
Locally Consistent Transformations and Query Answering in
Data Exchange

Marcelo Arenas
University of Toronto

marenas@cs.toronto.edu

Pablo Barceló
University of Toronto

pablo@cs.toronto.edu

Ronald Fagin
IBM Almaden Research Center

fagin@almaden.ibm.com

Leonid Libkin
University of Toronto

libkin@cs.toronto.edu

ABSTRACT

Data exchange is the problem of taking data structured
under a source schema and creating an instance of a tar-
get schema. Given a source instance, there may be many
solutions – target instances that satisfy the constraints of
the data exchange problem. Previous work has identi-
fied two classes of desirable solutions: canonical univer-
sal solutions, and their cores. Query answering in data
exchange amounts to rewriting a query over the target
schema to another query that, over a materialized target
instance, gives the result that is semantically consistent
with the source. A basic question is then whether there
exists a transformation sending a source instance into a
solution over which target queries can be answered.

We show that the answer is negative for many data
exchange transformations that have structural proper-
ties similar to canonical universal solutions and cores.
Namely, we prove that many such transformations pre-
serve thelocal structure of the data. Using this notion,
we further show that every target query rewritable over
such a transformation cannot distinguish tuples whose
neighborhoods in the source are similar. This gives us a
first tool that helps check whether a query is rewritable.
We also show that these results are robust: they hold
for an extension of relational calculus with grouping and
aggregates, and for two different semantics of query an-
swering.

1. Introduction

Data exchange is the problem of materializing an in-
stance that adheres to a target schema, given an instance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2004, June 14-16, 2004, Paris, France.
Copyright 2004 ACM 1-58113-858-X/04/06 ...$5.00.

of a source schema and a specification of the relation-
ship between the source and the target. This is a very old
problem [27] that arises in many tasks where data must
be transferred between independent applications that do
not have the same data format. The need for data ex-
change has steadily increased over the years. With the
proliferation of web data in various formats and with the
emergence of e-business applications that need to com-
municate data yet remain autonomous, data exchange is
even more important.

A data exchange setting is a triple (S, T, Σst), where
S is the source schema,T is the target schema, andΣst

is a set of source-to-target dependencies that express
the relationship betweenS and T (some papers also
add a setΣt of dependencies that express constraints
on T, but here, we will mostly consider data exchange
settings with no target constraints). Such a setting gives
rise to the followingdata exchange problem: given an
instanceI over the source schemaS, find an instance
J over the target schemaT such thatI together with
J satisfy the source-to-target dependenciesΣst (when
target dependencies are used,J must also satisfy them).
Such an instanceJ is called asolution for I in the
data exchange setting. In general, there may be many
different solutions for a given source instanceI. For a
data exchange system, the two key issues are:

1. Which solution should be materialized?

2. How should queries be answered over the target?

Papers [9, 10] started a systematic investigation of
these issues for data exchange settings in whichS andT
are relational schemas. They isolated a class of solutions,
calleduniversal solutions, possessing good properties
that justify selecting them as the best solutions in data
exchange. Specifically, universal solutions have homo-
morphisms into every possible solution; in particular,
they have homomorphisms into each other, and thus are
homomorphically equivalent. Universal solutions are
the most general among all solutions and, in a precise
sense, they represent the entire space of solutions. It was
shown in [9] that under fairly general conditions, univer-
sal solutions exist, and acanonical universal solution

can be found in polynomial time, based on the classical
chase procedure [4, 26].

Since universal solutions need not be unique, this
raises the question of which universal solution to ma-
terialize. The answer proposed in [10] is based on using
minimality as a key criterion for what constitutes the
“best” universal solution. Although universal solutions
come in different sizes, all of them share a unique (up
to isomorphism) common “part”, which is nothing else
but thecore of each of them, when they are viewed as
relational structures [10]. By definition, the core of a
structure is the smallest substructure that is also a ho-
momorphic image of the structure. The concept of the
core originated in graph theory, where a number of its
properties have been established [16]. It was shown in
[10] that if the source-to-target dependenciesΣst are
tuple-generating dependencies (tgds), then the core of
the universal solutions forI is itself a solution forI
(they also allow the possibility of having certain setsΣt

of target dependencies). Hence, the core of the univer-
sal solutions forI is thesmallest universal solution for
I, and thus an ideal candidate for the “best” solution,
at least in terms of the space required to materialize it.
Furthermore, in a number of cases of interest, they show
that there is a polynomial-time algorithm for generating
the core.

We now turn to discussing query answering, and the
related issue of query rewriting [24, 14]. Given a source
instance and a data exchange setting, what is the mean-
ing of the “answer” to a queryQ over the target schema?
Since there may be multiple solutions to the data ex-
change problem, the standard approach is to define the
answer to be the set ofcertain answers [20, 1], that
is, those tuples that appear inQ(J) for every solution
J . The goal of query answering in data exchange is to
find these certain answers based on justone materialized
target instance.

If Q is a union of conjunctive queries, andJ is an arbi-
trary universal solution, then [9] showed that the certain
answers are given exactly by the set of all tuples inQ(J)
that are formed entirely of elements from the source.
Such nice behavior fails when we go beyond unions of
conjunctive queries: it was shown in [9] that there is
a Boolean conjunctive queryQ with inequalities such
thatQ(J) does not give the certain answers, no mat-
ter which universal solutionJ is selected, but for some
other first-order queryQ′ (arewriting ofQ), the certain
answers forQ are given byQ′(J), whereJ is the canoni-
cal universal solution. Unfortunately, query rewritability
is not a general phenomenon either, as [9] constructed a
Boolean conjunctive queryQwith inequalities for which
there is no such rewritingQ′.

But the following basic question remains unanswered:
is there a transformationF that maps each source in-
stanceI into a solutionF(I) and a rewritingQ′ such
that the certain answers are given byQ′(F(I))? Of
course we want to forbid cheating solutions (like encod-

ing the answer to a Boolean query with a self-loop). But
what is a natural condition then to impose on a transfor-
mation? Such a condition must ensure a certain degree
of “uniformity” of F (that is, it should not be tailored
to deal with a specific query), and be satisfied by the
transformations commonly used in data exchange such
asFuniv that maps the source instanceI onto the1 canon-
ical universal solution, orFcore that mapsI onto the core
of the universal solutions.

The condition we impose on a transformationF is that
it must belocally consistent, that is, points with similar
neighborhoods in the source have similar neighborhoods
in the target. We make this notion of “locally consistent”
precise (in fact, there are two closely related but incom-
parable properties based on the exact definition of “sim-
ilarity”), and prove that, in an appropriate data exchange
setting,Funiv andFcore possess both properties.

One of our main results is that the failure of the canon-
ical universal solution to support rewriting is not because
there is a “better” choice of solution. Specifically, we
show that if the transformation that produces the solution
is locally consistent, then there are first-order queries
that are not rewritable. This implies that neither the
canonical universal solution, nor the core, nor any other
“uniformly” generated solution supports rewriting for
arbitrary first-order queries. We prove this by showing
that queries rewritable over locally consistent transfor-
mations cannot distinguish points that have isomorphic
neighborhoods in the source instance. Unlike ad hoc
techniques employed in [10, 5], this criterion gives us
easy ways of showing that a query is not rewritable.

The notion of local consistency introduced in this pa-
per is a new one; although it is inspired by standard
notions of locality from logic [12, 15, 11], it is different
from them since this is the first notion of locality that
applies to transformations that invent new values.

We also prove two extensions of the main results.
The first one concerns the underlying query language;
we shows that all the results continue to hold if in-
stead of first-order queries, we use an extension with
grouping and aggregate functions, that is, essentially
theselect-from-where-groupby-having fragment
of SQL. Second, we look at an alternative semantics
(proposed in [10]) for query answering in data exchange
that, instead of taking certain answers (those tuples that
appear inQ(J) for every solutionJ), takes tuples that
appear inQ(J) for everyuniversal solutionJ . This is
reasonable, because the universal solutions are the desir-
able solutions in data exchange. We prove that the main
results of the paper remain true under this semantics.

Organization Basic notions related to data exchange,
universal solutions, cores, and neighborhoods are pre-

1We refer to “the” canonical universal solution, al-
though in the scenario of [9], it is not unique. We shall
define it in this paper in a way where it is uniquely
determined.

sented in Section 2. In Section 3 we study structural
properties of data exchange transformations. We first
present a rule-based language that allows us to code
many such transformations, and to prove local consis-
tency for programs in that language. We derive results
for Funiv andFcore as corollaries. We also briefly con-
sider extensions with target dependencies.

In Section 4, we study query rewritability. We show
that a query rewritable over any locally consistent trans-
formation cannot distinguish constants whose neighbor-
hoods in the source are isomorphic. We show that this
property gives us easy non-rewritability results. We
also establish a connection between rewritability over
the core, and rewritability over the canonical universal
solution.

In Section 5, we present extensions of these results
to languages with grouping and aggregation, and to the
semantics based on universal solutions. Summary and
concluding remarks are given in Section 6. All proofs
will appear in the full version.

2. Preliminaries

A schema R is a finite sequence〈R1, . . . , Rk〉 of
relation symbols, with eachRi having a fixed arityni.
An instance I of R assigns to each relation symbol
Ri of R a finite ni-ary relationI(Ri). The domain
dom(I) of instanceI is the set of all elements that occur
in any of the relationsI(Ri).2 An instanceJ of R is
a subinstance of I if dom(J) ⊆ dom(I) andJ(Ri) ⊆
I(Ri), for every i. If one of the inclusions is proper,
we refer toJ as aproper subinstance of I. If R is
a schema, then adependency over R is a sentence in
some logical formalism overR, typically FO (first-order
logic).

2.1 Data exchange setting

Let S = 〈S1, . . . , Sn〉 andT = 〈T1, . . . , Tm〉 be two
schemas with no relation symbols in common. We refer
to S as thesource schema and to theSi’s as the source
relation symbols. We refer toT as thetarget schema and
to theTj ’s as the target relation symbols. We denote by
〈S,T〉 the schema〈S1, . . . , Sn, T1, . . . , Tm〉. Instances
overS will be called source instances, while instances
overT will be called target instances. IfI is a source
instance andJ is a target instance, then(I, J) denotes
an instanceK over〈S,T〉 such thatK(Si) = I(Si) and
K(Tj) = J(Tj), for i ∈ [1, n] andj ∈ [1,m].

2An instance is a special case of an R-structure A de-
fined as (A, RA

1 , . . . , RA

k), where A is a set (the uni-

verse), and RA

i ⊆ Ani for each i. Thus, in the case of
arbitrary structures, the universe may contain elements
that are not present in any of the relations.

A source-to-target dependency (std) is a sentence of
the form

∀x̄
(

ϕS(x̄) → ∃ȳ ψT(x̄, ȳ)
)

,

whereϕS(x̄) is a formula overS in some logical formal-
ism (typically FO) andψT(x̄, ȳ) is a conjunction of FO
atomic formulae overT.

Definition 2.1. (Data Exchange Setting) A data
exchange setting is a triple (S,T,Σst), where S is
a source schema, T is a target schema, and Σst

is a set of source-to-target dependencies. The data
exchange problem associated with (S,T,Σst) is the
following: given a source instance I, find a target
instance J such that (I, J) satisfies Σst. Such a J
is called a solution for I, or simply a solution if I
is clear from the context.

We denote byConst an infinite set of all values that
may occur in source instances, and, following the data
exchange terminology [9, 10], we call those valuescon-
stants. In addition, we also assume an infinite setVar
of elements, disjoint fromConst. Elements ofVar are
callednulls [9, 10], and they are used to help populate
target instances. That is, the domain of a target instance
comes fromConst ∪ Var.

If I is an instance with values inConst ∪ Var, then
Const(I) denotes the set of all constants occurring in
relations inI, andVar(I) denotes the set of nulls oc-
curring in relations inI. From now on, we assume that
there is a way to distinguish constants from nulls. For
example, we may assume that the target schemaT con-
tains an auxiliary predicateC whose interpretation is
dom(I) ∩ Const.

Papers [9, 10] identified two important subclasses of
data exchange, inspired by thelocal-as-view (LAV) and
global-as-view (GAV) classes of data integration prob-
lems [23]:

• LAV setting: each dependency inΣst is of the
form S(x̄) → ∃ȳ ψT(x̄, ȳ), whereS is some re-
lation symbol in the source schemaS, and, as be-
fore,ψT(x̄, ȳ) is a conjunction of atomic formulae
overT.

• GAV setting: each dependency inΣst is of the
formϕS(x̄) → T (x̄), whereT is a relation symbol
in the target schemaT. If ϕS(x̄) is a conjunctive
query, we speak of the GAV(CQ) setting.3

Observe that the general data exchange can be seen as a
composition of LAV and GAV.

3In [9, 10], the formula ϕS(x̄) was restricted to being
the conjunction of atomic formulae over S, that is, to
the GAV(CQ) setting.

Example 2.2. Consider a LAV data exchange set-
ting in which S = 〈M(·, ·), N(·, ·)〉, T = 〈P (·, ·, ·),
Q(·, ·)〉 and Σst contains the following stds:

M(x, y) → ∃w∃z(P (x, y, z) ∧Q(w, z)),

N(x, y) → ∃zP (x, y, z).

Suppose we are given a source instance I =
{M(a, b), N(a, b)}.4 Since the stds in Σst do not
completely specify the target, there are multiple so-
lutions that are consistent with the specification.
One solution is:

J = {P (a, b, n1), P (a, b, n2), Q(n3, n1)},

where n1, n2, n3 are values in Var. Another solution,
but with no nulls, is J ′ = {P (a, b, a), Q(b, a)}. 2

2.2 Universal solutions and cores

Let J andJ ′ be two instances over the target schema
T with values inConst ∪ Var. A homomorphism
h : J → J ′ is a mapping fromConst(J) ∪ Var(J)
to Const(J ′) ∪ Var(J ′) such thath(c) = c for all
c ∈ Const(J), andt̄ ∈ J(R) implies5 h(t̄) ∈ J ′(R) for
all R ∈ T. Furthermore, we say thatJ andJ ′ areho-
momorphically equivalent if there are homomorphisms
h : J → J ′ andh′ : J ′ → J .

Definition 2.3. (Universal solution) If I is a
source instance in a data exchange setting, then a
universal solution for I is a solution J such that
for every solution J ′ for I, there exists a homomor-
phism h : J → J ′.

Example 2.4. The solution J ′ in Example 2.2 is not
universal, since there is no homomorphism from J ′

to J . On the other hand, it can be shown that J is
a universal solution. 2

It was shown in [9] that universal solutions possess
good properties that justify selecting them (as opposed
to arbitrary solutions) for the semantics of the data ex-
change problem. A universal solution is more general
than an arbitrary solution because, by definition, it can
be homomorphically mapped into that solution. More-
over, all universal solutions are homomorphically equiv-
alent. Furthermore, results of [9] imply that for the data
exchange setting considered in this paper, universal so-
lutions always exist.

To deal with the problem of computing universal solu-
tions, [9] proposes to compute a special kind of universal
solution, called acanonical universal solution. The al-
gorithm presented in [9] is based on applying the chase,
but we shall define canonical universal solutions directly,
4It is often convenient to define instances by simply list-
ing the tuples attached to the corresponding relation
symbols.
5If t̄ = (t1, . . . , tk), then by h(t̄) we mean
(h(t1), . . . , h(tk)).

in Section 3, when we introduce a general class of pro-
grams that define data transformations that invent new
values.

The reason one wants to compute a specific solution
for the data exchange problem is to be able to evaluate
queries over the target schema. It was noted in [9] that
universal solutions need not be isomorphic, and thus any
decision to choose one is somewhat arbitrary. To deal
with this problem, [10] proposed to use thecore of the
universal solutions.

Definition 2.5. (Core) A subinstance J of an in-
stance I is called a core of I if there is a homomor-
phism from I to J , but there is no homomorphism
from I to a proper subinstance of J .

It is known [16] that every instance has a unique core
(up to isomorphism). It is shown in [10] that if the
source-to-target dependencies are tuple-generating de-
pendencies (tgds), then every universal solution has the
same core (up to isomorphism), and this core is itself a
universal solution. Further, it is shown in [10] that under
the assumptions in this paper, the core can be computed
in polynomial time.

Example 2.6. In Example 2.2, J∗ = {P (a, b, n1),
Q(n3, n1)} is the core of the universal solutions. 2

2.3 Neighborhoods and locality

The Gaifman graph G(I) of an instanceI of R is
the graph whose nodes are the elements ofdom(I), and
such that there exists an edge betweena andb in G(I) iff
a andb belong to the same tuple of a relationI(R), for
someR ∈ R. For example, ifI is an undirected graph,
thenG(I) is I itself.

The distance between two elementsa andb in I, de-
noted bydI(a, b) (or d(a, b), if I is understood), is the
distance between them inG(I). We defined(ā, b) as the
minimum value ofd(a, b) wherea is an element of̄a.

Given a tuplēa = (a1, . . . , am) ∈ dom(I)m, we de-
fine the instanceN I

d (ā), called thed-neighborhood of
ā in I, as the restriction ofI to the elements at dis-
tance at mostd from ā, with the members of̄a treated
as distinguished elements. That is, if two neighbor-
hoodsN I

d (ā) and N I
d (b̄) are isomorphic (written as

N I
d (ā) ∼= N I

d (b̄)), then there is an isomorphismf :
N I

d (ā) → N I
d (b̄) such thatf(ai) = bi, for 1 ≤ i ≤ m.

The notion of neighborhoods allows one to definelo-
cality of logics. A formulaϕ(x̄) in some logical for-
malism is local if there exists a numberd such that
N I

d (ā) ∼= N I
d (b̄) implies thatI |= ϕ(ā) iff I |= ϕ(b̄), for

every instanceI. It is known [12] that all FO formulae
are local. This was generalized to logics that extend FO
with counting [25] and aggregate functions [18].

3. Structural Properties of Data Exchange
Transformations

In this section we show that data exchange transfor-
mations preserve the local character of the data. As a
first step towards proving those results, we formulate a
rule-based language for specifying transformations such
asFuniv, that maps the source instanceI onto the canon-
ical universal solution. This language is similar in spirit
to languages with oid invention [19, 28] but its rules are
nonrecursive. Based on the types of logical formulae
used in rules, we establish different results on locality
of transformations, and then derive, as corollaries, exact
characterizations of locality for various data exchange
settings.

3.1 Data exchange programs

A data exchange program is a quadrupleΠ = (S,
A, T, R), whereS (“source”), A (“auxiliary”) and
T(“target”) are pairwise disjoint relational schemas and
R is a sequence〈r1, . . . , rn〉 of rules such that each rule
is of the form

R1(x̄1, ȳ1), . . . , Rk(x̄k, ȳk) :– ϕ(x̄), (1)

where eachRi is either inA or in T, whereϕ(x̄) is an
FO formula over〈S,A〉, where variables in thēxi’s are
among those in̄x, and variables in thēyi’s are not inx̄.
We refer toR1(x̄1, ȳ1), . . . , Rk(x̄k, ȳk) as thehead of
the rule, and toϕ(x̄) as thebody of the rule.

Furthermore,we require that the program bestratified.
That is, ifAi is the set of relation symbols fromA used
in rulesr1, . . . , ri, then the formulaϕ in the body of rule
ri+1 is over the schema〈S,Ai〉.

Example 3.1. Consider S = 〈S(·, ·)〉, A =
〈R(·, ·), N(·)〉, T = 〈T (·, ·)〉, and rules r1 and r2
defined as follows:

R(x, z), R(z, y), N(z) :– S(x, y) (r1)

T (x, y) :– ∃z(R(x, z) ∧R(z, y) ∧N(x) ∧N(y)) (r2)

If R = 〈r1, r2〉, then (S,A,T,R) is a data exchange
program. Notice also that if R′ = 〈r2, r1〉, then
(S,A,T,R′) is not a data exchange program (be-
cause it is not stratified). 2

Given a data exchange programΠ = (S, A, T,
R), we define the transformationFΠ : inst(S) →
inst(T) that associates a target schema instance with
each source schema instance. For that, we show induc-
tively how to define a mappingF i

Π : inst(〈S,A,T〉) →
inst(〈S,A,T〉) given by the firsti rules of the pro-
gram. Suppose we are given an instanceI of S, and
J = F i−1

Π (I), where 1 ≤ i ≤ n (if i = 1, then
J(S) = I(S) for every S ∈ S, andJ(P) = ∅ for
everyP ∈ 〈A,T〉). Let theith rule be given by (1), let

ū be the tuple of variables in̄x that are used in the head
of the rule, and let̄v be the tuple of variables in the head
of the rule that are not in̄x.

For each tuplēa of length|ū| overdom(J), find all the
tuplesb̄1, . . . , b̄m such thatJ |= ϕ(ā, b̄j), for 1 ≤ j ≤
m. Then choosem tuples of length|v̄| of fresh distinct
null valuesn̄1, . . . , n̄m overVar. To construct relation
Rl, for l ≤ k, in F i

Π(I), add tuples(πx̄l
(ā), πȳl

(n̄j)),
for 1 ≤ j ≤ m, to the relationJ(Rl). Hereπx̄l

(ā) refers
to the components of̄a that occur in the positions of̄xl.

Example 3.2. Consider Π = (S, A, T, R) as de-
fined in Example 3.1, and an instance I =
{S(a, b), S(b, a)}. Initially, F0

Π(I) = I. We next
deal with the rule (r1). The only variable that oc-
curs in the head but not in the body of (r1) is z,
and hence, to compute F1

Π(I), we must invent nulls
corresponding to that variable.

Since I |= S(a, b), we must choose a null n1,
and add tuples R(a, n1), R(n1, b) and N(n1). Fur-
thermore, since I |= S(b, a), we must pick up a
fresh null n2 (that is, n1 6= n2), and add tuples
R(b, n2), R(n2, a) and N(n2). Hence, F1

Π(I) ex-
pands I with

{R(a, n1), R(n1, b), N(n1), R(b, n2), R(n2, a), N(n2)}.

In (r2), there are no variables present in the head
that are not free variables of the body, and hence
computing F2

Π(I) amount to evaluating the query
given by the body of (r2) over F1

Π(I), and adding
the result to F1

Π(I). Thus, F2
Π(I) is the expansion

of F1
Π with {T (n1, n2), T (n2, n1)}. 2

Finally,FΠ(I) is defined to be the restriction ofFn
Π(I)

to the predicates inT. In Example 3.2,FΠ(I) is the
restriction ofF2

Π to T , that is,{T (n1, n2), T (n2, n1)}.

Next, we connect data exchange problems with data
exchange settings defined earlier. Given a data exchange
settingDE = (S,T,Σst), define a data exchange pro-
gramΠDE = (S, ∅,T,R), where, for each std

ϕS(x̄) → ∃ȳ (R1(x̄1, ȳ1) ∧ · · · ∧Rk(x̄k, ȳk))

in Σst, we add a rule

R1(x̄1, ȳ1), . . . , Rk(x̄k, ȳk) :– ϕS(x̄)

to R. In fact, these data exchange programsΠDE are
exactly the data exchange programs without auxiliary
relation symbols, that is, with the auxiliary schemaA
empty. Notice that in the absence of the auxiliary schema
A, the order of the rules inR could be arbitrary (al-
though, as we shall discuss shortly, the order of the rules
in R may affect the result of applying the corresponding
transformation).

Definition 3.3. (Canonical Universal Solution)
The canonical universal solution of instance I in
data exchange setting DE = (S,T,Σst) is FΠDE

(I).
If the data exchange setting DE is understood, we
shall denote this transformation FΠDE

by Funiv.

This definition differs slightly from the one given in
[9], where a canonical universal solution is not deter-
mined uniquely as it is obtained by using the classical
chase procedure [4, 26]. Since the result of the chase de-
pends on the order in which the chase steps are applied,
there may be multiple nonisomorphic canonical univer-
sal solutions under the definition in [9] (even when there
are no target constraints). Our definition uses a deter-
ministic procedure that constructs a unique canonical
universal solution (since, effectively, our approach fixes
the order in which the chase steps are applied). It can
easily be shown thatFuniv(I), for every instanceI, is a
universal solution.

In the definition ofΠDE , we did not use any auxiliary
relations fromA. One may then ask if auxiliary rela-
tions are ever necessary. The next result says that they
are. Thus, with auxiliary relations, one can define trans-
formations that do not arise in any data exchange setting
DE . Therefore, in what follows, we prefer to prove re-
sults for the more expressive data exchange programs
rather than the more restrictive transformationFuniv.

Proposition 3.4. There is a data exchange program
that is not equivalent to any data exchange program
with no auxiliary relations.

Finally, we define the transformationFcore such that
Fcore(I) is the core ofFuniv(I).

3.2 Locally consistent transformations

In this section we introduce the notions of local consis-
tency of transformations frominst(S) to inst(T). The
first notion says that neighborhoods around elements
common to the input and output instances are preserved.
Informally, if a, b ∈ dom(I) are present in the domain
of the resulting instanceJ of T, then the isomorphism
of sufficiently large neighborhoods ofa andb in I guar-
antees that their neighborhoods are isomorphic inJ as
well. Formally, we define this as follows.

Definition 3.5. (Local Consistency) A mapping
F : inst(S) → inst(T) is locally consistent if for
every m, d ≥ 0 there exists d′ ≥ 0 such that, for
every instance I of S and m-tuples ā, b̄ ∈ dom(I)m,
if N I

d′(ā) ∼= N I
d′(b̄), then

1) ā ∈ dom(F(I))m ⇔ b̄ ∈ dom(F(I))m, and

2) N
F(I)
d (ā) ∼= N

F(I)
d (b̄).

We next present a sufficient condition for a mapping
FΠ associated with a data exchange programΠ to be
locally consistent. This condition will guarantee local
consistency for the LAV setting of data exchange.

We say that a formulaϕ(x̄) is r-bounded if for every
structureI such thatI |= ϕ(a1, . . . , an), it is the case

thatdI(ai, aj) ≤ r for everyi, j ≤ n. A data exchange
programΠ is r-bounded if every formula in the body of
every rule isr-bounded.

Lemma 3.6. The transformation FΠ of every r-
bounded data exchange program is locally consistent.
2

Theorem 3.7. In the LAV setting, both the canoni-
cal universal solution transformation Funiv and the
core transformation Fcore are locally consistent. 2

The result for the canonical universal solution is an
immediate consequence of Lemma 3.6, since in a LAV
settingDE , the bodies of rules inΠDE are atomic pred-
icates (since they are left-hand sides of the stds), which
are1-bounded. The result for the core requires a separate
proof, which will be given in the full version.

One can also show that local consistency for the core
transformation depends crucially on the requirement of
the data exchange setting that constants be preserved.
That is, if homomorphisms are not required to be iden-
tity on Const (which is the usual setting in the graph-
theoretic literature on the core [16]), then one can find
examples of graphs for which the core transformation is
not locally consistent.

Theorem 3.7 does not extend to the GAV setting, even
when restricted to conjunctive queries.

Proposition 3.8.

(a) There are GAV(CQ) settings such that Σst

contains either one dependency of the form
ϕS(x, y, z) → T (x, y, z), or multiple dependen-
cies of the form ϕS(x, y) → T (x, y), and the
corresponding transformations Funiv and Fcore

are not locally consistent.

(b) If, in the GAV(CQ) setting, Σst contains
only one dependency of the form ϕS(x, y) →
T (x, y), then Funiv and Fcore are locally con-
sistent.

Since local consistency is a nontrivial property of
FO-definable mappings, it follows that the question of
whetherFΠ is locally consistent is undecidable, even in
the GAV setting (this easily follows from Trakhtenbrot’s
theorem; cf. [6]).

3.3 Local consistency under logical equivalence

We have seen that mappings that arise in the LAV set-
ting are locally consistent, and that local consistency may
fail even in some simple GAV settings. To overcome the
failure of local consistency, we introduce a notion of
locality based on logical equivalence (in particular, FO-
equivalence) rather than isomorphism of neighborhoods,

and we prove that in general, the canonical universal so-
lution transformationFuniv and the core transformation
Fcore are locally consistent under FO-equivalence.

The quantifier rank of an FO formula is the maxi-
mum depth of quantifier nesting in it. IfI andJ are
instances of the same schema, we writeI ≡k J if I and
J satisfy the same FO sentences of quantifier rank up to
k. In the new notion of local consistency, we require that
≡k′ -equivalent neighborhoods be sent to≡k-equivalent
neighborhoods. Formally, we define it as follows.

Definition 3.9. (Local Consistency under FO-
equivalence) A mapping F : inst(S) → inst(T) is
locally consistent under FO-equivalence if for every
m, d, k ≥ 0 there exist d′, k′ ≥ 0 such that, for every
instance I of S and m-tuples ā, b̄ ∈ dom(I)m, if
N I

d′(ā) ≡k′ N I
d′(b̄), then

1) ā ∈ dom(F(I))m ⇔ b̄ ∈ dom(F(I))m, and

2) N
F(I)
d (ā) ≡k N

F(I)
d (b̄).

Lemma 3.10. The transformation FΠ of every data
exchange program is locally consistent under FO-
equivalence. 2

Theorem 3.11. For an arbitrary data exchange set-
ting, both the canonical universal solution transfor-
mation Funiv and the core transformation Fcore are
locally consistent under FO-equivalence. 2

The result for the canonical universal solution is an
immediate consequence of Lemma 3.10. The result for
the core is considerably harder and relies on the machin-
ery developed for the proof of a later theorem (Theorem
4.9).

Note that the definitions of local consistency and lo-
cal consistency under FO-equivalence are incompara-
ble: the latter makes a weaker assumption and arrives
at a weaker conclusion. Nevertheless, either definition
works for our applications in query rewriting, because
the statement we need there makes the stronger assump-
tion (isomorphism of neighborhoods) but needs only the
weaker conclusion (FO equivalence of neighborhoods).

3.4 Adding target dependencies

Papers [9, 10] considered an extension of the data
exchange setting in which dependencies exist for the
target schema as well. A solution is then required to
satisfy those target dependencies.

Based on familiar classes of dependencies (cf. [7, 4]),
we define extensions of the data exchange setting with
tuple-generatingdependencies (tgds) as well as equality-
generating dependencies (egds). The tgds overT are of
the form∀x̄(ϕT(x̄) → ∃ȳ ψT(x̄, ȳ)), whereϕT(x̄) and
ψT(x̄, ȳ) are conjunctions of FO atomic formulae. The

egds overT are of the form∀x̄(ϕT(x̄) → (x1 = x2)),
whereϕT(x̄) is a conjunction of atomic FO formulae,
with free variables̄x, and wherex1, x2 are inx̄. If, fur-
thermore, the data exchange setting is restricted to LAV
or GAV, we shall speak of LAV+tgd settings, LAV+egd
settings, and so on. The next proposition covers all four
possible settings: LAV+tgd, GAV+tgd, LAV+egd, and
GAV+egd.

Proposition 3.12.

(a) The transformations Funiv and Fcore of
LAV+tgd (or GAV+tgd) settings are not
necessarily locally consistent (under FO-
equivalence), even if the target schema con-
tains only one dependency.

(b) The transformations Funiv and Fcore of
GAV+egd settings are locally consistent under
FO-equivalence.

(c) The transformations Funiv and Fcore of
LAV+egd settings are not necessarily locally
consistent (under FO-equivalence), even if the
target schema contains only key dependencies.

4. Query Rewriting and Locality

In this section, we study query rewriting in data ex-
change. We use local consistency to show that rewritable
queries have a certain kind of locality property. This
property gives an easily applicable tool for proving
nonexistence of rewritings over the canonical universal
solution and the core.

4.1 The query rewriting problem

Suppose we have a data exchange setting(S,T,Σst),
and a queryQ over thetarget schemaT. What does
it mean to answerQ? Since there are many possible
solutions to the data exchange problem, the standard
approach is to define the semantics ofQ in terms of
certain answers: that is, for an instanceI of S,

certain(Q, I) =
⋂

J is a solution for I

Q(J).

Thus, a tuplēa is in certain(Q, I) if it belongs toQ(J)
for all solutionsJ for I.

But how can one find this setcertain(Q, I), given
that there are potentially infinitely many solutions? The
approach proposed in [9, 10] is to look for some spe-
cific transformationsF : inst(S) → inst(T), and find
conditions under whichcertain(Q, I) equalsQ′(F(I)).
ThenQ is rewritable overF byQ′. More formally, we
have the following definition.

Definition 4.1. (Query Rewriting) Given a data
exchange setting (S,T,Σst), a mapping F :

inst(S) → inst(T) and an m-ary query Q over T,
we say that Q is rewritable over F if there exists an
m-ary FO query Q′ over T such that

certain(Q, I) = Q′(F(I))

for every instance I of S.

We shall refer to a query as being rewritable over the
canonical universal solution if it is rewritable overFuniv,
and rewritable over the core if it is rewritable overFcore.
We now note that rewritability is undecidable in general.

Proposition 4.2. Given a data exchange setting
(S,T,Σst) and an FO query Q over T, it is unde-
cidable whether Q is rewritable over the canonical
universal solution, or over the core. 2

In some cases, we can establish that a class of queries
is or is not rewritable. For example, it is known that for
every FO sentence, its asymptotic probability is either 0
or 1 (this is the zero-one law for FO [8]).

Proposition 4.3. In a data exchange setting, every
Boolean query whose asymptotic probability is 0 is
rewritable, by false, over both the canonical univer-
sal solution and over the core. 2

However, such partial results do not give us anytech-
niques for proving that queries arenot rewritable. We
shall now exhibit such techniques, based on the notions
of locality from the previous section.

4.2 Local source-dependency and rewritability

In this section, we prove that queries rewritable over
locally consistent transformations are guaranteed to sat-
isfy a strong locality criterion on their own, and use these
results to show that certain queries are not rewritable over
the canonical universal solution or over the core.

Definition 4.4. (Locally source-dependent
queries) Given a data exchange setting (S,T,Σst)
and a query Q over T, we say that Q is locally
source-dependent if there is d ≥ 0 such that for
every instance I of S and for every ā, b̄ ∈ dom(I)m,
if N I

d (ā) ∼= N I
d (b̄) then

(

ā ∈ certain(Q, I) ⇔ b̄ ∈ certain(Q, I)
)

.

We next show that this notion applies to all queries
rewritable over locally consistent transformations.

Theorem 4.5. Let (S,T,Σst) be a data exchange
setting, and Q a query over T. Assume that Q
is rewritable over a transformation F , where F is
either locally consistent, or locally consistent un-
der FO-equivalence. Then Q is locally source-
dependent.

Proof. LetQ′ be a first-order rewriting ofQ overF ,
that is, anm-ary FO query overT such that for every in-
stanceI of S, we havecertain(Q, I) = Q′(F(I)). As-
sume thatF is locally consistent (the proof for transfor-
mations that are locally consistent under FO-equivalence
is similar). By Gaifman’s theorem [12], there exists a
constantr such that for every instanceJ of T andm-
tuplesā, b̄ in J , if NJ

r (ā) ∼= NJ
r (b̄), thenā ∈ Q′(J) if

and only if b̄ ∈ Q′(J). Given thatF is locally consis-
tent, there existsd ≥ 0 such that for every instanceI of
S andm-tuplesā, b̄ in I, if N I

d (ā) ∼= N I
d (b̄), then

1. ā ∈ dom(F(I)) iff b̄ ∈ dom(F(I)), and

2. NF(I)
r (ā) ∼= N

F(I)
r (b̄).

From this we conclude thatQ is locally source-
dependent since for every instanceI of S andm-tuples
ā, b̄ in I,

N I
d (ā) ∼= N I

d (b̄)

⇒ NF(I)
r (ā) ∼= NF(I)

r (b̄)

⇒ ā ∈ Q′(F(I)) iff b̄ ∈ Q′(F(I))

⇒ ā ∈ certain(Q, I) iff b̄ ∈ certain(Q, I). 2

Corollary 4.6. In a data exchange setting, a target
query rewritable over the canonical universal solu-
tion or over the core is locally source-dependent. 2

We now show how this result can be used as a sim-
ple tool for proving non-rewritability results, even in
very simple data exchange settings. We call a data
exchange settingcopying if S and T are two copies
of the same schema (that is,S = 〈R1, . . . , Rl〉,T =
〈R′

1, . . . , R
′
l〉, andRi andR′

i have the same arity), and
Σst = {Ri(x̄) → R′

i(x̄) | i = 1, . . . , l}. Note that a
copying setting is both LAV and GAV.

Theorem 4.7. There is a copying data exchange set-
ting and an FO-query that is not rewritable over the
canonical universal solution, nor over the core.

Proof. LetS = 〈G(·, ·),R(·)〉,T = 〈G′(·, ·), R′(·)〉and
Σst = {G(x, y) → G′(x, y), R(x) → R′(x)}. Define
a queryQ(x) over the target schema as:

R′(x) ∨ ∃y∃z(R′(y) ∧G′(y, z) ∧ ¬R′(z)).

Assume thatQ is FO-rewritable overFuniv or Fcore.
Then it is locally source-dependent: there existsd ≥
0 such that for every source instanceI and every
a, b ∈ dom(I), we havea ∈ certain(Q, I) iff b ∈
certain(Q, I) wheneverN I

d (a) ∼= N I
d (b).

Define a source instanceI as shown in Figure 1:I(G)
is the disjoint union of two cycles of length2d+ 2, and
I(R) = {c}. ThenN I

d (a) ∼= N I
d (b), which implies that

thata ∈ certain(Q, I) iff b ∈ certain(Q, I).

. .
 .

. .
 .

. .
 .

. .
 .

b2d

bd+1

b b1
a a1

c adad+1

a2d

bd

Figure 1: Instance I of Theorem 4.7.

However, it is easy to see thata ∈ certain(Q, I)
and b 6∈ certain(Q, I). Indeed, ifJ is an arbitrary
solution forI, thenJ |= R′(a)∨∃y∃z(R′(y)∧G′(y, z)∧
¬R′(z)) (if J does not satisfy the second disjunct, then
J |= ∀y∀z(R′(y)∧G′(y, z) → R′(z)) and, hence,J |=
R′(a) sinceR′(c) is true in every solution, anda and
c are on the same cycle). Furthermore, ifJ0 is a target
instance such thatJ0(G

′) = I(G) andJ0(R
′) includes

exactly all the points in the cycle containinga, thenJ0

is a solution forI. However,J0 6|= Q(b), and thus
b 6∈ certain(Q, I). This contradiction shows thatQ is
not rewritable. 2

Rewritability over the source Another type of
rewriting considered in the literature is rewriting over
the source: that is, certain answers to a target query
are obtained by applying a rewriting of the query to the
source instance. This type of rewriting is common in
data integration (e.g., see [5]).

Formally, given a data exchange setting(S,T,Σst)
and anm-ary queryQoverT,we say thatQ isrewritable
over the source if there exists anm-ary FO queryQ′

over S such thatcertain(Q, I) = Q′(I) for every in-
stanceI of S.

The following corollary is obtained directly from the
proof of Theorem 4.5.

Corollary 4.8. In a data exchange setting, a target
query Q rewritable over the source is locally source-
dependent.

Thus, we can also use local source-dependency as a
simple tool for proving non-rewritability results over the
source.

4.3 Rewritability over the core

We now establish the connectionbetween rewritability
over the core and rewritability over canonical universal
solution: we show that the former implies the latter.

Theorem 4.9. Given a data exchange setting
(S,T,Σst), every query Q over the target schema

that is rewritable over the core is also rewritable
over the canonical universal solution. Moreover,
there is a polynomial-time algorithm that, given a
rewriting of Q over the core, finds a rewriting of Q
over the canonical universal solution. 2

The local consistency ofFcore under FO equivalence,
stated in Theorem 3.11, actually follows from several
lemmas developed in the proof of this theorem.

The next proposition says that the converse of Theo-
rem 4.9 does not hold.
Proposition 4.10. There exists an FO query that is
rewritable over the canonical universal solution, but
not rewritable over the core. 2

5. Extensions

Most results of the previous two sections can be
extended in two ways. First, as the underlying lan-
guage for both data exchange programs and query
rewritability one can use an extension of FO with group-
ing and aggregation, corresponding to basic features
of SQLselect-from-where-groupby-havingstate-
ments. Second, we show that many results extend for
an alternative semantics [10] of queries over the target
schema.

5.1 Extended data exchange setting

So far, both data exchange settings and data exchange
programs were based on first-order formulae: that is,
all stds were of the formϕS(x̄) → ∃ȳ ψT(x̄, ȳ), where
ϕS(x̄) is an FO formula, and all formulae in the bodies
of rules were FO as well.

We now show how to extend our main results to the set-
ting where these formulae correspond not to relational
calculus but to its extension with grouping and aggre-
gates. Such languages are typically defined as an exten-
sion of relational algebra (see [21, 22]), but here instead
we adopt the logic approach of [18].

Based on the approach of [13, 18], we define anaggre-
gate operator to be a sequenceG = 〈g0, g1, g2, . . . , gω〉
of functions, where eachgn, for 0 < n < ω, takes an
n-element bag of rational numbers, and returns a number
in Q. The valuesg0 andgω are constants associated with
the output ofG on the empty bag and on infinite bags,
respectively (the latter may occur in the definition of the
semantics of terms in the logic).

The aggregate logic FOaggr over schemaR is two-
sorted: first-sort variables range over domains on in-
stances ofR, and second-sort variables range overQ. It
extends FO by

• numerical terms and predicates: for every function
f : Qn → Q and every predicateP ⊆ Qn, if
t1(x̄), . . . , tn(x̄) are terms of the second (numer-
ical) sort, then so isf(t1(x̄), . . . , tn(x̄)); further-
more,P (t1(x̄), . . . , tn(x̄)) is an atomic formula.
These have the standard semantics.

• aggregate terms: for every aggregate operatorG, a
second-sort termt(x̄, ȳ) and a formulaϕ(x̄, ȳ), we
have a new second-sort term

t′(x̄) = AggrG ȳ
(

t(x̄, ȳ), ϕ(x̄, ȳ)
)

.

The semanticst′(ā) is defined as follows. If there are
infinitely manyb̄ such thatϕ(ā, b̄) holds, then the value
of t′(ā) is gω. Otherwise, let̄b1, . . . , b̄m enumerate all
the b̄ such thatϕ(ā, b̄) holds. Thent′(ā) is defined as
gm applied to the bag{{t(ā, b̄1), . . . , t(ā, b̄m)}}.

Example 5.1. Let R be a ternary relation whose tu-
ples are (d, e, s), where d is the department name,
e is the employee name, and s is the salary. The
query that computes the total salary for each de-
partment is given by the following FOaggr formula
ϕ(d, v):

(∃e∃sR(d, e, s)) ∧ (v = AggrGSUM
(e, s)(s,R(d, e, s))),

where GSUM is the sequence 〈g0, g1, g2 . . . , gω〉 such
that g0 = 0 and gn({{a1, . . . , an}}) = a1 + · · · + an

for positive integers n. (The value of gω could be
arbitrary if we are interested only in values of ag-
gregates terms on finite sets.) 2

We define anFOaggr-data exchange setting to be a
data exchange setting in which every std is of the form
ϕS(x̄) → ∃ȳ ψT(x̄, ȳ), whereϕS(x̄) is anFOaggr for-
mula with all free variables of the first sort. Likewise,
we define anFOaggr-data exchange program as one in
which all formulae in the bodies of rules areFOaggr for-
mulae with all free variables of the first sort. Just as in the
case of FO, we define the canonical universal solution
of an FOaggr-data exchange setting as the result of an
FOaggr data exchange program obtained by converting
each stdϕS(x̄) → ∃ȳ (R1(x̄1, ȳ1) ∧ · · · ∧ Rk(x̄k, ȳk))
into a ruleR1(x̄1, ȳ1), . . . , Rk(x̄k, ȳk) :– ϕS(x̄).

Theorem 5.2. Let (S,T,Σst) be an FOaggr-data ex-
change setting. Every query over T that is FOaggr-
rewritable over the canonical universal solution, or
over the core, is locally source-dependent. 2

The proof is based on a modified version of local
consistency, in which we use equivalence with respect
to a certain counting extension of FO [17, 25].

Since every standard data exchange setting is also an
FOaggr-data exchange setting, we can derive a result
stronger than Corollary 4.6.

Corollary 5.3. In a standard data exchange setting,
a target query FOaggr-rewritable over the canonical
universal solution or over the core is locally source-
dependent. 2

5.2 Universal solutions semantics

We wish to begin by exhibitingcounterintuitivebehav-
ior of the certain answer semantics in the case of Boolean
queries. We first give a clarification of the semantics in
this case. LetQ be a Boolean (that is, 0-ary) query over
the target schemaT andI a source instance. If we let
truedenote the set with one 0-ary tuple and falsedenote
the empty set, thenQ(J) = trueandQ(J) = falseeach
have their usual meanings for Boolean queriesQ. Note
that certain(Q, I) = true means that for every solu-
tionJ of this instance of the data exchange problem, we
have thatQ(J) = true; moreover,certain(Q, I) = false
means that there is a solutionJ such thatQ(J) = false.

As the next proposition shows, the usual certain an-
swers semantics sometimes exhibits rather counterintu-
itive behavior.

Proposition 5.4. Let (S,T,Σst) be a data exchange
setting. Then for every Boolean query Q over T,
either certain(Q, I) = false for all instances I of S,
or certain(¬Q, I) = false for all instances I of S.

Proof: Let Q be a Boolean query overT, and as-
sume that there exists an instanceI0 of S such
that certain(Q, I0) = true. Then we show that
certain(¬Q, I) = falsefor every instanceI of S.

Let I be an instance ofS and J a solution forI.
Then given a solutionJ0 for I0, the instanceJ ′ defined
as J ′(R) = J(R) ∪ J0(R), for everyR ∈ T, is a
solution for bothI andI0. Sincecertain(Q, I0) = true,
it follows that Q(J ′) is true, and so there is a so-
lution of I not satisfying¬Q. We conclude that
certain(¬Q, I) = false. 2

That is, contrary to the expectation that for some in-
stances the result of a query is true and for others it is

LAV Setting GAV Setting General Setting
Transformation locally locally locally locally locally locally

consistent consistent consistent consistent consistent consistent
under≡ under≡ under≡

canonical universal solutionFuniv yes yes no yes no yes
coreFcore yes yes no yes no yes

Summary of local consistency results

in logic
Rewritable over Under semantics FO FOaggr

usual yes yesFuniv universal solution yes yes
usual yes yesFcore universal solution yes yes

rewritable over Fcore

rewritable over Funiv

locally source-dependent queries

Is a query locally-source-dependent? Summary of rewritability results

Figure 2: Summary of the main results

false, in the case of certain answers semantics, for one
of Q or¬Q the result is false in all instances!

This anomaly suggests that we consider a different
semantics. It was argued in [10] that since the universal
solutions are the preferred solutions in data exchange, it
may be more meaningful to consider semantics based on
them.

Given a data exchange setting(S,T,Σst), anm-ary
queryQ overT, and a source instanceI, we define the
universal solutions semantics of Q as

u-certain(Q, I) =
⋂

J is a universal solution for I

Q(J).

Clearly,certain(Q, I) ⊆ u-certain(Q, I).

The next example shows that the universal solution
semantics avoids the problem shown in Proposition 5.4.
Specifically, we show that there exists a Boolean query
Q and instancesI1 andI2 such thatu-certain(Q, I1) =
trueandu-certain(¬Q, I2) = true.

Example 5.5. Given a copying data exchange set-
ting with S = 〈P (·), R(·)〉, T = 〈P ′(·), R′(·)〉
and Σst = {P (x) → P ′(x), R(x) → R′(x)},
let Q be a Boolean query over T defined as
∃x (P ′(x) ∧ R′(x)). Define instances I1, I2 of S as
{P (a), R(a)} and {P (a), R(b)}, respectively. Then
both u-certain(Q, I1) and u-certain(¬Q, I2) are true
(if J is a universal solution for I2, then there is a
homomorphism h : J → Funiv(I2) = {P ′(a), R′(b)}
and, hence, for every null value c in J it could not
be the case that P ′(c) and R′(c) are in J).

The universal solutions semantics has other appeal-
ing properties. For example, from [10] we know that

every existential query (which includes every union of
conjunctive queries with inequalities6=) is FO-rewritable
overFcore, under the universal solutions semantics. This
is not the case for the usual semantics, even when re-
stricted to conjunctive queries with only one inequality
[9].

We now show that the main results of the paper are
preserved when one considers this new semantics of an-
swering queries over the target.

Given a mappingF : inst(S) → inst(T), we say that
Q is FOaggr-rewritable over F under the universal
solutions semantics if there exists anm-ary FOaggr-
queryQ′ overT such thatu-certain(Q, I) = Q′(F(I))
for every instanceI of S.

We say that a queryQ over T is locally source-
dependent under the universal solutions semantics
if there isd ≥ 0 such that for every instanceI of S and
everyā, b̄ ∈ dom(I)m, wheneverN I

d (ā) ∼= N I
d (b̄) then

(

ā ∈ u-certain(Q, I) ⇔ b̄ ∈ u-certain(Q, I)
)

.

The next theorem says that Theorem 5.2 extends to the
universal solutions semantics.

Theorem 5.6. Let (S,T,Σst) be an FOaggr-data ex-
change setting. Every query over T that is FOaggr-
rewritable over the canonical universal solution, or
over the core, under the universal solutions seman-
tics, is locally source-dependent under the universal
solutions semantics. 2

Thus, Theorem 5.6 can be used a tool for proving
non-rewritability under the new semantics.

We conclude with a result that shows the incompara-
bility of rewritability under the usual semantics and the
universal solutions semantics.

Proposition 5.7. Let F be either Funiv or Fcore.

1) There is an FO-query Q that is rewritable
(even in FO) over F under the usual seman-
tics, but is not FOaggr-rewritable over F under
the universal solutions semantics.

2) There is an FO-query Q that is rewritable
(even in FO) over F under the universal so-
lutions semantics, but is not FOaggr-rewritable
over F under the usual semantics.

6. Conclusions

Figure 2 summarizes the main results of the paper.
The first table shows when the canonical universal solu-
tion and core transformationsFuniv andFcore are locally
consistent (“under≡” means “under FO equivalence”,
but instead of FO one can useFOaggr as well). The sec-
ond table gives four classes of locally source-dependent
queries, based on the logic and transformation they are
rewritable over. The final picture shows the relationship
between different classes of rewritable queries. Unlike
isolated results on rewriting that exist in the literature,
our results give easily applicable tools for studying these
notions.

In the future, we would like to develop tools for study-
ing data exchange transformation and query rewriting in
the presence of target dependencies, and to extend tech-
niques from relational databases to other data formats.

Acknowledgments We thank Michael Benedikt and
Phokion Kolaitis for their comments. M. Arenas, P. Bar-
celó, and L. Libkin have been supported by grants from
NSERC, PREA, and CITO.

7. References

[1] S. Abiteboul and O. Duschka. Complexity of answering
queries using materialized views. In PODS 1998, pages
254–263.

[2] S. Abiteboul, R. Hull and V. Vianu. Foundations of
Databases, Addison Wesley, 1995.

[3] S. Abiteboul and P. Kanellakis. Object identity as a
query language primitive. Journal of the ACM 45(5),
pages 798–842, 1998.

[4] C. Beeri and M. Y. Vardi. A proof procedure for data
dependencies. Journal of the ACM 31(4), pages
718–741, 1984.

[5] O. Duschka and A. Levy. Recursive plans for
information gathering. In IJCAI 1997, pages 778–784.

[6] H.-D. Ebbinghaus and J. Flum. Finite Model Theory.
Springer Verlag, 1995.

[7] R. Fagin. Horn clauses and database dependencies.
Journal of the ACM 29(4), pages 952–985, 1982.

[8] R. Fagin. Probabilities on finite models. Journal of
Symbolic Logic 41(1), pages 50–58, 1976.

[9] R. Fagin, Ph. Kolaitis, R. Miller and L. Popa. Data
exchange: semantics and query answering. In ICDT
2003, pages 207–224.

[10] R. Fagin, Ph. Kolaitis and L. Popa. Data exchange:
getting to the core. In PODS 2003, pages 90–101.

[11] R. Fagin, L. Stockmeyer and M. Vardi. On monadic
NP vs monadic co-NP. Information and Computation
120(1), pages 78–92, 1995.

[12] H. Gaifman. On local and non-local properties. In
Proceedings of the Herbrand Symposium, Logic
Colloquium ’81, North Holland, 1982.

[13] E. Grädel and Y. Gurevich. Metafinite model theory.
Information and Computation 140(1), pages 26–81,
1998.

[14] A. Halevy. Theory of answering queries using views.
SIGMOD Record 29(4), pages 40–47, 2000.

[15] W. Hanf. Model-theoretic methods in the study of
elementary logic. In J.W. Addison et al, eds, The
Theory of Models, North Holland, pages 132–145, 1965.

[16] P. Hell and J. Nešeťril. The core of a graph. Discrete
Mathematics 109, pages 117–126, 1992.

[17] L. Hella. Logical hierarchies in PTIME. Information
and Computation 129(1), pages 1–19, 1996.

[18] L. Hella, L. Libkin, J. Nurmonen and L. Wong. Logics
with aggregate operators. Journal of the ACM 48(4),
pages 880–907, 2001.

[19] R. Hull and M. Yoshikawa. ILOG: declarative creation
and manipulation of object identifiers. In VLDB 1990,
pages 455–468.

[20] T. Imielinski and W. Lipski. Incomplete information in
relational databases. Journal of the ACM 31(4), pages
761–791, 1984.

[21] A. Klug. Equivalence of relational algebra and
relational calculus query languages having aggregate
functions. Journal of the ACM 29(3), pages 699–717,
1982.

[22] K. Larsen. On grouping in relational algebra.
International Journal of Foundations of Computer
Science 10(3), pages 301–311, 1999.

[23] M. Lenzerini. Data integration: a theoretical
perspective. In PODS 2002, pages 233–246.

[24] A. Levy, A. Mendelzon, Y. Sagiv and D. Srivastava.
Answering queries using views. In PODS 1995, pages
95–104.

[25] L. Libkin. Logics with counting and local properties.
ACM Transactions on Computational Logic 1(1),
pages 33–59, 2000.

[26] D. Maier, A. O. Mendelzon and Y. Sagiv. Testing
implications of data dependencies. ACM Transactions
on Database Systems 4(4), pages 455-469, 1979.

[27] N. Shu, B. Housel, R. Taylor, S. Ghosh and V. Lum.
EXPRESS: a data extraction, processing, and
restructuring system. ACM Transactions on Database
Systems 2(2), pages 134–174, 1977.

[28] J. Van den Bussche, D. Van Gucht, M. Andries and
M. Gyssens. On the completeness of object-creating
database transformation languages. Journal of the
ACM 44(2), pages 272–319, 1997.

