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ABSTRACT

Query answering over incomplete data invariably relies on the

standard notion of certain answers which gives a very coarse clas-

si�cation of query answers into those that are certain and those

that are not. Here we propose to re�ne it by measuring how close

an answer is to certainty.

This measure is de�ned as the probability that the query is true

under a random interpretation of missing information in a data-

base. Since there are in�nitely many such interpretations, to pick

one at random we adopt the approach used in the study of as-

ymptotic properties and 0–1 laws for logical sentences, and de�ne

the measure as the limit of a sequence. We show that in the stan-

dard model of missing data, the 0–1 law is observed: this limit al-

ways exists and can be only 0 or 1 for a very large class of queries.

Thus, query answers are either almost certainly true, or almost cer-

tainly false. We prove that almost certainly true answers are pre-

cisely those returned by the naïve evaluation of the query. When

databases satisfy constraints, the measure is de�ned as the condi-

tional probability of the query being true if the constraints are true.

This too is de�ned as a limit, and we prove that it always exists, can

be an arbitrary rational number, and is computable. For some con-

straints, such as functional dependencies, the 0–1 law continues to

hold.

As another re�nement of the notion of certainty, we introduce a

comparison of query answers: an answer with a larger set of inter-

pretations that make it true is better. We identify the precise com-

plexity of such comparisons, and of �nding sets of best answers,

for �rst-order queries.
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1 INTRODUCTION

When a database has incomplete or uncertain information, the

standard approach to answering queries against it is to compute

certain answers. The exact de�nition depends on the nature of in-

completeness and its precise semantics, but the idea is invariably

the same: these are the answers that do not depend on how in-

complete data (e.g., null values in databases) is interpreted. This
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approach permeates practically all other scenarios where a data-

base is not fully speci�ed, such as data integration [30], data ex-

change [3, 19], ontology-based data access (OBDA) [9, 35], consis-

tent query answering [8], and others.

In many of these scenarios, �nding certain answers is a hard

task computationally, except for some restricted classes of queries.

Nonetheless, the central notion around which query answering re-

volves is that of certain answers. They are viewed as the ultimate

goal, either to be computed or approximated, and everything that

is not certain is dismissed as a candidate for an answer. Occasion-

ally one also looks at possible answers, but in terms of classifying

query answers, this is basically all: there are no �ner notions.

Since precise computation of certain answers is hard, applica-

tions that must evaluate queries e�ciently are bound to do some-

thing di�erent. A typical example is naïve evaluation for databases

with null values which simply treats nulls as regular database

entries. This is very common in data integration, exchange, and

OBDA scenarios, where queries are directly applied to databases

with nulls [3, 9, 19, 30, 35], even though we know that in general

naïve evaluation cannot produce certain answers. What we do not

know, however, is how far the result of naïve evaluation is from cer-

tain answers. In fact we do not even have a framework in which

we can answer such questions.

Our goal therefore is to provide a framework for reasoning

about measures of certainty of query answers, to enable a �ner

classi�cation of answers to queries over incomplete data. We want

to be able to say how certain an answer is, or whether one answer

is better than another. We now illustrate the usefulness of such no-

tions by an example that also introduces the key concepts needed

here.

Example:measuring and comparing certainty. Consider a de-

cision support scenario where one tries to infer information about

customers’ habits. Suppose that by querying or perhaps restruc-

turing some data, we found information about products that cus-

tomers buy from two suppliers, and stored that information in re-

lations R1 and R2. As is often the case when data is obtained from

multiple sources [3, 30], some entries are missing (i.e., they are

nulls). Below we show part of a database D that gives portions of

these relations relevant to customers c1 and c2:

R1 R2
customer product

c1 ⊥1

c2 ⊥1

c2 ⊥2

customer product

c1 ⊥2

c2 ⊥1

⊥3 ⊥1

These are relations with marked (or labeled) nulls [1, 27], de-

noted by the symbol ⊥. This model is very common, and more

expressive than SQL’s primitive model of a single null value. Nulls

mean that a value exists but is unknown at present; the occurrence

of the same null in di�erent positions indicates that it is the same
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value that occurs there, even if we do not know what it is. For in-

stance, we know that c1 and c2 buy the same product,⊥1, from both

suppliers, but we do not know what this product is. The semantics

of such databases is given by means of valuations, i.e., mappings v

that assign values to nulls. We writev (D) for the result of applying

v to D, i.e., replacing each null ⊥ with v (⊥).

Certain answers to a query Q returning a set of tuples are de-

�ned as

�(Q,D) = {ā | v (ā) ∈ Q (v (D)) for each valuation v } .

This is the de�nition from [33], sometimes called certain answers

with nulls. In the literature it is more common to look at certain an-

swers de�ned as
⋂

v Q (v (D)), with the intersection taken over all

valuations [27], but this is simply the restriction of �(Q,D) to tu-

ples without nulls [32]. We choose the more permissive de�nition

of [33], as it has a number of advantages: for instance, if a query

Q returns relation R1, then �(Q,D) = R1, while the intersection-

based certain answers will return ∅.

Consider a query Q asking for products that customers bought

only from the �rst supplier, i.e., Q (x,y) = R1 (x,y) ∧ ¬R2 (x,y)

in logical notation. Then �(Q,D) = ∅. Evaluating Q naïvely on

D produces two tuples (c1,⊥1 ) and (c2,⊥2 ) which are not certain

answers: if v (⊥1 ) = v (⊥2 ), then the condition v (ā) ∈ Q (v (D))

fails for them. But in a large database with many products, and

customers placing many orders, it is not very likely that ⊥1 and

⊥2 refer to the same product. It might happen of course – that is

why these tuples are not certain – but for most of valuations of

nulls, they will be in the output. Thus, (c1,⊥1 ) and (c2,⊥2) are

likely, but not certain, answers to Q .

Is one of these tuples a better answer than the other?We can eas-

ily check that every valuation v for which (c1,v (⊥1 )) ∈ Q (v (D))

also satis�es (c2,v (⊥2 )) ∈ Q (v (D)), but the converse fails (because

v (⊥3 ) could be c1). Thus, there are strictly more valuations sup-

porting (c2,⊥2) as an answer; in fact no other tuple has more val-

uations supporting it, which indicates that (c2,⊥2) is not only a

likely answer, but also the best among likely answers.

Finally, assume that the customer �eld determines the product

�eld. Then v (⊥1 ) = v (⊥2 ) for all valuations v , and thus every

Q (v (D)) is empty. Even though without constraints we could say

that tuples (c1,⊥1) and (c2,⊥2) are likely answers to Q , with the

constraint we know with certainty that they will not be answers.

�

This example shows that there is more to answering queries

over incomplete databases than just �nding certain answers. We

can also:

• ask how likely a tuple is to be an answer to a query;

• compare tuples and say which is likelier – or most likely –

to appear in the query answer;

• measure this likelihood under constraints.

However, we lack a framework that can be used to analyze such

measures of certainty. Our main goal therefore is to present such

a framework. We now outline its key ideas and the main results.

Measuring certainty

For illustration purposes, assume that we have a Boolean (yes/no)

query Q over incomplete relational databases D. The key notion

is that of a support Supp(Q,D ) of Q over D which is the set of all

valuations v such that Q is true in v (D).

The idea is to consider a random valuation v of nulls, and com-

pute the probability thatQ is true under it, i.e., the probability that

v is in the support of Q over D. There are in�nitely many valu-

ations though, so we cannot pick one uniformly at random. But

instead we can use the approach from the study of 0–1 laws and

asymptotic behavior of logical properties, where one tries to de�ne

how likely a randomly chosen structure is to satisfy a given prop-

erty [17, 31, 39]. Assume some enumeration {c1, c2, . . .} of non-null

elements, and de�ne Vk (D) as the set of valuations that take values

in {c1, . . . , ck }, and Supp
k (Q,D) as the restriction of Supp(Q,D ) to

the same set. Both are �nite, and we can thus de�ne

µk (Q,D) =
|Suppk (Q,D ) |

|Vk (D) |

as the probability that a randomly picked valuation v from Vk (D)

witnesses thatQ is true inv (D). Thenwe look at the asymptotic be-

havior of this sequence, i.e., µ (Q,D) = limk→∞ µk (Q,D), if such a

limit exists. A case of particular interest is when µ (Q,D) = 1. Then

Q is almost certainly true in D, i.e., true for almost all valuations

of nulls.

The questions we address are the following.

• What values can µ (Q,D ) take? We prove a 0–1 law: its val-

ues could be only 0 or 1. In other words, a query is either

almost certainly true or almost certainly false. This holds for

a very large class of queries: the only condition we need is

a standard database notion of genericity (in particular, this

result is quite di�erent from 0–1 laws in logic, as it holds for

much larger classes of queries).

• When µ (Q,D ) = 1? This happens if and only if the naïve

evaluation of Q on D returns true. Thus, naïve evaluation

is not so arbitrary after all: it checks if the query is almost

certainly true.

• What happens when databases satisfy constraints? Above

we assumed that all valuations are equally likely, but this

is not the case when databases are required to satisfy a set

Σ of constraints (e.g., keys and foreign keys or, more gener-

ally, functional and inclusion dependencies). Then the right

measure is the conditional probability µ (Q |Σ,D) of Q being

true if Σ is true. We show that such µ (Q |Σ,D), de�ned as an

appropriate limit, always exists, but need not be 0 or 1: its

values could be arbitrary rational numbers in [0, 1]. How-

ever, sometimes the 0–1 law is true even under constraints,

for example, when Σ contains only functional dependencies.

Comparing answers

Nowwe look at queriesQ that return sets of tuples, and extend the

notion of support by letting Supp(Q,D, ā) be the set of valuations

v such that v (ā) ∈ Q (v (D)). We use this notion to ask whether ā

is better than some other tuple b̄ as an answer to Q , or whether ā

is among the best possible answers.

If Supp(Q,D, ā) ⊆ Supp(Q,D, b̄ ), then b̄ has at least as much

support as ā, and thus is at least as likely to be an answer. If

Supp(Q,D, ā) ⊂ Supp(Q,D, b̄), then b̄ has more support than ā,

and thus is more likely to be an answer. Tuples whose support is



maximal with respect to inclusion give us the set of best answers.

Best answers always exist, unlike certain answers that could be

empty. The questions we address are the following.

• How hard are these comparisons? For queries in relational

algebra/calculus (and more generally, for queries with poly-

nomial time data complexity), the problems mentioned in

the previous paragraph are all within the second level of

the polynomial hierarchy, in fact in Σ
p
2 ∩Π

p
2 . More precisely,

checkingwhether b̄ is at least as good as ā is coNP-complete,

checking whether b̄ is strictly better than ā is DP-complete,

and identifying the set of best tuples is PNP[logn]-complete

(we recall de�nitions of these classes in the next section).

• When are these problems tractable? We show that they are

for unions of conjunctive queries. At �rst this does not

sound surprising since we know that �nding certain an-

swers for unions of conjunctive queries is easy by naïve eval-

uation [1, 27]. However, here naïve evaluation is of no help,

and the algorithms are of quite a di�erent nature.

The immediate consequence of these new ways of looking at

answering queries over incomplete databases is a framework in

which both quantitative and qualitative comparisons of query an-

swers could be made. Already early applications of the framework

vindicate to an extent the often used naïve evaluation: it is not to-

tally arbitrary, but rather it produces answers with very good prob-

abilistic guarantees. We think that the added �exibility of these

notions will be useful in addressing questions that have been hard

to answer using only the rigid notion of certain answers, for in-

stance, questions about the quality of approximate algorithms for

query answering over incomplete data.

Organization. In Section 2 we recall background concepts, in-

cluding the basics of 0–1 laws. In Section 3 we de�ne the measure

of certainty of answers and prove two versions of the 0–1 law. In

Section 4we look at databases satisfying constraints, prove the con-

vergence result for themeasure de�ned as the conditional probabil-

ity, and study cases when the 0–1 law can be recovered. In Section

5 we show how to compare tuples and identify best tuples, study

the complexity of associated problems and relate these notions to

quantitative measurements of certainty. In Section 6 we provide

directions for future research based on this new framework.

2 PRELIMINARIES

Incomplete databases

We consider incomplete databases with nulls interpreted as miss-

ing information. Below we recall de�nitions that are standard in

the literature [1, 27, 42]. Databases are populated by two types of

elements: constants and nulls, coming from countably in�nite sets

denoted by Const and Null, respectively. Nulls are denoted by ⊥,

sometimes with sub- or superscripts. If nulls can repeat in a data-

base, they are referred to as marked, or labeled, nulls; otherwise

one speaks of Codd nulls, which are the usual way of modeling

SQL’s nulls. Marked nulls are standard in applications such as data

integration and exchange and OBDA [3, 9, 30], and are more gen-

eral than Codd nulls; hence we use them here.

A relational schema is a set of relation names with associated

arities. In an incomplete relational instance D, each k-ary relation

symbol R from the vocabulary is interpreted as a k-ary relation

over Const∪Null. In other words, such a relation is a �nite subset

of (Const ∪ Null)k .

Slightly abusing notation (as it will never lead to confusion here)

we will call it R as well.

The sets of constants and nulls that occur in a database D are

denoted by Const(D) and Null(D), respectively. The active domain

of D is adom(D) = Const(D) ∪ Null(D). If D has no nulls, we say

that it is complete.

Valuations and query answering

A valuation v on a database D is a map v : Null(D) → Const

that assigns constant values to nulls occurring in the database. By

v (D) we denote the result of replacing each null ⊥ with v (⊥) in

D. The semantics [[D]] of an incomplete database D is the set of all

complete databases it can represent, i.e., {v (D) | v is a valuation}.

This is known as the closed-world semantics of incompleteness

[36]; we shall also comment on the open-world semantics in the

paper. We write range(v ) for the range of valuation v , i.e., the set

v (Null(D)) ⊂ Const. The set of all valuations de�ned on D is de-

noted by V(D).

An query of aritym (or anm-ary query) is a map that associates

with a database D a subset ofm-tuples over its elements, i.e., a sub-

set of adom(D)m . Queries in standard languages such as relational

algebra, calculus, datalog, etc., are such; in this initial investigation,

we do not consider queries that can invent new values, i.e., return

constants that are not in the active domain. A Boolean query is a

query of arity 0. There is only tuple of arity zero, namely the empty

tuple (). As usual, we associate false with the empty set ∅, and true

with the set {()} containing the empty tuple. For Boolean queries,

we can write alternatively Q (D) = true or D |= Q .

Anm-tuple ā over adom(D) is a certain answer to anm-ary query

Q over D if v (ā) ∈ Q (v (D)) for all valuations v . The set of all

certain answers to Q over D is denoted by �(Q,D).

If ā contains only constants, this means that ā ∈ Q (D′) for all

D′ ∈ [[D]]. This is the notion one sees most commonly in the liter-

ature, but we prefer the above de�nition, due to [33], since it does

not impose an arti�cial restriction that only constants be present

in the answer. For instance, if Q returns a relation R in a database,

then �(Q,D) = R, which is more natural than restricting R to tu-

ples without nulls. Note also that if Q is a Boolean query, then

�(Q,D) = true i� Q (D′) = true for all D′ ∈ [[D]].

Supports for answers

Given a query Q , a database D, and a tuple ā over adom(D), de-

�ne the support of ā being an answer to Q on D as the set of all

valuations that witness it:

Supp(Q,D, ā) = {v ∈ V(D) | v (ā) ∈ Q (v (D))} .

Supports thus measure how closely a tuple is to certainty. A tuple

ā is in �(Q,D) i� Supp(Q,D, ā) = V(D), i.e., the support includes

all valuations. One can describe possible answers to queries via

supports too; in that case, Supp(Q,D, ā) , ∅.



Basics of 0–1 laws

Much of the discussion onmeasuring certaintywill invoke compar-

isons with the study of 0–1 laws and asymptotic behavior of logical

sentences. The key idea behind such a study is to pick randomly a

relational structure, and compute the probability that a sentence φ

in a logic is true in it. To explain this in a bit more detail, we use,

for simplicity, graphs, i.e., structuresG = 〈V ,E〉 whereV is a set of

nodes and E is a set of edges. Since there are in�nitely many �nite

graphs, we cannot pick one uniformly at random with a non-zero

probability, but we can do so if the set fromwhich nodes are drawn

is �nite. Thus, we let Grk be the set of all graphs whose nodes come

from {1, . . . ,k }, and then, for a sentence φ of some logic, de�ne:

µk (φ) =
|{G ∈ Grk | G |= φ}|

|Grk |

as the proportion of graphs from Grk that satisfy φ. It can also be

interpreted as follows: for each pair i, j ≤ k , toss a coin and with

probability 1
2 put an edge (i, j); then µk (φ) is the probability that

the resulting graph satis�es φ.

One is interested in the asymptotic behavior of the sequence

(µk (φ))k≥0 , i.e., in the limit µ (φ) = limk→∞ µk (φ). In general, one

can observe several kinds of behavior.

0–1 law In this case µ (φ) exists and equals 0 or 1. If it equals

1, then φ is almost surely true, otherwise it is almost surely

false. The celebrated theorem (and proof of it) by Fagin [17]

states that �rst-order logic has the 0–1 law. Many exten-

sions are known: for instance, the least �xed-point logic

[10], the �nite-variable logic [28], and some fragments of

second-order logic [29] have the 0–1 law.

Convergence For some logics, the sequence (µk (φ))k≥0 con-

verges and the limit µ (φ) exists, but may not equal 0 or 1.

Such a situation may occur if we restrict the class of graphs.

For instance, consider graphs with an additional successor

relation on their nodes, i.e., structures with two binary rela-

tions, of which one is a successor relation on the universe.

Let φ state that there is an edge between the �rst and last

elements of the successor relation; then µ (φ) = 1
2 . In fact it

is known that �rst-order logic over graphs with successor

satis�es the convergence condition [34].

Divergence Sometimes (µk (φ))k≥0 does not even converge.

Consider, for example, property φ “the number of nodes is

even”. Then µk (φ) alternates between 0 and 1, and the limit

does not exist.

One can also think of an alternative de�nition of the measure

µk : instead, one de�nes a di�erent quantity νk (φ) as the propor-

tion of the number of isomorphism types of graphs, rather than

graphs themselves, on {1, . . . ,k } that satisfy φ. Even though µk (φ)

and νk (φ) need not be the same, asymptotically these sequences

behave in the same way, i.e., have the same limit, see [17].

Query languages

For many results in the paper we shall need only minimal assump-

tions on a query language, such as genericity of its queries (for-

mally de�ned below in Section 3.1). For others, especially in Sec-

tion 5, we shall restrict ourselves to �rst-order (FO) queries, or

alternatively relational algebra/calculus queries, written here in

the logical notation using Boolean connectives ∧,∨,¬ and quanti-

�ers ∃,∀. The ∃,∧-fragment of FO is known as conjunctive queries

(equivalently, select-project-join queries of relational algebra), and

the ∃,∧,∨-fragment is known as the unions of conjunctive queries

(equivalently, select-project-join-union queries of relational alge-

bra).

Complexity classes

In what follows, we shall need two classes in the second level of the

polynomial hierarchy (in addition to the commonly used classes

such as P, NP, coNP). Both of these contain NP and coNP, and are

contained in Σ
p
2 ∩ Π

p
2 .

The class DP consists of languages L1 ∩ L2 where L1 ∈ NP and

L2 ∈ coNP (or, equivalently, of di�erences of languages L1 − L2
with L1, L2 ∈ NP). This class has appeared in database applications,

for example in connection with the identi�cation of the core in

data exchange [18], or in the study of approximation of conjunctive

queries [7].

The class PNP[logn] consists of problems that can be solved

in polynomial time with a logarithmic number (more precisely,

O (logn) where n is the size of the input) of calls to an NP ora-

cle [44]. Equivalently, it can be described as the class of problems

solved in P with an NP oracle where calls to the oracle are done

in parallel, i.e., independent of each other [11]. It is again not un-

heard of in database applications: for example, it was used to ana-

lyze the complexity of data exchange problems [4] and RDF query

languages [5].

We shall also need the complexity class #P. It no longer contains

decision problems, but rather counting problems, more speci�cally,

counting numbers of accepting paths of an NP computation [6].

3 MEASUREMENTS OF CERTAINTY

The key idea, as explained earlier, is this. Given an incomplete data-

baseD, a queryQ , and a tuple ā, pick a random valuationv of nulls,

and calculate the probability of v (ā) being in Q (v (D)). We prove

the 0–1 law result for query answers for arbitrary databases, and

the convergence results for databases that satisfy constraints. But

we start with a formal de�nition of naïve evaluation that uses the

notion of genericity of queries.

3.1 Generic queries and naïve evaluation

Queries expressed in logic-based query languages are generic; es-

sentially, they just manipulate data. This is a classical notion of

database theory, often formulated as the data independence princi-

ple [1]: a query evaluation algorithm does not depend on particular

data stored in a database, except perhaps a �nite number of con-

stants that could be mentioned explicitly in the query. A generic

query thus commutes with permutations of the domain (where

such permutations may leave some number of elements �xed).

Definition 1 (Generic qery). Given a �nite set C ⊂ Const, a

queryQ is calledC-generic if for every bijection π : Const→ Const

such that π (c ) = c for all c ∈ C , and for every databaseD over Const,

we have

Q (π (D)) = π (Q (D)) .

A query is generic if it is C-generic for some �nite C .



All queries de�nable in familiar logics such as �rst-order, its

�xed-point extensions, second-order and its fragments, etc., are

generic.

The notion of genericity lets us de�ne naïve evaluation formally.

In essence, it evaluates a query on an incomplete database as if

nulls were distinct constants not occurring elsewhere in the data-

base or the query. The concept of replacing nulls by such distinct

constants is captured by the notion of bijective valuations.

Definition 2 (Bijective valuation). For a database D and a

�nite setC ⊂ Const, a valuationv onNull(D) is calledC-bijective if

it assigns to each ⊥ ∈ Null(D) a distinct constant that does not occur

in Const(D) and C , i.e., if it is a bijective mapping and range(v ) is

disjoint from Const(D) and C .

Next, we need an easy observation.

Proposition 1. Let Q be a C-generic query, and let v,w be two

C-bijective valuations. Then v−1(Q (v (D))) = w−1 (Q (w (D))). �

This observation lets us de�ne naïve evaluation formally.

Definition 3 (Naïve evaluation). Let Q be a C-generic query.

Then naïve evaluation of Q on a database D is de�ned as

Qnaïve(D) = v−1(Q (v (D)))

where v is any C-bijective valuation.

Consider, for example, a query on graphs φ (x ) = ∃y E (c,y) ∧

E (y, x ) that looks for nodes x of distance 2 from node c . This query

is {c}-generic. Supposewe have a graphG with edges (c, c ′), (c ′,⊥).

To evaluate this naïvely, pick a valuation v that assigns a new

constant c ′′ to ⊥. Then v (G) = {(c, c ′), (c ′, c ′′)} and φ evaluated

on v (G) produces {c ′′}. Thus, φ evaluated naïvely on G returns

v−1 ({c ′′}) = {⊥}, as expected.

3.2 0–1 law for generic queries

We now brie�y recall the key idea of measuring the degree of cer-

tainty of answers. Recall that Supp(Q,D, ā), the support of ā, is the

set of all valuations v witnessing v (ā) ∈ Q (v (D)), and V(D) is the

set of all valuations on D. We need to measure how likely a ran-

domly chosen valuation from V(D) is to be in Supp(Q,D, ā). For

this, assume that the set of constants is enumerated as Const =

{c1, c2, . . .}. De�ne Vk (D) as the set of valuations whose range

is contained among the �rst k elements of this enumeration, i.e.,

Vk (D) = {v ∈ V(D) | range(v ) ⊆ {c1, . . . , ck }}. Let Supp
k (Q,D, ā)

be the restriction of Supp(Q,D, ā) to Vk (D), i.e., Supp(Q,D, ā) ∩

Vk (D). Then we de�ne

µk (Q,D, ā) =
|Suppk (Q,D, ā) |

|Vk (D) |

as the proportion of valuations from Vk (D) that belong to

Supp(Q,D, ā). Finally, we look at the asymptotic behavior of this

sequence:

µ (Q,D, ā) = lim
k→∞

µk (Q,D, ā) .

This de�nition assumes some particular enumeration of the set

Const. However, it is easy to see that the limit value µ (Q,D, ā) is in-

dependent of a particular enumeration forC-generic queries: once

the set {c1, . . . , ck } containsC and Const(D), the value µk (Q,D, ā)

does not depend on the remaining elements of this set, just their

number. Hence, we always assume, without any loss of generality,

some �xed enumeration of Const.

For Boolean queries, we write µ (Q,D) instead of the

more formal µ (Q,D, ()) (recall that the empty tuple ()

denotes true), and likewise for µk . That is, µk (Q,D) =

|{v ∈ Vk (D) | v (D) |= Q }| / |Vk (D) | and µ (Q,D ) is the limit

of this sequence.

Definition 4 (Almost certainly true/false answers).

Given a query Q , a database D, and a tuple ā, we say that ā is an

almost certainly true answer to Q on D if µ (Q,D, ā) = 1, and al-

most certainly false answer if µ (Q,D, ā) = 0.

It is immediate from the de�nitions that every certain answer

ā ∈ �(Q,D) is almost certainly true, and every answer that is not

possible is almost certainly false. We next prove a dichotomy result

for arbitrary generic queries, stating that:

• every tuple is either an almost certainly true answer or an

almost certainly false answer; and

• almost certainly true answers are exactly those returned by

the naïve evaluation ofQ .

Theorem 1 (0–1 law). If Q is a generic query, then for every

database D and every tuple ā over the active domain, µ (Q,D, ā) is

either 0 or 1. Furthermore, µ (Q,D, ā) = 1 i� ā ∈ Qnaïve(D).

Before proving this, we state several corollaries. Since

µ (Q,D, ā) = 1 for certain answers, we obtain a generalization of a

result that was explicitly stated for FO queries before [32]:

Corollary 1. �(Q,D) ⊆ Qnaïve(D) for every generic query. �

It is also much easier to �nd almost certainly true answers than

certain answers:

Corollary 2. Checking whether ā is an almost certainly true an-

swer toQ on D has the same data complexity as the evaluation Q on

D. �

Notice that in the study of 0–1 laws, the situation is similar:

checking if an FO sentence is valid is undecidable, while checking

if it is valid almost everywhere is decidable in PSPACE, see [23].

Finally, for some queries, certain answers and almost certainly

true answers coincide. Consider, for instance, a fragment of FO,

denoted Pos∀G (for positive FO with universal guards), that con-

tains atomic formulae and is closed under conjunction, disjunction,

quanti�cation (both existential and universal) and the following

rule: if φ is a formula in the fragment, then so is ∀x̄ α (x̄ ) → φ,

where α is an atom and x̄ is a tuple of distinct variables [14]. For

Pos∀G queries, naïve evaluation is known to produce certain an-

swers [22]. Thus, we have:

Corollary 3. For Pos∀G queries, certain answers and almost cer-

tainly true answers are the same. �

Proof idea of Theorem 1. First we show that by a simple transforma-

tion of the query (essentially asking if a relation containing tuple

ā belongs toQ (D)) we can reduce the problem to Boolean queries;

thus in this proof and elsewhere it will su�ce to consider µ (Q,D)

for Boolean queries.



The main idea is to introduce a di�erent measure µk
bij(C )

(Q,D)

which is the proportion of C-bijective valuations v with

range(v ) ⊆ {c1, . . . , ck } such that v (D) |= Q ; here we assume Q to

be C-generic. We then prove that µ (Q,D) = limk→∞ µk
bij(C )

(Q,D).

To show this, we calculate an upper bound on the proportion of

non-C-bijective valuations, by analyzing conditions that make val-

uations non-bijective, and show that it approaches 0 for large k .

Now assume that Q naïvely evaluates to true. By Proposition

1 it means that v (D) |= Q for all C-bijective valuations, and thus

µ (Q,D) = limk→∞ µk
bij(C )

(Q,D) = 1. IfQ naïvely evaluates to false,

we apply this argument to the negation of Q , which remains C-

generic, and get µ (Q,D) = 0. �

Remark: connections with 0–1 laws in logic. Even though there

are obvious parallels with the study of 0–1 laws in logic, the nature

of Theorem 1 is quite di�erent from its logic counterparts, which

explains why it holds even for queries in logics that do not posses

the 0–1 law. When one proves 0–1 laws in logic, with increasing k

we have an increasing number of isomorphism types of structures

on k elements. To prove the 0–1 law, one has to analyze their be-

havior with respect to the satisfaction of some logical sentences,

which is usually done by a games argument. In our setting, to the

contrary, at some point the number of isomorphism types stabi-

lizes. This does not mean that the sequence µk stabilizes (in fact

it usually does not) but it means that the combinatorial arguments

involved in our proofs are rather di�erent.

Remark. We also note that computing each individual value

µk (Q,D) for k ∈ N can be cast as the problem of query evaluation

on a probabilistic database. Indeed, to each tuple c̄ over {c1, . . . , ck }

of arity of a relation R in a databaseD, assign the probability that is

the proportionof valuationsv ∈ Vk (D) such thatv (ā) = c̄ for some

ā ∈ R; then µk (Q,D) is the result of evaluatingQ over such a proba-

bilistic database, whose size is exponential in k . However, the �eld

of probabilistic databases [40] concentrates on very di�erent prob-

lems, mainly analyzing the complexity of query evaluation (which

is often high, even for fairly simple queries). This is very di�erent

from our focus. We are not interested in computing µk (Q,D), nor

its complexity; rather, we analyze the asymptotic behavior of the

sequence of numbers µk (Q,D).

3.3 An alternative measure

There is an alternative way of de�ning the measure of certainty:

instead of counting the number of valuations that make a query

true on a given database, we can count the number of complete

databases that make the query true. That is, we can look not at

|{v ∈ Vk (D) | v (ā) ∈ Q (v (D))}|, but rather at |{v (D) | v ∈

Vk (D) and v (ā) ∈ Q (v (D))}|. These cardinalities could be di�er-

ent because we may well have v1 (D) = v2 (D) for di�erent v1
and v2. For instance if D contains a binary relation with tuples

(1,⊥) and (1,⊥′), and v1 is an arbitrary valuation, then for valu-

ation v2 de�ned by v2 (⊥) = v1 (⊥
′) and v2 (⊥

′) = v1 (⊥) we have

v1 (D) = v2 (D).

Thus we can alternatively de�ne

m
k (Q,D, ā) =

|{v (D) | v ∈ Suppk (Q,D, ā)}|

|{v (D) | v ∈ Vk (D)}|
(1)

and let m(Q,D, ā) be limk→∞ m
k (Q,D, ā). When Q is a Boolean

query, we can view this measure in yet another way by using

the notion of the semantics of an incomplete database. Recall that

[[D]] = {v (D) | v ∈ V(D)}. Let [[D]]k be the restriction of [[D]] to

databasesD′ with adom(D′) ⊆ {c1, . . . , ck }. If k is large enough so

that this set contains all constants in D, we have

m
k (Q,D) =

|{D′ ∈ [[D]]k | D′ |= Q }|

|[[D]]k |
(2)

As mentioned earlier, similar considerations enter the picture

when one deals with 0–1 laws in logic, and measures the number

of isomorphism types of structures thatmake a sentence true. How-

ever, while the de�nitions di�ered slightly, in the end they de�ned

the same measure. The same is true here:

Theorem 2. For every generic query Q , database D, and tuple ā,

we have µ (Q,D, ā) = m(Q,D, ā).

Proof sketch. As in the proof of Theorem 1, the idea is to re-

duce everything to the case of bijective valuations. Also as there,

it su�ces to consider Boolean queries. Let Q be C-generic. De�ne

Suppk
bij(C )

(Q,D ) as the set ofC-bijective valuations with the range

contained in {c1, . . . , ck } such that v (D) |= Q . Let

m
k
bij(C )

(Q,D) =
|{v (D) | v ∈ Suppk

bij(C )
(Q,D)}|

|{v (D) | v ∈ Vk (D)}|
.

Then the result follows from the observation made in the proof of

Theorem 1 that µ (Q,D) = limk→∞ µk
bij(C )

(Q,D) and two equalities

below:

limk→∞ m
k
bij(C )

(Q,D) = limk→∞ m
k (Q,D)

limk→∞ m
k
bij(C )

(Q,D) = limk→∞ µk
bij(C )

(Q,D) .

To prove the �rst equality, it will su�ce to show that the ratio of

the number of di�erent v (D) for non-C-bijective valuations and

the number of all v (D), when v ranges over Vk (D), goes to 0 for

large k . For this we prove an upper bound for the former and a

lower bound for the latter, as (m2
+mc ) · km−1 and

(

k−c
m

)

, where

m is the number of nulls in D, and c is the number of constants in

D plus |C |. Then we show that their ratio approaches 0 for large k .

To prove the second equality, we analyze cases when v1 (D) =

v2 (D) for C-bijective valuations, and show that it only happens if

one is obtained from the other by composing with an automor-

phism on nulls of D; this allows us to relate mk
bij(C )

(Q,D) and

µk
bij(C )

(Q,D) and prove that they have the same limits. �

3.4 Open world semantics

We now brie�y address the open world semantics. Under this se-

mantics, an incomplete database D represents the set [[D]]owa =

{v (D) ∪ D′ | v is a valuation and D′ is �nite and complete}. In

other words, the database is open to new facts: once values for

nulls have been obtained by means of a valuation v , an arbitrary

�nite set of complete tuples can be added. A Boolean query Q is

true with certainty in D under owa if Q is true in every database

from [[D]]owa [1, 27].

The measure m can easily be adapted to the owa case: one sim-

ply takes the de�nition (2) and replaces the usual semantics [[ ]]



with [[ ]]owa to obtain the value owa-mk (Q,D); then

owa-m(Q,D) = lim
k→∞

owa-mk (Q,D ) ,

whenever the limit exists.

However, for the open world semantics, we lose the connection

between naïve evaluation and the behavior of such ameasure. This

is not surprising of course, given the complete freedom to add ar-

bitrary databasesD′ to those obtained by assigning values to nulls.

We now state this formally.

Proposition 2. There exist �rst-order queries Q1 and Q2 such

that

• owa-m(Q1,D) = 1 but Qnaïve
1 (D) = false; and

• owa-m(Q2,D) = 0 but Qnaïve
2 (D) = true.

Proof. Consider a database D with a single unary relationU which

is empty. Let Q1 be ¬∃x U (x ). Then Qnaïve
1 (D) = true while

owa-mk (Q1,D) = 2−k and thus owa-m(Q1,D) = 0. For Q2 =

∃x U (x ) (i.e., Q2 = ¬Q1) we then have Qnaïve
2 (D) = false and

owa-m(Q2,D) = 1. �

4 MEASURING CERTAINTY UNDER

CONSTRAINTS

In real life databases must satisfy integrity constraints, most com-

monly keys and foreign keys, which are special cases of functional

dependencies and inclusion constraints (which in turn are special

cases of equality- and tuple-generating dependencies). A set of con-

straints Σ can be viewed as a Boolean query, returning true if con-

straints are satis�ed and false if they are not. We always assume

this query is generic. This is true for all real-life constraints, cer-

tainly for all those mentioned above, since they are de�nable by

logical formulae. The question that we address is: how can wemea-

sure certainty under constraints?

In general, we know much less about certain answers to queries

over incomplete databases under constraints. The notion of cer-

tainty of a Boolean query Q under constraints is that Q must be

true in every database satisfying constraints [12, 13, 25] (for non-

Boolean queries one requires thatQ (ā) be true in every such data-

base). This is the same as requiring that the implication Σ → Q be

true over all databases. However, even for well-behaved queriesQ

and simple constraints Σ, such as keys and inclusion constraints,

queries of the form ¬Σ ∨ Q are usually not in classes that exhibit

good behavior with respect to �nding certain answers. This ex-

plains why most results on query answering under constraints

over incomplete databases are actually negative [12, 13].

To extend the measure µ (Q,D) to deal with constraints, there

are two approaches.

• Measuring certainty of Σ → Q : in other words, we simply

consider µ (Σ → Q,D). While using implication is standard,

this approach is actually not very interesting as it gives us

little new information: µ (Σ → Q,D) is either 1, or coincides

with µ (Q,D), and it is easy to check which case applies. This

will be shown in Proposition 3.

• Measuring conditional probability: once we think of the mea-

sure µ in probabilistic terms, this is a much more natural

approach. We want to �nd the conditional probability ofQ ,

given that Σ holds. In other words, choose a random assign-

ment of values to nulls; what is the probability thatQ is true

under the assumption that Σ is true?

To see that we get a much richer picture with the second ap-

proach, consider a database D with relations R = {(2, 1), (⊥,⊥)}

and U = {1, 2, 3}, and let Σ contain the inclusion constraint

∀x,y
(

R(x,y) → U (x )
)

. Assume that query Q simply returns R.

The constraint tells us that ⊥ can only be assigned values 1, 2, or

3. If we take ā = (1,⊥), then conditional probability ofQ (ā) being

true under Σ is 1
3 , since only the valuation⊥ 7→ 1 makesQ (ā) true.

On the other hand, for b̄ = (2,⊥), assignments ⊥ 7→ 1 and ⊥ 7→ 2

make Q (b̄ ) true, while ⊥ 7→ 3 does not, and thus the conditional

probability of Q (b̄) being true is 2
3 .

We now investigate both approaches, startingwith the easy case

of implication Σ → Q , and then moving on to the conditional prob-

ability approach.

4.1 Measuring implication

Assume, without any loss of generality, that Q is Boolean, using

the same argument as in the previous section. By Theorem 1, we

know that µ (Σ,D) is 0 or 1 for generic Σ. These two cases fully

determine the behavior of µ (Σ → Q,D).

Proposition 3. Assume that both Σ and Q are generic. Let D be

a database.

• If µ (Σ,D) = 0, then µ (Σ → Q,D) = 1.

• If µ (Σ,D) = 1, then µ (Σ → Q,D) = µ (Q,D). �

Proof sketch. First we note that µk (Σ → Q,D) is at least

|Suppk (¬Σ,D) | / |Vk (D) | = 1−µk (Σ,D) and thus µ (Σ → Q,D) = 1

if µ (Σ,D) = 0.

Now assume µ (Σ,D) = 1. If µ (Q,D ) = 1, then µk (¬Σ ∨Q,D) ≥

µk (Q,D) and thus µ (Σ → Q,D) = 1 too. If µ (Q,D) = 0, then for

every ε > 0, there exists k0 such that for each k > k0 we have

both
|Suppk (¬Σ,D ) |

|Vk (D ) |
< ε

2 and
|Suppk (Q,D)) |

|Vk (D ) |
< ε

2 which implies that

µk (Σ → Q,D) ≤
(

|Suppk (¬Σ,D) | + |Suppk (Q,D) |
)

/ |Vk (D) | < ε ,

and thus µ (Σ → Q,D) = 0. Since µ (Q,D) can only be 0 or 1, this

proves µ (Σ → Q,D) = µ (Q,D). �

4.2 Conditional probabilities and convergence

We now de�ne the conditional probability µ (Q |Σ,D, ā) of ā being

an answer to Q , given that Σ holds. For this, we �rst de�ne

µk (Q |Σ,D, ā) =

µk (Σ ∧Q,D, ā)

µk (Σ,D)

=

|Suppk (Σ ∧Q,D, ā) |

|Suppk (Σ,D) |

that is, the probability that a randomly chosen valuation v with

range(v ) ⊆ {c1, . . . , ck } such that v (D) |= Σ also satis�es v (ā) ∈

Q (v (D)). In the case of Boolean queries Q , this is the probability

that a randomly chosen valuation witnessing Σ also witnesses Q .

We then de�ne

µ (Q |Σ,D, ā) = lim
k→∞

µk (Q |Σ,D, ā)

if such a limit exists.



Of course it is possible that the denominator |Suppk (Σ,D) |

is zero, if Suppk (Σ,D) = ∅. We could restrict the de�nition of

µk (Q |Σ,D, ā) and let it be de�ned only if Σ is satis�able in D,

i.e., v (D) |= Σ for at least one valuation v ; this ensures that

|Suppk (Σ,D) | > 0 for all su�ciently large k . For simplicity of pre-

sentation, and to avoid carrying this assumption throughout, we

adopt the convention that µk (Q |Σ,D, ā) = 0 if Suppk (Σ,D) = ∅.

The same argument we used in the previous section shows that

µ (Q |Σ,D, ā) does not depend on a particular enumeration ofConst;

in fact, for C-generic Q and Σ, once k is big enough so that both

C and Const(D) are in {c1, . . . , ck }, the value of µ
k (Q |Σ,D, ā) does

not depend on a particular enumeration.

As we saw, the limit, even if it exists, need not be zero or one:

our earlier example showed that it could be 1/3 or 2/3. As we saw

in Section 2, the next best thing in the case of failure of the 0–1

law is convergence, i.e., the existence of the limit. This is what we

prove now.

Theorem 3 (Convergence). If both Σ and Q are generic, then

for every database D and every tuple ā over the active domain,

µ (Q |Σ,D, ā) exists and is a rational number in [0, 1].

Proof sketch. We prove a slightly more general result. Let Q1

and Q2 be Boolean queries. We assume that Q2 is satis�able

in D, i.e., v (D) |= Q2 for some v . De�ne µk (Q1/Q2,D) as

µk (Q1,D)/µ
k (Q2,D) = |Supp

k (Q1,D) |/|Supp
k (Q2,D) |. We then

show that either limk→∞ µk (Q1/Q2,D) exists and is a number inQ,

or µk (Q1/Q2,D) grows arbitrarily large with k . Since µk (Q |Σ,D)

is µk (Q ∧Σ/Σ,D), these numbers can never exceed 1, and thus the

latter case does not arise, which gives us the result.

To prove the above result, �x an arbitrary C-generic Boolean

query q and a database D withm nulls, and let A = C ∪ Const(D).

We assume that k is large enough so that A ⊂ {c1, . . . , ck } and k >

|A| +m. Then we show how to express the quantity |Suppk (q,D) |

as a polynomial in Q[k]. The result then follows since the limit

of the sequence |Suppk (Q1,D) |/|Supp
k (Q2,D) | is the ratio of the

leading coe�cients of the polynomials expressing these cardinali-

ties if their degrees are the same (and 0 or ∞ when their degrees

di�er; recall that in this statementQ1 andQ2 are arbitrary queries;

when Q2 = Q1 ∧ Σ, the latter option is excluded).

To express |Suppk (q,D) | as a polynomial inQ[k], we consider a

partition ρ on the nulls ofD and look at all valuationsv that output

the same value for each null in the same block. We then de�ne

an equivalence relation on such valuations so that if v and v ′ are

equivalent valuations, thenv (D) andv ′(D) agree on q, i.e.,v (D) |=

q i�v ′(D) |= q. Furthermore, this equivalence relation is de�ned in

such a way that the number of equivalence classes does not depend

on k . Then, for each equivalence class, we show how to express the

number of valuations in it as a polynomial in k . Since the number

of permutations on the nulls and the number of equivalence classes

do not depend onk , thismeans that |Suppk (q,D) | can be expressed

as a polynomial in k . �

In the study of 0–1 law and convergence in logic, one often

�nds that asymptotic behaviors of logical properties are described

by rationals of a particular kind, e.g., a/2b [17, 34]. In our case, it

turns out, there is no restriction on the numbers that can appear

as µ (Q |Σ,D), even for simple constraints and queries.

Proposition 4. For every s ∈ Q ∩ [0, 1], there is a database D,

an inclusion constraint Σ, and a Boolean conjunctive query Q such

that µ (Q |Σ,D) = s .

Proof sketch. Let s = p/r , with 0 < p ≤ r . Consider a database D

with two binary relations R and S and a unary relation U , where

R = {(1, 1), (2, 2), . . . , (p − 1,p − 1), (⊥,p)}, relation S contains a

single tuple (⊥,⊥), and U contains all numbers from 1 to r . Let

Σ contain the single inclusion constraint π1 (R) ⊆ U (i.e., the �rst

column of R is contained in U ), and letQ be ∃x,y R(x,y) ∧ S (x,y).

There are only r valuations v such that v (D) |= Σ, those that send

⊥ to 1, . . . , r . Then one shows that v (D) |= Q i� v (⊥) ≤ p, which

proves µ (Q |Σ,D) = p/r . �

4.3 Complexity of µ (Q |Σ,D)

We have seen that without constraints, computing µ (Q,D) is easy:

we just evaluateQ naïvely onD. But even simple constraints break

this connection. As an example, consider a database D with four

unary relations: R = {⊥}, S = {⊥′}, U = {⊥}, and V = {1}. Let

Σ contain unary inclusion constraints R ⊆ V and S ⊆ V , and let

Q be the �rst-order Boolean query ∀x U (x ) → (R(x ) ∧ ¬S (x )).

Then both Qnaïve(D) and (Σ → Q )naïve (D) evaluate to true, but

µ (Q |Σ,D) = 0.

We thus investigate the complexity of computing µ (Q |Σ,D).

First, we need to explain what we actually mean by computing

µ (Q |Σ,D) and what upper and lower complexity bounds are ap-

propriate for it. Since, by Theorem 3, µ (Q |Σ,D) can be an arbitrary

rational number in [0, 1], we can represent it as a pair (p, r ) with

p, r ∈ N so that µ (Q |Σ,D) = p/r . Thus, computing µ (Q |Σ,D) is

a problem in a function class (rather than a complexity class cap-

turing decision problems). Furthermore, it amounts to computing

two numbers. In complexity theory, we have classes for decision

problems, or problems of computing a single number in N, e.g., #P.

Hence, providing precise complexity characterization that leaves

no gaps requires a bit of care.

The standard approach in this case is to show that the prob-

lem lies in the class FP#P of functions computable in polynomial

time with an access to a #P oracle, and that there are cases when

µ (Q |Σ,D) = p/r such that r can be computed in polynomial time

while computing p is #P-hard. This indeed leaves no gap since it is

known that a problem is FP#P-hard i� it is #P-hard [20].

The upper bound can be obtained from the construction pre-

sented in the proof of Theorem 3. It showed that the limit is the

ratio of the leading coe�cients of two polynomials, and these coef-

�cients are obtained by counting equivalence classes of valuations.

This gives us

Proposition 5. Given generic constraints Σ and a generic query

Q of polynomial data complexity, computing µ (Q |Σ,D) is in FP#P. �

To show that we cannot do better, we next prove the #P-

hardness lower bound for �nding the numerator of µ (Q |Σ,D). In

factwe need a stronger result. Note that by default, µ (Q |Σ,D) = 0 if

Σ is not satis�able inD (i.e., nov (D) satis�es Σ). Checking whether

Σ is not satis�able inD can be intractable even for keys and foreign

keys, as one can easily encode the complement of the homomor-

phism problem. Obtaining computational hardness simply by re-

course to satis�ability is not fair however as it mixes two di�erent



problems; we would rather prove a stronger hardness result only

for constraints whose satis�ability is tractable. We show such a re-

sult for unary keys and foreign keys. Note that we interpret these

constraints in the same way as they are interpreted in RDBMSs,

i.e., attributes declared as keys cannot be nulls.

Proposition 6. If Σ is a set of unary keys and foreign keys over a

�xed schema, and D is an incomplete database, then satis�ability of

Σ inD can be solved in polynomial time in data complexity. Moreover,

there exist a single unary foreign key Σ and a �rst-order1 query Q

such that µ (Q |Σ,D) =
p (D )

r (D )
for every database D, where r (D) can

be computed in linear time but computing p (D) is #P-complete. �

4.4 0–1 law with constraints

We have seen that the value of the measure µ (Q |Σ,D) of the cer-

tainty of answer to Q under constraints Σ could be any ratio-

nal number in [0, 1], even for conjunctive queries. In some cases,

however, we can recover the 0–1 law. These are the cases of al-

most certainly true constraints, and of constraints that only in-

clude functional dependencies. In both of these cases we also have

polynomial-time algorithms for computing µ (Q |Σ,D).

0–1 law for almost certainly true constraints. If the set of con-

straints Σ is generic, then by Theorem 1, µ (Σ,D) is 0 or 1. It turns

out that arbitrary rational numbers can only be seen as values of

µ (Q |Σ,D) if µ (Σ,D) = 0; otherwise we recover the 0–1 law. More

precisely, if constraints of Σ hold inD when evaluated naïvely, then

they do not a�ect the value of µ (Q |Σ,D, ā).

Theorem 4. If Σ andQ are generic, andD is a database such that

Σnaïve (D) = true, then for every tuple ā over the active domain of D,

we have µ (Q |Σ,D, ā) = µ (Q,D, ā). �

Proof sketch. Consider Boolean queries Q ; by Theorem 1,

µ (Σ,D) = 1 and µ (Q,D) ∈ {0, 1}. If µ (Q,D) = 0, then, for ev-

ery small ε and all su�ciently large k we have µk (Q,D) < ε/2

and µk (Σ,D) > 1 − ε/2. Thus µk (Q |Σ,D) ≤ (ε/2)/(1 − ε/2) < ε

and hence µ (Q |Σ,D) = 0. If µ (Q,D) = 1, then again for each

small ε and all su�ciently large k we have µk (Q,D) ≥ 1 − ε/2

and µk (Σ,D) > 1 − ε/2, from which µk (Q |Σ,D) > 1 − ε can be

similarly derived; thus µ (Q |Σ,D) = 1. �

0–1 law for functional dependencies. To get arbitrary rational

numbers as values of µ (Q |Σ,D), we needed inclusion constraints.

If we use only functional dependencies (FDs), the 0–1 law is recov-

ered, and we can e�ectively decide whether the value is 0 or 1. The

procedure is this: chase the incomplete database with constraints,

and then apply the measure µ to the query and the result of the

chase.

We now brie�y recall the chase procedure for FDs (cf. [1, 25]).

We can assume without loss of generality that all FDs in the set

Σ are of the form X → A, where X is a set of attributes, and A is

an attribute. Then chasing a database D with constraints Σ refers

to the following procedure. At each step, it chooses a violation of

an FD from Σ, i.e., two tuples t1, t2 in a relation R of D, and an FD

X → A over R, such that πX (t1) = πX (t2 ), but πA (t1 ) , πA (t2 )

and does the following:

1It was observed by M. Console that by modifying the reduction, the query can be
taken to be conjunctive.

• if one of πA (t1 ), πA (t2 ) is an element of Null(D) and the

other is a constant, then the null is replaced by the constant

everywhere in D;

• if both πA (t1 ), πA (t2 ) are elements of Null(D), then one is

replaced by the other everywhere in D;

• if both πA (t1 ), πA (t2) are elements of Const(D), then the

procedure fails.

These steps are repeated as long as they can be; if the procedure

did not fail and no step applies anymore, then it terminates suc-

cessfully, and its output is denoted by chaseΣ (D). While the chase

procedure is non-deterministic, every sequence of chase steps re-

sults in the same instance, up to renaming of nulls, cf. [1, 3]; hence

we can call it chaseΣ (D) without ambiguity. Its running time is

polynomial in the size of D.

Among its many uses, the chase is known to help compute cer-

tain answers to conjunctive queries under constraints [13, 25]. In

fact, if Σ is a set of FDs and chase terminates successfully on a data-

baseD, then a tuple ā of constants is a certain answer to a conjunc-

tive queryQ onD under Σ i� ā ∈ Qnaïve(chaseΣ (D)), cf. [25]. Note

that this statement only makes sense for constant tuples, since

chase can rename nulls.

We show that the same statement is true not only for conjunc-

tive queries, but for all generic queries, if we replace certain an-

swers by almost certainly true answers.

Theorem 5. Let Σ be a set of FDs, Q a generic query and D a

database. If ā is a tuple of constants from D, then

µ (Q |Σ,D, ā) = µ (Q, chaseΣ (D), ā).

We assumed, by convention, that µ (Q, chaseΣ (D), ā) is set to 0

if chasing D with Σ fails.

Theorems 1 and 5 give us the following.

Corollary 4. Let Σ be a set of FDs, Q a generic query, D a data-

base, and ā a tuple of constants from D. Assume that chasing D with

Σ terminates successfully. Then

µ (Q |Σ,D, ā) =




1 if ā ∈ Qnaïve(chaseΣ (D)) ,

0 otherwise .

Proof idea of Theorem 5. Applying the chase can collapse some

valuationsv,v ′ onD to the same valuation on chaseΣ (D), and thus

we �rst need to analyze when this happens, and in particular how

many valuations on D can collapse to the same one on the result

of the chase. Next we assume that µ (Q, chaseΣ (D)) = 1 with the

goal of showing that µ (Q |Σ,D) = 1. For this, we under- and over-

approximate the numerator and denominator of the expression for

µk (Q |Σ,D) in terms of valuations from Vk (chaseΣ (D)), in particu-

lar using the above analysis on how they interact with the homo-

morphism that sends D to chaseΣ (D). Using such approximations,

we then prove that the sequence µk (Q |Σ,D) converges to 1. The

case when µ (Q, chaseΣ (D)) = 0 is handled by applying the same

argument to the negation ofQ . �

5 COMPARING QUERY ANSWERS

So far we de�ned measures of certainty of query answers as prob-

abilities that a randomly chosen valuation witnesses that a tuple is

in the answer. Now we shift to qualitative rather than quantitative



comparisons, and declare one answer to be better than another if

it has more support. That is, given a database D, a k-ary query Q ,

and k-tuples ā, b̄ over the active domain, we de�ne

ā EQ,D b̄ ⇔ Supp(Q,D, ā) ⊆ Supp(Q,D, b̄)

ā ⊳Q,D b̄ ⇔ Supp(Q,D, ā) ⊂ Supp(Q,D, b̄) .

Already in the introduction, we saw that these notions apply even

if we have tuples for which µ (Q,D, ā) = µ (Q,D, b̄ ) = 1. In such

a case, we may still have ā ⊳Q,D b̄ , indicating that b̄ should be a

preferred answer compared to ā, even if both are almost certainly

true answers.

Since ā⊳Q,R b̄ indicates that b̄ is a better answer, it is natural to

de�ne the set of best answers as those for which there is no better

one:

Best(Q,D) = {ā | ¬∃b̄ : ā ⊳Q,D b̄} .

The notion of best answers Best(Q,D) is closely related to

certain answers �(Q,D), but has some advantages. Certain an-

swers �(Q,D) could be empty. However, if D is not empty, then

Best(Q,D) , ∅ by de�nition. At the same time, if �(Q,D) , ∅,

then Best(Q,D) = �(Q,D). Thus, Best(Q,D) asks for the best an-

swers to Q one can get; if certain answers exist, they are the best,

but otherwise we can still talk about best answers even if there are

no certain answers.

To give an example, consider a database D with relations R =

{(1,⊥1 ), (2,⊥2 )} and S = {(1,⊥2 ), (⊥3,⊥1 )}, and query Q (x,y) =

R(x,y) ∧ ¬S (x,y) computing their di�erence. It is easy to see that

�(Q,D) = ∅. ForBest(Q,D), there are two natural candidate tuples:

ā = (1,⊥1 ) and b̄ = (2,⊥2 ). Note that v (ā) ∈ Q (v (D)) i� v (⊥1 ) ,

v (⊥2 ) and v (⊥3) , 1, while v (b̄ ) ∈ Q (v (D)) i� v (⊥1 ) , v (⊥2 )

or v (⊥3 ) , 2. Thus, ā ⊳Q,D b̄ and Best(Q,D) = {b̄}. In this case,

even if certain answers are empty, we could �nd the best answer

to provide the user with.

In this section we study the complexity of comparing answers

and �nding best answers. For this, we need to cast them as decision

problems. For relations θ ∈ {E,⊳}, the natural decision problem is

Problem: θ-Comparison

Input: A queryQ , a database D,

tuples ā, b̄

�estion: Is ā θQ,D b̄?

We turn �nding best answers into a decision problem by ask-

ing whether the best answer belongs to a speci�ed family of sets

(candidate answers):

Problem: BestAnswer

Input: A query Q , a database D,

a family X of sets of tuples

�estion: Is Best(Q,D) ∈ X?

Other formulations as a decision problem are possible too, but

this is enough to understand where the problem lies in terms of its

complexity. We look at data complexity of these problems, when

query Q is �xed. We establish it for �rst-order queries, and some

sublanguages. As usual, we say that data complexity is complete

for a complexity class for a given language, if for each query in the

language, data complexity is in that class, and for some, it is hard

for the class. Recall that testing whether a tuple belongs to �(Q,D)

is coNP-complete in data complexity for FO queries, and tractable

for unions of conjunctive queries [2].

The complexity of the problems we study falls within the sec-

ond level of the polynomial hierarchy, but low in that level, in

Σ
p
2 ∩ Π

p
2 . This holds not only for �rst-order queries, but also for

queries whose evaluation is tractable in data complexity. We start

with comparisons of tuples.

Theorem 6. For �rst-order queries, E-Comparison is coNP-

complete and ⊳-Comparison is DP-complete in data complexity. In

fact, membership in coNP and DP holds for arbitrary queries whose

data complexity is polynomial.

Proof sketch. We write Sep(Q,D, ā, b̄) (separating ā and b̄ with re-

spect toQ andD) for the statement Supp(Q,D, ā)−Supp(Q,D, b̄) ,

∅. Then ā EQ,D b̄ i� Sep(Q,D, ā, b̄ ) is false, and ā ⊳Q,D b̄

i� Sep(Q,D, ā, b̄) is false, and Sep(Q,D, b̄, ā) is true. Note that

Sep(Q,D, ā, b̄) is trivially in NP: it su�ces to guess a valuation

v and then, using polynomial time data complexity of Q , check

whether v (ā) ∈ Q (v (D)) and v (b̄ ) < Q (v (D)). This gives us mem-

bership of E-Comparison and ⊳-Comparison in coNP and DP re-

spectively.

To prove coNP-hardness of E-Comparison, we reduce from

graph non-3-colorability. For DP-hardness, we reduce from the

problem of checking whether χ (G), the chromatic number of G,

equals 4, which is known to be DP-complete [38]. �

Next we analyze the complexity of BestAnswer. Compared to

E and ⊳, it goes up a bit but still stays in the second level of the

polynomial hierarchy.

Theorem 7. For �rst-order queries, the problem BestAnswer is

PNP[logn]-complete in data complexity. It remains in PNP[logn] for

queries with polynomial time data complexity.

Proof sketch. To prove membership, we use the description of

PNP[logn] as the class of problems solvable in polynomial timewith

parallel access to an NP-oracle, see [11]. Suppose we are given a k-

ary queryQ of polynomial data complexity and a databaseD. Since

Q is �xed, in polynomial time we can enumerate all the pairs (ā, b̄)

of k-tuples of adom(D). Then, in parallel, we can check for each

pair whether Sep(Q,D, ā, b̄) holds, using an NP oracle. With this

information, in quadratic time we know whether ā EQ,D b̄ and

whether ā ⊳Q,D b̄ for all such pairs. With this, again in quadratic

time, we can �nd the set Best(Q,D).

To prove hardness, we reduce from the following problem: given

an undirected graph G, is its chromatic number χ (G) odd? This

problem is known to be PNP[logn]-complete [44]. �

5.1 Unions of conjunctive queries

How can we lower the complexity of tuple comparisons with re-

spect to E and ⊳? Checking whether ā EQ,D b̄ is already coNP-

hard for unions of conjunctive queries with negation (this follows

from the proof of Theorem 6); thus it seems that unions of con-

junctive queries, without negation, is a natural candidate. At �rst

this does not look surprising, since computing certain answers to

unions of conjunctive queries can be done by naïve evaluation and



thus has polynomial time data complexity. However, naïve evalua-

tion is of no help with the problems we are considering here. Con-

sider, for instance, the E ordering. It is easy to see that ā EQ,D b̄

i� Q (ā) → Q (b̄ ) is certainly true (viewing Q (ā) → Q (b̄ ) as a

Boolean query saying that Q (ā) implies Q (b̄ )). But naïve evalua-

tion of this query does not tell us whether ā EQ,D b̄ . Indeed, let

D be a database with relation R = {(1,⊥), (⊥, 2)}, and let Q re-

turn R. Then for ā = (1, 2) and b̄ = (1, 1), the naïve evaluation of

Q (ā) → Q (b̄ ) returns true as neither tuple is in R, but of course

ā EQ,D b̄ is false, since Supp(Q,D, ā) = {⊥ 7→ 1,⊥ 7→ 2} and

Supp(Q,D, b̄) = {⊥ 7→ 1}.

Thus, one needs an approach di�erent from the usual naïve eval-

uation. The previous observation o�ers a suggestion: checking cer-

tainty of implication of conjunctive queries is known to be solvable

in polynomial time [21]. We can extend those techniques to show

the following result.

Theorem 8. For unions of conjunctive queries, all of E-

Comparison, ⊳-Comparison, and BestAnswer have polynomial

time data complexity.

Proof sketch. Recall that Sep(Q,D, ā, b̄) stands for the statement

Supp(Q,D, ā) − Supp(Q,D, b̄) , ∅. Since knowing truth values

of Sep(Q,D, ā, b̄) and Sep(Q,D, b̄, ā) su�ces to determine whether

āEQ,D b̄ and ā⊳Q,D b̄, and for a �xed k-ary queryQ there are poly-

nomially many k-tuples of the active domain, it su�ces to check

that Sep(Q,D, ā, b̄) can be solved in polynomial time if Q is �xed.

Let D have m nulls, and let Q be C-generic. Let Am be a set

of m constants that is disjoint from Const(D) and C . Then, if

Sep(Q,D, ā, b̄ ) is true, we can �nd a valuation v ∈ Supp(Q,D, ā) −

Supp(Q,D, b̄) such that range(v ) ⊆ Const(D)∪C∪Am . Indeed, as-

sume we found some valuationv ′ ∈ Supp(Q,D, ā)−Supp(Q,D, b̄ ),

and its range contains l ≤ m elements c ′1, . . . , c
′
l
that are not

in Const(D) ∪ C ∪ Am . Since |Am | = m, we can �nd l ele-

ments c1, . . . , cl of Am that are not in range(v ′), and de�ne v as

π ◦ v ′, where π sends each c ′i to ci for i ≤ l . Then range(v ) ⊆

Const(D) ∪C ∪Am . Moreover, byC-genericity, v (ā) ∈ Q (v (D)) i�

v ′(ā) ∈ Q (v ′(D)) and likewise for b̄ , and hencev ∈ Supp(Q,D, ā)−

Supp(Q,D, b̄). Thus, we set A = Const(D) ∪ C ∪ Am , which is

linear in the size of D (since C is �xed). It then su�ces to show

that in polynomial time, in the size of D, we can check whether

there exists a valuationv ∈ Supp(Q,D, ā)−Supp(Q,D, b̄) such that

range(v ) ⊆ A. We call this a (D,A)-separating valuation (since ā

and b̄ are �xed, we do not mention them explicitly).

Let Q (x̄ ) be the union of k-ary conjunctive queries Q1, . . . ,Qr ,

where eachQi (x̄ ) is of the form ∃ȳ α1 (x̄, ȳ)∧ . . .∧αpi (x̄ , ȳ), and all

αj (x̄ , ȳ)s are relational atoms. Let p = maxi≤r pi . Then we prove

that the following are equivalent:

(*) there exists a (D,A)-separating valuation;

(**) there is a subset D′ ⊆ D with at most p + k tuples whose

active domain contains all the components of ā, and a val-

uation v ′ on D′ with range(v ′) ⊆ A that satis�es v ′(ā) ∈

Q (v ′(D′)) and v ′(b̄ ) < Qnaïve(v ′ (D)).

Note that v ′ is only de�ned on the nulls of D′, not of D, and

thusv ′(D) and v ′(b̄ ) may still contain nulls, so it is appropriate to

talk about naïve evaluation of Q on v ′(D).

Since we know that checking Sep(Q,D, ā, b̄ ) amounts to check-

ing (*), the equivalence tells us that we can check (**) instead. This

is easily seen to be in polynomial time with respect to data com-

plexity. �

5.2 Combining qualitative and quantitative

Results established so far classify query answers into good and bad

along two di�erent axes. Qualitatively, we want to �nd answers

that are in Best(Q,D) and discard others. According to quantita-

tive measures, good answers are those that are almost certainly

true (i.e., µ (Q,D, ā) = 1), and bad ones are those that are almost cer-

tainly false (i.e., µ (Q,D, ā) = 0). Is there any relationship between

these two classi�cations? We show below that they are completely

orthogonal: all four options among best vs non-best and almost

certainly true vs false are possible.

Proposition 7. All four possibilities of best vs non-best and al-

most certainly true vs almost certainly false are realizable for �rst-

order queries.

Proof sketch. Consider a database D with unary relations A and B

holding distinct elements a and b respectively, and a binary rela-

tion R with a single tuple (⊥,⊥′). De�ne

Q (x ) =
(

B (x ) ∧ ∃x R(x, x )
)

∨
(

A(x ) ∧ ¬∃x R(x, x )
)

Then Supp(Q,D, a) has valuations v with v (⊥) , v (⊥′)

and Supp(Q,D,b ) has valuations v with v (⊥) = v (⊥′). In

particular Best(Q,D) = {a,b}. Furthermore, µk (Q,D,a) =

|Suppk (Q,D, a) |/|Vk (D) | = 1 − 1/k and likewise µk (Q,D,b ) =

|Suppk (Q,D,b ) |/|Vk (D) | = 1/k , and thus µ (Q,D, a) = 1 and

µ (Q,D,b ) = 0. This shows that options (best, µ=0) and (best, µ = 1)

are realizable.

Expand D with a new relation G containing a single element д,

and let Q ′(x ) be G (x ) ∨ Q (x ). For this new database D′ we have

Best(Q ′,D′) = {д} and thus a,b < Best(Q ′,D′), but we still have

µ (Q,D′,b ) = 1 and µ (Q,D′,a) = 0, showing that the options of

non-best and µ = 1 or µ = 0 are realizable as well. �

Also, looking at qualitative and quantitative notions together

suggests that it would make sense to restrict Best(Q,D) to almost

certainly true answers, to get the best of both worlds. That is, we

de�ne Bestµ (Q,D) as the set {ā | ā ∈ Best(Q,D) and µ (Q,D, ā) =

1}. This gives rise to a modi�ed problem BestAnswerµ which is

de�ned just as BestAnswer except that we want to checkwhether

Bestµ (Q,D) is inX. We can show that the complexity of this mod-

i�ed version is exactly the same as for BestAnswer itself.

Proposition 8. The problem BestAnswerµ remains PNP[logn]-

complete for �rst-order queries, and has polynomial-time data com-

plexity for unions of conjunctive queries. �

6 FURTHER DIRECTIONS

Having introduced a new framework for measuring and compar-

ing certainty of query answers over incomplete databases, we now

outline its possible future applications and extensions.

SQL nulls. We used the common model of marked nulls. Its vari-

ant of non-repeating nulls, known as Codd nulls, is often used as

a simpli�ed model of SQL nulls. Nonetheless, SQL nulls are not



Codd nulls. Crucially, they follow a 3-valued logic in query evalu-

ation [15]; there are other more subtle di�erences that arise when

one compares nulls. While the results shown here are applicable to

marked and Codd nulls, we would like to know how to interpret

them with SQL nulls used in all relational DBMSs.

Quality of Approximations. It has long been known that �nd-

ing certain answers is computationally hard even for relational

algebra queries [2]. Due to this, various techniques for approxi-

mating certain answers were proposed. First approaches appeared

long ago [37, 43], but more recently they were reworked for all

relational algebras queries and shown to behave well when im-

plemented in commercial RDBMSs [26, 32]. One question that re-

mained open though is the quality of such approximations. While

it was experimentally measured in [26], the only theoretical guar-

antee we have is that on databases without nulls, approximation

schemes do not lose any answers. We would like to use the tech-

niques developed here to measure the quality of queries approxi-

mating certain answers, by measuring the likelihood of a certain

answer not being returned by the approximating query.

Preferences. In de�ning the measure µ (Q,D) in the absence of

constraints we assumed that every constant value is equally likely

to be substituted for a null. But there are many scenarios where

this is not so, and some values are preferred to others. For exam-

ple, if ⊥ stands for the disease of a particular patient in a database,

we may have additional information on the likelihood of di�erent

diagnoses. If this information is given probabilistically, we have es-

sentially the model of probabilistic databases [40]. But it is equally,

if not more likely, that such information will be given in terms of

preferences of some values over others. De�ning preferences, com-

puting and reasoning with them is of course an important subject

in AI [16], and we would like to bring in preferences to reason

about query answers over incomplete data using the framework

de�ned here.

Other distributions. Related to the previous point, the model

without constraints was essentially that of uniform distributions:

every value can be assigned to a null equally likely. In the theory

of random graphs and structures, one studies distributions more

complex than uniform, often depending on the number of nodes

of a graph; a typical example is �ipping a coin with probability

n−α to put an edge between two of n nodes, where α ∈ (0, 1), see,

e.g., [39]. Looking at other distributions and the behavior of the

measures µ (Q,D) and µ (Q |Σ,D) under them is another possible

direction.

Numerical and ordered domains. We assumed that domain el-

ements are uninterpreted, in which case the notion of genericity

makes perfect sense for queries. But if databases store elements

that can be ordered, or numbers, and ordering/arithmetic opera-

tions appear in queries, more re�ned notions of genericity, and in

fact of the measures of certainty, are needed. Finding such notions

may shed light on answering queries on incomplete databaseswith

interpreted elements. This is the area we know little about – but

we do know that even small additions such as order lead to a sig-

ni�cant increase in complexity [41].

Other semantics and applications. For this initial study we

concentrated on the very common closed-world semantics of miss-

ing values, but other interpretations of incompleteness and other

semantics exist [1, 27, 42]. We touched brie�y on the open-world

semantics, but the negative result we showed does not mean that

there are no alternative ways of measuring certainty in a mean-

ingful way. In addition to applying the measure-based approach

to other semantics, we would like to investigate its suitability for

query answering in applications that rely on certain answers, such

as data integration, data exchange, OBDA, and consistent query

answering, where probabilistic approaches have already been con-

sidered [24].
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