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ABSTRACT

When finding exact answers to a query over a large
database is infeasible, it is natural to approximate the
query by a more efficient one that comes from a class
with good bounds on the complexity of query evalua-
tion. In this paper we study such approximations for
conjunctive queries. These queries are of special im-
portance in databases, and we have a very good under-
standing of the classes that admit fast query evaluation,
such as acyclic, or bounded (hyper)treewidth queries.

We define approximations of a given query Q as
queries from one of those classes that disagree with Q
as little as possible. We mostly concentrate on approx-
imations that are guaranteed to return correct answers.
We prove that for the above classes of tractable con-
junctive queries, approximations always exist, and are
at most polynomial in the size of the original query.
This follows from general results we establish that re-
late closure properties of classes of conjunctive queries
to the existence of approximations. We also show that
in many cases, the size of approximations is bounded by
the size of the query they approximate. We establish
a number of results showing how combinatorial proper-
ties of queries affect properties of their approximations,
study bounds on the number of approximations, as well
as the complexity of finding and identifying approxima-
tions. We also look at approximations that return all
correct answers and study their properties.

Categories and Subject Descriptors. H.2.3 [Database
Management]: Languages—Query Languages ; G.2.2
[Discrete Mathematics]: Graph algorithms

Keywords. Conjunctive queries, query evaluation,
query approximation, tractability, acyclic queries,
treewidth, hypertree width, graphs, homomorphisms.
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1. INTRODUCTION

The idea of finding approximate solutions to problems
for which computing exact solutions is impossible or
infeasible is ubiquitous in computer science. It is com-
mon in database research too: approximate query an-
swering techniques are used for evaluating queries over
extremely large databases or for queries with very high
inherent complexity, see, e.g., [10, 11, 14, 21, 26]. By
analyzing the structure of both the database and the
query one can often find a reasonable approximation
of the answer, sometimes with performance guarantees.
Approximate techniques are relevant even for problems
whose complexity is viewed as acceptable for regular-
size databases, since finding precise answers may be-
come impossible for large data sets we often deal with
these days.

To approximate a query, we must have a good under-
standing of the complexity of query evaluation, in order
to find an approximation that is guaranteed to be effi-
cient. For one very common class of queries – conjunc-
tive, or select-project-join queries – we do have a very
good understanding of their complexity. In fact, we
know which classes of conjunctive queries (CQs from
now on) are easy to evaluate [8, 15, 16, 17, 22, 32].
Given the importance of conjunctive queries, and our
good understanding of them, we would like to initiate a
study of their approximations. We do it from the static
analysis point of view, i.e., independently of the input
database: for a query Q, we want to find another query
Q′ that will be much faster than Q, and whose out-
put would be close to the output of Q on all databases.
Such analysis is essential when a query is repeatedly
evaluated on a very large database (say, in response to
frequent updates), and when producing approximations
based on both data and queries may be infeasible.

The complexity of checking whether a tuple ā belongs
to the output of a CQ Q on a database D is of the order
|D|O(|Q|), where | · | measures the size (of a database or
a query) [3, 31]. In fact, the problem is known to be
NP-complete, when its input consists of D as well as Q
(even for Boolean CQs). In other words, the combined
complexity of CQs is intractable [7]. Of course the data
complexity of CQs is low, but having O(|Q|) as the expo-
nent may be prohibitively high for very large datasets.



This observation led to an extensive study of classes of
CQs for which the combined complexity is tractable.
The first result of this kind by Yannakakis [32] showed
tractability for acyclic CQs. That was later extended
to queries of bounded treewidth [8, 12, 22]; this notion
captures tractability for classes of CQs defined in terms
of their graphs [17]. For classes of CQs defined in terms
of their hypergraphs, the corresponding notion guaran-
teeing tractability is bounded hypertree width [16], which
includes acyclicity as a special case. All these conditions
can be tested in polynomial time [5, 13, 16].

The question we address is whether we can approximate
a CQ Q by a CQ Q′ from one of such classes so that
Q and Q′ would disagree as little as possible. Assume,
for example, that we manage to find an approximation
of Q by an acyclic CQ Q′, for which checking whether
ā ∈ Q′(D) is done in time O(|D| · |Q′|) [32]. Then we
replaced the original problem of complexity |D|O(|Q|)

with that of complexity

O
(

f(|Q|) + |D| · s(|Q|)
)

where s(·) measures the size of the resulting approxi-
mation, and f(·) is the complexity of finding one.

Thus, assuming that the complexity measures f and s
are acceptable, the combined complexity of running Q′

is much better than for Q. Hence, if the quality of the
approximation Q is good too, then we may prefer to
run the much faster query Q′ instead of Q, especially
in the case of very large databases. Thus, we need to
answer the following questions:

• What are the acceptable bounds for constructing
approximations, i.e., the functions f and s above?

• What types of guarantees do we expect from ap-
proximations?

For the first question, if Q′ is of the same size as Q, or
even if it polynomially increases the size, this is com-
pletely acceptable, as the exponent O(|Q|) is now re-
placed by the factor s(|Q|). For the complexity f of
static computation (i.e., transforming Q to Q′), a sin-
gle exponential is typically acceptable. Indeed, this
is the norm in many static analysis and verification
questions [27, 30], and small exponents (like 2O(|Q|)

or 2O(|Q| log |Q|) we shall mainly encounter) are signifi-
cantly smaller than |D||Q| if |D| is large. Thus, in terms
of their complexity, our desiderata for approximations
are:

1. the approximating query should be at most poly-
nomially larger than Q – and ideally, bounded by
the size of Q; and

2. the complexity of finding an approximating query
should not exceed single-exponential.

As for the guarantees we expect from approximations,
in general they can be formulated in two different ways.

By doing it qualitatively we state that an approxima-
tion is a query that cannot be improved in terms of how
much it disagrees with the query it approximates. Al-
ternatively, to do it quantitatively, we define a measure
of disagreement between two queries, and look for ap-
proximations whose measure of disagreement with the
query they approximate is below a certain threshold.

Here we develop the qualitative approach to approxi-
mating CQs. For a given Q, we compare queries from
some good (tractable) class C by how much they dis-
agree with Q: to do so, we define an ordering Q1 ⊑Q Q2

saying, intuitively, that Q2 disagrees with Q less often
than Q1 does. Then the best queries with respect to
the ordering are our approximations from the class C.

Furthermore, we require the approximations to return
correct results. This approach is standard in databases
(for instance, the standard approximation of query re-
sults in the settings of query answering using views and
data integration is the notion of maximally contained
rewriting [2, 18, 24]). However, we shall also briefly
discuss what happens if we relax this requirement.

Our main goal is to explore approximations of arbitrary
CQs by tractable CQs. We begin by studying queries
on graphs (as the essential machinery needs to be de-
veloped for them), and then extend results to arbitrary
databases. It turns out that approximations are guar-
anteed to exist for all the tractable classes of CQs men-
tioned earlier, which makes the notion worth studying.

In general, the structure of approximations will
depend heavily on combinatorial properties of
the (tableau of the) query Q we try to approxi-
mate. Consider, for instance, a Boolean query
Q1():–E(x, y), E(y, z), E(z, x) over graphs. Its best
acyclic approximation is Q′

1():–E(x, x), which is
contained in every Boolean graph query and thus
provides us with little information. It turns out that
this will be the case whenever the tableau of the query
is not a bipartite graph. Let Pm(x0, . . . , xm) be the
CQ stating that x0, . . . , xm form a path of length m,
i.e., E(x0, x1), . . . , E(xm−1, xm). If we now look at
Q2() :– P3(x, y, z, u), P3(x

′, y′, z′, u′), E(x, z′), E(y, u′)
(which has a cycle with variables x, y, z′, u′),
then it has a nontrivial acyclic approximation
Q′

2():–P4(x, y, z, u, v). What changed is that the
tableau of Q2 is bipartite, which guarantees the
existence of nontrivial approximations. This example
provides a flavor of the results we establish. Of course
Boolean queries on graphs are just a useful test case,
but they tell us for which classes of queries it makes
sense to look for meaningful approximations.

We now provide a quick summary of the results of the
paper. As mentioned earlier, we first study queries over
graphs and then lift results to arbitrary queries.

Results for graph queries For a query Q, we are inter-

ested in approximations Q′ from a good class C. The
classes we consider are acyclic queries [32] and queries of



Class of Type of Existence of size of time to compute
queries approximation approximation approximation approximation
Graph Acyclic at most
queries Treewidth k always |Q| single-

Arbitrary Acyclic exists polynomial exponential
queries Hypertreewidth k in |Q|

Figure 1: Summary of results on approximations for conjunctive queries Q

fixed treewidth k, which capture the notion of tractabil-
ity of CQs over graphs [17]. The first two rows in Figure
1 summarize some of our results: within both classes,
approximations exist for all queries (this will follow from
a general existence result that relates closure properties
of classes of graphs to the existence of approximations),
they do not increase the complexity of the query, and
can be constructed in single-exponential time, thus sat-
isfying all our desiderata for approximating queries.

We prove several additional results as well. We study
the structure of approximations, and relate graph-
theoretic properties of tableaux of queries with prop-
erties of their approximations (showing, for instance,
a close relationship between (k + 1)-colorability of the
tableau and the existence of interesting treewidth-k ap-
proximations). For Boolean queries, we show a finer
trichotomy result for acyclic approximations, and also
prove that such approximations are guaranteed to re-
duce the number of joins. As for the number of non-
equivalent approximations, there are finitely many of
them, in fact at most exponentially many in |Q|.

We provide further complexity analysis, showing that
the problem of checking whether Q′ is an acyclic (or
treewidth-k) approximation of Q is complete for the
class DP (this class, defined formally later, is “slightly”
above both NP and coNP [29]). DP-completeness re-
sults appeared in the database literature in connection
with computing cores of structures [9]; our result is of
a very different nature because it holds even when both
Q and Q′ are minimized (i.e., their tableaux are cores).

We also look at overapproximations which return all
correct answers (and perhaps more). There the situa-
tion is quite different: acyclic overapproximations need
not exist even for Boolean CQs. We provide some suf-
ficient conditions for the non-existence of overapproxi-
mations, and show than when overapproximations of a
query Q do exist, they are unique (up to equivalence),
and have strictly fewer joins than Q itself.

Results for arbitrary queries There are two ways of get-
ting tractable classes of CQs over arbitrary databases,
depending on whether one formulates conditions in
terms of the graph of a query Q, or its hypergraph.
For graph-based notions, it is known that bounded
treewidth characterizes tractability [17]. For them, re-
sults for graph queries extend to arbitrary queries.

For hypergraph-based notions, we have the original no-
tion of acyclicity from [32] and its more recent exten-

sion to the notion of bounded hypertree width [16]; it is
known that hypertree width 1 coincides with acyclicity.
We again prove a general existence result for approx-
imations. However, the closure conditions imposed on
classes of hypergraphs are becoming more involved, and
it actually requires an effort to prove that they hold for
classes of bounded hypertree width. We show that it is
still possible to find approximations in single exponen-
tial time. As for their sizes, the need not be bounded by
|Q|, but they remain polynomial in |Q|, with polynomial
depending only on the vocabulary (schema). Thus, as
the summary table in Figure 1 shows, in this case too,
our desiderata for approximations are met.

Regarding techniques required to prove these results, we
mainly work with tableaux of queries, and characterize
approximations via preorders based on the existence of
homomorphisms. Thus, we make a heavy use of tech-
niques from the theory of graph homomorphisms [19].
Besides graph theory and combinatorics, these are com-
monly used in constraint satisfaction [23], but recently
they were applied in database theory as well [6, 25].

Organization Basic notations are given in Section 2.
In Section 3 we define the notion of approximations.
Section 4 studies queries over graphs, concentrating on
acyclic and bounded treewidth approximations. In Sec-
tion 5 we look at arbitrary databases, concentrating on
acyclic and bounded hypertree width approximations.
Overapproximations are studied in Section 6, and con-
clusions are given in Section 7. Due to space limitations,
complete proofs are in the appendix.

2. NOTATIONS

Graphs and digraphs Both graphs and digraphs are
defined as pairs G = 〈V, E〉, where V is a set of nodes
(vertices) and E is a set of edges. For graphs, an edge
is a set {u, v}, where u, v ∈ V ; for digraphs, an edge is
a pair (u, v), i.e., it has an orientation from u to v. If
u = v, we have a (undirected or directed) loop.

If G = 〈V, E〉 is a directed graph, then Gu is the under-
lying undirected graph: Gu = 〈V, {{u, v} | (u, v) ∈ E}〉.
We denote by Km the complete graph on m vertices:
Km = 〈{u1, . . . , um}, {{ui, uj} | i 6= j, i, j ≤ m}〉, and
by K⇄

m the complete digraph on m vertices, i.e., K⇄
m =

〈{u1, . . . , um}, {(ui, uj) | i 6= j, i, j ≤ m}, so that edges
go in both directions. Note that (K⇄

m )u = Km.

Graph homomorphisms and cores Given two



graphs (directed or undirected) G1 = 〈V1, E1〉 and
G2 = 〈V2, E2〉, a homomorphism between them is a
map h : V1 → V2 such that h(e) is in E2 for every
edge e ∈ E1. Of course by h(e) we mean {h(u), h(v)}
if e = {u, v} and (h(u), h(v)) if e = (u, v). The image
of h is the (di)graph Im(h) = 〈h(V1), {h(e) | e ∈ E1}〉.
If there is a homomorphism h from G1 to G2, we write

G1 → G2 or G1
h

−→ G2.

A graph G is a core if there is no homomorphism
G → G′ into a proper subgraph G′ of G. A subgraph
G′ of G is a core of G if G′ is a core and G → G′.
It is well known that all cores of a graph are isomor-
phic and hence we can speak of the core of a graph,
denoted by core(G). We say that two graphs G and
G′ are homomorphically equivalent if both G → G′ and
G′ → G hold. Homomorphically equivalent graphs have
the same core, i.e., core(G) and core(G′) are isomorphic.

We shall also deal with graphs with distinguished ver-
tices. Let G, G′ be (di)graphs and ū, ū′ tuples of ver-
tices in G and G′, respectively, of the same length. Then
we write (G, ū) → (G′, ū′) if there is a homomorphism
h : G → G′ such that h(ū) = ū′. With this definition,
the notion of core naturally extends to graphs with dis-
tinguished vertices.

We write G ⇄� G′ if G → G′, but G′ → G does not hold.

Databases (relational structures) While the case
of graphs is crucial for understanding the main con-
cepts, we shall also state results for conjunctive queries
over arbitrary relational structures. A vocabulary (often
called a schema in the database context) is a set σ of
relation names R1, . . . , Rl, each relation Ri having an
arity ni. A relational structure, or a database, of vo-
cabulary σ is D = 〈U, RD

1 , . . . , RD
l 〉, where U is a finite

set, and each RD
i is an ni-ary relation over U , i.e., a

subset of Uni . We usually omit the superscript D if it
clear from the context. We also assume (as is normal
in database theory) that U is the active domain of D,
i.e., the set of all elements that occur in relations RD

i ’s.

Both directed and undirected graphs, for example, are
relational structures of the vocabulary that contains a
single binary relation E. For digraphs, it is the edge
relation; for graphs, it contains pairs (u, v) and (v, u)
for each edge {u, v}.

We often deal with databases together with a tuple of
distinguished elements, i.e., (D, ā), where ā is a k-tuple
of elements of the active domain, for some k > 0. Tech-
nically, these are structures of vocabulary σ expanded
with k extra constant symbols, interpreted as ā.

Homomorphisms of structures are defined in the same
way as for graphs: for D1 = 〈U1, (R

D1

i )i≤l〉 and D2 =

〈U2, (R
D2

i )i≤l〉, a homomorphism h : D1 → D2 is a map

from U1 to U2 so that h(t̄) ∈ RD2

i for every ni-ary tuple

t̄ ∈ RD1

i , for all i ≤ l. As before, we write D1 → D2

in this case. For databases with tuples of distinguished

elements we have (D1, ā1) → (D2, ā2) if the homomor-
phism h in addition satisfies h(ā1) = ā2.

The notion of a core for relational structures (with dis-
tinguished elements) is defined just as for graphs, using
homomorphisms of structures.

Conjunctive queries and tableaux A conjunctive
query (CQ) over a relational vocabulary σ is a logical
formula in the ∃,∧-fragment of first-order logic, i.e., a
formula of the form Q(x̄) = ∃ȳ

∧m

j=1 Rij
(x̄ij

), where
each Rij

is a symbol from σ, and x̄ij
a tuple of variables

among x̄, ȳ whose length is the arity of Rij
. These are

often written in a rule-based notation

Q(x̄) :– Ri1(x̄i1), . . . , Rim
(x̄im

). (1)

The number of joins in the CQ (1) is m − 1. Given a
database D, the answer Q(D) to Q is {ā | D |= Q(ā)}.
If Q is a Boolean query (a sentence), the answer true
is, as usual, modeled by the set containing the empty
tuple, and the answer false by the empty set.

A CQ Q is contained in a CQ Q′, written as Q ⊆ Q′, if
Q(D) ⊆ Q′(D) for every database D.

With each CQ Q(x̄) of the form (1) we associate its
tableau (TQ, x̄), where TQ is the body of Q viewed as
a σ-database; i.e., it contains tuples x̄ij

’s in relations
Rij

’s, for j ≤ m. If Q is a Boolean CQ, then its tableau
is just the σ-structure TQ.

Many key properties of CQs can be stated in terms of
homomorphisms of tableaux. For example, ā ∈ Q(D)
iff (TQ, x̄) → (D, ā). For CQs Q(x̄) and Q′(x̄′) with the
same number of free variables, Q ⊆ Q′ iff (TQ′ , x̄′) →
(TQ, x̄). Hence, the combined complexity of CQ evalu-
ation and the complexity of CQ containment are in NP
(in fact, both are NP-complete [7]).

3. THE NOTION OF APPROXIMATION

We now explain the main idea of approximations. Sup-
pose C is a class of conjunctive queries (e.g., acyclic, or
of bounded treewidth). We are given a query Q not
in this class, and we want to approximate it within C.
For that, we define an ordering <Q on queries in C:
the meaning of Q1 <Q Q2 is that “Q2 approximates
Q better than Q1 does”, i.e., Q2 agrees with Q more
often than Q1. Then we look for maximal elements
with respect to <Q as good approximations of Q. As
explained earlier, we typically are interested in queries
that are guaranteed to return correct results.

We now formalize this. For queries Q(x̄) and Q′(x̄′), a
database D and a tuple ā, we say that Q agrees with Q′

on (D, ā) if either ā belongs to both Q(D) and Q′(D), or
to none of them. Then, for CQs Q(x̄), Q1(x̄1), Q2(x̄2),
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Figure 2: C-approximations: an illustration

with x̄, x̄1, x̄2 of the same length, we define

Q1 ⊑Q Q2
def
= ∀(D, ā)

(

Q1 agrees with Q on (D, ā)
⇓

Q2 agrees with Q on (D, ā)

)

That is, Q2 approximates Q at least as well as Q1

does. Then Q2 approximates Q better than Q1 does
if Q1 <Q Q2, i.e., Q1 ⊑Q Q2 and Q2 6⊑Q Q1.

Definition 3.1. (Approximations) Given a class C of
CQs and a query Q, a query Q′ ∈ C such that Q′ ⊆ Q
is a C-approximation of Q if there is no query Q′′ ∈ C
with Q′′ ⊆ Q such that Q′

<Q Q′′.

In other words, Q′ is an approximation of Q if it is
guaranteed to return correct results and no other query
approximates Q better than Q′.

We next show that the use of the ordering ⊑Q in the
definition can be replaced by a containment test:

Proposition 3.2. Given a CQ Q(x̄) and a CQ Q′(x̄′) ∈ C
with the same number of free variables, the following are
equivalent:

1. Q′ is a C-approximation of Q;

2. Q′ ⊆ Q, and there is no Q′′ ∈ C such that Q′ ⊂
Q′′ ⊆ Q;

3. (TQ, x̄) → (TQ′ , x̄′), and there is no Q′′(x̄′′) ∈ C
such that (TQ, x̄) → (TQ′′ , x̄′′) ⇄� (TQ′ , x̄′).

Before describing the classes in which we shall try to
approximate CQs, we present a useful view of approxi-
mations via orderings on queries and tableaux.

Approximations via ordering Both CQs and their
tableaux come naturally equipped with two preorders:
containment of CQs, and the existence of homomor-
phisms between tableaux. These preorders are dual to
each other [7]: Q ⊆ Q′ ⇔ TQ′ → TQ. These relations
are reflexive and transitive but not antisymmetric (as
we may have different equivalent queries), hence they
are preorders. They become partial orders when re-
stricted to cores, or minimized CQs. Indeed, if both

TQ′ → TQ and TQ → TQ′ hold, then TQ′ and TQ are ho-
momorphically equivalent and thus have the same core
(which happens to be the tableau of the minimized ver-
sion of Q). The preorder → and its restriction to cores
have been actively studied over graphs, digraphs, and
relational structures [19], and we shall heavily use their
properties in our proofs.

With this view, we can visualize the result of Proposi-
tion 3.2 as shown in Fig. 2. The C-approximations of Q
are the “closest” elements of class C that are below Q in
the ⊆ ordering. If we switch to the tableau view, then
approximations are the closest elements of C which are
above the tableau of Q in the → ordering.

Good classes of queries We look for approximations
within tractable classes of CQs, which include acyclic
queries, as well as queries of bounded treewidth and
hypertree width [8, 12, 16, 17, 22, 32]. We now define
the first two (hypertree width is defined in Section 5).

We first need the notion of tree decompositions of hy-
pergraphs of queries. Recall that a hypergraph H =
〈V, E〉 has a set of vertices V and a set of hyperedges
E ; each hyperedge is a subset of V . For a CQ Q, its
hypergraph H(Q) has all the variables used in Q as ver-
tices; the hyperedges are sets of variables that appear
in the same atom. For example, for the query with the
body R(x, y, z), R(x, v, v), E(v, z), the hyperedges are
{x, y, z}, {x, v}, and {v, z}.

A tree decomposition of a hypergraph H = 〈V, E〉 is a
tree T together with a map f : T → 2V that associates
a set of vertices in V with each node of T such that

1. each hyperedge from E is contained in one of the
sets f(u) for u ∈ T ; and

2. for every v ∈ V , the set {u ∈ T | v ∈ f(u)} is a
connected subset of T .

The width of a decomposition is maxu∈T |f(u)|−1, and
the treewidth of H is the minimum width of its tree
decompositions. If H is a tree (or a forest) to start
with, then its treewidth is 1. We refer to the classes



of hypergraphs of treewidth at most k as TW(k), and,
slightly abusing notation, we use TW(k) to also denote
the classes of CQs (and their tableaux) whose hyper-
graphs have treewidth at most k.

A hypergraph is acyclic if there is a tree decomposi-
tion (T, f) of it such that every f(u) is a hyperedge.
A CQ is acyclic if its hypergraph is acyclic. We use
AC to denote the class of acyclic hypergraphs (and
also acyclic CQs, and their tableaux). For queries over
graphs, we have AC = TW(1). In general the notions
of bounded treewidth and acyclicity are incompatible
(see, e.g., [12]).

Remark The notion of approximation is based on the
semantics of queries, while the good classes are defined
purely by syntactic means. It may happen that a query
Q not from a good class C is equivalent to some query
Q′ from C. In that case, C-approximations of Q are
simply equivalent to Q.

4. APPROXIMATING QUERIES OVER
GRAPHS

In this section we look at queries over graphs. That
is, the vocabulary σ has a single binary relation E(·, ·),
interpreted as a directed graph. Given a CQ Q(x̄), its
tableau (TQ, x̄) is a digraph as well, with a distinguished
tuple of elements x̄. Thus, we shall define classes of
queries in terms of classes C of graphs: a CQ Q is a
C-query iff the graph TQ is in C.

The standard tractable classes of acyclic CQs and
treewidth-k CQs do arise in this way (we shall explain
this shortly). But first we prove a very general result
on the existence of approximations, which shows good
behavior of those for many classes of queries.

Theorem 4.1. Let C be a class of graphs closed under
taking subgraphs. Then every CQ Q that has at least
one C-query contained in it also has a C-approximation.

Moreover, the number of non-equivalent C-
approximations of Q is at most exponential in the
size of Q, and every C-approximation of Q is equivalent
to one which has at most as many joins as Q.

We give a simple proof to illustrate why techniques
based on the homomorphism orderings are useful to us.

Proof. Given Q(x̄) which is not a C-query, let HC(Q)
be the set of all C-queries whose tableaux are of the
form (Im(h), h(x̄)), where h is a homomorphism de-
fined on (TQ, x̄). All such queries are contained in
Q. Up to equivalence (renaming of variables) there
are finitely many elements in HC(Q). Moreover, it
is nonempty. Indeed, there is a C-query Q′(x̄′) with

Q′ ⊆ Q and hence (TQ, x̄)
h

−→ (T ′
Q, x̄′) for some h

(thus h(x̄) = x̄′). By the closure under subgraphs
we know that (Im(h), x̄′) is a tableau of a C-query.
Now consider minimal elements, with respect to the

preorder →, in the set HC(Q). We claim that they
are C-approximations of Q. Indeed let (Im(h0), x̄

′) be
one such element, with x̄′ = h0(x̄). If it is not a C-

approximation, then we have (TQ, x̄)
g

−→ (T, x̄′′)
g1

−→
(Im(h0), x̄

′) for some homomorphisms g and g1 such
that (Im(h0), x̄

′) 6→ (T, x̄′′), with T ∈ C. Hence we have

(TQ, x̄′)
g

−→ (Im(g), x̄′′)
g1

−→ (Im(h0), x̄
′), as well as

(Im(h0), x̄
′) 6→ (Im(g), x̄′′), and Im(g) is in C since C is

closed under taking subgraphs. Hence (Im(g), x̄′′) is in
HC(Q), and by the minimality of (Im(h0), x̄

′) we con-
clude that it is equivalent to (Im(g), x̄′′), and thus is a
C-approximation.

If Q′(x̄′) is a C-approximation, then

(TQ, x̄)
h

−→ (TQ′ , x̄′) and thus (TQ, x̄)
h

−→ (Im(h), x̄′),
with Im(h) being a subgraph of TQ′ , and thus in
C. By Proposition 3.2 this implies that (Im(h), x̄′)
and (TQ′ , x̄′) are homomorphically equivalent, and
(Im(h), x̄′) is a C-approximation equivalent to Q′.
Hence, all C-approximations can be chosen to be of the
form (Im(h), x̄′), which shows that there are at most
exponentially many of them, and that they need not
have more joins than Q. 2

Approximations for acyclic and treewidth-k
queries We now explain how acyclic graph queries
and treewidth-k graph queries appear as C-queries for
appropriately chosen classes C. An undirected graph
can be viewed as a hypergraph (in which all hyper-
edges are of cardinality 1 or 2), and thus a graph query
Q is acyclic, or of treewidth-k, if T u

Q, the underlying

graph of its tableau, is acyclic (as a hypergraph), or has
treewidth at most k. We still refer to these as AC and
TW(k). Notice that acyclicity is not the graph acyclic-
ity since loops are allowed: for instance, the undirected
graph with an edge between nodes x and y and a loop
on x is acyclic, since the hypergraph with hyperedges
{x, y} and {x} is acyclic. Also we formulate these con-
ditions in terms of undirected graphs: for instance, the
query Q():–E(x, y), E(y, x) is acyclic, since T u

Q contains
a single edge between x and y. Basically, acyclicity dis-
allows cycles of length 3 or more.

There is a trivial query that belongs to AC and all
TW(k)’s that every other CQ Q contains. Indeed, let
K	

1 be a single-element loop, i.e., a graph with a sin-
gle node x and a loop (x, x) on that node. Then, for
each query Q(x̄) with m free variables, we have, via a
constant homomorphism: (TQ, x̄) → (K	

1 , (x, . . . , x)),
and thus Q′(x, . . . , x) :– E(x, x) is contained in Q.

This, together with the closure of AC and TW(k) under
taking subgraphs, gives us:

Corollary 4.2. Every CQ Q over graphs has an acyclic
approximation, as well as a treewidth-k approximation,
for each k > 0.

Size and number of approximations Let
C-APPR(Q) be the set of all C-approximations of
Q. For example, AC-APPR(Q) is the class of acyclic



approximations of Q. These sets are nonempty when
C is AC or TW(k). They are infinite, but for a simple
reason: each CQ has infinitely many equivalent CQs.

It is well known though [7] that each CQ Q(x̄)
has a unique (up to renaming of variables) equiva-
lent minimal query: in fact, this is the query whose
tableau is core(TQ, x̄). It is obtained by the stan-
dard process of minimization of CQs. We thus de-
note by C-APPRmin(Q) the set of all minimizations of
C-approximations of Q.

From Corollary 4.2 and Theorem 4.1 we obtain:

Corollary 4.3. For every CQ Q, both AC-APPRmin(Q)
and TW(k)-APPRmin(Q) are finite nonempty sets of
queries. The number of queries in those sets is at
most exponential in the size of Q, and each one has
at most as many joins as Q. Moreover, a query from
AC-APPRmin(Q) or TW(k)-APPRmin(Q) can be con-
structed in single-exponential time in |Q|.

Hence, acyclic and treewidth-k approximations fulfill
the criteria from the introduction: they always exist,
they are not more complex than the original query, and
they can be found with reasonable complexity.

As for the complexity of finding an approximation, one
can easily see that the algorithm that simply checks
homomorphisms on TQ and selects one whose image

is minimal with respect to → runs in time 2O(n·log n),
where n is the number of variables in Q. We shall dis-
cuss the complexity in more detail in Subsection 4.1.1.

As for the number of elements of C-APPRmin(Q), a sim-
ple upper bound is 2n·log n (a better bound is the nth
Bell number [4]). This raises the question whether the
exponential number of approximating queries can be
witnessed. We prove that this is the case.

Proposition 4.4. There is a family (Qn)n>0 of Boolean
CQs over graphs such that the number of vari-
ables and joins in Qn’s grows linearly with n, and
|AC-APPRmin(Qn)| ≥ 2n for all n > 0.

4.1 Acyclic approximations

We now study acyclic approximations in more detail.
We begin with the case of Boolean queries, when the
tableau of a query is just a graph, and show a tri-
chotomy theorem for them, classifying approximations
based on graph-theoretic properties of the tableau.
Then we extend results to arbitrary queries. After
that we study the complexity of acyclic approximations,
and consider the case of connected queries (i.e., queries
whose tableaux are connected graphs).

Boolean queries These queries are of the form
Q():– . . . and thus produce yes/no answers; their
tableaux are simply directed graphs TQ. We already
talked about them in the introduction, and mentioned
that for nontrivial approximations, the tableau must

be bipartite. Recall that a digraph G is bipartite if

G → K
⇄

2 , i.e., G is 2-colorable: its nodes can be split
into two disjoint subsets A and B so that all edges have
endpoints in different subsets.

Recall the example from the introduction: the
cyclic query Q1():–E(x, y), E(y, z), E(z, x) had a trivial
acyclic approximation Qtriv():–E(x, x) (which is con-
tained in every Boolean graph query). The reason
for that was TQ1

was not bipartite. In the intro-
duction, we saw an example of a query with a bi-
partite tableaux that had a nontrivial approximation
stating the existence of a path of length 4. Note
that every query whose tableau is bipartite will con-
tain the trivial bipartite query Qtriv

2 ():–E(x, y), E(y, x),

whose tableau is K
⇄

2 . For some cyclic queries,
e.g., Q3():–E(x, y), E(y, z), E(z, u), E(x, u), this trivial
query is the only acyclic approximation. This behavior
is caused by the cycle being unbalanced. We next define
this concept [19], and then state the trichotomy result.

An oriented cycle is a digraph with vertices u1, . . . , un

and n edges such that either (ui, ui+1) or (ui+1, ui) is
an edge, for each i < n, and either (u1, un) or (un, u1) is
an edge. We shall refer to edges (ui, ui+1) and (un, u1)
as forward edges and to edges (ui+1, ui) and (u1, un)
as backward edges. An oriented cycle is balanced if the
number of forward edges equals the number of backward
edges, and a digraph is balanced if every oriented cycle
in it is balanced.

Theorem 4.5. Let Q be a Boolean CQ over graphs.
Then, if its tableau TQ:

• is not bipartite, then Q has only the trivial acyclic
approximation Qtriv;

• is bipartite but not balanced, then Q’s only acyclic
approximation is the trivial bipartite query Qtriv

2 ;

• is bipartite and balanced, then none of Q’s acyclic
approximations is trivial, and none contains two
subgoals of the form E(x, y), E(y, x).

Of course when we talk about the only approximation,
we mean it up to query equivalence. Note that the
conditions used in the theorem – being bipartite and
balanced – can be checked in polynomial time [19, 33].

As a corollary to the proof of this result, we obtain:

Corollary 4.6. Let Q be a Boolean cyclic CQ over
graphs. Then all minimized acyclic approximations of
Q have strictly fewer joins than Q.

The most interesting case, according to the above the-
orem, is that of queries whose tableaux are bipartite
and balanced. But then a natural question is whether
under such restrictions, CQs are already tractable. It
turns out that they are not, so it does make perfect
sense to approximate queries from that class.

Proposition 4.7. The combined complexity of evaluating
Boolean CQs over graphs whose tableaux are bipartite
and balanced is NP-complete.



We conclude our investigation of Boolean CQs with a re-
mark on a subclass of acyclic approximations with spe-
cial properties. A query Q′ is a tight C-approximation of
Q if it a C-approximation of Q and there is no query Q′′

such that Q′ ⊂ Q′′ ⊂ Q. It is not clear a priori whether,
and for which classes C, such approximations exist. The
results of [28] (reformulated in terms of tableaux of
queries) imply that if a tight C-approximation Q′ of a
query Q is minimized and connected, then Q′ is acyclic.
Hence, tightness forces the approximating query to be
acyclic. The next question is whether acyclic tight ap-
proximations exist. We can show that this is the case.

Proposition 4.8. There is an infinite family of
nonequivalent Boolean CQs Qn, Q′

n, for n > 0, so
that Q′

n is a tight acyclic approximation of Qn.

Example 4.9. Consider a Boolean query Q whose
tableau is the graph below, in which number k above
an edge represents a path of length k:

• •oo
3

��@
@@

@

•

2 ??~~~~

3 ��@
@@

@ •

• •oo
2

??~~~~

This graph is bipartite and balanced, so Theorem 4.5
tells us that is has nontrivial acyclic approximations.
In fact it can be shown that Q has a unique (up to
equivalence) acyclic approximation Q′, whose tableau is
the path of length 4 (i.e., the query Q′():–P4(x, y, u, z, v)
mentioned in the Introduction).

The same Q′ serves as a tight acyclic approximation to
the query whose tableau is:

• //

��@
@@

@ • //

��@
@@

@ • // •

• // • // • // •
This is exactly the query Q2 from the Introduction, for
which, as stated there, Q′ is an acyclic approximation.

Non-Boolean queries For CQs with free variables,
it is still true that those whose tableaux are bipar-
tite have nontrivial acyclic approximations. How-
ever, now some queries with non-bipartite tableaux
may have approximations whose bodies do not trivi-
alize to just E(x, x). For example, consider a query
Q(x, y):–E(x, y), E(y, z), E(z, x). It can be shown eas-
ily that Q′(x, y):–E(x, y), E(y, x), E(x, x) is an acyclic

approximation of it; the tableau of Q′ is K
⇄

2 with a loop
on one of the nodes (recall that the definition of query
acyclicity refers to tree decompositions of the query hy-
pergraphs, so Q′ is indeed acyclic).

What distinguishes the case of bipartite tableaux now
when we look at queries with free variables is that they
do not have subgoals of the form E(x, x) in approxima-
tions. That is, we have the following dichotomy:

Theorem 4.10. Let Q(x̄) be a cyclic CQ over graphs. If
its tableau TQ

• is not bipartite, then all of Q’s acyclic approxima-
tions have a subgoal of the form E(x, x).

• is bipartite, then Q has an acyclic approximation
without a subgoal of the form E(x, x).

We already know that acyclic approximations of an
arbitrary query Q can be constructed in single-
exponential time and are bounded by the size of Q. For
Boolean queries we saw that acyclic approximations also
have strictly fewer joins than Q. With free variables, the
number of joins may sometimes be the same as for Q
itself.

Proposition 4.11. There is a non-Boolean cyclic CQ
over graphs such that all of its minimized acyclic ap-
proximations have exactly as many joins as Q.

4.1.1 Complexity

We have seen that a (minimized) acyclic approximation
can be found in single-exponential time. Of course this
is expected given NP-hardness of most static analysis
tasks related to CQs. To do a more detailed analysis
of complexity, we formulate it as the following decision
problem:

Problem: Acyclic Approximation
Input: a cyclic CQ Q, an acyclic CQ Q′.
Question: Is Q′ an acyclic approximation

of Q?

To solve Acyclic Approximation, we need to check
two things:

1. Q′ ⊆ Q; and

2. there is no acyclic Q′′ such that Q′ ⊂ Q′′ ⊆ Q.

The first subproblem is solvable in NP. Checking
whether there is an acyclic query Q′′ not equivalent to
Q′ with Q′ ⊆ Q′′ ⊆ Q is solvable in NP too. This means
TQ → TQ′′ ⇄� TQ′ and hence such Q′′, if it exists can al-
ways be chosen not to exceed the size of Q. Therefore,
one can guess TQ′′ and all homomorphisms in NP. Fur-
thermore, since both TQ′′ and TQ′ are acyclic, checking
that TQ′ 6→ TQ′′ can be done in polynomial time. Thus,
the second subproblem is solvable in coNP.

Hence, to solve Acyclic Approximation, we need to
solve an NP subproblem and a coNP subproblem. This
means that the problem is in complexity class DP: this
is the class of problems (languages) which are intersec-
tions of an NP language and a coNP language [29]. It
turns out that the problem is also hard for the class.

Theorem 4.12. The problem Acyclic Approxima-
tion is DP-complete. It remains DP-complete even
if Q′ is fixed and both Q and Q′ are Boolean and mini-
mized (i.e., their tableaux are cores).

DP-completeness appeared in database literature in
connections with cores: checking whether G′ = core(G),



for two graphs G and G′, is known to be DP-complete
[9]. The source of DP-completeness in our case is com-
pletely different, as hardness applies even if the tableaux
of queries are cores to start with, and the proof, which
is quite involved, uses techniques different from those
in [9].

4.2 Bounded treewidth queries

We have already seen that treewidth-k approximations
of a CQ Q always exist, that they cannot exceed the
size of Q, and can be constructed in single-exponential
time. There is an analog of the dichotomy for acyclic
queries, in which bipartiteness (i.e., being 2-colorable)
is replaced by (k + 1)-colorability for TW(k).

Theorem 4.13. Let Q be a CQ over graphs. If its
tableau TQ

• is not (k + 1)-colorable, then all of its TW(k)-
approximations have a subgoal of the form E(x, x);

• is (k + 1)-colorable, then Q has a TW(k)-
approximation without a subgoal of the form
E(x, x).

Recall that a Boolean CQ Qtriv():–E(x, x) is a triv-
ial (acyclic, or treewidth-k) approximation of every
Boolean CQ. In the acyclic case, 2-colorability (or
bipartiteness) of TQ was equivalent to the existence
of nontrivial approximations. This result extends to
treewidth-k.

Corollary 4.14. A Boolean CQ Q over graphs has a
nontrivial TW(k)-approximation iff its tableau TQ is
(k + 1)-colorable.

Note the big difference in the complexity of testing for
the existence of nontrivial approximations: while it is
in Ptime in the acyclic case, the problem is already
NP-complete for TW(2).

If a Boolean CQ Q has a nontrivial TW(k)-
approximation, then the query Qtriv

k+1 with the tableau

K
⇄

k+1 is contained in Q. For k = 1, we had a neces-
sary and sufficient condition for such a query to be an
approximation (it was the Ptime-testable condition of
not being balanced, see Theorem 4.5). For TW(k), we
do not have such a characterization, but we do know
that even for TW(2), the criterion will be much harder
than for the acyclic case due to the following.

Proposition 4.15. For every k > 1, testing, for a
Boolean CQ Q over graphs, whether Qtriv

k+1 is a TW(k)-
approximation of Q is NP-hard.

Thus, while the behavior of acyclic and treewidth-k ap-
proximations for k > 1 is in general similar, testing
conditions that guarantee certain properties of approxi-
mations is harder even for treewidth-2, compared to the
acyclic case.

Finally, we note that the analog of the Acyclic Ap-
proximation problem for treewidth k (i.e., checking
if Q′ is a TW(k)-approximation of Q) remains DP-
complete for all k ≥ 1. Indeed, the proof of the upper
bound for the acyclic case applies to bounded treewidth,
and the lower bound is already established for k = 1.

4.2.1 Connected queries

A query Q is connected if its tableau TQ is a connected
graph. In general, a CQ Q is equivalent to the conjunc-
tion of connected CQs whose tableaux are the connected
components of TQ. We now show that approximations
of arbitrary queries can be obtained from those for their
connected components.

Let Q(x̄) be a CQ. It can be represented in the form

Q(x̄) =

m
∧

i=1

Qi(x̄i) ∧

r
∧

l=1

ql (2)

where all subqueries Qis and qls have connected
tableaux and no two share a variable – essentially these
are the connected components of the tableau of Q. The
queries Qis have free variables, and the qls are Boolean.

The propositions below are stated not only for acyclic
and treewidth-k approximations, but generally for C-
approximations when C satisfies the following condi-
tions: closure under subgraphs and disjoint unions, and
K	

1 ∈ C. Note that both AC and TW(k) are such.

Proposition 4.16. For a CQ Q(x̄) as in (2), let Q′
i(ȳi)

be C-approximations of Qi(x̄i) for i ≤ m. Let Q∗ be
∧

{ql | ∃ȳiQ
′
i(ȳi) 6⊆ ql for all i}, and let Q′

∗ be its C-
approximation. Then Q′(x̄) =

∧m

i=1 Q′
i(ȳi) ∧ Q′

∗ is a
C-approximation of Q.

This does not yet fully reduce the unconnected case
to the connected case, as we still need to construct ap-
proximations of Boolean queries (i.e., Q′

∗ from the above
proposition). Consider a Boolean CQ Q = Q1∧. . .∧Qm,
where all the Qi’s are connected, and no Qi, Qj have a
variable in common if i 6= j.

Proposition 4.17. For a Boolean CQ Q as above, each
C-approximation is equivalent to one of the form Q′

1 ∧
. . . ∧ Q′

m, where each Q′
i is a C-approximation of Qi.

The proof also provides a criterion when such a conjunc-
tion is an approximation (details are in the appendix).
Thus, Propositions 4.16 and 4.17 together fully reduce
the case of arbitrary queries to connected ones.

5. APPROXIMATING ARBITRARY
QUERIES

We now switch to queries over arbitrary vocabularies.
For them, tractability restrictions could be either graph-
based and hypergraph-based. For the graph-based no-
tions, one deals with the graph of query Q, denoted by



G(Q). The nodes of G(Q) are variables used in Q. If
there is an atom R(x1, . . . , xn) in Q, then G(Q) has
undirected edges {xi, xj} for all 1 ≤ i < j ≤ n. Note
that for graph queries, we have G(Q) = T u

Q.

For hypergraph-based notions, we put restrictions of the
hypergraph H(Q) of Q. Recall that its nodes again are
variables used in Q, and its hyperedges correspond to
the atoms of Q, i.e., for each atom R(x1, . . . , xn) in Q,
we have a hyperedge {x1, . . . , xn}.

Restrictions on queries are imposed as follows. If C is a
class of graphs, or hypergraphs, then a query Q is

• a graph-based C-query if G(Q) ∈ C, and

• a hypergraph-based C-query if H(Q) ∈ C.

In general, these are incompatible: there are graph-
based classes that are not hypergraph-based, and vice
versa [12].

5.1 Graph-based classes

For graph-based queries, it is easy to transfer results
from queries over graphs to queries over arbitrary
schemas. We state the result below only for the classes
of tractable graph-based queries, but a general existence
theorem, extending Theorem 4.1, is true as well.

Tractability of CQ answering with respect to graph-
based classes of queries was fully characterized in [17]:
given a class C, query answering for graph-based C-
queries is tractable iff C ⊆ TW(k) for some k.

We call a CQ Q′ a graph-based C-approximation of Q if
it is an approximation of Q in the class of graph-based
C-queries. Then we have an analog of the existence of
approximation results from Section 4.

Theorem 5.1. Every CQ Q has a graph-based TW(k)-
approximation, for every k ≥ 1, with at most as many
joins as Q. Moreover, such an approximation can be
found in single-exponential time.

5.2 Hypergraph-based classes

We now look at hypergraph-based C-approximations,
i.e., approximations in the class of hypergraph-based
C queries.

The oldest tractability criterion for CQs, acyclicity [32],
is a hypergraph-based notion (see the definition in Sec-
tion 3). An analog of bounded treewidth for hyper-
graphs was defined in [16]; that notion of bounded hy-
pertree width properly extended acyclicity and led to
tractable classes of CQs over arbitrary vocabularies.

Our first goal, therefore, is to have a general result
about the existence of approximations that will apply
to both acyclicity and bounded hypertree width (to be
defined formally shortly).

Note we cannot trivially lift the closure condition used
in Theorem 4.1 for hypergraphs, since even acyclic
hypergraphs are not closed under taking subhyper-
graphs. Indeed, take a hypergraph H with hyperedges
{a, b, c}, {a, b}, {b, c}, {a, c}. It is acyclic: the decompo-
sition has {a, b, c} associated with the root of the tree,
and two-element edges with the children of the root.
However, it has cyclic subhypergraphs, for instance, one
that contains its two-element edges.

The closure conditions we use instead are:

• Closure under induced subhypergraphs. If H =
〈V, E〉 is in C and H′ is an induced subhypergraph,
then H′ ∈ C. Recall that an induced subhyper-
graph is one of the form 〈V ′, {e ∩ V ′ | e ∈ E}〉.

• Closure under edge extensions: if H = 〈V, E〉 is in
C and H′ is obtained by adding new vertices V ′ to
one hyperedge e ∈ E , where V ′ is disjoint from V ,
then H′ ∈ C.

We shall see that these will be satisfied by the classes
of hypergraphs of interest to us. The analog of the
previous existence results can now be stated as follows.

Theorem 5.2. Let C be a class of hypergraphs closed un-
der induced subhypergraphs and edge extensions. Then
every CQ Q that has at least one hypergraph-based
C-query contained in it, has a hypergraph-based C-
approximation.

Moreover, the number of non-equivalent hypergraph
based C-approximations of Q is at most exponential in
the size of Q, and every such approximation is equiva-
lent to one which has at most O(nm−1) variables and at
most O(nm) joins, where n is the number of variables
in Q, and m is the maximum arity of a relation in the
vocabulary.

It is straightforward to check that the class of acyclic
hypergraphs satisfies both closure conditions, and that
any constant homomorphism on a query Q produces an
acyclic query. Thus,

Corollary 5.3. For every vocabulary σ, there exist two
polynomials pσ and rσ such that every CQ Q over σ
has a hypergraph-based acyclic approximation of size at
most pσ(|Q|) that can be found in time 2rσ(|Q|).

Next, we extend these results to hypertree width. First
we recall the definitions [16]. A hypertree decomposition
of a hypergraph H = 〈V, E〉 is a triple 〈T, f, c〉, where
T is a rooted tree, f is a map from T to 2V and c is a
map from T to 2E , such that

• (T, f) is a tree decomposition of H.

• f(u) ⊆
⋃

c(u) holds for every u ∈ T .

•
⋃

c(u) ∩
⋃

{f(t) | t ∈ Tu} ⊆ f(u) holds for every
u ∈ T , where Tu refers to the subtree of T rooted
at u.



The width of a hypertree decomposition 〈T, f, c〉 is
maxu∈T |c(u)|. The hypertree width hw(H) of H is the
minimum width over all its hypertree decompositions.
We denote by HTW(k) the class of hypergraphs with
hypertree width at most k, and slightly abusing nota-
tion, the class of CQ’s or tableaux whose hypergraphs
have hypertree width at most k.

The key result of [16] is that for each fixed k, CQs from
HTW(k) can be evaluated in polynomial time with re-
spect to combined complexity. It is also shown in [16]
that a hypergraph H is acyclic iff its hypertree width is
1. That is, AC = HTW(1).

To apply the existence result, we need to check the
closure conditions for hypergraphs of fixed hypertree
width. It turns out they are satisfied.

Lemma 5.4. For each k, the class HTW(k) is closed un-
der induced subhypergraphs and edge extensions.

This gives us the desired result about the existence of
approximations within HTW(k) for every k.

Corollary 5.5. For every vocabulary σ, there exist two
polynomials pσ and rσ such that every CQ Q over σ
has a hypergraph-based HTW(k)-approximation of size
at most pσ(|Q|) that can be found in time 2rσ(|Q|), for
every k ≥ 1.

Example 5.6. Consider a Boolean query

Q() :– R(x1, x2, x3), R(x3, x4, x5), R(x5, x6, x1)

over a schema with one ternary relation. If we had
a binary relation instead and omitted the middle at-
tribute, we would obtain a query whose tableau is a cy-
cle of length 3, thus having only trivial approximations.
However, going beyond graphs lets us find nontrivial
acyclic approximations. In fact this query has 3 non-
equivalent acyclic approximations (all queries below are
minimized):

• With fewer joins than Q:

Q′
1() :– R(x, y, x).

• With as many joins as Q:

Q′
2() :– R(x1, x2, x3), R(x3, x4, x2), R(x2, x5, x1).

• With more joins than Q:

Q′
3() :– R(x1, x2, x3), R(x3, x4, x5),

R(x5, x6, x1), R(x1, x3, x5).

6. EXTENSIONS

So far approximations were required to produce only
correct answers, i.e., no false positives. In general, one
can change and/or relax this assumption. One obvious
way is to look for approximations that produce all cor-
rect answers, and perhaps something else, i.e., no false
negatives. We refer to them as overapproximations.

Formally, for a CQ Q not in a class C of CQs, a query
Q′ ∈ C such that Q ⊆ Q′ is a C-overapproximation of
Q if there is no query Q′′ ∈ C with Q ⊆ Q′′ such that
Q′

<Q Q′′. In other words, Q′ is an overapproximation
of Q if it is guaranteed to return all results of Q and no
other such query approximates Q better than Q′.

As for approximations we have studied, the use of the
ordering ⊑Q can be replaced by containment tests.

Proposition 6.1. Given a CQ Q, a CQ Q′ ∈ C satisfying
Q ⊆ Q′ is a C-overapproximation of Q iff there is no
Q′′ ∈ C such that Q ⊆ Q′′ ⊂ Q′.

Recall that for acyclic approximations of Boolean graph
queries, we had two cases which resulted in trivial ap-
proximations Qtriv and Qtriv

2 , whose tableaux are the

single-element loop K	
1 and the graph K

⇄

2 . These may
serve as acyclic overapproximations as well, but in gen-
eral we have both existence and nonexistence results.

Proposition 6.2. Let Q be a cyclic Boolean CQ over
graphs. Then:

• If TQ contains K	
1 as a subgraph, then Qtriv is the

unique, up to equivalence, acyclic overapproxima-
tion of Q.

• If TQ contains K
⇄

2 as a subgraph, but does not

contain K	
1 , then Qtriv

2 is the unique, up to equiv-
alence, acyclic overapproximation of Q.

• If TQ contains neither K	
1 nor K

⇄

2 as a subgraph,
then:

1. When TQ is not a balanced graph, Q has no
acyclic overapproximations.

2. When TQ is a balanced graph, Q may or may
not have acyclic overapproximations.

Even though we do not yet have a criterion for the exis-
tence of acyclic approximations of Q when the tableau
of Q is balanced, we can say a lot about their structure
and size when they exist: they will be closely related to
spanning forests of TQ, and will be bounded by the size
of Q.

Theorem 6.3. If a cyclic Boolean CQ Q has an acyclic
overapproximation, then, up to equivalence, it has ex-
actly one, whose tableau is homomorphically equivalent
to a subgraph of TQ (in fact, to a spanning forest of
TQ).

Hence, if an acyclic overapproximation exists, its mini-
mization will have fewer joins than Q, because it will be
the core of a subgraph of TQ. Note that TQ may have
multiple spanning forests, but only one of them (up to
homomorphic equivalence) corresponds to the acyclic
overapproximation.

Even more generally, one can define arbitrary approx-
imations of Q that do not impose any conditions on
Q′ except it being maximal with respect ⊑Q. We leave
their study to future work, and conclude by the analysis
of complexity of the relation ⊑Q.



Proposition 6.4. The following problem is NP-
complete: given three CQs Q, Q1, Q2, is Q1 ⊑Q Q2?
It remains NP-complete if Q1, Q2 are restricted to be
from the class AC of acyclic queries, or from TW(k)
for k ≥ 1.

Note that even the upper bound in this proposition is
not straightforward, as the definition of ⊑Q involves
universal quantification over databases, and then check-
ing whether CQs evaluate to true or false over them.
Even if we could prove that it suffices to consider
databases of at most polynomial size, just parsing the
definition would have given us a Πp

2 upper bound. The
proof instead establishes structural properties of ⊑Q

based on the properties of the → ordering.

7. CONCLUSIONS

We have primarily concentrated on approximations of
conjunctive queries that are guaranteed to return cor-
rect answers. Given the importance of acyclic CQs and
very good complexity bounds for them, we have focused
on acyclic approximations, but we also provided results
on approximations within classes of bounded treewidth
and bounded hypertree width. We have proved the exis-
tence of approximations, and showed they can be found
with an acceptable computational overhead, and that
their sizes are at most polynomial in the size of the
original query, and sometimes are bounded by the size
of the original query.

Here we dealt with the qualitative approach to approx-
imations; in the future we would like to study quanti-
tative guarantees as well, by defining measures showing
how different from the original query approximations
are. One approach is to find probabilistic guarantees for
approximations. Note that such guarantees have been
studied for queries from expressive languages (e.g., with
fixed points or infinitary connectives) [1, 20], with typ-
ical results showing that queries are equivalent to those
from simpler logics (e.g, FO) almost everywhere. One
possibility is to specialize these results to much weaker
logics, e.g., to CQs and their tractable subclasses.
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