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ABSTRACT

A recently introduced information-theoretic approach to
analyzing redundancies in database design was used to
justify normal forms like BCNF that completely eliminate
redundancies. The main notion is that of an information
content of each datum in an instance (which is a number
in [0, 1]): the closer to 1, the less redundancy it carries. In
practice, however, one usually settles for 3NF which, un-
like BCNF, may not eliminate all redundancies but always
guarantees dependency preservation.

In this paper we use the information-theoretic approach
to prove that 3NF is the best normal form if one needs to
achieve dependency preservation. For each dependency-
preserving normal form, we define theprice of depen-
dency preservation as an information-theoretic measure
of redundancy that gets introduced to compensate for de-
pendency preservation. This is a number in the[0, 1] range:
the smaller it is, the less redundancy a normal form guar-
antees. We prove that for every dependency-preserving
normal form, the price of dependency preservation is at
least 1/2, and it is precisely 1/2 for 3NF. Hence, 3NF has
the least amount of redundancy among all dependency-
preserving normal forms. We also show that, information-
theoretically, unnormalized schemas have at least twice the
amount of redundancy than schemas in 3NF.

1. Introduction

In this paper we provide a justification for one of the most
popular and commonly used normal forms, 3NF. We adopt
a recently proposed information-theoretic framework for
reasoning about database designs [4].

The problem of database normalization is one of the oldest
and most researched in database theory and practice, with
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descriptions of well-known normal forms such as 3NF
and BCNF appearing in practically all texts (see, e.g., [1,
16, 19]) and many practical tools existing for database
design. Nonetheless, the question of what is it that makes
a database design good had not been dealt with nearly as
thoroughly, with texts typically offering a rather informal
explanation based on the absence of update anomalies or
elimination of redundancies. Papers that attempted a more
formal evaluation of normal forms (e.g. [12, 13, 21]) still
appealed to the notions of eliminating update anomalies.

To justify relational normal forms, and to provide a test
of “goodness” of normal forms for other data models,
[4] proposed aninformation-theoretic framework that
is completely independent of the notions of update/query
languages, and is based on the intrinsic properties of the
data. The key concept of the framework is that of therel-
ative information content, RicI(p|Σ), of a positionp in
a database instanceI with respect to a set of constraints
Σ. It is defined as a conditional entropy of a certain prob-
ability distribution, and is then normalized to the interval
[0, 1]. Intuitively, if RicI(p|Σ) = 1, thenp carries the
maximum possible amount of information: nothing about
it can be inferred from the rest of the instance. Smaller val-
ues ofRicI(p|Σ) say that positions carry some amount
of redundancy, as some information about them can be
inferred.

The notion of awell-designed normal form then says that
in every instanceI of a schema in that normal form, the
relative information contentRicI(p|Σ) of every position
p is 1. That is, no redundancies are allowed. Characteri-
zations of well-designed normal forms for different types
of dependencies were obtained in [4]: for example, ifΣ
consists only of functional dependencies (FDs), then be-
ing well-designed is the same as being in the Boyce-Codd
normal form (BCNF).

While this does justify a normal form that is perhaps
the most popular one for database texts, BCNF isnot
the most common and popular normal form in practice –
that role belongs to 3NF. For example, Oracle’s “General
Database Design FAQ” [23] defines designs that progres-
sively achieve 1NF, 2NF, and 3NF, and then says that
there are other normal forms but“their definitions are
of academic concern only, and are rarely required for
practical purposes”.

The main property possessed by 3NF but not BCNF isde-



pendency preservation: for every schema, there always
exists a lossless decomposition into 3NF that preserves all
the constraints. This is a very important property for in-
tegrity enforcement, as DBMSs provide a variety of mech-
anisms to ensure that integrity constraints are enforced
during updates.

Therefore, if one needs to guarantee the integrity of the
database, and uses a dependency-preserving normal form,
some redundancy must be tolerated. A natural question
is then whether 3NF is the right choice of a dependency-
preserving normal form. More precisely, if we look at
all normal forms that guarantee dependency preserva-
tion (which excludes BCNF) and apply the information-
theoretic approach to measure the amount of redundancy
they introduce, will 3NF be the one with the least amount
of redundancy?

Here we give a positive answer to this question. Our two
main results, stated informally, are:

1. Among all normalization conditions that guarantee
dependency-preserving decompositions, 3NF has
the least amount of redundancy. Thus, if depen-
dency preservation is essential, 3NF is the best nor-
mal form.

2. 3NF has at least 50% less redundancy than unnor-
malized designs.

To state these formally, assume thatNF is some
dependency-preserving normal form. That is, every
schema admits a lossless dependency-preserving decom-
position intoNF . We then look at theguaranteed infor-
mation content provided byNF , i.e., the largest number
c ∈ [0, 1] such that every schema may be decomposed
into NF in such a way that in all instances of the decom-
posed schema and all positions, the information content
Ric(p|Σ) is at leastc.

If the guaranteed information content equalsc, then1 −
c is theprice of dependency preservation, denoted by
Price(NF): that is, the minimum amount of information
content one must lose due to dependencypreservation. We
then prove the following.

Theorem A Price(3NF) = 1/2. Furthermore, if
NF is a dependency-preserving normal form, then
Price(NF) ≥ 1/2.

In other words, 3NF achieves the smallest price one needs
to pay to ensure dependency preservation, and thus among
normal forms that guarantee dependency preservation it is
the one with the least amount of redundancy. Moreover,
it follows from the proof of Theorem A that 3NF designs
produced by the standard synthesis algorithm [1, 6] are
the ones that guarantee the smallest price of dependency
preservation.

This last observation also motivates our second result.
It has long been known [22, 25] that for some schemas
already in 3NF, better 3NF designs can be produced by the
standard synthesis algorithm (in fact [25] even proposed
a different normal form for schemas that arise in such a

way). Hence, an arbitrary 3NF schema may have quite a
bit of extra redundancy. In fact, a first look at 3NF from
the information-theoretic point of view was already taken
in [17] with what looked like a rather discouraging result:
for everyε > 0, one can find a 3NF schema with a setΣ
of FDs, an instance of that schema, and a positionp such
that RicI(p|Σ) < ε. Nonetheless, the example of [17]
requires arbitrarily large sets of attributes and schemas
that can be further decomposed into better 3NF designs.

This gives rise to the following question: what can be said
about arbitrary 3NF schemas, not only the good ones that
ensure the lower price of dependency preservation? Can
they be as bad as arbitrary schemas? How do they compare
to “good” 3NF designs?

To answer these, we introduce again of normalization
function that allows us to compare different normal forms.
For everym ∈ N, and a conditionP on schemas, we define
the set of possible values ofRicI(p|Σ) for m-attribute
instancesI of schemas satisfyingP :

POSSP(m) = {RicI(p|Σ) | I is an instance of (R, Σ),
R has m attributes,
(R, Σ) satisfies P},

and define the valueinf POSSP(m) (typically these sets
are dense subsets of intervals(ε, 1]). For normal forms
NF1 andNF2, the gain of normalization function is

GainNF1/NF2
(m) =

inf POSSNF1
(m)

inf POSSNF2
(m)

.

That is, we measure the ratio of the least amount of infor-
mation in instances ofNF1- andNF2-schemas.

Our second main result formally confirms that some 3NF
schemas may have more redundancy than others, but it
also says that arbitrary 3NF schemas have at least twice the
information content compared to unnormalized schemas.
Here we use the notation3NF+ to refer to the schemas that
arise as outputs of the standard 3NF synthesis algorithm,
andAll to refer to the class of all (unnormalized) schemas.

Theorem B For every m > 2:

• Gain3NF/All(m) = 2;

• Gain3NF+/3NF(m) = 2m−3.

• Gain3NF+/All(m) = 2m−2;

These are our main results, but we prove others along the
way, for example, comparing 3NF to BCNF, and com-
puting exact values ofinf POSSNF for some conditions
NF .

In the next section we recall the basics of normalization,
information theory, and review theRicI(p|Σ) measure.
In Section 3 we prove Theorem A. In Section 4 we prove
Theorem B. In Section 5 we give concluding remarks.



2. Background

2.1 Schemas and instances

In generalR will stand for a relation name andS for a
schema that consists of a set of relation names. With each
R we associate a set of its attributes denoted byattr(R).
Instead ofattr(R) = {A1, . . . , Am} we sometimes write
R(A1, . . . , Am). Elements of database instances come
from a countably infinite domain; to be concrete, we as-
sume it to beN+, the set of positive integers. An instance
I of S assigns to eachm-attribute relationR in S a finite
subsetI(R) of Nm

+ . We letadom(I) stand for theactive
domain of I: the set of all elements ofN+ that occur inI.

If I is an instance ofS, the set ofpositions in I, denoted
by Pos(I), is the set{(R, t, A) | R ∈ S, t ∈ I(R) and
A ∈ attr(R)}.

Schemas may containintegrity constraints, in which case
we refer to schemas(S, Σ), whereS is a set of relation
names andΣ is a set of constraints. We usually write
(R, Σ) instead of the more formal({R}, Σ) in case of one
relation. Since we are interested in 3NF, we deal with
functional dependencies (FDs); we assume that FDs are
of the formX → Y with bothX andY nonempty. IfΣ
is a set of FDs, thenΣ+ denotes the set of all FDs implied
by it, andinst(S, Σ) stands for the set of all instances ofS
satisfyingΣ. We writeinstk(S, Σ) for the set of instances
I ∈ inst(S, Σ) with adom(I) ⊆ [1, k].

2.2 Normal forms

We review the most basic definitions and refer the reader
to surveys [5, 15, 7] and texts [1, 16, 19] for additional
information. A schema(S, Σ) is in BCNF if for every
relation nameR in it and every nontrivial FDX → Y
over attributes ofR, X is a key ofR. Prime attributes are
those that belong to a candidate (minimal) key. A schema
(S, Σ) is in 3NF if for every relation nameR in it and
every nontrivial FDX → Y over attributes ofR, either
X is a key, or every attribute inY − X is prime.

Given a schema(R, Σ) and some normal formNF , a set
of schemas(Rj , Σj), j ∈ J , is called a (lossless)NF -
decomposition if each(Rj , Σj) is in NF , and for every
I ∈ inst(R, Σ) we haveπattr(Rj)(I) |= Σj and further-
moreI =1 {πattr(Rj)(I) | j ∈ J}. Such a decomposi-

tion is calleddependency-preserving if
(
⋃

j Σj

)+
= Σ+.

It is well-known that both 3NF and BCNF admit lossless
decompositions, which in the case of 3NF can be guaran-
teed to be dependency-preserving. In the case of BCNF
dependency preservation is not always possible (consider
a schema with attributesA, B, C and FDsAB → C and
C → A).

3NF designs are often produced by a synthesis algorithm
proposed initially in [6]. The algorithm works as follows

(see, e.g., [1]): given a set of FDsΣ, it computes a minimal
coverΣc. If there is an FDX → A in Σc (whereA is
an attribute) such thatX ∪ {A} contain all attributes, it
stops; otherwise for eachX → A ∈ Σc it outputs a
schema(XA, X → A), and it combines two schemas if
one is contained in the other. Also, if none of the sets
XA contains a key, a schema(K, ∅) for some keyK must
be included. We shall refer to schemas produced by this
algorithm as3NF+ schemas.

2.3 Basics of information theory

The main concept of information theory is that of entropy,
which measures the amount of information provided by
a certain event. Assume that an event can haven differ-
ent outcomess1, . . ., sn. Then for a probability space
A = ({s1, . . . , sn}, PA), wherePA is a probability dis-
tribution, its entropy is defined as

H(A) =

n
∑

i=1

PA(si) log
1

PA(si)
.

For probabilities that are zero, we adopt the convention
that0 log 1

0 = 0, sincelimx→0 x log 1
x = 0. It is known

that0 ≤ H(A) ≤ log n, with H(A) = log n only for the
uniform distributionPA(si) = 1/n [9].

We shall also need the concept ofconditional entropy.
For two probability spacesA = ({s1, . . . , sn}, PA), B =
({s′1, . . . , s

′
m}, PB) and, probabilitiesP (s′j , si) of all the

events(s′j , si) (PA andPB may not be independent), the
conditional entropy ofB givenA, denoted byH(B | A),
gives the average amount of information provided byB if
A is known [9]. If P (s′j | si) = P (s′j , si)/PA(si) are
conditional probabilities, then

H(B | A) =

n
∑

i=1

(

PA(si)

m
∑

j=1

P (s′j | si) log
1

P (s′j | si)

)

.

2.4 Relative information content

We now review the main definition of relative information
content from [4] that was used to justify BCNF and other
normal forms, and that we use here to justify 3NF. Unlike
previously proposed information-theoretic measures [18,
8, 10, 20] that work only at the level of data, this measure
takes into account both data and schema constraints.

Fix a schemaS and a setΣ of constraints, and letI ∈
inst(S, Σ). We want to defineRicI(p | Σ), the relative
information content of a positionp ∈ Pos(I) with respect
to the set of constraintsΣ. We want this value to be
normalized to the interval[0, 1]. Since the maximum value
of entropy for a discrete distribution onk elements islog k,
we shall define, for allk, a measureRic

k
I (p | Σ) that

works for instancesI ∈ instk(S, Σ), and take the limit of

the ratioRic
k
I (p|Σ)
log k ask → ∞.



Since this is a measure of the amount of redundancy, in-
tuitively, we want to measure how much, on average, the
value of positionp is determined by any set of positions
in I. For that, we take a setX ⊆ Pos(I) − {p} and
assume that the values in those positionsX are lost, and
then someone restores them from[1, k]. Then we mea-
sure (as the entropy of a suitably chosen distribution) how
much information about the value inp this provides. The
average such measure isRic

k
I (p | Σ).

Formally, we assume thatI hasn positions (which we
enumerate as1, . . . , n), and fix ann-element set of vari-
ables{vi | 1 ≤ i ≤ n}. Fix a positionp ∈ Pos(I), and
let Ω(I, p) be the set of all2n−1 vectors(a1, . . . , ap−1,
ap+1, . . . , an) such that for everyi ∈ [1, n] − {p}, ai is
eithervi or the value in thei-th position ofI. We make
this into a probability spaceA(I, p) = (Ω(I, p), Pu) with
the uniform distributionPu(ā) = 21−n.

We next define conditional probabilitiesPk(a | ā) that
show how likelya is to occur in positionp, if values
are removed fromI according to the tuplēa ∈ Ω(I, p)1.
Let I(a,ā) be obtained fromI by putting a in position
p, and ai in position i 6= p. A substitution is a map
σ : ā → [1, k] that assigns a value to eachai which is a
variable, and leaves otherais intact. We letSATk

Σ(I(a,ā))
be the set of all substitutionsσ such thatσ(I(a,ā)) |= Σ
and|σ(I(a,ā))| = |I| (the latter ensures that no two tuples
collapse as the result of applyingσ). ThenPk(a | ā) is
defined as:

Pk(a | ā) =
|SATk

Σ(I(a,ā))|
∑

b∈[1,k] |SATk
Σ(I(b,ā))|

.

With this, we defineRic
k
I (p | Σ) as

∑

ā∈Ω(I,p)

(

1

2n−1

∑

a∈[1,k]

Pk(a | ā) log
1

Pk(a | ā)

)

.

Since
∑

a∈[1,k] Pk(a | ā) log 1
Pk(a|ā) measures the amount

of information inp, given constraintsΣ and some missing
values inI, represented by the variables inā, our measure
Ric

k
I (p | Σ) is the average such amount over allā ∈

Ω(I, p).

To see thatRic
k
I (p | Σ) is a conditional entropy, define

P ′
k(a) =

1

2n−1

∑

ā∈Ω(I,p)

Pk(a | ā) .

It is a probability distribution on[1, k] (intuitively, it says
how likely an element from[1, k] is to satisfyΣ when put
in positionp, given all possible interactions betweenp and
sets of positions inI). If Bk

Σ(I, p) is the probability space
([1, k], P ′

k), thenRic
k
I (p | Σ) is the conditional entropy:

Ric
k
I (p | Σ) = H(Bk

Σ(I, p) | A(I, p)).

1Technically, we should refer not to Pk but rather PI,Σ,k

but I and Σ will always be clear from the context.

Since the domain ofBk
Σ(I, p) is [1, k], we have0 ≤

Ric
k
I (p | Σ) ≤ log k. To normalize this, we consider

the ratioRic
k
I (p | Σ)/ log k. The key observation of [4]

is that for most reasonable constraintsΣ (certainly for all
definable in first-order logic), this sequence converges as
k → ∞, and we thus define

RicI(p|Σ) = lim
k→∞

Ric
k
I (p | Σ)

log k
.

The definition of beingwell-designed in [4] stated that
(S, Σ) is well-designed if for everyI ∈ inst(S, Σ) and
everyp ∈ Pos(I), RicI(p | Σ) = 1. It then showed that
if Σ consists of FDs only, then(S, Σ) is well-designed iff
it is in BCNF.

3. The price of dependency preservation
and 3NF

LetNF be any dependency-preserving normal form: that
is, for every relational schema(R, Σ), whereΣ is a set of
FDs, there is a lossless dependency-preserving decompo-
sition of (R, Σ) into (R1, Σ1), . . . , (Rℓ, Σℓ), ℓ ≥ 1, such
that each(Ri, Σi) satisfiesNF . We define theguaranteed
information content for NF -decompositions as the set
of valuesc ∈ [0, 1] such that for an arbitrary schema we
can always guarantee anNF -decomposition in which the
information content inall positions is at leastc. Formally,
G(NF) is the set

{c ∈ [0, 1] | ∀ (R, Σ), ∀ I ∈ inst(R, Σ),
∃ NF -decomposition {(Rj, Σj)}ℓ

j=1 s.t.
∀j ≤ ℓ ∀p ∈ Pos(Ij),
RicIj

(p|Σj) ≥ c},

whereIj refers toπattr(Rj)(I). Using this, we define the
price of dependency preservation forNF as the small-
est amount of information content that is necessarily lost
due to redundancies: that is, the smallest amount of re-
dundancy one has to tolerate in order to have dependency
preservation.

Definition 1. For every dependency-preserving nor-
mal form NF , the price of dependency preservation
Price(NF) is defined as 1 − supG(NF).

Clearly Price(NF) ≤ 1. Since the FD-based normal
form that achieves the maximum value1 of RicI(p|Σ)
in all relations is BCNF [4], and BCNF doesnot en-
sure dependency preservation,Price(NF) > 0 for any
dependency-preserving normal formNF .

Now we are ready to present the main result of this paper.
It says that each normal form needs to pay at least1/2 in
terms of redundancy to achieve dependency preservation,
and this is exactly what 3NF pays.

Theorem A. Price(3NF) = 1/2. If NF is a depen-
dency -preserving normal form, then Price(NF) ≥
1/2.



In the rest of the section we prove this theorem. We say that
a schema(R, Σ) is indecomposable if it has no lossless
dependency-preserving decomposition. We are only in-
terested in indecomposable schemas that are not in BCNF
since BCNF already guarantees zero redundancy. The
proof relies on two properties of indecomposable schemas
presented in propositions below. Following [25], we say
that a keyX is elementary if there is an attributeA 6∈ X
such thatX ′ → A 6∈ Σ+ for all X ′ ( X .

Proposition 1. Let R have attributes A1, . . . , Am, and
let Σ be a non-empty set of FDs over R. Then (R, Σ)
is indecomposable iff it has an m − 1-attribute ele-
mentary candidate key.

Proof: If (R, Σ) contains anm − 1-attribute elementary
candidate key, then every decomposition of it would
lose this key; hence, it is indecomposable. Conversely,
suppose(R, Σ) is indecomposable, and there is no
elementary candidate key withm − 1 attributes. Let
Σc be an arbitrary minimal cover forΣ. Then for every
FD X → A ∈ Σc, we haveX ∪ {A} ( attr(R).
Hence the standard 3NF synthesis algorithm will produce
a dependency-preserving decomposition of(R, Σ), a
contradiction. 2

LetID denote the property of being indecomposable. Re-
call (see the introduction) thatPOSSID(m) is the set of
possible values ofRicI(p|Σ) for m-attribute instances of
indecomposable schemas(R, Σ).

Proposition 2. inf POSSID(m) = 1/2 for all m > 2.

Before we prove this proposition, we need a lemma. LetΣ
be a set of FDs over a relation schemaR, I ∈ inst(R, Σ),
p ∈ Pos(I). We say that̄a ∈ Ω(I, p) determines p if
there existsk0 > 0 such that for everyk > k0, we have
P (a|ā) = 1 for somea ∈ adom(I), andP (b|ā) = 0 for
everyb ∈ [1, k] − {a}. In other words,̄a determinesp
if one can specify a single value forp, given the values
present in̄a and constraintsΣ. We writeΩ0(I, p) for the
set of all ā ∈ Ω(I, p) that determinep, andΩ1(I, p) for
the set of allā ∈ Ω(I, p) that do not determinep. Let
n = |Pos(I)|. Then:

Lemma 1. RicI(p|Σ) = |Ω1(I, p)|/2n−1.

Proof of Lemma 1. We show that the value of
limk→∞

1
log k

∑

a∈[1,k] Pk(a|ā) log 1
Pk(a|ā) is 0 if ā ∈

Ω0(I, p) and it is 1 if ā ∈ Ω1(I, p). Assume that
ā determinesp. By definition there isk0 > 0 such
that for everyk > k0, it is the case thatPk(a|ā) =
1 for some a ∈ adom(I), and Pk(b|ā) = 0 for
all b ∈ [1, k] − {a}. Hence for all k > k0 we
have:

∑

a∈[1,k] Pk(a|ā) log 1
Pk(a|ā) = 0. Note that

Pk(a|ā) log 1
Pk(a|ā) = 0 whenPk(a|ā) = 0, by definition.

Thenlimk→∞
1

log k

∑

a∈[1,k] Pk(a|ā) log 1
Pk(a|ā) = 0.

Conversely, supposēa does not determinep. Then for ev-
eryk0 there isk > k0 such that eitherPk(a|ā) = 0 for all

a, orPk(a1|ā), Pk(a2|ā) > 0 for at least two different val-
uesa1 anda2. SinceI |= Σ, we have|SATk

Σ(I(a,ā))| > 0
for at least onea ∈ adom(I), ruling out the first pos-
sibility. Since Σ contains only FDs, we conclude, by
genericity, that|SATk

Σ(I(b,ā))| = |SATk
Σ(I(b′,ā))| > 0 for

all b, b′ 6∈ adom(I). HencePk(b|ā) ≤ 1/(k − n).

Next, expand̄a to ā′ by putting in a value for every position
that is determined bȳa (which excludesp). Let r be
the number of variables in̄a′. Then for eachc ∈ [1, k]

we have|SATk
Σ(I(c,ā))| ≤ kr. Furthermore, for each

b 6∈ adom(I), any substitutionσ that assigns to ther
variables different values in[1, k]− (adom(I)∪{b}) will
be in SATk

Σ(I(b,ā)); hence, we have|SATk
Σ(I(b,ā))| ≥

(k − n − r)r . We thus havePk(b|ā) ≥ (k−n−r)r

k·kr =
1
k

(

1 − n+r
k

)r
.

Let πi = Pk(ai|ā) for each ai ∈ adom(I).
Then 1

log k

∑

a∈[1,k] Pk(a|ā) log 1
Pk(a|ā) is at least

1
log k

(

∑

ai∈adom(I)

πi log 1
πi

+ (k − n) · log(k−n)
k ·

(

1 −

n+r
k

)r
)

. Since n and r are fixed, this implies that

limk→∞
1

log k

∑

a∈[1,k] Pk(a|ā) log 1
Pk(a|ā) 6= 0, and by

a result from [4], this limit always exists, and if it is not0,
then it must be equal to1.

Now we can conclude the proof of Lemma 1:

RicI(p|Σ)
= limk→∞

1
log k

∑

ā∈Ω(I,p)

1
2n−1

∑

a∈[1,k]

P (a|ā) log 1
P (a|ā)

= 1
2n−1

∑

ā∈Ω1(I,p)

limk→∞
1

log k

∑

a∈[1,k]

P (a|ā) log 1
P (a|ā)

= |Ω1(I, p)|/2n−1.

We now come back to the proof of Proposition 2. It
consists of two parts. We prove that:

(a) For everym > 2 andε > 0, there exists a schema
(R, Σ), an instanceI ∈ inst(R, Σ), and a position
p ∈ Pos(I), such that|attr(R)| = m, (R, Σ) is
indecomposable, andRicI(p|Σ) < 1/2 + ε;

(b) For every indecomposable schema(R, Σ), every in-
stanceI ∈ inst(R, Σ), and every positionp ∈
Pos(I), we haveRicI(p|Σ) ≥ 1/2.

(a) Consider the relational schemaR(A1, . . . , Am) with
FDs Σ = {A1A2 . . . Am−1 → Am, Am → A1} and
the instanceI of this schema shown in Figure 1. By
Proposition 1,(R, Σ) is indecomposable. Lett0 denote
the first tuple inI, and letp denote the position of the gray
cell.

Claim 1. The information content of position p is

RicI(p|Σ) =
1

2
+

1

2

(3

4

)k−1

.



A1 A2 A3 . . . Am

1 1 1 . . . 1
1 2 1 . . . 1
1 3 1 . . . 1
.
..

.

..
.
..

.

..
1 k 1 . . . 1

Figure 1: A database instance for the proofs
of Propositions 2 and 4.

Proof of Claim 1. Let ā be an arbitrary vector inΩ(I, p).
Let ā[t0] denote the subtuple in̄a corresponding to tuple
t0 ∈ I andā[t1] denote the subtuple in̄a corresponding to
an arbitrary tuplet1 ∈ I. Each position in these subtuples
contains either a variable (representing a missing value)
or a constant, which equals the value thatI has for that
position.

Thenā does not determinep iff

1. the subtuplēa[t0] has a variable in the position cor-
responding to attributeAm; or

2. the subtuplēa[t0] has a constant in the position cor-
responding to attributeAm, and for an arbitrary sub-
tupleā[t1] in ā, t1 6= t0:

2.1. the subtuplēa[t1] has a variable in the position
corresponding to attributeAm; or

2.2. the subtuplēa[t0] has a constant in the position
corresponding to attributeAm but a variable in
the position corresponding to attributeA1.

In Case 1,̄a can have either a variable or a constant in all
othern − 2 positions. Therefore, we can have2n−2 such
ā’s. In Case 2,̄a[t0] can have either a constant or a variable
in the positions corresponding toA2, . . . , Am−1. Further-
more, in Case 2.1, every such subtupleā[t1] can have either
a constant or a variable in the positions corresponding to
attributesA1, . . . , Am−1, and in Case 2.2, it can have ei-
ther a constant or a variable in the positions corresponding
to A2, . . . , Am−1. Therefore, the total number ofā’s sat-
isfying conditions of Case 2 is2m−2(2m−1 + 2m−2)k−1

since we havek − 1 tuples other thant0 in the instance.

Then |Ω1(I, p)|, or the total number of different̄a’s in
Ω(I, p) that do not determinep is

2n−2 + 2m−2(2m−1 + 2m−2)k−1.

By Lemma 1,RicI(p|Σ) can be obtained by dividing this
number by2n−1 = 2mk−1:

RicI(p|Σ) =
2mk−2 + 2m−2(2m−1 + 2m−2)k−1

2mk−1

=
1

2
+

1

2

(3

4

)k−1

,

which proves the claim.

Thus for anyε > 0, there is an instance of the form shown
in Figure 1 and a positionp in it such that the information

content ofp is less than1/2 + ε: one needs to choose
k > 1 + log4/3(1/(2ε)) and apply Claim 1.

(b) We need an easy observation (that will also be used in
the proofs of the next section). For a keyX , an attribute
A 6∈ X such thatA does not occur in the right-hand side
of any nontrivial FD, we haveRicI(p|Σ) = 1 for any
instanceI of (R, Σ) and any positionp corresponding
to attributeA. Indeed, in this case|SATk

Σ(I(a,ā))| =

|SATk
Σ(I(b,ā))| for arbitrary a, b ∈ [1, k] and hence

P (a|ā) = 1/k, and thusRic
k
I (p|Σ) = log k, and

RicI(p|Σ) = limk→∞ Ric
k
I (p|Σ)/ log k = 1.

Now let Σ be an arbitrary non-empty set of FDs over
R(A1, . . . , Am) such that(R, Σ) is indecomposable, and
A1, . . . , Am−1 → Am ∈ Σ be the FD of the form de-
scribed in Proposition 1: that is,A1 . . . Am−1 is an ele-
mentary candidate key. For any instanceI of (R, Σ) and
any positionp = (R, t, Am) ∈ Pos(I) corresponding to
attributeAm, we haveRicI(p|Σ) = 1 sincep cannot have
any redundancy due to a non-key FD.

Let I ∈ inst(R, Σ), p = (R, t0, Ai) ∈ Pos(I), for some
i ∈ [1, m − 1], andā ∈ Ω(I, p). Let ā[t0] denote the sub-
tuple ofā corresponding tot0. It is easy to see that if̄a[t0]
has a variable in the position corresponding to attribute
Am, thenā does not determinep, no matter what the other
positions in̄a contain. This is because there is no nontriv-
ial FD X → Ai ∈ Σ+ such thatX ⊆ {A2, . . . , Am−1}.
All other n − 2 positions inā can therefore contain either
a constant or a variable, so there are at least2n−2 ā’s that
do not determinep. Then using Lemma 1, we conclude
that the information content ofp is at least2

n−2

2n−1 = 1/2.
This proves Proposition 2.

Now we go back to prove Theorem A. The first part of the
proof follows from Proposition 2: the information con-
tent of a position in an indecomposable instance can be
arbitrarily close to1/2. Therefore, for every dependency-
preserving normal formNF (which cannot furtherdecom-
pose an indecomposable instance),supG(NF) cannot ex-
ceed1/2. Therefore,Price(NF) ≥ 1/2.

To prove the second part, we notice that, by Proposi-
tion 1 and basic properties of 3NF, every indecomposable
(R, Σ) is in 3NF. Furthermore, if(R, Σ) is decompos-
able, then the 3NF synthesis algorithm will decompose
(R, Σ) into indecomposable schemas. Therefore, for ev-
ery (R, Σ) and everyI ∈ inst(R, Σ), one can find a
3NF-decomposition in which the information content of
every position is at least1/2 and sometimes exactly1/2.
That is, supG(3NF) = 1/2, andPrice(3NF) = 1/2.
This concludes the proof. 2

Notice that the proof of Theorem A implies that the
guaranteed information content1/2 (which witnesses
Price(3NF) = 1/2) occurs in decompositions produced
by the standard synthesis algorithm that generates a 3NF
design from a minimal cover forΣ. Hence, our result
justifies not only 3NF as the best dependency-preserving
normal form, but also the standard algorithm forproducing
3NF designs.



4. Comparing normal forms

In Section 3, we compared 3NF with other normal forms
that guarantee dependency preservation, and proved that
one can always guarantee a 3NF decomposition whose
price would be less than or equal to the price of other
normal form decompositions. As already mentioned, 3NF
designs could be quite different: those that are produced
by the standard synthesis algorithm (which we call3NF+

schemas) are the best, but others could be of lesser qual-
ity, as noticed in [22, 25]. So in this section we use the
information-theoretic framework to compare different nor-
mal forms, in particular, 3NF,3NF+, and unnormalized
schemas.

The measure for this comparison, described in the intro-
duction, is thegain of normalization function defined
as

GainNF1/NF2
(m) =

inf POSSNF1
(m)

inf POSSNF2
(m)

,

where POSSNF (m) is the set of all possible values
RicI(p|Σ) as (R, Σ) ranges over schemas withm at-
tributes satisfying conditionNF . Recall thatAll refers to
the class ofall schemas.

We now prove that any 3NF schema, not necessarily inde-
composable, is at least twice as good as some unnormal-
ized schema. More precisely, the gain function for 3NF is
constant2 for all m > 2 (the case ofm ≤ 2 is special, as
any nontrivial FD over two attributes is a key, and hence all
schemas are in BCNF). We also show that3NF+ schemas
could be significantly better than arbitrary 3NF schemas.
That is,

Theorem B. For every m > 2:

• Gain3NF/All(m) = 2;

• Gain3NF+/3NF(m) = 2m−3;

• Gain3NF+/All(m) = 2m−2.

In the proof of Theorem A we showed that
inf POSS3NF+(m) = inf POSSID(m) = 1/2. Hence,
the result will follow from these two propositions.

Proposition 3. inf POSSAll(m) = 21−m for all m > 2.

Proposition 4. inf POSS3NF(m) = 22−m for all
m > 2.

We now prove Proposition 3. We need to show that:

(a) For every m > 2 and ε > 0, there exists a
schema(R, Σ) with |attr(R)| = m, an instance
I ∈ inst(R, Σ), and a positionp ∈ Pos(I) such
thatRicI(p|Σ) < 21−m + ε;

(b) For every(R, Σ) with |attr(R)| = m, every instance
I ∈ inst(R, Σ), and every positionp ∈ Pos(I), we
haveRicI(p|Σ) ≥ 21−m.

A1 A2 A3 . . . Am

1 1 1 . . . 1

1 2 1 . . . 1
1 1 2 . . . 1
...

...
...

...
1 1 1 . . . 2

1 3 1 . . . 1
1 1 3 . . . 1
.
..

.

..
.
..

.

..
1 1 1 . . . 3

...
...

...
...

1 k 1 . . . 1
1 1 k . . . 1
.
..

.

..
.
..

.

..
1 1 1 . . . k

Figure 2: A database instance for the proof of
Proposition 3.

(a) ConsiderR(A1, . . . , Am) andΣ = {A2 → A1, A3 →
A1, . . . , Am → A1}. Consider the instanceI ∈
inst(R, Σ) shown in Figure 2. Lett0 denote the first
tuple in this table, andp = (R, t0, A1) denote the position
of the gray cell. Lett be the number of tuples minus1,
that is,(m − 1)(k − 1).

Claim 2. The information content of position p is

RicI(p|Σ) =
1

2m+t−1

m−1
∑

i=0

(

m − 1

i

)

(1 + 2−i)t.

Proof of Claim 2. Let ā be an arbitrary vector inΩ(I, p).
Let ā[t0] denote the subtuple of̄a corresponding tot0, and
supposēa[t0] has constants in positions corresponding toi
attributes, and it has variables in the positions correspond-
ing to the remainingm − 1 − i attributes. Then̄a does
not determinep iff for any arbitrary subtuplēa[t1] of ā
corresponding to a tuplet1 ∈ I, t1 6= t0, we have:

1. the subtuplēa[t1] has a variable in the position cor-
responding toA1; or

2. the subtuplēa[t1] has a constant in the position cor-
responding toA1 but variables in the positions cor-
responding to the samei attributes for which̄a[t0]
has constants.

In Case 1,̄a[t1] can have either a constant or a variable
in every position corresponding to the other attributes
A2, . . . , Am, and therefore there are2m−1 possibilities
for such subtuples. In Case 2,ā[t1] can have either a con-
stant or a variable in every position corresponding to the
otherm− 1− i attributes, and therefore there are2m−1−i

such subtuples. There aret tuples inI other thant0, andi
can range over[0, m−1]. Therefore,|Ω1(I, p)| or the total
number of different̄a’s in Ω(I, p) that do not determinep



is
m−1
∑

i=0

(

m − 1

i

)

(2m−1 + 2m−1−i)t.

The information content ofp is then obtained by dividing
this number by2n−1 = 2m(t+1)−1:

RicI(p|Σ)

=
1

2m(t+1)−1

m−1
∑

i=0

(

m − 1

i

)

(2m−1 + 2m−1−i)t

=
1

2m+t−1

m−1
∑

i=0

(

m − 1

i

)

(1 + 2−i)t,

which proves Claim 2.

The following shows that as long ast > log4/3(1/ε) (that
is, k > (1 + log4/3(1/ε))/(m − 1)), for the instance in
Figure 2 and positionp of the gray cell, such that the
information content ofp is less than21−m + ε:

RicI(p|Σ) =
1

2m+t−1

m−1
∑

i=0

(

m − 1

i

)

(1 + 2−i)t

=
1

2m+t−1

(

2t +

m−1
∑

i=1

(

m − 1

i

)

(1 + 2−i)t

)

< 21−m +
1

2m+t−1

m−1
∑

i=0

(

m − 1

i

)

(1 + 2−1)t

= 21−m +
(3

4

)t

< 21−m + ε.

(b) LetΣ be an arbitrary set of FDs overa relational schema
R, I ∈ inst(R, Σ), p = (R, t0, A1) ∈ Pos(I), andā ∈
Ω(I, p). Let ā[t0] denote the subtuple in̄a corresponding
to t0. It is easy to see that if̄a[t0] has variables in all
positions corresponding to attributesA2, . . . , Am, thenā
does not determinep, no matter what the other positions
in ā contain. All the othern − m positions in ā can
therefore contain either a constant or a variable, so the
number ofā’s that do not determinep is at least2n−m;
that is, |Ω1(I, p)| ≥ 2n−m. Thus, using Lemma 1, the
information content ofp is at least2

n−m

2n−1 = 21−m. This
proves Proposition 3.

Next, we prove Proposition 4. We need to show that:

(a) For an arbitraryε > 0 and everym > 2, there exists a
3NF schema(R, Σ) with |attr(R)| = m, an instance
I ∈ inst(R, Σ), and a positionp ∈ Pos(I) such that
RicI(p|Σ) < 22−m + ε.

(b) For every(R, Σ) in 3NF with |attr(R)| = m, every
instanceI ∈ inst(R, Σ), and every positionp ∈
Pos(I), we haveRicI(p|Σ) ≥ 22−m.

(a) ConsiderR(A1, . . . , Am) and

Σ = {A1A2 → A3 . . . Am, A3 → A1, . . . , Am → A1}.

Clearly (R, Σ) is in 3NF. Consider the instanceI ∈
inst(R, Σ) shown in Figure 1. Lett0 denote the first
tuple in this table, andp = (R, t0, A1) denote the position
of the gray cell.

Claim 3. The information content of position p is

RicI(p|Σ) =
1

2m+k−3

m−2
∑

i=0

(

m − 2

i

)

(1 + 2−i)k−1.

Proof of Claim 3. Let ā be an arbitrary vector inΩ(I, p).
Let ā[t0] denote the subtuple in̄a corresponding tot0,
and suppose that̄a[t0] has constants in the positions cor-
responding toi attributes amongA3, . . . Am, and it has
variables in the positions corresponding to the remaining
m − 2 − i attributes. Then̄a does not determinep iff for
any arbitrary subtuplēa[t1] in ā corresponding to a tuple
t1 ∈ I, t1 6= t0, either

1. the subtuplēa[t1] has a variable in the position cor-
responding toA1; or

2. the subtuplēa[t1] has a constant in the position cor-
responding toA1 but variables in the positions cor-
responding to the samei attributes for which̄a[t0]

has constants.

In Case 1,̄a[t1] can have either a constant or a variable
in every position corresponding to attributesA2, . . . , Am,
and hence there could be2m−1 such subtuples for every
t1 6= t0. In Case 2,̄a[t1] can have either a constant or a
variable in every position corresponding to them − 1 − i
attributes, and therefore there are2m−1−i possible such
subtuples. There arek − 1 subtuples likēa[t1] , andi can
range over[0, m − 2]. So far we have not said anything
about values corresponding toA2 in t0, but sinceA1A2 is a
candidate key, in both cases,ā[t0] can have either a constant
or a variable in that position. Putting it all together, we see
that|Ω1(I, p)|, the total number of different̄a’s in Ω(I, p)
that do not determinep is

2 ·
m−2
∑

i=0

(

m − 2

i

)

(2m−1 + 2m−1−i)k−1.

The information content ofp can be obtained by dividing
this number by2n−1 = 2mk−1:

RicI(p|Σ)

=
1

2mk−2

m−2
∑

i=0

(

m − 2

i

)

(2m−1 + 2m−1−i)k−1

=
1

2m+k−3

m−2
∑

i=0

(

m − 2

i

)

(1 + 2−i)k−1.

This proves Claim 3.

Now we need to show that for anyε > 0 there is an
instance of the form shown in Figure 1 and a positionp in
it corresponding to the gray cell such that the information
content ofp is less than22−m + ε. Taking p to be the



position used in Claim 3 we have

RicI(p|Σ) =
1

2m+k−3

m−2
∑

i=0

(

m − 2

i

)

(1 + 2−i)k−1

=
1

2m+k−3

(

2k−1 +
m−2
∑

i=1

(

m − 2

i

)

(1 + 2−i)k−1

)

< 22−m +
1

2m+k−3

m−2
∑

i=0

(

m − 2

i

)

(1 + 2−1)k−1

= 22−m +
(3

4

)k−1

< 22−m + ε,

as long ask > 1 + log4/3(1/ε).

(b) Let (R, Σ) be in 3NF, I ∈ inst(R, Σ), p =
(R, t0, A1) ∈ Pos(I), and ā ∈ Ω(I, p). Let ā[t0] de-
note the subtuple in̄a corresponding tot0. We assume
thatA1 is a prime attribute, but not a key itself, because
otherwiseRicI(p|Σ) = 1 sincep would not have any
redundancy due to a non-key FD.

It is easy to see that if̄a[t0] has variables in all positions
corresponding to attributesA2, . . . , Am, thenā does not
determinep, no matter what the other positions inā con-
tain. All the othern − m positions inā can therefore
contain either a constant or a variable, so there are at least
2n−m ā’s that do not determinep. SinceA1 is prime and
not a key by itself, there is at least another attributeAk

such thatA1, Ak belong to a candidate key. If̄a[t0] has a
constant in the position corresponding toAk and variables
in all positions corresponding to the other attributes, then
ā does not determinep since the FDAk → A1 6∈ Σ+ .
Thus, there are at least another2n−m ā’s that do not de-
terminep. Then using Lemma 1, the information content
of p is at least2

n−m+2n−m

2n−1 = 22−m, which completes the
proof of Proposition 4 and thus of Theorem B. 2

Combining [4] and Theorem B, we obtain the following
comparisons of BCNF and 3NF:

Corollary 1 . For every m > 2:

• GainBCNF/3NF+(m) = 2;

• GainBCNF/3NF(m) = 2m−2;

• GainBCNF/All(m) = 2m−1.

5. Conclusions

The main conclusion is that among normal forms that
achieve dependency preservation,3NF is the one that guar-
antees the least amount of redundancy: in fact, it is those
3NF designs that are produced by the standard synthesis
algorithm that guarantee the least amount of redundancy.
But even arbitrary 3NF schemas are still better than un-
normalized ones, having at least twice the minimum in-
formation content.

There are several ways in which we would like to ex-
tend these results. First, one can think of a definition

of the price of dependency preservation based not on the
minimal guaranteed information content, but the average
guaranteed information content. We would like to see how
this different measure relates to 3NF.

Much of database theory and practice as of late has fo-
cused on transferring relational technology to XML [24];
in fact, since there are several approaches to XML de-
sign that appeared in the literature (e.g., [3, 11]), one of
the motivations behind the information-theoreticapproach
was to provide a formal justification for normal forms for
XML documents. We would like to use the information-
theoretic approach to see what a natural analog of 3NF for
XML is. Notice that the hierarchical structure of XML
documents makes the interplay between redundancies and
dependency preservation more intricate: for example,
there are relational schemas that do not admit dependency-
preserving BCNF decompositions, but can nonetheless be
hierarchically represented in XML in a way that preserves
all dependencies and has no redundancies [17].

We also would like to understand the relationship between
the information-theoretic approach of [4] based on the
concept of entropy, and the notion of information capacity
of schemas [2, 14] based on the existence of mappings
between schemas.
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