
XML Data Exchange: Consistency and Query Answering

Marcelo Arenas
University of Toronto

marenas@cs.toronto.edu

Leonid Libkin
University of Toronto

libkin@cs.toronto.edu

ABSTRACT

Data exchange is the problem of finding an instance of a
target schema, given an instance of a source schema and
a specification of the relationship between the source and
the target. Theoretical foundations of data exchange have
recently been investigated for relational data.

In this paper, we start looking into the basic properties
of XML data exchange, that is, restructuring of XML doc-
uments that conform to a source DTD under a target DTD,
and answering queries written over the target schema. We
define XML data exchange settings in which source-to-
target dependencies refer to the hierarchical structure of
the data. Combining DTDs and dependencies makes some
XML data exchange settings inconsistent. We investigate
the consistency problem and determine its exact complex-
ity.

We then move to query answering, and prove a di-
chotomy theorem that classifies data exchange settings into
those over which query answering is tractable, and those
over which it iscoNP-complete, depending on classes of
regular expressions used in DTDs. Furthermore, for all
tractable cases we give polynomial-time algorithms that
compute target XML documents over which queries can
be answered.

1. Introduction

Data exchange is the problem of finding an instance of
a target schema, given an instance of a source schema
and a specification of the relationship between the source
and the target. Such a target instance should correctly
represent information from the source instance under the
constraints imposed by the target schema,and should allow
one to evaluate queries on the target instance in a way that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2005, June 13-15, 2005, Baltimore, Maryland.
Copyright 2005 ACM 1-59593-062-0/05/06 ...$5.00.

is semantically consistent with the source data.

Data exchange is an old problem [25] that re-emerged
as an active research topic recently due to the increased
need for exchange of data in various formats, typically
in e-business applications [5]. A system Clio for data
exchange was built [19, 23] and partly incorporated into
the latest release of IBM’s db2 product. At about the same
time, papers [10, 11] by Fagin, Kolaitis, Miller, and Popa
laid the theoretical foundation of exchange of relational
data, and several followup papers studied various issues in
data exchange such as schema mapping composition [12]
and query rewriting [6, 28].

And even though practical systems such as Clio handle
non-relational data (in particular, nested relations [23]),
all theoretical investigation so far has concentrated on the
relational case.

Our goal is to start the investigation of basic theoretical
issues of data exchange for XML documents. We illustrate
XML data exchange by the following example. Suppose
we have the source document shown in Figure 1 (b) con-
forming to the DTD shown in Figure 1 (a). This DTD says
that the document consists of severalbook elements, each
having atitle attribute and severalauthor subelements;
each author has attributesname andaff(iliation).

Suppose we want to restructure this document under
the target schema shown in Figure 2 (a). This DTD says
that a document has severalwriter elements, each hav-
ing aname attribute, and severalwork subelements with
attributestitle andyear. Intuitively, a restructured docu-
ment should look like the XML document shown in Fig-
ure 2 (b). Note that the original document provides no
data about publication year, and hence we have to invent
new values for the document structured under the target
schema. In data exchange terminology, these arenulls,
denoted here by⊥1 and⊥2. The new document forces
two of them to be the same, even though their values are
not known.

Even in the relational case there could be different target
databases that satisfy all the constraints of a data exchange
setting [10]. So if we are given source document shown
in Figure 1 (b) and a query over the new DTD, shown in
Figure 2 (a), how can we answer it? If our query is, for
example,Who is the writer of the work named “Com-
putational Complexity”?, the answer isPapadimitriou

<!ELEMENT db (book*)>
<!ELEMENT book (author*)>
<!ATTLIST book

title CDATA #REQUIRED>
<!ELEMENT author (EMPTY)>
<!ATTLIST author

name CDATA #REQUIRED
aff CDATA #REQUIRED>

(a) Source DTD

@name
“Papadimitriou”

@title
“Combinatorial
Optimization”

author

@aff
“UCB”

author

book

“Steiglitz”
@name @aff

“Princeton”
@aff@name

“Papadimitriou” “UCB”

author@title
“Computational

Complexity”

book

db

(b) Source XML document

Figure 1: Source information.

regardless of a particular document that was created for
the target DTD. Notice that even though the answer would
be the same in every correctly constructed document that
conforms to the new DTD, we can deduce this just by
looking at a single document shown above. As another
example, consider a queryWhat are the works written
in 1994?. This query cannot be answered with certainty
in this scenario.

Our main goals here are the following:

• We propose a formalism for XML data exchange
settings, and investigate its basic properties, and

• We study the problem of query answering in data
exchange contexts, and analyze its complexity, and
develop query evaluation algorithms.

Before we describe the main contributions of the paper,
we recall briefly the setting of relational data exchange
and query answering [10, 11]. A relational data exchange
setting is a triple (S, T, ΣST), whereS is a source schema,
T is a target schema, andΣST is a set ofsource-to-target
dependencies, or STDs, that express the relationship be-
tweenS andT. Sometimes a set of constraints on the
target schema is also added to the setting. Such a setting
gives rise to thedata exchange problem: given an in-
stanceI over the source schemaS, find an instanceJ over
the target schemaT such thatI together withJ satisfy the
STDs inΣST (when target dependencies are used,J must
also satisfy them). Such an instanceJ is called asolution
for I. STDs are usually of the form

ψT(x̄, z̄) :– ϕS(x̄, ȳ), (1)

whereϕS andψT are conjunctions of atomic formulae
overS andT, respectively. The pair〈I, J〉 satisfies this
dependency if wheneverϕS(ā, b̄) is true in I, for some
tuple c̄, ψT(ā, c̄) is true inJ .

In general, there may be many different solutions for
a given source instanceI, and under target constraints,
there may be no solutions at all [10, 11]. If one poses a
queryQ over the target schema, and a source instanceI is
known, the usual semantics in data exchange usescertain

answers [2, 14]: we letcertain(Q, I) be the intersection
of allQ(J)’s over all possible solutionsJ . A key problem
in data exchange is to find a particular solutionJ0 so that
certain(Q, I) can be obtained by evaluating some query
(a rewriting ofQ) overJ0.

Some answers to this question were given in [10, 11]:
e.g., ifQ is a union of conjunctive queries,certain(Q, I)
can be computed by evaluatingQ over a special kind of
solution calledcanonical that can be constructed in poly-
nomial time. In general, however, work on query rewriting
amd incomplete information tells us that the complexity
of finding certain answers can be intractable [1, 2].

Coming back to XML data exchange, we have to define
XML data exchange settings. By analogy with the rela-
tional case, they should have source and target schemas,
and source-to-target dependencies. We shall use DTDs as
schemas, but it is not immediately clear what formalism to
use for STDs, although intuitively they should correspond
to conjunctive queries in some relational representation of
XML.

This intuition gives rise to a very natural question
whether we can “reduce” XML data exchange problem
to relational data exchange by using some relational rep-
resentation of XML documents [15] (for example, as trees
with the child and next-sibling relations, as well as at-
tribute values). The problem with this naive approach is
that DTDs impose rather expressive constraints on target
trees, that can talk about reachability as well as regular ex-
pressions. Thus, their expressiveness is well beyond first-
order logic, and yet results on relational data exchange
have only considered limited first-order constraints on the
target so far.

Thus, as is often the case with transferring results from
relational databases to XML, we do have to reinvent most
basic notions and prove new results.

We now briefly summarize our main results.

• We define data exchange settings based on STDs
which show how patterns in the source tree translate
into patterns in the target tree.

<!ELEMENT bib (writer*)>
<!ELEMENT writer (work*)>

<!ATTLIST writer
name CDATA #REQUIRED>

<!ELEMENT work (EMPTY)>
<!ATTLIST work
title CDATA #REQUIRED
year CDATA #REQUIRED>

(a) Target DTD

writer

@year

writer

bib

@name @name
“Papadimitriou” “Steiglitz”

work

@title
“Combinatorial
Optimization”

⊥1 ⊥1

work

@title
“Combinatorial
Optimization”

@year @title
“Computational

Complexity”

work

@year
⊥2

(b) Target XML document

Figure 2: Target information.

• We want to excludeinconsistent data exchange
settings, in which target instances cannot be con-
structed. We determine the exact complexity of
checking consistency (EXPTIME-complete). We
also find restrictions of lower complexity, as well
as a practically relevant tractable class, which sub-
sumes non-relational data exchange settings handled
by Clio. Notice that the high complexity is in the size
of the DTDs and STDs, andnot XML documents.

• We study querying in the XML data exchange sce-
nario, prove acoNP upper bound on the complexity
of query evaluation, and identify a class of source-
to-target dependencies, called fully-specified STDs,
outside of which finding certain answers iscoNP-
complete. Within that class, we prove adichotomy
theorem which says that depending on the class of
regular expressions used in DTDs, query answering
is either tractable orcoNP-complete. For tractable
cases, which subsume nonrelational data exchange
handled by Clio [23], we have algorithms for con-
structing target documents over which queries can
be answered.

Organization Section 2 defines some basic XML con-
cepts. In Section 3 we describe XML data exchange set-
tings. In Section 4 we study their consistency, and in
Section 5 we present a query language and some neces-
sary restrictions for tractable query answering. In Section
6 we prove the dichotomy theorem. Because of space lim-
itations, full proofs are omitted and only proof sketches
are given.

2. Notations

We view XML documents as node-labeled unranked
trees. We assume countably infinite setsEl of names of
element types andAtt of attribute names, as well as a do-
mainStr of possible attribute values (normally considered
to be strings). Attribute names are preceded by a “@” to
distinguish them from element types.

Given finite setsE ⊂ El andA ⊂ Att, anXML tree

T over(E,A) is a finite ordered directed tree(N ,<child,
<sib, root) whereN is the set of nodes,<child is the child
relation,<sib is the next-sibling relation (for each nodev
it orders its childrenv1 <sib . . . <sib vm), androot is the
root, together with

• a labeling functionλT : N → E (if λT (v) = ℓ, we
say thatℓ is theelement type of v);

• a partial functionρ@a : N → Str for every@a ∈ A
assigning some nodes ofT values of attribute@a.

A DTD (Document Type Definition) over(E,A) is defined
as a triple(P,R, r) where

• P is a function fromE to regular expressions over
E defined by the grammar

e ::= ε
∣

∣ ℓ, ℓ ∈ E
∣

∣ e|e
∣

∣ ee
∣

∣ e∗,

(ε is the empty string, ande|e, ee ande∗ stand for
the union, concatenation and the Kleene star);

• R : E → 2A associates with each element type a
(possibly empty) set of attribute names; and

• r ∈ E is the distinguished element type of the root,
which cannot be used in regular expressionsP (ℓ)
and cannot have any attributes (R(r) = ∅).

We also use the standard shorthandse+ for ee∗ and e?
for ε|e, and we often writeℓ → e instead ofP (ℓ) = e
as is common for DTDs. Furthermore, we do not con-
siderPCDATA elements in XML documents since they can
always be represented by attributes.

For example, for the source DTD shown in Figure 1
(a), E = {db, book , author}, A = {@title, @name,
@aff }, P is given byP (db) = book∗ (that is, db →
book∗), P (book) = author∗, P (author) = ε; and
R(db) = ∅, R(book) = {@title}, andR(author) =
{@name, @aff }. Furthermore,db is the element type of
the root.

An XML tree T conforms to D = (P,R, r), denoted
by T |= D, if:

1. for every nodev in T with childrenv1, . . . , vm such
that v1 <sib . . . <sib vm, if λT (v) = ℓ, then the
stringλT (v1) . . . λT (vm) is in the language defined
by the regular expressionP (ℓ);

2. for every nodev in T with λT (v) = ℓ, ρ@a(v) is
defined iff@a ∈ R(ℓ);

3. λT (root) = r.

We write SAT(D) for the set of XML treesT that con-
form to D. It is a folklore result that checking whether
SAT(D) 6= ∅ can be done in linear time. We say that a
DTD D is consistent if for every element typeℓ in D,
there exists a treeT conforming toD and having a node
of type ℓ. From now on, we assume that every DTD is
consistent. This can be done without loss of generality
due to the following easy observation.

Lemma 2.1. Given a DTD D with SAT(D) 6= ∅, one
can construct, in polynomial time, a consistent DTD
D′ such that SAT(D) = SAT(D′).

3. XML Data Exchange Settings

Recall [10, 11] that a relational data exchange setting
is a triple (S,T,ΣST), whereS andT are source and
target relational schemas, andΣST is a family of source-
to-target dependencies, that is, expressions of the form1

ψT(x̄, z̄) :– ϕS(x̄, ȳ), whereψT (resp.,ϕS) is a conjunc-
tion of atomic formulae overT (resp.,S). InstancesI of
S andJ of T satisfy this dependency if wheneverϕS(ā, b̄)
holds inI, one can find a tuplēc such thatψT(ā, c̄) holds
in J .

Now we need to extend this setting to XML data. Instead
of source and target schemasS andT, we shall use source
and target DTDsDS andDT. But what do have in place
of relational STDs?

A natural idea is to extend relational source-to-target
dependencies to XML trees considered as relational struc-
tures. But one needs to add the descendant relation, which
is not FO-definable from the child relation and, worse yet,
make the logical formalism two-sorted in order to deal
with both nodes and values. This would make the for-
malism rather cumbersome. Instead, we present XML
source-to-target dependencies in a formalism that is much
closer to XML languages such as tree patterns and XPath
[4, 7].

Essentially our STDs say that if a certain pattern occurs
in the source, another pattern has to occur in the target.
Thus, formulae used in STDs will be very similar to those
used, for example, in [4, 7, 21, 9, 27]. One difference
though is that while XPath formulae select nodes from a
1In [10, 11], STDs are written as FO sentences but here
we prefer a rule-based formalism.

tree, we also need to collect values of attributes that need
to be assigned to nodes in the target trees. Thus, as in [9,
21], we shall use variables; in our case, they will range
over possible attribute values.

Tree-pattern formulae. The basic component of our
language isattribute formulae. Assume that is a wild-
card symbol not included inEl ∪Att . Given setsE ⊂ El
of element types andA ⊂ Att of attributes, attribute for-
mulae over(E,A) are defined by

α := ℓ | ℓ(@a1 = x1, . . . ,@an = xn),

whereℓ ∈ E ∪{ } and@a1, . . . ,@an ∈ A. In the second
case, variablesx1, . . . , xn are the free variables ofα.

An attribute formula is evaluated in a node of a tree, and
values for free variables come fromStr. If T is an XML
tree over(E,A) andv a node ofT , then

• (T, v) |= ;

• (T, v) |= ℓ iff λT (v) = ℓ, for ℓ ∈ E.

• If α(x1, . . . , xn) = ℓ(@a1 = x1, . . . ,@an = xn),
then (T, v) |= α(s1, . . . , sn), wheres1, . . . , sn ∈
Str, iff (T, v) |= ℓ and ρ@aj

(v) = sj , for every
j ∈ [1, n].

Tree-pattern formulae over(E,A) are defined by

ϕ := α | α[ϕ, . . . , ϕ] | //ϕ,

whereα ranges over attribute formulae over(E,A). The
free variables of a tree-pattern formulaϕ are the free vari-
ables in all the attribute formulae that occur in it. For exam-
ple, the formuladb[book(@title = x)[author (@name =
y)]] has free variablesx andy. We writeϕ(x̄) to indicate
that free variables ofϕ arex̄.

We evaluate tree-pattern formulae in an XML tree.
Given a treeT , a tree-pattern formulaϕ(x̄), and a tu-
ple s̄ from Str, ϕ(s̄) is true inT (written T |= ϕ(s̄)) if
there is a witness nodev for ϕ(s̄). Intuitively, the witness
node is the node at which the pattern is satisfied, withs̄
being the values of attributes. Formally, we definev in T
to be a witness node forϕ(s̄) as follows:

• v is a witness node forα(s̄), whereα is an attribute
formula, iff (T, v) |= α(s̄).

• v is a witness node forα(s̄)[ϕ1(s̄1), . . . , ϕk(s̄k)]
iff (T, v) |= α(s̄) and there arek (not necessarily
distinct) childrenv1, . . . , vk of v such that eachvi is
a witness node forϕi(s̄i), for everyi ≤ k.

• v is a witness node for//ϕ(s̄) if there is a descendant
v′ of v in T which is a witness node forϕ(s̄).

For example, letψ(x, y) be formulabook (@title = x)[
author(@name = y)], referring to the example from the
introduction (see DTD in Figure 1 (a)). Thenψ(s, s′) is
true iff s is a title of a book ands′ is one of its authors,
with the correspondingbook element being the witness.

Notice that every tree-pattern formula can be translated
into a conjunctive query in a two-sorted logic over XML
trees considered as structures in the language of<child

and<∗
child (descendant), being the second sort values of

attributes. Thus, we are in principle in the same category
of formulae for defining data exchange setting as in the re-
lational case; however, we avoid the two-sorted formalism
by using tree-pattern formulae.

Data exchange settings. We now define XML data
exchange settings using tree-pattern formulae. Essentially,
a data exchange setting consists of source and target DTDs,
and source-to-target dependencies, which are rules of the
form (1) in which bothϕ andψ are tree-pattern formulae.

Definition 3.1. (Source-to-target dependencies).
Given finite sets ES, ET ⊂ El of elements types and
AS, AT ⊂ Att of attributes, a source DTD DS over
(ES, AS) and a target DTD DT over (ET, AT), a
source-to-target dependency (STD) between DS and
DT is an expression of the form:

ψT(x̄, z̄) :– ϕS(x̄, ȳ), (2)

where ϕS(x̄, ȳ) and ψT(x̄, z̄) are tree-pattern formulae
over (ES, AS) and (ET, AT), respectively, and tuples
ȳ and z̄ have no variables in common.

Given XML trees T and T ′ conforming to DS and
DT, respectively, we say that the pair 〈T, T ′〉 satisfies
this STD if whenever T |= ϕS(s̄, s̄′), there is a tuple
s̄′′ such that T ′ |= ψT(s̄, s̄′′).

Definition 3.2. (Data Exchange Setting). An
XML data exchange setting is a triple (DS, DT,
ΣST), where DS is a source DTD, DT is a target
DTD, and ΣST is a set of STDs between DS and
DT.

Definition 3.3. (Solutions). Given a data exchange
setting (DS, DT, ΣST) and an XML tree T conform-
ing to DS, a tree T ′ conforming to DT such that
〈T, T ′〉 satisfies all STDs in ΣST is called a solution
for T .

Referring again to the data exchange scenario from the
introduction (see Figures 1 and 2), the STD that speci-
fies how to transformbook/author pairs intowriter/work
pairs is given byψT(x, y, z) :– ϕS(x, y) whereϕS(x, y)
andψT(x, y, z) are

db[book (@title = x)[author (@name = y)]] and

bib[writer (@name = y)[work (@title = x,@year = z)]],

respectively. For example, we know that the source docu-
ment from the introduction satisfies

ϕS(Combinatorial Optimization,Papadimitriou).

Thus, in a solutionT ′ for T , we would have awriter child
of the root with the@name attributePapadimitriou, and
a work child with two attributes@title and@year. The
value of@title is Combinatorial Optimization, but the
source document provides no information about the value
of the@year attribute. In a solution therefore one has to
invent a null value (shown as⊥1 in the example) for this
attribute.

As in other papers on data exchange [10, 11], we as-
sume that the domainStr of attributes is partitioned into
two countably infinite setsConst andVar. The setConst

contains all values that may occur in source trees, and,
following data exchange terminology, we call themcon-
stants. Elements ofVar are callednulls, and they are used
to populate target trees.

4. Consistent Data Exchange Settings

It is known that even in the relational case some data ex-
change settings areinconsistent due to constraints on the
target instance [10, 11]. DTDs, being very close in expres-
siveness to monadic second-order logic [26], may impose
a variety of restrictions on possible solutions, sometimes
making data exchange settings inconsistent. For example,
consider an STDr[ℓ1[ℓ2(@a = x)]] :– r. If the target
DTD is r → ℓ1|ℓ2, ℓ1, ℓ2 → ε, then there is no source
XML treeT for which a solution exists. In other words, no
matter what the source DTD is, the data exchange setting
would be inconsistent.

Thus, we call a data exchange setting(DS, DT,ΣST)
inconsistent if no treeT |= DS has a solution. Otherwise,
the setting isconsistent.

Obviously one should only work with consistent set-
tings. But how hard is it to test consistency? To answer
this, we study the following problem:

PROBLEM: Data-Exchange-Consistency

INPUT: Data exchange setting
(DS, DT,ΣST).

QUESTION: Is (DS, DT,ΣST) consistent?

A particular case of this problem is satisfiability of tree-
pattern formula which asks whether there exists a tree
T that conforms to a DTDD and satisfies a tree pat-
tern formulaψ. Indeed, this happens iff the setting
(Dr, D, {ψ :– r}) is consistent, whereDr has only one
rule r → ε. It is known that satisfiability of tree-patterns
may be intractable [16] although precise complexity was
not known. Results on XPath containment in the pres-
ence of DTDs [21, 27] also suggest high complexity for
data exchange consistency. We now determine its exact
complexity.

Theorem 4.1. The problem Data-Exchange-

Consistency is EXPTIME-complete.

Proof sketch: for membership, we first show that it suf-
fices to consider STDs in which all attribute formulae are
of the formℓwith ℓ ∈ E ∪{ }. Then for each STDψ :– ϕ
we construct an unranked tree automaton that accepts a
tree whose root has two children iff whenever the subtree
rooted at the left child satisfiesϕ, then the subtree rooted
at the right child satisfiesψ. We show that the product
of all these automata can be constructed in exponential
time. Then we take the product of this automaton with

automata defining the DTDs; the setting is consistent iff
such an automaton accepts a tree. The latter can be done
in polynomial time in the size of the automaton [20].

For hardness, we use reduction from the problem of
testing if a nondeterministic bottom-up tree automaton ac-
cepts every tree. This problem is known to beEXPTIME-
complete [24]. 2

The problemData-Exchange-Consistency remains
intractable even under some strong restrictions. Recall that
a DTDD is recursive if there is a cycle in the graphG(D)
defined as{(ℓ, ℓ′) | ℓ′ is mentioned in P (ℓ)}, and non-
recursive otherwise. We definepath-pattern formulae as
restrictions of tree-pattern formulae given by

ϕ := α | α[ϕ] | //ϕ.

In other words, in such formulae one can talk only of one
child or one descendant of a given node. They are closely
related to the child-descendant fragment of XPath.

For each fixed DTDDT, we consider the restric-
tionD-E-C(DT) ofData-Exchange-Consistency,
whose input is(DS,ΣST) with all formulae in ΣST

being path-pattern formulae. The question is whether
(DS, DT,ΣST) is consistent.

The next proposition shows that checking consistency
remains intractable even with a fixed target DTD and re-
stricted source DTDs.

Proposition 4.2. Fix an arbitrary nonrecursive DTD
DT that does not use the the Kleene star. Then:

a) The problem D-E-C(DT) for non-recursive
source DTDs DS that do not use the Kleene star
is PSPACE-complete.

b) The problem D-E-C(DT) for non-recursive
source DTDs DS in which all regular expres-
sions are of the form ℓ→ ℓ1| . . . |ℓm or ℓ→ ε is
NP-complete.

Proof sketch. As before, we can assume that all formulae
in STDs have no free variables. Membership inNP is easy
by guessing an instance; for membership inPSPACE we
transform a DTD such that all regular expressions become
either conjunctions or disjunctions, and then use an alter-
nating polynomial-time algorithm. For hardness, we use
reductions from QSAT forPSPACE and 3SAT forNP. 2

We finally identify a class for which consistency is
tractable. This class is relevant in practical applications
of data exchange such as those addressed by Clio [19,
23]. One extension of relational data exchange that is en-
abled by Clio is to nested relational schemas. Nested
relations can naturally be represented by XML docu-
ments. In that case all the rules in DTDs are of the form
ℓ→ ℓ1 . . . ℓmℓ

∗
m+1 . . . ℓ

∗
m+k, with all theℓi’s distinct.

We shall extend this, and considernested-relational
DTDs defined as non-recursive DTDs in which all rules
are of the form

ℓ → ℓ̃0 . . . ℓ̃m,

where allℓi’s are distinct, and each̃ℓi is one of the fol-
lowing: ℓi, or ℓ∗i , or ℓ+i , or ℓi? = ℓi | ε. Such DTDs
have also been looked at in the context of handling partial
information in XML [3].

Theorem 4.3. Data-Exchange-Consistency is
solvable in polynomial time if both source and target
DTDs are nested-relational.

Proof sketch. We show how to transform, in linear time,
a data exchange setting(DS, DT,ΣST) into a setting
(D′

S
, D′

T
,Σ′

ST
) such thatD′

S
andD′

T
are non-recursive

DTDs in which all regular expressions are of the form
ℓ1, . . . , ℓm, m ≥ 0, with all the ℓi’s distinct, formu-
lae in Σ′

ST
do not have free variables, and such that

(DS, DT,ΣST) is consistent iff(D′
S
, D′

T
,Σ′

ST
) is con-

sistent. The latter can be checked in polynomial time
because a DTDD with such regular expressions can have
only one treeTD that conforms to it. Then one evaluates
left- and right-hand sides of the rules inΣ′

ST
on the trees

TD′

S
andTD′

T
conforming toD′

S
andD′

T
, respectively,

to verify if the setting is consistent. The trees that con-
form toD′

S
andD′

T
need not be of polynomial size, but

the verification can be still be done in polynomial time by
evaluating inductively all subformulae for each element
type, in a mannner similar to model-checking for modal
and some branching-time temporal logics. 2

The algorithm for checking consistency for nested-
relational DTDs runs in timeO(nm2) wheren is the size
of the DTDs andm is the size of the STDs.

5. Query Answering

Our goal is to define the concept of query answering in
the XML data exchange scenario. Since we need to com-
pute certain answers (which are defined as intersections
of query results over all solutions), we consider queries
which return tuples of values as opposed to arbitrary trees.

We already know from results on relational data ex-
change that answering general FO queries over target in-
stances is problematic [6, 10], and most positive results
have been proved for conjunctive or monotone queries
[10, 11]. Thus, for our query language, we shall use the
closure of tree-pattern formulae under conjunction and
existential quantification. This is similar to conjunctive
queries over child and descendant as defined in [13], again
with the main difference being the use of free variables to
collect attribute values, as opposed to outputting nodes of
trees.

A query languageCTQ// is defined by

Q := ϕ | Q ∧Q | ∃xQ,

whereϕ ranges over tree-pattern formulae. The semantics
of ∧ and ∃, as well as the definition of free variables,
is standard. We note that as in the case of tree-pattern
formulae,CTQ//-formulae are evaluated in an XML tree.

NotationCTQ// stands for “conjunctive tree queries with

descendant.” If we do not allow descendant in queries,
we obtain a fragment denoted byCTQ. For example,
consider aCTQ queryψ(x) given by∃y book (@title =
x)[author (@name = y)]. Then the source document
from the introduction, shown in Figure 1 (b), satisfies
ψ(Computational Complexity).

We shall also consider unions of conjunctive queries.
By CTQ//,∪ we denote the class of queries of the form
Q1(x̄) ∪ . . . ∪ Qm(x̄), where eachQi is a query from
CTQ//. By disallowing descendant in theQi’s we obtain
a restriction denoted byCTQ∪.

5.1 Certain answers.

Assume that we are given a data exchange setting
(DS, DT, ΣST), a source XML treeT that conforms
toDS, and aCTQ//,∪ queryQ(x̄). What does it mean to
answerQ? As in the case of relational data exchange [10,
11], since there may be many possible solutions to the data
exchange problem, we define the semantics ofQ in terms
of certain answers:

certain(Q, T) =
⋂

T ′ is a solution for T

Q(T ′).

Thus, a tuplēs of strings is incertain(Q, T) if s̄ ∈ Q(T ′)
for every solution solutionT ′ for T . If Q is a Boolean
query (a sentence), thencertain(Q, T) = true iff for
every solutionT ′ for T , we haveT ′ |= Q.

Let (DS, DT, ΣST) be a data exchange setting. The
main problem we study is:

PROBLEM: Certain-Answers(Q).
INPUT: An XML tree T conforming toDS

and a tuplēs of strings.
QUESTION: Is s̄ ∈ certain(Q, T)?

If Q is a Boolean query (m = 0) then the input to the
problem is an XML treeT and the problem is to verify
whethercertain(Q, T) = true.

Notice that as in the relational case, only tuples from
Const could belong tocertain(Q, T).

5.2 Unordered trees.

Our query answering algorithms take advantage of tem-
porarily “forgetting” about the sibling order. That is, we
construct a target tree which does not conform to the tar-
get DTD but could be rearranged into one conforming
to the DTD simply by imposing a correct sibling order.
To capture this, we introduce a class of languages which
are permutations of regular languages, and the notion of
satisfaction of DTDs by unordered trees.

Given a regular expressionr over an alphabetΓ, we
let L(r) stand for the language denoted byr. Then we
defineπ(r) ⊆ Γ∗ as the set of all stringsw which are
permutations of strings inL(r). For example, ifr = (ab)∗,

thenπ(r) has strings in which the number ofa’s equals
the number ofb’s. Thus,π(r) need not be regular; in
fact it may not even be context-free becauseπ((abc)∗) ∩
L(a∗b∗c∗) = {anbncn | n ≥ 0}.

An unordered XML tree is defined as a directed tree
(N , <child, root) (that is, it excludes the sibling order
<sib). Given an unordered XML treeT and a DTDD, we
say thatT conforms toD, denoted byT |≈D, if for every
nodev in T with children v1, . . . , vm andλT (v) = ℓ,
the stringλT (v1) . . . λT (vm) is in π(P (ℓ)), and items 2
and 3 of the definition ofT |= D are true. That is,
λT (v1) . . . λT (vm) is a permutation of some string in the
language ofP (ℓ).

We say that an unordered XML treeT ′ is asolution for
an XML treeT in a data exchange setting(DS, DT, ΣST)
if T ′ |≈ DT and 〈T, T ′〉 satisfies2 all the STDs from
ΣST. As in the case of ordered trees, we define the se-
mantics ofCTQ//,∪-queries in terms of certain answers,
that is, given an XML treeT |= DS, a CTQ//,∪-query
Q(x̄) overDT and and a tuplēs of strings, we say that
s̄ ∈ certain

un(Q, T) if and only if s̄ ∈ Q(T ′) for every
unordered solutionT ′ for T .

The following proposition allows one to forget about
the sibling ordering while computing certain answers and,
in particular, it allows one to use unordered trees when
proving lower bounds for this problem.

Proposition 5.1. Given an XML data exchange set-
ting (DS, DT, ΣST), an XML tree T |= DS and a
CTQ//,∪-query Q(x̄), we have

certain(Q, T) = certain
un(Q, T).

Furthermore, tractable query answering algorithms in this
paper will be constructing a certain unordered solutionT ∗

satisfyingcertain
un(Q, T) = Q(T ∗). This can be done

without loss of generality since every unordered solution
can be turned into an ordered solution, and this can be
done in polynomial time, as the following result shows.

Given an unordered treeT and a sibling ordering≺sib,
let T≺sib be the resulting ordered tree. Then:

Proposition 5.2. Suppose T |≈ D. The one can com-
pute, in polynomial time in the size of T , a local sib-
ling ordering ≺sib on T such that T≺sib |= D.

We shall also need complexity bounds for checking
whether a stringw is in π(r). Since the Parikh image
of a regular language is a semilinear set, this reduces to
integer linear programing, which is inNP in general, and
in polynomial time if dimension is fixed [17]. This gives
us the following.

Proposition 5.3. The problem of checking whether w
is in π(r) for a string w and a regular expression r is
NP-complete. For each fixed r, checking whether w
is in π(r) can be done in polynomial time.

2The notion of satisfaction of a tree-pattern formula by
an unordered tree is defined exactly as in the case of (or-
dered) XML trees.

5.3 First complexity results: upper bound and some
hard cases.

Our goal is to determine the complexity of computing
certain answers. A priori it is not even clear if the problem
is decidable, but we can prove the following upper bound.

Theorem 5.4. If Q is a CTQ//,∪-query, then
Certain-Answers(Q) is in coNP.

Proof sketch. It suffices to show that if ā 6∈
certain(Q, T), then one can construct a treeT ′ of polyno-
mial size (in‖T ‖) such that̄a 6∈ Q(T ′). For this, we take
an arbitrary solutionT0 for T for which ā 6∈ Q(T0) and
show how to reduce its size, by cutting both long paths
and long sibling chains to reduce it to the desired tree
T ′. While reducing the size, we keep a certain skeleton
that witnesses the fact thatT0 is a solution. The main
difficulty is in cutting long paths: while our queries are
monotone, by removing parts of paths we introduce new
“child” edges, and in general it is impossible to conclude
that after such a cut̄a is not in the result of the query.2

We would like to identify tractable cases of theCertain-

Answers problem. Its complexity is mostly affected by
target formulae in STDs and target DTDs, since in the
definition of certain answers we take the intersection over
all instances satisfying target formulae and the target DTD.

We now identify a necessary restriction for tractability.
We define a class of STDs and show that outside of this
class we getcoNP-hard instances ofCertain-Answers

even for very simple DTDs.

Definition 5.5. A source-to-target dependency
ψT(x̄, z̄) :– ϕS(x̄, ȳ) is fully-specified if ψT is of the
form r[ϕ1, . . . , ϕk], where r is the type of the root
and ϕi’s do not use descendant // and wildcard .

For example, the following source-to-target dependency
is fully-specified:

bib[writer (@name = y)[work (@title = x)]] :–

book(@title = x)[author (@name = y)].

The definition of fully-specified STDs puts three restric-
tion on target formulae: they are witnessed at the root,
there is no descendant, and no wildcard. By relaxing those,
we can get three classes of STDs, in which target formula
satisfy only two of the three restrictions. We denote them
by STD(, //) (wildcard and descendant are forbidden),
STD(r, //) (formulaer[ϕ1, . . . , ϕk] in which descendant
is forbidden), andSTD(r,) (formulaer[ϕ1, . . . , ϕk] in
which wildcard is forbidden).

We call a regular expressionr simple if either r = ε or
r = (a1|a2| · · · |an)∗, wheren ≥ 1 anda1, a2, . . ., an are
pairwise distinct symbols. Simple regular expressions are
the simplest expressions that can be used in DTDs, as they
impose restrictions neither on the cardinalities nor on the
ordering of children, they just specify their types.

Theorem 5.6. For each of the three classes
STD(, //), STD(r, //), and STD(r,), one can

find a data exchange setting in which all STDs
belong to that class, and a CTQ-query Q such that
Certain-Answers(Q) is coNP-complete, even if all
regular expressions used in source and target DTDs
are simple.

Thus, from now one we concentrate on fully-specified
STDs. Our goal is to provide a classification of data
exchange settings for which computing certain answers is
tractable.

6. Computing Certain Answers: Classifica-
tion and Dichotomy

Proviso: throughout this section, all source-to-target
dependencies are fully-specified. As was shown earlier,
outside of this class one cannot avoidcoNP-hardness even
for very simple source and target DTDs.

Our goal now is to classify the complexity of the
Certain-Answers problem. As was explained ear-
lier, it depends heavily on target DTDs. We shall classify
target DTDs and prove a dichotomy theorem which states
that depending on a class of regular languages used in
DTDs, computing certain answers is either tractable or
coNP-complete.

If C is a class of regular expressions, we say that a DTD
D is aC-DTD if all regular expressions inD belong toC.

Definition 6.1. Given a class C of regular expressions,
and a class Q of queries, we say that

• C is tractable for Q if for every data exchange
setting (DS, DT, ΣST) with DT being a C-
DTD, and every Q ∈ Q, the problem Certain-

Answers(Q) is in PTIME;

• C is coNP-complete for Q if there exists a data
exchange setting (DS, DT, ΣST) with DT be-
ing a C-DTD, and a query Q ∈ Q such that
Certain-Answers(Q) is coNP-complete;

• C is strongly coNP-complete for Q if the above
holds when DS is simple and Q is a Boolean
query.

We want our classes of regular expressions to have some
degree of uniformity: that is, we want to disallow classes
that contain just a finite number of regular expressions,
or only regular expressions that generate finite languages.
We thus impose the constraint that all classesC contain at
least all simple regular expressions (recall that these are
of the form(a1|a2| · · · |an)∗ or ε). Such classes will be
calledadmissible.

Theorem 6.2. (Dichotomy) Let C be an admissible
class of regular expressions and Q be one of CTQ,
CTQ//, CTQ∪ and CTQ//,∪. Then C is either tractable,
or strongly coNP-complete for Q-queries.

Furthermore, for each data exchange setting it is
decidable if it falls in the tractable case, and in this

case there is a polynomial time algorithm that for
each source tree T produces a solution T ⋆ such that
s̄ ∈ certain(Q, T) iff s̄ ∈ Q(T ⋆) for every tuple s̄ from
Const.

In the rest of the section, we outline the proof of this re-
sult and the polynomial-time algorithm. We introduce
a classCU of regular expressions that is tractable for
CTQ//,∪-queries (and thus also forCTQ-, CTQ//- and
CTQ∪-queries). Then we show that every admissible class
of regular expressionsC 6⊆ CU is stronglycoNP-complete
for CTQ-queries (and thus also forCTQ//-, CTQ∪- and
CTQ//,∪-queries).

6.1 The tractable case.

We explain how to compute the canonical treeT ⋆

over whichCTQ//,∪-queries can be evaluated to produce
certain(Q, T). The restrictions on the classCU guarantee
that the construction is done inPTIME.

Fix a data exchange setting(DS, DT,ΣST), where
DT = (PT, RT, r). For every tree-pattern formula
ϕ(x̄) not mentioning descendant// and wildcard and
for every tuple s̄ of strings, there exists an unordered
tree Tϕ(s̄) naturally associated withϕ(s̄). It is con-
structed inductively: ifϕ(s̄) = ℓ(@a1 = s1, . . . ,@an =
sn)[ϕ1(s̄1), . . . , ϕk(s̄k)], then the root ofTϕ(s̄) is a node
v0 of typeℓ that has attributes@a1, . . ., @an with values
s1, . . ., sn, andk distinct childrenv1, . . ., vk, with vi being
the root of treeTϕi(s̄i), for i ≤ k.

Suppose we are given a source treeT , and a
family Σ of STDs. We define thecanonical pre-
solution for T , denoted bycps(T), as an unordered
tree T ′ constructed as follows. For each STD
r[ψ1(x̄, z̄), . . . , ψk(x̄, z̄)] :–ϕS(x̄, ȳ) and tuples̄s, s̄′ from
Const such thatT |= ϕS(s̄, s̄′), choose a fresh tuplēs′′

of strings fromVar and construct treesTψi(s̄,s̄′′). The tree
cps(T) has all such treesTψi(s̄,s̄′′) as distinct subtrees at
the children of its root.

For example, consider DTDsDS andDT in Figure 3
(a), (b). InDS we have rules

r → b∗c∗, b→ ε, c→ ε,

andb andc have attribute@ℓ; in DT we have

r → (cd)∗, c→ ε, d→ e, e→ ε,

andc, e have attributes@m and@n, respectively. IfT is
the source tree in Figure 3 (c), andΣST contains STDs

r[c(@m = x)] :– b(@ℓ = x)
r[c(@m = x)] :– c(@ℓ = x),

thencps(T) is the tree shown in Figure 3 (d).

Canonical pre-solutions can be computed inPTIME;
the problem is that they may not conform to the tar-
get DTD (as in the example in Figure 3). We present
an algorithm for computing a canonical solution for a

treeT from cps(T). The key is to find a “repair” ev-
ery time we have a violation of constraints imposed by
the target DTD. Given a nodev of an unordered tar-
get treeT ′, we say that(T ′, v) violatesDT if v does
not have the right attributes or the children ofv do
not have the right types, that is, if{@a | ρ@a(v) is
defined inT ′} 6= RT(λT ′(v)) or λT ′ (children(v)) 6∈
π(PT(λT ′(v))), where λT ′ (children(v)) refers to the
stringλT ′(v1) . . . λT ′(vn), andv1, . . . , vn are the children
of v.

The “easy” violations are those when nodes do not have
the right attributes: if they miss some, we add them and
give them fresh values fromVar; if they have extra at-
tributes, the repair algorithm fails. More precisely, repair-
ing functionChangeAtt receives as parameters a target
treeT ′ and a nodev such that{@a | ρ@a(v) is defined
in T ′} 6= RT(λT ′(v)). This function fails if there ex-
ists an attribute@a such thatρ@a(v) is defined inT ′ and
@a 6∈ RT(λT ′ (v)), since in this caseΣST forcesv to have
attribute@a while DT does not allowv to have such an
attribute. Otherwise, for every@a ∈ RT(λT ′ (v)) such
thatρ@a(v) is not defined,ChangeAtt assigns a fresh
value fromVar to ρ@a(v).

The “hard” violations are those when sequences of chil-
dren do not satisfy the constraints imposed by regular
expressions in DTDs. Repairing functionChangeReg
(defined later) tries to repair these violations: It re-
ceives as parameters a target treeT ′ and a nodev such
that λT ′(children(v)) 6∈ π(PT(λT ′ (v))), and it either
fails or returns a treeT ′′ such thatλT ′′ (children(v)) ∈
π(PT(λT ′′ (v))).

FunctionsChangeAtt andChangeReg are applied
to cps(T), in no particular order, until we reach a treeT ⋆

that either conforms toDT or is not reparable (that is, the
repair algorithm fails). In the first case we say thatT ⋆

is acanonical solution for T . For example, Figure 3 (e)
shows a canonical solution for the tree in Figure 3 (c).

For the classCU (to be defined shortly) we prove:

Lemma 6.3. If DT is a CU -DTD, then for every
source tree T :

a) There exists a solution for T iff there exists a
canonical solution for T .

b) If T ⋆ is a canonical solution for T , then for ev-
ery CTQ//,∪-query Q(x̄) and every tuple s̄ from
Const, s̄ ∈ certain(Q, T) iff T ⋆ |= Q(s̄) (if Q is
Boolean, then certain(Q, T) = true iff T ⋆ |= Q).

Furthermore, forCU -DTDs canonical solutions can be
computedefficiently by repeatedly applyingChangeAtt
andChangeReg.

Lemma 6.4. If DT is a CU -DTD, then it can be
checked in polynomial time whether there exists a
canonical solution for a given source tree T . Further-
more, if such a solution exists, then it can be com-
puted in polynomial time.

By putting together these two lemmas we obtain:

r r r rr

ddccc ccb(cd)∗b
∗
c
∗

ee@m@m@m@m@ℓ@ℓe@m

“1” “2” “1” “1” “2”“2”

@n @n

“⊥1” “⊥2”
@n

@ℓ@ℓ

(e) Canonical solution for T(d) cps(T)(c) T(b) DT(a) DS

Figure 3: Source DTD DS, target DTD DT, source tree T conforming to DS, canonical pre-solution
for T and canonical solution for T .

Proposition 6.5. CU is tractable for CTQ//,∪-queries.

Now we define the classCU and explain how
ChangeReg works. First, we need some terminology.
Let alph(w) (or alph(r)) stands for the set of alphabet
symbols mentioned in a stringw (or a regular expression
r). For everya ∈ alph(w), let#a(w) be the number of oc-
currences ofa inw. We writew � w′ if #a(w) ≤ #a(w

′)
for every a ∈ alph(w), andw ≺ w′ if w � w′ and
w′ 6� w.

ChangeReg receives as parameters an unordered
tree T ′ and a nodev such thatλT ′(children(v)) 6∈
π(PT(λT ′ (v))). Assume thatℓ = λT ′ (v), w =
λT ′(children(v)) andr = PT(ℓ). To adjustw to makeT ′

conform toDT, ChangeReg may need to extendw to
a string in the setmin ext(w, r) of minimal extensions of
w that fall intoπ(r):

min ext(w, r) = min�

{

w′ | w′ ∈ π(r), w � w′
}

.

For example, min ext(b, (bbc)∗) = {bbc, bcb, cbb}.
SometimesChangeReg may need to extend notw itself
but a substring ofw. For example,min ext(bb, bc+) = ∅
and, thus, the only way to repairbb is to merge twob’s into
a singleb and then expand to a string inπ(r). The result-
ing strings from the process of expanding substrings ofw
are the strings from whichChangeReg will be chosen
a candidate to replacew. Formally, the set of possible
repairs ofw, denoted byrep(w, r), is defined as:

rep(w, r) =
⋃

w′�w, alph(w′)=alph(w)

min ext(w′, r).

In this definition, we only consider stringsw′ such that
alph(w) = alph(w′), sinceΣST forcesv to have at least
one child of typeb, for everyb ∈ alph(w).

ChangeReg replacesw by a stringw′ ∈ rep(w, r).
But rep(w, r) may have more than one element; for exam-
ple, ccdd andcd are inrep(cc, (cd)∗e∗). To choose one,
we try to merge as few nodes as possible (so as to avoid
attribute clashes) and to add as few new element types
as possible (we preferccdd to ccdde). This is captured
by the preference relation�w defined byw1 �w w2 iff
(1)#b(w2) ≥ min{#b(w1),#b(w)} for all b ∈ alph(w),
and (2)alph(w2)\alph(w) ⊆ alph(w1)\alph(w). Thus,
ChangeReg replacesw byw′ ∈ max�w

rep(w, r).

The canonical solution for a source tree must be
unique, no matter which stringChangeReg picks
from max�w

rep(w, r) and no matter howChangeReg
merges the elements ofw. The problem is that for an ar-
bitrary regular expression this does not necessarily holds.
Thus, we have to restrict our attention to regular expres-
sions such that (1)max�w

rep(w, r) has a “best” candidate
w′ and (2) if#b(w) > #b(w

′), then#b(w
′) is equal to1,

so that there is only one way to merge the children ofv of
typeb. We now define these conditions formally.

Fora regularexpressionr anda ∈ alph(r), letfixeda(r)
be the set ofw ∈ π(r) such thatw′ ∈ π(r) andw � w′

imply #a(w) = #a(w
′). For example, ifr = a | aab∗,

thenaa ∈ fixeda(r) since every stringw ∈ π(r) such
that aa � w is a permutation of a string of the form
aabn (n ≥ 0) and, hence,#a(aa) = #a(w) = 2. On
the other hand,a 6∈ fixeda(r) sincea � aa ∈ π(r) and
#a(a) < #a(aa). If fixeda(r) 6= ∅, then defineca(r) =
max

{

#a(w) | w ∈ fixeda(r)
}

. If fixeda(r) = ∅, then
ca(r) = 0. Finally,

c(r) = max
{

ca(r) | a ∈ alph(r)
}

.

For example,ca(a | aab∗) = 2 andcb(a | aab∗) = 0, and,
thus,c(a | aab∗) = 2.

Lemma 6.6. c(r) is finite for every r.

We say that a regular expressionr is univocal if c(r) ≤ 1
and for every stringw such thatrep(w, r) 6= ∅, the set
rep(w, r) has a maximum element with respect to�w:
that is, an elementw′ ∈ rep(w, r) such thatw′′ �w w′

for all w′′ ∈ rep(w, r). For example, all of the follow-
ing are univocal regular expressions:bc+d∗e?, (b∗|c∗)
and(bc)∗(de)∗. We letCU be the class of univocal reg-
ular expressions. It is easy to see that all simple regular
expressions are univocal, and henceCU is an admissible
class.

Proposition 6.7. It is decidable whether a regular ex-
pression r is univocal. In fact, for each r one
can compute a sentence Φr of Presburger Arithmetic
which is true iff r is univocal.

Summing up, ifDT is aCU -DTD, thenChangeReg(T ′,
v) works as follows. Recall thatℓ = λT ′ (v), w =

λT ′(children(v)) andr = PT(ℓ). Initially, ChangeReg
checks whetherrep(w, r) is empty. If this is the case,
then it fails. Otherwise,ChangeReg picks an arbitrary
stringw′ from max�w

rep(w, r), and then it replacesw
by w′. More precisely, letb ∈ alph(r), p = #b(w)
and q = #b(w

′). If p < q, thenChangeReg adds
(q − p) new children tov of type b, each of them hav-
ing no attributes and no children3. If q < p, thenq = 1
(since r is univocal) and, thus,ChangeReg replaces
the sequencev1, . . ., vp of children ofv of type b by a
single fresh nodev′ of type b, and then for every sub-
treeTi of T ′ rooted atvi (i ∈ [1, p]), it replaces the root
of Ti by v′. At this point ChangeReg fails if there
is an attribute clash, that is, if there is a pair of sub-
trees ofT ′ rooted atvi, vj (i, j ∈ [1, p]) and an attribute
@a such thatρ@a(vi) ∈ Const, ρ@a(vj) ∈ Const and
ρ@a(vi) 6= ρ@a(vj).

It is then possible to show that thatChangeReg runs
in polynomial time for every fixed DTDDT.

It is easy to see that all regular expressions used in
nested-relational DTDs are univocal. Hence, the following
extension of relational data exchange handled by Clio [23]
falls in the following large tractable case:

Corollary 6.8. If (DS, DT,ΣST) is a data exchange
setting in which DT is nested-relational, and Q is
a CTQ//,∪-query, then Certain-Answers(Q) is in
PTIME.

We finally remark that canonical treeT ⋆ is unordered and
hence may not conform to the target DTD with an arbitrary
sibling ordering imposed on it. However, if one needs to
materialize the target instanceT ⋆, by Proposition 5.2 one
can transformT ⋆, in polynomial time, into a tree that
conforms to the target DTD.

6.2 The intractable case.

The following shows thatCU is the maximal tractable
class, and thus completes the classification of finding cer-
tain answers and proves the dichotomy theorem.

Proposition 6.9. Let C be an admissible class of regu-
lar expressions such that C 6⊆ CU . Then C is strongly
coNP-complete for CTQ-queries.

This result is a consequence of the following lemmas.

Lemma 6.10. Let r be a regular expression such that
c(r) ≥ 2 and C an admissible class of regular expres-
sions containing r. Then C is strongly coNP-complete
for CTQ-queries.

Lemma 6.11. Let r be a non-univocal regular expres-
sion such that c(r) ≤ 1 and C an admissible class of
regular expressions containing r. Then C is strongly
coNP-complete for CTQ-queries.

3Violations generated by adding b-nodes without at-
tributes or children are repaired later by repeatedly ap-
plying ChangeAtt and ChangeReg.

7. Conclusions

We have defined the basic notions of XML data ex-
change: source-to-target constraints, data exchange set-
tings, consistency and query answering problems. We
have seen that transferring relational data exchange results
to the XML setting requires considerable effort, even in
the fairly simple setting that shows how to translate source
patterns into target patterns. We have shown that, while
checking consistency is hard in general, it is tractable for
a practically relevant class handled by the Clio system at
IBM [23]. For query answering, we showed a dichotomy,
that separates query answering instances into tractable and
coNP-complete ones, depending on properties of DTDs
and constraints.

As far as the theoretical foundations of XML data ex-
change are concerned, this paper uncovered at most the
tip of the iceberg. We now briefly list other problems that
seem to be worthy a theoretical investigation.

The standard notions of local-as-view and global-as-
view from data integration [18] have been adapted in rela-
tional data exchange [10, 11] and sometimes they lead to
better algorithms or easier analysis of the behavior of data
exchange settings and queries. So far we have not made
these notions precise in the XML case.

We have concentrated on tree patterns that use the child
and descendant axes of XPath; in the future we plan to
consider more expressive source-to-target constraints that
use other axes such as next sibling. We also would like to
consider more expressive schema constraints (forexample,
ID and IDREF attributes).

Finally, to define the notion of certain answers, we used
queries that produce tuples of values. Most XML queries
produce trees, but it is not at all clear how to define the
certain answers semantics for them. We plan to work on
this in the future.

Acknowledgments We are very grateful to Ron Fa-
gin, Phokion Kolaitis, and Lucian Popa for many helpful
discussions during the early stages of this project, and to
Pablo Barceĺo and Wenfei Fan for their comments on the
draft. The authors were supported by grants from NSERC
and CITO, and M. Arenas was supported by a graduate
fellowship from IBM and FONDECYT grant 1050701.
Part of this work was done while M. Arenas was at IBM
Almaden.

8. References

[1] S. Abiteboul, O. Duschka. Complexity of answering
queries using materialized views. InPODS 1998,
pages 254–263.

[2] S. Abiteboul, P. Kanellakis, G. Grahne. On the
representation and querying of sets of possible
worlds.TCS 78 (1991), 158–187.

[3] S. Abiteboul, L. Segoufin, V. Vianu. Representing
and querying XML with incomplete information. In
PODS’01, pages 150–161.

[4] S. Amer-Yahia, S. Cho, L. Lakshmanan,
D. Srivastava. Tree pattern query minimization.
VLDB J. 11 (2002), 315–331.

[5] S. Amer-Yahia, Y. Kotidis. Web-services
architecture for efficient XML data exchange. In
ICDE 2004, pages 523–534.

[6] M. Arenas, P. Barceló, R. Fagin, L. Libkin. Locally
consistent transformations and query answering in
data exchange. InPODS 2004, pages 229–240.

[7] M. Benedikt, W. Fan, G. Kuper. Structural
properties of XPath fragments. InICDT 2003,
pages 79–95.

[8] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison and M. Tommasi.Tree
Automata: Techniques and Applications.
Available at
www.grappa.univ-lille3.fr/tata. October
2002.

[9] A. Deutsch, V. Tannen. Containment and integrity
constraints for XPath. InKRDB 2001.

[10] R. Fagin, Ph. Kolaitis, R. Miller, L. Popa. Data
exchange: semantics and query answering. In
ICDT’03, pp. 207–224.

[11] R. Fagin, Ph. Kolaitis, L. Popa. Data exchange:
getting to the core. InPODS’03, pages 90–101.

[12] R. Fagin, Ph. Kolaitis, L. Popa, W.C. Tan.
Composing schema mappings: second-order
dependencies to the rescue.PODS 2004, pages
83-94

[13] G. Gottlob, C. Koch, K. Schulz. Conjunctive
queries over trees.PODS 2004, pages 189–200.

[14] T. Imielinski, W. Lipski. Incomplete information in
relational databases.J. ACM 31 (1984), 761–791.

[15] R. Krishnamurthy, R. Kaushik, J. Naughton.
XML-SQL query translation literature: the state of
the art and open problems. InXsym 2003, pages
1–18.

[16] L. Lakshmanan, G. Ramesh, H. Wang, Z. Zhao. On
testing satisfiability of tree pattern queries.VLDB
2004, pages 120–131.

[17] H. W. Lenstra. Integer programming in a fixed
number of variables.Math. Oper. Res. 8 (1983),
538–548.

[18] M. Lenzerini. Data integration: a theoretical
perspective. InPODS’02, pages 233–246.

[19] R. Miller, M. Hernandez, L. Haas, L. Yan, C. Ho,
R. Fagin, L. Popa. The Clio project: managing
heterogeneity.SIGMOD Record 30 (2001), 78–83.

[20] F. Neven. Automata, logic, and XML. InCSL
2002, pages 2–26.

[21] F. Neven, T. Schwentick. XPath containment in the
presence of disjunction, DTDs, and variables. In
ICDT’03, pages 315–329.

[22] C. H. Papadimitriou. On the complexity of integer
programming.J. ACM, 28 (1981), 765–768.

[23] L. Popa, Y. Velegrakis, R. Miller, M. Herńandez,
R. Fagin. Translating web data. InVLDB 2002,
pages 598–609.

[24] H. Seidl. Deciding equivalence of finite tree
automata.SIAM J. Comput. 19 (1990), 424–437.

[25] N. Shu, B. Housel, R. Taylor, S. Ghosh, V. Lum.
EXPRESS: a data extraction, processing, and
restructuring system.TODS 2 (1977), 134–174.

[26] V. Vianu. A Web Odyssey: from Codd to XML. In
PODS’01.

[27] P. Wood. Containment for XPath fragments under
DTD Constraints. InICDT’03, pages 300–314.

[28] C. Yu, L. Popa. Constraint-based XML query
rewriting for data integration. InSIGMOD’04,
pages 371–382.

