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ABSTRACT 1. Introduction

Relational schema mappings have been extensively studied
in connection with data integration and exchange problems,
but mappings between XML schemas have not received the
same amount of attention. Our goal is to develop a the-
ory of expressive XML schema mappings. Such mappings
should be able to use various forms of navigation in a doc-
ument, and specify conditions on data values. We develop
a language for XML schema mappings, and concentrate on
three types of problems: static analysis of mappings, their
complexity, and their composition. We look at static anal-

ysis problems related to various flavors of consistency: for

The study of mappings between schemas has been an ac-
tive research subject over the past few years. Understgndin
such mappings is essential for data integration and data ex-
change tasks as well as for peer-to-peer data management.
All ETL (extract-transform-load) tools come with language

for specifying mappings. We have a very good understand-
ing of mappings between relational schemas (see, e.g., re-
cent SIGMOD and PODS keynotes on the subject [9, 23]);
several advanced prototypes for specifying and managing
mappings have been developed and incorporated into com-

example, whether it is possible to map some document Ofmerual systems [29, 32]' The_re are techniques for using
a source schema into a document of the target schema, o uch mappings in data integration and exchange, and tools

whether all documents of a source schema can be mapped " handling mappings themselves, for example, for defining
We classify the complexity of these problems. We then move various operations on them 8, 9, 14, 17, 23, 27, 31].

to the complexity of mappings themselves, i.e., recoggizin - But much less is known about mappings between XML
pairs of documents such that one can be mapped into theschemas. While commercial ETL tools often claim to
other, and provide a classification based on sets of featuresprovide support for XML schema mappings, this is typi-
used in mappings. Finally we look at composition of XML  cally done either via relational translations, or by meais o
schema mappings. We study its complexity and show that yery simple mappings that establish connections between at
it is harder to achieve closure under composition for XML  tributes in two schemas. Transformation languages of such
than for relational mappings. Nevertheless, we find a robusttgols tend to concentrate on manipulating values rather tha
class of XML schema mappings that have good complexity changing structure. Inresearch literature, most XML sclhem

properties and are closed under composition. mappings are obtained by various matching tools (see, e.g.,
[28, 30]) and thus are quite simple from the point of view
Categories and Subject Descriptors. H.2.5 [Database of their transformational power. More complex mappings
Management]: Heterogeneous Database®eata trans- were used in the study of information preservation in map-
lation; H.2.1 [Database Management]: Logical De- pings, either in XML-to-relational translations (e.gJ])[6r in
sign; F.1.1 Computation by abstract devices]: XML-to-XML mappings, where simple navigational queries
Models of Computation-Automata were used in addition to relationships between attribdt@} [
One extra step was made in [4] which studied extensions of
General Terms. Theory, Languages, Algorithms relational data exchange techniques to XML, and introduced

XML schema mappings that could use not only navigational
queries but also simple tree patterns binding severabatéi
values at once. But even the mappings of [4] cannot reason
about the full structure of XML documents: for example,
they completely disregard horizontal navigation and do not
allow even the simplest joins, something that relationgbma

Keywords. schemas, mappings, XML, consistency, com-
position, complexity
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sic properties of such mappings, including their compigexit
static analysis questions related to them, as well as apesat
on XML schema mappings.

To understand the set of features that need to be modele
in XML schema mappings, consider two schemas, given by

the DTDs below. The first DTOD; describes a set of pro-
fessors and their teaching and supervision duties. Tegchin

is organized by year; each year two courses are taught. Fo

supervision duties, students are listed. The ruleBpére:

r
prof
teach
year
supervise

prof*

teach, supervise
year

course, course
student”

Element typesourse and student have no subelements.
We assume thaprof, student, year, and course have one
attribute each (name or id for professors and studentsseour
number for courses).

Now suppose that data stored accordin@toneeds to be
restructured according to the DT, that describes courses
and students at a university:

course*, student”
taughtby
supervisor

T —
course —
student —

Here we assume thatughtby and supervisor have no

subelements but they have one attribute each (for teacter an

supervisor names}tudent as before has one attribute, and
course has two, for course number and year.

Simple attribute-to-attribute mappings can establisihezor
spondence between professordipand values ofaughtby
attributes inD,, for example. But for more complex relation-
ships (e.g., if aD;-document says that professoteaches
coursec, then aD,-document should say coursdiasz as
the value oftaughtby), we need to define structural corre-

spondences between DTDs that simple mappings betwee

attributes (or even paths, as in [19]) cannot express.

A proposal made in the study of XML data exchange [4]
was to use the standard notiontefe patternsin a way that
allows us to collect attribute values. For example, we can
specify the following mapping betwedp, andD-:

prof (z) r

supervise

ourse
student (s) {

) (o) ™

taughtby taughtby supervisor

(z (z) (z)

It shows how to restructure information about professors
and their teaching and supervision duties uridgrNote that

N
course
(cn2)

r

Even though the constraints used in mappings of [4] are
more expressive than attribute correspondences and even
path-based constraints, they are still quite limited: for e

mple, unlike relational mapping constraints, they cannot
ake any joins over the source document. In fact, they can-
not even test attribute values for equality. For example, th
following constraint, that does not replicate a course & th
target if the same course was taught by a professor twice, is
not allowed in existing XML mapping formalisms:

prof (x) r

teach

year (y)

supervise

ourse
student (s) &”, Y)

st%ijent
¢

C(O%jge supervisor
(z)

Another missing feature in existing formalisms is the hori-
zontal navigation. Suppose we know that a professor teaches
two different courses. In a source document, they come in
a certain order (which may correspond, for example, to the
order in which they were taught, or just an order of their
numbers). It is reasonable to expect the document obtained
as the result of the mapping not to reverse this order. That
is, if professorr teaches:n; andcny and they come in this
order, then in the document that conformsg the course

c¢ny should appear aftem; (shown by the—— edge below):
prof (x) r

—
cours

cn) taughtby
(2)

teach supervise
{oume (course st%d)ent
year (y) student (s) eny,y)  (cnz,y) s
—
course. course )
cng cng) taughtby taughtby supervisor
em # enz @ @ (@

Note that this mapping uses two new features: an inequal-
ity comparison ¢n; # cng) and horizontal navigation in
both sides of the constraint.

Our goal is to study general and flexible XML schema

r{11appings that have a variety of features shown above. We

address the following three problems.

1. Static analysis of schema mappings. We illustrate

the problems we consider here by an example. Suppose the
DTD D, changes ta- — courses, students; courses —
course*; students — student”. Then the mapping given

in the example in the first figure is inconsistent: it attempts
to makecourse nodes children of the root, while they must
be grandchildren. In fact no source tree can be mapped
into any target tree. We obviously want to disallow such
mappings, so we study the issue of consistency: whether the
mapping applies to at least one source tree. This problem
was addressed in [4] but only for simple mappings; here
we analyze it for expressive mappings that use all forms of
navigation and joins.

some nodes of tree patterns carry variables. The semafticso An even more appealing notion of consistency is that

such a mappingis thatif we have a documigttiat conforms

to D; and a match for the pattern on the left, then we collect
valuesz, y, s, cny, cng from that match, and put them in a
document that conforms tD,, structured according to the
pattern on the right.

ery source tree can be mapped into some target tree. This
problem has never been addressed previously. In the rela-
tional settings, all mappings without target constraints a

such, but in the case of XML one can easily generate exam-
ples of mappings that apply to some trees but not to all. The



problem — which we calbbsolute consistency — turns out writes them as productions — ¢ if Pp(¢) = e), and a
to be much harder than the first version of consistency, andmappingdp : I' — 24% that assigns a (possibly empty) set
we provide solutions in several common cases. of attributes to each element type. We always assume, for

3 £ . look at th notational convenience, that attributes come in some prder
2. Complexity of schema mappings. We look at the just like in the relational case: attributes in tuples come i

. : )
problem of recognizing pairs of tre€¥, 7") such thafl” can some order so we can writB(ar, . .., ay). Likewise, we

be mapped int@” by a given mapping. There are two flavors - g describe arf-labeled tree node with attributes as
of the problem: for data complexity, the mapping is fixed, Uar, ... an).

for combined complexity, it is a part of the input.
.. ) . AtreeT conforms to a DTDD (written asT’ = D) if its
3. Composition of schema mappings. COMpOSition  4q4 is Jabeled-, the set of attributes for a node labeleis

is a crucial operation for modeling schema evolution, and is Ap(f), and the labels of the children of such a node, read
the most studied operation on relational schema mappings-left-to-’right form a string in the language & (¢). '
Key questions addressed in the relational case are the com- '

plexity of composition (which is known to be higher than We shall also refer to a class oésted-relational DTDs;

the complexity of the commonly considered mappings) and as the name suggests, they generalize nested relations. In
closure under composition. The latter is normally achieved such DTDs, all productions are of the forn— ¢; ... 7,,,

in the relational case by adding Skolem functions[17]. ad  yhere ally,’s are distinct labels frorftand?; is eithert; or ¢*

dition to studying the complexity of composition, we show or ¢+ or¢;? = ¢;|=. Moreover, such DTDs are not recur;ive,

that closure is much harder to achieve for XML schema : :
mappings. In fact we identify the set of features that make Lheé’étgefg:aeggﬁnp\’rv:ézg%i %lgsagoacnygli%e betweand all

it impossible to achieve closure under composition without
going beyond what is normally considered in relational map-  Such DTDs are very common in practice (some empiri-
pings. We then find a robust class of XML schema mappings cal studies suggest that they cover about 70% of real-world
that are closed under composition. These are very close toDTDs [10]) and it is known that many computational prob-
non-relational mappings of the Clio tool [32] extended with lems become easier for them [1, 3, 4].

Skolem functions.

Organization. Notations are given in Section 2. The Relational schema mappings. We review the stan-
schema mapping language is described in Section 3. Basicdard definitions of relational schema mappings, see [9, 16,
computational problems related to mappings are addressed3]. Given two disjoint relational schemas(source) and

in Section 4. Static analysis problems are studied in Sestio T (target), asource-to-target dependency (std) is an ex-

5 (consistency) and 6 (absolute consistency). ConsistencyPression of the formp,(z,y) — :(z,z), wherep; is a
and complexity of composition are studied in Section 7, and conjunction of atoms ove3 andy; is a conjunction of atoms

closure under composition in Section 8. Concluding remarks overT. If we have a source schema instaritand a target
are given in Section 9. schema instanc€, we say that they satisfy the above std if

(S,T) | Vavy (ps(T,5) — 32 (T, 2)). Thatis, we
assume that new variables on the right are quantified exis-

2. Preliminaries tentially, and the others are quantified universally. We als
omit quantifiers from our shorthand notation. Intuitively,
XML documents and DTDs. We view XML docu- new variableg correspond to new values put in the target:

every timep;(Z,y) is satisfied, new tuples are put in the

ments over a labeling alphaleof el tt and a set .
gap crement types target to satisfy/:(z, z) for somez.

of attributesAit as structures
T = (U, |, —, lab, (pa)a ’ A schema mapping is @ triple/\/l.: (S,T,%) WhereS

(U1, =, lab, (pa)ecan) and T are source and target relational schemas¥and a

where set of stds. We defingM] as the set of all pairs, T of
source and target instances that satisfy every std #orif

e U is an unranked tree domain (a finite prefix-closed (S,T) € [M], one says thdt' is asolution for S underM.

subset ofN* such tha. - i € U impliesn - j € U for Sometimes one also addsrget constraints ¥; to the

all j < ; i ) mapping; then fo(S, T') € [M] we in addition require that
e the binary relationg and— are child ¢ | n-i) and 7 satisfys,. In such a case solutions may not exist and it is
nextsibling ¢ - i — n - (i + 1)); natural to ask whether solutions exist for some instante, al
e [ab: U — T is the labeling function; and instances, or a specific instangeThese are essentially vari-

ous flavors of the consistency problem for schema mappings;
in their most general form, they are undecidable, but foresom
important classes of relational constraints their comiplex

is well understood [24].

e eachp, is a partial function frontU to V, the domain
of attribute values, that gives the values:dbr all the
nodes inU where it is defined.

A DTD D overI' with a distinguished symbal (for the One of the main goals in the study of relational schema
root) and a set of attributedtt consists of a mappingp mappings is to define various operations on them. Typi-
from T to regular expressions ove€r— {r} (one typically cally these operations correspond to changes that occur in



schemas, i.e., they model schema evolution. The two most r[course(cny, y)[taughtby(x)],
important and studied operations ar@nposition and in- course(cna, y)[taughtby(z)],
verse. While there is still no universally agreed definition student(s)[supervisor(z)])

of an inverse of a mapping [5, 18], the notion of compo- . . .
sition is much better understood [8, 14, 17]. If we have _But neither the second nor the third mapping from the

M = (S,T,%) and M’ = (T, W,3), the composition Introduction can be expressed in this syntax as they reuse
is defined as the relational cémpbsitiW]} o [M]. A variables and make use of horizontal navigation, and both

key question then is whether we can have a new mapping,a"€ Prohibited by (1).
M o M’ betweenS and W, so that[M o M'] captures
exactly the compositiofM] o [M’]. A positive answer
was provided in [17] for mappings that introduced Skolem
functions, i.e., rules likeos(z) — v ((fi(z:)):) where the
fi’s are Skolem functions ang;’s are subtuples of. For As suggested by our examples (and even translations from
example R(x1,x9) — T(x1, f(z2)) saysthatforeach tuple  relational schema mappings to XML), it is natural to con-
(x1,27) in the source, a tuple containing and a nullneeds  sider both equality/inequality comparisons and additiona
to be put in the target, but the null value should be the sameaxes (next- and following-sibling) in schema mappings. We
for all tuples with the same value of. now modify patterns (1) to accommodate these additions.
Adding equality is the easiest: we just allow variable rense

Child-based schema mappings. The key idea of patterns. For next- and following-sibling axes, in the defin

XML schema mappings defined in [4] was to extend the re- tion of lists of subtrees we replace occurrences of singkestr
lational framework by viewing XML trees as databases over by sequences Spec'fY!”g precise next- and followingssipli
two sorts of objects: tree nodes, and data values. Relationgelat'onSh'p' Ineqyalmes will not _be adde(_j to patteraher
in such representationsinclude edges in the tree andmedati  they Will be specified separately in mappings.
associating attribute values with nodes. In [4], two restri Extended patterns will be given by the grammar:

tions were made. First, only child and descendantedges were

considered (essentially it dealt only with unordered tyeAs

3. Schema mapping language

second restriction was that no joins on data values were al- o= (T[N patterns
lowed over the source. A= oelpl TN lists (2)
— *
In the case of relational mappings, joins are very common. p = m|m—p|m "y sequences

For example, an std like& (z,y) A Sa(y,2) — T(x,z2) . )
computes a join of two source relations by means of reusing 1he main difference from (1) is that we replacedy .
the variabley. In the setting of [4] this was disallowed. (sequence) in the definition of andy. specifies a sequence
of patterns together with their horizontal relationships.

To avoid the syntactically unpleasant formalism of two- , .
sorted structures, [4] formalized schema mappings by means AS an example, we consider the last mapping from the
of tree patterns with variables for attribute values. Naates ~ ntroduction. We now express both left- and right-handside
described by formulaé(z), where is either a label or the ~ in our syntax. The left-hand side (z, y, cni, cna, ) is

wildcard_, andz is a tuple of variables corresponding to the rprof(z) [teach[year(y)[course(cny) —
attributes of the node. Patterns are given by: course(cns)]], (3)
T = (T[N patterns 0 supervise[student(s)]]]
A= elm|ffm AN lists The right-hand side, (z, 1, cn1, cng, s) is
That is, a tree pattern is given by its root node and a listing rlcourse(cny, y)[taughtby(z)] —*
of its subtrees. A subtree can be rooted at a child of the root course(cny, y)[taughtby(z)), (4)
(corresponding ter in the definition of)), or its descendant student(s)|supervisor(z)]]

(corresponding tg/m). We shall also abbreviatéz)[¢] to . , )
just £(z). We write 7(z) to indicate thatz is the list of The formal semantics of patterns is defined by means of the

variables used imr. relation(T’, s) = w(a), saying thatr(z) is satisfied in a node
s of a treeT” when its variableg are interpreted ag. It is
For instance, the source pattern in the first example in the defined inductively below.
Introduction can be expressedasz, y, cni, cna, s):

prof(x)[teach[year(y)|course(cny), course(cns)]], ° (T7_s) = (a) iff s is labeled? anda is the tuple of
supervise[student(s)]] attributes ofs.

Schema mappings were defined in [4] by means of con- ¢ g:jg ):'Zﬁ(g)(ag\_l’)\ﬂ it (T,s) = Ha)lA] and

straintsm (Z,y) — m=2(Z, z) so that no variable front, § B ) B . )
appears int; more than once. For example, the mapping  ® @75) F {(a)[u] iff (/T, s) = {(a) and there is a child
from the Introduction can be expressed in this formalism. s’ of s such thal(T’, s') = p.

The target pattermrs(z, y, cn1, cna, s), which permits the o (T,s) = L(a)[//=] iff (T,s) = ¢(a) and there is a
reuse of variables, is: descendard’ of s such tha(T, s’) = .



o (T,s) Em— piff (T,s) Emand(T,s') = uwhere can be represented as DTDy and Dr: for example, for

s— . S = {S1(4, B),S2(C, D)}, the DTD Dg has rulesr —
o (T,s) = m —* piff (T,s) = mand(T,s') | u for s1,82; s1 — t]; so — th, as well asty,to — ¢, with ¢;
some following siblings’ of s. having attributesd, B, andt, having attribute<”, D. Then

each conjunctive query over a schema is easily translated
into a pattern over the corresponding DTD together with
some equality constraints. For exampe(z, y), Sa(y, 2)

will be translated into

For atre€l’ and a patterm, we writeT | = (a) iff (T,r) =
m(a), that is, patterns are witnessed at the root. This is not a
restriction since we have descendghin the language, and
can thus express satisfaction of a pattern in an arbitrade no rls1[t1(z, y1)], s2[t2(y2, 2)]], ¥1 = ya-

of atree. We also denote the sét| T |= «(a)} by «(T). Of course equalities can be incorporated into the pattesn (i

To define source-to-target dependencies for schema mapdy r[s1[t1(z, y)], s2[t2(y, )]]) but as we said, we often pre-
pings, we also add explicit data value comparisons. When fer to list them separately to make classification of différe
we write a— (), we mean a formula which is a conjunction types of schema mappings easier. Note also that these pat-
of equalities among variables Likewise,a.. () stands for terns use neither the descendant relation nor the horizonta

a conjunction of inequalities anel () for a conjunction ~ havigation nor inequalities.

of equalities and inequalities. We shall also use abbreviatiofs) /¢ (i) for £(z)[¢'(7)]
Definition 3.1. Source-to-target dependencies (abbrevi- and{(z)//¢ () for (z)[//¢ (7).
ated as stds) are expressions of the form

m(Z,5), - £(2,7) — W/(j,z)’a;_;é(j’g)’ Classification of schema mappings

where ™ and 7' are patterns such that each variable ap- Source-to-target dependencies used in schema mappings can
pears in m exactly once. use four different axes for tree navigation — child, desesnd

Given trees T and T', we say that they satisfy the next and following sibling —as well as equality and inequyalli
above stds if for every tuples of values a,b such that i
T E n(a,b) and a=x(a,b) is true, it is the case that We denote classes of schema mappingSklyo), where
there exists a tuple of values ¢ so that T' = 7'(a, ¢) and o is a signature indicating which axes anq comparisons are
ol 75(&, ¢) is true. present in stds. We refer to the usual navigational axgs as

(child), |* (descendant),~ (next-sibling),—* (following-
sibling). Having= in ¢ means that we can use formulae
in = is only important for our classification, as we would =@~ in stds (and reuse variables on both sides); having
like to look at cases with no equality comparisons between # in o means that we can use formulag, O‘;é’/and_ having
attribute values over the source (such as in [4]). With Poth=andz means thatwe can use- » anda , in stds.
equality formulae, this is not a restriction at all: for ex-
ample, an std-(x,2) — r/(x,xz) can be represented as
r(z,2'),z =2 — r'(z,2’). For fragments where equality
is allowed we shall just reuse variables.

The restriction that each variable appear exactly once

To simplify notations, we use abbreviations:

e | for {[, |*} (vertical navigation);

e = for {—, —*} (horizontal navigation);
The third example of a mapping from the Introductioncan o  for {=, £} (data value comparisons).
now be expressed as

m3(2,y, ey, ena, ), eny # cng — (T, y, ey, ena, s), Under these notation§M({}) is the precisely the class of
i mappings studied in [4] (as in [4], we do not restrict vari-
wherems andm, are given by (3) and (4). able reuse in target patterns). In this paper we shall look

gat other classes, includir§M({, =), SM({}, ~), and the
largest clasSM({}, =, ~). In a few cases we shall provide
more specific information about signatures; then we adopt

Now we can define the notions of schema mappings an
their semantics.

Definition 3.2. An XML schema mapping is a triple the convention that the child ax|sis always present.
M = (D, D, X)), where Dy is the source DTD, Dy is . . .
the target DTD, and ¥ is a set of stds. We also writeSM° (o) for mappings where stds i do
Given a tree T that conforms to Dy and a tree T' that not mention attribute values, i.e., where all pattern fdapu
conforms to Dy, we say that T' is a solution for T under are of the form[)]. These will be useful for establishing
M if (T, T') satisfy all the stds from £. We denote the hardness results, telling us that structural propertieseal
set of all solutions under M for T by SOLMm(T). make certain problems infeasible.
The semantics of M is defined as a binary relation
Ml = L | TEDs T'E D 4. Basic properties of mappings
[M] = (T, T) T’ is a solution for T under M (°

We first look at some basic properties related to satisfiabil-
These mappings naturally generalize the usual relationality of patterns, the complexity of their evaluation, as v
mappings. If we have relational schenfsand T, they the data and combined complexity of schema mappings.



The first problem is the satisfiability for tree patterns. Its i.e., no tree has a solution. The problem of recognizing such
input consists of a DTD and a pattermr(z); the problem mappings irSM({}) was shown to bEXPTIME-complete
is to check whether there is a trdeéthat conforms toD [4]. In addition to consistent mappings, in whichme
and has a match for (i.e., 7(T) # (). This problem is trees have solutions, we would like to consider mappings in
NP-complete; the result is essentially folklore as it appdare which every tree has a solution. These are very desirable
in many incarnations in the literature on tree patterns and for a variety of reasons: not only are we guaranteed to have
XPath satisfiability (see, e.g., [2, 7, 13, 22]). For the salkke = possible target documents for every possible source, but th
completeness, we state the result that applies to patterns i property is also preserved when we compose mappings.

th th defined here.
© way they are detined here We start by analyzing consistency. We say that a mapping

Lemma 4.1 The satisfiability problem for tree patterns is consistent if [M] # 0; thatis, ifSoL(T') # () for some
in NP-complete. T E D,. The main problem we consider is the following:

We next look at data and combined complexity of evaluat-
ing tree patterns. For data complexity, we fix a patterand ProBEM: CoONS(0)
we want to check for a given trég and a tuplez whether INPUT: A mappingM = (Ds, Dy, X)) € SM(o)
T = 7w(a). For combined complexity, the question is the | QuEesTiON: Is M consistent?
same, but the input includgs a andr.

Since patterns are essentially conjunctive queries over If we useSM° (o) instead ofSM(o) (i.e., if we use map-
trees, the data complexity is IDLOGSPACE (and the pings in which attribute values are not mentioned at all), we
bound cannot be lowered in general, since transitive clo- denote the consistency problem Gyns°® (o).
sures of| and— may have to be computed). And since .
they are nicely structured conjunctive queries, the coetbin  FaCt 5.1 (see [4]) Both Cons({) and Cons®(l}) are

complexity is tractable as well. More precisely, we have: ~ EXPTIME-complete. If we restrict to nested-relational
DTDs in schema mappings, then CONs({}) is solvable

Proposition 4.2 The data complexity of evaluating tree in polynomial (cubic) time.
patterns is DLOGSPACE-complete, and the combined
complezity is in PTIME. Recall that nested-relational DTDs_have rules of the form

¢ — 0y ... ¢, for distinct?;’s, wherel; is ¢; or ¢;7 or £} or
We next move to the complexity of schema mappings and o

again consider two flavors of it. ] )
Ouir first result shows that in the absence of data compar-

e Data complexity of schema mappings. For a fixed isons, the complexity stays the same.

mapping M, check, for two treesl’,T’, whether  Theorem 5.2 The problem CoNs({,=) is solvable in

(T,7T") € [M]. EXPTIME (and thus it is EXPTIME-complete).

e Combined complexity of schema mappings. Check, o _ )
for two treesT, T’ and a mappingM, whether The key observation is that without data comparisons,
(T, T") € [M]. Cons({},=) is no harder tharCons®({},=>), which can

be solved by tree automata techniques (more precisely, by

The data complexity remains low; the combined complex- non-emptiness of a product of tree automata).

ity jumps to the second level of the polynomial hierarchy,  Unlike the case of mapping8({}) with downward navi-
but the parameter that makes it jump there is the number ofgation only, once we add even the simplest form of horizontal
variables in stds. If we fix that number, even the combined navigation (), we cannot have tractable consistency check-

complexity is tractable. More precisely, we have: ing even over nested-relational DTDs:
Theorem 4.3 e The data complexity of schema Proposition 5.3 Cons({},—) over mnested relational
mappings is DLOGSPACE-complete. DTDs is PSPACE-hard.
e The combined complexity of schema mappings is )
15 -complete. We now move to classes of schema mappings that allow
' . . ' comparisons of attribute values. It is common to lose de-
e The combined complevity of schema mappings is cidability (or low complexity solutions) of static analgsi
in PTIME if the mazimum number of variables problems once data values and their comparisons are con-
per paltern is fized. sidered [11, 13, 15, 20, 33]. Here we witness a similar

situation. The proofs, however, cannot be simple adapta-
tions of existing proofs which showed undecidability ofsuc
formalisms a§'O® [11] or Boolean combinations of patterns
with data value comparisons [15], or implication of conjunc
As we already mentioned, XML schema mappings may tive queries over trees [13]. The reason is the very “pasitiv
be inconsistent: there are mappingg$ so thatfM] = 0, and “tree-shaped” nature of stds in schema mappings: the

5. Consistency of schema mappings



use of negation is limited to the implication in stds (unlike

Here we settle the problem of absolute consistency in the

[11, 15]) nor can node variables be used in the patterns as incase of downward navigation, i.&ABSCONS({}).

[13].

Nevertheless, we can prove a very strong undecidability
result: having either descendant or next-sibling, togethe
with either= or #, leads to undecidability of consistency.

Theorem 5.4 The following problems are undecidable:
Cons(l*,=);
Cons(l*, #);
Cons(—, =);
CONS(—, #).

In particular, CONS({}, =, ~) is undecidable.

This result raises the question whether there is any use-

ful decidable restriction o6M({}, =, ~). We know from
papers such as [11, 20] that getting decidability results fo
static analysis problems that involve data values is a very
nontrivial problem. This time, nested-relational DTDsegiv
us a decidable restriction, if there are no horizontal axes.

Theorem 5.5 Under the restriction to nested-relational
DTDs:

e the problem CONs({}, ~) is NEXPTIME-complete;
e the problem CoONS({}, =, ~) is undecidable.

6. Absolute consistency of schema mappings

We now switch to a stronger notion of consistency. Recall
that a mapping is consistent3br ¢ (T') # 0 for someT” =
D,. We say that\ is absolutely consistentif SOLy(T') #
() for all T = Ds. We consider the problem:

PROBEM: ABSCONS(0)
INpUT:  MappingM = (D, Dy, X)) € SM(0)
QUESTION: Is M absolutely consistent?

Reasoning about the complexity of absolute consistency
is significantly harder than reasoning about the consigtenc
problem. We know thatCons({}) can be easily reduced
to Cons®({}). However, eliminating data values does not
work for absolute consistency. Indeed, consider a mapping
with the source DTDr — a*; a — ¢ and the target DTD
r — a; a — ¢, with a having a single attribute. Let the std
ber/a(x) — r/a(z). This mappingM is not absolutely
consistent: take, for example, a source tree with two difier
values of the attribute. But strippinggt of data values,
i.e., replacing the std by/a — r/a, makes it absolutely
consistent.

We start with a simpler case éfssCons°({}), i.e., check-
ing absolute consistency of mappiny$® in which all refer-
ences to attribute values have been removed. We show that it
has lower complexity thafons®({}). For such mappings,
¥ is of the form{m; — =/};c;, where patterns have no vari-
ables. To check consistency of such a mapping, we need
to check whether there exists a setC I so thatD; and
all ther’, j € J are satisfiable, whild, together with the
negations of m, k & J, are satisfiable. We know that this
problem isEXPTIME-complete [4]. On the other hand, for
checking absolute consistency, we need to verify that there
does not exist/ C I so thatD, andn;,j € J, are satis-
fiable butD; andw;-,j e J, are not. Notice that absolute
consistency eliminates the need for checking satisfigbilit
of negations of patterns. In fact, since satisfiability of-pa
terns and DTDs is iflNP, the above shows that absolute
consistency of mapping41° falls into the 2nd level of the
polynomial hierarchy. We can be more precise:

Proposition 6.1 Checking whether M° s absolutely
consistent s Hg—complete.

The mainresult proves decidability of absolute consistenc
for schema mappings based on downward navigation:

Theorem 6.2 ABSCONS({) is decidable. In fact the
problem is in EXPSPACE and NEXPTIME-hard.

The proof of the result is quite involved and is based on an
analysis of a data structure that counts possible numbers of
occurrences of attribute values. Also, it appears to betoard
close the gap betwediXPSPACE andNEXPTIME. But
the gapis notlarge: Theorem 6.2 indicates that any algarith
for solving ABsCons({) will run in double-exponential
time, and hence will be impractical unless restrictionsrare
posed. Restrictions to nested-relational DTDs often wabrke
for us, but in this case they alone do not suffice, as we shall
see shortly. In addition to nested relational DTDs, we shall
need a restriction tgully-specified stds, introduced in [4]
to obtain tractable algorithms for query answering in data
exchange. Patterns for fully-specified stds are given by the
grammar:

((z)[A,
elmAA

T where ¢ € L

A

(5)

In other words, (5) disallows wildcard and descendant com-
pared to (1).

The combination of nested-relational DTDs and fully spec-
ified stds gives us tractability, but if we relax these restri
tions, the complexity goes back MEXPTIME-hardness:

Theorem 6.3 Over nested relational DTDs and fully

Thus, we cannot use purely automata-theoretic techniquesspecified stds, the problem ABSCONS({}) is solvable

for reasoning about absolute consistency, even for dowshwar
navigation. Infact, the above example indicates that teawea

in PTIME. However, for nested relational DTDs and
stds that extend fully specified ones by adding either

about absolute consistency even in that case, we need tahe wildcard or the descendant, the problem becomes

reason about counts of occurrences of different data values

NEXPTIME-hard.



Cons({}) Cons({},=) Cons({},~) | Cons({},=,~) ABsCons({})
arbitrary EXPTIME-complete] EXPTIME-complete | undecidable undecidable in EXPSPACE;

DTDs NEXPTIME-hard
nested relational PTIME PSPACE-hard NEXPTIME- undecidable | PTIME, with fully
DTDs (even forCons({}, —)) complete specified stds

Figure 1: Summary of consistency results

An abridged summary of the complexity results related to PrROBEM: CoNsCoMP(o)
the consistency problem is given in Fig. 1. INPUT: Two consistent mappings
M, M’ € SM(o)
QUESTION: Is the composition ofM and
7. Composition: consistency and complexity M’ consistent?

We now look at the most commonly studied operation  Itturns out that the complexity of this problem is the same
on schema mappings: their composition. The definition of as the complexity o€ons().
the composition is exactly the same as in the relational caser
[17], since[ M] is defined as a binary relation. We define the
c/?/rlrllposir:ion m;two mappings1 and M’ simply as[M] 3 o EXPTIME-complete for o = {{} or {{,=1}.

. Thatis, for two mappin 12 = (D1, Do, ¥12) an . _ _

E\/l%]] = (Ds, D3, Xa3), thgﬁ c%?n/lpositi(()n consists ())f pairs o undecidable for o = {{,~} or o ={=,~}.
of trees(7T71, T3) such that:

heorem 7.1 The complezity of CONSCOMP(0) is:

The decidability result carries over to an arbitrary number
of mappings. We can define composition of an arbitrary num-
1. Ty = Dy andTs |= Ds; and ber of mappings\, . .., M,, simply as the composition of
2. there exists, = D, such that(T}, T,) satisfy ¥, binary relationg M;]’s.

and(T, Ts) satisfyX;. Proposition 7.2 The problem of checking whether

. . the composition of n mappings My,..., M, from
We consider the following problems: SM({,=) is consistent is solvable in EXPTIME.

e Consistency of composition: [$\115] o[ Ma23] empty? 7.2 Complexity of composition
e Complexity of composition; and

o Syntactic definability of composition: can we find a , BY analogy with the complexity of schema mappings, we
mappingM,s = (D1, D3, $13) such that]Ms] = define data and combined complexity of composition:
e Data complexity of composition. For fixed mappings
! !

The last two problems have been studied in the relational /\; %l;ld/\/l/{/lcheck/,l/for two treed” andT", whether
case; the first problem is motivated by the consistency prob- (T, 17) € [M] o [M].
lem for XML schema mappings themselves. We study the ~ ® Combined complexity of composition. Check, for
first two problems in this section, and syntactic definapilit two mappingsM and M’ and two trees" and 77,
of composition in Section 8. whether(T, T") € [M] o [M'].

Data complexity of relational composition is known to
be in NP, and could beNP-complete for some mappings
. . , [17]. For XML mappings, the problem becomes undecidable
_ We say th?t the composition ¢ét and M" is consistent once data value comparisons are allowed. Without such
if [M] o [M]#0. comparisons, it is decidable: the data complexity goefia lit

There are two flavors of the consistency of composition Pit up comparedto the relational case, and we have the usual
problem. One is simply to check whether the composition €xPonential gap between data and combined complexity.

of two given mappings is consistent. This is not very dif- Theorem 7.3 o For mappings from SM({, =), the
ferent from the usual consistency problem: by composing a combined complezity of composition ;S Z;l 9.

mapping with a trivial one (e.g., sending the source root to EXPTIME and NEXPTIME-hard. and the data
the target root) we can use consistency of composition to tes complexzity of composition is EXPfIME—complete.

consistency of the mapping itself.
y pping e For mappings from both SM({},~) and SM(=, ~),
A more interesting version of consistency is when we know the combined complexity of composition is unde-
that both inputs themselves are consistent: cidable.

7.1 Consistency of composition



By saying that the data complexity iEXPTIME-
complete we mean that it is alwaysiXKPTIME, and there
exist mappings\, M’ such that checking whether the input
trees(T, T") belong to[ M] o [M'] is EXPTIME-hard.

Fig. 2 presents a summary of complexity results. By
putting “not uniformly decidable” for data complexity of
composition oveBM({}, =, ~) we mean that there is no re-
cursive function that maps a pair of mappirigd, M’) into
an algorithm that checks wheth@r, 7) € [M] o [M'].

8. Composition: closure under restrictions

bb}, andDs = {r — &}, with a andb having an attribute
each, and mappingya(z) — r/b(z) for £12 andr — r
for Xo3. In the composition we have paif’, r) such that
in T" at most two different data values are present. This
again requires disjunction, e.gla(z), a(y), a(z)] — (z =

Vy =zVaz = z). Infact a variety of features such as
wildcards in patterns and places where attributes applear ta
us out of our usual classes of schema mappings.

We now summarize what causes problems with composi-
tion. We call an element typgarred if it appears under the
scope of & or a+ in a DTD andunstarred otherwise.

Proposition 8.1 Consider DTDs D = {r — ¢} and
D' = {r — c17c2?c3?} with no attributes. Then we

We now address the last issue related to composition cqy, find schema mappings so that their composition, as
of schema mappings: the syntactic representation. The, yapping between D and D', contains exactly pairs

qguestion is whether for two given mappingst;s =
(D1,D9,%12) and Moz = (D2, D3, Xo3) we can find a
mappingM 3 = (D1, D3, ¥13) so thatf M 3] = [Mi2] o
[Ma23]. We know that in the relational case getting clo-
sure under composition requires adding Skolem functions,
i.e., stds of the formps(z,y) — :(z,z) where each
element ofz is either a variable or a ternf(a) for a
Skolem functionf and some tuple: of variables among
Z,y [17]. Skolem functions are a natural addition to re-

lational schema mappings. For example, to create a map-

ping between a sourc&(empl_name, project) and a target
T (empl_id, empl_name, office), it is natural to use an std
S(z,y) — T(f(x),x, z) which assigns a unique id to each
employee name, rather th&f{z,y) — T'(z1,x, 22) which
may assign differentids for different projects an emplagee
involved in.

Formulae in stds can also have equality comparisons

among values of Skolem functions, in addition to relational
atoms. The semantics of solution is obtained by existen-
tially quantifying such Skolem functions. By Fagin’s theo-
rem, this puts data complexity of composed relational map-
pings inNP, and in fact there are simple examples\d?-
completeness of mapping composition [17].

We show here that getting closure for XML schema map-

(r,T), where T matches r/c1 orr/ca, if we allow either

e one of the following features in stds: (a) wild-
card; (b) descendant; (c) next-sibling; (d) inequal-
ity; and only starred element types can have at-
tributes; or

o only fully-specified stds but unstarred element types
can have attributes.

In other words, the following features make composition
problematic by requiring capabilities (disjunction in map
pings) that are not even understood in the relational case:

e the presence of disjunctions and attributes of unstarred
element types in DTDs;

¢ wildcard, descendant, next-sibling, and inequalities in
stds.

We now eliminate them all: we look at mappings with fully-
specified stds (given by (5); to eliminate wildcard, descen-
dant, and next-sibling), nested relational DTDs (to eliatén
disjunctions), no inequalities, and attributes appeaoiniy
with starred element types.

pings is harder than for relational mappings, and can only Forthis class, a natural extension of stds with Skolem func-
be obtained in limited settings that essentially corregpon tions gives us closure under composition. We add Skolem
to nested relations. Such settings constitute an importantfunctions to XML schema mappings as it was done for re-
practical class however; for example, they are used in non-lational mappings in [17], by using terms in place of vari-
relational extensions of the Clio project [29, 32]. ables. For a valuation of function symbglsind a valuation

of variablesa, the meaning o’ = ¢(%)[f, a] is as usual.
For a mappingM = (D,, D, ) with Skolem functions,
(T, T") € [M] iff there exist functiong such that for each
(p,a= — ,al) € L and eacly, if T = ¢, a=[f,a] then

T' E ¢,a_[f,a]. Note that we can use the same function
symbol in more than one constraint.

We start with a simple example. LBy = {r — ¢}, Dy =
{T — b1|b2; b1,by — b3}, andD3 = {T — 61762?03?};
no attributes are present. LEf, containr — r/_/bs and
Y03 containr/b; — r/c; for i = 1,2, Then[M;jz] o
[Mas] consists of pairs of tree@:, T'), whereT matches
eitherr/c; orr/co. To define such a mapping, we need a
disjunction over the target (note that’ is necessary is:
with the productionr — ¢;7¢2? the composition would be
definable byr — /). Disjunctions in mappings are not
well understood even in the relational case, and we ceytainl
do not know how to compose such mappings.

We say that a DTD isstrictly nested-relational if it is
nested-relational and only starred element types can
attributes. Now we can state the closure result.

have

Theorem 8.2 The class of mappings with Skolem func-
tions and equality, restricted to strictly nested-relational
DTDs and fully specified stds, is closed under composi-
tion.

As another illustration of problems with composing XML
schema mappings, look &@; = {r — a*}, D2 = {r —



tree pattern mappingsMm compositionfM] o [M’] | compositionM] o [M']
evaluation overSM({, =) overSM({}, =, ~)
data DLOGSPACE-complete] DLOGSPACE-complete EXPTIME-complete not uniformly
complexity decidable
combined PTIME I15-complete in 2-EXPTIME undecidable
complexity PTIME for fixed-arity stds NEXPTIME-hard
Figure 2: Summary of complexity results
9. Conclusions [9] P. Bernstein, S. Melnik. Model management 2.0:
manipulating richer mappings. SIGMOD’07, pages 1-12.
[10] G. J. Bex, F. Neven, J. Van den Bussche. DTDs versus

This paper has made several initial steps in the investiga-

tion of XML schema mappings, but many questions remain. [11]
Of course there are technical questions left open here, such

as closing the complexity gaps (although all the gaps we have

here are rather small). Most of them are related to the fol- [12]
lowing technical problem: given a DTID and two sets of
patternsP, andP_, can we find a tre& = D that matches
all the patterns inP, and none inP_? We know that the
problem is inEXPTIME andNP-hard; knowing its exact
complexity will help us close the complexity gaps.

We would like to extend this work in several directions.

(13]

[14]

(15]

One of them is constructing target instances. This is impor- [16]
tant in data integration and exchange tasks, but so far good

algorithms are lacking, even for very simple mappings al- [17
ready introduced in [4]. We also would like to work further

on operations on schema mappings. We have identified ag)

natural class that is closed under composition, but we do
not know anything about its maximality, nor do we know
anything about other operations such as inverse [5, 18] or
merge [9]. We would like to see how the complexity of
schema mappings affects the complexity of query answering

in integration and exchange scenarios with XML data.
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