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ABSTRACT

We study models of incomplete information for XML, their
computational properties, and query answering. While our
approach is motivated by the study of relational incomplete-
ness, incomplete information in XML documents may appear
not only as null values but also as missing structural infor-
mation. Our goal is to provide a classification of incomplete
descriptions of XML documents, and separate features - or
groups of features - that lead to hard computational problems
from those that admit efficient algorithms. Our classification
of incomplete information is based on the combination of null
values with partial structural descriptions of documents.The
key computational problems we consider are consistency of
partial descriptions, representability of complete documents
by incomplete ones, and query answering. We show how fac-
tors such as schema information, the presence of node ids,
and missing structural information affect the complexity of
these main computational problems, and find robust classes
of incomplete XML descriptions that permit tractable query
evaluation.
Categories and Subject Descriptors. H.2.1 [Database
Management]: Logical Design—Data Models

General Terms. Theory, Languages, Algorithms
Keywords. XML, incomplete information, query answer-
ing, certain answers, consistency, membership

1. Introduction

The transfer and extension of relational tools to deal with
XML data has been a central theme in database research over
the past decade. One area that has not witnessed much activ-
ity is the handling of incomplete information in XML. And
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yet incomplete information is ubiquitous in XML applica-
tions, especially in exchanging and integrating web data –
the key applications XML was designed for.

In the research literature, there are some papers that ad-
dress the problem of incompleteness in XML, but this typi-
cally happens in some specific scenarios. For example, [3]
concentrated on handling incompleteness arising in a dy-
namic setting in which the structure of a tree is revealed by
a sequence of queries, [11, 12] looked at graph and tree data
models expressed as description logic theories that could
incorporate incompleteness, [21] dealt with incompleteness
in query results but not inputs, and [27, 13] looked at in-
corporating probabilities into XML. In practice incomplete
information needs to be modeled as well, most commonly
by optional attributes, or tricks such asminOccurs="0" to
introduce nulls at the level of elements.

Our goal is to provide a systematic study of incomplete
information in XML that is independent of any particular
application. We would like to address the same problems as
the fundamental study of relational incompleteness, namely:

1. study models of incompleteness in XML and their se-
mantics; and

2. study the key computational tasks associated with such
models (e.g., query answering) with the main goal of
separating features that lead to good algorithmic solu-
tions from those that lead to intractability.

The results we obtain can be used in any application scenario,
as they say for which classes of problems and models effi-
cient solutions cannot be found, and for which classes such
solutions exist.

The inspiration for such a general study comes from the
study of incompleteness in relational databases. There, in-
completeness arises when some attribute values are unknown
for a variety of reasons and are represented as nulls. The
design of SQL adopted a single type of null and the (often
criticized) reasoning model based on the 3-valued logic. The-
oretical investigations of nulls culminated in two papers that
are the foundation of the theory of relational incompleteness.
The paper by Imielinski and Lipski [20] introduced the notion



of tables as a representation mechanism for incomplete in-
formation, and looked at types of tables that are suitable for
evaluating queries from various sublanguages of relational
algebra. The paper by Abiteboul, Kanellakis, and Grahne
[2] studied the complexity of computational problems asso-
ciated with incompleteness, and provided a clear separation
between tractable and intractable cases. These results con-
tinue to be very influential. For example, the fact that unions
of conjunctive queries can be evaluated in polynomial time
over näıve tables (in which nulls can be repeated) is used
heavily in data integration and exchange [1, 17, 23].

The structure of XML documents is much more compli-
cated than that of relational databases, and missing informa-
tion may appear not only among attribute values, but also
in the structure itself. And in addition the way we view
XML documents may lead to different representations of
incomplete information.

To see how incompleteness can be represented in XML,
consider a document that describes books and papers, by
giving their titles, authors, and years of publication. An in-
complete description of such a document is presented below:

book —

r

title author year title author year

xx y“Found.
of DB”

“Vianu” “Abiteboul”

The left subtree talks about theFoundations of Databases
book; it tells us that one of the authors is Vianu, but it does not
give us precise information about the publication date (year
is null, given by a variablex). The second subtree says that
there is some publication by Abiteboul (we do not know if it
is a book or an article since wildcard is used as a label); all
we know about it is that it was published in the same yearx.
We also know that the author node for Vianu is an immediate
successor of the book title, but no other information about
sibling ordering is available.

This document can represent many complete trees: one
example is a description ofFoundations of Databases. In
that case we assume that the root has just one child (which is
consistent with the description, sincematches every label),
with one title node, a year node with the value ‘1995’, and
three author nodes for Abiteboul, Hull, and Vianu. We are
making the open world assumption and allow addition of
nodes; in particular the incomplete document above does not
have the knowledge that Hull is one of the authors.

We now turn to a slightly different way of modeling XML,
which corresponds to the DOM interface [16]. In that case,
we can access each node in a document by its id, and ap-
ply various methods that produce its parent, left and right
siblings, first child, all children, etc. They key point is that
a node is uniquely identified by its id. Consider now what
looks like almost the same incomplete document:

(i8)

book

(i1)
—

(i2)

r (i0)

title author year title author year

xx y“Found.
of DB”

“Vianu” “Abiteboul”

(i3) (i4) (i5) (i6) (i7)

The small change – we gave ids to all nodes, shown in
parentheses as(ik) – makes a big impact on the semantics.
For example, it is no longer possible that the document rep-
resents a single book, as before. Indeed, we know that the
two children of the root are different, sincei1 6= i2.

But one can still have an incomplete document description
that is consistent with the document representing only infor-
mation aboutFoundations of Databases, even with unique
ids associated with each node. Assume that we losestruc-
tural information that the author-nodei7 is a grandchild of
the root, and instead we only know that it is a descendant
of the root, as shown below. Then it is still consistent with
an incomplete description thati7 is a child of i1 and thus
describes an author ofFoundations of Databases.

book

(i1)

r (i0)

title author year author
x“Found.

of DB”
“Vianu” “Abiteboul”

∗

(i3) (i4) (i5) (i7)

These examples start giving us an indication of the nature
of incomplete information in XML, and how various choices
of parameters affect the semantics of incompleteness. In ad-
dition to the standard missing information – attribute values
– we may have missing structure information such as labels
(replaced by wildcards) or information about edges (in the
above examples, we miss some next-sibling information or
replace a precise path to a node by a single descendant edge).
Furthermore, there is a choice of having node ids, which
affects the semantics of incompleteness.

In comparison with relational databases, there are many
more parameters to consider when we classify incomplete
descriptions of XML trees. They include the nature of nulls
for attributes, the exact set of axes used in descriptions, the
presence of node ids. A full classification of those will giveus
a large number of cases, and studying all of them is certainly
not our goal.

What we want to understand in this paper is the interplay
between features, or groups of features, that leads to effi-
cient algorithms (or intractability) for various computational
problems associated with incomplete information. We want
to find robust and naturally definable classes of incomplete
descriptions that lead to efficient algorithmic solutions.



The plan of the paper is as follows. In Section 2, we re-
view incompleteness in relational databases. In Section 3
we describe XML documents in a way that makes it easy to
introduce models of incompleteness, by eliminating some of
the features of complete documents. In Section 4, we intro-
duce models of incomplete information in XML documents,
their classification, and their relational representations. In
Section 5 we study basic computational problems associated
with incomplete information, such as consistency of incom-
plete descriptions (with and without schema information)
and membership in the set of complete trees represented by
an incomplete description. In Section 6 we study query an-
swering; we show that even for conjunctive queries, comput-
ing certain answers could be hard (which is different from
the relational case) and find a natural class of incomplete
descriptions and queries for which an analog of relational
näıve evaluation finds certain answers in polynomial time.
In Section 7 we give an overview of restrictions that lead to
tractability. Future work is outlined in Section 8.

2. Incompleteness in relational databases

We now briefly recall the basics of incomplete infor-
mation in relational databases [4, 2, 20]. Incomplete-
ness is represented by means oftables in which both val-
ues and variables (for nulls) can be used. For example,
T = {(1, x), (y, 2), (x, 1)} is a table. Such a table can rep-
resent complete relations, i.e. relations without nulls, that
contain all the tuples inT under some valuation of nulls.
Formally, a relationR is represented byT if for some valu-
ationν (i.e. a mapping from nulls to constants),ν(T ) ⊆ R.
The set of such relations is usually denoted byRep(T ). This
definition naturally extends to databases with multiple rela-
tions. Note that we are making the open world assumption
here; under the closed world assumption,Rep(T ) would
consist only of relationsν(T ).

There are different types of tables: inCodd tables, all
variable occurrences are distinct; innäıve tables, the same
variable can occur more than once (as in the tableT above),
and in conditional tables one can impose more complex con-
ditions than just equality on variables [20].

The key computational problems related to incomplete-
ness are membership and query answering (there are sev-
eral others considered, e.g., in [2] but they are variations
on these two themes). The membership problem is to
check if a complete database is represented by an incom-
plete one, that is, whetherR ∈ Rep(T ). For query answer-
ing, typically we deal withcertain answers [20], defined
as certain(Q, T ) =

⋂

{Q(R) | R ∈ Rep(T )}. Key re-
sults from [20] tell us where the tractability boundary for
these problems are. For example, membership isPTIME
for Codd tables butNP-complete for näıve tables. Query an-
swering over näıve tables is tractable for unions of conjunc-
tive queries. This is done by thenäıve evaluation. Under it,
nulls are viewed as values, but only null-free tuples are kept
in the output. For relational algebra, the complexity ranges
from coNP-complete under the closed world assumption to
undecidable under the open world assumption [2, 28].

3. XML documents

Before introducing models of incompleteness in XML,
we define complete XML trees. We describe them in an
exhaustive way – including information about child and next-
sibling axes, their transitive closures, labels, and attributes
- so that later we introduce models of incompleteness by
removing features of complete documents.

We assume the following disjoint countably infinite sets:

• Labels of possible names of element types (that is, node
labels in trees);

• Attr of attribute names; we precede them with an@ to
distinguish them from element types;

• I of node ids; and

• D of attribute values (e.g., strings).

We formally define trees as two-sorted relational structures
over node ids and attribute values. For finite sets of labels and
attributes,Σ ⊂ Labels andA ⊂ Attr , define the vocabulary

τΣ,A =

(

E, NS, E∗, NS∗, (A@a)@a∈A

(Pℓ)ℓ∈Σ,Root,Leaf,FC,LC

)

where all relations in the first line are binary and all relations
in the second line are unary. A tree is a 2-sorted structure of
vocabularyτΣ,A, i.e. 〈V, D, τΣ,A〉, whereV ⊂ I is a finite
set of node ids,D ⊂ D is a finite set of data values, and

• E, NS are the child and the next-sibling relations, so
that 〈V, E, NS〉 is an ordered unranked tree;E∗ and
NS∗ are their reflexive-transitive closures (descendant
or self, and younger sibling or self).

• eachA@ai
assigns values of attribute@ai to nodes, i.e.

it is a subset ofV × D such that at most one pair(i, c)
is present for eachi ∈ V ;

• Pℓ are labeling predicates:i ∈ V belongs toPℓ iff it
is labeledℓ; as usual, we assume that thePℓ’s form a
partition ofV ;

• SetsRoot,Leaf,FC,LC contain the root, the leaves,
first (oldest) and last (youngest) children of nodes.

A DTD over a setΣ ⊂ Labels of labels andA ⊂ Attr of
attributes is a tripled = (r, ρ, α), wherer ∈ Σ, andρ is a
mapping fromΣ to regular languages overΣ−{r}, andα is
a mapping fromΣ to subsets ofA. As usual,r is the root, and
in a treeT that conforms tod (written asT |= d), for each
nodes labeledℓ, the set of labels of its children, read left-to-
right, forms a string in the language ofρ(ℓ), and the set of
attributes ofs is preciselyα(ℓ). We assume, for complexity
results, that regular languages are given by NFAs.

We now show how to produce complete descriptions of
XML trees by means of a grammar that will guide us when
we develop incomplete descriptions of trees. Trees (t) and
forests (f ) can be given by the following syntax:

t := β〈f〉 f := ε | tf (1)



whereβ ranges over descriptions of nodes (defined below).
In other words, each treeβ〈f〉 is given by a description of its
root nodeβ and the forestf of its children, and each forest
f is either empty or a sequence of trees. Trees areordered:
for the treeβ〈t1 . . . tk〉 we assume that the treet1 is rooted at
the first child of the node given byβ, the treet2 at the second
child, and so on.

A node description β for a node with labelℓ ∈ Labels, id
i ∈ I and attributes@a1, . . . , @am with valuesv1, . . . , vm ∈
D is given byβ = ℓ(i)[@a1 = v1, . . . , @am = vm].

4. Models of incompleteness in XML

We start with complete tree descriptions (1) and see how
missing information can be incorporated into them. In ad-
dition to missing attribute values, the following structural
information can be missing too:

(a) node ids (they can be replaced by node variables);

(b) node labels (they can be replaced by wildcards);

(c) precise vertical relationship between nodes (we can use
descendant edges in addition to child edges);

(d) precise horizontal relationship between nodes (using
younger-sibling edges instead of next-sibling).

In both (c) and (d), we may allow partial information to be
recovered: for example, we may know that a node is a leaf,
or that it is a first child.

We now represent all these types of incompleteness by
means of more expressive tree/forest descriptions that those
in (1). Since we deal with two-sorted structures (over nodes
and attribute values), we shall need variables of two kinds to
represent unknown values of those. That is, we assume that
we have disjoint sets of variablesVnode (for node variables)
andVattr (for nulls that correspond to attribute values).

Node descriptions These are of the form

β = ℓµ(x)[@a1 = z1, . . . , @am = zm],

where

• ℓ ∈ Σ ∪ { } (label or wildcard);
• µ is amarking: a subset (possibly empty) ofroot,

leaf, fc, lc.
• x ∈ Vnode ∪ I is a node variable or a node id.
• @a1, . . . , @am are attribute names, and eachzi is

a variable fromVattr or a constant fromD.

Incomplete descriptions We define incomplete tree de-
scriptions (t) and incomplete forest descriptions (f ) by

t := β〈f〉〈〈f ′〉〉
f, f ′ := ε | t1 θ1 t2 θ2 . . . θk−1 tk | f‖f ′ (2)

where eachθi is either→ or →∗; eachti is an incom-
plete tree description.

Intuitively, node descriptions introduce nulls, wildcards,
and markings. A tree descriptionβ〈f〉〈〈f ′〉〉 indicates a tree
with a root node described byβ so that it has a forestf of
children and a forestf ′ of descendants. Forests could be
empty, or forests of sibling trees (e.g.,t1 → t2 →∗ t3 says
that we have a forest consisting of three trees, so that the root
of t2 is the next sibling after the root oft1, and the root of
t3 is a younger sibling than those two roots), or unions of
forests (f‖f ′).

We now describe the third tree from the introduction in
our syntax. Assume that title, author, and year nodes have
attributes@t, @a and@y. The 6 nodes are described by:

β0 = rroot(i0)
β1 = book(i1)
β3 = title(i3)[@t = “Found of DB”]
β4 = author(i4)[@a = “Vianu”]
β5 = year(i5)[@y = x]
β7 = author(i7)[@a = “Abiteboul”]

Then the whole tree is described by

β0〈 β1〈β3 → β4 ‖ β5〉 〉 〈〈β7〉〉

(strictly speaking, one should writeβ3〈ε〉 → β4〈ε〉 ‖ β5〈ε〉
instead ofβ3 → β4 ‖ β5, but we shall omit empty forestsε
for notational convenience).

Semantics As for incomplete databases, we defineRep(t)
as the set of complete trees represented by an incomplete
tree descriptiont. There are two equivalent definitions: one
is by stating what it means for a tree to witness an incom-
plete pattern (shown below), and another by an analog of
the relational definition ofRep (which we present shortly,
after defining the relational representation of incompletetree
descriptions).

Let x̄ be the set of all node variables used int andz̄ the set
of all nulls used int. Given a valuationν = (νnode, νattr)
with νnode : x̄ → I andνattr : z̄ → D, and a nodes of
T , we use the semantic notion(T, ν, s) |= t: intuitively, it
means that a complete treeT matchest at nodes, if node
variables and nulls are interpreted according toν. Then we
define

Rep(t) = {T | (T, ν, s) |= t for some node s and ν}.

We further defineRepΣ,A(t) as the restrictions ofRep(t) to
τΣ,A-trees, forΣ ⊂ Labels andA ⊂ Attr .

We now define(T, ν, s) |= t, as well(T, ν, S) |= f (which
means thatT matchesf at a setS of roots of subtrees inT ).
We assume thatνnode andνattr are the identity when applied
to node ids fromI and data values fromD.

• (T, ν, s) |= ℓµ(x)[@a1 = z1, . . . , @am = zm] iff
νnode(x) = s, nodes is labeledℓ (if ℓ ∈ Labels), all the
µ-markings are correct ins, and the value of each at-
tribute@ai of s isνattr(zi) (i.e.,(s, νattr(zi)) ∈ A@ai

).

• (T, ν, s) |= β〈f〉〈〈f ′〉〉 iff (T, ν, s) |= β and there is a
setS of children ofs such that(T, ν, S) |= f and a set
S′ of descendants ofs such that(T, ν, S′) |= f ′.

• (T, ν, ∅) |= ε;



• (T, ν, {s1, . . . , sk}) |= t1θ1t2θ2 . . . θk−1tk iff
(si, si+1) is in NS wheneverθi is → and in NS∗

wheneverθi is→∗, for eachi < k, and(T, ν, si) |= ti
for all i.

• (T, ν, S) |= f1‖f2 iff S = S1 ∪ S2 such that
(T, ν, Si) |= fi, for i = 1, 2.

Remark Note that the nodes in the definition of(T, ν, s) |= t
is superfluous sinces = νnode(x) for t = ℓ(x)[. . .]〈f〉〈〈f ′〉〉,
but we prefer to make it explicit for notational convenience.

4.1 Classification of incomplete descriptions

There are three different groups of parameters that can vary
as we define incomplete tree descriptions.

Node ids One possibility is to disregard them, as often
done in the work on tree patterns [6, 8, 9, 14], i.e.,
assume that each node has a distinct variable for node
id. In that case, we shall speak ofincomplete trees.
At the opposite end, we have a model that corresponds
to the DOM interface to XML, which assigns a constant
id to each node [16, 18]. Such incomplete descriptions
will be referred to asincomplete DOM-trees.

Structure Another parameter refers to how much of the
structure of a document can be described: that is, the
set of axes used (among↓, ↓∗,→,→∗), whether the
union operation‖ on forests is allowed and whether
markingsµ can be used in descriptions.
We shall precede the definition of a class of trees with
this structural information.

Data values The third parameter refers to attribute values.
Normally, we allow both constants and variables, i.e.,
an analog of näıve tables. But in some cases we look
at purely structural information, with no data values.
Then we talk about treeswithout attributes.

Classes of incomplete descriptions will be referred to as

(structure)-incomplete

{

tree
DOM-tree

}

(possiblywithout attributes), wherestructure is a subset
of ↓, ↓∗,→,→∗, ‖, µ.

To reiterate, we concentrate on the following two classes of
incomplete descriptions, in combination with various struc-
tural fragments, and both with and without attributes:

Incomplete trees In those node ids are all variables and all
distinct. In fact we may just omit them, writing, for example,
r〈a → b‖c〉 instead of the more formalr(x1)〈a(x2) →
b(x3)‖c(x4)〉. The incomplete tree description essentially
enforces a tree structure for such incomplete descriptions
(except possibly markings conflicting with the rest of the
description).

Incomplete DOM-trees In those each node has a constant
node id, which must be explicitly listed. Then non-tree-
shaped descriptions are possible, e.g.a(i0)〈b(i1)〈a(i0)〉〉
saying thati1 is a child ofi0 andi0 is a child ofi1.

Even assuming that we always have the child axis in de-
scriptions, these parameters give rise to27 cases. Of course
we shall not be attempting to classify them all; rather, our
goal is to understand which combinations of parameters give
us good algorithms, and which naturally lead to intractability.

Remark The treatment of node ids need not be limited to the
two extremes: all distinct variable ids, or all constant ids.
The model in which all ids are variables but some could be
the same subsumes tree patterns of [8, 9]. Note though that
most proofs of hardness results in [8, 9] are based on the
assumption that variables can be repeated and thus do not
apply to incomplete (DOM-)trees.

Remark The model of [3], introduced in the context of active
documents, is incompatible with ours. It deals with(↓, ‖)-
incomplete DOM-trees in our classification, in which at most
one attribute per node is permitted, but it does not allow nulls
(and, in particular, cannot model naı̈ve features such as our
model). But the model of [3] handles types of incompleteness
that we do not deal with. It assumes that a portion of the
document is always known (and increases as more queries are
posed), and the rest is coded by a restricted form of DTDs that
disregard the sibling-ordering. It can be potentially captured
by an extension of our model by an analog of conditional
tables, but this is beyond the scope of this work.

4.2 Relational representations

Just as complete XML trees, incomplete trees have a nat-
ural relational representation. We shall present it now, and
show that the semantics of incompleteness can be described
in terms of homomorphisms between relational representa-
tions of incomplete and complete trees.

With each incomplete tree descriptiont with labels from
Σ ⊂ Labels and attributes fromA ⊂ Attr , we associate a
relational structurereℓ(t) of vocabularyτΣ,A. These will
be two-sorted structures, whose active domains are subsets
of I ∪ Vnode and ofD ∪ Vattr, defined as unions of active
domains of all node descriptions. For a node descriptionβ =
ℓµ(x)[@a1 = z1, . . . , @am = zm], we letadomnode(β) =
{x} andadomattr(β) = {z1, . . . , zm}.

For a tree (t) or forest (f ) description,reℓ(t) or reℓ(f)
is a two-sorted structure over domainsadomnode(t) and
adomattr(t) (or f ), defined inductively (together with the
notion of root nodes) as follows:

1. If t = β〈f〉〈〈f ′〉〉, whereβ = ℓµ(x)[(@ai = zi)
m
i=1],

thenreℓ(t) includes the union ofreℓ(f) andreℓ(f ′) and
in addition it has the following: all tuplesA@ai

(x, zi),
all tuplesE(x, y), wherey is a root node off , all tu-
plesE∗(x, y′), wherey′ is a root node off ′. Further-
more,x is added toPℓ if ℓ 6= and to unary relations
Root,Leaf,FC,LC according to the markingsµ. The
root node oft is x.

2. Forf = ε, all the relations are empty;

3. Forf = t1 θ1 . . . θk−1 tk, wherex1, . . . , xk are the
root nodes oft1, . . . , tk, we letreℓ(f) be the union of



all reℓ(ti)s, and in addition we put(xi, xi+1) in NS or
NS∗, depending on whetherθi is → or →∗. We call
xi’s the root nodes off .

4. reℓ(f‖f ′) is the union ofreℓ(f) andreℓ(f ′). We also
define the root nodes off‖f ′ as the union of the root
nodes off andf ′.

Let h1 : Vnode ∪ I → Vnode ∪ I andh2 : Vattr ∪ D →
Vattr ∪ D be mappings that are constant onI andD. Then
h̄ = (h1, h2) is ahomomorphismof two relational structures
T1 andT2 of vocabulariesτΣ1,A1

andτΣ2,A2
, with Σ1 ⊆ Σ2

andA1 ⊆ A2, if for every tuplex̄ in a relationR of τΣ1,A1
in

T1, the tuplēh(x̄) is in the relationR in T2 (which must be
present inT2 sinceτΣ1,A1

⊆ τΣ2,A2
). Of coursēh(x) refers

to h1(x) if x ∈ Vnode ∪ I and toh2(x) if x ∈ Vattr ∪D.

Proposition 4.1. T ∈ Rep(t) iff there is a homomor-
phism h̄ : reℓ(t) → T .

5. Basic computational problems

The standard computational problems studied in connec-
tion with incomplete information in relational databases are
membership (whether a complete database can be repre-
sented by an incomplete description) and query answer-
ing. Others are variations of these two (e.g., containment
Rep(R) ⊆ Rep(R′) can be viewed as a special case of
query answering). In the case of XML we have an ad-
ditional problem that needs to be addressed – consistency.
Due to complicated descriptions of XML documents, it is
possible to provide inconsistent specifications. This is a
well-recognized phenomenon, and there are many results
on consistency and satisfiability for XML schemas, con-
straints, patterns, and queries [5, 7, 8, 9]. We already
saw some examples of inconsistent descriptions: for ex-
ample, under the DOM model, we can say that nodes with
ids i1 and i2 are connected by the child edge in both di-
rections, which is inconsistent with any tree description.
With markings too inconsistency is possible, e.g.,a〈broot〉
saying that a child node is markedroot. Presence of
DTDs also may lead to inconsistency. Consider a DTD
r → bb; b → ε, whereb has an attribute@a, and a descrip-
tion r〈b[@a = c1]→b[@a = c2] ‖ b[@a = z]→b[@a = z]〉,
wherec1 6= c2 are two constants fromD. This is inconsistent
with the DTD.

5.1 Consistency of incomplete descriptions

We consider the following problem:

Problem: Consistency
Input: an incomplete descriptiont
Question: is Rep(t) 6= ∅?

We also look at a variation with a fixed DTDd: the prob-
lem Consistency(d) asks whetherRepd(t) = Rep(t) ∩
{T | T |= d} is nonempty.

First, we get an upper bound on the complexity.

Theorem 5.1. Both Consistency and
Consistency(d) are in NP. In fact, even if both t and
d are given as inputs, checking whether Repd(t) 6= ∅
can be done in NP.

We want to understand which features lead toNP-
hardness, and which ones allow efficient algorithms.

The consistency problem appears related to several well-
studied problems – chase-based tools, constraint satisfaction,
automata on trees – but techniques from those areas do not
seem to provide us with a way of getting efficient algo-
rithms. For example, some of the algorithmic techniques
for checking consistency have a feel of a chase procedure
that completes the relational representationreℓ(t). But we
cannot apply chase ‘as is’. The main constraint – that the
resulting structure be a tree – is not even first-order express-
ible. Also, some constraints are disjunctive in nature: e.g.,
for two childrens ands′ of the same node, eithers →∗ s′ or
s′ →∗ s holds. While chase with disjunctive constraints has
been considered [15], it generally yields intractable upper
bounds, which we already have from Theorem 5.1.

By Proposition 4.1, consistency can be viewed as the ex-
istence of a homomorphism fromreℓ(t) into some struc-
tureT . This suggests applicability of constraint satisfaction
tools, since tractable restrictions are very well understood
(cf. [22]). But Theorem 5.1 only provides an upper bound
on the size ofT . In particular, it is possible forT to have
both long branches and high branching degree, and hence
Theorem 5.1 does not give a construction for a polysizeT to
reduce consistency to constraint satisfaction. The problem
with using automata is that data values come from an infinite
domain. While some automata models have been developed
for them [25, 26], they do not lead to efficient algorithms for
expressive problems such as those we consider here.

We start our investigation with incomplete trees. The first
result is about the consistency problem without DTDs. For
incomplete trees, only markings can lead to inconsistency.
For descriptions with markings we provide a full classifica-
tion of tractable cases.

Theorem 5.2. Each (↓, ↓∗,→,→∗, ‖)-incomplete tree
(i.e., an incomplete tree without markings) is consis-
tent.

With markings, Consistency is

• NP-complete for the fragments (↓,→, ⋆, fc, lc) and
(↓, ↓∗, ⋆, fc, lc, leaf), where ⋆ is →∗ or ‖;

• PTIME for all other fragments containing ↓.

With DTDs, we have intractability already for simple de-
scriptions of incomplete trees:

Theorem 5.3. There exist DTDs d1, d2, d3 such that:

• Consistency(d1) is NP-complete for (↓, ‖)-
incomplete trees.

• Consistency(d2) is NP-complete for (↓,→, ‖)-
incomplete trees, even without attributes.

• Consistency(d3) is NP-complete for (↓, ↓∗, ‖)-
incomplete trees, even without attributes.



We sketch the proof of the first item, to indicate how DTDs
and null values of attributes combine to lead to hardness. The
DTD d1 has three rules:r → CCC; C → DD; D → ε with
C andD having one attribute@c (color). For a graphG with
n nodes andm edgese1, . . . , em, definen variablesxi and
m treeste for each edgee between theith and thejth node:
te = C[@c = xi]〈D[@c = xj ]〉. We then fix three colors
r, g, b, and for each colorc′definetc′ = C[@c = c′]〈D[@c =
c1]‖D[@c = c2]〉 wherec1, c2 are the two colors different
from c′. Finally let tG = r〈tr‖tg‖tb‖te1

‖ . . . ‖tem
〉. It is

easy to see thattG andd1 are consistent iffG is 3-colorable.

The key feature in the above sketch is that in incomplete
treest, different subformulae can represent the same subtree
of a tree inRep(t). In particular, in the proof we need
to collapse multiple subtreestei

to those describing their
colorings, i.e.,tr, tg, tb.

This is impossible to do in the case of DOM-trees, where
unique ids associated with node descriptions make such ‘col-
lapse’ impossible. We now turn to incomplete DOM-trees,
and show that the presence of unique ids lowers the complex-
ity of consistency, even in the presence of DTDs. However,
it makes the proofs significantly harder. First, we show:

Theorem 5.4. Consistency can be solved in PTIME
for incomplete DOM-trees.

We can even get tractability for consistency with DTDs if
we restrict to↓∗-free incomplete DOM-trees that do not use
the descendant relation (i.e.〈〈·〉〉 cannot be used in incomplete
tree descriptions).

Theorem 5.5. For each fixed DTD d, Consistency(d)
is solvable in PTIME for ↓∗-free incomplete DOM-trees.

However, the combined complexity (when the DTD is not
fixed) is intractable:

Proposition 5.6. The problem of checking, for a DTD
d and an incomplete DOM-tree t, whether Repd(t) is
nonempty, is NP-complete.

In fact, to getNP-hardness, it suffices to look at(↓, ‖)-
incomplete DOM-trees without attributes and DTDs in which
every regular expression defines a finite language.

5.2 Membership test

We now consider the next basic computational problem
related to incomplete information:

Problem: Membership
Input: an incomplete treet,

a complete treeT
Question: is T ∈ Rep(t)?

To test whetherT ∈ Rep(t) one just guesses a homomor-
phismh : reℓ(t) → T ; henceMembership is in NP.

Recall what is known in the relational case. The problem
of checking whetherR′ is in Rep(R) is NP-complete ifR is
a näıve table, and inPTIME if R is a Codd table, i.e. each
variable occurs exactly once in it. We shall prove an analog
of this result. We say thatt is an incompleteCodd tree if
every variable fromVattr occurs at most once int.

Theorem 5.7. • Membership for (↓, ‖)-incomplete
trees is NP-complete.

• For incomplete Codd trees, Membership is solv-
able in PTIME.

• For incomplete DOM-trees, Membership is solv-
able in PTIME.

The proof for the Codd case is quite different from the
relational technique [2], which is based on bipartite graph
matching; instead we use a technique inspired by CTL model-
checking to see ifT ∈ Rep(t).

6. Query answering

For relational databases, we know that unions of conjunc-
tive queries can be efficiently evaluated over databases with
nulls. One just uses the naı̈ve evaluation, which treats nulls
as if they were simply different elements of the domain, and
then discards tuples that contain nulls from the output. Naı̈ve
evaluation correctly computes certain answers [20] and has
the same complexity as the usual conjunctive query evalua-
tion. Once negation is added to queries, or the representation
mechanism changes, the complexity quickly rises [2].

We want to find classes of queries and incomplete represen-
tations that admit tractable query evaluation for computing
certain answers. The first obstacle is that for XML queries
that produce trees as outputs, the notion of certain answersis
far from clear. So for now, since our goal is to broadly out-
line the tractability boundary, we look at XML queries that
produce tuples of values (this, of course, includes Boolean
queries). Once we define a query language, we present a few
results that rule out several features as immediately leading
to intractability. Then we define a class ofrigid incomplete
trees and show that a natural analog of unions of conjunctive
queries admits tractable naı̈ve evaluation over them. We con-
clude by showing that over DOM-trees, the picture is rather
different.

6.1 A simple query language

We shall use queries whose free variables range over the
domain of attribute values, and thus their results are usualre-
lations. We start with conjunctive queries over trees. These
are essentially standard (see, e.g., [8, 19]). We express them
in our syntax for incomplete trees, and add existential quan-
tification over variables fromVattr. That is, conjunctive
queriesCQ are of the formq(x̄) = ∃ȳ tq(x̄, ȳ), wheretq is
an incomplete tree, and̄x, ȳ list variables fromVattr. Their
semantics on complete treesT is defined as

q(T ) =

{

νattr(x̄)

∣

∣

∣

∣

(T, ν, s) |= tq for some node s
and valuation ν = (νnode, νattr)

}

.



Recall that in incomplete trees we omit node variables for
notational convenience; the semantics ofq(x̄) of course as-
sumes existential quantification over all node variables.

As our languageUCQ we take unions of conjunctive
queries:

q1(x̄) ∪ . . . ∪ qk(x̄)

For (unions of) conjunctive queries, we use the notation
UCQ(structure) or CQ(structure), wherestructure refers to
the structural information used in incomplete treestq. For
example,∃y r〈ℓ1[@a = x] → ℓ2[@b = y]〉 is aCQ(↓,→)-
query that returns values of the@a attribute ofℓ1-children
of r that have anℓ2-labeled next sibling with a@b attribute.

For UCQ queries we can define the notion of certain an-
swers since these queries produce relations:

certain(q, t) =
⋂

{q(T ) | T ∈ Rep(t)}.

The main computational problem we consider here is:

Problem: QueryAnswering(q)
Input: an incomplete tree descriptiont,

a tupleā
Question: is ā ∈ certain(q, t)?

We also definecertaind(q, t) as
⋂

{q(T ) | T |= d and T ∈
Rep(t)}, and a problemQueryAnswering(q, d) (query
answering with DTDs) where the question is whetherā ∈
certaind(q, t).

A fragment of the language, namelyUCQ(↓, ↓∗, ‖), was
considered in the study of query answering in XML data
exchange [6]. We first provide an upper bound on the com-
plexity of query answering. We show that a counterexample
to ā ∈ certain(q, t), i.e., a complete treeT so that̄a 6∈ q(T )
can be chosen to be of polynomial size int andā. Thus,

Theorem 6.1. Both QueryAnswering(q) and
QueryAnswering(q, d) are in coNP for all q ∈ UCQ
and all d.

6.2 Intractable cases of query answering

We now show that query answering could be intractable,
even for unions of conjunctive queries. This contrasts sharply
with the relational case, where all unions of conjunctive
queries can be evaluated inPTIME.

We can obtain several intractability results by using hard-
ness results for consistency. Note that if we have a class
of incomplete trees over whichConsistency is NP-hard,
and a class of queries that includes a query false in all
trees, then over these classes of incomplete trees and queries,
QueryAnswering is coNP-hard. This follows from the
fact thatcertain(false, t) = true iff Rep(t) = ∅.

With both DTDs and markings, it is easy to write unsat-
isfiable queries (e.g.,r〈a〉, wherea cannot appear under the
root according to the DTD, or〈 lc → fc〉 without DTDs).
Hence, we have

Corollary 6.2. • There exists a DTD d and a query
q ∈ CQ(↓) such that QueryAnswering(q, d) is
coNP-complete over (↓, ‖)-incomplete trees.

• For the classes of (↓,→, ⋆, µ)- and (↓, ↓∗, ⋆, µ)-
incomplete trees (where ⋆ is either ‖ or →∗),
there exist queries q that use markings such that
QueryAnswering(q) is coNP-complete.

Thus, having DTDs, or markings in trees and queries, im-
mediately gives uscoNP-hardness of query answering. But
coNP-hardness can occur even without DTDs and markings.

Theorem 6.3. There is a query q ∈ CQ(↓,→) such that
QueryAnswering(q) is coNP-complete over (↓, ‖)-
incomplete trees.

We can also getcoNP-hardness for(↓, ↓∗, ‖, µ)-incomplete
trees without attributes and a fixedCQ(↓) query. But so far
these results do not say much about the transitive-closure
axes in incomplete trees. We now show that with↓∗ or →∗,
answering unions of conjunctive queries iscoNP-hard.

Theorem 6.4. • There is a query q ∈ UCQ(↓, ‖)
such that QueryAnswering(q) over (↓,→, ↓∗)-
incomplete trees is coNP-complete.

• There is a query q ∈ UCQ(↓,→,→∗) such
that QueryAnswering(q) over (↓,→,→∗)-
incomplete trees is coNP-complete.

• Both results hold for incomplete DOM-trees as
well.

In the presence of DTDs, we have cases ofcoNP-hard
query answering for very simple queries over incomplete
DOM-trees, as the following result shows.

Proposition 6.5. There exists a DTD d and a query q ∈
CQ(↓, ‖) such that QueryAnswering(q, d) is coNP-
complete for (↓, ↓∗, ‖)-incomplete DOM-trees.

6.3 Tractable case: rigid incomplete trees

So far, we have seen that the following features quickly
lead to the intractability of query answering for (unions of)
conjunctive queries:

1. DTDs; and

2. structural information: transitive-closure axes↓∗ and
→∗; union; and markings.

We now exclude these features and obtain a tractable class
with respect to query answering. That is, we restrict our-
selves to incomplete trees that have neither the transitive
closures of axes nor union‖ nor markings. We call them
rigid incomplete trees; they are defined by the grammar:

t := β〈f〉
f := ε | t → f

(3)

where node ids are all distinct variables, and markings are not
allowed in node descriptionsβ. This definition mimics (1)



except that node descriptions use variables instead of node
ids, and may have nulls as values of attributes and wildcard
as labels. Note that each rigid incomplete treet is consistent.

Our goal is to show that an analog of naı̈ve evaluation will
compute certain answers for unions of conjunctive queries
over such incomplete trees. We definenäıve-evaluation as
follows. First, each conjunctive queryq(x̄) = ∃ȳ tq(x̄, ȳ)
is turned into a usual relational conjunctive query by taking
reℓ(tq) and viewing it as a tableau for a query, wherex̄
are distinguished variables. We shall denote this query by
reℓ(q)x̄. We then consider the inputt, and transformreℓ(t)
into reℓ∗(t) by adding transitive closures ofE andNS.

Thennäıve eval(q, t) is the result of evaluating the rela-
tional conjunctive queryreℓ(q)x̄ on the relational database
reℓ∗(t) näıvely, and then dropping tuples with nulls. We re-
fer to the result asnäıve eval(q, t). This extends to unions of
conjunctive queries, simply by taking

⋃

i näıve eval(qi, t).

We illustrate this by an example. Suppose we have a query

q(x) = ∃y r(n0)〈ℓ(n1)[@a = x] →∗ (n2)[@b = y]〉

asking for values of the@a-attributes ofℓ-children of r-
nodes that have a younger sibling with the@b-attribute. In
the tableau, we shall have tuples(n0, n1) and(n0, n2) for E,
one tuple(n1, n2) for NS∗, noden0 is in Pr andn1 is in Pℓ,
and pairs(n1, x), (n2, y) are inA@a andA@b, resp. Since
x is the only distinguished variable, this tableau generatesa
relational conjunctive queryq′(x):

∃n0, n1, n2, y E(n0, n1) ∧ E(n0, n2) ∧ NS∗(n1, n2)∧
Pr(n0)∧Pℓ(n1)∧A@a(n1, x)∧A@b(n2, y).

Now suppose we have an incomplete tree

t = r〈ℓ[@a = 1] → ℓ[@a = u] → ℓ′[@b = v]〉

By introducing node variablesn′

0 for the root andn′

1, n
′

2, n
′

3

for three children of the root, we createreℓ(t), which has
pairs (n′

1, n
′

2) and (n′

2, n
′

3) in NS. By computingreℓ∗(t)
we put those pairs, as well as(n′

i, n
′

i) and(n′

1, n
′

3) in NS∗.
Evaluatingq′ näıvely overreℓ∗(t) yields{1, u}. Eliminating
null u, we conclude thatnäıve eval(q, t) = {1}. In this case,
it is easy to see that{1} is the set of certain answers. This
correspondence works for all rigid incomplete trees.

Theorem 6.6. Let t be a rigid incomplete tree, and q a
query from UCQ that does not use markings. Then

certain(q, t) = näıve eval(q, t).

In particular, evaluating no-marking queries over rigid
incomplete trees has DLOGSPACE data complexity.

Proof sketch. This follows from the observation that by
rigidity, node variables can be replaced by distinct node ids
without changing the semantics ofUCQ queries. This re-
placement ensures thatRep(reℓ(t)), under the closed world
assumption, only contains representation of trees. This re-
duces the problem of findingcertain(q, t) to the problem of
finding certain answers to relational unions of conjunctive
queries under the closed world assumption. This problem,
by [20], is solvable by the naı̈ve relational evaluation, which
could be seen to coincide withnäıve eval(q, t).

We have seen in Section 6.2 that the tractability of query an-
swering over the class of rigid trees does not withstand the ad-
ditions of union, descendant, younger-sibling, or markings.
It is also easy to construct examples showing that the naı̈ve
evaluation fails with these structural additions. For example,
considert = r〈a‖b〉 andq = r〈a →∗ b〉 ∪ r〈b →∗ a〉. We
know thatcertain(q, t) = true butnäıve eval(q, t) produces
false. To see why Theorem 6.6 restricts to queries without
markings, consider a Boolean queryr〈 fc〉 and t = r〈a〉.
Again näıve evaluation producesfalse but the query is true
with certainty.

6.4 Query answering: node ids make a difference

Theorem 6.6 applies toincomplete rigid DOM-trees (de-
fined just as rigid incomplete trees, except that node ids are
now all constants). This is because the rigid structure ensures
that every homomorphismh : reℓ(t) → T is one-to-one. We
saw that by adding union or descendant to rigid incomplete
trees, we getcoNP-hardness of query answering. But, simi-
larly to the cases of consistency and membership, we can find
classes of incomplete DOM-trees that have tractable query
evaluation while for the corresponding class of incomplete
trees, it iscoNP-hard. We do it by adding union to the class
of rigid incomplete trees.

Theorem 6.7. There is a class Q ⊆ CQ(↓,→, ‖) of
queries so that:

• For every query q ∈ Q, QueryAnswering(q)
over (↓,→, ‖)-incomplete DOM-trees can be solved
in PTIME.

• There is a query q ∈ Q such that
QueryAnswering(q) over (↓,→, ‖)-incomplete
trees is coNP-hard.

Note that thePTIME algorithm is not based on the naı̈ve
evaluation (in fact it is much more complicated, even for very
simple queries). To see why, consider an incomplete DOM-
treet = r(i0)〈a(i1)‖a(i2)〉 and a queryq = r〈 → 〉. Since
i1 6= i2, we know thatr has at least two children, and thus
certain(q, t) =true, but the näıve evaluation returns false.
Similarly, if t′ = r(i0)〈(a(i1) → b(i2))‖(a(i3) → b(i4))〉,
then for the queryq′ = r〈b → → 〉, the certain answers are
true, but the näıve evaluation returns false. Note that this is
caused by node ids,and the knowledge that nodes are distinct:
if we replace node ids fromt andt′ with variables, then both
certain(q, t) andcertain(q′, t′) would become false.

7. Overview of tractability restrictions

We now summarize what we have learned about various
models of incompleteness in XML. The key parameters were:

1. the presence of schema information;

2. the presence of markings in node descriptions;

3. structural information (i.e.,↓, ↓∗,→,→∗ and‖); and

4. the presence of node ids.



We have seen that the presence of DTDs, and the presence of
markings, makes everything significantly more complicated.
Even the simplest cases of consistency and query answering
become intractable with DTDs and with markings. So it
is natural to suggest that key computational problems for
XML with incomplete information be considered without
restriction to specific schema information.

The lack of complete structural information is another big
obstacle to tractability. Introducing structural uncertainty
such as transitive-closure axes and union quickly leads to
intractability of both consistency and query answering (The-
orems 5.2, 6.3, and 6.4). This happens even for unions of
conjunctive queries – the class that is well-behaved with re-
spect to incomplete relational databases.

To achieve tractable query answering over documents with
nulls, one needs to restrict not only the class of queries to
unions of conjunctive queries but also the class of structural
document descriptions so that a portion of a tree is fully
described with the child and next-sibling relations. These
are rigid incomplete trees: incompleteness only occurs in
attribute values and labelings. Then an analog of relational
näıve evaluation finds certain answers.

8. Future work

There are several possible directions. First, we have only
looked at models based on the open world assumption. In
the relational case, both open and closed world assumptions
(OWA and CWA) are considered, and in many cases the
behavior under the CWA is quite different [28]. Many results
presented here work for both OWA and CWA but not all.
And some existing models (e.g., [3]), fall between CWA
and OWA. We also would like to look at analogs of more
expressive representations, such as conditional tables [4, 20]
or relational representation techniques such as those in [24]
to overcome intractability.

Our understanding of models with node ids is not as com-
plete as our understanding of models without ids. And yet
this is a fascinating class, because we saw that tractability
boundaries can be pushed much further for it.

We would like to address a number of traditional issues re-
lated to incomplete information in the context. One example
is constraints over documents with incomplete information.
It is expected that in the most general form query answering
and consistency analysis will be undecidable (cf. [5, 10]) but
one should expect to find reasonable restrictions for decid-
ability and tractability. Another example is using incomplete
information in data integration and exchange tasks.
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