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ABSTRACT

For many problems arising in the setting of graph
querying (such as finding semantic associations in RDF
graphs, exact and approximate pattern matching, se-
quence alignment, etc.), the power of standard lan-
guages such as the widely studied conjunctive regu-
lar path queries (CRPQs) is insufficient in at least two
ways. First, they cannot output paths and second, more
crucially, they cannot express relations among paths.

We thus propose a class of extended CRPQs, called
ECRPQs, which add regular relations on tuples of
paths, and allow path variables in the heads of queries.
We provide several examples of their usefulness in
querying graph structured data, and study their proper-
ties. We analyze query evaluation and representation of
tuples of paths in the output by means of automata. We
present a detailed analysis of data and combined com-
plexity of queries, and consider restrictions that lower
the complexity of ECRPQs to that of relational con-
junctive queries. We study the containment problem,
and look at further extensions with first-order features,
and with non-regular relations that express arithmetic
properties of paths, based on the lengths and numbers
of occurrences of labels.

Categories and Subject Descriptors. H.2.1 [Database
Management]: Logical Design—Data Models ; F.1.1
[Computation by abstract devices]: Models of
Computation—Automata

General Terms. Theory, Languages, Algorithms

Keywords. Graph databases, conjunctive queries, reg-
ular relations, regular path queries
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1. INTRODUCTION

For graph-structured data, queries that allow users to
specify the types of paths in which they are interested
have always played a central role. Most commonly, the
specification of such paths has been by means of regu-
lar expressions over the alphabet of edge labels [2, 10,
13, 16, 29]. The output of a query is typically a set of
tuples of nodes that are connected in some way by the
paths specified. The canonical class of queries with this
functionality are the conjunctive regular path queries
(CRPQs), which have been the subject of much inves-
tigation, e.g. [10, 14, 16].

However, the rapid increase in the size and complexity
of graph-structured data (e.g. in the Semantic Web, or
in biological applications) has raised the need for ad-
ditional functionality in query languages. Specifically,
in many examples, the minimum requirements of suffi-
ciently expressive queries are: (a) the ability to define
complex semantic relationships between paths and (b)
the ability to include paths in the output of the query.
Neither of these is supported by CRPQs.

There are multiple examples of queries that require
these new capabilities. For example, [5] introduces
a query language for RDF/S in which paths can be
compared based on specific semantic associations. In
handling biological sequences one often needs to com-
pare paths based on similarity (e.g., edit distance) [20].
Paths can be compared with respect to other parame-
ters, e.g., lengths or numbers of occurrences of labels,
which can be useful in route-finding applications [6].

As for the ability to output paths, this has been pro-
posed, for example, as an extension to the SPARQL
query language – the standard for retrieving RDF data
[24]. However, [24] only proposed a declarative lan-
guage, and left most basic questions unexplored (e.g.,
what should an output be if there are infinitely many
paths between nodes?). Other applications for this
new functionality include determining the provenance
of data or artifacts [21], finding associations in linked
data [27], biological data [26] or social (or criminal) net-



works [32], as well as performing semantic searches over
web-derived knowledge [36].

While the need for the extended functionality of graph
query languages is well-documented (and sometimes is
even incorporated into a programming syntax), the ba-
sic theoretical properties of such languages are com-
pletely unexplored. We do not know whether queries
can be meaningfully evaluated, what their complexity
is, whether they can be optimized, etc.

Our main goals, therefore, are to formally define exten-
sions of graph queries that can express complex seman-
tic associations between paths and output paths to the
user, and to study them, concentrating on query evalu-
ation and its complexity, as well as some static analysis
problems.

We work with the class of extended conjunctive regular
path queries or (ECRPQs), which generalize CRPQs by
allowing them to express the kind of semantic associa-
tion properties we explained above. That is, we allow
(i) n-tuples of path labels to be checked for conformity
to n-ary path languages, and (ii) paths, rather than
simply nodes, to be output. Conformity with respect
to n-ary languages is given, following the idea behind
CRPQs, with respect to n-ary regular relations.

As an example, consider a graph G with a single edge
label, defining the student-advisor relationship. Using
CRPQs, one can express many queries, such as find-
ing academic ancestors, or people whose sets of aca-
demic parents and grandparents intersect, or checking
whether Van Gucht and Tannen have a common aca-
demic ancestor (and if so, who that person is). However,
with CRPQs we cannot express queries asking for pairs
of scientists who have the same-length path to Tarski,
for example, nor can one ask for the precise paths by
which Van Gucht and Tannen are related to their com-
mon academic ancestor. With ECRPQs, we can express
such queries.

While leaving the above queries to the reader as an
exercise, we now outline a few examples of problems
where the power of ECRPQs is required. They will be
fully developed in Section 3, after we have presented the
syntax and semantics of ECRPQs.

(i) Pattern matching Given an alphabet Σ and a set
of variables V , a pattern is a string over Σ ∪ V . A pat-
tern defines a pattern language by instantiating vari-
ables with strings in Σ∗. Pattern languages need not be
context-free: e.g., the language of squared words over Σ
can be expressed by the patternXX , whereX ∈ V . But
finding nodes x and y connected by a path whose label
is in the language of squared words can be expressed by
the ECRPQ:

Ans(x, y) ← (x, π1, z), (z, π2, y), π1 = π2

where x, y and z are node variables and π1 and π2 are
path variables. Variables z, π1, and π2 are meant to
be existentially quantified. What makes this different

from CRPQs is the binary relation π1 = π2 on paths:
it states that the paths between x and an intermediate
node z, and between z and y are the same.

(ii) Semantic web associations In RDF/S, properties
can be declared to be subproperties of other proper-
ties. This is used in [5] to define a notion of semantic
association based on ρ-isomorphic property sequences:
two sequences are ρ-isomorphic if they are of the same
length and the properties at the same position in each
sequence are subproperties of one another. Such pairs
of sequences can be found by a modification of the pre-
vious query with a different binary relation expressing
the fact that the paths are ρ-isomorphic.

(iii) Approximate matching Approximate string match-
ing [19, 23] and (biological) sequence alignment [20] are
both based on the notion of edit distance. The relation
representing pairs of sequences that have edit distance
at most k from one another, for some fixed k, is regular
[18]. So given a graph representing a pair of sequences,
an ECRPQ can determine whether they have edit dis-
tance at most k. We show in Section 3.1 that we can
also output the actual gaps and mismatches in the se-
quences using an ECRPQ.

Outline of the results After we formally define ECR-
PQs, we present an algorithm for query evaluation. It
turns out that the sets of labels of paths satisfying a
query are regular, and thus the evaluation algorithm
constructs automata to represent such sets.

We then investigate the complexity of query evaluation.
As yardsticks, we consider relational languages as well
as CRPQs. For conjunctive queries, combined complex-
ity is NP-complete, while it jumps to Pspace-complete
for relational calculus. Hence we cannot hope to get
anything below NP for ECRPQs, and we hope not to
exceed the complexity of relational queries in a reason-
able class. As for data complexity, it is known to be
NLogspace-complete for CRPQs, so this will serve as
another benchmark.

It turns out that the data complexity of ECRPQs
matches that of CRPQs, but combined complexity goes
up from NP to Pspace, matching relational calculus in-
stead. In this case it is natural to look for restrictions.
A standard one for CQs is a restriction to acyclicity.
This works for CRPQs – combined complexity becomes
tractable – but does not work for ECRPQs, as the com-
bined complexity remains Pspace-complete. However,
if our regular relations can only talk about lengths of
paths, then the complexity of ECRPQs drops to NP,
matching the complexity of the usual relational CQs.

We then look at extensions of CRPQs and ECRPQs:
with negation and universal quantification, and with
some non-regular relations. For the former, we get sur-
prisingly reasonable bounds for CRPQs, but the com-
plexity becomes too high when both negation and re-
lations on paths are allowed. For the latter, we look
at extensions with linear constraints on path lengths,



and prove some good complexity bounds (tractable
data complexity and NP combined complexity). We
also look at relations that compare numbers of occur-
rences of labels in paths, and prove some low complexity
bounds for queries with such relations.

While query containment is known to be decidable for
CRPQs, we show that ECRPQs share more properties
with full relational calculus: containment for them be-
comes undecidable. We recover decidability in one im-
portant subcase though.

Organization In the next section, we present back-
ground material on graphs, regular relations and CR-
PQs. Section 3 introduces ECRPQs and looks at their
applications in more detail. In Section 4, we consider
the evaluation of ECRPQs. Section 5 deals with the
data and combined complexity of ECRPQs. In Sec-
tion 6 we look at query containment, and in Section 7
we consider extensions with negation, and with non-
regular features.

2. PRELIMINARIES

Labeled graphs and paths Queries in our set-
ting will be evaluated over labeled database graphs
(db-graphs), that naturally model semistructured data.
Formally, if Σ is a finite alphabet, then a Σ-labeled db-
graph G (or simply db-graph if Σ is clear from the con-
text) is a pair (V,E), such that V is a finite set of nodes
and E ⊆ V ×Σ×V is a set of directed edges labeled in
Σ.

A path ρ between nodes v0 and vm in G is a sequence
v0a0v1a1v2 · · · vm−1am−1vm, where m ≥ 0, so that all
the vi’s are in V , all the aj ’s are letters of Σ, and
(vi, ai, vi+1) is in E for each i < m. The label of such a
path ρ, denoted by λ(ρ), is the string a0 · · ·am−1 ∈ Σ∗.
We also define the empty path as (v, ε, v) for each v ∈ V ;
the label of such a path is the empty string ε.

Note that a Σ-labeled db-graph G can be naturally
viewed as a nondeterministic finite automaton (NFA)
over alphabet Σ without initial and final states. Its
states are nodes in V , and its transitions are edges in
E. We use this equivalence in several constructions in
the paper.

Regular relations As our plan is to extend the notion
of recognizability from string languages to n-ary string
relations, we now give the standard definition of regular
relations over Σ [15, 18, 8]. Let ⊥ be a symbol not
in Σ. We denote the extended alphabet (Σ ∪ {⊥}) by
Σ⊥. Let s̄ = (s1, . . . , sn) be an n-tuple of strings over
alphabet Σ. We construct a string [s̄] over alphabet
(Σ⊥)n, whose length is the maximum of the sj ’s, and
whose i-th symbol is a tuple (c1, . . . , cn), where each
ck is the i-th symbol of sk, if the length of sk is at
least i, or ⊥ otherwise. In other words, we pad shorter
strings with the symbol ⊥, and then view the n strings
as one string over the alphabet of n-tuples of letters.

An n-ary relation S on Σ∗ is regular, if the set {[s̄] |
s̄ ∈ S} of strings over alphabet (Σ⊥)n is regular (i.e.,
accepted by an automaton over (Σ⊥)n, or given by a
regular expression over (Σ⊥)n). We shall often use the
same letter for both a regular expression over (Σ⊥)n

and the relation over Σ∗ it denotes, as doing so will not
lead to any ambiguity.

As an example, consider a binary relation s � s′, saying
that s is a prefix of s′. The automaton recognizing this
relation accepts if it reads a sequence of letters of the
form (a, a), for a ∈ Σ, possibly followed by a sequence
of letters of the form (⊥, b), for b ∈ Σ. As another ex-
ample, consider a binary relation el(s, s′) (equal length)
saying that |s| = |s′|. This relation is recognized by an
automaton that accepts if it does not see any letters
involving the ⊥ symbol.

To understand which relations on strings are regular,
it is often useful to provide a model-theoretic charac-
terization of this class. In the following we assume fa-
miliarity with first-order logic (FO). Consider the FO-
structure Muniv = 〈Σ∗,�, el, (Pa)a∈Σ〉 with domain
Σ∗, where � and el are as above, and Pa(s) is true
iff the last letter for s is a. This is known as a uni-
versal automatic structure due to the following [8, 9]:
an n-ary relation S on Σ∗ is regular iff there exists
an FO formula φS(x1, . . . , xn) over Muniv such that
S = {s̄ ∈ (Σ∗)n | Muniv |= φS(s̄)}.

In particular, regular relations are closed under all
Boolean combinations, product, and projection. Fur-
thermore, using the above result it is quite easy to show
that an n-ary relation is regular, by exhibiting FO for-
mulae defining them (see [8, 9, 7] for examples). For
example, |s| < |s′| is a regular relation definable by
φ(x, y) = ∃y′ (y′ � y ∧ y′ 6= y ∧ el(y′, x)). On the
other hand, more elaborate techniques have to be used
to prove that an n-ary relation on Σ is not regular. Ex-
amples of this kind include the binary relation �ss, that
consists of all pairs (s1, s2) such that s1 is a subsequence
of s2, and the ternary relation that contains all tuples
(s1, s2, s3) such that s1s2 = s3.

Conjunctive regular path queries A basic querying
mechanism for graph databases is the class of regular
path queries [3, 11] that retrieve all pairs of objects in
a db-graph connected by a path conforming to some
regular expression. However, it has been argued (e.g.
[30]) that in order to make regular path queries useful in
practice, they should be extended with several features,
one of them being the possibility of using conjunctions
of atoms. This extension yields the class of conjunctive
regular path queries, which we formally define below
(see also [13, 29, 16, 10]).

Fix a countable set of node variables (typically denoted
by x, y, z, . . .), and a countable set of path variables (de-
noted by π, ω, χ, . . .). A conjunctive regular path query
(CRPQ) Q over a finite alphabet Σ is an expression of



the form:

Ans(z̄) ←
∧

1≤i≤m

(xi, πi, yi),
∧

1≤j≤t

Lj(ωj), (1)

such that

(i) m > 0, t ≥ 0,

(ii) each Lj is a regular expression over Σ,

(iii) x̄ = (x1, . . . , xm), ȳ = (y1, . . . , ym) and z̄ are tu-
ples of node variables,

(iv) {π1, . . . , πm} are distinct path variables,

(v) {ω1, . . . , ωt} are distinct path variables and each
ωj is among the πi’s, and

(vi) z̄ is a tuple of node variables among x̄ and ȳ.

The atom Ans(z̄) is the head of the query, the expres-
sion on the right of the ← is its body. The query Q is
Boolean if its head is of the form Ans(), i.e. z̄ is the
empty tuple.

Intuitively, such a query Q selects tuples z̄ for which
there exist values of the remaining node variables from
x̄ and ȳ and paths πi between xi and yi whose labels
satisfy the regular expressions L1 to Lt. Formally, to
define the semantics of CRPQs Q of the form (1), we
first introduce a relation (G, σ, µ) |= Q, where σ is a
mapping from x̄, ȳ to the set of nodes of a db-graph
G = (V,E), and µ is a mapping from {π1, . . . , πm} to
paths in G. This relation holds iff µ(πi) is a path in
G from σ(xi) to σ(yi), for 1 ≤ i ≤ m, and the label of
each path µ(ωj) is in the language of Lj, for 1 ≤ j ≤ t.

We now define Q(G) to be the set of tuples σ(z̄) such
that (G, σ, µ) |= Q. If Q is Boolean, we let Q(G) be true
if (G, σ, µ) |= Q for some σ and µ (that is, as usual, the
empty tuple models the Boolean constant true, and the
empty set models the Boolean constant false).

Remark: Our syntax differs slightly from the usual
CRPQ syntax in the literature (see e.g. [16, 10]). The
reason is that we make explicit use of path variables
in the queries – to treat CRPQs and ECRPQs in a
uniform manner – while the standard approach is to
refer to paths only implicitly.

3. EXTENDED CONJUNCTIVE REGULAR
PATH QUERIES

Our goal is to extend the class of CRPQs in two ways.
First, we want to allow free path variables in the heads of
queries. Second, we want the bodies of queries to permit
checking relations on sets of paths rather than just con-
formance of individual paths to regular languages. This
leads to the definition of a class of extended CRQPs.

An extended conjunctive regular path query (ECRPQ)

Q over Σ is an expression of the form:

Ans(z̄, χ̄) ←
∧

1≤i≤m

(xi, πi, yi),
∧

1≤j≤t

Rj(ω̄j), (2)

such that

(i) m > 0, t ≥ 0,

(ii) each Rj is a regular expression that defines a reg-
ular relation over Σ,

(iii) x̄ = (x1, . . . , xm) and ȳ = (y1, . . . , ym) are tuples
of node variables,

(iv) π̄ = (π1, . . . , πm) is a tuple of distinct path vari-
ables,

(v) {ω̄1, . . . , ω̄t} are distinct tuples of path variables,
such that each ω̄j is a tuple of variables from π̄, of
the same arity as Rj ,

(vi) z̄ is a tuple of node variables among x̄, ȳ, and

(vii) χ̄ is a tuple of path variables among those in π̄.

Note that this is similar to the definition of CRPQs; the
main differences between (1) and (2) are:

• ECRPQs can check whether a tuple of paths be-
longs to a regular relation, rather than just check-
ing whether a path belongs to a regular language;
and

• outputs of ECRPQs may contain both nodes
and paths, while outputs of CRPQs contain only
nodes.

The head, the body, and the notion of Boolean ECRPQs
are defined in the standard way. The relational part of
an ECRPQ Q (2) is

∧

1≤i≤m(xi, πi, yi).

The semantics of ECRPQs is defined by a natural ex-
tension of the semantics of CRPQs. For an ECRPQ
Q of the form (2), a db-graph G and mappings σ from
node variables to nodes and µ from path variables to
paths, we write (G, σ, µ) |= Q if

• µ(πi) is a path in G from σ(xi) to σ(yi), for 1 ≤
i ≤ m, and

• for each ω̄j = (πj1 , . . . , πjk
), the tuple of strings

consisting of labels of µ(πj1 ), . . . , µ(πjk
) belongs

to the relation Rj .

The output ofQ onG (where the head ofQ is Ans(z̄, χ̄))
is defined as

Q(G) = {(σ(z̄), µ(χ̄)) | (G, σ, µ) |= Q}.

Note that the implicit existential quantification over
path variables that appear in the body but not in the
head is quantification over a potentially infinite set, as
there are infinitely many paths in any cyclic db-graph.

From now on, we identify the class of CRPQs with the
restriction of the class of ECRPQs to queries that do not



use regular relations of arity ≥ 2. This is more general
than the definition of the previous section, since we now
allow CRPQs to output paths.

It is easy to prove that the class of ECRPQs is strictly
more expressive than the class of CRPQs. Formally,

Proposition 3.1. There is a Boolean ECRPQ Q that is
not equivalent to any CRPQ Q′.

3.1 Applications ofECRPQs

In this section, we show that ECRPQs can express
queries found in a wide variety of application areas, in-
cluding finding associations in semantic web (or linked)
data, pattern matching, approximate string matching,
and biological sequence alignment.

Finding semantic web associations In a query lan-
guage for RDF/S introduced in [5], paths can be com-
pared based on specific semantic associations. Edges
correspond to RDF properties and paths to property
sequences. A property a can be declared to be a sub-
property of property b, which we denote by a ≺ b. Two
property sequences u and v are called ρ-isomorphic iff
u = u1, . . . , un and v = v1, . . . , vn, for some n, and
ui ≺ vi or vi ≺ ui for every i ≤ n [5]. Nodes x and y
are called ρ-isoAssociated iff x and y are the origins of
two ρ-isomorphic property sequences.

Finding nodes which are ρ-isoAssociated cannot be
done in a query language supporting only conventional
regular expressions, not least because doing so requires
checking that two paths are of equal length. However,
pairs of ρ-isomorphic sequences can be expressed us-
ing the regular relation R given by the following reg-
ular expression:

(
⋃

a,b∈Σ: (a≺b∨b≺a)(a, b)
)∗

. Then an

ECRPQ returning pairs of nodes x and y that are ρ-
isoAssociated can be written as follows:

Ans(x, y) ← (x, π1, z1), (y, π2, z2), R(π1, π2)

Path variables in an ECRPQ can also be used to return
the actual paths found by the query, a mechanism found
in the query languages proposed in [2, 5, 21, 24]. For
example, in [5] a ρ-query can take a pair of nodes u, v
and return the property sequences relating them. This
too can be expressed by an ECRPQ:

Ans(π1, π2) ← (u, π1, z1), (v, π2, z2), R(π1, π2)

where the regular relation R is defined as above.

Pattern matching Let Σ be a finite alphabet and V
be a countable set of variables such that Σ ∩ V = ∅. A
pattern α is a string over Σ∪V . It denotes the language
LΣ(α) obtained by applying substitutions σ : V → Σ∗

to α. As we remarked already, such languages need not
even be context-free.

However, for each pattern α = α1 · · ·αn, where every
αi ∈ Σ ∪ V , we can define an ECRPQ Qα(x, y) which

finds pairs of nodes connected by a path in LΣ(α) (note
that this property is not definable by a CRPQ).

Indeed, the relational part of Qα is
(x0, π1, x1), . . . , (xn−1, πn, xn). If αi is a letter,
then Qα contains the atom a(πi), and if αi is a
variable, then it contains Σ∗(πi). Finally, to ensure
equality of variables, for every two αi, αj which are
the same variable, the query Qα contains a conjunct
πi = πj . It is clear that Qα indeed finds nodes
connected by paths from LΣ(α).

In fact, ECRPQs can express queries corresponding to
a larger class of languages than the pattern languages.
Regular expressions with backreferencing [4], as pro-
vided by egrep and Perl, for example, are in some sense
a generalization of patterns in that substitutions of vari-
ables are restricted by regular expressions: the syntax
(e)%X , where e is a regular expression and X is a vari-
able, binds a string w ∈ L(e) to X . Subsequent uses of
X in the expression then match w. It should be clear
that we can easily extend the above construction of an
ECRPQ for patterns to one that corresponds to a reg-
ular expression with backreferencing.

In fact, ECRPQs can match patterns, such as anbncn,
where a, b, c ∈ Σ and n ∈ N, that cannot be denoted by
regular expressions with backreferencing, with the help
of the equal length predicate:

Ans(x, y)← (x, π1, z1), (z1, π2, z2), (z2, π3, y),

a∗(π1), b
∗(π2), c

∗(π3), el(π1, π2), el(π2, π3),

where el(π, π′) is a shorthand for (
⋃

a,b∈Σ(a, b))∗(π, π′).

Approximate matching and sequence alignment
We treat approximate string matching and (biological)
sequence alignment together because both are based on
the notion of edit distance between strings. We consider
the three edit operations of insertion, deletion and sub-
stitution, defined as follows. Let s, s′ ∈ Σ∗. Applying
an edit operation to s yielding s′ can be modeled as a
binary relation ; over Σ∗ such that x ; y holds iff
there exist u, v ∈ Σ∗, a, b ∈ Σ, with a 6= b, such that
one of the following is satisfied:

x = uav, y = ubv (substitution)
x = uav, y = uv (deletion)
x = uv, y = ubv (insertion)

Let
k
; stand for the composition of ; with itself k

times. The edit distance de(x, y) between x and y is the

minimum number k of edit operations such that x
k
; y.

We define a relation D≤k between strings as follows:
(x, y) ∈ D≤k iff de(x, y) ≤ k. This relation is regular
(indeed, it is easy to see that it is accepted by a two-tape
transducer, and the difference between the lengths of x
and y is bounded by k; then it follows from the fact that
rational relations of such bounded distance are regular
[18]).

We now consider the use of edit distance in finding



string (or sequence) alignments. We can view an align-
ment of strings x and y over Σ at distance k as follows:

x = x0 a1 x1 · · · ak xk

y = y0 b1 y1 · · · bk yk
(3)

such that (i) xi, yi ∈ Σ∗ and xi = yi for i ∈ [0, k], and
(ii) ai, bi ∈ Σ ∪ {ǫ} and ai 6= bi, for i ∈ [1, k]. There is
an alignment of x and y at distance k iff (x, y) ∈ D≤k.
We call each pair (xi, yi) a match and each pair (ai, bi)
a mismatch if ai, bi ∈ Σ or a gap if ai or bi is ǫ. (If
we allow that ai = bi, then we align the strings with
distance at most k).

We have shown above that we can use an ECRPQ to
determine whether there exists an alignment at distance
k between two strings. However, we may also wish to
return the actual gaps and mismatches to the user. For
that, we assume that each node has an ǫ-labeled loop,
and use an ECRPQ whose body is as follows

∧

0≤i≤2k

(xi, πi, xi+1),
∧

0≤i≤2k

(yi, ρi, yi+1),

∧

0≤i≤k

π2i = ρ2i,
∧

1≤i≤k

R(π2i−1, ρ2i−1),

where R is a finite language containing all pairs (a, b)
in Σ ∪ {ǫ} with a 6= b. The head of the query contains
the variables π2i−1, ρ2i−1, for 1 ≤ i ≤ k.

With the same approach, we can use ECRPQs to align
not only pairs but arbitrary tuples of sequences. Mul-
tiple sequence alignment is used to find the shared evo-
lutionary origins of biological sequences.

4. QUERY EVALUATION

We now describe how ECRPQs can be evaluated. We
need to take care of two aspects that distinguish ECR-
PQs from CRPQs: relations on paths, and path vari-
ables in the output. To deal with the former, we de-
fine a notion of convolutions of db-graphs and queries,
that reduces the evaluation of ECRPQs to the evalua-
tion of CRPQs. To deal with the latter, we produce an
automaton construction that can represent both nodes
and paths in the output.

Convolutions of graphs and queries We now
present a construction that transforms a db-graph G
and an ECRPQ Q into a db-graph G′ and a CRPQ Q′

with a single relational atom so that the evaluation of
Q′ over G′ “coincides” (modulo a simple translation)
with the evaluation of Q over G.

Let G be a Σ-labeled db-graph. By G⊥ we denote the
Σ⊥-labeled db-graph obtained from G by adding a ⊥-
labeled loop to each node of G. We iteratively define
Gm, the m’th convolution of G, as follows:

G1 := G⊥ and Gm+1 = G⊥ ⊗G
m,

where ⊗ denotes the product of two db-graphs. We use
the symbol ⊗ rather than × to indicate that this is
not the standard product viewed as a graph/automaton
over the same alphabet, but rather a graph over the
product of alphabets. Formally, given a Σ1-labeled db-
graph G1 = (V1, E1) and a Σ2-labeled db-graph G2 =
(V2, E2), their product G1⊗G2 is the (Σ1×Σ2)-labeled
db-graph G = (V1 × V2, E), where E contains edges
((v1, v2), (a, b), (v

′
1, v

′
2)), such that (v1, a, v

′
1) ∈ E1 and

(v2, b, v
′
2) ∈ E2. Note that this makes Gm a (Σ⊥)m-

labeled db-graph.

Consider an ECRPQ Q of the form:

Ans(z̄, χ̄) ←
∧

1≤i≤m

(x2i−1, πi, x2i),
∧

1≤j≤t

Rj(π̄
j). (4)

Note that the variables x1, . . . , x2m are not necessar-
ily distinct. Let Sj (1 ≤ j ≤ t) be the nj-ary regular
relation defined by Rj . We let LQ be the regular ex-
pression over (Σ⊥)m that represents the m-ary regular
relation SQ = S1(π̄

1) ⊲⊳ . . . ⊲⊳ St(π̄
t). Note that SQ

is indeed regular since the class of regular relations is
closed under intersection, projection, and product, and
that relations of the form {s̄ | si = sj}, which are nec-
essary for defining joins, are regular as well.

The convolution of ECRPQ Q (4) is the CRPQ query
Qc defined as

Ans(y, y′, π) ← (y, π, y′), LQ(π). (5)

Note that this is indeed a CRPQ over (Σ⊥)m-labeled
db-graphs. Moreover, Qc(G

m), which consists of two
m-tuples of nodes and a path in Gm, contains all the
information we need to extract Q(G); below, we show
how to do this.

Let

ρ̄ = v̄0ā0v̄1ā1v̄2 · · · v̄p−1āp−1v̄p

be a path in Gm, where v̄i = (v1
i , . . . , v

m
i ) for each i ≤ p

is a node in Gm, and āi = (a1
i , . . . , a

m
i ) for each i ≤ p−1

is an element of (Σ⊥)m. Then, for each j ≤ m, we let

ρ̄(j) = v
j
0a

j
0v

j
1 · · · v

j
p−1a

j
p−1v

j
p

be a path in G⊥. Notice that this is indeed a path in G⊥

but not necessarily in G, as it may contain ⊥-labeled
loops. We then let ρ̄s(j) stand for the path obtained
from ρ̄(j) by eliminating all such loops v⊥v; this is now
a path in G.

The output of Qc(G
m) consists of tuples of the form

(ū, ū′, ρ̄), where ū = (u1, u3, . . . , u2m−1) and ū′ =
(u2, u4, . . . , u2m) are nodes in Gm and ρ̄ is a path in
Gm. We say that (ū, ū′) are Q-compatible if, whenever
xi = xj in Q, we have ui = uj , for all i, j ≤ 2m. We
now define the Q-compatible output of Qc on Gm as the
projection of the set
{

(ū, ū′, ρ̄s(1), . . . , ρ̄s(m))

∣

∣

∣

∣

(ū, ū′) is Q-compatible
and (ū, ū′, ρ̄) ∈ Qc(G

m)

}

onto the attributes that appear in the head of Q in (4).



That is, if xi is among z̄, we project onto ui, and if πj

is among χ̄, we project onto ρ̄s(j).

Theorem 4.1. Let Q be an ECRPQ of the form (4) and
G a db-graph. Then the Q-compatible output of the con-
volution CRPQ Qc on Gm coincides with Q(G).

Representing paths in the answers Since ECRPQs
can return paths, the answer to a query may be infinite
(for example, if there is a cycle in the input graph, then
we have infinitely many paths). In such cases we need
to return a compact representation of the set of answers
to an ECRPQ. It turns out that for each tuple of nodes
v̄, the set {χ̄ | (v̄, χ̄) ∈ Q(G)} is a regular relation, and
an automaton defining this relation can be constructed
in time polynomial in the size of the input graph. We
now present this construction.

Consider an ECRPQ Q of the form (2), i.e.,
Ans(z̄, χ̄) ←

∧

1≤i≤m(xi, πi, yi),
∧

1≤j≤p Rj(π̄
j), a db-

graph G = (V,E), and a tuple v̄ of nodes such that
|v̄| = |z̄|. We let Q(G, v̄) stand for the set {ρ̄ | (v̄, ρ̄) ∈
Q(G)}.

Let |χ̄| = k. We say that a path π̄ in Gk rep-
resents a k-tuple of paths (ρ1, . . . , ρk) in Q(G, t̄) if
π̄s(j) = ρj for each j ≤ k and the label of π̄ is pre-
cisely [λ(ρ1), . . . , λ(ρk)]. Recall that λ(·) stands for the
label of a path; in particular, each λ(ρj) is a string
in Σ∗. Notice that such a path π̄ is unique for the
tuple (ρ1, . . . , ρk), and in turn determines the tuple
(ρ1, . . . , ρk) uniquely.

Proposition 4.2. For each ECRPQ Q with the head
Ans(z1, . . . , zℓ, χ1, . . . , χk), db-graph G = (V,E) and
tuple v̄ ∈ V ℓ, one can construct, in polynomial time in

|E|, an automaton A
(G,v̄)
Q over the alphabet V k ∪ (Σ⊥)k

that accepts precisely the representations of all the tu-
ples of paths in Q(G, v̄).

5. COMPLEXITY OF QUERY EVALUA-
TION

The reduction from ECRPQs to CRPQs gives us fairly
easy upper bounds: one has to compute the convolution
and evaluate a CRPQ over it. Using NLogspace and
NP bounds on the data and combined complexity of
CRPQs, we conclude that the data complexity of ECR-
PQs is in Ptime, and their combined complexity is in
Exptime. But can we do better?

It turns out that we can. For data complexity, we
can lower the bound to NLogspace: that is, the
data complexity of CRPQs and ECRPQs is the same.
For combined complexity, however, relations do make
a difference: we show Pspace-completeness of com-
bined complexity. In the relational world, there are
many techniques for lowering the NP combined com-
plexity of conjunctive queries, typically by considering
acyclic queries. This approach works for CRPQs, for

which we show that acyclic queries can be evaluated in
Ptime. However, when we move to ECRPQs, acyclic-
ity does not lower the complexity. We then show that
the techniques inspired by modeling infinite-state sys-
tems for verifying their temporal properties give us NP-
completeness of combined complexity of classes of ECR-
PQs, matching the combined complexity of relational
CQs.

5.1 Data complexity

If we fix a query Q over Σ, the problem we look at is
the following:

Problem: ECRPQ-eval(Q)
Input: A Σ-labeled db-graph G, a tuple v̄

of nodes in G and a tuple ρ̄ of paths
in G.

Question: Does (v̄, ρ̄) belong to Q(G)?

The convolution technique, if applied carefully, gives us
an NLogspace upper bound. To evaluate the convolu-
tion query Qc over Gm, we use an “on the fly” evalua-
tion of the emptiness algorithm for the cross product of
the automaton Gm, with a guessed assignment for the
initial and final states, and the automaton AQ that ac-
cepts the language LQ of the convolution query. In the
proof we still have to deal with some technical details
(for instance, the presence of paths in the output for
non-Boolean queries).

Theorem 5.1. For each ECRPQ Q, the problem
ECRPQ-eval(Q) is in NLogspace.

Since the problem can be NLogspace-hard even for
regular path queries that do not make use of path vari-
ables in the head [13], we also have a matching lower
bound. Also note that when query Q is fixed, Propo-
sition 4.2 tells us that there is a polynomial-size family
of automata that represents the whole space of answers
for Q over G.

5.2 Combined complexity

We now turn to the combined complexity, that is, query
evaluation that takes both the db-graph and the query
as the input:

Problem: ECRPQ-eval
Input: A finite alphabet Σ, a Σ-labeled db-

graph G, an ECRPQ Q over Σ, a
tuple v̄ of nodes in G and a tuple ρ̄
of paths in G.

Question: Does (v̄, ρ̄) belong to Q(G)?

The problem CRPQ-eval is the restriction to when
the query Q in the input is a CRPQ.



We start with the easier problem CRPQ-eval. It ap-
pears to be a folklore result (although we could not find
it stated explicitly in the literature) that, without path
variables in the head (i.e., the empty tuple ρ̄) this prob-
lem is NP-complete. For the sake of completeness we
present (in the full version) a proof of a slightly more
general result that handles free path variables as well.

Proposition 5.2. CRPQ-eval is NP-complete.

However, adding regular relations to queries makes the
query evaluation problem harder (at least under widely-
held complexity theoretical assumptions). Notice that
this is in stark contrast with what happens in the same
case to the data complexity of the problem, where rela-
tions on paths do not increase the complexity.

Theorem 5.3. ECRPQ-eval is Pspace-complete. It
remains Pspace-hard even when restricted to Boolean
ECRPQs.

Note that the algorithm of Theorem 4.1 runs in single-
exponential time; we give an on-the-fly construction of
the automaton for computing the output that reduces
the complexity to Pspace. Hardness follows from en-
coding the regular expression intersection problem as
an ECRPQ.

We now look at various approaches to lowering the com-
plexity of query evaluation.

Acyclic queries It is, of course, a classical result of
relational theory that acyclic conjunctive queries are
tractable with respect to combined complexity. What
if we require that the relational part of an (E)CRPQ
be acyclic? Formally, we say that an ECRPQ or a
CRPQ Q is acyclic if the graph HQ of its relational
part

∧

1≤i≤m(xi, πi, yi), containing precisely the edges

(xi, yi) for i ≤ m, is acyclic.

The following result shows that the situation is drasti-
cally different for CRPQs and ECRPQs: the restriction
works for the former but not for the latter. In fact,
allowing only unary regular relations is precisely the
boundary of tractability for the query evaluation prob-
lem restricted to acyclic ECRPQs.

Theorem 5.4. • The problem CRPQ-eval is in
Ptime, if restricted to the class of acyclic CRPQs.

• The problem ECRPQ-eval is Pspace-complete,
even if restricted to the class of acyclic Boolean
ECRPQs over a fixed alphabet Σ, that make use of
regular relations of arity at most 2.

For the first item, we show that the problem is re-
duced to evaluating acyclic CQs over the usual rela-
tional databases. The second item uses the reduction
of Theorem 5.3, which requires Boolean acyclic queries
and binary relations over a fixed alphabet.

Numerical representations of regular relations
The idea comes from the field of verification of infinite-

state systems, where regular languages are used to rep-
resents possible states of such systems (e.g., strings of
states of an unbounded number of components of a sys-
tem) and regular relations represent transitions between
them [1]. While many problems related to verifying
such systems are computationally hard or even undecid-
able, they become easier if an abstraction of a regular
language presentation is used. Often such abstractions
are in the form of definability in linear integer arith-
metic, see, e.g., [35, 22, 34]. We shall now look at a
similar idea of abstracting regular relations in connec-
tion with the ECRPQ evaluation problem.

We first look at relations that only talk about length of
strings. More precisely, with each n-ary regular relation
R, we associate a regular relation Rlen defined as

{(s1, . . . , sn) | ∃(s′1, . . . , s
′
n) ∈ R : |si| = |s

′
i| for all i}.

Now, given an ECRPQ Q, we define Qlen as Q in which
each relation R is replaced by Rlen. This is still an
ECRPQ due to the following:

Lemma 5.5. If R is a regular relation, then so is Rlen.

It turns out that with this abstraction, we can lower
the combined complexity to that of ordinary relational
conjunctive queries.

Theorem 5.6. The problem ECRPQ-eval for queries
of the form Qlen is NP-complete.

Note that in this case, the input contains a graph G
and a query Q; the problem is to evaluate Qlen over
G. The easier case, when the input already has regular
expressions for relations Rlen, has the same complexity.

The idea behind the proof of Theorem 5.6 is to view
lengths of path as unary strings, thus representing them
by unary automata (with some extra conditions, since
we deal with relations on path lengths). We then use
a polynomial-time algorithm that converts unary au-
tomata into a finite union of arithmetic progressions [12,
33] to encode the query evaluation problem as an ex-
istential sentence of Presburger arithmetic, which gives
us the NP bound.

Another standard way of creating an abstraction of R
is to count the numbers of occurrences of symbols; this,
however, leads to non-regular languages and relations
(e.g., if we only count numbers of occurrences of let-
ters, strings from (ab)∗ will be transformed into strings
in which the number of a’s equals the number of b’s).
Nonetheless, we can prove an NP upper bound for such
nonregular relations; they will be considered in the next
section when we look at extensions of ECRPQs.

Repetition of path variables In the definitions of
CRPQs and ECRPQs, repetition of path variables is
allowed in neither the relational parts nor the regu-
lar languages/relations. For instance, we cannot write
(x, π, y), (x′, π, y′), nor can we write R1(ω̄), R2(ω̄). We



refer to these as relational repetitions and regular rep-
etitions, respectively. What happens if these are al-
lowed? It turns out that the complexity of ECRPQs is
not affected, but the combined complexity of CRPQs
jumps to that of ECRPQs, no matter what kind of rep-
etition is allowed.

Proposition 5.7. The problem ECRPQ-eval remains
in Pspace for ECRPQs with any kind of repeti-
tion, while the problem CRPQ-eval becomes Pspace-
complete even for Boolean acyclic CRPQs with either
relational or regular repetitions.

6. QUERY CONTAINMENT

The task of checking query containment is crucial for
problems such as query optimization and data integra-
tion. The problem of query containment for CRPQs
was first introduced in [16] which showed an Expspace
upper bound. A matching lower bound was then shown
in [10]. Here we study the problem of query contain-
ment for ECRPQs, i.e., checking for two ECRPQs Q
and Q′ over Σ, whether Q(G) ⊆ Q′(G) for every Σ-
labeled db-graph G.

We have indicated in Section 3 how string patterns
(with variables) can be coded by ECRPQs. Combin-
ing this with a recent result on the undecidability of
pattern containment [17], we can prove the following.

Theorem 6.1. There exists a fixed finite alphabet Σ,
such that the containment problem for ECRPQs over
Σ is undecidable.

We can recover decidability if one of the queries is a
CRPQ. The problem of containment of an ECRPQ in
a CRPQ is the problem of checking whether Q(G) ⊆
Q′(G) for every Σ-labeled db-graph G, where Q is an
ECRPQ and Q′ is a CRPQ over Σ. We can adapt proof
techniques from [10] to show that the above problem has
the same complexity as CRPQ containment.

Theorem 6.2. The problem of checking containment of
an ECRQP in a CRPQ is Expspace-complete.

It is still open whether the other version of the prob-
lem – the containment of a CRPQ in an ECRPQ – is
decidable.

7. EXTENSIONS

We now look at various ways of going beyond the class of
ECRPQs. First, we consider an analog of relational cal-
culus by adding negation and arbitrary quantification to
the language. After that, we look at conjunctive queries
with non-regular relations; we handle linear constraints
on lengths of paths, and Parikh-image constraints.

7.1 Adding negation

We now investigate the query evaluation problem for
the extension of ECRPQs with negation. Formally, we
define the language ECRPQ¬ over alphabet Σ as the
set of formulas described by the following grammar:

atom := π1 = π2 | x = y | (x, π, y) | R(π1, . . . , πn)

φ, ψ := atom | ¬φ | φ ∨ ψ | ∃xφ | ∃πφ

Here x, y range over the set of node variables, π, π1, . . .
range over the set of path variables, and R ranges over
the set of regular expressions over alphabets (Σ⊥)n

(n > 0) that represent n-ary regular relations over Σ.
The language CRPQ¬ is defined as the restriction of
ECRPQ¬ to formulas that only make use of regular
languages. The notions of free and bound variables are
standard; we write φ(x̄, π̄) to list free node and path
variables explicitly.

The semantics of ECRPQ¬ is defined in the standard
way. Given a db-graph G = (V,E), a mapping σ from
the set of free node variables of φ into V , and a mapping
µ from the set of free path variables of φ into the set of
paths in G, the notion (G, σ, µ) |= φ is defined just as
for ECRPQs with the following additional rules:

• the Boolean connectives ¬ and ∨ have the stan-
dard semantics;

• (G, σ, µ) |= ∃xφ iff there exists v ∈ V such that (G,
σx→v, µ) |= φ, where σx→v extends the assignment
σ by letting σ(x) = v;

• (G, σ, µ) |= ∃πφ iff there exists a path ρ such that
(G, σ, µπ→ρ) |= φ, where µπ→ρ extends the assign-
ment µ by letting µ(π) = ρ.

Given a db-graph G and an ECRPQ¬ formula φ(x̄, π̄),
we let φ(G) be the set of tuples (v̄, ρ̄) such that
(G, σ, µ) |= φ, where σ(x̄) = v̄ and µ(π̄) = ρ̄.

Notice that ECRPQ¬ and CRPQ¬ express nontriv-
ial properties of db-graphs that are not expressible
by means of ECRPQs. For instance, the query
¬∃π ((x, π, y)∧L(π)) defines the set of all pairs (a, b) of
nodes such that no path between them is labeled by a
string from language L.

Combined complexity The problems ECRPQ¬-
eval and CRPQ¬-eval are defined exactly as the query
evaluation problems in Section 5.2 except that the in-
put query is from the extended language. Again we
see a significant difference between regular languages
and regular relations in queries. The complexity jumps
in both cases, but while CRPQ¬-eval can be solved
in single-exponential time, ECRPQ¬ queries cannot be
evaluated in time bounded by a fixed stack of exponents.

Theorem 7.1. • The problem CRPQ¬-eval is
Pspace-complete.

• The problem ECRPQ¬-eval is decidable, but non-
elementary.



For the first item, we view the problem of query evalu-
ation as the problem of evaluating FO sentences over a
certain infinite automatic structure, essentially formed
by paths in a db-graph. We use a game argument to
show that such evaluation only needs quantification over
a small finite part of the structure, whose elements are
of size at most polynomial in the size of the input. This
leads to a Pspace bound.

For the second problem, decidability follows from ex-
tending our automaton construction for obtaining query
answers, but at the cost of the non-elementary blow up,
since each negation leads to an exponential increase in
the size of the automaton. We then use bounds on
model-checking over automatic structures [34] to con-
clude that this blow up is unavoidable.

Data complexity We now turn to data complexity,
with the db-graph as the sole input. That is, we look
at problems CRPQ¬-eval(φ) and ECRPQ¬-eval(φ),
for each query φ. Again we see a significant gap be-
tween allowing regular languages and relations. In the
former case, the complexity matches that of the CR-
PQs, while in the latter case, the problem can be in-
tractable. Establishing exact bounds (in particular,
whether the complexity of ECRPQ¬-eval(φ) could be
non-elementary hinges upon some problems related to
query evaluation over automatic structures which are
currently open (see, e.g., [8, 34]).

Proposition 7.2. • For each CRPQ¬ formula φ, the
problem CRPQ¬-eval(φ) is in NLogspace.

• There exists a query φ in ECRPQ¬ such that the
problem ECRPQ¬-eval(φ) is Pspace-hard.

We know of course that the containment problem is un-
decidable for ECRPQs, and thus for ECRPQ¬ queries.
We remark that even a simpler satisfiability problem,
asking whether for a Boolean ECRPQ¬ query φ there
is a db-graph G such that φ(G) = true, is undecidable.
This is because the finite satisfiability problem for ar-
bitrary FO formulas over binary predicates can easily
(and effectively) be encoded into the satisfiability prob-
lem for ECRPQ¬ formulas.

7.2 Adding non-regular relations

A well-known class viewed as a natural extension of
regular relations is the class of rational relations. Binary
rational relations can be viewed as sets of pairs (s, s′)
of strings over Σ such that s′ is a possible output of a
nondeterministic transducer on s. However, a standard
PCP reduction shows the following:

Proposition 7.3. If rational relations are allowed in
place of regular relations in ECRPQs, then the query
evaluation problem becomes undecidable.

Hence, we need to work with weaker extensions. We
now look at two such examples.

Linear constraints on lengths of paths As we men-
tioned earlier, sometimes it is desirable to compare the
length of paths. We define a class of CRPQs with length
comparisons as

Ans(z̄, χ̄) ←
∧

1≤i≤m

(xi, πi, yi),
∧

1≤j≤t

Lj(ωj), Aℓ̄ ≥ b ,

where Ans(z̄, χ̄) ←
∧

1≤i≤m(xi, πi, yi),
∧

1≤j≤t Lj(ωj)

is a CRPQ as in (1) (note that we allow path variables
in the head), and

• A is a k ×m matrix over Z, for some k > 0;

• b is a vector in Z
k; and

• ℓ̄ = (ℓ1, . . . , ℓm).

The semantics is extended as follows: each ℓi is inter-
preted as the length of the path πi, for i ≤ m. The last
clause of the query is true if Aℓ ≥ b under this inter-
pretation. That is, we extend CRPQs with the ability
to add k > 0 linear constraints on lengths of paths.

Theorem 7.4. The combined complexity of CRPQs with
length comparisons is NP-complete, and their data com-
plexity is in Ptime.

Thus, from the point of view of overall complexity,
adding length comparisons is free, as it does not in-
crease the combined complexity of CRPQs. Whether
this remains true for ECRPQs, and whether the Ptime
bound can be lowered, remains open.

The proof of Theorem 7.4 again uses unary automata
to code lengths of paths satisfying the subgoals of the
query. We convert these into unions of arithmetic pro-
gressions [12, 33] and then combine them with linear
constraints in a single Presburger formula which can
be evaluated in NP. Analyzing this algorithm for a
fixed query and using polynomiality of integer linear
programming in fixed dimension [28] we get the Ptime
bound of data complexity.

Counting occurrences of letters We now look at
another way for abstracting regular relations. While
taking us outside the class of regular relations, it actu-
ally lowers the complexity of query evaluation to match
the complexity of relational conjunctive queries.

Recall that the abstraction we used before was based on
just looking at lengths of strings in tuples of a relation.
We now refine this (in fact, in two ways), and look at
numbers of occurrences of each alphabet symbol, i.e., at
Parikh images of strings. Recall that the Parikh image
par(s) for a string s over the alphabet {a1, . . . , ak} is
a tuple (n1, . . . , nk) ∈ N

k, where ni is the number of
occurrences of ai in s, for each i ≤ k. Now let R be
a regular n-ary relation over Σ. Similarly to Rlen, we
define a relation Rpar as
{

(s1, . . . , sn)

∣

∣

∣

∣

∃(s′1, . . . , s
′
n) ∈ R : par(si) = par(s′i)

for all i ≤ n

}

.



Acyclic ECRPQ
Complexity CQs CRPQ ECRPQ CRPQ ECRPQ Qlen

data AC0 NL-complete NL-complete NL-complete NL-complete NL-complete
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(a) CQs, CRPQs, ECRPQs, and subclasses

with repetitions with negation CRPQ with Q◦
par and

Complexity CRPQ ECRPQ CRPQ ECRPQ linear Qpar, fixed arity
constraints

data NL-complete NL-complete NL-complete PSPACE-hard PTIME Ptime

combined Pspace- Pspace- Pspace- nonelementary NP-complete NP-complete
complete complete complete

(b) Extensions of CRPQs and ECRPQs

Figure 1: Summary of complexity results for classes of queries

We also define a relation R◦
par as the set of tuples

(s1, . . . , sn) such that for each i ≤ n, there is a tuple in
R whose ith component s′i satisfies par(si) = par(s′).
Note that R ⊆ Rpar ⊆ R◦

par. These relations are not
necessarily regular: e.g., ((ab)∗)par is the set of strings
with equal numbers of a’s and b’s. Nonetheless, these
abstractions can be useful if we only care about occur-
rence numbers (like, for example, in dtds over unordered
trees), and need to lower the complexity of query eval-
uation.

For an ECRPQ Q, we define Qpar and Q◦
par as Q in

which all occurrences of regular relations are replaced
by Rpar or R◦

par, respectively. By the remark above,
these are not necessarily ECRPQs.

Proposition 7.5. The combined complexity for queries
of the form Q◦

par is NP-complete, as is the complex-
ity of queries Qpar when the arity of relations is fixed.
In both cases the data complexity is in Ptime.

The proof again uses the main constructions of the proof
of Theorem 5.6 together with conversions of Parikh
images into existential Presburger formulae [35], to
encode query evaluation as satisfiability of existential
Presburger formulae. For data complexity, the anal-
ysis of the resulting Presburger formula for a fixed
query shows that its satisfiability reduces to solving a
fixed-dimension instance of integer linear programming,
which is known to be polynomial [28].

8. SUMMARY AND FUTURE WORK

The tables in Figure 1 give the summary of the complex-
ity results; they also, include, for comparison, known
results on CQs and CRPQs in the first two columns of
(a). We use the abbreviation NL for NLogspace; note
that all NLogspace bounds actually give NLogspace-
completeness since every version of path queries can
express reachability. In addition to these complexity
results, our technical results also include algorithms for

query evaluation and representation of paths in the out-
put and results on query containment.

Several basic problems related to ECRPQs are still
open. We do not known whether checking the con-
tainment of a CRPQ in an ECRPQ is decidable, nor
do we know if it is decidable to check whether a given
ECRPQ is equivalent to a CRPQ. These are important
problems for understanding the computability of view-
based query rewriting of ECRPQs, in the line of [11],
and for query optimization.

We also would like to extend results on queries with lin-
ear constraints on lengths of paths, and find practical
algorithms for classes of queries whose combined com-
plexity matches that of relational conjunctive queries.
Further pursuing the relational analogy, we would like
to investigate the parameterized complexity of classes
of ECRPQs. While we have seen that the standard
acyclicity restriction does not help us, it is natural to
look for conditions that will guarantee fixed-parameter
tractability.
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