
Making SQL Queries Correct on Incomplete Databases:
A Feasibility Study

Paolo Guagliardo
School of Informatics

The University of Edinburgh
pguaglia@inf.ed.ac.uk

Leonid Libkin
School of Informatics

The University of Edinburgh
libkin@inf.ed.ac.uk

ABSTRACT
Multiple issues with SQL’s handling of nulls have been well
documented. Having efficiency as its key goal, evaluation
of SQL queries disregards the standard notion of correct-
ness on incomplete databases – certain answers – due to its
high complexity. As a result, it may produce answers that
are just plain wrong. It was recently shown that SQL eval-
uation can be modified, at least for first-order queries, to
return only correct answers. But while these modifications
came with good theoretical complexity bounds, they have
not been tested in practice.

The goals of this proof-of-concept paper are to understand
whether wrong answers can be produced by SQL queries in
real-world scenarios, and whether proposed techniques for
avoiding them can be made practically feasible.

We use the TPC-H benchmark, and show that for some
typical queries involving negation, wrong answers are very
common. On the other hand, existing solutions for fixing
the problem do not work in practice at all. By analyzing
the reasons for this, we come up with a new modified way of
rewriting SQL queries that restores correctness. We conduct
experiments which show the feasibility of our solution: the
small price tag it imposes can be often tolerated to ensure
correct results, and we do not miss correct answers that
the usual SQL evaluation produces. The overall conclusion
is that correct evaluation can be realistically achieved in
the presence of nulls, at least for the SQL fragment that
corresponds to first-order queries.

1. INTRODUCTION
The way incomplete information is handled in commer-

cial DBMSs, specifically by SQL, has been heavily criticized
for producing counter-intuitive and just plain incorrect an-
swers [7, 9]. The reason behind this behavior is that SQL
designers had first and foremost efficient evaluation in mind,
but correctness and efficiency do not always get along. The
standard theoretical approach to answering queries on in-
complete databases, which is widely accepted as providing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODS’16, June 26-July 01, 2016, San Francisco, CA, USA
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4191-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2902251.2902297

the right notion of answers, is to compute certain answers.
These are query answers that do not depend on how the un-
known data is interpreted. However, computing them is not
easy, in fact coNP-hard for most reasonable semantics, if
we deal with relational calculus/algebra queries [2]. SQL’s
evaluation is very efficient; it is in AC0 (a small parallel
complexity class) for the same class of queries, and thus it
provably cannot capture certain answers.

The gap in complexity is not yet a reason for undesirable
behavior; one can easily imagine that SQL evaluation pro-
duces an approximation of certain answers. There are two
ways in which certain answers and SQL’s evaluation could
differ:

• SQL can miss some of the tuples that belong to certain
answers, thus producing false negatives; or

• it can return some tuples that do not belong to certain
answers, that is, false positives.

False negatives can be accepted as the price to be paid for
lowering complexity; after all, they just indicate that the
correct answer is approximated. False positives, on the other
hand, are outright wrong answers and therefore should not
be tolerated. The problem with SQL is that it produces
both kinds of errors.

To see how false positives can be generated, consider a
simple query computing the difference of two relations R
and S, each with a single attribute A:

SELECT R.A FROM R WHERE NOT EXISTS (
SELECT * FROM S WHERE R.A = S.A)

When R = {1} and S = {NULL}, the output is {1}, but it
is not a certain answer. Indeed, if the missing value repre-
sented by NULL is interpreted as 1, the difference R − S is
empty, and thus so is the set of certain answers.

The reasons behind SQL’s incorrect behavior have their
roots in the flawed three-valued logic approach it uses for
handling nulls. Multiple attempts to fix it have been made in
the past (see, e.g., [11, 15, 31]) although none of them came
with formal correctness guarantees. Recently, [22] proposed
a new approach to fixing SQL’s evaluation scheme that pro-
vided provable correctness guarantees. It showed how to
translate a query Q into a query Q′ such that:

• false positives never occur: Q′ returns a subset of cer-
tain answers to Q;

• data complexity of Q′ is still AC0; and

• on databases without nulls, Q and Q′ produce the same
results.

Given the attractive theoretical properties of the ap-
proach, we want to understand whether these theoretical

http://dx.doi.org/10.1145/2902251.2902297

guarantees can work in practice. To this end, we need to
answer two main questions:

Question 1. Are false positives a real problem? Do they
occur in real-life queries over databases with nulls?

Question 2. Can algorithms that correctly evaluate
queries on databases with nulls be efficiently implemented?
What is the price to pay, in terms of query evaluation per-
formance, for correctness guarantees?

Since algorithms in [22] introduced extra steps to restore
correctness, we do not expect, in general, to outperform na-
tive SQL evaluation, which was designed exclusively to opti-
mize execution time. We can hope, however, that the over-
head is sufficiently small. If this is so, one can envision two
modes of evaluation: the standard one, where efficiency is
the only concern, and an alternative, perhaps slightly more
expensive one, that provides correctness guarantees. The
difference is then the price of correctness, and we need to
understand what it is.

This work is the first feasibility study in this direction,
and it produces promising results that warrant further in-
vestment into designing algorithms with correctness guaran-
tees for larger classes of queries. Here we consider relational
calculus/algebra queries and provide the following results.

False positives. They are a real problem for queries that
involve negation. We look at queries inspired by the TPC-
H benchmark [28] and show that false positives are always
present. Sometimes they constitute almost 100% of answers;
for other queries, they quickly grow with the null rate (the
probability that a null occurs in a given position), accounting
for between 1.5% and 20% of answers when the null rate is
2% and rising to at least 15% even for the best behaved
queries when the null rate is 10%.

Algorithms with correctness guarantees. Those pre-
sented in [22] have a very good theoretical complexity but
they cannot be implemented as-is due to the extensive use of
Cartesian product in translated queries. To overcome this,
we design an alternative way of transforming queries that
still guarantees correctness while producing queries that are
much more implementation-friendly. For positive queries
(i.e., not involving negation in any form) and on databases
without nulls, it coincides with the usual SQL evaluation.

We then test our new algorithm on databases with nulls,
for our sample TCP-H queries with negation, and observe
two kinds of behavior. Sometimes, the performance of trans-
lated queries with correctness guarantees is very good, with
the price of correctness – the overhead of executing the trans-
lated query – not exceeding 4% (and sometimes in fact mak-
ing queries up to 10,000 times faster).

For other queries, the translation may “confuse” the op-
timizer. That is, the optimizer generates plans with astro-
nomical costs (although in some cases these are not reflected
by the actual running time). The reason is that some condi-
tions of the form R.A = S.B get translated into R.A = S.B

OR R.A IS NULL to enforce correctness, but this causes the
optimizer to badly overestimate the execution time, up to
the point of resorting to nested-loop implementation of joins.
However, we show that simple syntactic manipulations of
queries can restore sanity to the optimizer, and result in
reasonable performance, with translated queries running at
roughly half the speed of the original ones.

Precision and recall. We need to address them to say how
good our evaluation techniques are. Precision refers to how
many answers are certain, and recall to the proportion of
certain answers returned. The formal correctness guarantees
we prove imply that precision of our algorithms is 100%
(while for some of the queries we experiment with, SQL’s
precision is close to zero).

It is easy to achieve high precision with low recall: just
return nothing, and there are no false positives. Since SQL
returns many more answers than necessary (false positives),
it should not be surprising that sometimes it also returns
a certain answer our procedure misses. However, in all our
experiments, recall stands at 100%: our procedure returns
precisely certain answers that are also returned by SQL eval-
uation.

The key conclusion of this study is that achieving cor-
rectness in SQL query evaluation on databases with nulls is
feasible. As we said, this is a proof-of-concept paper, whose
goal is to demonstrate that the idea of rewriting queries to
achieve correctness is implementable. We have done this for
first-order queries and missing-information interpretation of
nulls. Of course much more is needed before one can in-
troduce a second, fully correct, evaluation mode for SQL
queries (e.g., by saying SELECT CERTAIN); we shall discuss
particular tasks (such as handling bag semantics, aggregates,
non-applicable nulls, etc.) at the end of the paper.

Organization. Basic notions and definitions are given in
Section 2. Section 3 discusses the setup for our experiments.
Section 4 presents experimental results on false positives
in SQL query evaluation. Section 5 describes the transla-
tion of [22] and explains why it cannot be efficiently imple-
mented. Section 6 presents our improved implementation-
friendly translation. Section 7 contains the experimental re-
sults for the improved translation and describes the price of
correctness for SQL query evaluation. Section 8 discusses ex-
tensions to cover other language aspects of SQL. The query
translations used in our experiments are in the appendix.

2. PRELIMINARIES
We consider incomplete databases with nulls interpreted

as missing information. Much of the following is standard in
the literature on databases with incomplete information, see,
e.g., [1, 12, 14, 22, 30]. The usual way of modeling SQL’s
nulls under this interpretation is to use Codd nulls which
are a special case of the more general marked, or labeled,
nulls. Databases are populated by two types of elements:
constants and nulls, coming from countably infinite sets de-
noted by Const and Null, respectively. Nulls are denoted by
⊥, sometimes with sub- or superscripts. For the purpose of
the general model we follow the textbook approach assum-
ing one domain Const for all non-null elements appearing
in databases. In real life (and our experiments), such ele-
ments can be of many different types, and those appearing
in the same column must be of the same type. Adjusting re-
sults and translations of queries for this setting is completely
straightforward.

A relational schema, or vocabulary, is a set of relation
names with associated arities. With each k-ary relation sym-
bol S from the vocabulary, an incomplete relational instance
D associates a k-ary relation SD over Const ∪ Null, that is,
a finite subset of (Const∪Null)k. When the instance is clear

from the context, we write S instead of SD for the relation
itself. We denote the arity of S by ar(S), and use the same
notation for queries.

In instances with Codd nulls, it is assumed that nulls do
not repeat, i.e., each element of Null appears at most once
in a database. When repetition of nulls is allowed, we speak
of labeled or marked nulls; these often appear in applications
such as data integration and exchange [4, 19]. Our transla-
tions work correctly on databases with Codd nulls as well as
on databases with the more general marked nulls.

The sets of constants and nulls that occur in a database
D are denoted by Const(D) and Null(D), respectively. The
active domain of D is the set adom(D) of all elements oc-
curring in it, i.e., Const(D)∪Null(D). If D has no nulls, we
say that it is complete. A valuation v on a database D is a
map v : Null(D) → Const. We denote by v(D) the result of
replacing each null ⊥ with v(⊥) in D. The semantics of an
incomplete database D is the set of all complete databases it
can possibly represent. Under the missing value interpreta-
tion of nulls, it is defined as {v(D) | v is a valuation}, and is
referred to as the closed-world semantics of incompleteness
[26].

Query languages. As our query language, we consider the
basic fragment of SQL, corresponding to relational calcu-
lus/algebra (i.e., first-order queries). That is, we have the
usual SELECT-FROM-WHERE queries, with (correlated) sub-
queries preceded by IN and EXISTS, as well as their nega-
tions.

For translations that give us correctness guarantees, we
use relational algebra, with the standard operations of selec-
tion σ, projection π, Cartesian product × (or join ./), union
∪, difference − and intersection ∩. We assume that selection
conditions are positive Boolean combinations of equalities
of the form A = B and A = c, where A and B are at-
tributes and c is a constant value, and disequalities A 6= B
and A 6= c. Note that these conditions are closed under
negation, which can simply be propagated to atoms: e.g.,
¬
(
(A = B) ∨ (B 6= 1)

)
is equivalent to (A 6= B) ∧ (B = 1).

In the translations of queries, we also use conditions
const(A) and null(A) in selections, indicating whether the
value of an attribute is a constant or a null. These corre-
spond to SQL’s A IS NOT NULL and A IS NULL.

Correctness guarantees. The standard notion of correct
query answering on incomplete databases is certain answers,
that is, tuples that are present in the answer to a query
regardless of the interpretation of nulls. For a query Q and
a database D, these are typically defined as

⋂
{Q
(
v(D)

)
|

v is a valuation}; see [1, 14].
This definition has a serious drawback, though, as tuples

with nulls cannot be returned, while standard query eval-
uation may well produce such tuples. For instance, if we
have a relation R = {(1,⊥), (2, 3)}, and a query returning
R, then the certain answer contains only (2, 3), while intu-
itively it should give us the entire relation. In light of this,
for correctness guarantees we use a closely-related but more
general notion from [23], called certain answers with nulls in
[22].

Formally, for a query Q and a database D, the certain
answer with nulls, denoted by cert(Q,D), is the set of all
tuples ā over adom(D) such that v(ā) ∈ Q

(
v(D)

)
for every

valuation v on D. In the above example, certain answer with

nulls contains both tuples (1,⊥) and (2, 3). The standard
certain answers are exactly the null-free tuples in cert(Q,D)
[22].

Definition 1. A query evaluation algorithm has correct-
ness guarantees for queryQ if for every databaseD it returns
a subset of cert(Q,D).

In other words, with correctness guarantees, false positives
are not allowed: all returned tuples must be certain answers.

Often our evaluation algorithms will be of the following
form: translate Q into another query Q′, and then run it on
D. If Q′(D) ⊆ cert(Q,D), we say that Q′ has correctness
guarantees for Q.

Some results concerning correctness guarantees are
known. By näıve evaluation for a fragment of relational
algebra we mean the algorithm that treats elements of Null
as if they were the usual database entries, i.e., each evalu-
ation ⊥ = c for c ∈ Const is false and ⊥ = ⊥′ is true iff ⊥
and ⊥′ are the same element in Null.

Fact 1 ([12, 14, 22]). Näıve evaluation has correct-
ness guarantees for positive relational algebra, i.e., relational
algebra without the difference operator and without disequal-
ities in selection conditions. In fact it computes exactly cer-
tain answers with nulls. This remains true even if we extend
the language with the division operator as long as its second
argument is a relation in the database.

Recall that division is a derived relational algebra opera-
tion; it computes tuples in a projection of a relation appear-
ing in all possible combinations with tuples from another
relation (e.g., ‘find students taking all courses’).

SQL evaluation. For SQL, the evaluation procedure is dif-
ferent, as it is based on a 3-valued logic (3VL); see [9]. In
particular, comparisons such as ⊥ = c, as well as compar-
isons between two nulls, evaluate to unknown, which is then
propagated through conditions using the rules of 3VL.

More precisely, selection conditions can evaluate to true
(t), false (f), or unknown (u). If at least one attribute in a
comparison is null, the result of the comparison is u. The
interaction of u with Boolean connectives is as follows: ¬u =
u, u ∧ t = u ∧ u = u, u ∧ f = f, and dually by De Morgan’s
law for ∨. Then, σθ selects tuples on which θ evaluates to
t (that is, f and u tuples are not selected). We refer to the
result of evaluating a query Q in this way as EvalSQL(Q,D).

Fact 2 ([22]). EvalSQL has correctness guarantees for
the positive fragment of relational algebra.

The positive fragment of relational algebra corresponds to
the fragment of SQL in which negation does not appear in
any form, i.e., EXCEPT is not allowed, there are no negations
in WHERE conditions and the use of NOT IN and NOT EXISTS
for subqueries is prohibited.

3. SETUP: QUERIES AND INSTANCES
We have seen that what breaks correctness guarantees is

queries with negation; the example used in the introduction
was based on a NOT EXISTS subquery. To choose concrete
queries for our experiments, we use the well established and
common TPC-H benchmark that models a business appli-
cation scenario and typical decision support queries [28]. Its

schema contains information about customers who place or-
ders consisting of several items, and suppliers who supply
parts for those orders. There are also small relations de-
scribing geographical information (nations and regions). In
terms of size, lineitem is by far the largest table, which
records the items constituting an order and associated parts
and suppliers, followed by order itself.

Given the decision support nature of TPC-H queries,
many of them involve aggregation. However, aggregation is
not important for our purposes: if a tuple without an aggre-
gate value is a false positive, it remains false positive when
an extra attribute value is added. Since we only need to
measure the ratio of false positives, and the relative change
of speed in query evaluation, we can safely drop aggregates
from the output of those queries.

Most of the TPC-H queries do not have negation; they are
essentially aggregate queries on top of multi-way joins. Two
of them, queries 21 and 22, do use NOT EXISTS so we choose
them for our experiments. We further supplement them
with two very typical database textbook [10] queries (slightly
modified to fit the TPC-H schema) that are designed to
teach subqueries. We provide all these queries below, to
give the reader an idea of the features involved.

Query Q1. It is a TPC-H query meant to identify suppliers
who were not able to ship required parts in a timely manner.
It returns suppliers from a given nation, and multi-supplier
finalized orders (i.e., with status ‘F’) where the supplier was
the only one who failed to meet the committed delivery date.
The query is:

SELECT s_suppkey, o_orderkey
FROM supplier, lineitem l1, orders, nation
WHERE s_suppkey = l1.l_suppkey
AND o_orderkey = l1.l_orderkey
AND o_orderstatus = 'F'
AND l1.l_receiptdate > l1.l_commitdate
AND EXISTS (

SELECT *
FROM lineitem l2
WHERE l2.l_orderkey = l1.l_orderkey

AND l2.l_suppkey <> l1.l_suppkey)
AND NOT EXISTS (

SELECT *
FROM lineitem l3
WHERE l3.l_orderkey = l1.l_orderkey
AND l3.l_suppkey <> l1.l_suppkey
AND l3.l_receiptdate > l3.l_commitdate)

AND s_nationkey = n_nationkey
AND n_name = $nation

where $nation is a randomly chosen value among the keys
of table nation.

Query Q2. It is another TPC-H query, which aims at identi-
fying countries where there are customers who may be likely
to make a purchase. It returns customers within a specific
range of countries who have not recently placed orders but
have a greater than average positive account balance. The
query is:

SELECT c_custkey, c_nationkey
FROM customer
WHERE c_nationkey IN ($countries)

AND c_acctbal > (
SELECT avg(c_acctbal)
FROM customer
WHERE c_acctbal > 0.00

AND c_nationkey IN ($countries))
AND NOT EXISTS (

SELECT *
FROM orders
WHERE o_custkey = c_custkey)

where $countries is a list of 7 distinct values randomly
chosen among the keys of table nation.

Query Q3. It is a classical textbook query that finds all
orders supplied entirely by a specific supplier:

SELECT o_orderkey
FROM orders
WHERE NOT EXISTS (

SELECT *
FROM lineitem
WHERE l_orderkey = o_orderkey
AND l_suppkey <> $supp_key)

where $supp_key is a randomly chosen value among the keys
of table supplier.

Query Q4. It is another standard textbook query illustrat-
ing a correlated subquery with NOT EXISTS. The subquery
uses multiple relations and a complex join condition. It asks
for orders not supplied with any part of a specific color by
any supplier from a specific country.

SELECT o_orderkey
FROM orders
WHERE NOT EXISTS (

SELECT *
FROM lineitem, part, supplier, nation
WHERE l_orderkey = o_orderkey
AND l_partkey = p_partkey
AND l_suppkey = s_suppkey
AND p_name LIKE '%'||$color||'%'
AND s_nationkey = n_nationkey
AND n_name = $nation)

Here $nation is a randomly chosen value among the keys of
table nation and $color is a randomly chosen string from
a list of 92 possibilities provided by TPC-H.

Generating test instances. The TPC-H benchmark
comes with its own standard tool, DBGen, for generating in-
stances. However, DBGen generates only complete instances
(i.e., without nulls) so we need to go over them and insert
nulls to make them fit for our purpose.

For that, we separate attribute into nullable and non-
nullable ones; the latter are those where nulls cannot occur
(due to primary key constraints, or NOT NULL declarations).
For nullable attributes, we choose a probability, referred to
as the null rate of the resulting instance, and simply flip
a coin for each tuple to decide whether the corresponding
value is to be replaced by a null. As a result, for each nul-
lable attribute, the instance will contain a percentage of nulls
roughly equal to the null rate with which nulls are generated.
We consider null rates in the range 0.5%–10%.

The smallest instance DBGen generates (in line with the
prescriptions of the TPC-H standard) is about 1GB in size,
containing just under 9 · 106 tuples. We shall measure the
relative performance of our translated queries w.r.t. the orig-
inal ones on instances of 1GB, 3GB, 6GB, and 10GB size.

To estimate the amount of false positives in query answers,
we shall generate a high number of incomplete instances, on
which our sample queries are executed multiple times. False

positives are detected by algorithms that are quite expen-
sive. To speed up the process, and since in any case we are
interested only in the percentage of false positives, for this
experiment we use smaller instances. These are generated by
means of a configurable data generator, DataFiller [8], and
are compliant with the TPC-H specification in everything
but size, which we scale down by a factor of 103.

All our experiments were run using a local installation
of PostgreSQL 9.5.1 on a dedicated machine with an Intel
Core i5-3470 quad-core CPU @ 3.20GHz and 8GB of RAM.
Note that since we measure the percentage of false positive
answers and the relative performance of our scheme for ob-
taining correct answers, the exact hardware configuration
and choice of a DBMS are of less importance.

4. HOW MANY FALSE POSITIVES?
A false positive answer is a tuple that is returned by

SQL evaluation and yet is not certain; that is, the set of
false positives produced by a query Q on a database D is
Q(D)−cert(Q,D). They only occur on databases with nulls
(on complete databases, Q(D) = cert(Q,D)); a simple ex-
ample was given in the introduction. Our goal now is to see
whether real-life queries indeed produce false positives. For
this, we shall run our test queries on generated instances
with nulls and compare their output with certain answers.

However, certain answers are expensive to compute: the
problem is coNP-hard for queries with negation, thus a
näıve computation will require exponential time. As a way
around it, we design specialized algorithms to detect (some
of the) false positives for queries Q1–Q4, and compare their
results with SQL outputs. This will tell us that at least some
percentage of SQL answers are false positives.

Algorithms for detecting false positives. Such algo-
rithms take as input the bindings for the parameters of the
query, a database D and an answer tuple ā, and return true
if ā is a false positive, thereby giving us a lower bound on the
number of false positives. The underlying idea is the same
for all queries: we look for the presence of null values in rel-
evant comparisons involving nullable attributes, because in
such a case the comparison can be made true or false at need
in order to falsify the answer tuple. For instance, to falsify
an order id k in the answer to query Q3, we look for a tuple
in table lineitem where the value of attribute l_orderkey

is k and the value of l_suppkey is null. Intuitively, if there
is a lineitem for order k where the supplier is unknown, then
that supplier may well be different from the one specified by
the value of parameter $supp_key.

Detecting false positives in query Q2 is also simple: it suf-
fices to check whether there is a tuple in table orders for
which the attribute o_custkey is null; in that case, all an-
swers produced by the query are false positives. Intuitively,
if there is an order for which the customer is unknown, then
that customer could be anybody, including the one in the
answer tuple.

For the remaining two sample queries, the pseudocode to
detect false positives is given in Algorithms 1 and 2.

False positives: experimental results. Recall that null
values in instances are randomly generated: each nullable
attribute can become null with the same fixed probability,
referred to as the null rate. We let null rates range from

Algorithm 1 Detect false positives in Q1

for t̄ ∈ lineitem where t̄[l orderkey] = ā[o orderkey] :
x← t̄[l suppkey]
if x is not null and x = ā[s suppkey] :

continue
d1 ← t̄[l commitdate] ; d2 ← t̄[l receiptdate]
if d1 is null or d2 is null or d2 > d1 :

return true
return false

Algorithm 2 Detect false positives in Q4

for t̄ ∈ lineitem where t̄[l orderkey] = ā[o orderkey] :
P, S ← false
for p̄ ∈ part where t̄[l partkey] is null or

or equal to p̄[p partkey] :
if p̄[p name] is null or has substring σ[color] :

P ← true ; break

if P is not true : continue
for s̄ ∈ supplier where t̄[l suppkey] is null or

equal to s̄[s suppkey] :
x← s̄[s nationkey]
if x is null : S ← true ; break

for n̄ ∈ nation where n̄[n nationkey] = x :
if n̄[n name] equals σ[nation] :

S ← true ; break

if P is true and S is true : return true
return false

0.5% to 6% in steps of 0.5% and from 6% to 10% in steps of
1%.

To get good estimates, we generate 100 instances for each
null rate, and run each query 5 times, with randomly gen-
erated values for its parameters. At each execution, a lower
bound on the percentage of false positives is calculated by
means of the algorithms described above. The results of
the experiment are shown in Figure 1, reporting the average
over all executions.

The outcome of the experiment shows that the problem
of incorrect query answers in SQL is not just theoretical but
it may well occur in practical settings: all of the queries we
tested produce false positives on incomplete databases with
as low as 0.5% of null values.

In fact for some queries the percentage of false positives
is very high: for Q2, almost all answers are such, even when
few nulls are present. ForQ3, at least a quarter of all answers
are wrong when the null rate is just 3%, rising to at least
half incorrect answers for the null rate of 8%. Other queries,
such as Q1 and Q4, appear to be more robust (as we only
find a lower bound on the number of false positives), but
false positives are always present, even at the lowest null
rate tested, and in fact they constitute at least 10% of all
answers at null rates of 7% and above.

The overall conclusion is clear: false positives do occur in
answers to very common queries with negation, and account
for a significant portion of the answers.

5. CORRECTNESS: A SIMPLE TRANSLA-
TION

Since false positives are a real problem, we want to devise
evaluation strategies that avoid it, if correctness of query re-

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

90

100

Null rate, %

A
v
er

a
g
e

%
o
f

fa
ls

e
p

o
si

ti
v
es

Q1

Q2

Q3

Q4

Figure 1: Average percentage of false positives pro-
duced by each query for increasing null rates.

sults is a concern. One such evaluation scheme was proposed
recently [22]. We now review it, and explain why in its orig-
inal form it cannot be implemented efficiently, despite good
theoretical bounds.

We present it at the level of relational algebra. The key
idea is to translate a query Q into a pair (Qt, Qf) of queries
that have correctness guarantees for Q and its complement
Q, respectively. That is, for every database D, the tuples in
Qt(D) are certainly true, and those in Qf(D) are certainly
false:

Qt(D) ⊆ cert(Q,D) (1)

Qf(D) ⊆ cert(Q,D) (2)

To describe the translation, we need the following.

Definition 2. Two tuples r̄ and s̄ of the same length over
Const ∪ Null are unifiable, written as r̄ ⇑ s̄, if there exists a
valuation v of nulls such that v(r̄) = v(s̄).

The translations of [22] are shown in Figure 2. Here adom
refers to the query computing the active domain (the union
of all projections on each attribute of all relations), and θ∗

refers to the translation of selection conditions, which is de-
fined inductively as follows:

(A = B)∗ = (A = B)

(A = c)∗ = (A = c) if c is a constant

(A 6= B)∗ = (A 6= B) ∧ const(A) ∧ const(B)

(A 6= c)∗ = (A 6= c) ∧ const(A)

(θ1 ∨ θ2)∗ = θ∗1 ∨ θ∗2
(θ1 ∧ θ2)∗ = θ∗1 ∧ θ∗2

While (1) and (2) ensure correctness guarantees for all re-
lational algebra queries, and queries Qt and Qf have good
theoretical complexity (AC0), they suffer from a number
of problems that severely hinder their practical implemen-
tation. Crucially, they require the computation of active
domains and, even worse, their Cartesian products. While
expressible in relational algebra, the Qf translations for se-

lections, products, projections, and even base relations be-
come prohibitively expensive. Several optimizations have
been suggested in [22] (at the price of missing some cer-
tain answers), but the cases of projection and base relations
do not appear to have any reasonable alternatives. Yet an-
other problem is the complicated structure of the queries Qf.
When translations are applied recursively, this leads to very
complex queries Qt if Q used difference.

In fact we tried a simple experiment with the translations
in Figure 2, and found that they are already infeasible for
much smaller databases than the smallest TPC-H compliant
instance: some of the queries start running out of memory
already on instances with fewer than 103 tuples.

All this tells us that we need an implementable alternative,
which we present next.

6. AN IMPLEMENTATION-FRIENDLY
TRANSLATION

To overcome the practical difficulties posed by the trans-
lation in Figure 2, we propose an alternative translation that
is implementation-friendly and comes with sufficient correct-
ness guarantees. In this translation, we do not produce a
second query Qf that underapproximates certain answers to
the negation of the query, which was the main source of com-
plexity. To see what we can replace it with, note that in the
Qt translation, Qf was only used in the rule for difference:
tuples that are certain answers to Q1−Q2 are those that are
certainly answers to Q1, and certainly not answers to Q2.
That necessitated working with the complex Qf translation.

But we can use a slightly different rule: if a tuple is a
certain answer to Q1, and it does not match any tuple that
could possibly be an answer to Q2, then it is a certain an-
swer to Q1 − Q2. The advantage of this is that the query
that approximates possible answers can be built in a much
simpler way than Qf. For instance, for a base relation R, it
will be just R itself, as opposed to the complex expression
involving adom we used before.

We need to formally say what “(not) matching possible
answers” means. To this end, we define approximations of
possible answers and two matching-based semijoin opera-
tors. There already exists a notion of maybe-answers [2, 30]
– answers that appear in Q

(
v(D)

)
for at least one valuation

v – but those can be infinite, and include arbitrary elements
outside of adom(D). What we need instead is a compact
representation.

Definition 3. Given a k-ary query Q and an incomplete
database D, we say that a set A ⊆ adom(D)k represents
potential answers to Q on D if Q

(
v(D)

)
⊆ v(A) for every

valuation v. A query Q′ represents potential answers to Q if
Q′(D) represents potential answers to Q on D, for every D.

Obviously, there are trivial ways of representing potential
answers: take, e.g., adom(D)k. But we shall be looking
for good approximations, just as we are looking for good
approximations of cert(Q,D), for which bad ones can also
be found easily (e.g., the empty set).

To express conditions involving matching, we shall need
two semijoin operations based on unifiable tuples (see Defi-
nition 2).

Definition 4. For relations R,S over Const∪Null, with the
same set of attributes, the left unification semijoin is

R n⇑ S =
{
r̄ ∈ R | ∃ s̄ ∈ S : r̄ ⇑ s̄

}

Rt = R

(Q1 ∪Q2)t = Qt
1 ∪Qt

2

(Q1 ∩Q2)t = Qt
1 ∩Qt

2

(Q1 −Q2)t = Qt
1 ∩Qf

2(
σθ(Q)

)t
= σθ∗(Q

t)

(Q1 ×Q2)t = Qt
1 ×Qt

2(
πα(Q)

)t
= πα(Qt)

Rf =
{
s̄ ∈ adomar(R) | @ r̄ ∈ R : r̄ ⇑ s̄

}
(Q1 ∪Q2)f = Qf

1 ∩Qf
2

(Q1 ∩Q2)f = Qf
1 ∪Qf

2

(Q1 −Q2)f = Qf
1 ∪Qt

2

(σθ(Q))f = Qf ∪ σ(¬θ)∗
(
adomar(Q))

(Q1 ×Q2)f = Qf
1 × adomar(Q2) ∪ adomar(Q1) ×Qf

2(
πα(Q)

)f
= πα(Qf)− πα

(
adomar(Q) −Qf)

Figure 2: Relational algebra translations of [22].

R+ = R (3.1)

(Q1 ∪Q2)+ = Q+
1 ∪Q

+
2 (3.2)

(Q1 ∩Q2)+ = Q+
1 ∩Q

+
2 (3.3)

(Q1 −Q2)+ = Q+
1 n⇑ Q?

2 (3.4)(
σθ(Q)

)+
= σθ∗(Q

+) (3.5)

(Q1×Q2)+ = Q+
1 ×Q

+
2 (3.6)(

πα(Q)
)+

= πα(Q+) (3.7)

R? = R (4.1)

(Q1 ∪Q2)? = Q?
1 ∪Q?

2 (4.2)

(Q1 ∩Q2)? = Q?
1 n⇑ Q?

2 (4.3)

(Q1 −Q2)? = Q?
1 −Q+

2 (4.4)(
σθ(Q)

)?
= σθ∗∗

(
Q?) (4.5)

(Q1 ×Q2)? = Q?
1×Q?

2 (4.6)(
πα(Q)

)?
= πα

(
Q?) (4.7)

Figure 3: The improved translation with correctness guarantees.

and the left unification anti-semijoin is

R n⇑ S = R− (R n⇑ S) =
{
r̄ ∈ R | @ s̄ ∈ S : r̄ ⇑ s̄

}
These are similar to the standard definition of (anti)

semijoin; we simply use unifiability of tuples as the join
condition. They are definable operations: we have that
Rn⇑ S = πR

(
σθ⇑(R×S)

)
, where the projection is on all at-

tributes of R and condition θ⇑ is true for a tuple r̄s̄ ∈ R×S
iff r̄ ⇑ s̄. The unification condition θ⇑ is expressible as a se-
lection condition using predicates const and null [22]. Note

that, in this notation, Rf = adomar(R) n⇑ R.
Now, we can see why queries that represent potential an-

swers are useful.

Lemma 1. Consider the translations Q 7→ Q+ given in
Figure 3 by (3.1)–(3.7), where the only assumption on Q?

2

in (3.4) is that it represents potential answers to Q2. Then
Q+ has correctness guarantees for Q.

Proof sketch. The proof is by induction on the struc-
ture of the query; here, we show the important case of set
difference. Let Q = Q1 − Q2, let D be a database, let r̄
be in Q+(D) = Q+

1 (D) n⇑ Q?
2(D), and let v be a valuation

on D. We need to show that v(r̄) ∈ Q
(
v(D)

)
. As r̄ is in

Q+
1 (D), we get that v(r̄) ∈ Q1

(
v(D)

)
by the induction hy-

pothesis. Now, suppose that v(r̄) ∈ Q2

(
v(D)

)
. Since Q?

2

represents potential answers to Q2 by assumption, we have
v(r̄) ∈ v

(
Q?

2(D)
)
. Hence, there exists a tuple s̄ ∈ Q?

2(D)

that unifies with r̄ and, as r̄ ∈ Q+
1 (D), this implies that

r̄ ∈ Q+
1 (D) n⇑ Q?

2(D), which contradicts our assumption
that r̄ ∈ Q+

1 (D)n⇑Q?
2(D). This shows that v(r̄) 6∈ Q2

(
v(D)

)
and, in turn, v(r̄) ∈ Q

(
v(D)

)
.

Given this lemma, our next goal is to produce a translation
of queries that represent potential answers. As for queries

Q+, this can be done almost by mimicking the structure of
queries and using a query with correctness guarantees when
it comes to translating the difference operation. We also
need to modify selection conditions: the new translation
θ 7→ θ∗∗ is given by θ∗∗ = ¬(¬θ)∗. Recall that negating
selection conditions means propagating negations through
them, and interchanging = and 6=, and const and null. For
completeness, we give it here:

(A 6= B)∗∗ = (A 6= B)

(A 6= c)∗∗ = (A 6= c) if c is a constant

(A = B)∗∗ = (A = B) ∨ null(A) ∨ null(B)

(A = c)∗∗ = (A = c) ∨ null(A)

(θ1 ∨ θ2)∗∗ = θ∗∗1 ∨ θ∗∗2
(θ1 ∧ θ2)∗∗ = θ∗∗1 ∧ θ∗∗2

Lemma 2. Consider the translations Q 7→ Q? given in
Figure 3 by (4.1)–(4.7),where the only assumption on Q+

2 in
(4.4) is that it has correctness guarantees for Q. Then Q?

represents potential answers to Q.

Proof sketch. The proof is by induction on the struc-
ture of the query; here, we present two cases for illustration.

When Q = Q1 ∩ Q2, we have that Q? = Q?
1 n⇑ Q?

2. Let
r̄ ∈ Q

(
v(D)

)
; then, by the induction hypothesis, r̄ is in

v
(
Q?
i (D)

)
for i = 1, 2. So, there are tuples r̄i ∈ Q?

i (D) such
that v(r̄1) = v(r̄2) = r̄. Hence, r̄1 ⇑ r̄2 and thus r̄ = v(r̄1) ∈
v
(
Q?

1(D)
)
n⇑ v

(
Q?

2(D)
)

= v
(
Q?(D)

)
.

Next, consider Q = Q1 − Q2 and Q? = Q?
1 − Q+

2 . Let
r̄ ∈ Q

(
v(D)

)
. Then, r̄ ∈ Q1

(
v(D)

)
and r̄ 6∈ Q2

(
v(D)

)
.

By the induction hypothesis, r̄ ∈ v
(
Q?

1(D)
)

and so there is

s̄ ∈ Q?
1(D) such that r̄ = v(s̄). Assume s̄ ∈ Q+

2 (D). Since
Q+

2 has correctness guarantees for Q by assumption, we have
r̄ = v(s̄) ∈ Q2

(
v(D)

)
, which is a contradiction. Hence,

s̄ 6∈ Q+
2 (D) and so s̄ ∈ Q?(D). Therefore, r̄ ∈ v

(
Q?(D)

)
as

required.

Lemmas 1 and 2 tell us that we can now combine the two
translations in Figure 3 to obtain correctness guarantees.
Using the lemmas, mutual induction on the expressions in
Figure 3 shows the following.

Theorem 1. For the translation Q 7→ (Q+, Q?) in Fig-
ure 3, the query Q+ has correctness guarantees for Q,
and Q? represents potential answers to Q. In particular,
Q+(D) ⊆ cert(Q,D) for every database D.

The theoretical complexity bounds for queries Q+ and Qt

are the same: both have the low AC0 data complexity. How-
ever, the real world performance of Q+ will be significantly
better, as it completely avoids large Cartesian products. As
an example, consider the query

Q = R−
(
πα(T)− σθ(S)

)
and suppose it has arity k. Its corresponding translation Qt

that follows the rules in Figure 2 is

R ∩
(
(πα(adomk n⇑ T)− πα(adomk n⇑ T)) ∪ σθ∗(S)

)
while the translation Q+ we propose is much simpler:

R n⇑
(
πα(T)− σθ∗(S)

)
and avoids Cartesian products of very large sets, computed
multiple times, as in Qt.

We conclude this section with a few remarks. First, the
translation of Figure 3 is really a family of translations. The
proof of Theorem 1 applies to show the following.

Corollary 1. If in the translation in Figure 3 one re-
places the right sides of rules by queries
• contained in those listed in (3.1)–(3.7), and
• containing those listed in(4.1)–(4.7),

then the resulting translation continues to satisfy the claim
of Theorem 1.

This opens up the possibility of optimizing translations (at
the expense of potentially returning fewer tuples). For in-
stance, if we modify the translations of selection conditions
so that θ∗ is a stronger condition than the original and θ∗∗

is a weaker one, we retain overall correctness guarantees.
In particular, the unification condition θ⇑ is expressed by a
case analysis that may become onerous for tuples with many
attributes; the above observation can be used to simplify the
case analysis while retaining correctness.

Second, the reason why queries Q? produce approxima-
tions of sets that represent potential answers is the same
as for queries Q+ to approximate certain answers, namely
complexity. It can be easily seen that checking whether a
set A represents potential answers to a given query Q on D
is in coNP, and for some queries the problem is coNP-hard
as well.

Proposition 1. There is a fixed query Q such that the
following problem is coNP-complete: given a database D
and a set A of tuples over adom(D), does A represent po-
tential answers to Q on D?

Next, we turn to the comparison of Q+ with the result
of SQL evaluation, i.e., EvalSQL(Q,D). Given that the lat-
ter can produce both types of errors – false positives and
false negatives – it is not surprising that the two are in

general incomparable. To see this, consider first a data-
base D1 where R = {(1, 2), (2,⊥)}, S = {(1, 2), (⊥, 2)} and
T = {(1, 2)}, and a query Q1 = R−(S∩T). The tuple (2,⊥)
belongs to EvalSQL(Q1, D) and it is a certain answer, while
Q+

1 (D) = ∅. On the other hand, for D2 with R = {(⊥,⊥)}
over attributes A,B, and Q2 = σA=B(R), the tuple (⊥,⊥)
belongs to Q+

2 (D2), but EvalSQL(Q2, D2) = ∅. Nonetheless,
in all our experiments Q+ will always produce all of the
certain answers returned by SQL.

As a final remark, note that (4.3) in Figure 3 is not the
only possibility, since intersection is a commutative opera-
tion, but left unification semijoin is not. Correctness guar-
antees hold if we replace the left unification semijoin with
the right one that keeps unifiable tuples from the second
argument.

7. THE PRICE OF CORRECTNESS
Now that we have established the correctness of the trans-

lation Q 7→ Q+, our goal is to test it. For this, we take
queries Q1—Q4 from Section 3, generate incomplete TPC-H
instances, and then run Q1—Q4 as well as their translations
to compare their performance.

Translations of SQL queries
The translation Q 7→ Q+ was given at the level of relational
algebra. While there are multiple relational algebra simula-
tors freely available, we want to carry out our experiments
using a real DBMS on instances of realistic size (which rules
out relational algebra simulators). Thus, we shall take SQL
queries Q1—Q4, apply the translation Q 7→ Q+ to their re-
lational algebra equivalents, and then run the results of the
translation as SQL queries.

Expressing Q1—Q4 in relational algebra is standard. We
remark though that traditional database texts tend to pro-
vide only simplified translations from SQL to algebra; for
a full one, including nested subqueries that can themselves
contain subqueries, a good source is [29] and we follow it
here. As an example, consider query Q3. Its relational alge-
bra translation is

πo_orderkey
(
orders− π[σθ(lineitem× orders)]

)
where the inner projection is on the attributes of relation
orders and the condition θ is l_orderkey = o_orderkey ∧
l_suppkey 6= $supp_key.

Before computing Q+
3 , we need to address one more tech-

nical issue. Often, at least in the theoretical literature, SQL
nulls are identified with Codd nulls (non-repeating marked
nulls). While in many cases this way of modeling SQL nulls
is proper, it does not always work. The main issue is that
comparing a null with itself results in true for Codd nulls,
but unknown for SQL nulls. For instance, computing the
self-join of R = {NULL} by

SELECT R1.A FROM R R1, R R2 WHERE R1.A = R2.A

results in the empty set, while for the Codd database R =
{⊥}, the evaluation of R ./ R is {⊥}. This tells us that
in full generality we cannot guarantee correctness with the
SQL implementation of nulls, as it is too coarse to see when
null refers to the same value. However, the situation that
causes this problem – when a nullable attribute is compared
with itself in a self-join – is not very common, and does not
affect us here as long as we make a minor adjustment of the

translations Q+ and Q? to work correctly when evaluated
as SQL queries.

As expected, the adjustment occurs in selection condi-
tions. For the Q+ translation, we need to ensure that at-
tributes compared for equality are not nulls (the existing
translation θ∗ already ensures that for disequality compar-
isons). For the θ∗∗ translation in Q?, the situation is sym-
metric: we need to include the possibility of attributes being
nulls for disequality comparisons (the existing translation
θ∗∗ already does it for equalities). That is, we change the
translations as follows:

(A = B)∗ = (A = B) ∧ const(A) ∧ const(B)

(A 6= B)∗∗ = (A 6= B) ∨ null(A) ∨ null(B)

and likewise for (A = c)∗ and (A 6= c)∗∗. For all the queries
considered here, these ensure that Q+ continues to under-
approximate certain answers and Q? continues to represent
possible answers even when SQL evaluation rules are used
for conditions with nulls.

Applying then the translations to Q3 gives us Q+
3 as

πo_orderkey
(
orders− π[σθ′(lineitem× orders)]

)
where the inner projection is on the attributes of orders and
θ′ is l_orderkey = o_orderkey ∧

(
l_suppkey 6= $supp_key

∨ null(l_suppkey)
)
. The left unification anti-semijoin pro-

duced by the translation is simplified to difference in Q+
3

due to the following observation: if R is a relation that has
a key, and S ⊆ R, then R n⇑ S = R − S. In the above
query, this applies since the inner projection is contained in
orders. Summing up, Q+

3 is expressed in SQL as

SELECT o_orderkey
FROM orders
WHERE NOT EXISTS (

SELECT *
FROM lineitem
WHERE l_orderkey = o_orderkey
AND (l_suppkey <> {s_key}

OR l_suppkey IS NULL))

In fact, a key feature of all the translations is that they
change some conditions of the form A=B to A=B OR B IS
NULL. In general – and this has nothing to do with our trans-
lation – when several such disjunctions occur in a subquery,
they may not be handled well by the optimizer. One can in
fact observe that for a query of the form

SELECT * FROM R WHERE NOT EXISTS
(SELECT * FROM S, ..., T

WHERE (A=B OR B IS NULL) AND · · · AND
(X=Y OR Y IS NULL))

the estimated cost of the query plan can be thousands of
times higher than for the same query from which the IS
NULL conditions are removed.

One way to overcome this is quite simple and takes ad-
vantage of the fact that such disjunctions will occur inside
NOT EXISTS subqueries. One can then we can propagate
disjunctions in the subquery, which results in a NOT EXISTS
condition of the form ¬∃x̄

∨
φi(x̄), where each φi now is a

conjunction of atoms. This in turn can be split into con-
junctions of ¬∃φi(x̄), ending up with a query of the form

SELECT * FROM R WHERE NOT EXISTS
(SELECT * FROM Si, i ∈ I1 WHERE

∧
j ψ

1
j)

AND · · · AND NOT EXISTS
(SELECT * FROM Si, i ∈ Ik WHERE

∧
j ψ

k
j)

where formulae ψlj are comparisons of attributes and state-
ments that an attribute is or is not null, and relations Si
for i ∈ Il are those that contain attributes mentioned in the
ψljs.

Translating additional features. Queries Q1—Q4 on
which we test the approach go slightly beyond relational al-
gebra as used in the previous section: they use > and LIKE
comparisons, and Q2 refers to an aggregate subquery. As for
the first two, looking at the SQL-adjusted translations of se-
lection conditions, we can see that there is nothing special
about (dis)equality. The same translations can be applied
to other comparisons, and this is what we do. For the ag-
gregate subquery, we just treat it as a black box, that is, we
view the result of that subquery as a value c and apply the
translation to condition c_acctbal > c.

Experimental results
Note that we measure relative performance of correct trans-
lations Q+

i s, that is, the ratio of running times of Q+
i s and

the original queriesQis. Intuitively, this ratio should not sig-
nificantly depend on the size of generated instances. With
this hypothesis in mind, we first report detailed results for
the smallest allowed size of TPC-H instances (roughly 1GB).
After that, we test our hypothesis using instances of 3GB,
6GB, and 10GB size, and show that indeed relative per-
formances remain about the same for all instance sizes for
queries Q1, Q2, and Q3, although they can decrease slightly
for Q4 (we shall discuss this later).

For the experiments described below, we use the DBGen
tool of TPC-H to generate databases of about 1GB each,
and then we populate them with nulls, depending on the
prescribed null rate. For each null rate in the range 1%–5%,
in steps of 1%, we generate 10 incomplete databases. On
each such database, we instantiate our test queries 5 times
with randomly generated values for their parameters, and
we run each query instance 3 times. The results that we
report are averages of those runs.

Since we are interested in the cost of correctness, we report
relative values of the parameters: one for the original query,
and the other for the translation. Thus, if t is the time it
takes a query Q to run, and t+ is the running time of Q+, we
report the ratio t+/t. In particular, staying close to 1 means
that the price of correctness is low as correctness guarantees
do not affect running time; if it drops below 1, we actually
win by running a correct version of the query.

Based on the experiments we conduct, we observe three
types of behavior, reported in Figure 4.

1. For queries Q1 and Q3, the price of correctness is neg-
ligible for most applications: under 4% for both.

2. For query Q2, the translation with correctness guaran-
teed is significantly faster than the original query; in
fact it is more than 3 orders of magnitude faster on av-
erage. Note that the relative performance scale in the
graph for Q+

2 ranges from 2 · 10−4 to 8 · 10−4.

3. For query Q4, the behavior is the worst among those
we observed, as the running time of Q+

4 almost doubles
the running time of Q4. This is still tolerable though
if correctness of results is very important.

Larger database instances. The previous results were
obtained for the smallest allowed TPC-H instances. As we

1 2 3 4 5
·10−2

1

1.01

1.02

1.03

Null rate

A
v
er

a
g
e

re
la

ti
v
e

p
er

fo
rm

a
n
ce

Query Q+
1

1 2 3 4 5
·10−2

2

4

6

8

·10−4

Null rate

A
v
er

a
g
e

re
la

ti
v
e

p
er

fo
rm

a
n
ce

Query Q+
2

1 2 3 4 5
·10−2

1

1.01

1.02

1.03

1.04

Null rate

A
v
er

a
g
e

re
la

ti
v
e

p
er

fo
rm

a
n
ce

Query Q+
3

1 2 3 4 5
·10−2

1

1.2

1.4

1.6

1.8

Null rate

A
v
er

a
g
e

re
la

ti
v
e

p
er

fo
rm

a
n
ce

Query Q+
4

Figure 4: Average relative performance of queries with correctness guarantees.

Query 1GB 3GB 6GB 10GB

Q1 1.0058 – 1.0344 0.9925 – 1.0148 0.9791 – 1.0113 1.0034 – 1.0201
Q2 0.0007 – 0.0008 0.0002 – 0.0003 0.0001 – 0.0001 0.0001 – 0.0001
Q3 1.0114 – 1.0387 1.0105 – 1.0367 0.9873 – 1.0226 1.0007 – 1.0628
Q4 1.7530 – 1.8587 1.7986 – 1.9296 2.0532 – 2.2536 3.5354 – 3.8900

Table 1: Ranges of average relative performance – Q+
i vs Qi – for instances up to 10GB.

explained, since we measure relative performance, we con-
jectured that the exact size of the instance should not have
much impact: running times for both Qis and Q+

i s will in-
crease, but proportionally so. To confirm this experimen-
tally, we generated instances of sizes 3GB, 6GB, and 10GB,
and ran similar tests (with fewer test runs for larger in-
stances, as running times increased significantly). Our re-
sults, summarized in Table 1, validate our conjecture com-
pletely for queries Q1, Q2, and Q3, as relative performances
indeed change very little. For Q4, we observe a decrease
in performance from roughly half the speed of the original
query for 1GB databases to one quarter of the speed for
10GB databases; we shall comment on this below.

Before analyzing these results, we address the standard
measures for evaluating the quality of approximation algo-
rithms, namely precision and recall. The first refers to the
percentage of correct answers given. With the correctness
guarantees proven in the previous section, we can thus state

that precision of our algorithms is 100%. Recall refers to
the fraction of relevant answers returned. In our case, we
can look at certain answers returned by the standard SQL
evaluation of a query Q, and see how many of them are re-
turned by Q+. The ratio of those is what we mean by recall
in this scenario.

We saw that, in some artificial examples, Q+ may miss
several, or even all, certain answers returned by Q. Thus,
we cannot state a theoretical bound on the recall, but we
can see what it is in the scenarios represented by our test
queries. For this, one needs either highly intractable algo-
rithms for computing certain answers, or at least algorithms
for identifying false positives. The latter we gave in Sec-
tion 4 for the SQL evaluation of Q1—Q4, and tested them on
smaller TPC-H instances generated by DataFiller. Thus, we
ran queries Q+

i s (modified versions for Q2 and Q4) on those
smaller instances and observed that they returned precisely
the answers to the Qis except false positive tuples. That is,

for those instances, the recall rate was 100%, and we did not
miss any certain answers.

Discussion
We now discuss the factors that cause the behavior reported
in Figure 4. We start with queries Q1 and Q3, whose be-
havior is quite similar. Note that the key change that our
translation introduces is the change of comparisons A op B
to (A op B) OR B IS NULL inside correlated NOT EXISTS sub-
queries. The number of such disjunctions is small, and they
are well handled by the optimizer, resulting in small over-
heads. For Q+

1 , these overheads get lower as the null rate
gets higher. This is most likely due to the fact that with a
higher null rate it is easier to satisfy the IS NULL conditions
in the WHERE clause of the NOT EXISTS subquery. As a re-
sult, a counterexample to the NOT EXISTS subquery can be
found earlier, resulting in an overall faster evaluation.

For query Q2, the translation is similar, but there is one
big difference: after we split the disjunction in the corre-
lated NOT EXISTS subqueries, as explained earlier, one of
the resulting NOT EXISTS subqueries becomes decorrelated.
It simply tests for the existence of nulls in the attribute
o_custkey of orders, and once it finds it the evaluation
of the entire query ends, as we know that the result will be
empty. The original query, on the other hand, spends most
of its time looking for incorrect answers: this is the query
with a rate of false positive answers close to 100%. Hence, in
this case, the translation Q+

2 not only ensures correctness,
but also speeds up the execution time by a factor of over
103, as it is able to detect early that the correct answer is
empty. In fact, as instances grow larger, one wins even more
by using the correct query Q+

2 , as the original Q2 is forced
to spend more time looking for incorrect answers.

Query Q4 is the hardest one to deal with. Without split-
ting the OR conditions, PostgreSQL produces astronomical
costs of query plans, as it resorts to nested-loop joins, even
for large tables (this is due to the fact that it under-estimates
the size of joins, which is a known issue for major DBMSs
[18]). Hence the direct translation of this query requires
some tuning. This is achieved in two steps. First, we split
the disjunctions into several NOT EXISTS conditions, as ex-
plained earlier. Even then, NOT EXISTS subqueries have
nested EXISTS subqueries, each of them appearing twice. We
define those queries as views (using WITH) and then replace
subqueries with references to those views. These modifica-
tions are sufficient to make the optimizer produce better es-
timates and a reasonable query plan, which runs at roughly
half the speed of the original query (for 1GB databases).

What makes the performance of Q4 the worst of the four
queries is that it is the only one that has a multi-way join in
the NOT EXISTS subquery; all others have no joins in such
subqueries at all. This means that absolute running times
are significantly higher for Q4 than for other queries. The
translation has four correlated subqueries, three of which
use joins that involve the largest lineitem relation, which
accounts for the decrease in relative performance (as the
original query has only one multi-way join subquery). Of
course the need to have these multiple subqueries has arisen
from the inability of the optimizer to handle disjunctions
with IS NULL conditions. We believe that this problem may
be overcome with a proper implementation of marked nulls
(see additional comments in Section 8).

Conclusions
Our main conclusion is that it is practically feasible to mod-
ify SQL query evaluation over databases with nulls to guar-
antee correctness of its results. This applies to the setting
where nulls mean that a value is missing, and the fragment
of SQL corresponds to first-order queries. This could not be
achieved with the theoretical solutions presented earlier [22]
and required new ways of modifying SQL queries. Depend-
ing on the exact translation involved, we saw queries running
at roughly half the speed in the worst case, or almost 104

times faster in the best case. For several queries, the over-
head was small and completely tolerable, under 4%. With
these translations, we also did not miss any of the correct
answers that SQL evaluation returned.

8. FUTURE WORK
Given our conclusions that wrong answers to SQL queries

in the presence of nulls are not just a theoretical myth – there
are real world scenarios where this happens – and correctness
can be restored with syntactic changes to queries at a price
that is often tolerable, it is natural to look into the next steps
that will lift our solution from the first-order fragment of
SQL to cover more queries and more possible interpretations
of incompleteness. We shall now discuss those.

Bag semantics. SQL queries use multiset, or bag seman-
tics, and handling duplicates is an important aspect of the
language. However, at this point we do not even have a
proper theory of certain answers for bag semantics, neither
established notions that one can measure against, nor com-
plexity results. We need to understand what the analog of
cert(Q,D) is for queries under bag semantics, and how to
define Q+ in that case.

Aggregate functions. An important feature of real-life
queries is aggregation; in fact it is present in most of the
TPC-H queries. However, here our understanding of cor-
rectness of answers is quite poor; SQL’s rules for aggrega-
tion and nulls are rather ad-hoc and have been persistently
criticized [7, 9]. Thus, much theoretical work is needed in
this direction before practical algorithms emerge. There is
a better understanding of aggregate queries in neighboring
areas such as probabilistic databases [25, 27] or inconsistent
databases [5], and this could serve as a starting point.

Marked nulls. The translations Q 7→ Q+, Q? work at the
level of marked and Codd nulls, but SQL nulls fall a bit
short of Codd nulls, not being able to compare a null with
itself. While sample queries used here were not affected,
some queries may be. Ideally, one would use marked nulls
to overcome this problem. Marked nulls should also be used
to overcome issues with OR IS NULL conditions, as the op-
timizer will see them as usual disjunctions involving value
comparisons. Marked nulls have been implemented in con-
nection with data exchange systems [13, 24], and one has
access to multiple querying scenarios involving marked nulls
using schema mapping benchmarks [3, 6]; hence we intend
to create new base types that use marked nulls and experi-
ment with translations in that setting. If marked nulls are
not available, we need to find the precise characterization
of queries for which the translations proposed here restore
correctness with SQL nulls.

Incorporating constraints. In the definition of certain
answers, we disregarded constraints, although every real-life
database will satisfy some, typically keys and foreign keys.
While constraints ψ can be incorporated into a query φ by
finding certain answers to ψ → φ, for common classes of con-
straints we would like to see how to make direct adjustments
to rewritings. We have seen one example of this: the pres-
ence of a key constraint let us replace Rn⇑ S by R−S. We
would like to automate such query transformations based on
common classes of constraints.

Other types of incomplete information. So far we dealt
with missing-information nulls, but there are other inter-
pretations. For instance, non-applicable nulls [20, 32] arise
commonly as the result of outer joins. We need to extend
the notion of correct query answering and translations of
queries to them. One possibility is to adapt the approach of
[21] that shows how to define certainty based on the seman-
tics of inputs and outputs of queries. At the level of missing
information, we would like to see whether our translations
could help with deriving partial answers to SQL queries,
when parts of a database are missing, as in [16].

Direct SQL rewriting. We have rewritten SQL queries
by a detour via relational algebra. We should look into both
running such queries directly on a DBMS (and perhaps take
advantage of good properties of semijoins [17] that feature
prominently in our translations), and into direct rewriting
from SQL to SQL, without an intermediate language.

Acknowledgments
We are grateful to Marco Console for many helpful discus-
sions during the early stages of this work, and to Chris Ré
and the anonymous referees for their comments. Work par-
tially supported by EPSRC grants J015377 and M025268.

9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] S. Abiteboul, P. C. Kanellakis, and G. Grahne. On the
representation and querying of sets of possible worlds.
Theoretical Computer Science, 78(1):158–187, 1991.

[3] B. Alexe, W. C. Tan, and Y. Velegrakis.
STBenchmark: Towards a benchmark for mapping
systems. PVLDB, 1(1):230–244, 2008.

[4] M. Arenas, P. Barceló, L. Libkin, and F. Murlak.
Foundations of Data Exchange. Cambridge University
Press, 2014.

[5] M. Arenas, L. E. Bertossi, J. Chomicki, X. He,
V. Raghavan, and J. P. Spinrad. Scalar aggregation in
inconsistent databases. TCS, 296(3):405–434, 2003.

[6] P. C. Arocena, B. Glavic, R. Ciucanu, and R. J.
Miller. The iBench integration metadata generator.
PVLDB, 9(3):108–119, 2015.

[7] J. Celko. SQL for Smarties: Advanced SQL
Programming. Morgan Kaufmann, 1995.

[8] F. Coelho. DataFiller – generate random data from
database schema.
https://www.cri.ensmp.fr/people/coelho/datafiller.html.

[9] C. Date and H. Darwen. A Guide to the SQL
Standard. Addison-Wesley, 1996.

[10] C. J. Date. An Introduction to Database Systems.
Pearson, 2003.

[11] G. H. Gessert. Four valued logic for relational
database systems. SIGMOD Record, 19(1):29–35, 1990.

[12] A. Gheerbrant, L. Libkin, and C. Sirangelo. Näıve
evaluation of queries over incomplete databases. ACM
Trans. Database Syst., 39(4):31:1–31:42, 2014.

[13] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and
M. Roth. Clio grows up: From research prototype to
industrial tool. In SIGMOD, pages 805–810, 2005.

[14] T. Imielinski and W. Lipski. Incomplete information
in relational databases. J. ACM, 31(4):761–791, 1984.

[15] H. Klein. How to modify SQL queries in order to
guarantee sure answers. SIGMOD Record, 23(3):14–20,
1994.

[16] W. Lang, R. V. Nehme, E. Robinson, and J. F.
Naughton. Partial results in database systems. In
SIGMOD, pages 1275–1286, 2014.

[17] D. Leinders, J. Tyszkiewicz, and J. Van den Bussche.
On the expressive power of semijoin queries. Inf.
Process. Lett., 91(2):93–98, 2004.

[18] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz,
A. Kemper, and T. Neumann. How good are query
optimizers, really? PVLDB, 9(3):204–215, 2015.

[19] M. Lenzerini. Data integration: A theoretical
perspective. In PODS, pages 233–246, 2002.

[20] N. Lerat and W. Lipski. Nonapplicable nulls. Theor.
Comput. Sci., 46(3):67–82, 1986.

[21] L. Libkin. Certain answers as objects and knowledge.
Artificial Intelligence, 232:1–19, 2016.

[22] L. Libkin. SQL’s three-valued logic and certain
answers. ACM TODS, 41(1):1:1–1:28, 2016.

[23] W. Lipski. On relational algebra with marked nulls. In
PODS, pages 201–203, 1984.

[24] B. Marnette, G. Mecca, P. Papotti, S. Raunich, and
D. Santoro. ++Spicy: An opensource tool for
second-generation schema mapping and data
exchange. PVLDB, 4(12):1438–1441, 2011.

[25] C. Ré and D. Suciu. Efficient evaluation of HAVING
queries on a probabilistic database. In DBLP, pages
186–200, 2007.

[26] R. Reiter. On closed world data bases. In Logic and
Data Bases, pages 55–76, 1977.

[27] R. Ross, V. S. Subrahmanian, and J. Grant.
Aggregate operators in probabilistic databases. J.
ACM, 52(1):54–101, 2005.

[28] Transaction Processing Performance Council. TPC
Benchmark™ H Standard Specification, Nov. 2014.
Revision 2.17.1.

[29] J. Van den Bussche and S. Vansummeren. Translating
SQL into the relational algebra. Course notes, Hasselt
University and Université Libre de Bruxelles, 2009.

[30] R. van der Meyden. Logical approaches to incomplete
information: A survey. In Logics for Databases and
Information Systems, pages 307–356, 1998.

[31] K. Yue. A more general model for handling missing
information in relational databases using a 3-valued
logic. SIGMOD Record, 20(3):43–49, 1991.

[32] C. Zaniolo. Database relations with null values. J.
Comput. Syst. Sci., 28(1):142–166, 1984.

https://www.cri.ensmp.fr/people/coelho/datafiller.html

APPENDIX
We present the exact translations of the queries used in our
experiments. Query Q+

3 was already shown in Section 7.
Queries Q+

1 , Q+
2 , and Q+

4 are given below.

Query Q+
1

SELECT s_suppkey, o_orderkey
FROM supplier, lineitem l1, orders, nation
WHERE s_suppkey = l1.l_suppkey
AND o_orderkey = l1.l_orderkey
AND o_orderstatus = 'F'
AND l1.l_receiptdate > l1.l_commitdate
AND s_nationkey = n_nationkey
AND n_name = $nation
AND EXISTS (

SELECT *
FROM lineitem l2
WHERE l2.l_orderkey = l1.l_orderkey

AND l2.l_suppkey <> l1.l_suppkey)
AND NOT EXISTS (

SELECT *
FROM lineitem l3
WHERE l3.l_orderkey = l1.l_orderkey
AND (l3.l_suppkey <> l1.l_suppkey

OR l3.l_suppkey IS NULL)
AND (l3.l_receiptdate > l3.l_commitdate

OR l3.l_receiptdate IS NULL
OR l3.l_commitdate IS NULL))

Query Q+
2

SELECT c_custkey, c_nationkey
FROM customer
WHERE c_nationkey IN ($countries)
AND c_acctbal > (

SELECT AVG(c_acctbal)
FROM customer
WHERE c_acctbal > 0.00
AND c_nationkey IN ($countries))

AND NOT EXISTS (
SELECT *
FROM orders
WHERE o_custkey = c_custkey)

AND NOT EXISTS (
SELECT *
FROM orders
WHERE o_custkey IS NULL)

Query Q+
4

WITH
part_view AS (

SELECT p_partkey
FROM part
WHERE p_name IS NULL
UNION
SELECT p_partkey
FROM part
WHERE p_name LIKE '%'||$color||'%'),

supp_view AS (
SELECT s_suppkey
FROM supplier
WHERE s_nationkey IS NULL
UNION
SELECT s_suppkey
FROM supplier, nation
WHERE s_nationkey = n_nationkey

AND n_name = '$nation')
SELECT o_orderkey
FROM orders
WHERE NOT EXISTS (

SELECT *
FROM lineitem, part_view, supp_view
WHERE l_orderkey = o_orderkey
AND l_partkey = p_partkey
AND l_suppkey = s_suppkey)

AND NOT EXISTS (
SELECT *
FROM lineitem, supp_view
WHERE l_orderkey = o_orderkey
AND l_partkey IS NULL
AND l_suppkey = s_suppkey
AND EXISTS (SELECT * FROM part_view))

AND NOT EXISTS (
SELECT *
FROM lineitem, part_view
WHERE l_orderkey = o_orderkey
AND l_partkey = p_partkey
AND l_suppkey IS NULL
AND EXISTS (SELECT * FROM supp_view))

AND NOT EXISTS (
SELECT *
FROM lineitem
WHERE l_orderkey = o_orderkey
AND l_partkey IS NULL
AND l_suppkey IS NULL
AND EXISTS (SELECT * FROM part_view)
AND EXISTS (SELECT * FROM supp_view))

	Introduction
	Preliminaries
	Setup: Queries and instances
	How many false positives?
	Correctness: A simple translation
	An implementation-friendlytranslation
	The price of correctness
	Future work
	References

