TriAL for RDF:
Adapting Graph Query Languages for RDF Data

Leonid Libkin
University of Edinburgh

libkin@ed.ac.uk

Juan Reutter
University of Edinburgh and
Catholic University of Chile

Domagoj Vrgoc¢
University of Edinburgh

domagoj.vrgoc@ed.ac.uk

juan.reutter@ed.ac.uk

ABSTRACT

Querying RDF data is viewed as one of the main appli-
cations of graph query languages, and yet the standard
model of graph databases — essentially labeled graphs —
is different from the triples-based model of RDF. While
encodings of RDF databases into graph data exist, we
show that even the most natural ones are bound to lose
some functionality when used in conjunction with graph
query languages. The solution is to work directly with
triples, but then many properties taken for granted in
the graph database context (e.g., reachability) lose their
natural meaning.

Our goal is to introduce languages that work directly

over triples and are closed, i.e., they produce sets of
triples, rather than graphs. Our basic language is called
TriAL, or Triple Algebra: it guarantees closure prop-
erties by replacing the product with a family of join
operations. We extend TriAL with recursion, and ex-
plain why such an extension is more intricate for triples
than for graphs. We present a declarative language,
namely a fragment of datalog, capturing the recursive
algebra. For both languages, the combined complexity
of query evaluation is given by low-degree polynomials.
We compare our languages with relational languages,
such as finite-variable logics, and previously studied
graph query languages such as adaptations of XPath,
regular path queries, and nested regular expressions;
many of these languages are subsumed by the recur-
sive triple algebra. We also provide examples of the
usefulness of TriAL in querying graph, RDF, and social
networks data.
Categories and Subject Descriptors. F.4.1
[Mathematical logic and formal languages]:
Mathematical logic; H.2.1 [Database Management]:
Logical Design—Data Models; H.2.3 [Database
management|: Languages—Query Languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PODS’13, June 22-27, 2013, New York, New York, USA.

Copyright 2013 ACM 978-1-4503-2066-5/13/06 ...$10.00.

General Terms. Theory, Languages, Algorithms
Keywords. RDF, Triple Algebra, Query evaluation

1. INTRODUCTION

Graph data management is currently one of the most
active research topics in the database community, fueled
by the adoption of graph models in new application
domains, such as social networks, bioinformatics and
astronomic databases, and projects such as the Web of
Data and the Semantic Web. There are many proposals
for graph query languages; we now understand many
issues related to query evaluation over graphs, and there
are multiple vendors offering graph database products,
see [2, 3, 14, 37] for surveys.

The Semantic Web and its underlying data model,
RDF, are usually cited as one of the key applications of
graph databases, but there is some mismatch between
them. The standard model of graph databases [2, 37]
that dates back to [12, 13], is that of directed edge-
labeled graphs, i.e., pairs G = (V, E), where V is a set
of vertices (objects), and E is a set of labeled edges.
Each labeled edge is of the form (v, a,v’), where v, v’
are nodes in V, and a is a label from some finite la-
beling alphabet Y. As such, they are the same as la-
beled transition systems used as a basic model in both
hardware and software verification. Graph databases of
course can store data associated with their nodes (e.g.,
information about each person in a social network).

The model of RDF data is very similar, yet slightly
different. The basic concept is a triple (s,p,0), that
consists of the subject s, the predicate p, and the object
o, drawn from a domain of uniform resource identifiers
(URI’s). Thus, the middle element need not come from
a finite alphabet, and may in addition play the role of
a subject or an object in another triple. For instance,
{(s,p,0),(p,s,0")} is a valid set of RDF triples, but in
graph databases, it is impossible to have two such edges.

To understand why this mismatch is a problem, con-
sider querying graph data. Since graph databases and
RDF are represented as relations, relational queries can
be applied to them. But crucially, we may also query
the topology of a graph. For instance, many graph query

languages have, as their basic building block, regular
path queries, or RPQs [13], that find nodes reachable
by a path whose label belongs to a regular language.

We take the notion of reachability for granted in
graph databases, but what is the corresponding notion
for triples, where the middle element can serve as the
source and the target of an edge? Then there are mul-
tiple possibilities, two of which are illustrated below.

Query Reach_, looks for pairs (z,z) connected by
paths of the following shape:

and Reach; looks for the following connection pattern:

./—\.
z ./\.
./\.

But can such patterns be defined by existing RDF query
languages? Or can they be defined by existing graph
query languages under some graph encoding of RDF?

To answer these, we need to understand which nav-
igational facilities are available for RDF data. A re-
cent survey of graph database systems [3] shows that,
by and large, they either offer support for triples, or
they do graphs and then can express proper reacha-
bility queries. An attempt to add navigation to RDF
languages was made in [33], where a language called
nSPARQL was defined by taking SPARQL [22, 32],
the standard query language for RDF, and extending
it with a navigational mechanism provided by nested
regular expressions. These are essentially regular path
queries with XPath-inspired node tests. The evaluation
of those uses essentially a graph encoding of RDF. As
the starting point of our investigation, we show that
there are natural reachability patterns for triples, sim-
ilar to those shown above, that cannot be defined in
graph encodings of RDF [5] using nested regular ex-
pressions, nor in nSPARQL itself.

Thus, navigational patterns over triples are beyond
reach of both RDF languages and graph query lan-
guages that work on encodings of RDF. The solu-
tion is then to design languages that work directly on
RDF triples, and have both relational and navigational
querying facilities, just like graph query languages. Our
goal, therefore, is to adapt graph database techniques
for direct RDF querying.

A crucial property of a query language is closure:
queries should return objects of the same kind as
their input. Closed languages, therefore, are compo-
sitional: their operators can be applied to results of
queries. Using graph languages for RDF suffers from

non-compositionality: for instance, RPQs return graphs
rather than triples. So we start by defining a closed lan-
guage for triples. To understand its basic operations, we
first look at a language that has essentially first-order
expressivity, and then add navigational features.

We take relational algebra as the basic language.
Clearly projection violates closure so we throw it away.
Selection and set operations, on the other hand, are
fine. The problematic operation is Cartesian product: if
T, T are sets of triples, then T'x T" is not a set of triples
but rather a set of 6-tuples. What do we do then? We
shall need reachability in the language, and for graphs,
reachability is computed by iterating composition of re-
lations. The composition operation for binary relations
preserves closure: a pair (z,y) is in the composition
RoR of Rand R iff (x,z) € R and (z,y) € R’ for
some z. So this is a join of R and R’ and it seems that
what we need is it analog for triples.

But queries Reach_, and Reach; demonstrate that
there is no such thing as the reachability for triples. In
fact, we shall see that there is not even a nice analog of
composition for triples. So instead, we add all possible
joins that keep the algebra closed. The resulting lan-
guage is called Triple Algebra, denoted by TriAL. We
then add an iteration mechanism to it, to enable it to
express reachability queries based on different joins, and
obtain Recursive Triple Algebra TriAL™.

The algebra TriAL* can express both reachability pat-
terns above, as well as queries we prove to be inex-
pressible in nSPARQL. It has a declarative language
associated with it, a fragment of Datalog. It has good
query evaluation bounds: combined complexity is (low-
degree) polynomial. Moreover, we exhibit a fragment
with complexity of the order O(|e]| - |O] - |T'|), where e is
the query, O is the set of objects in the database, and
T is the set of triples. This is a very natural fragment,
as it restricts arbitrary recursive definitions to those es-
sentially defining reachability properties.

The model we use is slightly more general than just
triples of objects and amounts to combining triplestores
as in, e.g., [24] with the representation of objects used in
the Neo4j database [14, 31]. Each object participating
in a triple comes associated with a set of attributes. Of
course this can be modeled via more triples, but the
model we use is conceptually cleaner and leads to a
more natural comparison with other query languages.

The first of those comparisons is with relational
querying. We show that TrAL lives between FO? and
FOS (recall that FO” refers to the fragment of First-
Order Logic using only k variables). In fact it contains
FO?, is contained in FO°, and is incomparable with
FO* and FO®. A similar results holds for TriAL* and
transitive closure logic.

On the graph querying side, we show that the navi-
gational power of THAL® subsumes that of both regular
path queries and nested regular expressions. In fact it

subsumes a version of graph XPath recently proposed
for graph databases [27]. We also compare it with con-
junctive RPQs [12] and some of their extensions studied
in [10, 11]. When it comes to graphs with data held in
their nodes, we show that TriAL* continues to subsume
some of the formalisms proposed in that context, such
as graph XPath expanded with node tests and some
types of regular expressions with data values [28, 27].

This shows that TriAL™ is an expressive language that
subsumes a number of well known relational and graph
formalisms, that permits navigational queries not ex-
pressible on graph encodings of RDF or in nSPARQL,
and that has good query evaluation properties.

Organization In Section 2 we review graph and RDF
databases, and describe our model. We also show that
some natural navigational queries over triples cannot be
expressed in languages such as nSPARQL. In Section 3
we define TriAL and TriAL* and study their expressive-
ness. In Section 4 we give a declarative language cap-
turing TriAL*. In Section 5 we study query evaluation,
and in Sections 6.1 and 6.2 we study our languages in
connection with relational and graph querying.

2. GRAPH DATABASES AND RDF

Basic Definitions

Graph databases. We now review some standard
definitions (see, e.g., [2, 11, 37]). A graph database
is just a finite edge-labeled graph in which each node
has a data value attached. Formally, let A/ be a count-
ably infinite set of node ids, ¥ a finite alphabet and D
a countably infinite set of data values. Then a graph
database over Y. is a triple G = (V, E, p), where V. C N/
is a finite set of nodes, F C V x ¥ x V is a set of la-
beled edges, and p : V. — D is a function assigning a
data value to each node. Each edge is a triple (u, a,v),
whose interpretation is an a-labeled edge from u to v.
When ¥ is clear from the context, we shall simply speak
of a graph database. If we work with graph databases
that make no use of data values, we write G = (V, E)
and disregard the function p.

A path 7 from wy to w, in G is a sequence
(uo, a0, u1), (ur,ar,ua), -, (Um-1,0m—1,Um), Where
each (u;, a;,u;y1), for i < m, is an edge in E. The label
of 7, denoted by A(w), is the word ag - - - ay,—1 € E*.

Regular path queries. Typical navigational lan-
guages for graph databases use regular path queries, or
RP@s [13] as the basic building block. An RPQ is an

. L .
expression * — y, where x and y are variables and L
is a regular language over ¥. Given a graph database
G = (V,E) over %, it defines pairs of nodes (u,v) such
that there is a path 7 from u to v with A(7) € L.

Nested regular expressions. These expressions, ab-
breviated as NRE, over a finite alphabet X, extend ordi-

nary regular expressions with the nesting operator (es-
sentially the node test of XPath) and inverses [8, 33].
Formally they are defined as follows:

e=¢|ala |ee|e" |ete]], a€el.

An NRE defines, over a graph G = (V,E), a bi-
nary relation on V. The semantics of € is the diag-
onal {(u,u) | v € V}; the semantics of a is the set
{(u,v) | (u,a,v) € E} of a-labeled edges, and a~ de-
fines {(u,v) | (v,a,u) € E}. Operations -, +, and
*x denote composition, union, and transitive closure of
binary relations. Finally, the node test [e] defines pairs
(u,u) so that (u,v) is in the result of e for some v € V.

RDF databases. RDF databases contain triples in
which, unlike in graph databases, the middle compo-
nent need not come from a fixed set of labels. Formally,
if U is a countably infinite domain of uniform resource
identifiers (URI’s), then an RDF triple is (s,p,0) €
U x U x U, where s is referred to as the subject, p
as the predicate, and o as the object. An RDF graph
is just a collection of RDF triples. Here we deal with
ground RDF documents [33], i.e., we do not consider
blank nodes or literals in RDF documents (otherwise
we need to deal with disjoint domains, which compli-
cates the presentation).

Example 1. The RDF database D in Figure 1 contains
information about cities, modes of transportation be-
tween them, and operators of those services. Each triple
is represented by an arrow from the subject to the ob-
ject, with the arrow itself labeled with the predicate.
Examples of triples in D are (Edinburgh, Train Op 1,
London) and (Train Op 1, part_of, EastCoast). For
simplicity we assume that we can determine when and
object is a city or an operator implicitly. This can of
course be modeled by adding an additional outgoing
edge labeled city from each city and operator from
each service operator.

Graph Queries for RDF

Navigational properties (e.g., reachability patterns), are
among the most important functionalities of RDF query
languages. However, typical RDF query languages,
such as SPARQL, are in spirit relational languages. To
extend them with navigation, as in [33, 4, 30], one typ-
ically uses features inspired by graph query languages,
surveyed briefly earlier. Nonetheless, such approaches
have their inherent limitations, as we explain here.

Looking again at the database D in Figure 1, we see
the main difference between graphs and RDF: the ma-
jority of the edge labels in D are also used as subjects or
objects (i.e., nodes) of other triples of D. For instance,
one can travel from Edinburgh to London by using a
train service Train Op 1, but in this case the label itself
is viewed as a node when we express the fact that this
operator is actually a part of EastCoast trains.

For RDF, one normally uses a model of triplestores
that is different from graph databases. According to

part_of
NatExpress (—@ Eurostar

part_of part_of

|

part_of

Bus Op 1 Train Op 1 Train Op 2

Fdinburgh

‘

London Brussels

Figure 1: RDF graph storing information about cities and transport services between them

it, the database from Figure 1 is viewed as a ternary
relation:

St. Andrews | Bus Op 1 Edinburgh
Edinburgh | Train Op 1 London
London Train Op 2 | Brussels
Bus Op 1 part_of NatExpress
Train Op 1 part_of EastCoast
Train Op 2 part_of Eurostar
EastCoast part_of NatExpress

Suppose one wants to answer the following query:

Find pairs of cities (x,y) such that one can
Q@ : travel from x to y using services operated by
the same company.

A query like this is likely to be relevant, for in-
stance, when integrating numerous transport services
into a single ticketing interface. In our example, the
pair (Edinburgh London) belongs to Q(D), and one
can also check that (St. Andrews,London) is in Q(D),
since recursively both operators are part of NatExpress
(using the transitivity of part_of). However, the pair
(St. Andrews,Brussels) does not belong to Q(D),
since we can only travel that route if we change compa-
nies, from NatExpress to Eurostar.

To enhance SPARQL with navigational properties,
[33] added nested regular expressions to it, resulting in
a language called nSPARQL. The idea was to combine
the usual reachability patterns of graph query languages
with the XPath mechanism of node tests. However,
nested regular expressions, which we saw earlier, are de-
fined for graphs, and not for databases storing triples.
Thus, they cannot be used directly over RDF databases;
instead, one needs to transform an RDF database D
into a graph first. An example of such transformation
D — o(D) was given in [5]; it is illustrated in Figure 2.

Formally, given an RDF document D, the graph
o(D) = (V,E) is a graph database over alphabet
Y = {next,node, edge}, where V contains all resources
from D, and for each triple (s,p,0) in D, the edge
relation E contains edges (s,edge,p), (p,node,o) and
(s,next,0). This transformation scheme is important
in practical RDF applications (it was shown to be cru-
cial for addressing the problem of interpreting RDFS
features within SPARQL [33]). At the same time, it is

not sufficient for expressing simple reachability patterns
like those in query @:

Proposition 1. The query @Q is not expressible by NREs
over graph transformations o(-) of ternary relations.

Thus, the most common RDF navigational mecha-
nism cannot express a very natural property, essentially
due to the need to do so via a graph transformation.

One might argue that this result is due to the short-
comings of a specific transformation (however relevant
to practical tasks it might be). So we ask what happens
in the native RDF scenario. In particular, we would
like to see what happens with the language nSPARQL
[33], which is a proper RDF query language extending
SPARQL with navigation based on nested regular ex-
pressions. But this language falls short too, as it fails
to express the simple reachability query Q.

Theorem 1. The query Q@ above cannot be expressed in
nSPARQL.

The key reason for these limitations is that the nav-
igation mechanisms used in RDF languages are graph-
based, when one really needs them to be triple-based.

Triplestore Databases

To introduce proper triple-based navigational lan-
guages, we first define a simple model of triplestores,
and show its usefulness in another application area of
graph databases, namely social networks.

Let O be a countably infinite set of objects, and D be
a countably infinite set of data values.

Definition 1. A triplestore database, or just triplestore
over D is a tuple T = (O, E1, ..., E,,p), where:

e O C O is a finite set of objects,
e each E; CO x O x O is a set of triples, and

e p: 0 — D is a function that assigns a data value
to each object.

Often we have just a single ternary relation F in a
triplestore database (e.g., in the previously seen exam-
ples of representing RDF databases), but all the lan-
guages and results we state here apply to multiple re-
lations. The function p could also map O to tuples

Eurostar

(3]
==y %
Eurostar <
transforming =
part_of part_of e 1]
D to o(D) g
Q
ANNNNNNNNAS
o)
e_Train Op 2
London ® Brussels
next

RDF graph D

Transformed graph o (D)

Figure 2: Transforming part of the RDF database from Figure 1 into a graph database

over D, and all results remain true (one just uses D* as
the range of p, as in the example below). We use the
function p : O — D just to simplify notations.

Triplestores easily model RDF, and we will see later
that they model graph databases. Furthermore, they
can be used to model several other applications relying
on semistructured data, such as e.g. social networks.

3. AN ALGEBRA FOR RDF

We saw that problems encountered while adapting
graph languages to RDF are related to the inherent lim-
itations of the graph data model for representing RDF
data. Thus, one should work directly with triples. But
existing languages are either based on binary relations
and fall short of the power necessary for RDF querying,
or are general relational languages which are not closed
when it comes to querying RDF triples. Hence, we need
a language that works directly on triples, is closed, and
has good query evaluation properties.

We now present such a language, based on relational
algebra for triples. We start with a plain version and
then add recursive primitives that provide the crucial
functionality for handling reachability properties.

The operations of the usual relational algebra are
selection, projection, union, difference, and cartesian
product. Our language must remain closed, i.e., the
result of each operation ought to be a valid triplestore.
This clearly rules out projection. Selection and Boolean
operations are fine. Cartesian product, however, would
create a relation of arity six, but instead we use joins
that only keep three positions in the result.

Triple joins. To see what kind of joins we need, let
us first look at the composition of two relations. For bi-
nary relations S and S’, their composition So S’ has all
pairs (z,y) so that (z,z) € S and (z,y) € S’ for some
z. Reachability with relation S is defined by recursively
applying composition: S U SoS U SoSoS U.... So
we need an analog of composition for triples. To under-
stand how it may look, we can view S o S’ as the join
of S and S’ on the condition that the 2nd component
of S equals the first of S’, and the output consist of the

remaining components. We can write it as

1,2
SN g

2=1
Here we refer to the positions in S as 1 and 2, and to the
positions in S’ as 1’ and 2’, so the join condition is 2 = 1’
(written below the join symbol), and the output has po-
sitions 1 and 2’. This suggests that our join operations
on triples should be of the form RX%7¥ R’, where R
and R’ are tertiary relations, ¢,7,k € {1,2,3,1',2/,3'},
and cond is a condition (to be defined precisely later).

But what is the most natural analog of relational
composition? Note that to keep three indexes among
{1,2,3,1',2",3'}, we ought to project away three, mean-
ing that two of them will come from one argument, and
one from the other. Any such join operation on triples
is bound to be asymmetric, and thus cannot be viewed
as a full analog of relational composition.

So what do we do? Our solution is to add all such
join operations. Formally, given two tertiary relations
R and R’, join operations are of the form

5,k
RX R,
0,m
where

L4 iaj7 k € {17 11) 27 21) 37 3I}a
e (is a set of equalities and inequalities between
elements in {1,1’,2,2',3,3'} U O,

e 1) is a set of equalities and inequalities between
elements in {p(1), p(1'), p(2), p(2'), p(3), p(3') }UD.

The semantics is defined as follows: (0;,0;,0) is in the
result of the join iff there are triples (o1, 02, 03) € R and
(01/,09/,03) € R such that

e each condition from 6 holds; that is, if [= m is in
0, then 0; = o, and if [= o, where o is an object,
is in #, then o; = o, and likewise for inequalities;

e each condition from 7 holds; that is, if p(I) = p(m)
is in i, then p(0;) = p(om), and if p(l) = d, where d
is a data value, is in 7, then p(0;) = d, and likewise
for inequalities.

Triple Algebra. We now define the expressions of
the Triple Algebra, or TriAL for short. It is a restriction
of relational algebra that guarantees closure, i.e., the
result of each expression is a triplestore.

e Every relation name in a triplestore is a TriAL ex-
pression.

o If e is a TriAL expression, 6 a set of equalities and
inequalities over {1,2,3} U O, and 7 is a set of
equalities and inequalities over {p(1), p(2), p(3)} U
D, then oy ,(e) is a TriAL expression.

o If e1,e9 are TriAL expressions, then the following
are TriAL expressions:

— e1 Uesg;

— €1 — €25

—e M;Jnk es, where 7, j,k,0,1 as in the defini-
tion of the join above.

The semantics of the join operation has already been
defined. The semantics of the Boolean operations is the
usual one. The semantics of the selection is defined in
the same way as the semantics of the join (in fact, the
operator itself can be defined in terms of joins): one
just chooses triples (01, 02,03) satisfying both 6 and 7.

Given a triplestore database T', we write e(T) for the
result of expression e on T'.

Note that e(T') is again a triplestore, and thus TriAL
defines closed operations on triplestores. This is im-
portant, for instance, when we require RDF queries to
produce RDF graphs as their result (instead of arbi-
trary tuples of objects), as it is done in SPARQL via
the CONSTRUCT operator [34].

Example 2. To get some intuition about the Triple Al-
gebra consider the following TriAL expression:

Indexes (1,2,3) refer to positions of the first triple,
and indexes (1’,2',3’) to positions of the second triple
in the join. Thus, for two triples (z1,z2,23) and
(17,9, x5), such that zo = x1,, expression e out-
puts the triple (x1,x3,23). E.g., in the triplestore
of Fig. 1, (London, Train Op 2, Brussels) is joined
with (Train Op 2, part_of, Eurostar), producing
(London, Eurostar, Brussels); the full result is

St. Andrews | NatExpress | Edinburgh
Edinburgh EastCoast London
London Eurostar Brussels

Thus, e computes travel information for pairs of
FEuropean cities together with companies one can
use. It fails to take into account that EastCoast
is a part of NatExpress. To add such informa-
tion to query results (and produce triples such as
(Edinburgh, NatExpress, London)), we use ¢ = e U

(e Xy B).

Definable operations: intersection and complement. As
usual, the intersection operation can be defined as e; N
er = e M}fﬁQ:T,B:B’ e2. Note that using join and
union, we can define the set U of all triples (01, 02, 03)
so that each o; occurs in our triplestore database T.
For instance, to collect all such triples so that o1 occurs
in the first position of R, and o2, 03 occur in the 2nd
and 3rd position of R’ respectively, we would use the
expression (RX123 R')M123" B/ Taking the union of
all such expressions, gives us the relation U.

Using such U, we can define e, the complement of e
with respect to the active domain, as U — e. In what
follows, we regularly use intersection and complement
in our examples.

Adding Recursion. One problem with Ex-
ample 2 above is that it does not include triples
(cityi,service,citys) so that relation R contains a
triple (cityi,serviceg,citys), and there is a chain,
of some length, indicating that serviceq is a part of
service. The second expression in Example 2 only ac-
counted for such paths of length 1. To deal with paths
of arbitrary length, we need reachability, which rela-
tional algebra is well known to be incapable of express-
ing. Thus, we need to add recursion to our language.

To do so, we expand TriAL with right and left Kleene
closure of any triple join N;’ff over an expression e,
denoted as (e Ng’%k)* for right, and (N;’%k e)* for
left. These are defined as

(eX)* = PUeU eMe U (eXe)Xe U ...,
(X e)* fUeU eXe U eX(eMe) U ...

We refer to the resulting algebra as Triple Algebra with
Recursion and denote it by TriAL*.

When dealing with binary relations we do not have
to distinguish between left and right Kleene closures,
since the composition operation for binary relations is
associative. However, as the following example shows,
joins over triples are not necessarily associative, which
explains the need to make this distinction.

Example 3. Consider a triplestore database T =
(O,E), with E = {(a,b,¢), (¢,d,e),(d,e, f)}. The func-
tion p is not relevant for this example. The expression

1,2,2'
= Xy
€1 (E 3:1/)
computes e1(T) = EU {(a,b,d), (a,b,e)}, while
1,2,2'
€g = (M E)*
3=1

computes ex(T) = EU {(a,b,d)}.

Now we present several examples of queries one can
ask using the Triple Algebra.

Example 4. We refer now to reachability queries
Reach_; and Reach, from the introduction. It can easily
be checked that these are defined by

1,2,3’ 1/,2',3
(E Xy and (X E)*
3=1/ 1=2/

respectively.

Next consider the query from Theorem 1. Graphi-
cally, it can be represented as follows:

/A
AN

That is, we are looking for pairs of cities such that one
can travel from one to the other using services operated
by the same company. This query is expressed by

1,3",3 1,2,3
ENX)y Xy
(2:1/) 3:1/,2:2/)
1,33
Note that the interior join (E 2N1/)* computes all triples

(z,y, 2z), such that E(x,w, z) holds for some w, and y
is reachable from w using some F-path. The outer join
now simply computes the transitive closure of this rela-
tion, taking into account that the service that witnesses
the connection between the cities is the same.

4. A DECLARATIVE LANGUAGE

Triple Algebra and its recursive versions are procedu-
ral languages. In databases, we are used to dealing with
declarative languages. The most common one for ex-
pressing queries that need recursion is Datalog. It is one
of the most studied database query languages, and it
has reappeared recently in numerous applications. One
instance of this is its well documented success in Web
information extraction [19] and there are numerous oth-
ers. So it seems natural to look for Datalog fragments
to capture TriAL and its recursive version.

Since Datalog works over relational vocabularies, we
need to explain how to represent triplestores T'. The
schema of these representations consists of a ternary
relation symbol E(-,-,-) for each triplestore name in
T, plus a binary relation symbol ~(-,-). Each triple-
store database T can be represented as an instance I
of this schema in the standard way: the interpretation
of each relation name F in this instance corresponds to
the triples in the triplestore F in T, and the interpre-
tation of ~ contains all pairs (z,y) of objects such that

p(x) = p(y), i.e. z and y have the same data value.
If the values of p are tuples, we just use ~; relations
testing that the ith components of tuples are the same,
for each ¢; this does not affect the results here at all.

We start with a Datalog fragment capturing TriAL. A
TripleDatalog rule is of the form

S(ZZ') < Sl(fl), SQ(fg),

N(yl,Zl),-.-,N(yn,Zn),Ul:’Ul,-.-,’um:’Um (1)

where

1. S, S and Sy are (not necessarily distinct) predi-
cate symbols of arity at most 3;

2. all variables in # and each of y;, z; and u;, v; are
contained in Ti or Ts.

A TripleDatalog™ rule is like the rule (1) but all equal-
ities and predicates, except the head predicate S, can
appear negated. A TripleDatalog™ program II is a finite
set of TripleDatalog™ rules. Such a program II is non-
recursive if there is an ordering rq, . .., rg of the rules of
II so that the relation in the head of r; does not occur
in the body of any of the rules r;, with j <.

As is common with non-recursive programs, the se-
mantics of nonrecursive TripleDatalog™ programs is
given by evaluating each of the rules of II, according
to the order r1,...,r; of its rules, and taking unions
whenever two rules have the same relation in their head
(see [1] for the precise definition). We are now ready to
present the first capturing result.

Proposition 2. TriAL is equivalent to nonrecursive
TripleDatalog™ programs.

We next turn to the expressive power of recursive
Triple Algebra TriAL*. To capture it, we of course add
recursion to Datalog rules, and impose a restriction that
was previously used in [12]. A ReachTripleDatalog™ pro-
gram is a TripleDatalog " program in which each recur-
sive predicate S is the head of exactly two rules of the
form:

where each V (y;, z;) is one of the following: y; = z;, or
Yi # zi, or ~(y;, i), or 7~(y;, 2;), and R is a nonrecur-
sive predicate of arity at most 3. These rules essentially
mimic the standard reachability rules (for binary rela-
tion) in Datalog, and in addition one can impose equal-
ity and inequality constraints, as well as data equality
and inequality constraints, along the paths.

Note that the negation in ReachTripleDatalog™ pro-
grams is stratified. The semantics of these programs
is the standard least-fixpoint semantics [1]. A similarly
defined syntactic class, but over graph databases, rather
than triplestores, was shown to capture the expressive
power of FO with the transitive closure operator [12].
In our case, we have a capturing result for TriAL".

Theorem 2. The expressive power of TriAL* and
ReachTripleDatalog ' programs is the same.

Next we give an example of a simple datalog program
computing the query from Theorem 1.

Example 5. The following ReachTripleDatalog™ pro-
gram is equivalent to query) from Theorem 1. Note
that the answer is computed in the predicate Ans.

S(l‘l,mg,wg) — E(l‘l,l‘g,l‘3)

S(z1,25,23) + S(w1,22,23), B(12, 25, 74)
Ans(z1,x9,23) <+ S(x1,2,73)
Ans(zy,xo,2%) <« Ans(zi,z2,23),S(x3, T2, %)

Recall that this query can be written in TrAL™ as

Q=((F Néf;’?)* M;fﬁ:Q:Q,)*. The predicate S in the
program computes the inner Kleene closure of the query,

while the predicate Ans computes the outer closure.

5. QUERY EVALUATION

In this section we analyze two versions of the query
evaluation problems related to Triple Algebra. The
query evaluation problem is to check if a given tuple
is in the result of a query (as is standard in the study
of complexity of database queries, especially when one
wants to know which complexity classes they belong to).
The query computation problem is to produce the out-
put e(7T") for an expression e and a triplestore database
T. We start with query evaluation.

Problem: QUERYEVALUATION

Input: A TriAL™ expression e, a triplestore T’
and a tuple (x1,z2,x3) of objects.

Question: Is (z1,z2,23) € e(T)?

Many graph query languages (e.g., RPQs) have
PTIME upper bounds for this problem, and the data
complexity (i.e., when e is assumed to be fixed) is gen-
erally in NLOGSPACE (which cannot be improved, since
the simplest reachability problem over graphs is already
NLoGsPACE-hard). We now show that the same upper
bounds hold for our algebra, even with recursion.

Proposition 3. The problem QUERYEVALUATION is
PTIME-complete, and in NLOGSPACE if the algebra ex-
pression e is fized.

Tractable evaluation (even with respect to combined
complexity) is practically a must when dealing with
very large and dynamic semi-structured databases.
However, in order to make a case for the practical ap-
plicability of our algebra, we need to give more precise
bounds for query evaluation, rather than describe com-
plexity classes the problem belongs to. We now show
that TriAL™ expressions can be evaluated in what is es-
sentially cubic time with respect to the data. Thus,
in the rest of the section we focus on the problem of
actually computing the whole relation e(T):

Problem: QUERYCOMPUTATION
Input: A TriAL* expression e and

a triplestore database T'.
Output: The relation e(T")

We now analyze the complexity of QUERY COMPUTA-
TION. Following an assumption frequently made in pa-
pers on graph database query evaluation (in particular,
graph pattern matching algorithms) as well as bounded
variable relational languages (cf. [16, 15, 20]), we con-
sider an array representation for triplestores. That is,
when representing a triplestore T' = (O, E1, ..., En, p)
with O = {01, ...,0,}, we assume that each relation F;
is given by a three-dimensional n X n X n matrix, so
that the ijkth entry is set to 1 iff (0;,05,0k) is in Ej.
Alternatively we can have a single matrix, where en-
tries include sets of indexes of relations E; that triples
belong to. Furthermore we have a one-dimensional ar-
ray of size n whose ith entry contains p(o;). Using this
representation we obtain the following bounds.

Theorem 3. The problem QUERYCOMPUTATION can be
solved in time

e O(le| - |T|?) for TriAL expressions,
e O(le| - |T|3) for TriAL* expressions.

Note that this immediately gives the PTIME upper
bound for Proposition 3.

One can examine the proofs of Proposition 2 and The-
orem 2 and see that translations from Datalog into al-
gebra are linear-time. Thus, we have the same bound
for the query computation problem, when we evaluate
a Datalog program II in place of an algebra expression.

Corollary 1. The problem QUERYCOMPUTATION for
Datalog programs I1 can be solved in time

e O(|U]| - |T'|?) for TripleDatalog™ programs,
e O(|1| - |T|3) for ReachTripleDatalog™ programs.

Lower-complexity fragments. Even though we have
acceptable combined complexity of query computation,
if the size of T is very large, one may prefer to lower the
it even further. We now look at fragments of TriAL* for
which this is possible.

In algorithms from Theorem 3, the main difficulty
arises from the presence of inequalities in join condi-
tions. A natural restriction then is to look at a fragment
TriAL™ of TriAL in which all conditions 6 and 7 used in
joins can only use equalities. This fragment allows us
to lower the |T'|? complexity, by replacing one of the |T|
factors by |O|, the number of distinct objects.

Proposition 4. The QUERYCOMPUTATION problem for
TriAL™ expressions can be solved in time O(le|-|O|-|T)).

To pose navigational queries, one needs the recursive
algebra, so the question is whether similar bounds can

be obtained for meaningful fragments of TriAL*. Using
the ideas from the proof of Theorem 3 we immediately
get an O(|e| - |O] - |T|?) upper bound for TrAL™ with
recursion. However, we can improve this result for the
fragment reachTA™ that extends TriAL™ with essentially
reachability properties, such as those used in RPQs and
similar query languages for graph databases.

To define it, we restrict the star operator to mimic
the following graph database reachability queries:

e the query “reachable by an arbitrary path”, ex-
pressed by (R Néf’ff)*; and

e the query “reachable by a path labeled with the

1,2,3’
same element”, expressed by (RXy77),)*

These are the only applications of the Kleene star per-
mitted in reachTA™. For this fragment, we have the
same lower complexity bound.

Proposition 5. The problem QUERYCOMPUTATION for
reachTA™ can be solved in time O(le| - |O] - |T|).

6. TRIPLE ALGEBRA AND RELATIONAL
LANGUAGES

In this section we compare the expressive power of
our algebras with relational languages. As usual, we
say that a language £; is contained in a language Lo
if for every query in £; there is an equivalent query in
Lo. If in addition £5 has a query not expressible in £,
then L, is strictly contained in £5. The languages are
equivalent if each is contained in the other. They are
incomparable if none is contained in the other.

6.1 Triple Algebra as a Relational language

To compare TriAL with relational languages, we use
exactly the same relational representation of triplestores
as we did when we found Datalog fragments capturing
TriAL and TriAL*. That is, we compare the expressive
power of TriAL with that of First—Order Logic (FO) over
vocabulary (E1, ..., Ey,~). Given an FO formula ¢(z)
and an instance I over such a vocabulary, we write (1)
for the result of evaluation of ¢(Z) over I, i.e., the set
of all tuples of objects @ of size |Z| such that I = ¢(a).

Since TriAL is a restriction of relational algebra, of
course it is contained in FO. We do a more detailed
analysis based on the number of variables. Recall that
FO" stands for FO restricted to k variables only. To
give an intuition why such restrictions are relevant
for us, consider, for instance, the join operation e =

E Néf;’,g E. Tt can be expressed by the following FO°
formula: (p(l‘l, xs, .1‘3) = daodxyxor (E(acl, To, $3) A\
E(x1,29,23) A xo = .1'2/). This suggests that we can
simulate joins using only six variables, and this extends

rather easily to the whole algebra. One can furthermore
show that the containment is proper in this case.

What about fragments of FO using fewer variables?
Clearly we cannot go below three variables. It is not
difficult to show that TriAL simulates FO?, but the re-
lationship with the 4 and 5 variable formalisms appears
much more intricate, and its study requires more in-
volved techniques. We can show the following.

Theorem 4.

e TriAL is strictly contained in FOS.
e FO? is strictly contained in TriAL.
e TriAL is incomparable with FO* and FOS.

The containment of FO® in TrAL is proved by in-
duction, and we use pebble games to show that such
containment is proper. For the last, more involved part
of the theorem, we first show that TriAL is not contained
in FO®. Notice that the expression e given by

1,2,3
UM U, with 0 ={i#j|i.je{1,1,2,2,3,3%},i < j},

is such that e(T) is not empty if and only if T has six
different objects (recall that U is the set of all triples
(01, 02,03) so that each o; occurs in a triple in T'). It
then follows that TriAL is not contained in FO® (nor
FO%), cf. [26]. To show that FO* is not contained in
TriAL, we devise a game that characterizes expressibility
of TriAL, and use this game to show that TriAL cannot
express the following FO* query ¢(z,y, 2):

Ew(l/](%ya ’LU) A Q/J(wiv Z) A w(wa Y, Z) A w(% Y, Z))a
where
Y(2,y,2) = Fw(E(x, w,y) A E(y, w, z) A E(z,w,)).

The above result also shows that TriAL cannot express
all conjunctive queries, since in particular the query
o(x,y,2) is a conjunctive query. This is of course ex-
pected; the intuition is that TriAL queries have limited
memory and thus cannot express queries such as the
existence of a k-clique, for large values of k.

Expressivity of TriAL™. The TriAL queries we used to
separate it from FO® or FO* make use of inequalities
in the join conditions. Thus, it is natural to ask what
happens when we restrict our attention to TriAL™, the
fragment that disallows inequalities in selections and
joins. We saw in Section 5 that this fragment appears to
be more manageable in terms of query answering. This
suggests that fewer variables may be enough, as the
number of variables is often indicative of the complexity
of query evaluation [23, 36]. This is indeed the case.

Theorem 5.
e FO? is strictly contained in TriAL=.

o THAL™ is strictly contained in FO*.

Next, we turn to the expressive power of TriAL*. Since
the Kleene star essentially defines the transitive closure
of join operators, it seems natural for our study to com-
pare TriAL* with Transitive Closure Logic, or TrCl.

Formally, TrCl is defined as an extension of FO with
the following operator. If ¢(Z, 7, Z) is a formula, where
|Z] = |g| = n, and @, v are tuples of variables of the
same length n, then [trclz 50(Z, ¥, Z)](@, 0) is a formula
whose free variables are those in z, & and v. For an
instance I and instantiations a, b and ¢ for u, v and ¢,
construct a graph G whose nodes are elements of I"™ and
edges contain pairs (&1, @2) so that ¢(1, Uz, ¢) holds in
I. Then I = [trclz 59(Z,9,0)](a,b) iff (@,b) is in the
transitive closure of this graph G.

It is fairly easy to show that TrAL® is contained
in TrCl; the question is whether one can find analogs
of Theorem 4 for fragments of TrCl using a limited
number of variables. We denote by TrClk the re-
striction of TrCl to k variables. Note that constructs
of form [trel; 50(Z, 7, 2)](t1,12) can be defined using
[t1] + |t2| + |z| variables, by reusing ¢; and f2 in .

Then we can show that the relationship between
TriAL* and TrCl mimics the results of Theorem 4 for
the case of TriAL and FO.

Theorem 6.

o TriAL* is strictly contained in TrCl8.
o TrCP is strictly contained in TriAL*.
o TriAL* is incomparable with TrCI* and TrCI>.

6.2 Triple Algebra as a Graph Language

The goal of this section is to demonstrate the use-
fulness of TriAL* in the context of graph databases. In
particular we show how to use TriAL* for querying graph
databases, both with and without data values, and com-
pare it in terms of expressiveness with several well es-
tablished graph database query languages.

6.2.1 Navigational graph query languages

We compare TriAL* with a number of established for-
malisms for graph databases such as NREs, RPQs and
CRPQs. As our yardstick language for comparison we
use a recently proposed version of XPath, adapted for
graph querying [27]. Its navigational fragment, used
now, is essentially Propositional Dynamic Logic (PDL)
[21] with negation on paths; below we also expand it
with data tests when we deal with graphs whose nodes
hold data values. These languages are designed to query
the topology of a graph database and specify various
reachability patterns between nodes. As such, they are
naturally equipped with the star operator and to make
our comparison fair we will compare them with TriAL™.

The navigational language used now is called GXPath;
its formulae are split into node tests, returning sets of

nodes and path expressions, returning sets of pairs of
nodes. Node tests are given by the following grammar:

o =T || oA oV
where « is a path expression.

The path formulae of GXPath are given below. Here
a ranges over the labeling alphabet X..

a,f:=¢elala |[g]|a-BlaUp|ala’.

The semantics is standard, and follows the usual se-
mantics of PDL or XPath languages. Given a graph
G = (V,E), T returns V, and {(a) returns v € V so that
(v,v") is in the semantics of « for some v’ € V. The
semantics of Boolean operators is standard. For path
formulae, ¢ returns {(v,v) | v € V}, a returns {(v,v’) |
(v,a,v") € E} and a~ returns {(v/,v) | (v,a,v’") € E}.
Expressions a - 8, aU 8, @, and a* denote relation com-
position, union, complement, and transitive closure. Fi-
nally [¢] denotes the set of pairs (v,v) so that v is in
the semantics of ¢.

Since TriAL* is designed to query triplestores, we
need to explain how to compare its power with that
of graph query languages. Given a graph database
G = (V,E) over the alphabet 3, we define a triple-
store T = (O, E), with O = V UX. Note that for now
we deal with navigation; later we shall also look at data
values.

To compare TriAL* with binary graph queries in a
graph query language £, we turn THAL™ ternary queries
Q@ into binary by applying the m 3(Q), i.e., keeping
(s,0) from every triple (s,p,0) returned by @. Under
these conventions, we say that a graph query language
L is contained in TriAL* if for every binary query a € £
there is a TrAL" expression e, so that m 3(eq) and
a are equivalent, and likewise, TriAL* is contained in
a graph query language L if for every expression e in
TriAL* there is a binary query . € £ that is equivalent
to m1,3(e). The notions of being strictly contained and
incomparable extend in the same way.

Alternatively, one can do comparisons using triple-
stores represented as graph databases, as in Proposition
1. Since here we study the ability of TriAL* to serve as a
graph query language, the comparison explained above
looks more natural, but in fact all the results remain
true even if we do the comparison over triplestores rep-
resented as graph databases, as described in Section 2.

We now show that all GXPath queries can be defined
in TriAL*, but that there are certain properties that
TriAL* can define that lie beyond the reach of GXPath.

Theorem 7. GXPath is strictly contained in TriAL*.

We prove this by using the equivalence of GXPath
with the 3-variable fragment of reachability logic FO*
[35], shown in [27].

Note that this also implies a strict containment of
languages presented in [17, 18] in TriAL", since it is
easy to show that they are subsumed by GXPath.

To compare TriAL* with common graph languages
such as NREs and RPQs we observe that NREs can
be thought of as path expressions of GXPath that do
not use complement and where nesting is replaced with
[(a)]. RPQs do not even have nesting. Thus:

Corollary 2.

e NREs are strictly contained in TriAL™.
e RPQs are strictly contained in TriAL".

It is common in graph databases to consider queries
that are closed under conjunction and existential quan-
tification, such as CRPQs [13, 37], C2RPQs [10] and
CNREs [9]. The latter are expressions ¢(Z) =
Iy N, (@ 5 y;), where all variables 2;,y; come from
T,y and each e; is a NRE. The semantics extends that of
NREs, with each x; — y; interpreted as the existence
of a path between them that is denoted by e;. We com-
pare TriAL" with these queries, and also with unions of
CNRESs that use bounded number of variables.

Theorem 8.

e CNREs and TriAL* are incomparable in terms of
erpressive power.

e Unions of CNREs that use only three variables are
strictly contained in TriAL™.

By observing that the expressions separating CNREs
from TriAL* are CRPQs, and that CNREs are more
expressive than CRPQs and C2RPQS [8] we obtain:

Corollary 3.

e CRPQs and TriAL* are incomparable in terms of
erpressive power.

o Unions of C2RPQs and CRPQs that use only three
variables are strictly contained in TriAL".

There are further extensions, such as extended CR-
PQs, where paths witnessing RPQs can be named and
compared for relationships between them, defined as
regular or even rational relations [6, 7]. We leave the
comparison with these languages as future work.

6.2.2 Query languages for graphs with data

Until now we have compared our algebra with purely
navigational formalisms. Triple stores do have data val-
ues, however, and can thus model any graph database.
That is, for any graph database G = (V, E, p) we can
define a triplestore T¢ = (O, E, p) with O = V U X.
Note that nodes corresponding to labels have no data
values assigned in our model. This is not an obstacle
and can in fact be used to model graph databases that
have data values on both the nodes and the edges.

We provide a comparison to an extension of GXPath
with data value comparisons. The language, denoted
by GXPath(~), presented first in [27], is given by the
following grammars for node and path formulae:

e :=THa=6) | (@a#B) | ~¢|eAY|eVe | {a)

a,fi=clala |[p]la-Blaup|ala’|a=]|az
The semantics of additional expressions is as follows:
ap returns those pairs (v,v’) returned by « for which
p(v) 0 p(v'), for 6 € {=,#}, and (a 6 B) returns nodes
v such that there are pairs (v,v,) and (v, vg) returned
by a and S and p(vy) 0 p(vg). The former addition
corresponds to the notion of regular expressions with
equality [28], and the latter to standard XPath data-
value comparisons.

To compare GXPath(~) with TriAL*, we use the same
convention as for data value-free languages. Connec-
tions of GXPath(~) with a 3-variable reachability logic
and the proof of Theorem 4 show:

Corollary 4. GXPath(~) is strictly contained in TriAL*.

This also implies that TriAL* subsumes an extension
of RPQs based on regular expressions with equality [28],
which can test for (in)equality of data values at the
beginning and the end of paths.

Another formalism proposed for querying graph
databases with data values is that of register automata
[25]. In general, these work over data words, i.e., words
over both a finite alphabet and an infinite set of data
values. RPQs defined by register automata find pairs of
nodes connected by a path accepted by such automata.
We refer to [28, 25] for precise definitions, and state the
comparison result below.

Proposition 6. TriAL® is incomparable in terms of ex-
pressive power with register automata.

This follows since register automata can define prop-
erties not expressible with six variables, but on the other
hand are not closed under complement.

7. CONCLUSIONS AND FUTURE WORK

While graph database query mechanisms have been
promoted as a useful tool for querying RDF data, most
of these approaches view RDF as a graph database. Al-
though inherently similar, the two models do have sig-
nificant differences. We showed that some very natural
navigational queries for RDF cannot be expressed with
graph-based navigational mechanisms. The solution is
then to use proper triple-based models and languages.

We introduced such a model, that combines the usual
idea of triplestores used in many RDF implementations,
with that of graphs with data, and proposed an alge-
bra for that model. It comes in two flavors, a non-
recursive algebra TriAL and a recursive one TriAL*. We

also provided Datalog-based declarative languages cap-
turing these. We studied the query evaluation problem,
as well as the expressivity of the languages, comparing
them with both relational and graph query languages.

There are several future directions we would like to
pursue. One relates to understanding connections with
another way restriction guaranteeing closure, namely
using semi-joins. Although some of the properties cru-
cial for our goals cannot be expressed solely with semi-
joins, such restrictions are closely related to the guarded
fragment of FO [29], which enjoys better properties than
the full FO. Another theoretical question that arises
from our investigation is studying connections between
languages for tuples of arbitrary arity, not just triples.

On the more practical side, we want to provide a
deeper insight into the connection of our languages and
nSPARQL, which seems to be the current choice for
navigational RDF queries. For instance, we would like
to see whether TriAL™ functionalities can be included
into SPARQL, resulting in a language provably more ex-
pressive than nSPARQL, that provides recursive func-
tionalities needed to compute most navigational queries
required in RDF, including property paths. Another di-
rection is to see how possible implementations of TriAL*
stack up against currently used systems. In this re-
spect we would like to test if commercial RDBMSs can
scalably implement the type of recursion we require,
or whether augmenting one of the existing open-source
triplestore systems will result in a more efficient evalu-
ation when recursion is added.

Acknowledgments Work partly supported by EPSRC grants
G049165 and J015377. We thank anonymous referees for their
helpful suggestions.

8. References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] R. Angles and C. Gutierrez. Survey of graph database
models. ACM Computing Surveys, 40(1), 2008.

[3] R. Angles. A comparison of current graph database models.
In ICDE Workshops, pages 171-177, 2012.

[4] K. Anyanwu and A. Sheth. p-Queries: Enabling querying
for semantic associations on the Semantic Web. In
WWW’03, pages 690—699.

[5] M. Arenas and J. Pérez. Querying semantic web data with
SPARQL. In PODS, pages 305316, 2011.

[6] P. Barceld, L. Libkin, A.W. Lin, and P. Wood. Expressive
languages for path queries over graph-structured data.
ACM TODS 38(4) (2012).

[7] P. Barceld, D. Figueira, and L. Libkin. Graph logics with
rational relations and the generalized intersection problem.
In LICS’12, pages 115-124.

[8] P. Barceld, J. Pérez, and J. L. Reutter. Relative
expressiveness of nested regular expressions. In AMW’12,
pages 180-195.

[9] P. Barceld, J. Pérez, and J. L. Reutter. Schema mappings
and data exchange for graph databases. In ICDT’183.

[10] D. Calvanese, G. De Giacomo, M. Lenzerini, and M.Y.
Vardi. Containment of conjunctive regular path queries
with inverse. In KR’2000, pages 176-185.

[11] D. Calvanese, G. De Giacomo, M. Lenzerini, and M.Y.
Vardi. Rewriting of regular expressions and regular path
queries. JCSS, 64(3):443-465, 2002.

[12] M. Consens, A. Mendelzon. GraphLog: a visual formalism
for real life recursion. In PODS’90, pages 404-416.

[13] L. Cruz, A.O. Mendelzon, and P. Wood. A graphical query
language supporting recursion. In SIGMOD’87, pages
323-330.

[14] P. Cudré-Mauroux and S. Elnikety. Graph data
management systems for new application domains.
PVLDB, 4(12):1510-1511, 2011.

[15] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding regular
expressions to graph reachability and pattern queries. In
ICDE, pages 39-50, 2011.

[16] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Graph pattern
matching: from intractable to polynomial time. PVLDB,
3(1):264-275, 2010.

[17] G. Fletcher et al. Relative expressive power of navigational
querying on graphs. ICDT 2011, 197-207

[18] G. Fletcher et al. The impact of transitive closure on the
boolean expressiveness of navigational query languages on
graphs. FoIKS 2012, 124-143

[19] G. Gottlob and C. Koch. Monadic datalog and the
expressive power of languages for web information
extraction. J. ACM, 51(1):74-113, 2004.

[20] G. Gottlob, E. Gridel, and H. Veith. Datalog LITE: a
deductive query language with linear time model checking.
ACM TOCL, 3(1):42-79, 2002.

[21] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT
Press, 2000.

[22] S. Harris et al. SPARQL 1.1 Query Language.
http://www.w3.org/TR/sparqlil-query.

[23] N. Immerman, D. Kozen. Definability with Bounded
Number of Bound Variables. JANDC, 83(2):121-139 (1989).

[24] The Apache Jena Manual. http://jena.apache.org.

[25] M. Kaminski and N. Francez. Finite memory automata.
TCS, 134(2):329-363, 1994.

[26] L. Libkin. Elements of Finite Model Theory, Springer,
2004.

[27] L. Libkin, W. Martens, and D. Vrgo¢. Querying graph
databases with XPath. In ICDT, 2013.

[28] L. Libkin and D. Vrgo¢. Regular path queries on graphs
with data. In ICDT"’12, pages 74-85.

[29] D. Leinders, M. Marx, J. Tyszkiewicz and J. Van den
Bussche. The semijoin algebra and the guarded fragment.
Logic, Language and Information, 14(3), 331-343, 2009.

[30] K. Losemann, W. Martens. The complexity of evaluating
path expressions in SPARQL. In PODS’12, pages 101-112.

[31] The Neo4j Manual. http://docs.neodj.org.

[32] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. ACM TODS, 34(3), 20009.

[33] J. Pérez, M. Arenas, C. Gutierrez. nSPARQL: A
navigational language for RDF. J. Web Sem., 8(4):255-270,
2010.

[34] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF. W3C Recommendation 15 January
2008, http://www.w3.org/TR/rdf-sparql-query/.

[35] B. ten Cate. The expressivity of XPath with transitive
closure. In PODS, pages 328—-337, 2006.

[36] M. Vardi. On the complexity of bounded-variable queries.
In PODS’95, pages 266—276.

[37] P. Wood. Query languages for graph databases. Sigmod
Record, 41(1):50-60, 2012.

