XML Data Exchange: Consistency and Query Answering

Marcelo Arenas Leonid Libkin
University of Toronto University of Toronto
marenas@cs.toronto.edu libkin@cs.toronto.edu
ABSTRACT is semantically consistent with the source data.

Data exchange is the problem of finding an instance of a Data exchange is an old problem [25] that re-emerged
target schema, given an instance of a source schema an@s an active research topic recently due to the increased
a specification of the relationship between the source andneed for exchange of data in various formats, typically
the target. Theoretical foundations of data exchange havein e-business applications [5]. A system Clio for data
recently been investigated for relational data. exchange was built [19, 23] and partly incorporated into
the latest release of IBM’s db2 product. At aboutthe same
In this paper, we start looking into the basic properties time, papers [10, 11] by Fagin, Kolaitis, Miller, and Popa
of XML data exchange, that is, restructuring of XML doc- laid the theoretical foundation of exchange of relational
uments that conform to a source DTD under a target DTD, data, and several followup papers studied various issues in
and answering queries written over the target schema. Wedata exchange such as schema mapping composition [12]
define XML data exchange settings in which source-to- and query rewriting [6, 28].
target dependencies refer to the hierarchical structure of
the data. Combining DTDs and dependencies makes some And even though practical systems such as Clio handle
XML data exchange settings inconsistent. We investigate non-relational data (in particular, nested relations 23]
the consistency problem and determine its exact complex-all theoretical investigation so far has concentrated en th
ity. relational case.

We then move to query answering, and prove a di- Our goalis to start the investigation of basic theoretical
chotomy theorem that classifies data exchange settings intdssues of data exchange for XML documents. We illustrate
those over which query answering is tractable, and those XML data exchange by the following example. Suppose
over which it iscoNP-complete, depending on classes of Wwe have the source document shown in Figure 1 (b) con-
regular expressions used in DTDs. Furthermore, for all formingto the DTD shown in Figure 1 (a). This DTD says
tractable cases we give polynomial-time algorithms that that the document consists of severak elements, each
compute target XML documents over which queries can having atitle attribute and severaluthor subelements;
be answered. each author has attributegme and aff{iliation).

Suppose we want to restructure this document under
the target schema shown in Figure 2 (a). This DTD says
that a document has severatiter elements, each hav-
ing aname attribute, and severabork subelements with

f attributestitle and year. Intuitively, a restructured docu-
dnent should look like the XML document shown in Fig-
ure 2 (b). Note that the original document provides no
data about publication year, and hence we have to invent
new values for the document structured under the target
chema. In data exchange terminology, thesenauiés,
enoted here by ; and L,. The new document forces
wo of them to be the same, even though their values are
not known.

1. Introduction

Data exchange is the problem of finding an instance o
a target schema, given an instance of a source schem
and a specification of the relationship between the source
and the target. Such a target instance should correctly
represent information from the source instance under the
constraints imposed by the target schema, and should allow®
one to evaluate queries on the target instance in a way tha

Permission to make digital or hard copies of all or part o thiork for Eveninthe relatlpnal case there CO.UId be different target
personal or classroom use is granted without fee providetiabpies are databases that satisfy all the constraints of a data exehang
not made or distributed for profit or commercial advantage tat copies  Setting [10]. So if we are given source document shown
bear this notice and the full citation on the first page. Toyoofherwise, or  in Figure 1 (b) and a query over the new DTD, shown in
republish, to post on servers or to redistribute to listguiees prior specific Figure 2 (a), how can we answer it? |If our query is, for
permission and/or a fee. example,Who is the writer of the work named “Com-

PODS 2005, June 13-15, 2005, Baltimore, Maryland. . o . L
’ ’ ' ' tat [ lexity” 2, the answer iPapadimitr
Copyright 2005 ACM 1-59593-062-0/05/0635.00. putational Complexity apasimatTion



db

/\

<!ELEMENT db (book*)>
<!ELEMENT book (authorx*)>

<IATTLIST book book book
title CDATA #REQUIRED> /N
<!ELEMENT author (EMPTY)>
<VATTLIST author @title author author @title author
name CDATA #REQUIRED “Combinatorial A /\ “Computational A
aff CDATA #REQUIRED> Optimization” Complexity”
@name Q@aff  @name Qaff @name Qaff

“Papadimitriou” “UCB” “Steiglitz” “Princeton” “Papadimitriou” “UCB”

(a) Source DTD
(b) Source XML document

Figure 1: Source information.

regardless of a particular document that was created for answers [2, 14]: we letcertain(Q, I') be the intersection
the target DTD. Notice that even though the answer would of all Q(J)’s over all possible solutiong. A key problem

be the same in every correctly constructed document thatin data exchange is to find a particular solutignso that
conforms to the new DTD, we can deduce this just by certain(@, I) can be obtained by evaluating some query
looking at a single document shown above. As another (a rewriting ofQ) over.J,.

example, consider a quefyhat are the works written

in 1994 7. This query cannot be answered with certainty
in this scenario.

Our main goals here are the following:

Some answers to this question were given in [10, 11]:
e.g., if@ is a union of conjunctive queriegertain(Q, I)
can be computed by evaluatidg over a special kind of
solution calledcanonical that can be constructed in poly-

nomialtime. In general, however, work on query rewriting
) amd incomplete information tells us that the complexity

e We propose a formalism for XML data exchange of finding certain answers can be intractable [1, 2].

settings, and investigate its basic properties, and

Coming back to XML data exchange, we have to define
XML data exchange settings. By analogy with the rela-
tional case, they should have source and target schemas,
and source-to-target dependencies. We shall use DTDs as
schemas, but it is notimmediately clear what formalism to
Before we describe the main contributions of the paper, use for STDs, although intuitively they should correspond
we recall briefly the setting of relational data exchange 0 conjunctive queries in some relational representatfon o
and query answering [10, 11]. A relational data exchange XML.

e We study the problem of query answering in data
exchange contexts, and analyze its complexity, and
develop query evaluation algorithms.

setting is a triple$, T, Xst), whereS is a source schema,
T is atarget schema, antsr is a set ofsource-to-target
dependencies, or STDs, that express the relationship be-
tweenS andT. Sometimes a set of constraints on the

This intuition gives rise to a very natural question
whether we can “reduce” XML data exchange problem
to relational data exchange by using some relational rep-

target schema is also added to the setting. Such a settingesentation of XML documents [15] (for example, as trees

gives rise to thedata exchange problem: given an in-
stancel over the source schen$afind an instancg over
the target schent® such thatl together withJ satisfy the
STDs inXgT (When target dependencies are usédiust
also satisfy them). Such an instanteés called asolution

for I. STDs are usually of the form

1/}T(3?"75) - @S(‘fag)v (1)
where pg andyr are conjunctions of atomic formulae
overS andT, respectively. The paif/, /) satisfies this

dependency if whenevess(a, b) is true in1, for some
tuplec, ¢r(a,c) is true inJ.

In general, there may be many different solutions for
a given source instanck and under target constraints,

there may be no solutions at all [10, 11]. If one poses a

query@ over the target schema, and a source instdrise
known, the usual semantics in data exchange usegin

with the child and next-sibling relations, as well as at-
tribute values). The problem with this naive approach is
that DTDs impose rather expressive constraints on target
trees, that can talk about reachability as well as regular ex
pressions. Thus, their expressiveness is well beyond first-
order logic, and yet results on relational data exchange
have only considered limited first-order constraints on the
target so far.

Thus, as is often the case with transferring results from
relational databases to XML, we do have to reinvent most
basic notions and prove new results.

We now briefly summarize our main results.

e We define data exchange settings based on STDs
which show how patterns in the source tree translate
into patterns in the target tree.



<!ELEMENT bib (writer*)>
<!ELEMENT writer (workx)>
<!ATTLIST writer
name CDATA #REQUIRED>

writer

T

bib

/\

writer

N

<!ELEMENT work (EMPTY)> @name work work @name work
<!ATTLIST work “Papadimitriou” A A “Steiglitz” A
title CDATA #REQUIRED
year CDATA #REQUIRED> @title Q@year @title Q@year @title Q@year
“Combinatorial 17 “Computational 1o “Combinatorial 1
(a) Target DTD Optimization” Complexity” Optimization”

Figure 2: Target

e We want to excludeinconsistent data exchange
settings, in which target instances cannot be con-
structed. We determine the exact complexity of
checking consistencyEXPTIME-complete). We
also find restrictions of lower complexity, as well
as a practically relevant tractable class, which sub-

(b) Target XML document

information.

T over(FE, A) is a finite ordered directed tré&V, <cphiid,
<gib, T00t) WhereN is the set of nodes; 4 Is the child
relation, <, is the next-sibling relation (for each node
it orders its childrery; <gp, - . . <sib vm), @ndroot is the
root, together with

sumes non-relational data exchange settings handled

by Clio. Notice thatthe high complexity is in the size
of the DTDs and STDs, anaot XML documents.

We study querying in the XML data exchange sce-
nario, prove aoNP upper bound on the complexity
of query evaluation, and identify a class of source-
to-target dependencies, called fully-specified STDs,
outside of which finding certain answersdsNP-
complete. Within that class, we proveléchotomy
theorem which says that depending on the class of
regular expressions used in DTDs, query answering
is either tractable ocoNP-complete. For tractable

cases, which subsume nonrelational data exchange

handled by Clio [23], we have algorithms for con-
structing target documents over which queries can
be answered.

Organization Section 2 defines some basic XML con-
cepts. In Section 3 we describe XML data exchange set-
tings. In Section 4 we study their consistency, and in

Section 5 we present a query language and some neces-

sary restrictions for tractable query answering. In Sectio
6 we prove the dichotomy theorem. Because of space lim-
itations, full proofs are omitted and only proof sketches
are given.

2. Notations

We view XML documents as node-labeled unranked
trees. We assume countably infinite sé¥sof names of
element types andit of attribute names, as well as a do-
mainStr of possible attribute values (normally considered
to be strings). Attribute names are preceded by to
distinguish them from element types.

Given finite setsF C El and A C Att, an XML tree

e alabeling functiomy : N — E (if Ap(v) = ¢, we
say that/ is theelement type of v);

e a partial functiorpa, : N — Str for every@Qa € A
assigning some nodes bfvalues of attributéa.

ADTD (Document Type Definition) oveiF, A) is defined
as atriple(P, R, r) where

e P is a function fromFE to regular expressions over
E defined by the grammar

e

= €|€,€€E|e|e|ee|e*,
(¢ is the empty string, and|e, ee ande* stand for
the union, concatenation and the Kleene star);

e R : E — 24 associates with each element type a
(possibly empty) set of attribute names; and

e 1 € F is the distinguished element type of the root,
which cannot be used in regular expressidh¥)
and cannot have any attribute3(() = 0).

We also use the standard shorthaadisfor ee* ande?

for ele, and we often write/ — ¢ instead of P(¢) = e

as is common for DTDs. Furthermore, we do not con-
siderPCDATA elements in XML documents since they can
always be represented by attributes.

For example, for the source DTD shown in Figure 1
(@), E = {db, book, author}, A = {Qtitle, Qname,
Qaff}, P is given by P(db) = book™ (that is, db —
book™), P(book) = author”, P(author) e; and
R(db) = 0, R(book) = {Qtitle}, and R(author) =
{@name, Qqaff }. Furthermore(b is the element type of
the root.



An XML tree T' conformsto D = (P, R,r), denoted
byT = D, if:

1. for every node in T' with childrenvy, ..., v, such
thatvy <gip ... <sib Um, If Ap(v) = £, then the
stringAr(v1) ... Ar(vy,) is in the language defined
by the regular expressiaR(¢);

2. for every nodev in T with Ap(v) = ¢, paq(v) is
defined iff@a € R(?);

3. Ap(root) =r.

We write SAT (D) for the set of XML treesI” that con-
form to D. Itis a folklore result that checking whether
SAT(D) # 0 can be done in linear time. We say that a
DTD D is consistent if for every element type in D,
there exists a tre@’ conforming toD and having a node
of type /. From now on, we assume that every DTD is
consistent. This can be done without loss of generality
due to the following easy observation.

Lemma 2.1 Given a DTD D with SAT(D) # ), one
can construct, in polynomial time, a consistent DTD
D’ such that SAT(D) = SAT(D’).

3. XML Data Exchange Settings

Recall [10, 11] that a relational data exchange setting
is a triple (S, T, Xst), whereS and T are source and
target relational schemas, abigr is a family of source-
to-target dependencies, that is, expressions of the form
Yr(Z, 2) — ¢s(Z,7), whereyr (resp.ps) is a conjunc-
tion of atomic formulae oveT (resp.,S). Instanced of
S and.J of T satisfy this dependency if whenevss(a, b)
holds in7, one can find a tuple such that)r(a, ¢) holds
inJ.

Now we need to extend this setting to XML data. Instead
of source and target schenfaandT, we shall use source
and target DTD9)g and Dr. But what do have in place
of relational STDs?

tree, we also need to collect values of attributes that need
to be assigned to nodes in the target trees. Thus, as in [9,
21], we shall use variables; in our case, they will range
over possible attribute values.

Tree-pattern formulae. The basic component of our
language isittribute formulae. Assume that is a wild-
card symbol not included i®l U Att. Given setdy C El
of element types and C Att of attributes, attribute for-
mulae ovel £, A) are defined by

=/ | E(@alle,..

wherel € EU{_} andQa,,...,Qa, € A. Inthe second
case, variablesy, ..., x, are the free variables af.

o -;@an :mn)a

An attribute formulais evaluated in a node of a tree, and
values for free variables come frogr. If T'is an XML
tree over( £, A) andv a node off’, then

o (T,0)
o (T,v) ELiff Ap(v) =4, forl e E.

o If a(zy,...,2,) = £(Qay = x1,...,Qa, = x,),
then (T,v) E a(s1,...,8,), Wheresy, ... s, €
Str, iff (T,v) = ¢ and pag,(v) = s;, for every
j€l,n].

Tree-pattern formulae over(E, A) are defined by

@ a | alg,....0l | /e,

wherea ranges over attribute formulae ovr, A). The
free variables of a tree-pattern formuytaare the free vari-
ablesin allthe attribute formulae that occurinit. Forexam
ple, the formuladb[book(Qtitle = x)[author (Qname =
y)]] has free variables andy. We writep(z) to indicate
that free variables op arez.

We evaluate tree-pattern formulae in an XML tree.
Given a treeT, a tree-pattern formula(z), and a tu-
ple s from Str, ¢(3) is true inT' (written T = (3)) if
there is a witness nodefor ¢(s). Intuitively, the witness
node is the node at which the pattern is satisfied, with
being the values of attributes. Formally, we defina 7'

A natural idea is to extend relational source-to-target t0 Pe awitness node far(s) as follows:
dependencies to XML trees considered as relational struc-
tures. But one needs to add the descendant relation, which

is not FO-definable from the child relation and, worse yet,
make the logical formalism two-sorted in order to deal
with both nodes and values. This would make the for-
malism rather cumbersome. Instead, we present XML

source-to-target dependencies in a formalism that is much
closer to XML languages such as tree patterns and XPath

[4,7].

Essentially our STDs say that if a certain pattern occurs

in the source, another pattern has to occur in the target.

Thus, formulae used in STDs will be very similar to those
used, for example, in [4, 7, 21, 9, 27]. One difference
though is that while XPath formulae select nodes from a

Tn [10, 11], STDs are written as FO sentences but here
we prefer a rule-based formalism.

e v is a witness node fak(s), wherea is an attribute
formula, iff (T, v) = «a(3).

e v is a witness node for(3)[p1(51), ..., vr(5k)]
iff (7,v) = «(s) and there aré (not necessarily
distinct) childrerwy, ..., v, of v such that each; is
a witness node fap;(5;), for everyi < k.

e visawitness node foff p(3) if there is a descendant
v’ of v in T which is a witness node fas(s).

For example, let)(z,y) be formulabook(Qtitle = x)]
author(@name = v)), referring to the example from the
introduction (see DTD in Figure 1 (a)). Thef(s,s’) is
true iff s is a title of a book and’ is one of its authors,
with the correspondingook element being the witness.



Notice that every tree-pattern formula can be translated
into a conjunctive query in a two-sorted logic over XML
trees considered as structures in the language @fiq
and <}, .4 (descendant), being the second sort values of
attributes. Thus, we are in principle in the same category
of formulae for defining data exchange setting as in the re-
lational case; however, we avoid the two-sorted formalism
by using tree-pattern formulae.

Data exchange settings. We now define XML data
exchange settings using tree-pattern formulae. Esshntial

As in other papers on data exchange [10, 11], we as-
sume that the domaisitr of attributes is partitioned into
two countably infinite set€onst andVar. The setConst
contains all values that may occur in source trees, and,
following data exchange terminology, we call theom-
stants. Elements oVar are calledhulls, and they are used
to populate target trees.

4. Consistent Data Exchange Settings

adata exchange setting consists of source and target DTDs,
and source-to-target dependencies, which are rules of the |tjs known that even in the relational case some data ex-

form (1) in which bothp ands) are tree-pattern formulae.

Definition 3.1. (Source-to-target dependencies).
Given finite sets Eg, Ex C El of elements types and
Ag, At C Att of attributes, a source DTD Dg over
(Es, Ag) and a target DTD Dt over (Er,Ar), a
source-to-target dependency (STD) between Dg and
Dt is an expression of the form:

wT(i‘ag) @S(i‘vg)7 (2)

where s (Z,y) and (T, Z) are tree-pattern formulae
over (Es, Ag) and (Ex, At), respectively, and tuples
y and z have no variables in common.

Given XML trees T and T' conforming to Ds and
D, respectively, we say that the pair (T, T") satisfies
this STD if whenever T = s(8,§"), there is a tuple
5" such that T' = 1 (5,5").

Definition 3.2. (Data Exchange Setting). An
XML data exchange setting is a triple (Ds, D,
YsT), where Dg is a source DTD, Dt is a target
DTD, and Xgt is a set of STDs between Dsg and
Dr.

Definition 3.3. (Solutions). Given a data exchange
setting (Ds, D, YsT) and an XML tree T conform-
ing to Dg, a tree T" conforming to Dt such that
(T, T") satisfies all STDs in Xgt is called a solution
for T.

Referring again to the data exchange scenario from the
introduction (see Figures 1 and 2), the STD that speci-
fies how to transfornhook/author pairs intowriter /work
pairs is given byt (x,y, z) :-— ps(x,y) whereps(z, y)
andyr(z,y, z) are

dblbook (Qtitle = x)[author(Qname = y)]] and
bib[writer(@Qname = y)[work(Qtitle = x, Qyear = z)]],

respectively. For example, we know that the source docu-
ment from the introduction satisfies

s (Combinatorial Optimization, Papadimitriou).

Thus, in a solutiorf” for T', we would have avriter child

of the root with the@name attribute Papadimitriou, and

a work child with two attributesQtitle and @year. The
value of@title is Combinatorial Optimization, but the
source document provides no information about the value
of the @year attribute. In a solution therefore one has to
invent a null value (shown as; in the example) for this
attribute.

change settings an@consistent due to constraints on the
targetinstance [10, 11]. DTDs, being very close in expres-
siveness to monadic second-order logic [26], may impose
a variety of restrictions on possible solutions, sometimes
making data exchange settings inconsistent. For example,
consider an STD[¢1[¢2(Qa = z)]] -~ r. If the target
DTD isr — ¢1|ls, 1,03 — ¢, then there is no source
XML tree T" for which a solution exists. In other words, no
matter what the source DTD is, the data exchange setting
would be inconsistent.

Thus, we call a data exchange settidgs, Dr, XsT)
inconsistentifnotreeT = Dg has asolution. Otherwise,
the setting isconsistent.

Obviously one should only work with consistent set-
tings. But how hard is it to test consistency? To answer
this, we study the following problem:

PROBLEM: DATA-EXCHANGE-CONSISTENCY
INPUT: Data exchange setting

(Ds, D, XsT). _
QUESTION: Is (Dg, DT, X.gT) consistent?

A particular case of this problem is satisfiability of tree-
pattern formula which asks whether there exists a tree
T that conforms to a DTDD and satisfies a tree pat-
tern formula+. Indeed, this happens iff the setting
(Dy,D,{% = r}) is consistent, wher®,. has only one
ruler — e. Itis known that satisfiability of tree-patterns
may be intractable [16] although precise complexity was
not known. Results on XPath containment in the pres-
ence of DTDs [21, 27] also suggest high complexity for
data exchange consistency. We now determine its exact
complexity.

Theorem 4.1 The  problem  DATA-EXCHANGE-
CONSISTENCY is EXPTIME-complete.

Proof sketch: for membership, we first show that it suf-
fices to consider STDs in which all attribute formulae are
of the form¢ with ¢ € EU{_}. Then foreach ST :— ¢

we construct an unranked tree automaton that accepts a
tree whose root has two children iff whenever the subtree
rooted at the left child satisfies, then the subtree rooted

at the right child satisfieg). We show that the product

of all these automata can be constructed in exponential
time. Then we take the product of this automaton with



automata defining the DTDs; the setting is consistent iff

where all¢;’s are distinct, and each is one of the fol-

such an automaton accepts a tree. The latter can be donéowing: ¢;, or £, or Ejr or¢;? = ¢; | e. Such DTDs

in polynomial time in the size of the automaton [20].

For hardness, we use reduction from the problem of
testing if a nondeterministic bottom-up tree automaton ac-
cepts everytree. This problem is known tolePTIME-
complete [24]. O

The problenDATA-EXCHANGE-CONSISTENCY remains
intractable even under some strong restrictions. Redatll th
aDTD D is recursive if there is a cycle in the grapf (D)
defined as{(¢,¢") | ¢ is mentioned in P(¢)}, and non-
recursive otherwise. We defin@th-pattern formulae as
restrictions of tree-pattern formulae given by

@ a | algl | //e
In other words, in such formulae one can talk only of one

have also been looked at in the context of handling partial
information in XML [3].

Theorem 4.3 DATA-EXCHANGE-CONSISTENCY s
solvable in polynomial time if both source and target
DTDs are nested-relational.

Proof sketch. We show how to transform, in linear time,
a data exchange setting)s, Dr, ¥st) into a setting
(Dg, D%, X51) such thatDg and D7, are non-recursive
DTDs in which all regular expressions are of the form
ly,....0m, m > 0, with all the ¢;’s distinct, formu-
lae in g do not have free variables, and such that
(Ds, Dr, Xgr) is consistent iff(Dg, D, Xgr) is con-
sistent. The latter can be checked in polynomial time
because a DTV with such regular expressions can have

child or one descendant of a given node. They are closely only one tre€l’, that conforms to it. Then one evaluates

related to the child-descendant fragment of XPath.

For each fixed DTDD+, we consider the restric-
tionD-E-C(Dt) of DATA-EXCHANGE-CONSISTENCY,
whose input is(Ds, Xgt) with all formulae in Xgt
being path-pattern formulae. The question is whether
(Ds, D, XgT) is consistent.

The next proposition shows that checking consistency
remains intractable even with a fixed target DTD and re-
stricted source DTDs.

Proposition 4.2 Fix an arbitrary nonrecursive DTD
Dt that does not use the the Kleene star. Then:

a) The problem D-E-C(Dt) for mnon-recursive
source DT'Ds Dg that do not use the Kleene star
is PSPACE-complete.

b) The problem D-E-C(Dt) for non-recursive
source DTDs Dsg in which all reqular expres-
sions are of the form £ — lq] ... |[ly, or £ — g is
NP-complete.

Proof sketch. As before, we can assume that all formulae
in STDs have no free variables. MembershipiiA is easy
by guessing an instance; for membershipPBPACE we

left- and right-hand sides of the rulesiif, . on the trees
Tpy andTp, conforming toDg and D, respectively,

to verify if the setting is consistent. The trees that con-
form to Dg and D7, need not be of polynomial size, but
the verification can be still be done in polynomial time by
evaluating inductively all subformulae for each element
type, in a mannner similar to model-checking for modal
and some branching-time temporal logics. |

The algorithm for checking consistency for nested-
relational DTDs runs in timé&(nm?) wheren is the size
of the DTDs andn is the size of the STDs.

5. Query Answering

Our goal is to define the concept of query answering in
the XML data exchange scenario. Since we need to com-
pute certain answers (which are defined as intersections
of query results over all solutions), we consider queries
which return tuples of values as opposed to arbitrary trees.

We already know from results on relational data ex-
change that answering general FO queries over target in-
stances is problematic [6, 10], and most positive results

transform a DTD such that all regular expressions become paye peen proved for conjunctive or monotone queries
either conjunctions or disjunctions, and then use an alter- [10, 11]. Thus, for our query language, we shall use the
nating polynomial-time algorithm. For hardness, we use cjosure of tree-pattern formulae under conjunction and
reductions from QSAT foPSPACE and 3SAT folNP. O existential quantification. This is similar to conjunctive

) . . . . . queries over child and descendant as defined in [13], again
We finally identify a class for which consistency is yith the main difference being the use of free variables to

tractable. This class is relevant in practical applicaion .,ject attribute values. as opposed to outputting nodes of
of data exchange such as those addressed by Clio [19¢aeg. ' PP P g

23]. One extension of relational data exchange that is en-
abled by Clio is to nested relational schemas. Nested A query lanquag€790// is defined b
relations can naturally be represented by XML docu- query language7Q y

Q o | QNQ | 3zQ,

ments. In that case all the rules in DTDs are of the form

=Ly bl - 7, with all the s distinet. wherey ranges over tree-pattern formulae. The semantics
of A and3, as well as the definition of free variables,
is standard. We note that as in the case of tree-pattern

formulae 70/ -formulae are evaluated in an XML tree.

We shall extend this, and consideested-relational
DTDs defined as non-recursive DTDs in which all rules
are of the form

0 — ly.. by, NotationC7Q// stands for “conjunctive tree queries with



descendant.” If we do not allow descendant in queries,

we obtain a fragment denoted 8% Q. For example,
consider aCTQ query(x) given by 3y book(Qtitle =
x)[author(Qname = y)|. Then the source document
from the introduction, shown in Figure 1 (b), satisfies
(Computational Complexity).

We shall also consider unions of conjunctive queries.
By C7Q//:“ we denote the class of queries of the form
Q1(Z) U... U Qn(z), where eachy); is a query from
CTQ/ . By disallowing descendant in th@;’s we obtain
a restriction denoted b§7Q".

5.1 Certain answers.

thenw(r) has strings in which the number afs equals
the number ofv’s. Thus,w(r) need not be regular; in
fact it may not even be context-free becaus@ibc)*) N
L(a*b*c*) = {a"b"c™ | n > 0}.

An unordered XML tree is defined as a directed tree
(N, <chila, root) (that is, it excludes the sibling order
<ib). Given an unordered XML treé€ and a DTDD, we
say thatl’ conforms toD, denoted byl" k D, if for every
nodewv in T with childrenvy,..., v, andAr(v) = ¢,
the stringAr(v1) ... Ar(vs,) is inw(P(¢)), and items 2
and 3 of the definition ofl’ = D are true. That is,
Ar(v1) ... r(vy,) is @ permutation of some string in the
language ofP(?).

We say that an unordered XML tr@& is asolution for

Assume that we are given a data exchange settingan XML treeT in a data exchange setti0®s, D, XsT)

(Ds, D, ¥st), a source XML treel" that conforms

to Dg, and aCTQ//*¥ queryQ(z). What does it mean to
answerQ? As in the case of relational data exchange [10,

if 7" Dt and (T, T') satisfies all the STDs from
YsT. As in the case of ordered trees, we define the se-
mantics ofC7Q//"“-queries in terms of certain answers,

11], since there may be many possible solutions to the datathat is, given an XML tre€l’ |= Ds, a CTQ//-“-query

exchange problem, we define the semantio9 afi terms
of certain answers:

certain(Q,T)
T' is a solution for T’

Thus, a tuple of strings is incertain(Q, T) if 5 € Q(T")
for every solution solutio?” for 7. If ) is a Boolean
query (a sentence), therertain(Q,T) = true iff for
every solutionl” for T', we havel” = Q.

Q(T").

Let (Ds, Dr, ¥sT) be a data exchange setting. The
main problem we study is:

PROBLEM: CERTAIN-ANSWERS(Q).

INPUT: An XML tree T conforming toDg
and a tuples of strings.

QUESTION: IS5 € certain(Q,T)?

If @ is a Boolean queryrf = 0) then the input to the
problem is an XML tre€l" and the problem is to verify
whethercertain(Q, T) = true.

Notice that as in the relational case, only tuples from
Const could belong tacertain(Q, T').

5.2 Unordered trees.

Our query answering algorithms take advantage of tem-

porarily “forgetting” about the sibling order. That is, we

Q(z) over Dt and and a tuplé of strings, we say that
5 € certain*"(Q,T) if and only if s € Q(T") for every
unordered solutiofi” for T

The following proposition allows one to forget about
the sibling ordering while computing certain answers and,
in particular, it allows one to use unordered trees when
proving lower bounds for this problem.

Proposition 5.1 Given an XML data exchange set-
ting (Ds, Dt, ¥st), an XML tree T = Dg and a

CTQ/P-query Q(%), we have
certain(Q,T) = certain""(Q,T).

Furthermore, tractable query answering algorithms in this
paper will be constructing a certain unordered solufitin
satisfyingcertain""(Q,T) = Q(T*). This can be done
without loss of generality since every unordered solution
can be turned into an ordered solution, and this can be
done in polynomial time, as the following result shows.

Given an unordered tréE and a sibling ordering iy,
let T==i> be the resulting ordered tree. Then:

Proposition 5.2 Suppose T k= D. The one can com-
pute, in polynomial time in the size of T', a local sib-
ling ordering <sp on T such that T==* = D.

We shall also need complexity bounds for checking
whether a stringw is in 7(r). Since the Parikh image
of a regular language is a semilinear set, this reduces to

construct a target tree which does not conform to the tar- integer linear programing, which is INP in general, and

get DTD but could be rearranged into one conforming
to the DTD simply by imposing a correct sibling order.

in polynomial time if dimension is fixed [17]. This gives
us the following.

To capture this, we introduce a class of languages which proposition 5.3 The problem of checking whether w
are permutations of regular languages, and the notion of ;5 ;5 7(r) for a string w and a regular expression r is

satisfaction of DTDs by unordered trees.

Given a regular expressionover an alphabel’, we
let L(r) stand for the language denoted hy Then we
definew(r) C I'* as the set of all strings which are
permutations of strings ih(r). For example, if- = (ab)*,

NP-complete. For each fixed r, checking whether w
is in w(r) can be done in polynomial time.

2The notion of satisfaction of a tree-pattern formula by
an unordered tree is defined exactly as in the case of (or-
dered) XML trees.



5.3 First complexity results: upper bound and some find a data exchange setting in which all STDs
hard cases. belong to that class, and a CITQ-query @ such that
CERTAIN-ANSWERS (Q ) is coNP-complete, even if all
Our goal is to determine the complexity of computing reqular expressions used in source and target DTDs
certain answers. A prioriitis not even clear if the problem are simple.
is decidable, but we can prove the following upper bound.

Theorem 5.4 If Q is a CIQ/Y-query, then Thus, from now one we concentrate on fully-specified
CERTAIN-ANSWERS (Q) is in coNP. STDs. Our goal is to provide a classification of data
exchange settings for which computing certain answers is

. Y tractable.
Proof sketch. It suffices to show that ifa ¢

certain(@, T'), then one can construct a trééof polyno-
mial size (in||T||) such tha@ ¢ Q(T”). For this, we take ; ; . P
an arbitrary solutiorify for T' for whicha ¢ Q(T),) and 6. Computlng Certain Answers: Classifica
show how to reduce its size, by cutting both long paths tion and Dichotomy

and long sibling chains to reduce it to the desired tree

T’. While reducing the size, we keep a certain skeleton . . :
that witnesses the fact that, is a solution. The main Proviso: throughout this section, all source-to-target

difficulty is in cutting long paths: while our queries are dependencies are fully-specified. As was shown earlier,

monotone, by removing parts of paths we introduce new outside of this class one cannot aveitN P-hardness even

“child” edges, and in general it is impossible to conclude fOr very simple source and target DTDs.

that after such a cut is not in the result of the query.C . . .
query Our goal now is to classify the complexity of the

We would like to identify tractable cases of theRTAIN- CERTAIN-ANSWERS problem. As was explained ear-

ANSWERS problem. Its complexity is mostly affected by  lI€f it depends heavily on target DTDs. We shall classify

target formulae in STDs and target DTDS, since in the target DTDs and prove a dichotomy theorem which states

definition of certain answers we take the intersection over that depending on a class of regular languages used in

allinstances satisfying target formulae and the target DTD DTDS, computing certain answers is either tractable or

coNP-complete.
We now identify a necessary restriction for tractability. . .

We define a class of STDs and show that outside of this _f C is @ class of regular expressions, we say thata DTD

class we getoNP-hard instances GEERTAIN- ANSWERS D is aC-DTD if all regular expressions i belong toC.

even for very simple DTDs. Definition 6.1. Given a class C of reqular expressions,

Definition 5.5. A source-to-target dependency and a class Q of queries, we say that

Ur(Z,2) = ¢s(@,y) is fully-specified if ¢r is of the e C is tractable for Q if for every data exchange
form 1, ..., k], where 1 is the type of the root setting (Ds, D, Ssr) with Dy being a C-
and p;’s do not use descendant // and wildcard _. DTD, and every Q € Q, the problem CERTAIN-

ANSWERS(Q) is in PTIME;

For example, the following source-to-target dependency o ¢ js coNP-complete for Q if there exists a data
is fully-specified: exchange setting (Ds, Dy, Ygt) with D be-
. . . ) -DTD
bib[writer(@Qname = y)[work(Qtitle = x)]] - ZgngéAfN—ANs}wcggé(C%Q)ngrgo]gP-eco%p;gfi? that
book(Qtitle = x)[author(@name = y)]. e C is strongly coNP-complete for Q if the above

The definition of fuIIy-specified STDs puts three restric- holds when Dsg is simple and Q s a Boolean
tion on target formulae: they are witnessed at the root, query.
there is no descendant, and no wildcard. By relaxing those,
we can get three classes of STDs, in which target formula
satisfy only two of the three restrictions. We denote them
by STD(, //) (wildcard and descendant are forbidden),
STD(r, //) (formulaer[es, ..., ¢x] in which descendant
is forbidden), and8TD(r, _) (formulaer[eq, ..., ¢i] in
which wildcard is forbidden).

We want our classes of regular expressions to have some
degree of uniformity: that is, we want to disallow classes
that contain just a finite number of regular expressions,
or only regular expressions that generate finite languages.
We thus impose the constraint that all clasSe®ntain at
least all simple regular expressions (recall that these are

We call a regular expressionsimple if eitherr = ¢ or of the form (a1 |as|---[a,)* ore). Such classes will be
r = (ai|az|---|an)*, wheren > 1 anday, as, . . ., a,, are calledadmissible.
pairwise distinct symbols. Simple regular expressions are Theorem 6.2 (Dichotomy) Let C be an admissible
the simplest expressions that can be used in DTDs, as theYciqss of reqular expressions and Q be one of CTQ,
impose restrictions neither on the cardinalities nor on the CTO/ , CTQV and CTQ/-°. Then C is either tractable
ordering of children, they just specify their types. or stréngly coNP-complete for Q-queries. ’

Theorem 5.6 For each of the three classes Furthermore, for each data exchange setting it is
STD(.,//), STD(r,//), and STD(r,.), one can decidable if it falls in the tractable case, and in this



case there is a polynomial time algorithm that for
each source tree T produces a solution T* such that
5 € certain(Q,T) iff 5 € Q(T™) for every tuple 3 from
Const.

In the rest of the section, we outline the proof of this re-
sult and the polynomial-time algorithm. We introduce
a classCy of regular expressions that is tractable for
CTQ//“-queries (and thus also fa@7Q-, C7Q//- and
CTQ"-queries). Then we show that every admissible class
of regular expressioré Z Cy is stronglycoNP-complete

for CTQ-queries (and thus also f@7Q//-, CTQ"- and
CTQ//Y-queries).

6.1 The tractable case.

We explain how to compute the canonical trée
over whichCTQ//-“-queries can be evaluated to produce
certain(@,T'). The restrictions on the clagg guarantee
that the construction is done INTIME.

Fix a data exchange settings, Dr, Ygt), Where
Dt = (Pr,Rr,r). For every tree-pattern formula
©(Z) not mentioning descendarit and wildcard_ and
for every tuples of strings, there exists an unordered
tree T,y naturally associated witkp(s). It is con-
structed inductively: ifp(s5) = ¢(Qa; = sq,...,Qa, =
sn)[p1(51), ..., ox(5k)], then the root off,5) is a node
vg of type/ that has attributeQay, . . ., Qa,, with values
81, - - - Sn, andk distinct childrervy, . . ., v, with v; being
the root of tre€l’,, (5,), fori < k.

Suppose we are given a source tréé and a
family ¥ of STDs. We define thecanonical pre-
solution for T, denoted bycps(T), as an unordered
tree T’ constructed as follows. For each STD
£[1/)1 (fv 2)) cr wk(ja 2)] o @S(ja 217) and tuples;, 5" from
Const such thatT" = ¢s(5,3'), choose a fresh tuple’
of strings fromVar and construct tre€s,, s 5. The tree
cps(T') has all such tree$,, s 5 as distinct subtrees at
the children of its root.

For example, consider DTDBg and D in Figure 3
(@), (b). InDs we have rules
r—bc", b—e, c—e,
andb andc have attribute@/; in Dt we have
r—(ed)*, c—e, d—e, e—e,

andc, e have attributesim and@n, respectively. Ifl" is
the source tree in Figure 3 (c), algt contains STDs

rle(@m = x)] b(Qf = x)
rle(@m = x)] c(@f = x),

theneps(T') is the tree shown in Figure 3 (d).

Canonical pre-solutions can be computedhIME;
the problem is that they may not conform to the tar-
get DTD (as in the example in Figure 3). We present
an algorithm for computing a canonical solution for a

tree T from cps(T). The key is to find a “repair” ev-
ery time we have a violation of constraints imposed by
the target DTD. Given a node of an unordered tar-
get treeT’, we say that(7T’,v) violates Dt if v does
not have the right attributes or the children ofdo
not have the right types, that is, {ffQa | pa.(v) is
defined inT’} # Ry (M (v)) or Ay (children(v)) &
7(Pr(Ar(v))), where A\ (children(v)) refers to the
stringArs (v1) ... A/ (vy,), @andoy, . . ., v, are the children

of v.

The “easy” violations are those when nodes do not have
the right attributes: if they miss some, we add them and
give them fresh values frorWar; if they have extra at-
tributes, the repair algorithm fails. More precisely, repa
ing functionChangeAtt receives as parameters a target
tree7” and a node such that{Qa | pa.(v) is defined
in 7'} # Rt (Ar(v)). This function fails if there ex-
ists an attributéda such thapa,(v) is defined inI” and
Qa ¢ Rr(Mr(v)), since in this casEgt forcesv to have
attribute @a while Dt does not alloww to have such an
attribute. Otherwise, for everfia € Ry (A (v)) such
that pa,(v) is not definedChangeAtt assigns a fresh
value fromVar to paq (v).

The “hard” violations are those when sequences of chil-
dren do not satisfy the constraints imposed by regular
expressions in DTDs. Repairing functi@@hangeReg
(defined later) tries to repair these violations: It re-
ceives as parameters a target tii€eand a node such
that A\p/ (children(v)) ¢ w(Pr(Ar/(v))), and it either
fails or returns a tred"” such that\r (children(v)) €
7(Pr(Ar (v))).

FunctionsChangeAtt andChangeReg are applied
to ¢ps(T), in no particular order, until we reach a tré&
that either conforms t@&+ or is not reparable (that is, the
repair algorithm fails). In the first case we say thHat
is a canonical solution for T'. For example, Figure 3 (e)
shows a canonical solution for the tree in Figure 3 (c).

For the clas€; (to be defined shortly) we prove:

Lemma 6.3 If Dt is a Cy-DTD, then for every
source tree T':

a) There exists a solution for T iff there exists a
canonical solution for T.

b) If T* is a canonical solution for T, then for ev-
ery CTQ/ "V -query Q(Z) and every tuple 5 from

Const, § € certain(Q,T) iff T* E Q(3) (if Q is
Boolean, then certain(Q,T) = true iff T* = Q).

Furthermore, forC;-DTDs canonical solutions can be
computed efficiently by repeatedly applyi@thangeAtt
andChangeReg.

Lemma 6.4 If Dy is a Cy-DTD, then it can be
checked in polynomial time whether there exists a
canonical solution for a given source tree T'. Further-
more, if such a solution exists, then it can be com-
puted in polynomial time.

By putting together these two lemmas we obtain:



/N roo

e ar @
| “r e

(a) Ds (b) D ()T

TN

c c d d
roo oo
Qm Qm Qm Q@m e e
“r s | |
Qn Qn
wpm g
(d) cps(T) (e) Canonical solution for T

Figure 3: Source DTD Dsg, target DTD D, source tree T conforming to Dg, canonical pre-solution

for T" and canonical solution for 7.

Proposition 6.5 Cy is tractable for CTQ//"Y-queries.

Now we define the classCy and explain how
ChangeReg works. First, we need some terminology.
Let alph(w) (or alph(r)) stands for the set of alphabet
symbols mentioned in a string (or a regular expression
r). Forevery € alph(w), let#,(w) be the number of oc-
currences ofi in w. We writew < w’if #,(w) < #4(w')
for everya € alph(w), andw < w' if w < w" and
w A w.

ChangeReg receives as parameters an unordered
tree 7' and a nodev such thatAg:(children(v)) ¢
’/T(PT()\T/ (’l)))) Assume that/ )\T/ (’U), w
Apv (children(v)) andr = Pr({). To adjustw to makeT”
conform to D, ChangeReg may need to extend to
a string in the setwin_ext(w, ) of minimal extensions of
w that fall intor (r):

min_ezt(w,r) = min<{w’ |w’ € 7(r), w I w'}.

For example, min_ext(b, (bbc)*) {bbc, beb, cbb}.
SometimeLhangeReg may need to extend nat itself
but a substring ofv. For examplemin_ext (bb, bc™) = ()
and, thus, the only way to repair is to merge twa’s into

a singleb and then expand to a stringir{r). The result-
ing strings from the process of expanding substrings of
are the strings from whicl®hangeReg will be chosen
a candidate to replace. Formally, the set of possible
repairs ofw, denoted byep(w, r), is defined as:

U

w’<w, alph(w’)=alph(w)

rep(w,r) = min_ext(w’', 7).

In this definition, we only consider strings’ such that
alph(w) = alph(w’), sinceXgT forcesv to have at least
one child of type, for everyb € alph(w).

ChangeReg replacesw by a stringw’ € rep(w,r).
But rep(w, ) may have more than one element; for exam-
ple, cedd anded are inrep(ce, (ed)*e*). To choose one,

we try to merge as few nodes as possible (so as to avoid
attribute clashes) and to add as few new element types

as possible (we prefetedd to cedde). This is captured
by the preference relatiort,, defined byw; =<, ws iff
(1) #p(w2) > min{#p(w1), #(w)} forall b € alph(w),
and (2)alph(w2) \ alph(w) C alph(w1)\ alph(w). Thus,
ChangeReg replacesv by w’ € max<,, rep(w, 7).

The canonical solution for a source tree must be
unique, no matter which strindChangeReg picks
from max~<,, rep(w, r) and no matter howChangeReg
merges the elements af. The problem is that for an ar-
bitrary regular expression this does not necessarily holds
Thus, we have to restrict our attention to regular expres-
sions suchthat (kpax<,, rep(w, ) has a“best” candidate
w’ and (2) if#y(w) > #4(w'), then#,(w') is equal tol,
so that there is only one way to merge the children of
typeb. We now define these conditions formally.

Foraregularexpressioranda € alph(r), letfized ,(r)
be the set ofv € =(r) such thatw’ € 7(r) andw < w’
imply #,(w) = #,(w"). For example, ifr = a|aab*,
thenaa € fized,(r) since every stringv € 7(r) such
thataa < w is a permutation of a string of the form
aab™ (n > 0) and, hence#,(aa) = #4,(w) = 2. On
the other handg ¢ fized,(r) sincea < aa € w(r) and
#a(a) < #4(aa). If fized,(r) # 0, then define:,(r)
max {#q(w) | w € fized,(r)}. If fived,(r) = 0, then
¢q(r) = 0. Finally,

e(r) max {cq(r) | a € alph(r)}.

For exampleg,(a | aab*) = 2 andey(a | aab*) = 0, and,
thus,c(a | aab®) = 2.

Lemma 6.6 c(r) is finite for every r.

We say that a regular expressioms univocal if ¢(r) <1

and for every stringo such thatrep(w,r) # (), the set
rep(w,r) has a maximum element with respect+g,:

that is, an element’ € rep(w,r) such thatw” <, w’

for all w” € rep(w,r). For example, all of the follow-
ing are univocal regular expressionsctd*e?, (b*|c*)

and (be)*(de)*. We letCy be the class of univocal reg-
ular expressions. It is easy to see that all simple regular
expressions are univocal, and heidgeis an admissible
class.

Proposition 6.7. It is decidable whether a regular ex-
pression r is univocal. In fact, for each T one
can compute a sentence ®, of Presburger Arithmetic
which is true iff r is univocal.

Summing up, ifDr is aCy-DTD, thenChangeReg(1”,
v) works as follows. Recall that = Ay (v), w



A (children(v)) andr = Pr(¢). Initially, ChangeReg
checks whetherep(w, r) is empty. If this is the case,
then it fails. OtherwiseChangeReg picks an arbitrary
stringw’ from max<_, rep(w,r), and then it replaces
by w'. More precisely, leh € alph(r), p = #p(w)
andq = #,(w’). If p < ¢, then ChangeReg adds
(¢ — p) new children tov of type b, each of them hav-
ing no attributes and no childrénif ¢ < p, theng = 1
(sincer is univocal) and, thusChangeReg replaces
the sequence;, ..., v, of children ofv of typeb by a
single fresh node’ of type b, and then for every sub-
treeT; of 7' rooted atv; (i € [1,p]), it replaces the root
of T; by v/. At this point ChangeReg fails if there
is an attribute clash, that is, if there is a pair of sub-
trees ofT” rooted atv;, v; (i,j € [1,p]) and an attribute
@q such thatpaq(vi) € Const, pas(v;) € Const and

Paa (Uz) 7é Paaq (Uj)-

It is then possible to show that th@hangeReg runs
in polynomial time for every fixed DT .

It is easy to see that all regular expressions used in
nested-relational DTDs are univocal. Hence, the following
extension of relational data exchange handled by Clio [23]
falls in the following large tractable case:

Corollary 6.8. If (Ds, Dt,XsT) is a data exchange
setting in which Dt is nested-relational, and @Q is
a CTQ//"Y-query, then CERTAIN-ANSWERS(Q) is in
PTIME.

We finally remark that canonical tréé" is unordered and
hence may not conform to the target DTD with an arbitrary
sibling ordering imposed on it. However, if one needs to
materialize the target instan@&, by Proposition 5.2 one
can transforml™, in polynomial time, into a tree that
conforms to the target DTD.

6.2 The intractable case.

The following shows thaf; is the maximal tractable
class, and thus completes the classification of finding cer-
tain answers and proves the dichotomy theorem.

Proposition 6.9 Let C be an admissible class of requ-
lar expressions such that C € Cy. Then C is strongly
coNP-complete for CIQ-queries.

This result is a consequence of the following lemmas.

Lemma 6.1Q Let r be a reqular expression such that
e(r) > 2 and C an admissible class of regqular expres-
stons containing r. Then C is strongly coNP-complete
for CTQ-queries.

Lemma 6.11 Let r be a non-univocal regular expres-
sion such that c(r) <1 and C an admissible class of
reqular expressions containing r. Then C is strongly
coNP-complete for CIQ-queries.

3Violations generated by adding b-nodes without at-
tributes or children are repaired later by repeatedly ap-
plying ChangeAtt and ChangeReg.

7. Conclusions

We have defined the basic notions of XML data ex-
change: source-to-target constraints, data exchange set-
tings, consistency and query answering problems. We
have seen that transferring relational data exchangesesul
to the XML setting requires considerable effort, even in
the fairly simple setting that shows how to translate source
patterns into target patterns. We have shown that, while
checking consistency is hard in general, it is tractable for
a practically relevant class handled by the Clio system at
IBM [23]. For query answering, we showed a dichotomy,
that separates query answering instances into tractatile an
coNP-complete ones, depending on properties of DTDs
and constraints.

As far as the theoretical foundations of XML data ex-
change are concerned, this paper uncovered at most the
tip of the iceberg. We now briefly list other problems that
seem to be worthy a theoretical investigation.

The standard notions of local-as-view and global-as-
view from data integration [18] have been adapted in rela-
tional data exchange [10, 11] and sometimes they lead to
better algorithms or easier analysis of the behavior of data
exchange settings and queries. So far we have not made
these notions precise in the XML case.

We have concentrated on tree patterns that use the child
and descendant axes of XPath; in the future we plan to
consider more expressive source-to-target constraiats th
use other axes such as next sibling. We also would like to
consider more expressive schema constraints (for example,
ID and IDREF attributes).

Finally, to define the notion of certain answers, we used
queries that produce tuples of values. Most XML queries
produce trees, but it is not at all clear how to define the
certain answers semantics for them. We plan to work on
this in the future.

Acknowledgments We are very grateful to Ron Fa-
gin, Phokion Kolaitis, and Lucian Popa for many helpful
discussions during the early stages of this project, and to
Pablo Barcé) and Wenfei Fan for their comments on the
draft. The authors were supported by grants from NSERC
and CITO, and M. Arenas was supported by a graduate
fellowship from IBM and FONDECYT grant 1050701.
Part of this work was done while M. Arenas was at IBM
Almaden.

8. References

[1] S. Abiteboul, O. Duschka. Complexity of answering
gueries using materialized views. FODS 1998,
pages 254-263.

[2] S. Abiteboul, P. Kanellakis, G. Grahne. On the
representation and querying of sets of possible
worlds. TC'S 78 (1991), 158-187.



[3] S. Abiteboul, L. Segoufin, V. Vianu. Representing
and querying XML with incomplete information. In
PODS’01, pages 150-161.

[4] S. Amer-Yahia, S. Cho, L. Lakshmanan,
D. Srivastava. Tree pattern query minimization.
VLDB J. 11 (2002), 315-331.

[5] S. Amer-Yahia, Y. Kotidis. Web-services
architecture for efficient XML data exchange. In
ICDE 2004, pages 523-534.

[6] M. Arenas, P. Barcél, R. Fagin, L. Libkin. Locally
consistent transformations and query answering in
data exchange. IRODS 200/, pages 229-240.

[7]1 M. Benedikt, W. Fan, G. Kuper. Structural
properties of XPath fragments. id'DT 2003,
pages 79-95.

[8] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison and M. Tommasiree
Automata: Techniques and Applications.
Available at
www.grappa.univ-1ille3.fr/tata. October

[9] A. Deutsch, V. Tannen. Containment and integrity
constraints for XPath. Idil{RDB 2001.

[10] R. Fagin, Ph. Kolaitis, R. Miller, L. Popa. Data
exchange: semantics and query answering. In
ICDT’03, pp. 207-224.

[11] R. Fagin, Ph. Kolaitis, L. Popa. Data exchange:
getting to the core. IPODS’03, pages 90-101.

[12] R. Fagin, Ph. Kolaitis, L. Popa, W.C. Tan.
Composing schema mappings: second-order
dependencies to the rescu&) DS 2004, pages
83-94

[13] G. Gaottlob, C. Koch, K. Schulz. Conjunctive
queries over tree?20DS 200/, pages 189-200.

[14] T. Imielinski, W. Lipski. Incomplete information in
relational databases. ACM 31 (1984), 761-791.

[15] R. Krishnamurthy, R. Kaushik, J. Naughton.
XML-SQL query translation literature: the state of
the art and open problems. Msym 2003, pages
1-18.

[16] L. Lakshmanan, G. Ramesh, H. Wang, Z. Zhao. On
testing satisfiability of tree pattern queriésLDB
2004, pages 120-131.

[17] H. W. Lenstra. Integer programming in a fixed
number of variablesMath. Oper. Res. 8 (1983),
538-548.

[18] M. Lenzerini. Data integration: a theoretical
perspective. IlPODS’02, pages 233-246.

[19] R. Miller, M. Hernandez, L. Haas, L. Yan, C. Ho,
R. Fagin, L. Popa. The Clio project: managing
heterogeneitySIGMOD Record 30 (2001), 78-83.

[20] F. Neven. Automata, logic, and XML. I6'SL
2002, pages 2—26.

[21] F. Neven, T. Schwentick. XPath containment in the
presence of disjunction, DTDs, and variables. In
ICDT 03, pages 315-329.

[22] C. H. Papadimitriou. On the complexity of integer
programming.J. ACM, 28 (1981), 765—-768.

[23] L. Popa, Y. Velegrakis, R. Miller, M. Heandez,
R. Fagin. Translating web data. MLDB 2002,
pages 598-609.

[24] H. Seidl. Deciding equivalence of finite tree
automataSIAM J. Comput. 19 (1990), 424-437.

[25] N. Shu, B. Housel, R. Taylor, S. Ghosh, V. Lum.
EXPRESS: a data extraction, processing, and
restructuring systemrl’'ODS 2 (1977), 134-174.

[26] V. Vianu. A Web Odyssey: from Codd to XML. In
PODS’01.

[27] P. Wood. Containment for XPath fragments under
DTD Constraints. INCDT"’03, pages 300-314.

[28] C. Yu, L. Popa. Constraint-based XML query
rewriting for data integration. I$/GMOD 0/,
pages 371-382.



