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ABSTRACT
The notion of certain answers arises when one queries
incompletely specified databases, e.g., in data integra-
tion and exchange scenarios, or databases with missing
information. While in the relational case this notion
is well understood, there is no natural analog of it for
XML queries that return documents.

We develop an approach to defining certain answers
for such XML queries, and apply it in the settings
of incomplete information and XML data exchange.
We first revisit the relational case, and show how to
present the key concepts related to certain answers
in a new model-theoretic language. This new ap-
proach naturally extends to XML. We prove a number
of generic, application-independent results about com-
putability and complexity of certain answers produced
by it. We then turn our attention to a pattern-based
XML query language with trees as outputs, and present
a technique for computing certain answers that relies on
the notion of a basis of a set of trees. We show how to
compute such bases for documents with nulls and for
documents arising in data exchange scenarios, and pro-
vide complexity bounds. While in general complexity of
query answering in XML data exchange could be high,
we exhibit a natural class of XML schema mappings for
which not only query answering, but also many static
analysis problems can be solved efficiently.

Categories and Subject Descriptors. H.2.4 [Database
Management]: Systems—Query processing;
H.2.5 [Database Management]: Heterogeneous
Databases—Data translation; I.7.2 [Document and
Text Processing]: Document Preparation—XML

General Terms. Theory, Languages, Algorithms

Keywords. Incomplete information, certain answers,
data exchange, queries returning trees
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1. INTRODUCTION
The notion of certain answers is one of the central

concepts in database theory, applied when the queried
database is not known precisely. Such incompleteness
of information often arises in data exchange or integra-
tion, when the database we query is only partly de-
fined via source data and mappings between schemas.
Semantically, an incomplete description of a database
is a set D of completely described databases that it
can represent. If we have a query Q, then the most
common (but not the only) way of defining certain an-
swers is to take tuples that belong to the result no
matter which complete database in D is used; that is,
certain(Q,D) =

⋂

{Q(D) | D ∈ D}. But as we move
from relational data to more complex formats, such as
XML, this definition immediately becomes problematic.
Queries in XML languages (e.g., XQuery) return trees,
rather than set of tuples. What is a natural analog of
certain answers then?

In the literature on XML with incomplete informa-
tion (e.g., [3, 9, 22, 28, 29]) and on XML data exchange,
integration, and query answering using views (e.g., [5,
6, 15, 16, 37]) one usually avoids this question by either
considering queries returning tuples of scalar values, or
single nodes, or computing query answers on one spe-
cific instance. Such simplifications are very useful for
initial investigations, as they tell us when tractable eval-
uation mechanisms are possible for simple queries. Now
that we know the answers, it is time to move to proper
XML queries. To do so, however, we need to understand
the notion of certain answers.

To define certain(Q, T ), for a query Q returning trees
and a set T of XML trees, we need an analog of the
intersection operator applied to Q(T ) = {Q(T ) | T ∈
T }. What could it be? The first idea is to take the
maximal tree contained in all of trees in Q(T ). But this
may fail as such a tree need not be unique: if T1 and
T2 shown below are in Q(T ), there are three maximal
trees subsumed by them shown in part (c) of the figure:
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One might be tempted to combine these trees in (c)
into one, but this is not satisfactory either. We have a
choice of merging the roots, or the a-nodes, but either
way the resulting tree is not subsumed by T1 and T2; in
what sense, then, is it a certain answer? And so far we
have not considered data values. But what if in T1 and
T2, the left a carries value “1” and the right a carries
“2”? Then the middle tree with the c leaf is not among
maximal subsumed trees, and without it we lose the
certain knowledge about a c-grandchild of the root.

Thus, even in a very simple example, it is not com-
pletely clear what the natural notion of certain answers
is. To define this notion we (as happens with so many
problems related to XML data management), start by
re-examining the relational case.

There are two established relational approaches to
certain answers. The first, based on the work of
Imieliński and Lipski [27], finds a representation of the
set Q(D) of answers to Q on a set of databases D.
It could be

⋂

Q(D), or more generally, an incomplete
database that in some way describes Q(D) – this is the
idea of representation systems [1, 27, 24]. The concept
of “certainty” is thus decoupled from querying: one
finds certain information from an arbitrary collection
of databases, which, for the case of certain answers, is
Q(D). The second approach originates in the work of
Reiter [32], and couples the notion of certainty with
querying much closer: it views an incomplete database
as a theory L in some logical language, and certain an-
swers to a query Q are those that are implied by L.

To extend these to XML, we use a hybrid approach,
combining the ideas of [27] and [32]: from [27] we take
the decoupling of the notion of certainty and query an-
swering, and from [32], the logical approach to defining
certainty. We make the following contributions.

1. We present a generic model-theoretic (rather than
Reiter’s proof-theoretic) explanation of the notion
of certainty in a collection of databases.

2. We show how to apply the same approach to XML,
and investigate its basic properties.

3. We use this approach with an XML query lan-
guage that returns trees, and provide conditions
that guarantee computability of certain answers.

4. We do two case studies, for XML documents with
incomplete information, and for data exchange
guided by XML schema mappings, and show how
to compute certain answers in both.

5. The complexity of certain answers in XML data
exchange could be quite high, so we find a nat-
ural class of schema mappings that admit both
tractable static analysis and query answering.

We now elaborate more on these contributions.

(1) The key element of our approach is the notion of a
logical theory that presents the certain knowledge
about a collection D of databases. We then intro-
duce the notion of a max-description of D; it is
a small set of logical formulae providing as much

information about it as possible within a given log-
ical language. Max-descriptions can be viewed as
structures, and for all cases of interest, they share
the same core (the smallest substructure which is
also a homomorphic image [26]; this notion has
many applications in database theory [20, 25, 17,
20]).

(2) We apply the same approach to collections of XML
trees. The logical languages in which theories of
certain knowledge are defined over relations are
usually (ground) conjunctive queries; as their nat-
ural XML analogs, we use tree patterns. We
then define max-descriptions and prove some of
their basic properties, such as existence and com-
putability. All max-descriptions of a family T of
XML trees have the same core, called the core-
description of T . We prove characterizations of
max- and core-descriptions and establish bounds
on their size and complexity when T is finite.

(3) We define a natural extension of pattern-based lan-
guages used previously in the setting of incomplete
XML or XML data exchange and integration [6, 9,
11, 12, 16, 28, 29]. This extension has the flavor of
FLWR expressions of XQuery, and allows trees as
outputs of queries. We define certain answers to
Q over T as max-descriptions of Q(T ). To com-
pute them, we introduce the notion of a basis of
T , and prove certain answers to Q over T can be
computed from a basis of T itself.

(4) We do two case studies and show how bases, and
thus certain answers, can be computed. We first
look at XML documents with null values. Our
technique immediately implies that for such docu-
ments, certain answers to FLWR-like queries can
be found by näıve evaluation in polynomial time,
extending results in [9].

The second application is about XML data ex-
change, i.e., restructuring a document conforming
to a source schema under a target schema and then
answering queries over target instances. The rela-
tional case has seen much activity lately (see, e.g.,
surveys [30, 8, 10]), but for XML data exchange,
only the complexity of simple queries is known [6,
4]. We show that for large classes of mappings,
bases can be computed, and thus certain answers
to FLWR-like queries can be found too. Without
further restrictions, however, the complexity could
be rather high.

(5) Motivated by the last observation, we find a natu-
ral class of XML schema mappings that exhibit
good complexity of query answering and static
analysis problems. It extends non-relational map-
pings used in data exchange [31, 37]. Consistency
checking, composing mappings, building target in-
stances, and answering FLWR-like queries can all
be done efficiently for this class.



Organization The paper follows the main five areas
of contribution outlined above, with Sections 2–6 cor-
responding to items (1)–(5).

2. RELATIONAL CERTAIN ANSWERS
We start with some standard definitions related to

tables with incomplete information (cf. [1, 27, 24]). As-
sume that we have two disjoint countable sets Const of
constants that appear in complete databases and Var of
variables. A näıve table is a table whose entries come
from Const∪Var. To emphasize that a relation only has
entries from Const, we call it a ground relation.

A homomorphism between tables R and R′ of the
same arity is a mapping h : Var → Const ∪ Var such
that for each tuple t = (v1, . . . , vm) ∈ R, the tuple
h(t) = (h(v1), . . . , h(vm)) is in R′. We always as-
sume that such mappings are extended to mappings
Const ∪ Var → Const ∪ Var by taking h(c) = c for all
c ∈ Const. A ground relation D represents R if there is
a homomorphism h : R → D. We denote the set of all
ground relations representing R by Rep(R).

A näıve table R with tuples t1, . . . , tm and variables
x1, . . . , xn defines a Boolean conjunctive query (CQ)
QR = ∃x1, . . . , xn R(t1) ∧ . . . ∧ R(tm). That is, the
tableau of the CQ QR is R itself. If R is a ground table,
then QR is a quantifier-free CQ. Note that D ∈ Rep(R)
iff QD is contained in QR, and Rep(R) = Rep(R′) iff
QR and QR′ are equivalent CQs.

The idea of certain answers is to extract the maxi-
mum knowledge from answers Q(D), as D ranges over
some collection of databases D (e.g., Rep(R), or in-
stances of a global schema in data integration). In the
approach of Imieliński and Lipski [27] based on repre-
sentation systems, this maximum knowledge is defined
in such a way that it compactly represents the set of
all tuples that appear with certainty in Q(D). What
it means precisely depends on the logical language we
use for specifying sets of tuples. There are two most
common cases.

If we use the language of ground relations, then
2grQ(D) =

⋂

Q(D) (the set of ground tuples that ap-
pear in every query answer Q(D) for D ∈ D) compactly
represents the maximum knowledge we can extract from
Q(D). This is the most commonly used (but not the
only) notion of certain answers seen in the literature.
However, if we use the more expressive language of näıve
tables, we can extract additional knowledge from D by
means of a näıve table R so that

⋂

Q(D) =
⋂

Rep(R).
This is the idea behind weak representation systems
of [27]. Those based on näıve tables are used for evalu-
ating positive relational algebra queries over incomplete
databases, or in data integration and exchange [19, 8]1.

The second approach, due to Reiter [32, 33], is to
view query answering as logical implication by a the-
ory that represents the certain knowledge of a class of
databases D. We view D as as a logical theory LD such

1We shall not be looking at more expressive representation
mechanisms such as conditional tables for now, due to their
added complexity [2].

that D = Mod(LD), the set of models of LD. For ex-
ample, if R is a näıve table, then LRep(R) is the query
QR. Given a query Q(x̄), certain answers are those that
are implied by LD. For example, if we are interested in
ground facts, then we look for ground tuples ā so that
LD ⊢ Q(ā). More generally, we can look for implica-
tion statements LD ⊢ ∃x̄Q(ā, x̄), which correspond to
computing näıve tables as query answers.

Certain answers revisited We now revisit the no-
tion of certain answers, using both approaches. We saw
that the notion of certain answers is not unique and de-
pends on a representation language. The approach of
Imieliński-Lipski nicely decouples certainty and query-
ing: it could be applied to any collection of databases,
not just Q(D). Reiter’s approach puts these notions
together, but makes an important point that certain
information has to faithfully represent the theory of a
set of databases. We take the decoupling of querying
and certainty from the first approach, and then follow
the spirit of Reiter’s approach, replacing proof-theoretic
concepts (which are problematic in the context of finite
structures) by model-theoretic.

We define a notion of a max-description of a set D of
databases that, in a given language, provides a descrip-
tion of information we can infer with certainty from D.
Certain query answers are then a special case of max-
descriptions, applied to sets {Q(D)} as D ranges over
a collection of databases.

To explain this notion, assume that L is a logical
formalism in which we express properties of databases
from D (e.g., CQs or ground facts). To describe D fully
in L we would need its L-definition: a finite set Φ of L-
formulae so that D = Mod(Φ) (the set of all models of
Φ). This is not always achievable, so instead we settle
for the next best thing, which is an L-definition of the
certain knowledge about D that is expressed in L.

This certain L-knowledge of the class D is ThL(D),
the L-theory of D, i.e., the set of all formulae from L
satisfied in all structures from D. To extract its maxi-
mal description, expressed again in L, we look for finite
sets Φ of formulae that define Mod(ThL(D)), the mod-
els of the certain knowledge of D. This leads to the
following.

Definition 2.1 A finite set of L-formulae Φ is called
a max-L-description of D if Mod(Φ) = Mod(ThL(D)).
When L is clear from the context, we talk about a max-
description of D.

It turns out that we reconstruct familiar relational
notions of certain answers with this concept. Assume
first that L is the language of ground facts and their con-
junctions. For a set D of complete databases or näıve
tables, its L-theory, ThL(D) is the set of all ground tu-
ples that occur in all elements of D, i.e.,

⋂

D (as well as
conjunctions of these ground facts, since the theory is
closed under conjunction). Thus, a max-description of
D contains all ground facts from

⋂

D and no others; if
duplicates are eliminated, we get precisely 2grD =

⋂

D.
Now let L be the language of CQs, and D a set of



ground relations. A max-description can be viewed as
both a CQ and a näıve table. Viewed as a näıve table
R, it has the property that Rep(R) =

⋂

Rep(R′) as R′

ranges over näıve tables satisfying D ⊆ Rep(R′): so it
is indeed a näıve table that is closest to describing D.
One can also observe that the set of ground tuples in
R is exactly

⋂

D, i.e., it defines a weak representation
system of [27]. By looking at max-descriptions as CQs,
we note that any two of them are equivalent, and hence
all share the same minimization, denoted by 2D.

Thus, in both examples, even though max-
descriptions need not be unique, they have the same
minimizations (obtained by duplicate elimination or by
CQ minimization). Technically, these are the cores [26]:
the smallest substructures of max-descriptions which
are also their homomorphic images; this follows from
well-known results on CQ minimization [17].

Let us now summarize what we have learned from
this re-examination of the relational case.

1. The notion of certain answers depends on the
choice of language for specifying tuples. Those
used most often in the relational case are (ground)
conjunctive queries.

2. A max-description of D with respect to L is then
defined as an L-formula that in the best way ap-
proximates the certain L-knowledge of D.

3. Max-descriptions need not be unique, but they
have isomorphic cores.

3. MAX-DESCRIPTIONS FOR XML
TREES

We now apply the methodology of the previous sec-
tion to XML trees. First, we define XML documents
themselves. An XML tree, over a labeling alphabet Γ,
is a structure T = 〈U, ↓, ℓab, r, ρ〉, where

• U is a set of nodes, and r ∈ U ;

• ↓ is a binary relation on U so that 〈U, ↓, r〉 is a tree
with root r;

• ℓab : U → Γ is a labeling function;

• function ρ assigns to each node in U a (possibly
empty) tuple of values from Const ∪ Var.

Note that for now we disregard the sibling ordering in
XML trees (as is common in exchange/integration ap-
plications, and as often happens when one deals with
incompleteness [6, 15, 3, 9]). Also we do not introduce
attribute names to keep notations simple; each node
just comes with a tuple of its attribute values, some
of which could be variables. We further assume that
ℓab(r), the label of the root, is always a special label
designated for the root of a tree.

We now apply the ideas of the previous section to
sets T of XML trees. We shall be making two assump-
tions about such sets T : (a) all trees in them are labeled
by some fixed alphabet, and (b) nodes with the same
label have tuples of attributes of the same length. This
will be true in all the applications (either enforced by a

DTD, or by an incomplete tree). The assumptions are
not really required but help keep notations simple.

First, we need analogs of (ground) conjunctive
queries. Since relational CQs can be seen as näıve ta-
bles (query tableau), trees with variables are a natural
analog of CQs for trees. In this role, they are usually
presented as tree patterns [23, 11, 12, 6], and we use
a special syntax for them, that can later be extended
when we define our query language. Patterns are given
by:

π := ℓ(ᾱ)[λ]
λ := ε | π | λ, λ

where ℓ ∈ Γ. We use the convention that ᾱ refers to tu-
ples of elements from Const∪Var. Tuples over Const will
be denoted by ā, b̄, . . . and tuples over Var by x̄, ȳ, . . .;
sometimes we shall write (ā, x̄) instead of ᾱ to explicitly
name variables and constants. We write π(ᾱ) to name
all variables and constants used in a pattern. We also
abbreviate ℓ(ᾱ)[ε] as ℓ(ᾱ).

Let v : Var → Var ∪ Const be a valuation defined
on all variables in π. We define the notion of a tree T
satisfying π at node s wrt v, written (T, s, v) |= π:

• (T, s, v) |= ℓ(ᾱ) iff ℓab(s) = ℓ and ρ(s) = v(ᾱ);

• (T, s, v) |= ℓ(ᾱ)[λ1, λ2] iff (T, s, v) |= ℓ(ᾱ)[λ1] and
(T, s, v) |= ℓ(ā)[λ2];

• (T, s, v) |= ℓ(ᾱ)[π] iff (T, s, v) |= ℓ(ᾱ) and
(T, s′, v) |= π for some s′ with s ↓ s′.

We write T |=v π(ᾱ) if (T, r, v) |= π(ᾱ), and T |= π(ᾱ)
if T |=v π(ᾱ) for some valuation v. For a set of patterns
B, we define Mod(B) = {T | ∀π ∈ B : T |= π}.

We shall write Π(Const, Var) for the set of all pat-
terns and Π(Const) for the set of ground patterns that
do not use variables; these are natural analogs of CQs
and ground CQs. For a set T of XML trees we then
define its theory Th(T ) and its ground theory Thgr(T )
as

Th(T ) = {π ∈ Π(Const, Var) | ∀T ∈ T : T |= π}

Thgr(T ) = {π ∈ Π(Const) | ∀T ∈ T : T |= π}

These theories provide the certain knowledge (in the
corresponding language) that can be extracted from T .
Max-descriptions are then the closest we can get to
defining T .

Definition 3.1 Let T be a set of XML trees. A pat-
tern π ∈ Π(Const, Var) is a max-description of T if
Mod(π) = Mod(Th(T )).
A pattern π ∈ Π(Const) is a ground max-description of
T if Mod(π) = Mod(Thgr(T )).

We now illustrate the notion of max-descriptions by
revisiting the example of trees T1 and T2 in the figure
shown in the introduction. A max-description for them
is obtained by merging all the trees in part (c) of that
figure at the root, rather than at the a-nodes, as indeed
seemed intuitive. We also asked about a modification
of the example where the a-nodes carry data values, as



shown in (d) and (e) in the figure below. Then a max-
description of {T ′

1, T
′
2} is the tree in (f) of the figure.

It has one occurrence of a variable and preserves the
certain knowledge about the c-node.
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The first easy observation shows that it often suf-
fices to work with max-descriptions. Let ground(π) be
a ground pattern obtained from π by dropping all the
subpatterns ℓ(ā, x̄)[. . .] with nonempty x̄.

Proposition 3.2 If π is a max-description of T , then
ground(π) is a ground max-description of T .

We next show that in many cases (certainly those rel-
evant in the applications we consider), max-descriptions
exist and can be computed.

Proposition 3.3 For every finite nonempty set of trees
T , a max-description exists and can be computed. For
every nonempty set of ground trees, a ground max-
description exists, and can be computed if T and Th(T )
are recursive.

Proof. The finite case is covered by Proposition 3.8.
Let us concentrate on the infinite case.

Recall every label in Γ has a fixed number of at-
tributes. Let N be the maximal number of attributes.
Let C be a finite set of constants and let ΠC denote the
set of ground patterns over C. We will show that there
are only finitely many non-equivalent tree patterns from
ΠC of depth less then d, and that there is a computable
bound on their size.

We proceed by induction. For depth 0, every pattern
is of the form ℓ(c̄) or ℓ. Clearly, there are at most k0 =
|Γ| · |V |N of them, and each has n0 = 1 node. Suppose
that there are at most ki non-equivalent patterns of
depth i, and all of them have at most ni nodes. Let
us look at depth i + 1. A pattern is defined by its root
and the set of subpatterns. As we consider only ground
patterns, observe that it makes no sense to put two
equivalent subpatterns into the pattern. Hence, there
is at most n0 · 2ni non-equivalent patterns of depth at
most i + 1. Each of that patterns has the size at most
ni = 1 + kini. The claim follows.

Now, we need to show that for a given set of ground
trees, there exists a ground max-description. Since T
is nonempty, there exists T ∈ T . If a pattern is to be
satisfied T , its depth cannot be larger that the depth
of T , and it cannot use constants not used in T . By
the claim above, there are only finitely many ground
patterns satisfied in T . Let this set of patterns be called
ΠT . Now, let ΠT be the set of patterns from ΠT that are
satisfied in every tree from T . Let π be the conjunction

of all patterns from ΠT , i.e., the patterns obtained by
merging all patterns from ΠT at the root (recall that
all trees have the same label for the root). It is obvious
that π is a max-description of T .

Assume now that both T and Th(T ) are recur-
sive. Let us see that we can compute a ground max-
description. First, find a tree T ∈ T : construct all trees
over the alphabet Γ, and Const one by one, and for each
check if it is in T . As T is nonempty, we are guaranteed
to find T ∈ T finally. Next, construct the set ΠT as fol-
lows. Check each pattern over Γ, using only constants
used in T , with at most nh nodes, where h is the height
of T . If the pattern is satisfied in T , add it to ΠT . By
the claim above this gives all patterns satisfied in T (up
to equivalence). Let ΠT = {π ∈ ΠT

∣

∣ π ∈ Th(T )}. A
ground max-description is obtained by merging all the
patterns from ΠT at the root. �

Remark. Note that the proof would also work for
patterns with variables, provided that each variable is
used only once. That is because the subpatterns would
still be completely independent. Also the trees in T
need not be ground for the proposition to hold.

To characterize max-descriptions and to find their
canonical forms we need a notion of homomorphisms
between XML trees T1 = 〈U1, ↓, ℓab1, r1, ρ1〉 and T2 =
〈U2, ↓, ℓab2, r2, ρ2〉. Let Ci and Vi be the sets of data
values and variables used as attribute values in Ti, for
i = 1, 2. A homomorphism h between T1 and T2 is a
function that maps U1 into U2 and V1 into C2 ∪V2 such
that:

1. h(r1) = r2;

2. ℓab1(s) = ℓab2(h(s)) for all nodes s;

3. if s ↓ s′ in T1 then h(s) ↓ h(s′) in T2;

4. h(ρ1(s)) = ρ2(h(s)) for all nodes s (as usual, h
extends to the constant set C1 as the identity).

As patterns provide a syntax for trees, each pattern
π can be viewed as a tree Tπ (the tree associated with
ℓ(ᾱ)[π1, . . . , πn] has an ℓ-labeled root with attributes ᾱ
and subtrees Tπ1

, . . . , Tπn
, where Tε is the empty tree).

We can thus talk about homomorphisms between pat-
terns: e.g., we write h : π → π′ instead of the more
formal h : Tπ → Tπ′ .

An immediate observation is that the semantics of
tree pattern satisfaction can be stated in terms of ho-
momorphisms, just as the semantics of näıve tables is
stated in terms of their homomorphisms into complete
databases:

Lemma 3.4 T |= π iff there exists a homomorphism
from π to T .

In particular, Th(T ) is the set of patterns π such
that there is a homomorphism from π to every tree
T ∈ T . Then we have the following characterization of
max-descriptions, which confirms the intuition of max-
descriptions as maximum extractable information from
the certain knowledge we have about T .



Theorem 3.5 A pattern π is a max-description of T
iff it belongs to Th(T ) and every pattern in Th(T ) has
a homomorphism into it.

Let core(π) denote the core of π. Technically speak-
ing, we define the core of the tree Tπ, but we can always
view it as a pattern. Theorem 3.5 implies that every
two max-descriptions π and π′ of T are homomorphi-
cally equivalent, as there homomorphisms π → π′ and
π′ → π. It is well-known that homomorphically equiv-
alent structures have isomorphic cores [26]; in particu-
lar, all max-descriptions have the same core. The same
applies to ground max-descriptions and leads to the fol-
lowing.

Definition 3.6 The core of all max-descriptions of T
is called the core-description of T and denoted by 2T .
The core of all ground max-descriptions of T is called
the ground core-description of T and is denoted by
2grT .

The following (almost folklore) proposition summa-
rizes the basic results about core-descriptions.

Proposition 3.7 Let T be a set of XML trees.

• 2T is a max-description of T .

• 2grT = core(ground(2T )).

• Checking whether π′ = core(π) is in DP; more-
over, there is a fixed pattern π0 such that checking
whether π0 = core(π) is NP-complete.

Complexity What is the complexity of finding a max-
description, and how big can it be? In particular, how
big can the smallest of them, i.e., the core-description,
be? We now give such bounds for finite sets T . Let |T |
be the number of nodes in T , and let ‖T ‖ be

∑

T∈T |T |.
By |T | we mean the number of trees in T .

We can compute a max-description of T in expo-
nential time in general, and in polynomial time if the
number of trees in T is fixed; furthermore, we cannot
beat the exponential bound in general. More precisely,
we have the following.

Theorem 3.8 Let T be a finite set of XML trees.

1. A max-description of T is computable in time poly-
nomial in ‖T ‖ and exponential in |T |.

2. If |T | = n, then |2T | ≤
(‖T ‖

n

)n
.

3. There is a family {Tn}n>0 of sets of trees so that
|Tn| = n and |T | > 1 for each T ∈ Tn, such that

|2Tn| >
(‖Tn‖

1.5n

)n
.

Proof. 1. For simplicity assume that every node
has a single attribute; extension to the general case is
straightforward.

Let T = {T1, . . . , Tn}. The pattern we are go-
ing to construct is a sort of consistent product of
T1, . . . , Tn. Proceed as follows. For the root, labeled
with r, take the sequence (ε, . . . , ε), i.e., the sequence

of roots of T1, . . . , Tn. Then iteratively, under every
node (v1, . . . , vn) put a new node (w1, . . . , wn) for ev-
ery sequence w1, . . . , wn such that wi is a child of vi in
Ti, and all wi’s are labeled with the same letter σ. La-
bel the node σ and put a fresh variable in the attribute
slot. If for some node v̄ = (v1, . . . , vn) some vi is a leaf,
v̄ is a leaf as well.

Define A(v1, . . . , vn) = (a1, . . . , an) where ai is the
data value attached to the node vi. For every node v̄
such that A(v̄) = (c, . . . , c) for a constant c, replace the
variable in v̄ with the constant c. For the remaining
nodes, whenever A(v̄) = A(w̄), replace the variable in
w̄ with the variable in v̄.

The constructed formula is clearly satisfied in ev-
ery Ti. Let us see that it is indeed a max-description.
Suppose that π′ is satisfied in every Ti. Let hi be a
homomorphism from π′ to Ti. It is easy to see that
h = (h1, . . . , hn) is a homomorphism from π′ to π.

The complexity of the algorithm is polynomial in
the size of the output pattern, which is bounded by
∏n

i=1 |Ti| ≤
(

‖T ‖
n

)n

(by the inequality between the

arithmetic and the geometric means for non-negative
numbers).

2. The bound on size of core-descriptions follows
from the above.

3. For every n ≥ 1 we define a set Tn of n trees, each
with 3 nodes, such that the core-description of Tn has
the size 2n + 1. Let D be the DTD

r → c c

c : @a0
1, . . . , @a0

n, @a1
1, . . . , @a1

n, .

Every tree conforming to D has only three nodes: root
ε labeled with r, and two children labeled with c. To
distinguish the two c nodes in a tree conforming to D
we always call one of them the 0-node and the other
one the 1-node.

For i = 1, . . . , n let Ti |= D be the tree whose all
attributes store ♭, safe for a0

i in the 0-node and a1
i in

the 1-node, that store ♯. For v = v1 . . . vn ∈ {0, 1}n let

ϕv = r[c(x0
1, . . . , x

0
n, x1

1, . . . , x
1
n)] ∧

n
∧

i=1

xvi

i = ♭ .

Rename the variables so that none is used in two differ-
ent formulae. Let π be the pattern obtained by taking
∧

{ϕv : v ∈ {0, 1}n}. Clearly, π holds in every Ti: in-
deed, ϕv is witnessed by the 0-node if vi = 0, and by
the 1-node if vi = 1.

Let us see that π it is a max-description. Take any
π′, β satisfied in all Ti. Observe that π′ has to be of the
form r[c(x̄1), c(x̄2), . . . , c(x̄k)]. Let hi be a homomor-
phism mapping π′ to Ti. We need to find a homomor-
phism mapping π′ to π. Fix a c-node u. Recall that
hi(u) is either 0 or 1 (ie the 0-node or the 1-node in Ti).
Define g(u) = h1(u)h2(u) . . . hn(u) ∈ {0, 1}n. In π ev-
ery c-node corresponds to a single formula ϕv. Let h(u)
be the node of π corresponding to the formula ϕg(u).
Checking that h is a homomorphism is straightforward.



It is easy to see that π does not have nontrivial en-
domorphisms. Hence, it is a core. �

Remarks. One can easily encode an n-tuple of at-
tributes as a path of n nodes each with a single at-
tribute. Since in our examples the attributes store one
of two values, ♭ or ♯, each attribute can be replaced with
a child storing the value of the attribute in the label.
Thus, we can get the exponential lower bound even for
trees with no data.

Notice also that the upper bound from the proposi-
tion above carries over to the relational case easily. The
examples for the lower bound are not hierarchical and
can be turned into relational examples as well.

Relations as trees We now demonstrate that our def-
inition fully agrees with the relational one when we nat-
urally encode relations as XML documents. Assume we
have a näıve table (or a complete relation) R with n tu-
ples t1, . . . , tn. It can be encoded as a tree TR of depth
1 with n children of the root, where the ith child has,
as its attribute values, the values in the tuple ti.

Proposition 3.9 For a näıve table R, the max-
descriptions of TR are precisely the tree representations
of the max-descriptions of Rep(R).

Summary We adapted the relational approach of
the previous section, and defined max-descriptions as
analogs of certain answers. We looked at analogs of
CQs and ground CQs, patterns and ground patterns,
as our languages. There could be many different max-
descriptions, but they all share the same analog of “min-
imization” – the core.

4. CERTAIN ANSWERS FOR TREE
QUERIES

Now that we understand the notion of a proper rep-
resentation of certain information contained in a set of
trees, we apply this notion to answering XML queries
that can produce trees.

Suppose we have a query Q that takes trees as inputs
and returns trees. Our goal is to define certain answers
to such a query over a set T of trees. Following the
previous section, we define such certain answers as max-
descriptions of the set Q(T ) = {Q(T ) | T ∈ T }, and
core certain answers as the smallest elements of this set.

Definition 4.1 Given a query Q and a set T of trees, a
pattern π is a certain answer to Q over T if it is a max-
description of Q(T ). We define core-certain answer as
2Q(T ).

Of course we can also introduce the ground versions
of these: a ground max-description of Q(T ) is a ground
certain answer, and its core is the ground core certain
answer 2grQ(T ). Note that while there could be many
(ground) certain answers, core versions are unique (up
to isomorphism). From the results of the previous sec-
tion we obtain :

Corollary 4.2 Let π be a certain answer to Q over T .
Then:

1. ground(π) is a ground certain answer to Q.

2. core(π) = 2Q(T ).

3. core(ground(π)) = 2grQ(T ).

In particular, it will suffice for most tasks to find
a single certain answer π, as from it we can construct
other types of certain answers by taking the core, and
dropping subpatterns with variables.

A query language returning trees As in many
functional and database query languages [13, 35, 36],
including FLWR (for-let-where-return) expressions of
XQuery [34], the key construct of the language we use
is a comprehension. It is of the form

for π(x̄) return q(x̄)

where π(x̄) is a pattern and q(x̄) defines a forest (we
shall formally define forest queries below). Given an
input tree T , for each tuple ā such that T |= π(ā), we
construct the forest q(ā) and take the union of all such
forests as the answer to the query (to make a forest into
a tree, we just put a common root above it). Forest
expressions can involve subqueries as well, for example
for π(x̄) return

(

for π′(x̄, z̄) return q′(x̄, z̄)
)

. Then, for
each π(ā) true in an input T , we construct the forest
for π′(ā, z̄) return q′(ā, z̄) and take the union of these as
the answer to the query over T .

In the language we allow a more general class of pat-
terns Π∗(Const, Var) that also use descendant and wild-
card, defined by:

π := ℓ(ᾱ)[λ] | (ᾱ)[λ]
λ := ε | π | //π | λ, λ

where is the wildcard symbol and // stands for the
descendant. The definition of the semantics is extended
by two clauses: (1) (T, s, v) |= (ᾱ) if ρ(s) = v(α), and
(2) (T, s, v) |= //π if there is a descendant s′ of s so that
(T, s′, v) |= π.

Definition 4.3 A TQL query Q is an expression of the
form r[q], where q is a forest query without free vari-
ables. The syntax and the semantics of forest queries
are given in Figure 1. For a tree T and a query
Q = r[q], we define Q(T ) as the tree r[[[q]]T ], i.e., the
forest [[q]]T under root r.

Forest queries include the empty forest (ε), trees
(ℓ(ā, x̄′)[q′]), unions of forests (q′, q′′), and comprehen-
sions (for π return q′). By union F ∪ F ′ of forests we
mean the forest obtained by putting together F and
F ′ (i.e., it may contain more than one copy of a tree).
By ℓ(ā)[F ] we mean a tree obtained by attaching a
common ℓ-labeled root with values ā on top of forest
F . Note that TQL queries can be applied not only to
ground trees, but also to trees over Const ∪ Var, pro-
viding an analog of näıve evaluation of queries. Recall
that T |=v π means that v is the valuation of variables
of π that witnesses the match of π in T . It is used to
provide a proper analog of näıve evaluation.



Syntax: q(x̄) ::= ε
| ℓ(ā, x̄′)[q′(x̄′′)]
| q′(x̄′), q′′(x̄′′)
| for π(ā, x̄, ȳ) return q′(x̄, ȳ)

where π ∈ Π∗(Const, Var), x̄′ and x̄′′ are subtuples of
x̄, and ȳ is disjoint from x̄.

Semantics: [[q(x̄)]]T,v

for a tree T , and a valuation v : x̄ → Const ∪ Var

[[ε]]T,v = ε

[[ℓ(ā, x̄′)[q′(x̄′′)]]]T,v = ℓ(ā, v(x̄′))
[

[[q′]]T,v

]

[[q′(x̄), q′′(x̄′′)]]T,v = [[q′]]T,v ∪ [[q′′]]T,v

[[for π(ā, x̄, ȳ) return q′(x̄, ȳ)]]T,v =
⋃

{

[[q′]]T,v′ | v′ extends v and T |=v′ π(ā, x̄, ȳ)
}

Figure 1: Syntax and semantics of forest queries

Example 4.4 Consider the tree Tdoc given in Fig-
ure 2(a). This tree represents a set of books, with a ti-
tle attribute and one or more author subelements, each
with name and affiliation elements, and their attributes.
We want to output a tree Tbib in Figure 2(b): it restruc-
tures the input by combining, for each author, his/her
works with their title and affiliation attributes. The
TQL query for this transformation is Q = r[q], where q
is the following forest query:

for r//name(x) return

person(x)
[

for r/book(y)/author [name(x), aff (z)]
return work (y, z)

]

We used XPath-like notation / and // above to simplify
the syntax of patterns. 2

Proposition 4.5 For each TQL query Q and a tree T ,
computing Q(T ) can be done in time polynomial in the
size of T .

When we try to compute certain answers to a query
Q over a set T of trees, T is usually infinite. Hence, we
need a finite representation of it. Recall also that finite-
ness guarantees existence of max-descriptions. Such a
representation comes in the form of a basis B of T . Re-
call that each pattern can be viewed as a tree, so when
we write B ⊆ T , we mean that Tπ ∈ T for every π ∈ B.

Definition 4.6 A basis for a set of trees T is a set of
patterns B ⊆ T such that T ⊆

⋃

{Mod(π) | π ∈ B}.

Bases are preserved by TQL queries, which can be
used for computing max-descriptions.

Lemma 4.7 Let B be a basis of T and let Q be a TQL
query. Then

1. the sets of max-descriptions of T and B coincide;
and

2. Q(B) is a basis of Q(T ).

As a direct corollary, we obtain the following result.

Theorem 4.8 If T is a set of trees, B is its basis, and
Q is a TQL query, then certain answers to Q over T
and over B coincide. In particular, 2Q(T ) = 2Q(B).

This gives a general approach to computing certain
answers:

1. Compute a (small) basis B of T ;
2. Compute a max-description π of Q(B).

Such a max-description π is guaranteed to be a cer-
tain answer. If core or ground certain answers need to
be found, one can compute core(π), or ground(π), or
core(ground(π)), according to Corollary 4.2.

5. APPLICATIONS
The previous section showed that the problem of

computing certain answers for TQL queries over collec-
tions T of trees is reduced to the problem of computing
small bases of T . We now show how to find such bases
for sets T that arise in applications.

Languages considered for XML data exchange and
incomplete information in the past were limited so as to
apply the usual relational notion of certain answers. For
example, [6, 9, 5, 4] dealt with the set of flat queries in
TQL, i.e., queries of the form r[for π(x̄) return ℓ(x̄′)[ε]].
We now show how to extend query answering to a
proper class of XML queries, using the machinery of
the previous two sections.

5.1 XML with incomplete information
A standard approach to incomplete XML documents

is to model them as various types of patterns, with nulls
as possible values of attributes [3, 9]. For example,
in [9], incomplete XML documents were simply patterns
in Π∗(Const, Var), under the usual semantics that such
a pattern π represents the set Rep(π) of ground trees in
Mod(π). The patterns in [9] also considered horizontal
navigation, which we do not look at for now.

The language studied in [9] was that of flat TQL
queries. It was shown that every such query can be
evaluated in coNP, and that for patterns involving
descendant it is very easy to achieve coNP-hardness.
Thus, to find tractable classes, for which an analog of
näıve evaluation provides certain answers, [9] concen-
trated on patterns without descendant. It showed that
if the horizontal ordering is completely specified, then
the naive evaluation computes certain answers in poly-
nomial time. The question of what happens without the
horizontal ordering was left open. We now show that
the answer easily follows from our techniques, not only
for flat, but for all TQL queries.

Given a pattern π ∈ Π(Const, Var) and a TQL query
Q, a certain answer to Q over π is a max-description
of Q(Rep(π)). Note that π is a basis of Mod(π), and
hence, by Theorem 4.8, Q(Tπ) is a max-description of
Q(Mod(π)). It is easy show that a max-description
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Figure 2: A TQL example: Tbib = Q(Tdoc) for query Q in Example 4.4

of Q(Mod(π)) is also a max-description of Q(Rep(π)),
which gives us the following.

Theorem 5.1 If π ∈ Π(Const, Var) and Q is a TQL
query, then Q(Tπ) is a certain answer to Q over Rep(π).

In particular, näıve evaluation works for TQL queries
over incomplete documents specified as Π(Const, Var)
patterns. This happens not only for flat queries (which
answers an open question from [9]), but for all TQL
queries.

5.2 XML data exchange
Recall the usual setting of a data exchange problem

(cf. [8, 30]): we have source and target schemas, and a
schema mapping M, which shows how source and target
instances are related. Semantically, such a mapping M
is a binary relation that consists of pairs (S, T ), where
S is a source instance and T is a target instance. For
a given source S, a target T that is related to it by M
is called a solution (wrt M). Given a query Q over the
target schema, and source data S, the standard notion
of query answering is certain answers for the collection
Q(T ), as T ranges over solutions. In other words, one
looks for answers that would not depend on a particular
solution that is materialized.

This problem has been extensively studied in the
relational case. For XML, pattern-based schema map-
pings were proposed in [6] which also provided a full
classification of the complexity of flat TQL queries; fol-
lowups [4, 5] were also restricted to flat queries. We now
extend those results to TQL queries returning trees.

Schema mappings Mappings M = 〈Ds, Dt, Σ〉 con-
sist of a source schema Ds, a target schema Dt, and a
set Σ of source-to-target dependencies (stds) that relate
source and target instances. Given an source of T of
schema Ds, a target T ′ of schema Dt is called a solu-
tion for T under M if (T, T ′) satisfy all the stds in Σ.
We let M(T ) stand for the set of all solutions for T .

We now give precise definitions of schemas and stds.
As in [6, 5], schemas will be given by DTDs, and stds
will be based on tree patterns.

DTDs A DTD over a labeling alphabet Γ containing a
special symbol r for the root is a pair (δlab, δattr) where
δlab maps Γ to regular expressions over Γ − {r}, and
δa : Γ 7→ N. A tree T with a root labeled r conforms to

(δlab, δattr) if each ℓ-labeled node has δattr(ℓ) attributes,
and the labels of its children can be ordered to form a
string in the language δlab(ℓ). This definition takes into
account our notational simplification about attributes
(which are identified not by names but by their element
type and position) and the fact that we use unordered
trees (which can be done in data exchange without loss
of generality, as [6] showed).

Source-to-target dependencies (stds) Following [21]

(and also [5]), we use Skolem functions in stds, to make
them more expressive and achieve composability. Fix
an infinite set Fn of function symbols, each with an
associated arity. The set of terms over Fn is defined
inductively: each x ∈ Var is a term of arity 0; and if
t1, . . . , tk are terms and f is a k-ary function symbol in
Fn, then f(t1, . . . , tk) is a k-ary term. We write t(x̄) to
indicate the list of variables used in t.

An std is an expression of the form:

π(x̄, ȳ), θ(x̄, ȳ) −→ π′(t̄(x̄)), θ′(t̄′(x̄)), (1)

where π, π′ are patterns from Π∗(Const, Var); tuples x̄
and ȳ contain variables, while t̄, t̄′ are sequences of
terms over Fn, and θ, θ′ are conjunctions of equalities
among x̄, ȳ, and terms in t̄′(x̄).

For example, assume that we start with tree Tdoc

in Fig. 2, and we want to produce a tree that for each
author, would have his/her name and date of birth, as
well as books. A natural std for this is

r/book (x)//name(z) −→ r/person(z, f(z))/work(x),

where f is a unary Skolem function whose interpretation
is the date of birth of writer z. Skolem functions make it
possible to specify that attributes such as date of birth
depend only on the name z and not the book x.

To define the semantics, we need a valuation v on Fn

that associates with each function symbol of arity k a
function f : (Const∪ Var)k → Const∪Var. Such a valu-
ation naturally extends to terms over Fn. Then a pair
of trees (T, T ′) satisfies the std (1) under a valuation
v of Skolem functions if whenever T |= π(ā, b̄) and all
the qualities in θ(ā, b̄) hold, T ′ satisfies π′(t̄(ā)) and all
the equalities in θ′ hold, when all the terms are inter-
preted by v. We say that (T, T ′) satisfies a set of stds
Σ if there is a valuation of Skolem functions such that
(T, T ′) satisfies every std in Σ under this evaluation.



Classes of schema mappings We denote the class of

schema mappings just defined by SM∗(Fn). It was
shown in [6] that answering even very simple queries
under SM∗(Fn) mappings could be intractable. To
avoid intractability, one typically imposes restrictions
on DTDs. Following [3, 4, 6], we use the class of nested-
relational DTDs. In them, all regular expressions are of

the form ℓ̂1 . . . ℓ̂m, where all ℓi’s are distinct and ℓ̂i is
either ℓi or ℓ∗i or ℓ+

i or ℓi? = ℓi|ε. Furthermore, these
DTDs are not recursive. They generalize nested rela-
tions, and it has been shown experimentally that a large
fraction of real-life DTDs is of this form [7]. We write
SMnr(Fn) for the class of schema mappings where all
DTDs are nested-relational.

Computing certain answers Given a mapping M ∈
SMnr(Fn), a source tree T , and a query Q over the target
trees, the standard semantics of query answering in data
exchange [19, 8, 30] is to compute a certain answer to
Q over all solutions for T , i.e., over M(T ).

Thus, if Q is a TQL query, we need to compute a
max-description of Q(M(T )), which will provide a cer-
tain answer. Theorem 5.2 tells us that for this, we need
to (1) compute a basis of M(T ), and (2) evaluate Q
over that basis. The following result shows that we can
always compute a finite basis in data exchange:

Theorem 5.2 Given a mapping M ∈ SM∗
nr(Fn) and a

source tree T , one can compute a basis B for M(T ) in
time single exponential in the size of T . The size of B
can be exponential, but the size of each pattern π ∈ B is
polynomial in T .

Theorem 5.2 and the recipe sketched out in Section 4
give us an algorithm for computing certain answers. We
now analyze its complexity for SM∗

nr(Fn) mappings M
and TQL queries Q. We first look at a functional (rather
than decision) problem:

CertainAnswer(M, Q): Given a source tree
T , compute a certain answer to Q over M(T ).

Note that we are talking about data complexity.
Even in this case, the size of the output can be rather
large.

Proposition 5.3 There is a mapping M ∈ SM∗
nr(Fn)

and a TQL query Q such that there exists a family
of source trees {Tn}n>0 satisfying |Tn| = O(n) and
|2Q(M(Tn))| = Ω(2n).

If we look at the combined complexity, i.e., the
problem CertainAnswer(M) in which both T and Q
are inputs, the complexity jumps by another exponent,
which is also unavoidable.

Proposition 5.4 The problem CertainAnswer(M)
is in 2ExpTime. Moreover, there is a mapping
M ∈ SM∗

nr(Fn), and families of source trees {Tn}n>0

and queries {Qn}n>0 of size polynomial in n such
|2Qn(M(Tn))| = Ω(22n

).

Before we outline restrictions that avoid high com-
plexity of query answering, we briefly look at certain
answers as a decision problem:

Verify CA(M, Q) Given a source tree T ,
and a pattern π ∈ Π(Const, Var), is π satisfied
by 2Q(M(T ))?

Equivalently, we can ask if π is satisfied by an arbi-
trary max-description π′ of Q(M(T )), since Mod(π′) =
Mod(2Q(M(T ))). The problem is clearly decidable,
but we can lower the straightforward upper bound of
Proposition 5.4 by applying Theorem 5.2 directly in-
stead. As usual, when we say that the problem with
parameters such as M and Q is complete for a class C,
we mean that it is always in C and could be hard for C
for some instantiation of the parameters.

Proposition 5.5 The problem Verify CA(M, Q) is
Πp

2-complete, and coNP-complete if the number of vari-
ables in the input pattern is fixed.

6. TRACTABLE XML DATA EXCHANGE
The machinery we developed here allowed us to

prove computability of certain answers for a large class
of mappings and a proper XML query language. The
complexity bounds of the previous section, however, are
rather high. The natural question is then whether we
can lower them.

The answer is that we can, and what we need is a
simple restriction: instead of Π∗(Const, Var) patterns
in the definition of stds (1), we use Π(Const, Var) pat-
terns. We call the resulting class of schema mappings
SMnr(Fn). In other words, we forbid descendant and
wildcard.

We claim that this is a good class of XML schema
mappings. It subsumes nested relations (and non-
relational extensions of data exchange systems such as
those in [31, 37]). And all the key problems related to
this class are tractable.

The tractability of several problems relies on the
fact that for these mappings, one can compute single-
ton bases of M(T ). These are essentially analogs of
universal solutions used heavily in relational data ex-
change [19].

Theorem 6.1 Given a mapping M ∈ SMnr(Fn) and
a source tree T , there is a single-tree basis of M(T ),
which can be constructed in time polynomial in the size
of T .

This immediately gives us tractable algorithms for
query answering and for the problem of materializing a
target instance:

Solution(M): Given a source tree T , compute a
solution T ′ ∈ M(T ).

Since every element of a basis of a set, when viewed
as a tree, belongs to the set, we obtain the following.



Corollary 6.2 Let M be a mapping in SMnr(Fn) and
Q a TQL query. Then both CertainAnswer(M, Q)
and Solution(M) are solvable in polynomial time.

We also note that the algorithms are at most single-
exponential in the size of the mapping, matching the
relational case [19].

A standard static analysis problem looked at in the
context of XML data is consistency: Given a mapping
M, does there exist an XML tree T such that M(T ) 6=
∅? In other words, does the mapping make sense? In
general, this problem is ExpTime-complete [6]. How-
ever, extending results of [6] which analyzed this prob-
lem in restricted settings (but without Skolem func-
tions) we obtain the following.

Proposition 6.3 For mappings from SMnr(Fn), the
consistency problem is solvable in polynomial time.

We next look at the issue of composability [21]. Each
mapping M is semantically a binary relation [[M]] =
{(T, T ′) | T ′ ∈ M(T )}. If we have a mapping M be-
tween DTDs D1 and D2, and a mapping M′ between
DTDs D2 and D3, their composition is the mapping
[[M]] ◦ [[M′]] = {(T, T ′) | ∃T0 : T0 ∈ M(T ) and T ′ ∈
M′(T0)}. The composability question is the following:
given two mappings M and M′, can we construct a
mapping M′′ so that [[M′′]] = [[M]] ◦ [[M′]]?

This problem was solved for the relational case in [21]
with the help of adding Skolem functions to mappings;
the composition algorithm of [21] runs in ExpTime.
It was also shown in [5] that the composition result
extends to a class of XML mappings more restrictive
than those that we consider here. But it turns out that
our tractable mappings are closed under composition.

Theorem 6.4 The class of mappings SMnr(Fn) is
closed under composition. Moreover the composition of
two mappings can be constructed in ExpTime.

We conclude by an observation about the problem
Verify CA(M, Q) for mappings in SMnr(Fn). It turns
out that we can lower the bounds of Proposition 5.5. We
note that the relational analog of this problem, whether
a näıve table (an analog of a pattern) is entailed by a
solution in relational data exchange, is NP-complete
(this is essentially the problem of containment of näıve
tables [2]). We get a matching bound for our XML
class, and a tractability result for fixed patterns.

Proposition 6.5 Verify CA(M, Q) is NP-complete
for mappings from SMnr(Fn), and in PTime if the num-
ber of variables in the input pattern is fixed.

In summary, the class of mappings SMnr(Fn) is
closed under composition, has a tractable consistency
problem, and the two key computational problems for
it – materializing solutions and answering queries that
may return documents – are solvable in polynomial time
using the technique of computing bases for sets of trees.

7. FUTURE WORK
Now that we have a methodology for defining cer-

tain answers for proper XML queries, we would like to
extend it in several ways. One direction has to do with
additional power of query languages. Even though we
allow trees as outputs and nesting of queries, we do not
yet have any form of negation. In relational databases,
adding negation requires more expressive representation
mechanisms such as conditional tables [1, 27]. We would
like to understand their XML analogs.

A second direction is about adding constraints, ei-
ther on incomplete documents, or over target instances
in data exchange. It is known that the complexity of
many problems goes up with the addition of constraints
[8, 14, 19, 30] in such settings. Query answering mech-
anisms are likely to change as well; we expect to adapt
some form of chase for complex objects [18] to find cer-
tain answers over constraint-restricted classes of docu-
ments.

There is also a certain duality between the well-
studied concept of a universal solution in data ex-
change [19] and our notion of max-description, which
we would like to look at. To define universal solutions,
we start with the set of all solutions and find those
that have a homomorphism into every solution. For
max-descriptions, on the other hand, we start with the
theory Th(T ), and then find its elements so that there
is a homomorphism from every other element of Th(T )
into them.
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[8] P. Barceló. Logical foundations of relational data exchange.
SIGMOD Record, 38(1):49–58, 2009.
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