] to eachai which
is a variable, and leaves otherais intact. We can extendσ
to I(a,ā) and thus talk aboutσ(I(a,ā)).

Example 2: (example 1 continued) Let k = 8 and
σ1 be an arbitrary substitution from̄a1 to [1, 8]. Note
that σ1 is the identity substitution, sincēa1 contains no
variables. Figure 2 (b) showsI(7,ā1), which is equal to
σ1(I(7,ā1)).

Letσ2 be a substitution from̄a2 to [1, 8] defined as follows:
σ(v1) = 4 andσ(v6) = 8. Figure 2 (c) showsI(7,ā2) and
Figure 2 (d) shows the database instance generated by
applyingσ2 to I(7,ā2). 2

If Σ is a set of constraints overS, thenSATk
Σ(I(a,ā))

3We use the same letter P here, but this will never lead
to confusion. Furthermore, all probability distributions
depend on I , p, k and Σ, but we omit them as parameters
of P since they will always be clear from the context.

is defined as the set of all substitutionsσ : ā → [1, k]
such thatσ(I(a,ā)) |= Σ and‖σ(I(a,ā))‖ = ‖I‖ (the latter
ensures that no two tuples collapse as the result of applying
σ). With this, we defineP (a | ā) as:

P (a | ā) =
|SAT k

Σ(I(a,ā))|
∑

b∈[1,k]

|SATk
Σ(I(b,ā))|

.

We remark that this corresponds to conditional probabil-
ities with respect to a distributionP ′ on [1, k] × Ω(I, p)
defined byP ′(a, ā) = P (a | ā) · (1/2n−1), and thatP ′ is
indeed a probability distribution for everyI ∈ instk(S,Σ)
andp ∈ Pos(I).

Example 3: (example 2 continued) Assume that
Σ = {A → B}. Given that the only substitutionσ from
ā1 to [1, 8] is the identity, for everya ∈ [1, 8], a 6= 2,
σ(I(a,ā1)) 6|= Σ, and, therefore,SAT8

Σ(I(a,ā1)) = ∅.
Thus,P (2 | ā1) = 1 sinceσ(I(2,ā1)) |= Σ. This value
reflects the intuition that if the value in the gray cell of the
instance shown in Figure 1 (a) is removed, then it can be
inferred from the remaining values and the FDA→ B.

There are 64 substitutions with domainā2 and range[1, 8].
A substitutionσ is inSAT 8

Σ(I(7,ā2)) if and only ifσ(v6) 6=

1, and, therefore,|SAT8
Σ(I(7,ā2))| = 56. The same can be

proved for everya ∈ [1, 8], a 6= 2. On the other hand, the
only substitution that is not inSAT8

Σ(I(2,ā2)) isσ(v1) = 3
andσ(v6) = 1, sinceσ(I(2,ā2)) contains only one tuple.
Thus,|SAT 8

Σ(I(2,ā2))| = 63 and, therefore,

P (a | ā2) =







63
455 if a = 2,

56
455 otherwise. 2

We define a probability spaceBk
Σ(I, p) = ([1, k], P )

where

P (a) =
1

2n−1

∑

ā∈Ω(I,p)

P (a | ā) ,

and, again, omitI, p, k andΣ as parameters, and overload
the letterP since this will never lead to confusion.

The measure of the amount of information in positionp,
Inf

k
I (p | Σ), is the conditional entropy ofBk

Σ(I, p) given
A(I, p), that is, the average information provided byp,
given all possible ways of removing values in the instance



I:

Inf
k
I (p | Σ)

def
= H(Bk

Σ(I, p) | A(I, p)) =
∑

ā∈Ω(I,p)

(

P (ā)
∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)

)

.

Note that forā ∈ Ω(I, p),
∑

a∈[1,k] P (a | ā) log 1
P (a|ā)

measures the amount of information in positionp, given
a set of constraintsΣ and some missing values inI, rep-
resented by the variables in̄a. Thus,Inf

k
I (p | Σ) is the

average such amount over allā ∈ Ω(I, p).

From the definition of conditional entropy,0 ≤ Inf
k
I (p |

Σ) ≤ log k, and the measureInf
k
I (p | Σ) depends on the

domain sizek. We now consider the ratio ofInf
k
I (p | Σ)

and the maximum entropylog k. It turns out that this
sequence converges:

Lemma 1. If Σ is a set of first-order constraints over
a schema S, then for every I ∈ inst(S,Σ) and p ∈
Pos(I), limk→∞ Inf

k
I (p | Σ)/ log k exists.

In fact, Lemma 1 shows that such a limit exists for any
set ofgeneric constraints, that is, constraints that do not
depend on the domain. This finally gives us the definition
of InfI(p | Σ).

Definition 1. For I ∈ inst(S,Σ) and p ∈ Pos(I), the
measure InfI(p | Σ) is defined as

lim
k→∞

Inf
k
I (p | Σ)

log k
.

InfI(p | Σ) measures how much information is contained
in positionp, and0 ≤ InfI(p | Σ) ≤ 1. A well-designed
schema should not have an instance with a position that
has less than maximum information:

Definition 2. A database specification (S,Σ) is well-
designed if for every I ∈ inst(S,Σ) and every p ∈
Pos(I), InfI(p | Σ) = 1.

Example 4: LetS be a database schema{R(A,B, C)}.
Let Σ1 = {A → BC}. Figure 1 (b) shows an instance
I of S satisfyingΣ1 and figure 3 (a) shows the value of
Inf

k
I (p | Σ1) for k = 5, 6, 7, wherep is the position of

the gray cell. As expected, the value ofInf
k
I (p | Σ1) is

maximal, since(S,Σ1) is in BCNF.

The next two examples show that the measureInf
k
I (p |

Σ) can distinguish cases that were indistinguishable with
the measure of Section 3. LetΣ2 = {A → B} and
Σ′2 = {A→→ B}. Figure 1 (a) shows an instanceI of S
satisfying bothΣ2 andΣ′2. Figure 3 (b) shows the value
of Inf

k
I (p | Σ2) andInf

k
I (p | Σ′2) for k = 5, 6, 7. As

expected, the values are smaller forΣ2.

Finally, letΣ3 = {A→ B}. Figures 1 (a) and 1 (c) show
instancesI1, I2 of S satisfyingΣ3. We expect the infor-
mation content of the gray cell to be smaller inI2 than in

I1, but the measure used in Section 3 could not distinguish
them. Figure 3 (c) shows the values ofInf

k
I1

(p | Σ3) and
Inf

k
I2

(p | Σ3) for k = 5, 6, 7. As expected, the values are
smaller forI2. Furthermore,InfI1(p | Σ3) = 0.875 and
InfI2(p | Σ3) = 0.78125. 2

4.1 Basic properties

It is clear from the definitions thatInfI(p | Σ) does not
depend on a particular enumeration of positions. Two
other basic properties that we can expect from the mea-
sure of information content are as follows: first, it should
not depend on a particular representation of constraints,
and second, a schema without constraints must be well-
designed (as there is nothing to tell us that it is not). Both
are indeed true.

Proposition 1.

(1) Let Σ1 and Σ2 be two sets of constraints over a
schema S. If they are equivalent (that is, Σ+

1 =
Σ+

2 ), then for any instance I satisfying Σ1 and
any p ∈ Pos(I), InfI(p | Σ1) = InfI(p | Σ2).

(2) If Σ = ∅, then (S,Σ) is well-designed.

The definition of being well-designed states that
limk→∞(Inf

k
I (p | Σ)/ log k) = 1. This leaves open

the possibility thatInf
k
I (p | Σ) exhibits sub-logarithmic

growth, e.g.,log k− log log k which results in almost, but
not completely perfect information in positionp. It turns
out that such behavior is impossible: iflimk→∞(Inf

k
I (p |

Σ)/ log k) = 1, then Inf
k
I (p | Σ) cannot grow sub-

logarithmically. We show this by establishing a structural
criterion forInfI(p | Σ) = 1.

Proposition 2. Let S be a schema and Σ a set of con-
straints over S. Then the following are equivalent.

(1) (S,Σ) is well-designed.

(2) For every I ∈ inst(S,Σ) and p ∈ Pos(I),

limk→∞[log k − Inf
k
I (p | Σ)] = 0.

(3) For every I ∈ inst(S,Σ), p ∈ Pos(I) and a ∈
N+ − adom(I), Ip←a |= Σ.

A natural question at this point is whether the problem
of checking if a relational schema is well-designed is de-
cidable. It is not surprising that for arbitrary first-order
constraints, the problem is undecidable:

Proposition 3. The problem of verifying whether a re-
lational schema containing first-order constraints is
well-designed is undecidable.

However, integrity constraints used in database schema
design are most commonlyuniversal, that is, of the form
∀x̄ ψ(x̄), whereψ(x̄) is a quantifier-free formula. FDs,
MVDs and JDs are universal constraints as well as more



k A→ BC log k

5 2.3219 2.3219
6 2.5850 2.5850
7 2.8074 2.8074

k A→ B A→→ B

5 2.0299 2.2180
6 2.2608 2.4637
7 2.4558 2.6708

k I1 I2
5 2.0299 1.8092
6 2.2608 2.0167
7 2.4558 2.1914

(a) (b) (c)

Figure 3: Value of conditional entropy.

elaborated dependencies such as equality generating de-
pendencies and full tuple generating dependencies [1]. For
universal constraints, the problem of testing if a relational
schema is well-designed can be reduced to the problem
of verifying whether a Scḧonfinkel-Bernays sentence is
inconsistent. Using complexity bounds for the latter [22],
we obtain the following result.

Proposition 4. The problem of deciding whether a
schema containing only universal constraints is well-
designed is in co-NEXPTIME. Furthermore, if for a
fixed m, each relation in S has at most m attributes,
then the problem is in PSPACE.

For specific kinds of constraints, e.g., FDs, MVDs, lower
complexity bounds will follow from the results in the next
section.

4.2 Justification of relational normal forms

We now apply the criterion of being well-designed to var-
ious relational normal forms. We show that all of them
lead to well-designed specifications, and some precisely
characterize the well-designed specifications that can be
obtained with a class of constraints.

We start by finding constraints that always give rise to well-
designed schemas. Anextended-key over a relational
schemaS is a constraintϕ of the form:

∀ (R(x̄1) ∧ · · · ∧R(x̄m) → x̄i = x̄j),

wherei, j ∈ [1,m], ∀ represents the universal closure of a
formula, and there is an assignment of variables to columns
such that each variable occurs only in one column (that is,
an extended-key is a typed constraint [1]). Note that every
key is an extended-key.

Proposition 5. If S is a schema and Σ a set of
extended-keys over S, then (S,Σ) is well-designed.

Corollary 1 . A relational specification (S,Σ) in
DK/NF is well-designed.

Next, we characterize well-designed schemas with FDs
and JDs.

Theorem 2. Let Σ be a set of FDs and JDs over a
relational schema S. (S,Σ) is well-designed if and
only if for every R ∈ S and every nontrivial join
dependency ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → R(x̄)) in Σ+,
there exists M ⊆ {1, . . . ,m} such that:

1. x̄ ⊆
⋃

i∈M x̄i.

2. For every i, j ∈ M , ∀(R(x̄1) ∧ · · · ∧ R(x̄m) →
x̄i = x̄j) ∈ Σ+.

This justifies various normal forms proposed for JDs and
FDs [12, 27].
Corollary 2 . Let Σ be a set of FDs and JDs over a
relational schema S. If (S,Σ) is in PJ/NF or 5NFR,
then it is well-designed.

However, neither of these normal forms characterizes pre-
cisely the notion of being well-defined:
Proposition 6. There exists a schema S and a set of
JDs and FDs Σ such that (S,Σ) is well-designed,
but it violates all of the following: DK/NF, PJ/NF,
5NFR.

Proof: Let S = {R(A,B,C)} andΣ = {AB → C,
AC → B, ⊲⊳[AB,AC,BC]}. This specification is not in
DK/NF and PJ/NF since the set of keys implied byΣ is
{AB → ABC, AC → ABC, ABC → ABC} and this
set does not imply⊲⊳[AB,AC,BC]. Furthermore, this
specification is not in 5NFR since⊲⊳[AB,AC,BC] is a
strong-reduced join dependency andBC is not a key inΣ.

Join dependency⊲⊳[AB,AC,BC] corresponds to the fol-
lowing first order sentence:

∀x∀y∀z∀u1∀u2∀u3 (R(x, y, u1) ∧R(x, u2, z) ∧

R(u3, y, z) → R(x, y, z)).

From Theorem 2, we conclude that(S,Σ) is well designed
sinceΣ implies the sentence

∀x∀y∀z∀u1∀u2∀u3(R(x, y, u1) ∧R(x, u2, z) ∧

R(u3, y, z) → y = u2 ∧ z = u1).

and(x, y, z) ⊆ (x, y, u1) ∪ (x, u2, z). 2

By restricting Theorem 2 to the case of specifications con-
taining only FDs and MVDs (or only FDs), we obtain
the equivalencebetween well-designed databases and 4NF
(respectively, BCNF).
Theorem 3. Let Σ be a set of integrity constraints
over a relational schema S.

1. If Σ contains only FDs and MVDs, then (S,Σ)
is well-designed if and only if it is in 4NF.

2. If Σ contains only FDs, then (S,Σ) is well-
designed if and only if it is in BCNF.



5. Normalizing XML data

In this section we give a quick overview of the XML nor-
mal form called XNF, and show that the notion of being
well-designed straightforwardly extends from relations to
XML. Furthermore, if all constraints are specified as func-
tional dependencies, this notion precisely characterizes
XNF.

5.1 Overview of XML constraints and normalization

DTDs and XML trees. We shall use a somewhat
simplified model of XML trees in order to keep the nota-
tion simple. We assume a countably infinite set of labels
L, a countably infinite set of attributesA (we shall use the
notation@l1,@l2, etc for attributes to distinguish them
from labels), and a countably infinite setV of values of
attributes. Furthermore, we do not considerPCDATA ele-
ments in XML trees since they can always be represented
by attributes.

A DTD (Document Type Definition)D is a 4-tuple
(L0, P,R, r) whereL0 is a finite subset ofL, P is a set of
rulesa → Pa for eacha ∈ L0, wherePa is a regular ex-
pression overL0 − {r},R assigns to eacha ∈ L0 a finite
subset ofA (possibly empty;R(a) is the set of attributes
of a), andr ∈ L0 (the root).

Example 5: The DTD below is a part of DBLP [9] that
stores conference data.

<!ELEMENT db (conf*)>
<!ELEMENT conf (issue+)>

<!ATTLIST conf
title CDATA #REQUIRED>

<!ELEMENT issue (inproceedings+)>
<!ELEMENT inproceedings EMPTY>

<!ATTLIST inproceedings
author CDATA #REQUIRED
title CDATA #REQUIRED
pages CDATA #REQUIRED
year CDATA #REQUIRED>

This DTD is represented as(L0, P, R, r), where
r = db, L0 = {db, conf , issue, inproceedings},
P = {db → conf ∗, conf → issue+, issue →
inproceedings+, inproceedings → ǫ}, R(conf ) =
{@title}, R(inproceedings) = {@author , @title,
@pages , @year} andR(db) = R(issue) = ∅. 2

An XML tree is a finite rooted directed treeT = (N,E)
whereN is the set of nodes andE is the set of edges,
together with the labeling functionλ : N → L and partial
attribute value functionsρ@l : N → V for each@l ∈ A.
We furthermore assume that for every nodex in N , its
childrenx1, . . . , xn are ordered andρ@l(x) is defined for
a finite set of attributes@l. We say thatT conforms to
DTD D, written asT |= D, if the root ofT is labeledr,
for everyx ∈ N with λ(x) = a, the wordλ(x1) · · ·λ(xn)

that consists of the labels of its children belongs to the
language denoted byPa, and for everyx ∈ N with
λ(x) = a, @l ∈ R(a) if and only if the functionρ@l

is defined onx (and thus provides the value of attribute@l).

FDs for XML. An element path q is a word in
L∗, and anattribute path is a word of the formq.@l,
where q ∈ L∗ and @l ∈ A. An element pathq is
consistent with a DTDD if there is a treeT |= D that
contains a node reachable byq (in particular, all such
paths must haver as the first letter); if in addition the
nodes reachable byq have attribute@l, then the attribute
path q.@l is consistent withD. The set of all paths
(element or attribute) consistent withD is denoted by
paths(D). This set is finite for a non-recursiveD and
infinite if D is recursive.

A functional dependency over DTDD [3] is an expres-
sion of the form{q1, . . . , qn} → q, whereq, q1, . . . , qn ∈
paths(D).

To define the notion of satisfaction for FDs, we use a
relational representation of XML trees from [3]. Given
T |= D, a tree tuple in D is a mappingt : paths(D) →
N ∪ V ∪ {⊥} such that ifq is an element path whose last
letter isa andt(q) 6= ⊥, then

• t(q) ∈ N and its label,λ(t(q)), is a;

• if q′ is a prefix ofq, thent(q′) 6= ⊥ and the node
t(q′) lies on the path from the root tot(q) in T ;

• if @l is defined fort(q) and its value isv ∈ V , then
t(q.@l) = v.

Intuitively, a tree tuple assigns nodes or attribute values
or nulls (⊥) to paths in a consistent manner. A tree tuple
is maximal if it cannot be extended to another one by
changing some nulls to values fromN ∪ V . The set of
maximal tree tuples is denoted bytuplesD(T ).

Now we say that FD{q1, . . . , qn} → q is true inT if for
anyt1, t2 ∈ tuplesD(T ), whenevert1(qi) = t2(qi) 6= ⊥
for all i ≤ n, thent1(q) = t2(q) holds.

Example 6: LetD be the DTD from Example 5. Among
the setΣ of FDs over this DTD are:

db.conf .@title → db.conf ,

db.conf .issue → db.conf .issue.inproceedings .@year .

The first FD specifies that two distinct conferences must
have distinct titles. The second one specifies that any two
inproceedings children of the sameissue must have the
same value of@year. 2

XML normal form. Suppose we are given a DTDD
and a setΣ of FDs overD. The set of all FDs implied by
(D,Σ) is denoted by(D,Σ)+, and an FD is calledtrivial
if it belongs to(D, ∅)+, that is, implied by the DTD alone.
For example,q → r, wherer is the root, orq → q.@l, are
trivial FDs.



We say that(D,Σ) is in thenormal form XNF [3] if for
any nontrivial FDX → q.@l in (D,Σ)+, whereX is a
set of paths, the FDX → q is in (D,Σ)+ as well.

Intuitively, a violation of XNF means that there is some
redundancy in the document: we may have many nodes
reachable by pathq but all of them will have the same
value of attribute@l (provided they agree onX).

Example 7: The DBLP example 5 seen earlier may
contain redundant information: year is stored multiple
times for a conference. It isnot in XNF since

db.conf .issue → db.conf .issue.inproceedings

is not in(D,Σ)+. This suggests making@yearan attribute
of issue, and indeed,such a revised specification can easily
be shown to be in XNF. 2

5.2 Well-designed XML data

We do not need to introduce a new notion of being well-
designed specifically for XML: the definition that we for-
mulated in Section 4 for relational data will apply. We
only have to define the notion of positions in a tree, and
then reuse the relational definition.

For relational databases, positions correspond to the
“shape” of relations, and each position contains a value.
Likewise, for XML, positions will correspond to the shape
(that is more complex, since documents are modeled as
trees), and they must have values associated with them.
Consequently, we formally define the set of positions
Pos(T ) in a treeT = (N,E) as

{(x,@l) | x ∈ N, @l ∈ R(λ(x))}.

As before, we assume that there is an enumeration of posi-
tions (a bijection betweenPos(T ) and{1, . . . , n} where
n = |Pos(T )|) and we shall associate positions with their
numbers in the enumeration. We defineadom(T ) as the
set of all values of attributes inT .

As in the relational case, we take the domain of values
V to beN+. Let Σ be a set of FDs over a DTDD and
k > 0. Define inst(D,Σ) as the set of all XML trees
that conform toD and satisfyΣ and instk(D,Σ) as its
restriction to treesT with adom(T ) ⊆ [1, k].

Now fix T ∈ instk(D,Σ) andp ∈ Pos(T ). With the
above definitions,we define the probability spacesA(T, p)
andBk

Σ(T, p) exactly as we definedA(I, p) andBk
Σ(I, p)

for a relational instanceI. That is,Ω(T, p) is the set of
all tuples ā of the form (a1, . . . , ap−1, ap+1, . . . , an)
such that everyai is either a variable, or the valueT
has in the corresponding position,SATk

Σ(T(a,ā)) as the
set of all possible ways to assign values from[1, k] to
variables in̄a that result in a tree satisfyingΣ, and the rest
of the definition repeats the relational case one verbatim,
substitutingT for I.

We use these to defineInf
k
T (p | Σ) as the entropy of

Bk
Σ(T, p) givenA(T, p):

Inf
k
T (p | Σ)

def
= H(Bk

Σ(T, p) | A(T, p)) .

As in the relational case, we can show that the limit

lim
k→∞

Inf
k
T (p | Σ)

log k

exists, and we denote it byInfT (p | Σ). Following the
relational case, we introduce

Definition 3. An XML specification (D,Σ) is well-
designed if for every T ∈ inst(D,Σ) and every p ∈
Pos(T ), InfT (p | Σ) = 1.

Note that the information-theoretic definition of well-
designed schema presented in Section 4 for relational data
proved to be extremely robust, as it extended straight-
forwardly to a different data model: we only needed a
new definition ofPos(T ) to use in place ofPos(I), and
Pos(T ) is simply an enumeration of all the places in a
document where attribute values occur.

Now we show the connection between well-designed
XML and XNF:

Theorem 4. An XML specification (D,Σ), where Σ
is a set of FDs, is well-designed iff it is in XNF.

The theory of XML constraints and normal forms is not
nearly as advanced as its relational counterparts, but we
demonstrated here that the definition of well-designed
schemas works well for the existing normal form based
on FDs; thus, it can be used to test other design criteria for
XML when they are proposed.

6. Normalization algorithms

We now show how the information-theoretic measure of
Section 4 can be used for reasoning about normalization
algorithms at the instance level. For this section, we as-
sume thatΣ is a set of FDs, both for the relational and
the XML cases. The results shown here state that after
each step of a decomposition algorithm, the amount of
information in each position does not decrease.

6.1 Relational Databases

Let I ′ be the result of applying one step of a normalization
algorithm toI; we need to show how to associate positions
in I andI ′. SinceΣ contains FDs, we deal with BCNF, and
standard BCNF decomposition algorithms use the steps
of the following kind: pick a relationR with the set of
attributesW , and letW be the disjoint union ofX,Y, Z,
such thatX → Y ∈ Σ+. Then an instanceI = I(R)
of R gets decomposed intoIXY = πXY (I) andIXZ =
πXZ(I), with the sets of FDsΣXY andΣXZ , whereΣU

stands for{C → D ∈ Σ+ | CD ⊆ U ⊆W}.



This decomposition gives rise to two partial mapsπXY :
Pos(I) → Pos(IXY ) andπXZ : Pos(I) → Pos(IXZ ).
If p is the position oft[A] for someA ∈ XY , thenπXY (p)
is defined, and equals the position ofπXY (t)[A] in IXY ;
the mappingπXZ is defined analogously. Note thatπXY

and πXZ can map different positions inI to the same
position ofIXY or IXZ .

We now show that the amount of information in each
position does not decrease in the normalization process.

Theorem 5. Let (X,Y, Z) partition the attributes of
R, and let X → Y ∈ Σ+. Let I ∈ inst(R,Σ) and
p ∈ Pos(I). If U is either XY or XZ and πU is
defined on p, then InfI(p | Σ) ≤ InfIU

(πU (p) | ΣU ).

A decomposition algorithm iseffective in I if for one of
its basic steps, and for somep, the inequality in Theorem
5 is strict: that is, the amount of information increases.
This notion leads to another characterization of BCNF.

Proposition 7. (R,Σ) is in BCNF if and only if no
decomposition algorithm is effective in (R,Σ).

6.2 XML data

We now treat the XML case. We shall prove a result
similar to Theorem 5. However, to state the result, we
first need to review the normalization algorithm for XML
data, and explain how each step of the algorithm induces
a mapping between positions in two XML trees.

Throughout the section, we assume that the DTDs are non-
recursive and that all FDs contain at most one element path
on the left-hand side.

We start with an XNF normalizationalgorithm proposed in
[3]. To present this algorithm we need to introduce some
terminology. Given a DTDD and a set of FDsΣ, a non-
trivial FD X → q.@l is calledanomalous, over(D,Σ),
if it violates XNF; that is,X → q.@l ∈ (D,Σ)+ but
X → q 6∈ (D,Σ)+. The algorithm eliminates anomalous
functional dependencies by using two basic steps: moving
an attribute, and creating a new element type.

Moving attributes. Let D = (L0, P, R, r) be a
DTD, q.@l an attribute path inD, q′ an element path in
D and@m an attribute not used inD. Assume thata, a′

are the last elements ofq andq′, respectively. The DTD
D[q.@l := q′.@m] is constructed by moving the attribute
@l from the set of attributes ofa to the set of attributes
of a′, and changing its name to@m, as shown in the
following figure.

r

@l
@m

q
q′

a
a′

Formally, D[p.@l := q.@m] is (L0, P, R
′, r), where

R′(a′) = R(a′) ∪ {@m}, R′(a) = R(a) − {@l} and
R′(b) = R(b) for eachb ∈ L0 − {a, a′}.

Given a set of FDsΣ overD, a set of FDsΣ[q.@l :=
q′.@m] overD[q.@l := q′.@m] consists of all FDsX →
Y ∈ (D,Σ)+ with X ∪ Y ⊆ paths(D[q.@l := q′.@m]).

Creating new element types. LetD = (L0, P, R,
r) be a DTD,q.@l ∈ paths(D), S = {q′, q1.@l1, . . . ,
qn.@ln} ⊆ paths(D) such thatn ≥ 1 andq′ is an element
path inD. Assume thata, a′ are the last elements ofq and
q′, respectively. We construct a new DTDD′ by creating
a new element typea′′ as a child ofa′, makinga1, . . ., an

its children,@l its attribute, and@l1, . . . ,@ln attributes
of a1, . . ., an, respectively. Furthermore, we remove@l
from the set of attributes ofa, as shown in the following
figure.

.   .   .

.  .  .
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Formally, if {a′′, a1, . . . , an} are element types which
are not inL0, the new DTD, denoted byD[q.@l :=
q′.a′′[a1.@l1, . . . , an.@ln,@l]], is (L′0, P

′, R′, r), where
L′0 = L0 ∪ {a′′, a1, . . . , an} andP ′, R′ are defined as
follows.

1. Assume thata′ → Pa′ ∈ P . Then,P ′ = (P −
{a′ → Pa′}) ∪ {a′ → (a′′)∗Pa′ , a′′ → a∗1 · · · a

∗
n,

a1 → ǫ, . . . , an → ǫ}.

2. R′(a′′) = {@l}, R′(ai) = {@li}, for eachi ∈
[1, n], R′(a) = R(a) − {@l} andR′(b) = R(b) for
eachb ∈ L0 − {a}.

GivenD′ = D[q.@l := q′.a′′[a1.@l1, . . . , an.@ln,@l]]
and a setΣ of FDs overD, we define a setΣ[q.@l :=
q′.a′′[a1.@l1, . . . , an.@ln,@l]] of FDs overD′ as the set
that contains the following:

1. X → Y ∈ (D,Σ)+ with X ∪ Y ⊆ paths(D′);



2. For each FDX → Y ∈ (D,Σ)+ withX ∪Y ⊆ {q′,
q1, . . . , qn, q1.@l1, . . . , qn.@ln, q.@l}, we include
an FD obtained from it by changingqi to q′.a′′.ai,
qi.@li to q.a′′.ai.@li, andq.@l to q.a′′.@l;

3. {q′, q′.a′′.a1.@l1, . . . , q
′.a′′.an.@ln} → q′.a′′,

and{q′.a′′, q′.a′′.ai.@li} → q′.a′′.ai for i ∈ [1, n].

The algorithm does not apply this transformation to an
arbitrary FD, but rather to aminimal one. In the re-
lational context, a minimal FD isX → A such that
X ′ 6→ A for any X ′ $ X . In the XML context the
definition is a bit more complex to account for paths used
in FDs. We say that{q, q1.@l1, . . . , qn.@ln} → q0.@l0
is (D,Σ)-minimal if there is no anomalous FDX →
qi.@li ∈ (D,Σ)+ such thati ∈ [0, n] andX is a subset
of {q, q1, . . . , qn, q0.@l0, . . . , qn.@ln} such that|X |≤ n
andX contains at most one element path.

Given an XML specification(D,Σ), the normalization
algorithm applies the two transformations until the schema
is in XNF. The algorithm always terminates and produces
a tree in XNF [3].

Let (D,Σ) be an XML specification andT ∈ inst(D,Σ).
Assume that(D,Σ) is not in XNF. Let (D′,Σ′) be an
XML specification obtained by executing one step of the
normalization algorithm. Every step of this algorithm
induces a natural transformation on XML documents.
One of the properties of the algorithm is that for each
normalization step that transformsT ∈ inst(D,Σ) into
T ′ ∈ inst(D′,Σ′), one can find a mapπT ′,T : Pos(T ′) →
2Pos(T ) that associates each position in the new treeT ′

with one or more positions in the old treeT , as shown
below.

1. Assume thatD′ = D[q.@l := q′.@m] and, there-
fore, q′ → q.@l is an anomalous FD in(D,Σ). In
this case, an XML treeT ′ is constructed fromT as
follows. For everyt ∈ tuplesD(T ), define a tree
tuple t′ by using the following rule:t′(q′.@m) =
t(q.@l) and for everyq′′ ∈ paths(D) − {q.@l},
t′(q′′) = t(q′′). Then,T ′ is an XML tree whose tree
tuples are{t′ | t ∈ tuplesD(T )}. Furthermore, po-
sitions int′ are associated to positions int as follows:
if p′ = (t′(q′),@m), thenπT ′,T (p′) = {(t(q),@l)};
otherwise,πT ′,T (p′) = {p′}.

2. Assume that(D′,Σ′) was generated by consider-
ing a (D,Σ)-minimal anomalous FD{q′, q1.@l1,
. . . , qn.@ln} → q.@l. Thus,D′ = D[q.@l :=
q′.a[a1.@l1, . . . , an.@ln,@l]]. In this case, an XML
treeT ′ is constructed fromT as follows. For ev-
ery t ∈ tuplesD(T ), define a tree tuplet′ by us-
ing the following rule: t′(q′.a) is a fresh node
identifier, t′(q′.a.@l) = t(q.@l), t′(q′.a.ai) is a
fresh node identifier (i ∈ [1, n]), t′(q.a.qi.@li) =
t(qi.@li) and for everyq′′ ∈ paths(D) − {q.@l},
t′(q′′) = t(q′′). Then,T ′ is an XML tree whose
tree tuples are{t′ | t ∈ tuplesD(T )}. Fur-
thermore, positions int′ are associated to posi-
tions in t as follows. If p′ = (t′(q′.a),@l), then
πT ′,T (p′) = {(t(q),@l)}. If p′ = (t′(q′.a.ai),@li),

then(t(qi),@li) ∈ πT ′,T (p′) (note that in this case
πT ′,T (p) may contain more than one position). For
any other positionp′ in t′, πT ′,T (p′) = {p′}.

Similarly to the relational case, we can now show the
following.

Theorem 6. Let T be a tree that conforms to a DTD
D and satisfies a set of FDs Σ, and let T ′ ∈
inst(D′,Σ′) result from T by applying one step of the
normalization algorithm. Let p′ ∈ Pos(T ′). Then

InfT ′(p′ | Σ′) ≥ max
p∈πT ′,T (p′)

InfT (p | Σ).

Just like in the relational case, one can define effective
steps of the algorithm as those in which the above inequal-
ity is strict for at least one position, and show that(D,Σ)
is in XNF iff no decomposition algorithm is effective in
(D,Σ).

7. Conclusion

Our goal was to find criteria for good data design, based
on the intrinsic properties of a data model rather than tools
built on top of it, such as query and update languages.
We were motivated by the justification of normal forms
for XML, where usual criteria based on update anomalies
or existence of lossless decompositions are not applicable
until we have standard and universally acceptable query
and update languages.

We proposed to use techniques from information theory,
and measure the information content of elements in a
database with respect to a set of constraints. We tested
this approach in the relational case and showed that it
works: that is, it characterizes the familiar normal forms
such as BCNF and 4NF as precisely those corresponding
to good designs, and justifies others, more complicated
ones, involving join dependencies. We then showed that
the approach straightforwardly extends to the XML set-
ting, and for the case of constraints given by functional
dependencies, equates the normal form XNF of [3] with
good designs. In general, the approach is very robust: al-
though we do not show it here due to space limitations, it
can be easily adapted to the nested relational model, where
it justifies a normal form NNF [20, 21].

Future work. It would be interesting to characterize
3NF by using the measure developed in this paper. So far,
a little bit is known about 3NF. For example, as in the case
of BCNF, it is possible to prove that the synthesis approach
for generating 3NF databases does not decrease the amount
of information in each position. Furthermore, given that
3NF does not necessarily eliminate all redundancies, one
can find 3NF databases where the amount of information
in some positions is not maximal.

We would like to consider more complex XML constraints
and characterize good designs they give rise to. We also
would like to connect this approach with that of [14],



where information capacities of two schemas can be com-
pared based on the existence of queries in some standard
language that translate between them. For two classes of
well-designed schemas (those with no constraints, and
with keys only), being information-capacity equivalent
means being isomorphic [2, 14], and we would like to see
if this connection extends beyond the classes of schemas
studied in [2, 14].
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