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ABSTRACT descriptions of well-known normal forms such as 3NF

and BCNF appearing in practically all texts (see, e.g., [1,

A recently introduced information-theoretic approach to 16, 19]) and many practical tools existing for database
analyzing redundancies in database design was used télesign. Nonetheless, the question of what is it that makes
justify normal forms like BCNF that completely eliminate & database design good had not been dealt with nearly as
redundancies. The main notion is that of an information thoroughly, with texts typically offering a rather inforiha
content of each datum in an instance (which is a number €xplanation based on the absence of update anomalies or
in [0, 1]): the closer to 1, the less redundancy it carries. In €limination of redundancies. Papers that attempted a more
practice, however, one usually settles for 3NF which, un- formal evaluation of normal forms (e.g. [12, 13, 21]) still
like BCNF, may not eliminate all redundancies but always appealed to the notions of eliminating update anomalies.
guarantees dependency preservation. o _ .

To justify relational normal forms, and to provide a test
In this paper we use the information-theoretic approach Of “goodness” of normal forms for other data models,
to prove that 3NF is the best normal form if one needs to [4] proposed aninformation-theoretic framework that
achieve dependency preservation. For each dependencyls completely independent of the notions of update/query
preserving normal form, we define thevice of depen- languages, and is based on the intrinsic properties of the
dency preservation as an information-theoretic measure data. The key concept of the framework is that of thie
of redundancy that gets introduced to compensate for de- ative information content, Ric;(p|X), of a positiorp in
pendency preservation. This is anumber injtheé] range: a database instandewith respect to a set of constraints
the smalier it is, the less redundancy a normal form guar- =- Itis defined as a conditional entropy of a certain prob-
antees. We prove that for every dependency-preserving@bility distribution, and is then normalized to the intdrva
normal form, the price of dependency preservation is at [0, 1]. Intuitively, if Ric;(p|X) = 1, thenp carries the
least 1/2, and it is precisely 1/2 for 3NF. Hence, 3NF has maximum possible amount of information: nothing about
the least amount of redundancy among all dependency-itcan be inferred from the rest of the instance. Smaller val-
preserving normal forms. We also show that, information- Ues ofR1c; (p|X) say that positions carry some amount
theoretically, unnormalized schemas have atleast twige th Of redundancy, as some information about them can be
amount of redundancy than schemas in 3NF. inferred.

The notion of aweli-designed normal form then says that

in every instancd of a schema in that normal form, the
relative information conteniRic;(p|X) of every position
pis 1. Thatis, no redundancies are allowed. Characteri-
zations of well-designed normal forms for different types
of dependencies were obtained in [4]: for example; if
consists only of functional dependencies (FDs), then be-
ing well-designed is the same as being in the Boyce-Codd
normal form (BCNF).

The problem of database normalization is one of the oldest ... : — ;
and most researched in database theory and practice, witt{ﬁlg ”r?] g?;spggﬁfarjuosr?;yfgr r(;()artggellsfgrtrgxizatBlél\pl) I;I;_:;aps

the most common and popular normal form in practice —

that role belongs to 3NF. For example, Oracle’s “General
Permission to make digital or hard copies of all or part o thiork for D,atabase De5|gn FAQ" [23] defines designs that progres-
personal or classroom use is granted without fee providatiabpies are Sively achieve 1NF, 2NF, and 3NF, and then says that
not made or distributed for profit or commercial advantage tat copies there are other normal forms butheir definitions are

bear this notice and the full citation on the first page. Toyoferwise, o of academic concern only, and are rarely required for
republish, to post on servers or to redistribute to listguiees prior specific practical purposes”.

permission and/or a fee.
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1. Introduction

In this paper we provide a justification for one of the most

popularand commonly used normal forms, 3NF. We adopt
a recently proposed information-theoretic framework for

reasoning about database designs [4].

The main property possessed by 3NF but not BCN#eis



pendency preservation: for every schema, there always way). Hence, an arbitrary 3NF schema may have quite a
exists a lossless decomposition into 3NF that preserves allbit of extra redundancy. In fact, a first look at 3NF from
the constraints. This is a very important property for in- the information-theoretic point of view was already taken
tegrity enforcement, as DBMSs provide a variety of mech- in [17] with what looked like a rather discouraging result:
anisms to ensure that integrity constraints are enforcedfor everye > 0, one can find a 3NF schema with a &&t
during updates. of FDs, an instance of that schema, and a posjtisach

that Ricr(p|X) < . Nonetheless, the example of [17]
Therefore, if one needs to guarantee the integrity of the requires arbitrarily large sets of attributes and schemas
database, and uses a dependency-preserving normal formthat can be further decomposed into better 3NF designs.
some redundancy must be tolerated. A natural question
is then whether 3NF is the right choice of a dependency- This gives rise to the following question: what can be said
preserving normal form. More precisely, if we look at about arbitrary 3NF schemas, not only the good ones that
all normal forms that guarantee dependency preserva-ensure the lower price of dependency preservation? Can
tion (which excludes BCNF) and apply the information- they be as bad as arbitrary schemas? How do they compare
theoretic approach to measure the amount of redundancyto “good” 3NF designs?
they introduce, will 3NF be the one with the least amount
of redundancy? To answer these, we introducegain of normalization

function that allows us to compare different normal forms.
Here we give a positive answer to this question. Our two Foreverym € N, and a conditiorP on schemas, we define
main results, stated informally, are: the set of possible values &fic;(p|X) for m-attribute

L . instanced of schemas satisfying:
1. Among all normalization conditions that guarantee fying

dependency-preserving decompositions, 3NF haspOsSy(m) = {Ric;(p|) | I is an instance of (R,Y),
the least amount of redundancy. Thus, if depen- R has m attributes,
dency preservation is essential, 3NF is the best nor- (R,Y) satisfies P},
mal form.

2. 3NF has at least 50% less redundancy than unnor-and define the valuaf POSS» (i) (typically these sets
malized designs. are dense subsets of intervéts 1]). For normal forms

NF; andNF;, the gain of normalization function is
To state these formally, assume thAfF is some

dependency-preserving normal form. That is, every G _ inf POSS nzr, (M)

schema admits a lossless dependency-preserving decom- AN /N, (M) = POSS 7, (M)

position intoAF. We then look at thguaranteed infor- :

mation content provided byNF, i.e., the largest number  Thatis, we measure the ratio of the least amount of infor-
¢ € [0,1] such that every schema may be decomposed mation in instances ofVF; - and N F;-schemas.

into AF in such a way that in all instances of the decom-

posed schema and all positions, the information content Our second main result formally confirms that some 3NF

Ric(p|X) is at least. schemas may have more redundancy than others, but it
also says that arbitrary 3NF schemas have at least twice the
If the guaranteed information content equalshen1 — information content compared to unnormalized schemas.

c is the price of dependency preservation, denoted by Here we use the notatiGNF* to refer to the schemas that
PRICE(NF): thatis, the minimum amountof information  arise as outputs of the standard 3NF synthesis algorithm,
contentone must lose due to dependency preservation. WeandAll to refer to the class of all (unnormalized) schemas.
then prove the following.

Theorem B For every m > 2:
Theorem A PRICE(3NF) = 1/2. Furthermore, if very

NF is a dependency-preserving normal form, then
PRICE(NF) > 1/2. o GAINgNp/al(m) = 2;

)
— om—3
In other words, 3NF achieves the smallest price one needs  * GAINaNp+ /anE (M) = 2777,

to pay to ensure dependency preservation, and thus among GAINgNp+ /() = om=2.

normal forms that guarantee dependency preservation it is

the one with the least amount of redundancy. Moreover,

it follows from the proof of Theorem A that 3NF designs

produced by the standard synthesis algorithm [1, 6] are These are our main results, but we prove others along the

the ones that guarantee the smallest price of dependencyway, for example, comparing 3NF to BCNF, and com-

preservation. .Rl[.ltiﬂg exact values ofaf POSS -+ for some conditions
F.

This last observation also motivates our second result.

It has long been known [22, 25] that for some schemas In the next section we recall the basics of normalization,

already in 3NF, better 3NF designs can be produced by theinformation theory, and review thBic;(p|X) measure.

standard synthesis algorithm (in fact [25] even proposed In Section 3 we prove Theorem A. In Section 4 we prove

a different normal form for schemas that arise in such a Theorem B. In Section 5 we give concluding remarks.



2. Background (see, e.g., [1]): given a set of FD5 it computes a minimal
coverXY,.. If thereis an FDX — A in X. (whereA is
an attribute) such thaX U { A} contain all attributes, it
stops; otherwise for eack — A € 3. it outputs a

2.1 Schemas and instances schema X A, X — A), and it combines two schemas if
one is contained in the other. Also, if none of the sets
X A contains a key, a schemi&’, () for some keyK must

In generalR will stand for a relation name an# for a be included. We shall refer to schemas produced by this

schema that consists of a set of relation names. With eachalgorithm as3NF* schemas.

R we associate a set of its attributes denotediisy(R).

Instead ofattr(R) = {Ai,..., Ay} we sometimes write

R(As,...,A,,). Elements of database instances come 2.3 Basics of information theory

from a countably infinite domain; to be concrete, we as-

sume it to beN, , the set of positive integers. An instance

I of S assigns to eact-attribute relationR in S a finite The main concept of information theory is that of entropy,

subsetl/ (R) of N'". We letadom (1) stand for theactive which measures the amount of information provided by
domain of I: the set of all elements &f ;. that occurin/. a certain event. Assume that an event can hadéfer-

ent outcomesy, ..., s,. Then for a probability space
If Iis an instance of, the set ofpositions in I, denoted A = ({s1,...,sn}, Pa), whereP, is a probability dis-

by Pos(I), is the set{(R,t,A) | R € S, t € I(R) and tribution, its entropy is defined as
A € attr(R)}.

n 1
Schemas may containtegrity constraints, inwhich case H(A) = Pa(si)log PG
we refer to schemass, ), whereS' is a set of relation i=1 ALS
names and is a set of constraints. We usually write = babilities that doot th i
(R,Y) instead of the more form&{ R}, ) in case of one or pro 6} ies that are zero, wela opt the convention
relation. Since we are interested in 3NF, we deal with thatOlogg = 0, sincelim, o zlog 3 = 0. Itis known
functional dependencies (FDs); we assume that FDs arethat0 < H(A) < logn, with H(A) = logn only for the
of the form X — Y with both X andY nonempty. IfS uniform distributionP4(s;) = 1/n [9].
is a set of FDs, thel* denotes the set of all FDs implied -
by it, andinst (S, ) stands for the set of all instances®f ~ We shall also need the concept @fnditional entropy.
satisfying®. We writeinst, (S, 2) for the set of instances ~ FOr two Df9b3b||lty spaced = ({s1,... 7;%}, Py), B=
I € inst(S,X) with adom(I) C [1, k]. ({s1,..-, s}, Ps) and, probabilities? (s, s;) of all the
events(s, s;) (P.a and Pz may not be independent), the
conditional entropy o3 given.A, denoted byH (5B | A),
2.2 Normal forms gives the average amount of information providedby
Ais known [9]. If P(s | s;) = P(s},si)/Pa(si) are

. . . conditional probabilities, then
We review the most basic definitions and refer the reader P

to surveys [5, 15, 7] and texts [1, 16, 19] for additional n m 1
information. A schemdsS,Y) is in BCNF if for every H(B|A) = Z(PA(SZ') ZP(s’j | s;)log ,7>
relation nameR in it and every nontrivial FDX — Y i—1 =1 P(Sj | si)

over attributes of?, X is a key of R. Prime attributes are
those that belong to a candidate (minimal) key. A schema
(S,X) is in 3NF if for every relation name® in it and 2.4 Relative information content
every nontrivial FDX — Y over attributes ofR, either
X is akey, or every attribute il" — X is prime.

We now review the main definition of relative information
Given a scheméRr, 32) and some normal formVF, a set content from [4] that was used to justify BCNF and other
of schemasR;,%;), j € J, is called a (lossless)yF- normal forms, and that we use here to justify 3NF. Unlike
decomposition if eacliR;, ;) is in AF, and for every previously proposed information-theoretic measures [18,
I € inst(R,X) we haver (g, (1) = X; and further- 8, 10, 20] that work only at the level of data, this measure
more =X {’/Tattr(Rj)(I> | 5 € J}. Such a decomposi- takes into account both data and schema constraints.

L L +

tion is calleddependency-preservingif (U, 3;) © = u+. Fix a schemaS and a sef of constraints, and lef €
Itis well—kr]qwn that.bot.h 3NF and BCNF admit lossless inst(S,¥). We want to defindkic;(p | ), the relative
decompositions, which in the case of 3NF can be guaran-information content of a position € Pos(I) with respect
teed to be dependency-preserving. In the case of BCNFg the set of constraints. We want this value to be
dependency_ preservation is not always possible (considerygrmalized to the intervad, 1]. Since the maximum value
a schema with attributed, B, C' and FDsAB — C and of entropy for a discrete distribution drelements i$og &,
¢ — A) we shall define, for alk, a measureRick(p | ¥) that
works for instances € inst (S, ), and take the limit of

Rick (p|%)
log k

3NF designs are often produced by a synthesis algorithm _
proposed initially in [6]. The algorithm works as follows the ratio

ask — oo.



Since this is a measure of the amount of redundancy, in-

tuitively, we want to measure how much, on average, the
value of positionp is determined by any set of positions
in I. For that, we take a seX C Pos(I) — {p} and
assume that the values in those positighare lost, and
then someone restores them frémk]. Then we mea-
sure (as the entropy of a suitably chosen distribution) how
much information about the value jnthis provides. The

average such measureRisc} (p | 2).

Formally, we assume that hasn positions (which we
enumerate as, . .., n), and fix ann-element set of vari-
ables{v; | 1 < < n}. Fix a positionp € Pos(I), and
let Q(1,p) be the set of alp™~! vectors(ai, ..., ap_1,
ap+1, -- ., an) Such that for every € [1,n] — {p}, a; is
eitherwv; or the value in the-th position of /. We make
this into a probability spacd (I, p) = (2(I,p), P.) with
the uniform distribution?, (a) = 21 —".

We next define conditional probabilitigd,(a | a) that
show how likelya is to occur in positionp, if values
are removed fron according to the tuple € Q(I,p)!.
Let I, be obtained from/ by puttinga in position

p, anda; in positioni # p. A substitution is a map
o :a — [1,k| that assigns a value to eachwhich is a
variable, and leaves otheys intact. We IeSAT’g(I(a_@))

be the set of all substitutions such thato(1(,3)) F X
and|o(I(4,a))| = |I] (the latter ensures that no two tuples

collapse as the result of applyirg. ThenPy(a | a) is
defined as:

[SATS, (L(a.))|
Zbeu,k] |SAT]§:(I(b,a))|

With this, we defineRick (p | &) as
1 1
P, a)log ———— .
Y (5 X Ao
acQ(L,p) a€[1,K]
Since)_ e (14 Fr(a | @) log 5oy measuresthe amount
of information inp, given constraint¥ and some missing

values in/, represented by the variablesinour measure

Rick(p | ¥) is the average such amount over alle
Q(1,p).

Py(a|a)

To see thaRic%(p | ¥) is a conditional entropy, define

> Pala).

aeQ(l,p)

Pi(a)

n—1

Itis a probability distribution onl, k] (intuitively, it says
how likely an element fronfiL, k] is to satisfy> when put
in positionp, given all possible interactions betweeand
sets of positions if). If BE (I, p) is the probability space
([1, k], P), thenRick (p | %) is the conditional entropy:

RIC}(p | £) = H(BS(I,p) | A(L,p)).

lTechnically, we should refer not to Py but rather Pr s
but I and ¥ will always be clear from the context.

Since the domain of3%(1,p) is [1,k], we have0 <
Rich(p | £) < logk. To normalize this, we consider

the ratioR1c(p | £)/logk. The key observation of [4]

is that for most reasonable constraibit§certainly for all
definable in first-order logic), this sequence converges as
k — oo, and we thus define

. Rick(p| =
Ric;(p|X) = kh_}n;lo %.

The definition of beingwell-designed in [4] stated that
(S,%) is well-designed if for every € inst(S,X) and

everyp € Pos(I), Ric(p | ) = 1. It then showed that
if ¥ consists of FDs only, theff, ) is well-designed iff
itis in BCNF.

3. The price of dependency preservation
and 3NF

Let NF be any dependency-preserving normal form: that
is, for every relational schem&, ), whereX is a set of
FDs, there is a lossless dependency-preserving decompo-
sition of (R, %) into (R, %1), ..., (R, X¢), £ > 1, such
thateacHR;, ;) satisfies\VF. We define thguaranteed
information content for NF-decompositions as the set

of valuesc € [0, 1] such that for an arbitrary schema we
can always guarantee AffF-decomposition in which the
information content iru/l positions is at least Formally,
G(NF) is the set

{ce0,1] | V(R,X), VI €inst(R,X),
3 NF-decomposition {(R;, ¥;)}_,
Vj < {Vp e Pos(I;),
Ricy, (%) > o,

s.t.

wherel; refers tor ;) (I). Using this, we define the
price of dependency preservation fafF as the small-

est amount of information content that is necessarily lost
due to redundancies: that is, the smallest amount of re-
dundancy one has to tolerate in order to have dependency
preservation.

Definition 1. For every dependency-preserving nor-
mal form NF, the price of dependency preservation

PRICE(NF) is defined as 1 — sup G(NF).

Clearly PrRICE(NF) < 1. Since the FD-based normal
form that achieves the maximum valueof Ric;(p|X)

in all relations is BCNF [4], and BCNF doesot en-
sure dependency preservatidghgIcE(NF) > 0 for any
dependency-preserving normal forkiF.

Now we are ready to present the main result of this paper.
It says that each normal form needs to pay at lé#3tin
terms of redundancy to achieve dependency preservation,
and this is exactly what 3NF pays.

Theorem A. PRICE(3NF) =1/2. If NF is a depen-
dency -preserving normal form, then PRICE(NF) >
1/2.



Inthe rest of the section we prove this theorem. We say that a, or P (a1|a), P (az|a) > 0 for atleast two differentval-

a schemdgR, X)) is indecomposable if it has no lossless

uesa; andas. Sincel |= ¥, we havgSATE (11, q))| > 0

dependency-preserving decomposition. We are only in- ¢, 4t |east one: adom(I), ruling out the first pos-

terested in indecomposable schemas that are notin BCNFg
since BCNF already guarantees zero redundancy. The
proof relies on two properties of indecomposable schemas
presented in propositions below. Following [25], we say

that a keyX is elementary if there is an attributed ¢ X
suchthatX’ — A ¢ X+ forall X’ C X.

Proposition 1. Let R have attributes Ay, ..., Ay, and
let 33 be a non-empty set of FDs over R. Then (R, )
1s indecomposable iff it has an m — 1-attribute ele-
mentary candidate key.

Proof: If (R,X) contains ann — 1-attribute elementary

candidate key, then every decomposition of it would
lose this key; hence, it is indecomposable. Conversely,

suppose (R, Y.) is indecomposable, and there is no
elementary candidate key witth — 1 attributes. Let
Y. be an arbitrary minimal cover fat. Then for every
FD X — A € %, we haveX U {A} C attr(R).

Hence the standard 3NF synthesis algorithm will produce

a dependency-preserving decomposition (&, %), a
contradiction. O

LetZD denote the property of being indecomposable. Re-

call (see the introduction) th&0SS 7 (m) is the set of
possible values aR1c; (p|¥) for m-attribute instances of
indecomposable schem@i, ¥).

Proposition 2. inf POSSzp(m) = 1/2 for all m > 2.

Before we prove this proposition, we need a lemma.3L et
be a set of FDs over a relation scheRal € inst(R,X),
p € Pos(I). We say thatt € Q(I,p) determines p if
there existsyy > 0 such that for every > ky, we have
P(ala) = 1 for somea € adom(I), andP(bla) = 0 for
everyb € [1,k] — {a}. In other wordsa determinep
if one can specify a single value fopr given the values
present inz and constraint&. We write Qq (I, p) for the
set of alla € Q(1,p) that determine, andQ, (I, p) for
the set of alla € Q(I,p) that do not determing. Let
n = |Pos(I)|. Then:

Lemma L Ric;(p|%) = [ (L, p)|/2" L.

Proof of Lemma 1. We show that the value of
limy— oo @Zae[l,k] Py (ala) 1ogm is0if a e
Qo(I,p) and it is1 if a € Qu(I,p). Assume that
a determinesp. By definition there isk, > 0 such
that for everyk > ko, it is the case thaf;(ala) =
1 for somea € adom(I), and Py(bla) = 0 for
all b € [1,k] — {a}. Hence for allk > ko we

have: 37, iy Pr(ala) logm = 0. Note that
Py(ala) log parzy = OwhenPy(ala) = 0, by definition.

Thenlimi oo 15,7 Yacpp Fr(ala) log pamy = 0.

Conversely, supposedoes not determing. Then for ev-
ery ko there isk > kg such that eithePy; (a|a) = 0 for all

ibility. Since ¥ contains only FDs, we conclude, by
genericity, thatfSATE, (I a))| = [SATE (I )| > 0for
allb,v’ & adom(I). HencePy(bla) < 1/(k —n).

Next, expand: toa’ by putting in a value for every position
that is determined by: (which excludesp). Let r be
the number of variables ia’. Then for each: € [1, k]
we have|SATY(I(.q)| < k. Furthermore, for each

b & adom(I), any substitutiorv that assigns to the
variables differentvalues ifi, k] — (adom (I) U {b}) will

be in SATE (I1.4)); hence, we haveSATE (I, 4))| >

(k—n —7)". We thus haveP;(bla) > E-n-r —

ntr\"
g (1= )
Let m; = Pi(a;la) for each a; € adom(I).
Then 7 Yaepn Prlala)log oy is at least

log(k—n
@( Y mlogt 4 (k —m) el o
a;€adom(T)
”T”y) Sincen and r are fixed, this implies that
limy oo @ > e L] Pk(a|d)1ogm £ 0, and by
a result from [4], this limit always exists, and if it is not
then it must be equal to.

Now we can conclude the proof of Lemma 1:
Ric;(p|2)
= limk_,oo @

- oL Y

Eleﬂl(f,p)
= |, p)l/2"

> g 2 Plala)log s
aeQ(l,p) a€[l,k]

limkﬁw@ >. P(ala)log P(i\a)
a€[1,kK]

We now come back to the proof of Proposition 2. It
consists of two parts. We prove that:

(a) For everym > 2 ande > 0, there exists a schema
(R,X%), aninstancd € inst(R,X), and a position
p € Pos(I), such thatjattr(R)| = m, (R,X) is
indecomposable, afRlic; (p|X) < 1/2 +¢;

(b) For every indecomposable schefifa X), every in-
stancel € inst(R,X), and every positiorp €
Pos(I), we haveRic;(p|X) > 1/2.

(a) Consider the relational schen® A4, ..., A,,) with
FDsY» = {AlAQ...Am,1 — Am, A, — Al} and
the instancel of this schema shown in Figure 1. By
Proposition 1,(R, ) is indecomposable. Let denote
the first tuple in/, and letp denote the position of the gray
cell.

Claim 1. The information content of position p is

1 1 /3\k1
Ric;(p|X) = 5 + 5(1) .
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content ofp is less thanl/2 + : one needs to choose
k > 1+ logy/s(1/(2¢)) and apply Claim 1.
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(b) We need an easy observation (that will also be used in
; ; : the proofs of the next section). For a k&y, an attribute

1 k 1 1 A ¢ X such thatd does not occur in the right-hand side
of any nontrivial FD, we hav&ic;(p|X) = 1 for any
instancel of (R,X) and any positiorp corresponding

to attribute A. Indeed, in this cas¢SATY ((,.q0))| =

ISATS,(I(4,4))| for arbitrary a,b € [1,k] and hence
P(ala) = 1/k, and thusRic}(p|Z) = logk, and
RIC;(p|%) = limy o RICK(p|X)/ logk = 1.

Figure 1: A database instance for the proofs
of Propositions 2 and 4.

Proof of Claim 1. Leta be an arbitrary vector iR (I, p).
Let a,,) denote the subtuple i corresponding to tuple
to € I anday,,) denote the subtuple imcorresponding to
an arbitrary tuple, € I. Each position in these subtuples o
contains either a variable (representing a missing value) Z(A1: - -, Am) such thai( £, %) is indecomposable, and

or a constant, which equals the value thatas for that Loy Amoy — Am € 2 be the FD Of the form de-
position. scribed in Proposition 1: thatis}; ... A,,_1 is an ele-

mentary candidate key. For any instarfoef (R,X) and
any positionp = (R, t, A,,) € Pos(I) corresponding to
attributeA,,,, we haveRicy(p|X) = 1 sincep cannot have
any redundancy due to a non-key FD.

Now let ¥ be an arbitrary non-empty set of FDs over

Thena does not determing iff

1. the subtuplé ;) has a variable in the position cor-
responding to attributd,,,; or Let ] € inst(R,X), p = (R, to, A;) € Pos(I), for some
- . . ) € [1,m — 1], anda € Q(I,p). Letay, denote the sub-
2. the subtuple,,) has a constant in the position cor- - yple ofa corresponding tay. Itis easy to see that f;,;
responding to attribute.,,,, and for an arbitrary sub-  has 3 variable in the position corresponding to attribute
tupleay,) ina, t1 # to: A, thena does not determing no matter what the other
i ; o ositions ina contain. This is because there is no nontriv-
2.1. égcrerslsjbtuplét ,) has a variable in the position iF;I FD X — A; € S+ such thatX C {As..... A, 1},
ponding to attributd,,,; or . i m—1
" All othern — 2 positions ina can therefore contain either
2.2. the subtuple,, has a constant in the position 5 constant or a variable, so there are at I@4se a’s that
corresponding to attributd,,, buta variable in 4o not determine. Then using Lemma 1, we conclude

the position corresponding to attributs that the information content of is at Ieast% =1/2.
This proves Proposition 2.

In Case 1a can have either a variable or a constant in all
othern — 2 positions. Therefore, we can ha®e2 such Now we go back to prove Theorem A. The first part of the
a's. In Case 24y, can have either a constant or a variable proof follows from Proposition 2: the information con-
in the positions corresponding #y, . . ., A, . Further- tent of a position in an indecomposable instance can be
more, in Case 2.1, every such subtuq[ge] canhave either  arbitrarily close tol /2. Therefore, for every dependency-
a constant or a varlable in the positions correspondmg to preserving normal form\VF (which cannot further decom-

attributesA,, ..., A,,_1, and in Case 2.2, it can have ei- pose anindecomposable instansej G(NF) cannot ex-
ther a constant or a variable in the positions correspondingceedl /2. Therefore PRICE(NF) > 1/2.
to Ag, ..., A, _1. Therefore, the total number afs sat- ) _
isfying conditions of Case 2 igm—2(2m ! 4 gm~2)k—1 To prove the second part, we notice that, by Proposi-
since we havé — 1 tuples other thar, in the instance. tion 1 and basic properties of 3NF, every indecomposable
(R,%) is in 3NF. Furthermore, if R,Y) is decompos-
Then |, (I,p)|, or the total number of differeri’s in able, then the 3NF synthesis algorithm will decompose
Q(I,p) that do not determing s (R, ) into indecomposable schemas. Therefore, for ev-
ery (R,%) and everyl € inst(R,3), one can find a
on—2 4 gm=2(gm—1l 4 gm=2)k—l 3NF-decomposition in which the information content of

every position is at least/2 and sometimes exactly) 2.
That is,sup G(3NF) = 1/2, and PRICE(3NF) = 1/2
This concludes the proof.

By Lemma 1Ric;(p|X) can be obtained by dividing this
number by2n—1 = 2mk—1:

2mk72 + 2m72(2m71 + 2m72)k71

Ric(plX) = — Notice that the proof of Theorem A implies that the
2 guaranteed information conterit/2 (which witnesses
_ ! i 1(§)k_1 PRICE(3NF) = 1/2) occurs in decompositions produced
2 2\4 ’ by the standard synthesis algorithm that generates a 3NF
which proves the claim. design from a minimal cover foE. Hence, our result

justifies not only 3NF as the best dependency-preserving
Thus for anye > 0, there is an instance of the form shown normal fqrm, but also the standard algorithm for producing
in Figure 1 and a positiop in it such that the information ~ 3NF designs.



4. Comparing normal forms | fil | ff | fis | | Alm |
1 2 1 1

In Section 3, we compared 3NF with other normal forms ! 1 2 1

that guarantee dependency preservation, and proved that : : :

one can always guarantee a 3NF decomposition whose 1 1 i

price would be less than or equal to the price of other T T

normal form decompositions. As already mentioned, 3NF 1 1 3 — 1

designs could be quite different: those that are produced
by the standard synthesis algorithm (which we 8aIF* : : : :
schemas) are the best, but others could be of lesser qual- ! ! ! 3
ity, as noticed in [22, 25]. So in this section we use the :
information-theoretic framework to compare differentnor
mal forms, in particular, 3NF3NF ', and unnormalized

h 1 E 1 1
schemas. 1 1 % 1
The measure for this comparison, described in the intro- : : : :
duction, is thegain of mormalization function defined 1 1 1 k
as
GAINpNE, JNF, (M) = %nf POSS NFy (m), Figure 2 A database instance for the proof of
inf POSS rr, (M) Proposition 3.

where POSS y7(m) is the set of all possible values
Rics(p|¥) as (R,Y) ranges over schemas with at-
tributes satisfying conditioN/F. Recall thatAll refers to
the class ol schemas.

(a) ConsideR(A4, ..., A,,) andX = {4y — Ay, Az —
Ay,..., A, — Ai}.  Consider the instancd ¢
inst(R, ) shown in Figure 2. Let, denote the first
o lein thi [ = A h iti
We now prove that any 3NF schema, not necessarily inde- '([)uf;:;ﬁéngtr;; Eaetl)lle,Laer%ﬂ be gﬁe’ tgamlge?%r;othepﬁeg mﬁlltllg :
composable, is at least twice as good as some unnormalﬂ1at is,(m — 1)(k — 1).

ized schema. More precisely, the gain function for 3NF is
constan® for all m > 2 (the case ofn < 2 is special, as

c : ! Claim 2. The information content of position p is
any nontrivial FD over two attributes is a key, and hence all

schemas are in BCNF). We also show thisF © schemas

could be significantly better than arbitrary 3NF schemas.

That is,
Theorem B. For every m > 2:
o GAINgNp/al(m) = 2;
o GAINgxp+ /3np (M) = 2779

o GAINgyp+an(m) = 2772

In the proof of Theorem A we showed that
inf POSSsnp+ (m) = inf POSSzp(m) = 1/2. Hence,
the result will follow from these two propositions.

Proposition 3. inf POSSai(m) = 21=™ for all m > 2.

22=m  for all

Proposition 4. inf POSSsxp(m) =
m > 2.

We now prove Proposition 3. We need to show that:

(a) For everym > 2 ande > 0, there exists a
schema(R, X)) with |attr(R)| = m, an instance
I € inst(R,X), and a positiorp € Pos(I) such
thatRic; (p|¥) < 217" +¢;

(b) Forevery(R, X)) with |attr(R)| = m, every instance
I € inst(R,Y), and every positiop € Pos(I), we
haveRic;(p|¥) > 21—,

m—1
1 m—1 i
=0

Proof of Claim 2. Leta be an arbitrary vector i (7, p).
Letay,) denote the subtuple afcorresponding te,, and
suppose;,; has constants in positions corresponding to
attributes, and it has variables in the positions corredpon
ing to the remainingn — 1 — ¢ attributes. Thera does
not determinep iff for any arbitrary subtuple;,; of a
correspondingto atuplg € I, t; # to, we have:

1. the subtuple;,; has a variable in the position cor-
responding tad;; or

2. the subtuplé,,; has a constant in the position cor-
responding tad; but variables in the positions cor-
responding to the samieattributes for whichaj,,,
has constants.

In Case lap,) can have either a constant or a variable
in every position corresponding to the other attributes
Ay, ... A, and therefore there arg™~! possibilities
for such subtuples. In Case;,) can have either a con-
stant or a variable in every position corresponding to the
otherm — 1 — i attributes, and therefore there are—1-¢
such subtuples. There aréuples inI other than,, and:
canrange ovef, m—1]. Therefore|{2; (1, p)| orthe total
number of different’s in (I, p) that do not determing



m—1

Z (m i ) (2m—1 + 2rn—1—4)t'
i=0

The information content gf is then obtained by dividing
this number by2"—1 = 2m(t+1)—1
Ricy(p|X)

m—1
1 m
g 3 (

1=0

; 1) (2m—1 + 2m—1—i)t

m—1

g 2 ("

which proves Claim 2.

) 1 + 27’L‘)t,

The following shows that as long &s> log, /5(1/¢) (that
is, k > (1 4 logy/3(1/€))/(m — 1)), for the instance in
Figure 2 and positiorp of the gray cell, such that the
information content op is less tha2! =" + «:

m—1

2m+t — Z < > (142779

# <2t+z ( . )(1+2i)t>

m—1
) 1+2—1)t

21 " 2m+t 1 Z (

21—m+ (%)t < 21—’H’L+E
4 .

Ricr(p|X)

A

(b) LetX be an arbitrary set of FDs over arelational schema
R, I € inst(R,%), p = (R,to, A1) € Pos(I), anda €
Q(I,p). Letay, denote the subtuple im corresponding

to to. It is easy to see that i, ; has vanables in all
positions corresponding to attrl[but A, thena
does not determing, no matter what the other positions
in a contain. All the otherm — m positions ina can

therefore contain either a constant or a variable, so the

number ofa’s that do not determing is at least2”™ "
that is, |21 (7,p)| > 2"~™. Thus, using Lemma 1, the
information content op is at IeastQ,L - = 2= This
proves Proposition 3.

Next, we prove Proposition 4. We need to show that:

(a) Foran arbitrary > 0andeveryn > 2, there exists a
3NF schemdR, X) with |attr(R)| = m, aninstance
I € inst(R, ), and apositiop € Pos(I) suchthat
Ric;(p|¥) < 227™ +e.

(b) Forevery(R,¥) in 3NF with |attr(R)| = m, every
instancel € inst(R,X), and every positionp €

Pos(I), we haveRicy(p|X) > 227™.
(a) ConsideR(A,,...,A,,)and
Y= {AlAg _)AB---A'rru A3 —>A1, ey Am —>A1}

Clearly (R,X) is in 3NF. Consider the instancé €
inst(R, ) shown in Figure 1. Let, denote the first
tuple in this table, angd = (R, to, A1) denote the position
of the gray cell.

Claim 3. The information content of position p is

m—2

Rics(p|¥) = 2m+k 3 Z ( ) (14 27%)k1

Proof of Claim 3. Leta be an arbitrary vector if(1, p).

Let ay;,) denote the subtuple in corresponding tdy,
and suppose that;, has constants in the positions cor-
responding ta attributes amongis, ... 4,,, and it has
variables in the positions corresponding to the remaining
m — 2 — i attributes. Them does not determing iff for

any arbitrary subtuple,,; in a corresponding to a tuple
t1 €1,y 7é to, either

1. the subtuple;,) has a variable in the position cor-
responding ta4;; or

2. the subtuplé,,; has a constant in the position cor-
responding tad; but variables in the posmons cor-
responding to the samieattributes for whichaj,,
has constants.

In Case 14y, can have either a constant or a variable
in every position corresponding to attributds, ..., A,,,
and hence there could 2&"~! such subtuples for every
t1 # to. In Case 24y;,) can have either a constant or a
variable in every position corresponding to the— 1 — 4
attributes, and therefore there &&—'~* possible such
subtuples. There are— 1 subtuples likei;,; , andi can
range ovel0, m — 2]. So far we have not said anything
aboutvalues correspondingm intg, butsinced; A, isa
candidate key, in both cases,, can have either a constant
or avariable in that position. Igutting it all together, we se
that|€2; (I, p)|, the total number of different’s in (I, p)
that do not determing is

m—2
2.y (m
=0
The information content gf can be obtained by dividing

this number by2" 1 = 2m~—1:
Ric; (p[%)

m—2

2mk22(
1
mZ(

1=0

- 2) (2m—1 + 2m—1—i)k—1.

) 2m—1+2m—1—i)k—1

e 2) (142701

Now we need to show that for any > 0 there is an
instance of the form shown in Figure 1 and a posifian

it corresponding to the gray cell such that the information
content ofp is less thare?~™ + ¢. Takingp to be the

This proves Claim 3.



position used in Claim 3 we have of the price of dependency preservation based not on the
minimal guaranteed information content, but the average

1 2 m-2 ikl guaranteed information content. We would like to see how
Ricr(p|%) om+k—3 > < i >(1 +27) this different measure relates to 3NF.
1=0
m—2
_ 1 k=1 nz: m—2 (14 2-1yk1 Much of database theory and practice as of late has fo-
2m+k—3 — ] cused on transferring relational technology to XML [24];

) in fact, since there are several approaches to XML de-

~ 1 =</ m-2 ke sign that appeared in the literature (e.g., [3, 11]), one of
< 2 mtk—3 Z ( ; >(1 +27 )t the motivations behind the information-theoretic apptoac
i=0 was to provide a formal justification for normal forms for

m k-1 m XML documents. We would like to use the information-
= 2 + (1) < 2 +é theoretic approach to see what a natural analog of 3NF for
XML is. Notice that the hierarchical structure of XML
aslong as: > 1+ logy/s(1/¢). documents makes the interplay between redundancies and
) dependency preservation more intricate: for example,
(b) Let (R,X) be in 3NF, I € inst(R,X), p = there are relational schemas that do not admit dependency-
(R,to, A1) € Pos(I), anda € Q(I,p). Letay, de-  preserving BCNF decompositions, but can nonetheless be

note the subtuple im corresponding td,. We assume  hjerarchically represented in XML in a way that preserves
that A, is a prime attribute, but not a key itself, because a|l dependencies and has no redundancies [17].
otherwiseRi1c;(p|X) = 1 sincep would not have any
redundancy due to a non-key FD. We also would like to understand the relationship between
) ) ) ) » the information-theoretic approach of [4] based on the
It is easy to see that if;,; has variables in all positions  concept of entropy, and the notion of information capacity
corresponding to attributeds, ..., A,,, thena does not  of schemas [2, 14] based on the existence of mappings
determinep, no matter what the other positionsdrcon- between schemas.

tain. All the othern — m positions ina can therefore

contain either a constant or a variable, so there are at leastA cknowledgments We would like to thank Marcelo
2"~™ @’s that do not determing. SinceA; is prime and  Arenas, Wenfei Fan, and Luc Segoufin for their com-
not a key by itself, there is at least another attribdte ments.

such thatd;, Ax belong to a candidate key. df;, has a
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