Locally Consistent Transformations and Query Answering in
Data Exchange

Marcelo Arenas Pablo Barcelo Ronald Fagin Leonid Libkin
University of Toronto University of Toronto IBM Almaden Research Center University of Toronto
marenas@cs.toronto.edu pablo@cs.toronto.edu fagin@almaden.ibm.com libkin@cs.toronto.edu
ABSTRACT of a source schema and a specification of the relation-

ship between the source and the target. Thisis a very old
Data exchange is the problem of taking data structured Problem [27] that arises in many tasks where data must
under a source schema and creating an instance of a tarb€ transferred between independent applications that do
getschema. Given a source instance, there may be manyot have the same data format. The need for data ex-
solutions — target instances that satisfy the constraints o change has steadily increased over the years. With the
the data exchange prob|em. Previous work has identi- prOllferatlon of web d_ata. In VarI(_)us_fOI’mats and with the
fied two classes of desirable solutions: canonical univer- €mergence of e-business applications that need to com-
sal solutions, and their cores. Query answering in data Municate data yet remain autonomous, data exchange is
exchange amounts to rewriting a query over the target €Ven more important.
schema to another query that, over a materialized target . .
instance, gives the resuit that is semantically consistent A data exchange setting is a tripi8, (T, %), where
with the source. A basic question is then whether there S IS the source schemd, is the target schema, and,
exists a transformation sending a source instance into ai$ @ Set of source-to-target dependencies that express
solution over which target queries can be answered. the relationship betweeS and T (some papers also

add a set:; of dependencies that express constraints

We show that the answer is negative for many data on T, but here, we will mostly consider data exchange

exchange transformations that have structural proper- Settings with no target constraints). Such a setting gives
ties similar to canonical universal solutions and cores. Mise to the followingdata exchange problem: given an
Namely, we prove that many such transformations pre- instance! over the source schen® find an instance
serve thelocal structure of the data. Using this notion, </ over the target schemi® such that/ together with
we further show that every target query rewritable over - satisfy the source-to-target dependencigs (when
such a transformation cannot distinguish tuples whose target dependencies are usédnust also satisfy them).
neighborhoods in the source are similar. This gives us a Such an instancé is called asolution for I in the
first tool that helps check whether a query is rewritable. data exchange setting. In general, there may be many
We also show that these results are robust: they hold different solutions for a given source instanteFor a
for an extension of relational calculus with groupingand data exchange system, the two key issues are:
aggregates, and for two different semantics of query an-

Swering. 1. Which solution should be materialized?

_ 2. How should queries be answered over the target?
1. Introduction

Papers [9, 10] started a systematic investigation of
Data exchange is the problem of materializing an in- these issues for data exchange settings in whiahdT
stance that adheres to a target schema, given an instanc@re relational schemas. They isolated a class of solutions,
called universal solutions, possessing good properties
that justify selecting them as the best solutions in data
exchange. Specifically, universal solutions have homo-
Permission to make digital or hard copies of all or part o thiork for nﬁorpﬁlsm?‘ Into ever)lf]_possllble SOIl‘rI]“oT]; in p%rtlﬁmar'
personal or classroom use is granted without fee providatidbpies are they have omomorpnisms Into eac other, ant thus are
not made or distributed for profit or commercial advantage that copies homomorphically equivalent. UnllVersaj SO!UtlonS are
bear this notice and the full citation on the first page. Toyooiherwise, to the most general among all solutions and, in a precise
republish, to post on servers or to redistribute to listguiees prior specific sense, they represent the entire space of solutions. It was
permission and/or a fee. shown in [9] that under fairly general conditions, univer-

PODS 2004, June 14-16, 2004, Paris, France. ; : . : -
Copyright 2004 ACM 1-58113-858-X/04/06$5.00. sal solutions exist, and eunonical universal solution

can be found in polynomial time, based on the classical ing the answer to a Boolean query with a self-loop). But
chase procedure [4, 26]. what is a natural condition then to impose on a transfor-
mation? Such a condition must ensure a certain degree
Since universal solutions need not be unique, this of “uniformity” of F (that is, it should not be tailored
raises the question of which universal solution to ma- to deal with a specific query), and be satisfied by the
terialize. The answer proposed in [10] is based on using transformations commonly used in data exchange such
minimality as a key criterion for what constitutes the asF,.,;, that maps the source instantento the canon-
“best” universal solution. Although universal solutions ical universal solution, af... that mapd onto the core
come in different sizes, all of them share a unique (up of the universal solutions.
to isomorphism) common “part”, which is nothing else
but the core of each of them, when they are viewed as The condition we impose on a transformatibiis that
relational structures [10]. By definition, the core of a it must belocally consistent, thatis, points with similar
structure is the smallest substructure that is also a ho-neighborhoodsin the source have similar neighborhoods
momorphic image of the structure. The concept of the inthe target. We make this notion of “locally consistent”
core originated in graph theory, where a number of its precise (in fact, there are two closely related but incom-
properties have been established [16]. It was shown in parable properties based on the exact definition of “sim-
[10] that if the source-to-target dependencies are ilarity”), and prove that, in an appropriate data exchange
tuple-generating dependencies (tgds), then the core ofsetting,Fniv and F.o.e POSSeSS both properties.
the universal solutions fof is itself a solution for/
(they also allow the possibility of having certain s&ts One of our main results is that the failure of the canon-
of target dependencies). Hence, the core of the univer-ical universal solution to support rewriting is not because
sal solutions foll is the smallest universal solution for there is a “better” choice of solution. Specifically, we
I, and thus an ideal candidate for the “best” solution, show thatif the transformation that producesthe solution
at least in terms of the space required to materialize it. is locally consistent, then there are first-order queries
Furthermore, in a number of cases of interest, they show that are not rewritable. This implies that neither the
that there is a polynomial-time algorithm for generating canonical universal solution, nor the core, nor any other
the core. “uniformly” generated solution supports rewriting for
arbitrary first-order queries. We prove this by showing
We now turn to discussing query answering, and the that queries rewritable over locally consistent transfor-
related issue of query rewriting [24, 14]. Given a source mations cannot distinguish points that have isomorphic
instance and a data exchange setting, what is the meanneighborhoods in the source instance. Unlike ad hoc
ing of the “answer” to a querg over the target schema? techniques employed in [10, 5], this criterion gives us
Since there may be multiple solutions to the data ex- easy ways of showing that a query is not rewritable.
change problem, the standard approach is to define the
answer to be the set afertain answers [20, 1], that The notion of local consistency introduced in this pa-
is, those tuples that appear ¥ J) for every solution per is a new one; although it is inspired by standard
J. The goal of query answering in data exchange is to notions of locality from logic [12, 15, 11], it is different
find these certain answers based on justmaterialized from them since this is the first notion of locality that

target instance. applies to transformations that invent new values.

If @ is a union of conjunctive queries, ards an arbi- We also prove two extensions of the main results.
trary universal solution, then [9] showed that the certain The first one concerns the underlying query language;
answers are given exactly by the set of all tupleQ (/) we shows that all the results continue to hold if in-

that are formed entirely of elements from the source. stead of first-order queries, we use an extension with
Such nice behavior fails when we go beyond unions of grouping and aggregate functions, that is, essentially
conjunctive queries: it was shown in [9] that there is the select-from-where-groupby-having fragment
a Boolean conjunctive quer® with inequalities such ~ of SQL. Second, we look at an alternative semantics
that Q(.J) does not give the certain answers, no mat- (proposed in [10]) for query answering in data exchange
ter which universal solutiod is selected, but for some that, instead of taking certain answers (those tuples that
other first-order quer®)’ (arewriting of Q), the certain appear inQ(J) for every solutionJ), takes tuples that
answers for are given byQ'(J), whereJ is the canoni- appear inQ(J) for every universal solutionJ. This is
cal universal solution. Unfortunately, query rewritatyili reasonable, because the universal solutions are the desir-
is not a general phenomenon either, as [9] constructed aable solutions in data exchange. We prove that the main
Boolean conjunctive quely with inequalities for which results of the paper remain true under this semantics.
there is no such rewritin@’.
Organization Basic notions related to data exchange,

But the following basic question remains unanswered: universal solutions, cores, and neighborhoods are pre-
is there a transformatiot that maps each source in-
stance! into a solutionF(I) and a rewritingQ’ such "We refer to “the” canonical universal solution, al-
that the certain answers are given Q(F(1))? Of though in the scenario of [9], it is not unique. We shall

course we want to forbid cheating solutions (like encod- ggtﬁ;fnﬁeig this paper in a way where it is uniquely

sented in Section 2. In Section 3 we study structural A source-to-target dependency (std) is a sentence of
properties of data exchange transformations. We first the form

present a rule-based language that allows us to code _ _ _ o

many such transformations, and to prove local consis- vz (ps(7) — 3y vr(@,9)),

tency for programs in that language. We derive results \yherepg(z) is a formula oves in some logical formal-

for Funiv andFeore as corollaries. We also briefly con- jsm (typically FO) andj(z,) is a conjunction of FO
sider extensions with target dependencies. atomic formulae over..

In Section 4, we study query rewritability. We show Definition 2.1 (Data Exchange Setting) A data
that a query rewritable over any locally consistent trans- exchange setting is a triple (S, T, %), where S is
fOfmatIOl"I cannot dIStIngUISh COﬂStantSWhOSE I"IEIgthF- a source Schema7 T ZS a target Schemal7 and Est

hoods in the source are isomorphic. We show that this s 4 set of source-to-target dependencies. The data
property gives us easy non-rewritability results. We exchange problem associated with (S, T,) is the
also establish a connection between rewritability over fojlowing: given a source instance I, find a target
the core, and rewritability over the canonical universal jnstance J such that (I,.J) satisfies S. Such a J

solution. is called a solution for I, or simply a solution if I

. . is clear from the context.
In Section 5, we present extensions of these results

to languages with grouping and aggregation, and to the

semantics based on universal solutions. Summary and We denote byConst an infinite set of all values that
concluding remarks are given in Section 6. All proofs may occur in source instances, and, following the data
will appear in the full version. exchange terminology [9, 10], we call those values-
stants. In addition, we also assume an infinite Sei

of elements, disjoint fron€Const. Elements ofVar are
callednulls [9, 10], and they are used to help populate
target instances. That is, the domain of a target instance
comes fromConst U Var.

2. Preliminaries

A schema R is a finite sequenceR, ..., Ry) of If I is an instance with values iBonst U Var, then
relation symbols, with eacR; having a fixed arityn;. Const(I) denotes the set of all constants occurring in
An instance I of R assigns to each relation symbol e|ations in7, andVar(I) denotes the set of nulls oc-
R; of R a finite n;-ary relation/(R;). The domain curring in relations inZ. From now on, we assume that
dom([) of instancel is the set of all elements that occur {here is a way to distinguish constants from nulls. For
in any of the relationd (R;).? Aninstance/ of Ris example, we may assume that the target schi&noan-

a subinstance of I'if dom(J) C dom(I) andJ(R;) S tains an auxiliary predicaté’ whose interpretation is

I(R;), for everyi. If one of the inclusions is proper, dom(I) N Const.
we refer toJ as aproper subinstance of I. If R is

a schema, then dependency over R is a sentence in Papers [9, 10] identified two important subclasses of

some logical formalism oveR, typically FO (first-order data exchange, inspired by theal-as-view (LAV)and

logic). global-as-view (GAV) classes of data integration prob-
lems [23]:

2.1 Data exchange setting
e LAV setting. each dependency il is of the
form S(z) — 3¢ (z,7), whereS is some re-

LetS = (Si,...,S,) andT = (Ty,...,Ty,) be two lation symbol in the source scherSaand, as be-
schemas with no relation symbols in common. We refer fore,s)r(z,y) is a conjunction of atomic formulae
to S as thesource schema and to thg;’s as the source overT.

relation symbols. We refer tf as thetarget schema and
to theT;’s as the target relation symbols. We denote by e GAV setting. each dependency iB,; is of the

(S,T) the schemdS:, ..., Sp, 11, ..., Tn). Instances form ¢s(Z) — T'(Z), whereT is a relation symbol
over S will be called source instances, while instances in the target schem@®. If ps(z) is a conjunctive
over T will be called target instances. Ifis a source query, we speak of the GAV(CQ) settifg.

instance and/ is a target instance, thdd, J) denotes

an instances over(S, T) such that<'(S;) = I(.S;) and

K(T;) = J(1}), fori € [1,n] andj € [1,m]. Observe that the general data exchange can be seen as a
composition of LAV and GAV.

2An instance is a special case of an R-structure A de-
fined as (A, R%,..., Rf), where A is a set (the uni-
verse), and R® C A™ for each i. Thus, in the case of In [9, 10], the formula ¢s (%) was restricted to being
arbitrary structures, the universe may contain elements the conjunction of atomic formulae over S, that is, to
that are not present in any of the relations. the GAV(CQ) setting.

Example 2.2 Consider a LAV data exchange set-

ting in which S = (M(-,-), N(-,-)), T = (P(-,+,"),

Q(+,-)) and X contains the following stds:
M(z,y) — FwIz(P(z,y,2) A Q(w, 2)),
N(z,y) — 3zP(x,y,2).

Suppose we are given a source instance [

{M/(a,b), N(a,b)}.* Since the stds in X do not

completely specify the target, there are multiple so-

lutions that are consistent with the specification.
One solution is:

J = {P(G/)b? nl))P(aab7 n2)7Q(n37n1)}7

where n1,no, ng are values in Var. Another solution,
but with no nulls, is J' = {P(a,b,a), Q(b,a)}. O

2.2 Universal solutions and cores

Let J andJ’ be two instances over the target schema

T with values inConst U Var. A homomorphism

h : J — J is a mapping fromConst(J) U Var(J)

to Const(J’) U Var(J’) such thath(c) = ¢ for all

c € Const(J), andt € J(R) implies’ h(t) € J'(R) for

all R € T. Furthermore, we say that and.J’ are ho-
momorphically equivalentif there are homomorphisms
h:J—Jandh':J — J.

Definition 2.3. (Universal solution) If I is a
source instance in a data exchange setting, then a
universal solution for I is a solution J such that
for every solution J' for I, there exists a homomor-
phism h:J — J'.

Example 2.4 The solution J’ in Example 2.2 is not
universal, since there is no homomorphism from J’
to J. On the other hand, it can be shown that .J is
a universal solution. O

It was shown in [9] that universal solutions possess
good properties that justify selecting them (as opposed
to arbitrary solutions) for the semantics of the data ex-
change problem. A universal solution is more general
than an arbitrary solution because, by definition, it can
be homomorphically mapped into that solution. More-
over, all universal solutions are homomorphically equiv-
alent. Furthermore, results of [9] imply that for the data

exchange setting considered in this paper, universal so-

lutions always exist.

To deal with the problem of computing universal solu-
tions, [9] proposes to compute a special kind of universal
solution, called aanonical universal solution. The al-
gorithm presented in [9] is based on applying the chase,
but we shall define canonical universal solutions directly,

Tt is often convenient to define instances by simply list-
ing the tuples attached to the corresponding relation
symbols.

SIf ¢ t1,
(h(t1),..., h(tk))

...,tg), then by h(f) we mean

in Section 3, when we introduce a general class of pro-
grams that define data transformations that invent new
values.

The reason one wants to compute a specific solution
for the data exchange problem is to be able to evaluate
gueries over the target schema. It was noted in [9] that
universal solutions need not be isomorphic, and thus any
decision to choose one is somewhat arbitrary. To deal
with this problem, [10] proposed to use there of the
universal solutions.

Definition 2.5. (Core) A subinstance J of an in-
stance I is called a core of I if there is a homomor-
phism from I to J, but there is no homomorphism
from I to a proper subinstance of J.

Itis known [16] that every instance has a unique core
(up to isomorphism). It is shown in [10] that if the
source-to-target dependencies are tuple-generating de-
pendencies (tgds), then every universal solution has the
same core (up to isomorphism), and this core is itself a
universal solution. Further, itis shown in [10] that under
the assumptions in this paper, the core can be computed
in polynomial time.

Example 2.6 In Example 2.2, J* = {P(a,b,ny),
Q(n3,n1)} is the core of the universal solutions. O

2.3 Neighborhoods and locality

The Gaifman graph G(I) of an instancel of R is
the graph whose nodes are the elementkaf(7), and
such that there exists an edge betweandb in G(I) iff
a andb belong to the same tuple of a relatié(r), for
someR € R. For example, iff is an undirected graph,
thenG(I) is I itself.

The distance between two elemeatandb in I, de-
noted byd;(a,b) (or d(a,b), if I is understood), is the
distance between them@(I). We definel(a, b) as the
minimum value ofd(a, b) wherea is an element ofi.

Given a tuplen = (ay,...,an) € dom(I)™, we de-
fine the instanceV!(a), called thed-neighborhood of
a in I, as the restriction of to the elements at dis-
tance at most from a, with the members of; treated
as distinguished elements. That is, if two neighbor-
hoods N!(a) and NZ(b) are isomorphic (written as
NI(@) = NZI(b)), then there is an isomorphisth :
NI(@a) — N1(b) such thatf(a;) = b;, for 1 <i < m.

The notion of neighborhoods allows one to define
cality of logics. A formulap(z) in some logical for-
malism is local if there exists a numbed such that
Ni(a) = N1(b) impliesthatl |= (a) iff I = ¢(b), for
every instancd. It is known [12] that all FO formulae
are local. This was generalized to logics that extend FO
with counting [25] and aggregate functions [18].

3. Structural Properties of Data Exchange
Transformations

In this section we show that data exchange transfor-

mations preserve the local character of the data. As atuplesbi, .

u be the tuple of variables in that are used in the head
of the rule, and let be the tuple of variables in the head
of the rule that are not if.

For each tuple of length|| overdom(.J), find all the
.. by, such that] = ¢(a, b;), forl < j <

first step towards proving those results, we formulate a - Then choosen tuples of lengths| of fresh distinct

rule-based language for specifying transformations such null valuesn,, ..

asFuniv, that maps the source instanicento the canon-
ical universal solution. This language is similar in spirit
to languages with oid invention [19, 28] but its rules are
nonrecursive. Based on the types of logical formulae

used in rules, we establish different results on locality fined in Example 3.1, and

.,y OverVar. To construct relation
Ry, forl < k, in Fi(I), add tupleqrz, (a), 7y, (72;)),
forl < j <m,totherelation/(R;). Hererz (a) refers
to the components af that occur in the positions af;.

Example 3.2 Consider IT = (S, A, T, R) as de-

an instance [

of transformations, and then derive, as corollaries, exact {S(a,b),S(b,a)}. TInitially, FY(I) = I. We next

characterizations of locality for various data exchange
settings.

3.1 Data exchange programs

A data exchange program is a quadrupldl = (S,
A T, R), whereS (“source”), A (“auxiliary”) and
T(“target”) are pairwise disjoint relational schemas and
R is a sequencér, ..., r,) of rules such that each rule
is of the form

Ri(%1,91); - - - R (T,) e(), (1)

where eachR; is either inA or in T, wherey(Z) is an
FO formula overS, A}, where variables in thg;’s are
among those iz, and variables in thg;’s are not inz.
We refer toR1(Z1,91), - - - , Ri(Zk, gr) as thehead of
the rule, and tax(z) as thebody of the rule.

Furthermore, we require that the progransbetified.
That is, if A; is the set of relation symbols frof used
inrulesry, ..., r;, thenthe formula in the body of rule
ri+1 IS over the schemés, A;).

S <S(a)>a A
(T'(-,-)), and rules r; and ro

Example 3.1 Consider
<R(7 ')7 N()>v T

defined as follows:
R(x7z)7 R(Zvy)a N(Z) - S(x7y) (7"1)
T(z,y) :— 3z(R(z,2) AN R(z,y) N N(x) AN(y)) (r2)
If R = (rq,r2), then (S, A, T, R) is a data exchange
program. Notice also that if R = (re,r1), then
(S,A, T, R') is not a data exchange program (be-
cause it is not stratified). O

Given a data exchange prograrh = (S, A, T,
R), we define the transformatiofty; : inst(S) —

deal with the rule (r1). The only variable that oc-
curs in the head but not in the body of (r1) is z,
and hence, to compute F;(I), we must invent nulls
corresponding to that variable.

Since I | S(a,b), we must choose a null nq,
and add tuples R(a,n1), R(n1,b) and N(ny). Fur-
thermore, since I = S(b,a), we must pick up a
fresh null ny (that is, ny # ns), and add tuples
R(b,n2), R(n2,a) and N(n3). Hence, FL(I) ex-
pands [with

{R(av nl)a R(TL1, b)v N(nl)v R(ba nQ)a R(nQa a)v N(n2)}

In (r2), there are no variables present in the head
that are not free variables of the body, and hence
computing F&(I) amount to evaluating the query
given by the body of (r2) over F(I), and adding
the result to F&(I). Thus, F2(I) is the expansion
of F with {T'(n1,n2),T(n2,n1)}. O

Finally, 711 (1) is defined to be the restriction 61 (1)
to the predicates ifT. In Example 3.2,7;(I) is the
restriction of 72 to T, that is,{T'(n1, n2), T'(n2,n1)}.

Next, we connect data exchange problems with data
exchange settings defined earlier. Given a data exchange
settingD¢ = (S, T, X)), define a data exchange pro-
gramllipe = (S, 0, T, R), where, for each std

os(z) — 3y (Ri(z1,51) A~ N R Ty, U))
in X, we add a rule
Ri(Z1,51), ., Ri(Zr, Ur) +— ¢s(T)

to R. In fact, these data exchange prograhg are
exactly the data exchange programs without auxiliary
relation symbols, that is, with the auxiliary schema
empty. Notice thatin the absence of the auxiliary schema
A, the order of the rules ifR could be arbitrary (al-

inst(T) that associates a target schema instance with tough, as we shall discuss shortly, the order of the rules
each source schema instance. For that, we show induc-n & may affect the result of applying the corresponding

tively how to define a mapping}; : inst((S, A, T)) —
inst((S, A, T)) given by the firsti rules of the pro-
gram. Suppose we are given an instaricef S, and
J = Fi(I), wherel < i < n (if i = 1, then
J(S) = I(S) for everyS € S, and J(P) = (for
everyP € (A, T)). Let theith rule be given by (1), let

transformation).

Definition 3.3. (Canonical Universal Solution)
The canonical universal solution of instance I in
data exchange setting DE = (S, T, Xst) s Fripe (I).
If the data exchange setting DE is understood, we
shall denote this transformation Fripe by Funiv-

This definition differs slightly from the one given in
[9], where a canonical universal solution is not deter-
mined uniquely as it is obtained by using the classical

thatd;(a;, a;) < r for everyi, j < n. A data exchange
programll is r-bounded if every formula in the body of
every rule isr-bounded.

chase procedure [4, 26]. Since the result of the chase de- ,
pends on the order in which the chase steps are applied-émma 3.6 The transformation Fu of every r-

there may be multiple nonisomorphic canonical univer-
sal solutions under the definition in [9] (even when there
are no target constraints). Our definition uses a deter-
ministic procedure that constructs a unique canonical
universal solution (since, effectively, our approach fixes
the order in which the chase steps are applied). It can
easily be shown thak,,i, (1), for every instancd, is a
universal solution.

In the definition oflIpe, we did not use any auxiliary
relations fromA. One may then ask if auxiliary rela-

‘bounded data exchange program is locally consistent.
O

Theorem 3.7 In the LAV setting, both the canoni-
cal universal solution transformation Funiy and the
core transformation Feore are locally consistent. O

The result for the canonical universal solution is an
immediate consequence of Lemma 3.6, since in a LAV
settingD¢, the bodies of rules ifilnc are atomic pred-
icates (since they are left-hand sides of the stds), which

tions are ever necessary. The next result says that theyare1-bounded. The result for the core requires a separate

are. Thus, with auxiliary relations, one can define trans-

formations that do not arise in any data exchange setting

TE. Therefore, in what follows, we prefer to prove re-

proof, which will be given in the full version.

One can also show that local consistency for the core

sults for the more expressive data exchange programstransformation depends crucially on the requirement of

rather than the more restrictive transformatign,;. .

Proposition 3.4 There is a data exchange program
that is not equivalent to any data exchange program
with no auxiliary relations.

Finally, we define the transformatidf..,. such that
Feore(I) is the core ofF iy (1).

3.2 Locally consistent transformations

In this section we introduce the notions of local consis-
tency of transformations frormst(S) to inst(T). The
first notion says that neighborhoods around elements
common to the input and output instances are preserved
Informally, if a,b € dom(I) are present in the domain
of the resulting instancé of T, then the isomorphism
of sufficiently large neighborhoods afandb in I guar-
antees that their neighborhoods are isomorphig ias
well. Formally, we define this as follows.

Definition 3.5. (Local Consistency) A mapping
F ¢ inst(S) — inst(T) is locally consistent if for
every m,d > 0 there exists d > 0 such that, for
every instance I of S and m-tuples a,b € dom(I)™,
if N%(a) = N1, (b), then

1) a € dom(F(I)™ < be dom(F(I))™, and

o~

2) N7 (@) = NT D (b).

We next present a sufficient condition for a mapping
Jn associated with a data exchange progidnto be
locally consistent. This condition will guarantee local
consistency for the LAV setting of data exchange.

We say that a formula(z) is r-bounded if for every
structurel such that!/ = ¢(ay,...,a,), itis the case

the data exchange setting that constants be preserved.
That is, if homomorphisms are not required to be iden-
tity on Const (which is the usual setting in the graph-
theoretic literature on the core [16]), then one can find
examples of graphs for which the core transformation is
not locally consistent.

Theorem 3.7 does not extend to the GAV setting, even
when restricted to conjunctive queries.

Proposition 3.8

(a) There are GAV(CQ) settings such that Y
contains either one dependency of the form
vs(x,y,2) — T(x,y, z), or multiple dependen-
cies of the form ps(x,y) — T(x,y), and the

. corresponding transformations Funiv and Feore

are not locally consistent.

If, in the GAV(CQ) setting, s contains
only one dependency of the form ¢s(z,y) —
T(x,y), then Funiv and Feore are locally con-
sistent.

(b)

Since local consistency is a nontrivial property of
FO-definable mappings, it follows that the question of
whetherF; is locally consistent is undecidable, even in
the GAV setting (this easily follows from Trakhtenbrot’s
theorem; cf. [6]).

3.3 Local consistency under logical equivalence

We have seen that mappings that arise in the LAV set-
ting are locally consistent, and thatlocal consistency may
fail even in some simple GAV settings. To overcome the
failure of local consistency, we introduce a notion of
locality based on logical equivalence (in particular, FO-
equivalence) rather than isomorphism of neighborhoods,

and we prove that in general, the canonical universal so- egds ovefT are of the formvz (o1 () — (21 = x2)),

lution transformationF.,,;, and the core transformation ~wherey(Z) is a conjunction of atomic FO formulae,

Feore are locally consistent under FO-equivalence. with free variables, and wherec, 5 are inz. If, fur-

thermore, the data exchange setting is restricted to LAV

The quantifier rank of an FO formula is the maxi- or GAV, we shall speak of LAV+tgd settings, LAV+egd

mum depth of quantifier nesting in it. If and J are settings, and so on. The next proposition covers all four

instances of the same schema, we write, J if 7 and possible settings: LAV+tgd, GAV+tgd, LAV+egd, and

J satisfy the same FO sentences of quantifier rank up to GAV+egd.

k. Inthe new notion of local consistency, we require that .

=,-equivalent neighborhoods be senttp-equivalent ~ Proposition 3.12

neighborhoods. Formally, we define it as follows. (a) The transformations Funiv and Feore Of
LAV+tgd (or GAV+tgd) setlings are not
Definition 3.9. (Local Consistency under FO- necessarily locally consistent (under FO-
equivalence) A mapping F : inst(S) — inst(T) is equivalence), even if the target schema con-
locally consistent under FO-equivalence if for every tains only one dependency.
m,d, k > 0 there exist d', k' > 0 such that, for every)
instance I of S and m-tuples a,b € dom(I)™, if (b) The transformations Funiv and Feore of
N1 (@) = NL (%), then GAV+egd settings are locally consistent under
d ke S FO-equivalence.
1) a € dom(F(I))™ & be dom(F(I))™, and (¢c) The transformations Funiv and Feore Of
F) =y _ A FD) 7 LAV +egd settings are not necessarily locally
2) Ng (@) =& Ny = (b). consistent (under FO-equivalence), even if the
Lemma 3.1Q The transformation Fi of every data target schema contains only key dependencies.
exchange program is locally consistent under FO-
equivalence. O

Theorem 3.11 For an arbitrary data exchange set- 4. Query Rewriting and Locality

ting, both the canonical universal solution transfor-
mation Funiv and the core transformation Feore are

locally consistent under FO-equivalence. In this section, we study query rewriting in data ex-

change. We use local consistency to show that rewritable
queries have a certain kind of locality property. This
The result for the canonical universal solution is an property gives an easily applicable tool for proving
immediate consequence of Lemma 3.10. The result for nonexistence of rewritings over the canonical universal
the core is considerably harder and relies on the machin- solution and the core.
ery developed for the proof of a later theorem (Theorem
4.9). "
) 4.1 The query rewriting problem
Note that the definitions of local consistency and lo-

cal consistency under FO-equivalence are incompara-
ble: the latter makes a weaker assumption and arrives SUPPOSe we have a data exchange sefShd’, ..),

at a weaker conclusion. Nevertheless, either definition @nd @ queng over thetarget schemdl’. What does
works for our applications in query rewriting, because It Mean to answeQ? Since there are many possible
the statement we need there makes the stronger assumpso!utions to the data exchange problem, the standard
tion (isomorphism of neighborhoods) but needs only the @PProach is to define the semantics@fin terms of
weaker conclusion (FO equivalence of neighborhoods). ¢¢rtain answers: thatis, for an instancé of S,

certain(Q,I) = m Q(J).
3.4 Adding target dependencies J is a solution for T

Thus, a tuple is in certain(Q), I) if it belongs toQ(J)

Papers [9, 10] considered an extension of the dataforall solutions.J for I.

exchange setting in which dependencies exist for the gt how can one find this setertain(Q, I), given
target schema as well. A solution is then required 10 {ha¢ there are potentially infinitely many solutions? The
satisfy those target dependencies. approach proposed in [9, 10] is to look for some spe-
. . cific transformations¥ : inst(S) — inst(T), and find
Based on familiar classes of dependencies (cf. [7, 4]), nditions under whichertain(Q, I) equals’ (F(I)).
we define extensions of the data exchange setting with Then(is rewritable overF by Q” More formally, we
tuple-generating dependencies (tgds) as well as equality-p 5o the following definition ' '
generating dependencies (egds). The tgds @vare of '
the formvz (o1 (z) — Iy ¢r(z,y)), wherepr(z) and Definition 4.1. (Query Rewriting) Given o data
Yr(Z,y) are conjunctions of FO atomic formulae. The exchange setting (S, T,Xs), a mapping F

nst(S) — inst(T) and an m-ary query Q over T,
we say that @ is rewritable over F if there exists an
m-ary FO query Q" over T such that

certain(Q, I) = Q'(F(I))

for every instance I of S.

We shall refer to a query as being rewritable over the
canonical universal solution if it is rewritable ovEr,,.;v,
and rewritable over the core if it is rewritable oOVEl,c.

We now note that rewritability is undecidable in general.

Proposition 4.2 Given a data exchange setting
(S, T,%Xs) and an FO query Q over T, it is unde-
cidable whether () is rewritable over the canonical
universal solution, or over the core. O

In some cases, we can establish that a class of queries’.:

is or is not rewritable. For example, it is known that for
every FO sentence, its asymptotic probability is either 0
or 1 (this is the zero-one law for FO [8]).

Proposition 4.3 In a data exchange setting, every
Boolean query whose asymptotic probability is 0 is
rewritable, by false, over both the canonical univer-
sal solution and over the core. O

However, such partial results do not give us aeyh-
niques for proving that queries areot rewritable. We

shall now exhibit such techniques, based on the notions

of locality from the previous section.

4.2 Local source-dependency and rewritability

In this section, we prove that queries rewritable over
locally consistent transformations are guaranteed to sat-
isfy a strong locality criterion on their own, and use these
results to show that certain queries are not rewritable over
the canonical universal solution or over the core.

Definition 4.4. (Locally source-dependent
queries) Given a data exchange setting (S, T, Xst)
and a query Q over T, we say that @) is locally
source-dependent if there is d > 0 such that for
every instance I of S and for every a,b € dom(I)™,
if NX(a) = N1(b) then

(a € certain(Q,I) < b€ certain(Q,1)).

We next show that this notion applies to all queries
rewritable over locally consistent transformations.

Theorem 4.5 Let (S,T,Xs) be a data exchange
setting, and Q a query over T. Assume that Q
is rewritable over a transformation F, where F is
either locally consistent, or locally consistent un-
der FO-equivalence. Then @Q is locally source-
dependent.

Proof. Let @' be a first-order rewriting o€) over 7,
thatis, anm-ary FO query ovet such that for every in-
stancel of S, we havecertain(Q,I) = Q' (F(I)). As-
sume thatF is locally consistent (the proof for transfor-
mations that are locally consistent under FO-equivalence
is similar). By Gaifman’s theorem [12], there exists a
constantr such that for every instancé of T andm-
tuplesa, bin J, if NJ(a) = N/(b), thena € Q'(J) if
and only ifb € Q'(J). Given thatF is locally consis-
tent, there existd > 0 such that for every instandeof
S andm-tuplesa, bin I, if NI(a) = N1(b), then

1. @ € dom(F (1)) iff b € dom(F(I)), and
2. N7 D(a) = NTD(p).

rom this we conclude that) is locally source-
dependent since for every instantef S andm-tuples
a,binl,

Ni(a) = N} (D)
= N7U(a) = N7 (5)
= aecQ(F())iff be Q'(F(I))

= a c certain(Q, I) iff b € certain(Q, I). O

Corollary 4.6. In a data exchange setting, a target
query rewritable over the canonical universal solu-
tion or over the core is locally source-dependent. O

We now show how this result can be used as a sim-
ple tool for proving non-rewritability results, even in
very simple data exchange settings. We call a data
exchange settingopying if S and T are two copies
of the same schema (that IS, = (Ry,...,R;),T =

..., R)), andR; and R} have the same arity), and
Yo = {Ri(z) — R)(Z) | » = 1,...,1}. Note that a
copying setting is both LAV and GAV.

Theorem 4.7 There is a copying data exchange set-
ting and an FO-query that is not rewritable over the
canonical universal solution, nor over the core.

Proof. LetS = (G(-,-), R()), T = (G'(-,), R'(-)) and
S = {G(z,y) — C'(2,y), R(z) — R(x)}. Define
a queryQ(z) over the target schema as:

R'(z) v Jy3z(R'(y) NG (y,2) A —=R'(2)).

Assume that) is FO-rewritable ovetF,niv Or Feore.
Then it is locally source-dependent: there exi$ts
0 such that for every source instandeand every
a,b € dom(I), we havea € certain(Q,I) iff b €

certain(Q, I) wheneveNV! (a) = N1(b).

Define a source instandeas shown in Figure 1I(G)
is the disjoint union of two cycles of lengthl + 2, and
I(R) = {c}. ThenN](a) = N1(b), which implies that
thata € certain(Q, I) iff b € certain(Q, I).

mm

Figure 1: Instance I of Theorem 4.7.

However, it is easy to see that € certain(Q,I) that is rewritable over the core is also rewritable
andb ¢ certain(Q,I). Indeed, ifJ is an arbitrary over the canonical universal solution. Moreover,
solutionfor/,thenJ = R/(a vﬂyﬂz(R’(YAG (y, 2)A there is a polynomial-time algorithm that, given a

—R'(z)) (if J does not satisfy the second disjunct, then rewriting of Q over the core, finds a rewriting on
J = YyVz(R' (y) NG'(y, z) — R'(z)) and, hence/ [= over the canonical universal solution.
R'(a) sinceR'(c) is true in every solution, and and

c are on the same cyc/le). FurthermoreJ@:ls_ a target The local consistency of,.,. under FO equivalence,
instance such thaky(G') = I(G) andJo(R') includes stated in Theorem 3.11, actually follows from several
exactly all the points in the cycle containingthen.Jy lemmas developed in the proof of this theorem.

is a solution for/. However, J, ~ Q(b), and thus

b ¢ certain(Q, I). This contradiction shows th&} is The next proposition says that the converse of Theo-
not rewritable. a rem 4.9 does not hold.

Proposition 4.1Q There exists an FO query that is
rewritable over the canonical universal solution, but
not rewritable over the core. a

Rewritability over the source Another type of
rewriting considered in the literature is rewriting over
the source: that is, certain answers to a target query
are obtained by applying a rewriting of the query to the
source instance. This type of rewriting is common in .
data integration (e.g., see [5]). 5. Extensions

Formally, given a data exchange settif®) T, ;)

and anm-ary queryQ overT, we say tha€) is rewritable Most results of the previous two sections can be
over the source if there exists ann-ary FO queryQ’ extended in two ways. First, as the underlying lan-
over S such thatcertain(Q,) = Q'(I) for every in- ~ guage for both data exchange programs and query
stancel of S. rewritability one can use an extension of FO with group-

ing and aggregation, corresponding to basic features
The following corollary is obtained directly from the ~0f SQLselect-from-where-groupby-havingstate-

proof of Theorem 4.5. ments. Second, we show that many results extend for
an alternative semantics [10] of queries over the target

Corollary 4.8. In a data exchange setting, a target schema.

query Q rewritable over the source is locally source-

dependent.

5.1 Extended data exchange setting

Thus, we can also use local source-dependency as a

simple tool for proving non-rewritability results over the So far, both data exchange settings and data exchange

source. programs were based on first-order formulae: that is,
all stds were of the fornps (z) — 37 ¢ (Z,7), where

4.3 Rewritability over the core vs(Z) is an FO formula, and all formulae in the bodies
of rules were FO as well.

We now show how to extend our main results to the set-
ting where these formulae correspond not to relational
calculus but to its extension with grouping and aggre-
gates. Such languages are typically defined as an exten-
Theorem 4.9 Given a data exchange setting sion of relational algebra (see [21, 22]), but here instead
(S, T,X), every query QQ over the target schema we adopt the logic approach of [18].

We now establish the connection between rewritability
over the core and rewritability over canonical universal
solution: we show that the former implies the latter.

Based on the approach of [13, 18], we defineagre-
gate operatorto be a sequence = (go, 91,92, - - - » Ju)
of functions, where each,, for 0 < n < w, takes an

n-elementbag of rational numbers, and returns a number over the core, is locally source-dependent.

in Q. The valueg, andg,, are constants associated with
the output ofG on the empty bag and on infinite bags,
respectively (the latter may occur in the definition of the
semantics of terms in the logic).

The aggregate logic FO,ger Over schemaR is two-
sorted: first-sort variables range over domains on in-
stances oR, and second-sort variables range o@erlt
extends FO by

e numerical terms and predicates. for every function
f: Q" — Q and every predicaté® C Q", if
t1(Z),...,t,(x) are terms of the second (numer-
ical) sort, then so igf (t1(z), . . ., t,(z)); further-
more, P(t1(Z),...,t,(z)) is an atomic formula.
These have the standard semantics.

e aggregate terms. for every aggregate operat@f, a
second-sortterm(z,) and a formulay(z, g), we
have a new second-sort term

t'(x) =

Aggrg ?j (t(jv g)a Sa(fv g)) .

The semantic$'(a) is defined as follows. If there are
infinitely manyb such thatp(a, b) holds, then the value
of t/(a) is g,,. Otherwise, leb,,...,b,, enumerate all
the b such thatp(a, b) holds. Then'(a) is defined as
gm applied to the bad(t(a, by), . .., t(a, b,)}.

Example 5.1 Let R be a ternary relation whose tu-
ples are (d, e, s), where d is the department name,
e is the employee name, and s is the salary. The
query that computes the total salary for each de-
partment is given by the following FOgugg, formula

o(d,v):
(JedsR(d, e, s)) A (v = Aggrg,,(e,5)(s, R(d,e, s))),

where Ggyy is the sequence (go,91,92...,9.,) such
that go = 0 and ¢,({a1,...,an}) = a1+ -+ an
for positive integers n. (The value of g, could be
arbitrary if we are interested only in values of ag-
gregates terms on finite sets.) d

We define ant'O,g,:-data exchange setting to be a
data exchange setting in which every std is of the form
s () — FyYr (T, y), whereps(Z) is anFO g, for-
mula with all free variables of the first sort. Likewise,
we define art'O,4,,-data exchange program as one in
which all formulae in the bodies of rules af® . for-
mulae with all free variables of the first sort. Justasinthe
case of FO, we define the canonical universal solution
of an FO,4.,-data exchange setting as the result of an
FO,qer data exchange program obtained by converting
each stdps(z) — 3y (R1(Z1,91) A -+ A Ri(Zk, Uk))

into a ruleR; (.fl, ?]1), ey Rk(.fk, gk) = ps (x)

Theorem 5.2 Let (S, T, %) be an FOpuger-data ex-
change setting. Every query over T that is FOugg,-
rewritable over the canonical universal solution, or
O

The proof is based on a modified version of local
consistency, in which we use equivalence with respect
to a certain counting extension of FO [17, 25].

Since every standard data exchange setting is also an
FO,ge-data exchange setting, we can derive a result
stronger than Corollary 4.6.

Corollary 5.3. In a standard data exchange setting,
a target query FOqager-rewritable over the canonical
universal solution or over the core s locally source-
dependent. O

5.2 Universal solutions semantics

We wish to begin by exhibiting counterintuitive behav-
ior of the certain answer semantics in the case of Boolean
gueries. We first give a clarification of the semantics in
this case. Let) be a Boolean (that is, 0-ary) query over
the target schem@ and a source instance. If we let
truedenote the set with one 0-ary tuple and falemote
the empty set, the@(.J) = trueand@(.J) = falseeach
have their usual meanings for Boolean quecgsNote
that certain(Q, I) = true means that for every solu-
tion J of this instance of the data exchange problem, we
have that)(J) = true moreovergertain(Q, I) = false
means that there is a solutiohnsuch that)(J) = false

As the next proposition shows, the usual certain an-
swers semantics sometimes exhibits rather counterintu-
itive behavior.

Proposition 5.4 Let (S, T, %) be a data exchange
setting. Then for every Boolean query @ over T,
either certain(Q,I) = false for all instances I of S,

or certain(—Q, I) = false for all instances I of S.

Proof: Let Q be a Boolean query oveTl', and as-
sume that there exists an instandg of S such
that certain(Q, Ip) true Then we show that
certain(—(), I') = falsefor every instance of S.

Let I be an instance o8 and.J a solution forI.
Then given a solution for I, the instance/’ defined
asJ'(R) = J(R) U Jy(R), foreveryR € T, is a
solution for bothl andIy. Sincecertain(Q, Iy) = true,
it follows that Q(J’) is true, and so there is a so-
lution of I not satisfying—@Q. We conclude that
certain(—@Q, I) = false O

That is, contrary to the expectation that for some in-
stances the result of a query is true and for others it is

T f i LAV Setting GAV Setting General Setting
ransformation locally locally locally locally locally locally
consistent| consistent]| consistent| consistent]| consistent consistent
under= under= under=
| canonical universal solutiaf,.iv [yes [yes | no [vyes] no | vyes |
| coreFeore I yes | yes | no | yes | no | vyes |

Summary of local consistency results

Rewritable over| Under semantics Foin Ig%ic locally source-dependent queries
| = rewritable over Fyniv
Fo usual yes| yes
o universal solufion| yes| yes
F usual yes| yes
core universal solufion| yes| yes

Is a query locally-source-dependent? Summary of rewltitgbéesults

Figure 2: Summary of the main results

false, in the case of certain answers semantics, for oneevery existential query (which includes every union of
of Q or =@ the result is false in all instances! conjunctive queries with inequalitie$) is FO-rewritable
overFeore, Underthe universal solutions semantics. This
This anomaly suggests that we consider a different is not the case for the usual semantics, even when re-
semantics. It was argued in [10] that since the universal stricted to conjunctive queries with only one inequality
solutions are the preferred solutions in data exchange, it[9].
may be more meaningful to consider semantics based on
them. We now show that the main results of the paper are
preserved when one considers this new semantics of an-
Given a data exchange setti, T, X,;), anm-ary swering queries over the target.
query@ overT, and a source instande we define the

universal solutions semantics of) as

N

J is a universal solution for I

Clearly, certain(@Q, I) C u-certain(Q, I).

Given a mapping- : inst(S) — inst(T), we say that
Q 1S FOugg,-rewritable over F under the universal
solutions semantics if there exists ann-ary FO,gq:-
query@’ overT such that-certain(Q, I) = Q'(F(I))
for every instanced of S.

u-certain(Q,I) = Q).

We say that a query) over T is locally source-
dependent under the universal solutions semantics
if there isd > 0 such that for every instandeof S and
everya, b € dom(I)™, whenevetV(a) = NI (b) then

The next example shows that the universal solution
semantics avoids the problem shown in Proposition 5.4.
Specifically, we show that there exists a Boolean query
@ and instance$; and/, such thati-certain(Q, I) =

trueandu-certain(—Q, Is) = true. .
. u-certain(~Q, 1) = true (dEU—certain(Q,I) &S be u—certajn(Q,I)).

Example 5.5 Given a copying data exchange set-
ting with 8 = (P(), R(), T = (P'("), R())
and 35 = {P(x) — P'(z), R(z) — R'(2)},
let @ be a Boolean query over T defined as
3z (P’ (x) A R'(z)). Define instances I, I of S as

The nexttheorem says that Theorem 5.2 extends to the
universal solutions semantics.

{P(a),R(a)} and {P(a), R(b)}, respectively. Then
both u-certain(Q, I) and u-certain(—Q, I1) are true
(if J is a universal solution for Iz, then there is a
homomorphism A : J — Funiv(l2) = {P'(a), R'(b)}
and, hence, for every null value ¢ in J it could not

Theorem 5.6 Let (S, T, Xy;) be an FOuger-data ex-
change setting. Every query over T that is FOgqgg,-
rewritable over the canonical universal solution, or
over the core, under the universal solutions seman-
tics, is locally source-dependent under the universal

be the case that P’(c) and R'(c) are in J).

The universal solutions semantics has other appeal-
ing properties. For example, from [10] we know that

solutions semantics.

d

Thus, Theorem 5.6 can be used a tool for proving
non-rewritability under the new semantics.

We conclude with a result that shows the incompara-
bility of rewritability under the usual semantics and the
universal solutions semantics.

Proposition 5.7. Let F be either Funiv 07 Feore-

1) There is an FO-query Q that is rewritable
(even in FO) over F under the usual seman-
tics, but is not FOqugg,-rewritable over F under
the universal solutions semantics.

2) There is an FO-query @ that is rewritable
(even in FO) over F under the universal so-
lutions semantics, but is not FO,gqr-rewritable
over F under the usual semantics.

6. Conclusions

Figure 2 summarizes the main results of the paper.
The first table shows when the canonical universal solu-
tion and core transformatiofs, iy andF.,. are locally
consistent (“unde=" means “under FO equivalence”,
but instead of FO one can uB® ., as well). The sec-
ond table gives four classes of locally source-dependent
gueries, based on the logic and transformation they are
rewritable over. The final picture shows the relationship
between different classes of rewritable queries. Unlike
isolated results on rewriting that exist in the literature,
our results give easily applicable tools for studying these
notions.

In the future, we would like to develop tools for study-
ing data exchange transformation and query rewriting in
the presence of target dependencies, and to extend tech
nigues from relational databases to other data formats.

Acknowledgments We thank Michael Benedikt and
Phokion Kolaitis for their comments. M. Arenas, P. Bar-
celo, and L. Libkin have been supported by grants from
NSERC, PREA, and CITO.

7. References

[1] S. Abiteboul and O. Duschka. Complexity of answering
queries using materialized views. In PODS 1998, pages
254-263.

[2] S. Abiteboul, R. Hull and V. Vianu. Foundations of
Databases, Addison Wesley, 1995.

[3] S. Abiteboul and P. Kanellakis. Object identity as a
query language primitive. Journal of the ACM 45(5),
pages 798-842, 1998.

[4] C. Beeri and M. Y. Vardi. A proof procedure for data
dependencies. Journal of the ACM 31(4), pages
718-741, 1984.

[5] O. Duschka and A. Levy. Recursive plans for
information gathering. In IJCAI 1997, pages 778-784.

(6] H.-D. Ebbinghaus and J. Flum. Finite Model Theory.
Springer Verlag, 1995.

[7]
(8]

[9]

(10]

(11]

(12]

(13]

[14]

(15]

(16]
(17]
(18]
(19]
20]

(21]

23]

(24]

25]

[26]

(27]

28]

R. Fagin. Horn clauses and database dependencies.
Journal of the ACM 29(4), pages 952-985, 1982.

R. Fagin. Probabilities on finite models. Journal of
Symbolic Logic 41(1), pages 50-58, 1976.

R. Fagin, Ph. Kolaitis, R. Miller and L. Popa. Data
exchange: semantics and query answering. In ICDT
2003, pages 207-224.

R. Fagin, Ph. Kolaitis and L. Popa. Data exchange:
getting to the core. In PODS 2003, pages 90-101.

R. Fagin, L. Stockmeyer and M. Vardi. On monadic
NP vs monadic co-NP. Information and Computation
120(1), pages 78-92, 1995.

H. Gaifman. On local and non-local properties. In
Proceedings of the Herbrand Symposium, Logic
Colloguium ’81, North Holland, 1982.

E. Gréddel and Y. Gurevich. Metafinite model theory.
Information and Computation 140(1), pages 26-81,
1998.

A. Halevy. Theory of answering queries using views.
SIGMOD Record 29(4), pages 40-47, 2000.

W. Hanf. Model-theoretic methods in the study of
elementary logic. In J.W. Addison et al, eds, The
Theory of Models, North Holland, pages 132-145, 1965.

P. Hell and J. Nesetfil. The core of a graph. Discrete
Mathematics 109, pages 117-126, 1992.

L. Hella. Logical hierarchies in PTIME. Information
and Computation 129(1), pages 1-19, 1996.

L. Hella, L. Libkin, J. Nurmonen and L. Wong. Logics
with aggregate operators. Journal of the ACM 48(4),
pages 880-907, 2001.

R. Hull and M. Yoshikawa. ILOG: declarative creation
and manipulation of object identifiers. In VLDB 1990,
pages 455-468.

T. Imielinski and W. Lipski. Incomplete information in
relational databases. Journal of the ACM 31(4), pages
761-791, 1984.

A. Klug. Equivalence of relational algebra and
relational calculus query languages having aggregate
functions. Journal of the ACM 29(3), pages 699-717,
1982.

K. Larsen. On grouping in relational algebra.
International Journal of Foundations of Computer
Science 10(3), pages 301-311, 1999.

M. Lenzerini. Data integration: a theoretical
perspective. In PODS 2002, pages 233-246.

A. Levy, A. Mendelzon, Y. Sagiv and D. Srivastava.
Answering queries using views. In PODS 1995, pages
95-104.

L. Libkin. Logics with counting and local properties.
ACM Transactions on Computational Logic 1(1),
pages 33-59, 2000.

D. Maier, A. O. Mendelzon and Y. Sagiv. Testing
implications of data dependencies. ACM Transactions
on Database Systems 4(4), pages 455-469, 1979.

N. Shu, B. Housel, R. Taylor, S. Ghosh and V. Lum.
EXPRESS: a data extraction, processing, and
restructuring system. ACM Transactions on Database
Systems 2(2), pages 134-174, 1977.

J. Van den Bussche, D. Van Gucht, M. Andries and
M. Gyssens. On the completeness of object-creating
database transformation languages. Journal of the
ACM 44(2), pages 272-319, 1997.

